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ABSTRACT: Although traditional per-phase equivalent circuit has been widely used in steady-state analysis and
design of induction motors, it is not appropriate to predict dynamic performance of the motor.  In order to
understand and analyze vector control of induction motors, the dynamic model is necessary.  Unfortunately, the
dynamic model equations are complex and there are many different forms of the model depending on the choice of
reference frame.  It is the objective to explain various forms in a concise way to understand clearly.  In addition, the
fundamental dynamic mechanism of the motor in the synchronous frame is developed and the basic principles of
vector control is discussed in general terms.

I.  INTRODUCTION

The induction motor, which is the most widely used motor type in the industry, has been favored because of
its good self-starting capability, simple and rugged structure, low cost and reliablilty, etc.  Along with variable
frequency AC inverters, induction motors are used in many adjustable speed applications which do not require fast
dynamic response.  The concept of vector control has opened up a new possibility that induction motors can be
controlled to achievedynamic performance as good as that of DC or brushless DC motors.  In order to understand
and analyze vector control, the dynamic model of the induction motor is necessary.  It has been found that the
dynamic model equations  developed on a rotating reference frame is easier to describes the characteristics of
induction motors.  It is the objective of the article to derive and explain induction motor model in relatively simple
terms by using the concept of space vectors and d-q variables.  It will be shown that when we choose a synchronous
reference frame in which rotor flux lies on the d-axis, dynamic equations of the induction motor is simplified and
analogous to a DC motor.

Traditionally in analysis and design of induction motors, the “per-phase equivalent circuit” of induction
motors shown in Fig. 1.1 has been widely used.  In the circuit, Rs (Rr) is the stator (rotor) resistance and Lm is called
the magnetizing inductance of the motor.  Note that stator (rotor) inductance Ls (Lr) is defined by

Ls = Lls  +  Lm,   Lr = Llr  +  Lm (1.1)

where Lls (Lrs) is the stator (rotor) leakage inductance.  Also note that in this equivalent circuit, all rotor parameters
and variables are not actual quantities but are quantities referred to the stator [1].  Methods of determining circuit
parameters from no-load test and locked rotor test are described in [2].  It is also known that induction motors do not
rotate synchronously to the excitation frequency.  At rated load, the speed of induction motors are slightly (about 2 -
7% slip in many cases) less than the synchronous speed.  If the excitation frequency injected into the stator is ωe and
the actual speed converted into electrical frequency unit is ωo, slip s is defined by

s  =  (ωe - ωo ) / ωe =  ωr / ωe, (1.2)

and ωr is called the slip frequency which is the frequency of the actual rotor current.  In the steady-state AC circuit,
current and voltage phasors are used and they are denoted by the underline.  In Fig. 1.1, power consumption in the
stator is interpreted as Is2Rs, while Ir2Rr/s represents both power consumption in the rotor and the mechanical ouput
(torque).  By substracting rotor loss Ir2Rr from Ir2Rr/s, produced torque (mechanical power divided by the shaft
speed) is given by

        T  = Ir2 Rr (P/2)  (1-s) / (s ωo)  = Ir2 Rr [ P / (2 ωe )],   (1.3)

where P is the number of poles.  Although the per-phase equivalent circuit is useful in analyzing and predicting
steady-state performance, it is not applicable to explain dynamic performance of the induction motor.  In the next
section, we will develop dynamic model of induction motors in general frame work and introduce several equivalent
circuits as special cases.
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Throughout the article, all vectors are denoted as boldface and complex conjugates are denoted by @.
Vectors on a rotating reference frame is followed by a superscipt letter which designates the frame used as in Vs s

(Vs in stationary frame). The derivative operator is denoted by p while P is the number of poles  For notational
convenience, let Y (scalar) or Y (vector) be the representative notation of any voltage, current or flux linkage
variable.  Real and Imaginary values of a space vector Y is denoted by Re(Y) and Im(Y), respectively.  Zero vectors
are denoted by 0 regardless of the reference frame used.

Fig. 1.1  Conventional Per-phase Equivalent Circuit

II.  DYNAMIC MODEL IN SPACE VECTOR FORM

In an induction motor, the 3-phase stator windings are designed to produce sinusoidally distributed mmf in
space along the airgap periphery.  Assuming uniform airgap and neglecting the effects of slot harmonics, distribution
of magnetic flux will also be sinusoidal.  It is also assumed that the neutral connection of the machine is open so that
phase voltages, currents and flux linkages are always balanced and there are no zero phase sequence component in
the system.  For such machines, the notation in terms of the space vector [3] is very useful. For 3 phase induction
motors, the space vector Ys s of the stator voltage, current and flux linkage is defined from its phase quantities by

Ys s  =  (2/3) ( Ya  +  α Yb  +   α2 Yc ),    (2.1)

where  α = exp(j 2π/3).  The above transform is reversible and each phase quantities can be calculated from the space
vector by,

      Ya  =  Re (Ys s),   Ib  =  Re (α2 Ys s),   Ic  =  Re (αYs s). (2.2)

For a sinusoidal 3-phase quantity of constant rms value, the corresponding space vector is a constant-magnitude
vector rotating at the frequency of the sinusoid with respect to the fixed (stationary) reference frame.  Note that the
space vector is at vector angle 0 when A-phase signal (Ya) is at its sinusoidal peak value in steady-state.  With space
vector notation, voltage equations on the stator and rotor circuits of induction motors are,

Vs s   =  Rs Is s +  p λλλλs s (2.3)

Vr’   =  Rr’ Ir’  +  p λλλλr’ = 0     (2.4)

It is very convenient to transform actual rotor variables (Vr’, Ir’, λλλλr’) from Eq. 2.4 on a rotor reference frame into a
new variables ( Vr s, Ir s, λλλλr s) on a stator reference frame as in the derivation of conventional steady-state equivalent
circuit.  Let the stator to rotor winding turn ratio be n and the angular position of the rotor be θ, and define

     Ir s =  (1/n) exp(j θ ) Ir’,    λλλλr s  =    n exp(j θ ) λλλλr’       (2.5)

Also, by defining referred rotor impedances as  Rr = n2 Rr’, etc., we have

Vs s  =  Rs Is s +  p λλλλs s (2.6)

  0    =  Rr Ir s +  (p - jωo) λλλλr s (2.7)

where ωo = p θo, is the speed of the motor in electrical frequency unit and

λλλλs s =  Ls Is s +  Lm Ir s (2.8)

Rs Lls Llr Rr/s

Lm

+

-

Vs
Is Ir
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λλλλr s =  Lm Is s  +  Lr Ir s   (2.9)

The above 4 equations (Eq. 2.6 - 2.9) constitute a dynamic model of the induction motor on a stationary (stator)
reference frame in space vector form.  These model equations may be simplified by eliminating flux linkages as

Vs s  =  (Rs +  Ls p) Is s +  Lm p Ir s (2.10)

       0  =  (Rr + Lr (p  - jωo)) Irs + Lm (p - jωo) Is s.   (2.11)

From Eqs. 2.10-2.11, The dynamic equivalent circuit model on a stationary reference frame can be drawn as in Fig.
2.1.  For steady-state operation with excitation frequency ωe, p in Eq. 2.10-2.11 may be replaced by jωe  and after
some algebraic manipulation, we get

Vs s  =  (Rs + jωe Ls ) Is s +  Lm p Ir s (2.12)

            0  =  (Rr/ s  +  jωe Lr) Ir s  +  jωe Lm Is s.   (2.13)

which exactly describes the conventional steady-state equivalent circuit of Fig. 1.1.

Now, the previous procedure can be generalized so that the dynamic model is described on an arbitrary
reference frame rotating at a speed ωa, where Eq. 2.6 -2.13 is a special case with ωa,= 0 [4 -5].  To do that, define the
new space vector on the arbitrary frame as

          Y a = exp(- j θa ) Y  s     (2.14)

and reconstruct all the model equations in terms of the new space vectors.  In the arbitrary reference frame, Eqs. 2.6-
2.7 are modified to

Vs a    =  (Rs + Ls p) Is a  + Lm p Ir a + jωa λλλλs a      (2.15)

           0   =  (Rr + Lr p) Ir a + Lm p  Is a  + j (ωa - ωo) λλλλr a,            (2.16)

with new flux linkage equations defined by,

λλλλs a  =  Ls Is a   +  Lm Ir a (2.17)

λλλλr a  =  Lm Is a  +  Lr Ir a (2.18)

As before, by substituting Eqs. 2.16-2.17 into Eqs. 2.14-2.15, we have

Vsa   =  (Rs +  Ls (p + jωa)) Is a +  Lm (p + jωa ) Ir a (2.19)

  0  =  (Rr + Lr (p + jωa - jωo)) Ir a  +  Lm (p + jωa - jωo) Is a       (2.20)

where eliminated flux linkage variables are eliminated.

Fig. 2.1  Dynamic Equivalent Circuit on a Stationary Reference Frame

The generalized equivalent circuit on a arbitrarily rotating frame based on Eq. 2.19-2.20 is shown in Fig. 2.2.  Now,
depending on a specific choice of ωa, many forms of dynamic equivalent circuit can be established.  Among them,
the synchronous frame form can be obtained by choosing ωa = ωe.  This form is very useful in describing the concept
of vector control of induction motors as well as of PM synchronous motors because at this rotating frame, space

+
Rs Lls Llr - j ωo λλλλr Rr

LmVs s

Is s Ir s

+

-
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vector is not rotating, but fixed and have a constant magnitude in steady-state.  Since space vectors in the
synchronous frame will frequently be used, they are denoted without any superscript indicating the type of frame.
Another possible reference frame used in vector control is the rotor reference frame by choosing ωc = ωo which is , in
fact, the reverse step of Eq. 2.5 with n =1.

Fig. 2.2  Dynamic Equivalent Circuit on an Arbitray Reference Frame Rotating at ωa.

III.  D-Q EQUIVALENT CIRCUIT

In many cases, analysis of induction motors with space vector model is complicated due to the the fact that
we have to deal with variables of complex numbers.  For any space vector Y, define two real quantities Sq and Sd as,

S  =  Sq  -  j Sd (3.1)

In other words, Sq = Re (S) and Sd = - Im (S).  Fig. 3.1 illustrates the relationship between d-q axis and complex
plane on a rotating frame with respect to stationary a-b-c frame.  Note that d- and q-axes are defined on a rotating
reference frame at the speed of ωa = p θa with respect to fixed a-b-c frame.

Fig. 3.1  Definition of d-axis and q-axis on an arbitrary reference frame

With the above definition, Eq. 2.19-2.20 can be translated into the following 4 equations of real variables expressed
in a matrix form.

        Vqsa        Rs + Ls p          ωa Ls                 Lm p             ωa Lm      Iqsa
        Vdsa     =         -ωa Ls         Rs + Ls p            -ωa Lm               Lm p      Idsa   (3.2)
           0              Lm p       ( ωa - ωo) Lm      Rr + Lr p        ( ωa - ωo) Lr      Iqra
           0       -( ωa - ωo) Lm        Lm p         -( ωa - ωo) Lr       Rr + Lr p      Idra

+
Rs jωaλλλλsa Lls Llr j (ωa - ωo) λλλλra Rr

LmVs a

Is a Ir a
+

-

+

a

Imag

d-axis

b

c

q-axis

Real

θa
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For future reference, the above matrix equation simplified for popular reference frames in analysis and design of
vector control will be introduced.  For stationary reference frame, by substituting ωa = 0, the above equation is
reduced to

        Vqss        Rs + Ls p           0                    Lm p                      0        Iqss
        Vdss     =             0             Rs + Ls p              0                       Lm p      Idss   (3.3)
           0              Lm p           - ωo Lm         Rr + Lr p                - ωo Lr      Iqrs
           0              ωo Lm            Lm p             ωo Lr                 Rr + Lr p      Idrs

Some implementation of vector drive includes calculation in rotor reference frame (frame is attached to the rotor
rotating at ωo ).  In this case, we can substitute all ωa in Eq. 3.2 by ωo, which makes simplified rotor voltage
equations.  Moreover, for synchronous frame, we have

        Vqs        Rs + Ls p          ωe Ls                 Lm p               ωe Lm      Iqs
        Vds     =         -ωeLs          Rs + Ls p            -ωe Lm                Lm p      Ids   (3.4)
          0              Lm p           ωr Lm                Rr + Lr p            ωr Lr      Iqr
          0          - ωe Lm            Lm p                - ωr Lr              Rr + Lr p      Idr

As mentioned before, each variable (voltage, current or flux linkage) in the synchronous frame is stationary and fixed
to a constant magnitude in steady-state.  Based on Eq. 3.4, dynamic d-q equivalent circuit is shown in Fig. 3.2.

(A)  Q-axis Circuit

(B)  D-axis Circuit

Fig. 3.2  D-Q Equivalent Circuit on a Synchronous Frame

For dynamic simulation of induction motors, Eq. 3.3 or Eq. 3.4 may be used.  In this case, one may prefer to use the
standard form of differential equation as

p X =  A X  +  B U.   (3.5)

For Eq. 3.4, matrix quantities on the above equation are as follows.

+
Rs ωe λds Lls Llr  ωr λdr Rr

LmVqs

Iqs Iqr

+

-

+

+
Rs -ωe λqs Lls Llr - ωr λqr Rr

LmVds

Ids Idr

+

-

+



6

       Iqs    Vqs           Lr      0      - Lm      0 
          X   =   Ids  ,                U  =  Vds                B  =  1/ ∆      0      Lr         0    - Lm    (3.6)

      Iqr        0      - Lm    0         Ls       0 
      Idr       0         0    - Lm       0      Ls 

and

          Rs Lr               ωe Ls Lr - ωr Lm2                         -  Rr Lm                ωo Lm Lr 
       A =   1 / ∆    ωr Lm2 - ωe Ls Lr              Rs Lr                       -ωo Lr Lm                - Rr Lm    (3.7)

       - Rs Lm                      - ωo Ls Lm                     Rr Ls         ωr Ls Lr - ωe Lm2 
       ωo Ls Lm                     - Rs Lm            ωeLm2 - ωr Ls Lr                 RrLs 

In the above equation, ∆ = Ls Lr - Lm2.  Although both Eq. 3.4 and Eq. 3.5 are frequently used to describe the
induction motor on a synchronous frame, we need another set of equations that include flux linakge variables to
explain the concept of vector control.  By translating Eq. 2.15 - 2.18 in d-q coordinate on a synchronous frame, we
have the following 8 equations.  Both stator and rotor voltage equations are,

      Vqs   =  Rs Iqs  +  p λqs  +  ωs λds   (3.8)
      Vds    =  Rs Ids  +  p λds  -  ωs λqs   (3.9)
        0     =  Rr Iqr  +  p λqr  +  ωr λdr  (3.10)
        0     =  Rr Idr  +  p λdr  -  ωr λqr,  (3.11)

where flux linkage variables are defined by

λqs  =  Ls Iqs  +  Lm Iqr (3.12)

λds  =  Ls Ids  +  Lm Idr (3.13)

λqr  =  Lm Iqs  +  Lr Iqr (3.14)

λdr  =  Lm Ids  +  Lr Idr. (3.15)

It will be shown in the next section that the above equation are very useful in explaining the dynamic structure of the
motor and the concept of vector control.

When induction motors are controlled by a vector drive, control computation is often done in the
synchronous frame.  Since actual stator variables either to be generated or to be measured are all in stationary a-b-c
frame, frame transform should be executed in the control.  The most popular transform is between stationary a-b-c
frame quantities to synchronously rotating d-q quantities.  Combining Eq. 2.1, Eq. 2.14, and Eq. 3.1, we have

Sqs  =  (2/3) Re{exp(-jθa) (Sa + α Sb + α2 Sc)} (3.16)

Sds  =  - (2/3) Im{ exp(-jθa) (Sa + α Sb + α2 Sc)} (3.17)

Or in a simpler form,

  Yq                    cos θ       cos (θ - 2π/3)       cos (θ + 2π/3)       Ya 
  Yd       =  (2/3)      sin θ        sin (θ - 2π/3)       sin (θ + 2π/3)         Yb     (3.18)
   0                        0.5               0.5                          0.5              Yc 

and its inverse transform is given by

  Ya                        cos θ                       sin θ                    1         Yq 
  Yb        =       cos (θ - 2π/3)           sin (θ - 2π/3)            1        Yd      (3.19)
  Yc                   cos(θ + 2π/3)           sin (θ + 2π/3)           1         0  
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In vector control drives, Eq. 3.18 is frequently used to convert measured currents and voltages to d-q quantities while
Eq. 3.19 may be used to feed command signals to the amplifier.  In many modern drives, Eq. 3.19 can be
accomplished in a slightly different mechansism such as the space vector modulation [6].

Regardless of reference frame, instantaneous input power can be expressed, in terms of space vectors, by

 Pi   =   (3/2) Re(Vs Is @ ) ,      (3.20)

or in terms of d-q variables as

           Pi   =   (3/2) [ Vds Ids + Vqs Iqs ].    (3.21)

The reactive power Qi can also be defined as

 Qi   =   (3/2) Im(Vs Is @ ) ,      (3.22)

or in terms of d-q variables as

           Qi   =   (3/2) [ Vqs Ids - Vds Iqs ].    (3.23)

This reactive power can be used in some parameter adaptation methods which automatically corrects the rotor time
constant parameter (Tr) during steady-state operation.

Now, one simple way of obtaining the output torque is to consider the power associated with speed voltage
term on Fig. 2.1 as

Po  =  (3/2) ωo Im ( λλλλr Ir@ ).  (3.24)

Since torque is the above power divided by the rotor speed,

To  =  (3/4) P Im ( λλλλr Ir @ ),    (3.25)

where P is the number of poles.  In terms of d-q variables , Eq. 3.25 is

         To  =  (3/4) P {λqr Idr - λdr Iqr}     (3.26)

Although the torque expression on the above is derived from stationary reference frame, it is true for any other
reference frames.  Many other forms of torque equations are possible [4].  For example, by substituting flux linkage
relation of Eq. 2.9 into Eq. 3.25, we have

       To  =  (3/4) P Lm Im( Is Ir @ ).     (3.27)

  To  =  (3/4) P Lm {Iqs Idr - Ids Iqr}     (3.28)

Again, by using Eq. 2.9, we can eliminate Ir on Eq. 3.27 to get

     To  =  (3/4) P (Lm/Lr) Im( Is λλλλr @ ).  (3.29)

To  =  (3/4) P (Lm/Lr) {Iqs λdr - Ids λqr}     (3.30)

It will be shown later that Eqs. 3.29 - 3.30 are particularly important in vector control because output torque is
expressed in terms of stator current and rotor flux linkage.

IV.  PRINCIPLES OF VECTOR CONTROL

So far, we have not paid attention to the alignment of the rotating reference frame with respect to the
physical coordinate.  Noting in Eq. 3.28 that torque is directly proportional to Iqs if λqr = 0,  one can choose the
rotating d-axis to be the angle of the rotor flux linkage.  In fact, this choice offers a lot of advantages of simplifying
control and analysis of the motor.  Other choices frequently used in direct vector control are stator flux linkage frame
(d-axis is aligned to the stator flux linkage) and airgap flux linkage frame, which will be discussed briefly at the end
of the section.

When the motor is driven from an ideal current source amplifier, Eq. 3.8-3.9 are automatically satisfied by
the source and can be neglected in the analysis.  This is practically true on many PWM voltage amplifiers which
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have high bandwidth closed-loop current control.  Assume that the rotor flux always coincides with the rotating d-
axis frame, i.e.,

        λλλλr = - j λdr   (4.1)

Then we have,

 λqr = 0,    p λqr = 0.     (4.2)

Applying the above conditions to Eq. 3.10-3.11, we have

Rr Iqr  +  ωr λdr  = 0 (4.3)

Rr Idr   +   p λdr  = 0 (4.4)

Next, substitution of these relations into Eq. 3.14-3.15 yields

Iqr  = - (Lm / Lr) Iqs  (4.5)

         Idr  =  (λdr  -  Lm Ids ) / Lr (4.6)

Now, by defining the rotor time constant τr, a very, very important constant in induction motor dynamics as,

   τr  =  Lr / Rr, (4.7)

we have the following two equations.

       ωr   =  (Lm / τr ) (Iqs / λdr )        (4.8)

p λdr  =  (1 / τr ) ( - λdr + Lm Ids) (4.9)

In the mean time, torque expression of Eq. 3.28 is reduced to

   T  =   (3/4) P (Lm / Lr) λdr Iqs (4.10)

Based on Eqs. 4.8-4.10, we can draw a block diagram as in Fig. 4.1 of induction motor dynamics when rotor flux
field oriented condition ( Eq. 4.1) is imposed.

Fig. 4.1  Block Diagram of Induction Motor Dynamics

From the block diagram of Fig. 4.1, we can observe that the output torque is directly proportioal to the q-
axis stator current without dynamics while it is subject to a first order dynamics with time constant τr from the d-axis
stator current.  In addition, rotor flux linkage is not affected by the change in Iqs (decoupled).  We can also see that
Idr exists only when  λdr (Eq. 4.4) changes due to the change in Ids (Eq. 4.6).  In steady-state, the magnitude of the
rotor flux is

λdr  =  Lm Ids (4.11)

   Lm / (1 + τr p)

 X 0.75 P Lm / Lr

  ÷ Lm / τr

Motor
Mechanical
Dynamics

Ia

Ib

Ic

Ids

Iqs

λdr

N
D

Te  +

TL

-

+      θo

+

ωr
1/p

θe

θr

exp(j θs)
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This situation is analogous to the control characteristics of separately excited DC motors where torque is
proportional to armature current, while field flux which has a long time lag due to high inductance of field circuit.
Note in the above block diagram that determination of d-axis and q-axis stator currents from 3-phase input currents
are based on the rotor flux angle.  Inside the motor, rotor flux angle is determined by the angular position of the rotor
plus integrated slip frequency which is given by Eq. 4.8.

In vector control of induction motors, the accuracy of rotor flux angle is critical in control because
calculation of currents (Ids, Iqs) in the synchronous frame is determined by the rotor flux angle.  Basically, there are
two methods of determing rotor flux angle in vector control.  One method, called Indirect Vector Control (IVC)
calculates θs from

ωr *  =  (Lm / τr ) (Iqs* / λdr* ) (4.12)

      θe*  =  θo  +  ∫ ωr* dt (4.13)

where quantities that are commanded or estimated in drive control are denoted by asterisk (*).  Since this method
relies on knowlegde of motor parameters such as Lm and τr, and the real values of which may be changing as
operating conditions change, consideration should be given in design to the effects of parameter variations.  Another
method, called Direct Vector Control (DVC) determines θe* either from the measurement of airgap flux, or from
terminal voltages and currents.  In the latter case, angle and magnitude of the rotor flux may be calculated by

    λλλλs  =  ∫ (Vs - Rs Is ) dt. (4.14)

λλλλr  =  (Lm/Lr) (λλλλs  - Lo Is). (4.15)

where Lo = Ls - Lm2/Lr.   Although DVC may be relatively insensitive to the variations (depending on the actual
implementation) of rotor parameters, performance of DVC may be sluggish at low speed operation due to inaccurate
knowledge on the stator resistance, integration drift, etc.

In the above discussions, we chose the reference frame d-axis to coincide with rotor flux linkage.  This is
called “rotor flux orientation.”  Sometimes, “stator flux orientation” or “air-gap flux orientation” can be used.  The
airgap flux space vector is defined by

λλλλm  =  Lm Is  +  Lm Ir. (4.16)

All three orientation methods use the synchronous reference frame with slight differences in the choice of the
reference vector.  In any of the above cases, the description up to the previous section for the synchronous frame are
applicable.  In DVC, stator flux orientation may be used when flux linkage is calculated from terminal voltages and
currents, while the airgap flux orientation may be preferred when actual airgap flux sensor is used for direct
measurement on the motor.  Since we do not have a nice decoupled torque relation shown in Fig.4.1 on both stator
and airgap flux orientation methods, additional decoupling compensation should be applied for vector control in
either stator or airgap flux orientation.  Refer to [7] for further details.

REFERENCES

[1] A. E. Fitzgerald, et al., "Electric Machinery," 5th Ed., McGraw-Hill, 1990.

[2] IEEE Standard 112-1991, "IEEE Standard Test Procedure for Polyphase Induction Motors and Generators,"
Institute of Electrical and Electronics Engineers, Inc.

[3] G. R. Slemon,"Modelling Induction Machines for Electric Drives," IEEE Trans. on Industry Applications, Vol.
25, No. 6, pp. 1126-1131, Nov. 1989.

[4] D. W. Novotney, et al.(Editor), "Introduction to Field Orientation and High Performance AC Drives," IEEE IAS
Tutorial Course, 1986.

[5] A. M. Trzynadlowski, “The Field Orientation Principle in Control of Induction Motors,” Kluwer Academic
Publishers, 1994.

[6] J. Holtz, "Pulse Width Modulation for Electronic Power Conversion," Proceedings of IEEE, Vol.82, No.8,
pp.1194-1214, Aug. 1994.



10

[7] R. DeDonker and D. W. Novotney, “The Universal Field Oriented Controller,” IEEE Trans. Industry
Applications, Vol. 30, No.1, pp.92-100, Jan. 1994.

    (03-20-00,  Word 97)


