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POPULATION GROWTH AND TECHNOLOGICAL CHANGE: 
ONE MILLION B.C. TO 1990* 

MICHAEL KREMER 

The nonrivalry of technology, as modeled in the endogenous growth literature, 
implies that high population spurs technological change. This paper constructs and 
empirically tests a model of long-run world population growth combining this 
implication with the Malthusian assumption that technology limits population. The 
model predicts that over most of history, the growth rate of population will be 
proportional to its level. Empirical tests support this prediction and show that 
historically, among societies with no possibility for technological contact, those with 
larger initial populations have had faster technological change and population 
growth. 

Models of endogenous technological change, such as Aghion 
and Howitt [1992] and Grossman and Helpman [1991], typically 
imply that high population spurs technological change. This impli- 
cation flows naturally from the nonrivalry of technology. As Arrow 
[1962] and Romer [1990] point out, the cost of inventing a new 
technology is independent of the number of people who use it. 
Thus, holding constant the share of resources devoted to research, 
an increase in population leads to an increase in technological 
change. However, despite its ubiquity in the theoretical literature 
on growth, this implication is typically dismissed as empirically 
undesirable. 

This paper argues that the long-run history of population 
growth and technological change is consistent with the population 
implications of models of endogenous technological change. The 
first section of the paper constructs a highly stylized model in 
which each person's chance of being lucky or smart enough to 
invent something is independent of population, all else equal, so 
that the growth rate of technology is proportional to total popula- 
tion. The model also makes the Malthusian [1978] assumption that 
population is limited by the available technology, so that the 
growth rate of population is proportional to the growth rate of 

*I am grateful to Gene Grossman, Charles Jones, Gregory Mankiw, Paul 
Romer, Xavier Sala-i-Martin, James Thomson, many former classmates, an anony- 
mous referee, and especially Robert Barro and Elhanan Helpman for assistance 
with this paper. Participants in seminars at Brown University, University of 
Chicago, Harvard University, and Yale University, and at the AEA meetings and the 
NBER Economic Growth and Economic Fluctuations Meetings provided useful 
comments. Jill Woodworth provided capable research assistance. I was supported by 
a National Science Foundation graduate fellowship while writing this paper. 

a 1993 by the President and Fellows of Harvard College and the Massachusetts Institute of 
Technology. 
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technology. Combining these assumptions implies that the growth 
rate of population is proportional to the level of population. 

Figure I plots the growth rate of population against its level 
from prehistoric times to the present. The prediction that the 
population growth rate will be proportional to the level of popula- 
tion is broadly consistent with the data, at least until recently, 
when population growth rates have leveled off. The data, which are 
listed in Table I and discussed in Section IV, are drawn from 
McEvedy and Jones [1978], Deevey [1960], and the United Nations 
[various years]. While they are obviously subject to measurement 
error, there can be little doubt that the growth rate of population 
has increased over human history. Assuming that population has 
historically been limited by the level of technology, this much 
faster than exponential population growth is inconsistent with 
growth models which either assume constant exogenous technolog- 
ical change or generate it endogenously. 

The model outlined in Section I is similar to that of Lee [1988], 
who combines the Malthusian and Boserupian interpretations of 
population history to generate accelerating growth of population. 
Lee adopts Boserup's [1965] argument that people are forced to 
adopt new technology when population grows too high to be 
supported by existing technology. However, this view is difficult to 
reconcile with the simultaneous rise in income and rates of 
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FIGURE I 
Population Growth Versus Population 
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TABLE I 
POPULATION GROWTH: 1,000,000 B.C. TO 1990 

Year Pop. (millions) Growth rate Comments 

-1,000,000 0.125 0.00000297 
-300,000 1 0.00000439 

-25,000 3.34 0.000031 
-10,000 4 0.000045 

-5000 5 0.000336 
-4000 7 0.000693 
-3000 14 0.000657 
-2000 27 0.000616 
-1000 50 0.001386 

-500 100 0.001352 
-200 150 0.000623 

1 170 0.000559 
200 190 0.0 
400 190 0.000256 
600 200 0.000477 
800 220 0.000931 

1000 265 0.001886 
1100 320 0.001178 
1200 360 0.0 Mongol Invasions 
1300 360 -0.0002817 Black Death 
1400 350 0.0019420 
1500 425 0.002487 
1600 545 0.0 30 years war, Ming Collapse 
1650 545 0.002253 
1700 610 0.003316 
1750 720 0.004463 
1800 900 0.005754 
1850 1200 0.003964 
1875 1325 0.008164 
1900 1625 0.008306 
1920 1813 0.009164 
1930 1987 0.010772 
1940 2213 0.012832 
1950 2516 0.018226 
1960 3019 0.020151 
1970 3693 0.018646 
1980 4450 0.018101 
1990 5333 

The growth rate listed for period t is the average growth rate from t to t + 1. Since differences of a constant 
at all times between different data sets would distort growth rates, the 25,000 to 10,000 B.C. growth rate is based 
on Deevey's population estimates, although the population estimate for 10,000 B.C. is from McEvedy and Jones. 
Similarly, the 1900-1920 growth rate is based on the 1900-1925 average annual growth rate from McEvedy and 
Jones. Population figures from 1920 to 1940 and from 1950 to 1980 are from the 1952 and 1985/6 editions of the 
United Nations Statistical Yearbook, respectively. The 1990 population estimate is from the 1991 World 
Almanac [1991], which attributes it to the U. S. Bureau of the Census. 



684 QUARTERLY JOURNAL OF ECONOMICS 

technological change over most of history, since it implies that 
increases in income should have led to reduced effort to invent new 
technologies. In contrast, this paper argues that even if each 
person's research productivity is independent of population, total 
research output will increase with population due to the nonrivalry 
of technology. As Kuznets [1960] and Simon [1977, 1981] argue, a 
higher population means more potential inventors. Lee's model 
and the simple model of Section I each make different functional 
form assumptions about the effect of population on technological 
change and of technology on population. While these restrictive 
assumptions make the models tractable, they limit their ability to 
match certain features of the data, such as the recent decline in 
population growth rates. 

Sections II and III generalize the simple model's assumptions 
about the determinants of research output and population, and 
show that for appropriate parameter values this generalized model 
is consistent with recent, as well as long-run, history. Section II 
generalizes the model to allow research productivity to increase 
with income, as seems appropriate in light of low research produc- 
tivity in some densely populated countries, such as China. It shows 
that this can generate a negative cross-section relationship be- 
tween population and research output, but leaves the time series 
implications of the model intact. Following Jones [1992], Section II 
further generalizes the model to allow research productivity to 
depend on population and the existing level of technology and 
shows that this generalized model can only be reconciled with the 
data if total technological change increases with population. An 
alternative model of exogenously increasing growth rates of technol- 
ogy, independent of population, is inconsistent with modern data. 

Section III shows that if population grows at finite speed when 
income is above its steady state, rather than adjusting instanta- 
neously, as in the simple model, per capita income will rise over 
time. If population growth declines in income at high levels of 
income, as is consistent with a variety of theoretical models and 
with the empirical evidence, this gradual increase in income will 
eventually lead to a decline in population growth. 

Section IV empirically tests the model. Following Von Foer- 
ster, Mora, and Amiot [1960], subsection IV.A shows that as the 
model predicts, the growth rate of population has been propor- 
tional to its level over most of history. Subsection IV.B confirms 
the cross-section implications of the model by showing that among 
technologically separate societies, those with higher initial popula- 
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tion had faster growth rates of technology and population. A 
conclusion summarizes the argument and discusses implications 
for policy and for the endogenous growth literature. 

I. THE INTEGRATED MODEL: A SIMPLE VERSION 

This section quickly sketches a simple model of population 
growth and technological change along lines similar to those of Lee 
[1988]. It makes highly simplified assumptions about how technol- 
ogy affects population and how population affects the growth rate 
of technology, shows how they interact, and argues that a model 
combining these assumptions describes the data surprisingly well. 

Assume that output is given by 

(1) Y = ApaTl-a 

where A is the level of technology, p is population, and T is land, 
which is henceforth normalized to one.' Per capita income y 
therefore equals Apo-'. 

I assume that population increases above some steady state 
equilibrium level of per capita income, y-, and decreases below it. 
Diminishing returns to labor imply that a unique level of popula- 
tion, P, generates income of y: 

(2) 
p=A 

In this simplified model I assume that population adjusts instanta- 
neously to j. Section III makes the more realistic assumption that 
population adjusts to ji at finite speed. Note that increases in A, 
such as the invention of agriculture, shift the production function 
outward and raise the steady state populationp. 

Together with this Malthusian assumption about the determi- 
nation of population by technology, the model adopts Kuznets' 
[1960] and Simon's [1977, 1981] view that high population spurs 
technological change because it increases the number of potential 
inventors. In particular, this simple model assumes that, all else 
equal, each person's chance of inventing something is independent 
of population. Thus, in a larger population there will be propor- 
tionally more people lucky or smart enough to come up with new 

1. Allowing capital to enter the production function and setting the marginal 
product of capital equal to the discount rate does not substantially affect the 
analysis. 
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ideas.2 If research productivity per person is independent of 
population and if A affects research output the same way it affects 
output of goods (linearly, by definition), then the growth rate of 
technology will be 

(3) A/A = pg, 

where g represents research productivity per person. Section II 
discusses a more general research equation. 

Note that as long as technology can diffuse between countries, 
even with an arbitrarily long lag, equation (3) does not imply that 
countries with higher population will have faster technological 
change or economic growth. Belgium, for example, is rich not 
because it has invented a lot of technology, but because it has the 
human capital and social institutions that allow it to employ 
technology invented in other countries. Hence although Belgium 
has fewer people than Zaire, it has access to technologies invented 
by at least as many people. (Section IV shows that historically, 
among regions with no possibility for technological contact, those 
with higher populations had faster technological change.) 

Combining the research and population determination equa- 
tions is straightforward. Since population is limited by technology, 
the growth rate of population is proportional to the growth rate of 
technology. Since the growth rate of technology is proportional to 
the level of population, the growth rate of population must also be 
proportional to the level of population. To see this more formally, 
take the logarithm of the population determination equation, (2), 
and differentiate with respect to time: 

p 1 A 
p 1 - Ac 

Substitute in the expression for the growth rate of technology, 
from (3), to obtain 

(5) p g p 1- ap 

This prediction, that the growth rate of population will be 
proportional to the level of population, implies much faster than 
exponential growth. In contrast, if there were a constant exoge- 

2. Ted Baxter of the "Mary Tyler Moore Show" apparently agreed: he planned 
to have six children in the hope that one would solve the world's population 
problem. 
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nous growth rate of technology, or an endogenous growth rate 
independent of population, there would be no relationship between 
the level of population and its growth rate, and population would 
grow exponentially. Similarly, biological models of animal popula- 
tions unconstrained by food supplies imply exponential growth. In 
biological models of constrained animal populations, the growth 
rate declines with population, as in the logistic pattern, p/p = 1 - 

p, rather than increasing with population, as this model implies. 
A first look at the data provided by Figure I indicates that this 

simple model matches the pattern of population growth over most 
of history. However, because of its restrictive assumptions, it does 
not match the recent leveling off and decline of population growth 
rates. The next two sections show that for appropriate parameter 
values, a generalized model is consistent with recent, as well as 
long-run, history. 

II. THE EFFECT OF POPULATION ON TECHNOLOGICAL CHANGE 

This section generalizes the research equation of Section I to 
allow research productivity to depend on income, on the level of 
technology, and on population. It shows that if research productiv- 
ity increases with income, the cross-section relationship between 
population and technological change is ambiguous, but that this 
does not alter the model's implication that technological change 
will increase as population grows over time. This section also shows 
that a general research equation proposed by Jones [1992], in 
which research productivity depends both on population and on the 
level of technology, is consistent with the history of population 
growth and technological change only if total research output 
increases at least proportionally with population. An alternative 
model, in which the growth rate of technology is independent of 
population and increases with the level of technology, is inconsis- 
tent with modern data. 

A. Research Productivity as a Function of Income 

Low research productivity in some poor, populous countries, 
such as India and China, suggests that research productivity may 
increase with income. As others, such as Young [1990], have 
argued, high population can reduce per capita income, and if 
research productivity is sensitive enough to income, this can 
reduce total research output. Thus, the cross-section relationship 
between population and technological change is ambiguous, as is 
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the effect of exogenous policy-induced increases in population on 
technological change. I argue below, however, that this does not 
alter the time series relationship between population and technol- 
ogy outlined in Section I. 

Assume that g, research productivity, equals ky8, where k and 
8 are positive parameters. Holding A constant and letting popula- 
tion vary due to temporary exogenous shocks, such as war, disease, 
or changes in tastes for children, the growth rate of technology will 
be proportional toybp, and sincey = Apd1, topl+(a-1)8. Hence total 
technological change increases with population if 8 < 1/(1 - a) 
and decreases with population if 8 > 1/(1 - a). A generous 
estimate of 1 - a, the share of land, might be about one-third, since 
the landlord's share in sharecropping contracts is usually less than 
one-half, and even extremely poor economies have nonagricultural 
activities to provide for food processing, clothing, and shelter. In 
this case, technological change would decrease in response to an 
exogenous increase in population only if each person's chance of 
inventing something increased faster than the cube of income. If 
capital entered the production function, research productivity 
would have to increase even more quickly in income for increases in 
population to reduce technological change.3 

If preferences for children and policies for encouraging or 
discouraging fertility vary among countries, then y, the level of 
income that generates zero population growth, will vary as well. If 
8 > 1/(1 - a), countries with more pro-natal policies, and hence 
lower y, would have lower total research output. Thus, the impact 
of pro-natal policies on total research output and the cross-section 
relationship between population and total research output are both 
ambiguous under this model. 

However, even if research productivity increases with income, 
technological change will still increase with population over time. 
In the model, population growth is not an exogenous event that 
causes per capita income to fall, but an endogenous response to 
technological improvement. Hence per capita income and research 
productivity remain constant over time as population increases. 
Over a long time series, therefore, with each person's research 

3. If capital enters the production function and the marginal product of capital 
is set equal to the discount rate, technological change decreases in response to an 
exogenous increase in population only if 8 > (a + y)IPy, where a is the share of labor 
and y the share of land. Thus, if a were 0.6, y were 0.1, and the share of capital were 
0.3, exogenous increases in population would only reduce total research output if 
each person's chance of inventing something increased faster than the seventh 
power of income. 
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productivity held constant, the speed of technological change will 
be proportional to total population.4 Per capita research productiv- 
ity varies with economic and political institutions, and in cross- 
section, or over short time series, these fluctuations may be the 
primary determinants of variation in research output. As long as 
they are independent of population, however, there will be a 
positive long-run association between population and research 
output. 

B. Research Productivity as a Function of Technological Level 

Jones [1992] proposes a further generalization of the research 
equation that allows the existing level of technology to affect 
research output nonlinearly: 

(6) A = gpA. 

He argues that the assumption + = 1 is arbitrary, and that since it 
implies the growth rate of technology will be proportional to the 
level of population, it is inconsistent with constant or declining 
rates of TFP growth over the postwar period.5 Jones argues that 
+ < 1 is more plausible. In this case, although the absolute 
increase in A will be proportional to the level of population, the 
steady state growth rate of technology will be proportional to the 
growth rate of population. To see why, note that 

(7) A/A = gp/A1-. 

With + <1 and constant population, A increases over time, but 
the ratio A/A declines. A/A can be constant only if the right-hand 
side of (7) is constant; that is, if the growth rate of A '- equals the 
growth rate of p, which implies (1 - A) A/A = fi/p. Thus, given 
constant population growth at rate n, the steady state growth rate 
of technology is A/A = n/(1 - 4k). Since population growth rates 
did not increase over the postwar period, and even declined a bit, 
Jones's model is consistent with constant growth rates of TFP, and 
may even help explain the productivity slowdown. 

4. If population did not adjust instantaneously to income, over short time 
periods there might be an insignificant, or even negative correlation between 
population and technological change since fluctuations in p p, and thus in income 
and research productivity, might be significant relative to variation inp. 

5. However, it is possible that 4) = 1, since there is evidence of a positive 
long-run trend in economic growth rates [Romer, 1986], and the stability of TFP 
growth during the postwar period may reflect temporary idiosyncratic factors, 
conceptual problems in measuring technological change, or the replacement of 
nonrival invention as the key constraint on growth by other, rival factors. 
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Note that the model's predictions for population growth do not 
substantially change under Jones's more general research equa- 
tion. Substituting his research equation, (7), into the population 
growth equation, (4), 

(8) -= gpA-1. p 1-a 

Usingy = y = Apa-1 to substitute for A, 

p 1- 

Thus, to take an extreme example, if A = gp so that each invention 
represents a constant absolute increment to the level of technology 
rather than a constant proportional increment, the growth rate of 
population will be proportional to pa, approximately p213, rather 
than to p. If capital is included in the production function, and if 
the marginal product of capital equals the discount rate, the 
growth rate of population is proportional top 1-Y(l-1), where -y is the 
share of land. Thus, if -y were 0.1, population growth would be 
proportional to p0 9. Thus, this more general research equation is 
consistent with both modern and historical data. 

C. Research Productivity as a Function of Population 

I have so far assumed that each person's research productivity 
is independent of population. However, this research equation can 
be further generalized to allow each person's research productivity 
to depend on the size of the population. Citing the concentration of 
innovation in cities, Kuznets [1960] argues that research productiv- 
ity per capita increases with population since higher population 
allows more intensive intellectual contact and greater specializa- 
tion. Even without these effects, both Aghion and Howitt [1992] 
and Grossman and Helpman [1991] find that total research output 
increases faster than proportionally with population due to in- 
creases in the size of the market. On the other hand, higher 
population might decrease research productivity by increasing 
duplication of effort. The general formulation A = gp A4 encom- 
passes both possibilities. 

Jones shows that this formulation accommodates a wide range 
of beliefs about the determinants of research output. Since y = 
Apaol, any research equation in which g = kyl can be represented 
in this form. Similarly, the assumption that A = kY, as in Barro 
and Sala-i-Martin [1992], which might hold if people invest a 
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constant fraction of their income in a constant returns research 
sector, can be represented in this framework as A = kAPa. As Jones 
demonstrates, under this research equation, exogenous population 
growth at rate n generates steady state technological change of A/ 
A = Tn/(1 - O. Combining this research equation with the 
Malthusian population determination equation, and substituting 
for A using y = Apa-I yields a growth rate of population propor- 
tional top-(1-0a)(l-4. 

Under this more general research equation, the finding that 
population growth rates are roughly proportional to population 
does not, by itself, separately identify T and +, the exponents on 
P and A. This suggests an alternative model consistent with 
the rough proportionality between population and its growth rate 
over most of history. If A = A(2-a)/(l-a), so T= 0, and 4o= 
(2 - ao)/(1 - a), which is approximately four for a = 2/3, popula- 
tion would have no effect on technology, but the growth rate of 
technology would increase exogenously at a speed that caused the 
growth rate of population to be proportional to its level. However, 
it is possible to rule out this alternative model. If + = 4, a doubling 
of A, such has occurred in the postwar period, would cause an 
eightfold increase in the growth rate of technology. In fact, it is 
possible to rule out any model with + > 1, since the change in the 
growth rate of technology over time in such a model, even in the 
case of no population growth, is 

(10) (A) = (- pA-1)2. 

Thus, if + > 1, not only is the growth rate constantly 
increasing, but it is increasing at a faster and faster pace, since A is 
increasing. This has not been the case empirically: growth rates of 
per capita income increased from 0.5 percent per year to 2 percent 
per year over the course of the nineteenth century, and they 
certainly have not increased by more than another 1.5 percent per 
year to more than 3.5 percent per year over the twentieth century. 
Hence + must be less than or equal to one. While time series 
evidence cannot exclude the possibility that A is a complicated 
function of A such that + was approximately four until recently, 
but is now less than one, this seems both less parsimonious and less 
plausible than a model in which research requires human activity. 
Moreover, such a model would require a decrease in the extent to 
which one innovation makes another more likely, which seems 
dubious, given the increased role of systematic science relative to 
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tinkering in modern technological progress. Section IV provides 
cross-section evidence against models in which technological change 
is independent of population by showing that among societies 
without technological contact, those with larger population had 
faster technological change. 

Under this generalized model, ji/p is proportional to 
p* -(1--1)(1-a). Sinceb/p has historically been roughly proportional to 
p, T - (1 - +)(l - a) must be roughly equal to one. Since + < 1, 
this implies that T must be approximately equal to, or greater 
than, one. Thus, the speed of technological change must increase at 
least in rough proportion to population. 

It is possible to fully identify + and T if one takes Jones's 
steady-state equation under exogenous population growth, A/A = 
Tn/(1 - +), as characterizing the modern period, and combines it 
with the historical evidence that T - (1 - ao)(1 - W) = 1 under 
Malthusian population determination.6 Assuming that TFP growth 
is 2 percent a year, population growth in the high g economies is 1 
percent a year, and a = %, these two equations imply that 2/5 

and P =6/5 

To summarize, a generalized version of the research equation 
is consistent with low research productivity in some populous 
countries, with the possibility that exogenous increases in popula- 
tion reduce research productivity, and with constant growth rates 
of technology in recent history. Moreover, a model combining this 
generalized research equation with the Malthusian population 
determination equation of Section I generates predictions for the 
growth of population over time that are qualitatively similar to 
those of the simple model of Section I, and thus match most of the 
history of population growth. 

III. POPULATION AS A FUNCTION OF TECHNOLOGY 

This section generalizes the Malthusian population determina- 
tion equation of Section I and combines it with the generalized 
research equation in a full model. The simplified model of Section I 
assumed that population adjusted instantaneously to its steady 
state. This section shows that if population grows at finite speed 
when income is above its steady state, per capita income will rise 
over time. If population growth declines in income at high levels of 
income, as is consistent with a variety of theoretical models and 

6. I thank Robert Lucas for suggesting this. 
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with the empirical evidence, this gradual increase in income will 
eventually lead to a decline in population growth. 

Section I's assumption that population growth rates were 
infinite above the steady state level of income made the model 
tractable, but it is unrealistic. The full model makes the more 
plausible assumptions that population growth is a continuous 
function of income, n(y); that at zero income, population growth is 
negative due to high mortality; and that at some level of income, 
population growth is positive, since the human race would have 
died out otherwise. Under these assumptions, there will be some 
stable steady state level of income, y, such that n(y) = 0, and 
n'(Y) > 0. y need not be a physical subsistence level of income, and 
it could vary between countries, depending on incentives for fertility. 

Section I assumed that population growth monotonically 
increased in income. However, theory suggests that higher levels of 
income and technology may reduce fertility by increasing wages 
and thus the value of time [Schultz, 1981], by increasing education 
[Becker, 1981], by changing the pattern of intergenerational 
transfers [Willis, 1982], and by increasing the relative value of 
women's time [Galor and Weil, 1992]. Moreover, Lee's [1987] 
survey of empirical studies, and studies cited in Becker [1981], 
indicate that over most of history, at low levels of income, 
population growth increased with income, but that in recent times, 
when incomes have been higher, fertility has decreased with 
income. I shall therefore assume that population growth increases 
in income at low levels of income and then decreases in income at 
high levels of income, as depicted in Figure II. This pattern could 
arise, for example, if raising children entails costs both in goods 
and time, mortality falls with income, and utility equals A In 
(K - K*) + B In (c - c*) + c, where Kis the number of children and 
c is consumption. When describing the asymptotic behavior of the 
system, I shall generally assume that limniy, n(y) ? 0, although 
this assumption is not crucial to the analysis over the historical 
period discussed in this paper. 

The simple model of Section I can be considered as an 
approximation of the full model in which n'(Y) = oo, so that 
population adjusts instantaneously to fi, its steady state level. The 
differential equation for p therefore drops out, and only the 
differential equation for A remains. This single differential equa- 
tion approximation will be more accurate when the speed at which 
population adjusts to income is high relative to the speed of 
technological change. However, over time the speed of adjustment 
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FIGURE II 
Population Growth Versus Income 

of population to income, which is a constant, declines relative to the 
rate of technological change, which is constantly increasing.7 The 
single differential equation approximation therefore breaks down 
at high enough levels of population, and it is necessary to examine 
the full two-differential equation model. This model cannot be 
solved analytically, but a phase diagram analysis demonstrates 
that per capita income increases over time, and that eventually this 
causes growth rates of population to fall. 

Before proceeding to the phase diagram analysis, it is worth 
discussing the intuition for why income must increase over time in 
the case of the simple research equation of Section I, in which + 

and T both equal one. Recall that per capita income could be stable 
only if the growth rate of population equaled 1/(1 - ao) times the 
growth rate of technology. Given a population p(O) at time 0, this 
implies that income could be stable only if l/p = gp(O)/(1 - a). As 
illustrated in Figure III, to generate population growth at this rate 
according to the n(y) function, income would have to equal y(O). If 
income were less than y(O), population growth would lag behind 
technological change, causing per capita income to grow. Con- 
versely, if income were greater than y(O), population growth would 

7. I implicitly assume that g > 0. In the absence of technological change, that 
is, if g = 0, the model reduces to a purely Malthusian system, and produces behavior 
similar to the logistic curve biologists use to describe animal populations facing fixed 
resources. 
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FIGURE III 

outstrip technological change, causing per capita income to fall. 
Now consider the situation at some future time, with population 
p(1). Income could now be constant only ifj3/p = gp(1)/(1 - a). But 
to generate population growth at this rate, income would have to be 
y(l). Hence there can be no steady state level of income. Income 
gradually increases over time with the rate of technological change, 
which itself increases with population. Once p is large enough that 
gp/(1 - a) > n(y*), population growth cannot keep up with 
technological change, the growth rate of per capita income in- 
creases, and population growth declines. 

The argument above is heuristic and limited to the 4) = 1, i = 

1 case, but a phase diagram analysis shows that under the general 
research production function there will be a period of increasing 
income and population growth rates, and that eventually income 
will reach y*, causing population growth rates to fall. Figure IV 
shows the phase diagram in population-income space, with one 
possible configuration of the y = 0 locus.8 The j3 = 0 locus is the 
horizontal line along which y = 57. As the arrows indicate, popula- 
tion increases for income greater than Y5, and decreases for income 
less than Y5.9 The 3 = 0 locus is given by taking logarithms of the 

8. I thank Elhanan Helpman for his great assistance with this phase diagram 
analysis. 

9. If limy, n(y) < 0, then there will be another b = 0 line at high income. 
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Phase Diagram in Population-Income Space 

equationy = Ap'-1, and differentiating with respect to time: 

(11) j3+aLlP 

Income is constant when the growth rate of technology equals 
(1 - a) times the growth rate of population. Substituting for each 
of these growth rates, the 3 = 0 locus is 

(12) y/y = gp*A+' + (a - 1)n(y) = 0, 

and since A = yp l-o, this can be rewritten as 

(13) 3/y = gp' (l-)(lay+- + (a - 1)n(y) = 0. 

As noted earlier, I assume that 4 < 1 and that * - (1 - 4)(1 - a) > 

0, which is a weak condition since a is close to one. 
To find the shape of the y = 0 locus, note that it must contain 

the point p = 0, y = 57. Since y/y increases in p, but can either 
increase or decrease iny, there can only be one level ofp on the 3 = 
0 locus corresponding to a given level of y, but there may be 
multiple levels of y on the locus corresponding to a given level of p. 
The 3 = 0 locus must lie above they = 5y line for allp > 0, because 
on that line technological change is positive and population growth 
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is zero, so income is increasing. To the right of the 3 = 0 locus, the 
growth rate of technology is high relative to the growth rate of 
population, so j is positive. Correspondingly, to the left of they = 0 
locus, y' is negative. 

No matter where the economy starts, it winds up in region B. 
If it starts in region A, with high income relative to population, 
population increases quickly relative to technology. Per capita 
income therefore falls until the 3 = 0 locus is crossed and the 
trajectory enters region B. If the economy starts in region C, below 
thej3 = 0 locus, with low income relative to population, population 
declines, and per capita income rises until the trajectory crosses the 
j5 = 0 locus and enters region B. (It is impossible for any trajectory 
to cross the axis representing zero population, since the slope of a 
trajectory is 

(14) dy y3' ygpT-(l-(l-a)y'0l 
- (1 - cx)n(y)] 

dp j3 pn(y) 

Hence for y < y*, as p approaches zero, the trajectory becomes 
vertical, crosses thej3 = 0 axis, and enters region B.) 

Once the trajectory is in region B, it remains there, with 
population and income both increasing indefinitely. Income must 
eventually reachy*, the level above which population growth slows. 
To see why, note that since 3 > 0, if y is not asymptotically 
constant, it must eventually attain a level greater than y*. On the 
other hand, y cannot asymptote to a constant level which induces 
positive population growth, since this would lead to a positive 
steady state growth rate of technology and income, contradicting 
the original assumption of asymptotically constant income. Hence 
if per capita income asymptotes to a constant, it must be to a level 
that generates zero population growth, and is therefore greater 
thany*. 

As income rises above y*, population growth rates decline. If 
= 1, so that the level of technology enters the research 

production function linearly, growth rates of technology continue 
to increase because population continues to increase. If + < 1, so 
that the level of technology enters the research production func- 
tion less than linearly, growth rates of technology are likely to 
continue to increase for some period after y = y*, because of the 
delayed effects of the prior increases in population growth rates. 
The growth rate of A depends on the initial values ofA andy and on 
a weighted sum of past population growth rates, and asy increases 
above y*, this sum is increasing. Decreasing growth rates of 
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population and increasing growth rates of technology lead to an 
increase in the growth rate of income per capita. 

The asymptotic behavior of population depends on 4) and on 
lim yoo n(y). If limry.oo n(y) < 0, then population asymptotically 
approaches zero for any 4). If 4) = 1 and if n(y) goes to zero 
sufficiently quickly as income increases, population is asymptoti- 
cally constant. Since the growth rate of technology is proportional 
to the level of population, the growth rate of technology also 
asymptotes to a constant. On the other hand, if 4) = 1 and limy,. 
n(y) > 0, then both population and the growth rate of income 
increase without bound. 

If 4) < 1, as in Jones's research equation, the steady state 
growth rate of technology is Tn/(1 - 4)), given constant population 
growth at rate n. Since y = Apo,-, the steady state growth rate of 
per capita income will be 

(15) -= [_<+(a- 1)ln. 

In summary, if population adjusts to income at finite speed, 
then income will gradually rise over time as the growth rate of 
technology increases. If, in addition, population growth declines 
with income at high levels of income, there will eventually be a 
demographic transition, and, for plausible parameter values, steady 
state growth rates of population, technology, and income. A 
generalized version of the model is thus at least qualitatively 
consistent with the recent, as well as long-run, history of population. 

IV. EMPIRICAL TESTS 

This section tests the model with both time-series and cross- 
section population data. The first subsection tests the model's 
prediction that population growth rates will be roughly propor- 
tional to population levels over most of history, using an approach 
similar to that of Von Foerster, Mora, and Amiot [1960]. They do 
not build an explicit economic model (they were electrical engi- 
neers, not economists), but simply posit an equation in which 
population growth increases with population, show that it de- 
scribes the data well, extrapolate it into the future, and conclude, 
presumably in jest, that world population will become infinite on 
Friday, the thirteenth of November, 2026. As noted in the previous 
section, the generalized model predicts that population growth 
rates will eventually decline-due not to overpopulation and 
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environmental collapse, but to increased income and declining 
fertility. The second subsection shows that among societies with- 
out technological contact, those with greater land area, and hence 
greater initial population, had faster technological change, as the 
model predicts. 

A. Testing the Model with Population Data 

The single differential equation approximation of the full 
model in Section I predicts that for most of history a regression of 
population growth on population will generate an intercept of zero 
and a coefficient on population of gI(1 - a). More generally, under 
the Jones research production function, the growth rate of popula- 
tion will be proportional to the level of population raised to the 
power T - (1 - a)(1 - 4+). 

In contrast, under the null hypothesis that population is 
limited by technological change that is independent of population, 
there would be no correlation between population levels and 
subsequent growth rates, so the coefficient on population would be 
zero, and the intercept would be positive. This section tests the 
model using the data on world population in Table I. Decennial 
estimates from 1920 on were compiled primarily from United 
Nations sources. The figures from 10,000 B.C. to 1900 are from 
McEvedy and Jones [1978]. Their estimates of population after 200 
B.C. were obtained by aggregating population estimates for individ- 
ual geographic regions taken from other authors. These in turn are 
based primarily on historical sources, such as Roman and Chinese 
censuses. In contrast, estimates of population prior to 200 B.C., are 
based on archaeological and anthropological evidence. Population 
figures before 10,000 B.C. are from Deevey [1960].10 

Clearly, the population estimates are subject to measurement 
error, but i.i.d. measurement error or other unmodeled i.i.d. shocks 
will not only make it harder to pick up any relationship between 
population growth and levels, but will actually bias the results 
against the integrated model. This is because undermeasurement 
of population in period t will cause measured growth from period t 
to period t + 1 to be greater than actual growth, so that it will 
appear that low levels of population cause high growth rates. 

A more serious problem would be systematic bias due to an 
implicit model in the minds of those who constructed the data. 

10. The main data set starts with homo erectus, one million years ago, since he 
invented tools, and therefore should be subject to the model. 
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TABLE II 
POPULATION GROWTH AS A FUNCTION OF POPULATIONa 

Dependent variable: GRPOP (standard errors in parentheses) 

(1) (2) (3) (4) (5) 
POP 0.524 0.537 0.504 0.548 1.11 

(0.0258) (0.0334) (0.0367) (0.0377) (0.155) 
CONS -2.26 E-3 -0.0323 3.79 E-4 -0.0571 -0.190 

(0.0355) (0.0538) (0.00115) (0.0252) (0.0600) 

Sample Full sample After -200 Full sample After -200 Evenly 
Spaced 

Weight unweighted unweighted RTGAP RTGAP unweighted 
n 37 27 37 27 11 
R2 0.92 0.91 0.62 0.79 0.850 
DW 1.10 1.14 0.84 1.52 2.42 

a. Population is in billions, and growth rates are in percentages, in this and subsequent tables. 

However, to the extent that McEvedy and Jones's discussion 
reveals any implicit model, it is not one similar to that of this paper, 
but a Malthusian model in which population increases after major 
exogenous technological changes, such as the agricultural revolu- 
tion, and then levels off again until the next round of inventions. If 
McEvedy and Jones fit any data points by exponential interpola- 
tion, that would also work against the integrated model, and in 
favor of the null hypothesis of constant exponential growth. 

The results reported in Table II strongly reject the null 
hypothesis that the coefficient on population is zero." Moreover, in 
most specifications the intercept is insignificantly different from 
zero, providing additional evidence for the model. To be sure that 
the early data points do not drive the regressions, Table II also 
reports results for the period after 200 B.C. 

Under the model, the residuals should be stationary, and 
indeed it is possible to reject the possibility of a unit root in the 
residuals. An Engle-Granger test gives a Dickey-Fuller t-statistic of 

11. Appropriate critical values for one-sided tests of the null against the 
alternative that the coefficient is greater than zero are given by the upper tail of the 
Dickey-Fuller distribution. Since these critical values are extremely low [Fuller, 
1976, p. 3731, the null is even more strongly rejected than implied by the already 
high t-statistics. Under the model, in which the coefficient on population is greater 
than zero, the regression standard errors are sensitive to the distribution of the 
underlying errors, but if these are normal, the usual t-statistic can be used to 
construct confidence intervals [Anderson, 1959]. I thank Jushan Bai, Andrew 
Bernard, and Lars Hansen for discussions on this issue. 
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TABLE III 
TESTS FOR HETEROSKEDASTICITY 

Dependent variable: squared residuals 
(standard errors in parentheses) 

(1) (2) (3) (4) 
Weighted Weighted 
regression regression 

OLS residuals OLS residuals residuals residuals 

CONSTANT 2.00 E-05 1.72 E-05 -6.94 E-04 -7.51 E-04 
(0.011) (0.012) (0.012) (0.012) 

1/Period length 1.02 1.02 1.07 1.07 
(0.248) (0.256) (0.256) (0.264) 

YEAR -4.89 E-11 -9.98 E-10 
(5.58 E-8) (5.76 E-8) 

n 37 37 37 37 
R2 0.32 0.32 0.33 0.33 
DW 1.74 1.74 1.70 1.70 

-4.25, compared with a 1 percent MacKinnon critical value of only 
4.23. 

Given the uneven period lengths, it is necessary to correct for 
heteroskedasticity. In theory, the variance of average growth 
should be approximately proportional to the reciprocal of the 
period length.12 Table III reports tests for heteroskedasticity, 
which indicate that the squared residuals are indeed roughly 
proportional to the reciprocal of the period length. The variable 
YEAR is insignificant in explaining the squared residuals, so there 
is little evidence that measurement error is considerably more 
severe in the early periods. While the proportional error in the 
early estimates of population and population growth is no doubt 
large, there can be no doubt that the magnitudes were tiny. The 
absolute error in the estimate of the population growth rate over 
the period 300,000-25,000 B.C. is thus probably smaller than that 
over the period 1600-1650, and it is the absolute, rather than the 
proportional error which determines the standard error of the 
regression. Obviously, this weighting is not perfect, but it seems a 
better option than putting equal weight on all periods. As a final 

12. This would be true under the null hypothesis with i.i.d. shocks, but it only 
holds approximately under the model, since a shock one period affects growth the 
next. 
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TABLE IV 
POPULATION GROWTH AS A FUNCTION OF POPULATION: OTHER DATA SETS 

Dependent variable: GRPOP (standard errors in parentheses) 

Durand Deevey Clark 

POP 0.816 0.522 0.497 
(0.0617) (0.0295) (0.0580) 

CONSTANT -0.194 0.0170 -0.0599 
(0.054) (0.0193) (0.0698) 

n 5 10 18 
R 2 0.98 0.98 0.82 
DW 3.28 2.30 2.07 

check, Table II reports a regression excluding the data at uneven 
intervals, leaving ten 200-year periods starting at 200 B.C. and one 
190-year period from 1800 to 1990.13 

Results are similar using other data sets. Deevey [1960], Clark 
[1977], and Durand [1977] have all published estimates of world 
population over long historical periods, which are replicated in the 
Appendix. I use McEvedy and Jones as the principal source since 
their work is most recent, they have the most data points, and their 
data points are at regular intervals. However, as Table IV shows, 
population levels are a significant determinant of growth rates in 
all three of the other data sets. While the discrepancies between the 
various estimates indicate the magnitude of measurement error, 
the results reported in Table IV suggest that the conclusion that 
population growth increases with population is robust to this 
measurement error. 

This paper uses world population data, since technologies such 
as the use of fire, the making of iron tools, and the domestication of 
the dog could diffuse over the long time periods analyzed in this 
paper. However, McEvedy and Jones also provide regional data, 

13. Note the higher coefficient on population in this regression. This is to be 
expected because the model predicts that the growth rate will increase during the 
course of the period, and with longer periods, the growth rate increases by more over 
the period. If population at the end of the period is double what it was at the 
beginning, the growth rate will be twice as high by then. While the model predicts 
the instantaneous growth rate of population, the population estimates are at 
discrete intervals. A previous version of the paper, available from the author, 
derives predicted population growth over discrete, uneven intervals under a 
deterministic model. It tests these predictions nonlinearly, and shows that the 
results are similar to those obtained under OLS. Further complications would arise 
under an explicitly stochastic model, because the variance of the error term would 
affect the expected path of population. 
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TABLE V 
POPULATION GROWTH AS A FUNCTION OF POPULATION: EUROPE, CHINA, AND INDIA, 

200 B.C. TO 1975 

Dependent variable: GRPOP (standard errors in parentheses) 

Europe China India 

POPULATION 1.55 1.21 4.08 
(0.315) (0.413) (0.480) 

CONSTANT 0.0796 0.0207 -0.275 
(0.0645) (0.108) (0.086) 

n 22 22 22 
R2 0.55 0.30 0.78 
DW 1.55 1.73 0.63 

and as Table V shows, regressions using the smaller geographic 
regions of Europe, China, and India yield similar results. 

The hypothesis of stability of the heteroskedasticity weighted 
regression over time is consistent with the results of recursive 
residuals, recursive coefficients, CUSUM, and CUSUM squared 
tests, as shown in Figures V-VIII. The model predicts that 
population growth will eventually level off and decline due to 
increased income, and Figure I appears to suggest a break before 
the last two observations, but a Chow test finds little evidence for a 
break at 1970. (Periods are referred to by the date at the beginning 
of the period.) It is possible to find evidence for a break in an 
unweighted regression,14 and despite the weakness of the economet- 
ric evidence for a break, there is reason to think that the leveling off 
of population growth in recent decades differs in nature, if not 
magnitude, from the random variation the world has experienced 
throughout history. Population growth in recent years has been 
below the trend line not because of negative shocks from wars, 
epidemics, or tyranny, but because of increased income. 

The low Durbin-Watson statistics may be due to a break in 200 
B.C. Given a break in 1970, an additional break at 200 B.C. raises the 
Durbin-Watson statistic to 1.73 over the period -200 to 1960. A 
Chow test on the heteroskedasticity weighted regression provides 

14. The unweighted recursive residuals stay within or close to the two 
standard error band until 1960, and then move outside the band, indicating a break, 
and a Chow test indicates also indicates a break there. The CUSUM test is 
consistent with parameter stability over the entire period. The CUSUM of squares 
test moves outside the bands, but this may reflect its sensitivity to heteroskedastic- 
ity rather than shifts in the parameters. 
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no evidence of a break, but a test on the unweighted regression 
suggests a higher intercept before 200 B.C. Perhaps this could be 
attributed to unmodeled population growth in early history due to the 
settlement of new land1 and to biological evolution. Chow tests run 
without a preselected break point will be biased toward rejecting 
stability, so it is also possible that the apparent break is due to chance. 

A Chow test for a break at the industrial revolution in 1800 
with the full sample does not reject stability, but if the sample is cut 
in 1960, it is possible to find a break in 1800. It seems plausible that 
there was an increase in research productivity due either to 
socioeconomic factors that increased g, research productivity per 
capita, or to technological factors that led a group of related 
inventions to be discovered together, creating a region of the 
research function with high +. 

If the regression is not corrected for heteroskedasticity, it is 
possible to find periods in which the significant positive relation- 
ship between the level of population and its growth rate breaks 
down, but I do not think that this is too serious a problem with the 
model. If one considers unweighted regressions over successively 
lengthier samples, and uses standard t-statistics for a one-sided 
test, population becomes significant by 4000 B.C. and remains so 
until the Roman empire begins to decline in the second century. 
Population is significant again in 1000 and 1100. It becomes 
insignificant for three periods due to the negative outliers of the 
Black Death, which reduced Europe's population by a third, and 
the Mongol conquests, which reduced China's population from 115 
million in 1200 to 86 million in 1300. Population becomes signifi- 
cant again before the impact of the industrial revolution on world 
population. It is significant at all times after 1500, except for the 
period 1600-1650 with the simultaneous disasters of the Thirty 
Years' War, which devastated Central Europe, and the fall of the 
Ming dynasty, which reduced China's population from 160 million 
in 1600 to 140 million in 1650. If one uses the theoretically more 
appropriate upper-tail Dickey-Fuller critical values, population is 
significant through all these negative shocks.16 

Given the noisiness of the data and the, small number of data 
points, it is unsurprising that by searching over various subsam- 
ples it is possible to find periods over which the coefficient is not 

15. I am grateful to Abhijit Banerjee and Andrew Newman for this suggestion. 
16. This is based on the critical values in Fuller [1976] for a sample size of 25. 

For more precise estimates of the critical values for smaller samples, Monte Carlo 
estimates would be necessary. 
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TABLE VI 
ESTIMATES OF I - (1 - a) (1 - 4) 

GRPOP = CONST + K*POPP-(1-a)(l-) 
(standard errors in parentheses) 

(1) (2) (3) (4) 

CONST 4.51 E-4 6.25 E-4 -0.038 -0.036 
(0.00117) (0.0011) (0.031) (0.052) 

K 0.493 0.507 1.18 E-9 2.13 E-6 
(4.45 E-2) (4.74 E-2) (2.13 E-9) (3.12 E-6) 

P - (1 - a)(1 - ) 1.03 1.22 1.43 0.907 

(0.081) (0.112) (0.122) (0.0965) 

Weighting RTGAP RTGAP unweighted unweighted 
Sample -1,000,000 -1,000,000 to -1,000,000 to -1,000,000 to 

to 1980 1960 1980 1960 
DW 0.859 0.893 1.083 1.537 
R2 0.622 0.578 0.924 0.949 
n 37 35 37 35 

significant in some specifications. Since this regression is not 
corrected for heteroskedasticity, it is driven by fluctuations at the 
end of the sample. With a heteroskedasticity weighted regression, 
population is significant at all times after 4000 B.C. even using 
standard t-statistics. When one looks at long periods in which 
fluctuations average out, there is clear evidence of a secular 
long-run trend. Population growth was less than 0.00073 percent a 
year from 200,000 B.C.17 to 10,000 B.C.; 0.037 percent a year from 
10,000 B.C. to the year 1; and 0.073 percent a year from the year 1 
to 1600. So I do not think that the positive trend holds only after 
the industrial revolution. As noted earlier, the recursive residual, 
CUSUM, and CUSUM squared tests are consistent with stability of 
the relationship over the entire period. Even using standard t- 
statistics, population is significant in India by 1600 and in China by 
1750, before the impact of the industrial revolution on their 
populations. Finally, the cross-section evidence in subsection IV.B 
on regions that had no technological contact before 1500 indicates 
that the model applied before that date. 

Table VI reports results from using nonlinear least squares to 
estimate the model with the more general Jones research equation, 

17. Starting the sample with homo sapiens, 200,000 years ago, works against 
the model by producing a more rapid early growth rate. I use Deevey's population 
estimate for 300,000 years ago, which also works against the model. 
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so that population growth is proportional top*-(1-a)(1-?W. Since the 
last two observations may reflect the demographic transition, it 
also reports regressions using data up to 1960. While the likelihood 
function is fairly flat, so these estimates should be taken with a 
grain of salt, they suggest that T - (1 - (x)(1 - +) is greater than, 
or approximately equal to, one. Since +, the degree to which 
research output increases in the level of technology, cannot be 
greater than one, T is greater than, or approximately equal to, one. 

High R2'1 cannot be obtained with any increasing right-hand 
side variable, since population and its growth rate are not merely 
increasing variables, but variables that increase at an ever increas- 
ing rate. The year, for example, is almost insignificant as a 
right-hand side variable. Exp (year/k) can drive out population for 
some values of the constant k, but few obvious economic variables 
grew exponentially during this period. It is unlikely that per capita 
income would have much explanatory power, since its growth is 
unlikely to have matched that of population, which, for example, 
grew thirty-fivefold from 10,000 B.C. to 200 B.C. 

Perhaps it would be possible to explain the data through some 
other variable, or through a series of particular historical events 
that caused the growth rate of technology to increase at some 
periods and decrease at others, without including an effect of 
population on technology. However, given that a simple model, 
based on the economic theory of technology as a nonrival good, is 
consistent with the data over such a long period, it is not clear why one 
would want to abandon it for an alternative explanation of the data. 

B. Cross-Section Evidence from Technologically Separate Regions 

The model implies that if there were no technological contact 
between regions that started with similar technology and with 
population proportional to their land area, those regions with 
greater land area, and hence larger initial populations, would 
experience faster technological change. Hence they would attain 
higher levels of technology and greater population densities. To see 
why, integrate the population determination equation, dp/p2 = g 
dt/(1 - a), to obtain population at time t in region i, as a function 
of initial population, pio:18 

1 1l- ( 
(16) pi(t) (l/pio) - (gt/(1 - x)) gpio 

18. Note that this would generate infinite population in finite time if it were 
not for the demographic transition discussed earlier. I thank Serge Marquie and 
Alan Taylor for assistance with these calculations. 
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(By Jensen's inequality, the expected value of p(t) for any value of 
g/(I - a) would be larger in a model with shocks, since p(t) is a 
convex function ofp(0).) Dividing by land area, Ti gives 

1 1 - (x 

(17) dt = (/do) - (gtTAI/ - (x)) dogT 
where dit denotes the population density of region i at time t and do 
denotes the initial common population density. It is straightfor- 
ward to write an equivalent expression for Ait, the level of 
technology, as a function of land area, since dit is proportional to 
A'/1'-. The model also predicts that the elasticity of density with 
respect to land area will be (1 - &)dogtTi/(1 - ax- dogtTd) and 
thus will increase with land area, Ti. In contrast, under an 
alternative model of exogenously increasing growth rates of technol- 
ogy, independent of population, there would be no correlation 
between land area and levels of technology and population density. 

The melting of the polar ice caps at the end of the ice age, 
around 10,000 B.C., and the consequent flooding of land bridges, 
provide a natural experiment that nearly eliminated contact be- 
tween the old world, the Americas, mainland Australia, Tasmania, 
and Flinders Island.19 As the model predicts, in 1500, just after 
Columbus' voyage reestablished technological contact, the region 
with the greatest land area, the Old World, had the highest 
technological level. The Americas followed, with the agriculture, 
cities, and elaborate calendars of the Aztec and Mayan civilizations. 
Mainland Australia was third, with a population of hunters and 
gatherers. Tasmania, an island slightly smaller than Ireland, 
lacked even such mainland Australian technologies as the boomer- 
ang, fire-making, the spear-thrower, polished stone tools, stone 
tools with handles, and bone tools, such as needles [Diamond, 
1993].20 Flinders Island, near Tasmania, has only about 680 square 
kilometers of land, and according to radiocarbon evidence, its last 
inhabitants died out about 4000 years after they were cut off by the 
rising seas-suggesting possible technological regress.21 If techno- 

19. Different land bridges were flooded at different dates. Flinders Island was 
probably cut off only 8700 years ago. 

20. Diamond [1993] explicitly attributes Tasmania's low technological level to 
its low population. 

21. The Tasmanians' technological stock actually depreciated: they lost the 
ability to make bone tools, for example, which archaeological evidence shows they 
once possessed. On the other hand, they probably invented a crude boat about 4000 
years ago. Introducing depreciation of technology into the model could create zero 
or negative technological change if population or income, and hence research 
productivity, were low enough. This creates a richer model with multiple steady 
states and paths to extinction. While these might be relevant for some particular 
cases, such as Flinders Island, I believe they are of limited importance when looking 
at the world as a whole. 
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TABLE VII 
POPULATION AND POPULATION DENSITY, C. 1500 

Land area Population c. 1500 
(million km2) (millions) Population/(km2) 

Old Worlda 83.98 407 4.85 
Americasb 38.43 14 0.36 
Australiac 7.69 0.2 0.026 
Tasmania 0.068 0.0012-0.005 0.018-0.074 
Flinders Island 0.0068 0.0 0.0 

a. Sub-Saharan Africa is included in the old world, since there was some contact across the Sahara. 
b. There are a wide range of population estimates for the Americas and Australia at the time of European 

arrival, and McEvedy and Jones's are at the low end. However, higher estimates would not affect the rank 
ordering. 

c. Estimates for Tasmania are based on the Encyclopaedia Brittanica. 

logical change were actually independent of initial population, the 
chance that technology levels in the four inhabited regions would 
be ranked in this same order as land area is only 1 in 24. If Flinders 
Island is included, the chance drops to 1 in 120. 

Although their isolation was never as complete as that of the 
regions discussed above, ancient Britain and Japan also fit the 
model. When the land bridge between ancient Britain and Europe 
was cut off, around 5500 B.C., Britain fell technologically behind 
Europe.22 Agriculture was introduced around 4000 B.C. by neolithic 
immigrants from Europe and metallurgy was brought by immi- 
grants from the low countries around 2300 B.C. Ancient Japan was 
settled by paleolithic people from the mainland before its land 
connections to Asia were cut off by rising seas. Although its 
prehistory is murky, Japan's paleolithic people seem to have been 
very primitive: they lived in pits or caves rather than building even 
primitive structures, and no bone or horn artifacts associated with 
neolithic people in the rest of the world have been found in Japan. 
Immigrants from Asia bearing culture from Korea and China later 
brought more advanced technology to Japan. 

Table VII shows that estimated population density in 1500 
increases with land area, as the model predicts. Tasmania's raw 
population density appears similar to that of mainland Australia, 
but its population per unit of quality adjusted land is probably 
lower, since more than half of Australia is inhospitable desert, 
receiving less than 30 centimeters of rainfall a year, while most of 
Tasmania has relatively favorable conditions. 

22. Information on ancient Britain and Japan is from Encyclopaedia Britan- 
nica [1987]. 
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Using equation (17), it is possible to make quantitative 
predictions of each region's density in 1500, given some heroic 
assumptions. Assuming that technological contact was cut off in 
10,000 B.C., so t = 11,500, that do, initial density for all regions, was 
equal to McEvedy and Jones's estimated world population density 
of 0.030729 per square kilometer, and that the quality of land in all 
four areas was the same, so Ti corresponds to the entries in Table 
VII, then in order to generate a population density of 4.85 per 
square kilometer in the Old World in 1500, g/(1 - a() would have to 
equal 0.0335 per billion people, and this would have produced 
population densities of 0.0308 per square kilometer in Tasmania, 
0.0338 in mainland Australia, and 0.0564 in the Americas. The 
model's prediction that a given percentage discrepancy in land area 
between two regions will have more of an effect on population 
density at high levels of land area matches the data: mainland 
Australia's population density is of the same magnitude as Tasma- 
nia's despite having more than 100 times the land area, while the 
old world, with eleven times Australia's land area, has more than 
150 times its density. Moreover, the model correctly predicts that 
population densities in Tasmania and Australia would not increase 
appreciably over the initial density, do.23 However, the model 
underpredicts population in the Americas relative to that in the 
Old World, and it requires a higher level of g/(1 - a() than 
suggested by the regressions of subsection IV.A. These discrepan- 
cies may be due in part to underestimation of population in 10,000 
B.C.; to inclusion of sub-Saharan Africa in the Old World, despite 
the extremely limited technological contact across the Sahara; and 
to differences in land quality or date of technological separation.24 
However, they may also reflect problems with the simple 4 = 1, + = 

1, research equation and the model's assumption of instantaneous 

23. The calibration assumes that do = 0.307, but since the actual population 
density of Australia was less than this in 1500, it seems likely that Australia had a 
lower initial density, perhaps due to lower land quality, or due to becoming 
technologically separate earlier than 10,000 B.C. 

24. If population in 10,000 B.C. were 10 million, as some have estimated, and if 
sub-Saharan Africa were treated as a separate unit from the rest of the old world, 
the predicted population density in the Americas in 1500 given that in the old world 
would have been about 0.2 per square kilometer. America's discovery of agriculture 
may represent a group of related inventions with high 4. 

The lower value of g/(1 - a^) suggested by the time series regressions is due in 
part to the assumption that technology could diffuse across regions. If initial 
population were 10 million and if the world were taken as a unit, the estimated value 
of g/(1 - a^) would be 0.00849. Moreover, since equation (17) does not allow for a 
stochastic term, it will generate a higher estimate of g/(1 - a^) than a time series 
regression. 
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technological diffusion within regions.25 Given the strong assump- 
tions required for calibration, the low quality of the data, and the 
model's sensitivity to initial conditions, it is surprising that so 
crude a model matches the data this well. 

In sum, regions with greater land area, and hence greater initial 
population, attained higher technological levels and population densi- 
ties, as the model predicts. While we cannot precisely determine the 
nonlinear function relating initial population to final technological level 
and population density, the data are difficult to reconcile with models in 
which technological change is independent of population. 

V. CONCLUSION: IMPLICATIONS FOR POLICY AND THEORY 

Following Lee [1988], this paper constructs an integrated 
model of population growth and technological change. It assumes 
that each person's chance of inventing something is independent of 
population, so that total research output increases in proportion to 
population. Over the historical period when population was limited 
by the available technology, the model therefore predicts that the 
growth rate of population will be approximately proportional to the 
level of population. Per capita income gradually increases with the 
growth rate of technology, and eventually this causes population 
growth to slow. Empirical evidence supports the model: through 
most of history the growth rate of world population has been 
approximately proportional to the level of population. Moreover, 
among societies with no opportunity for technological contact, 
those with greater initial population attained higher technology 
levels and population densities. These facts are difficult to reconcile 
with prevailing growth models in which technological change is 
independent of population. 

The model of continuous acceleration of population and tech- 
nology proposed here can be contrasted with models involving 
discontinuous breaks, such as multiple equilibria models in which 
the economy either stagnates or experiences steady state growth. 
These models typically make few predictions about when the 
economy will be in each equilibrium. Moreover, their focus on 
technological stagnation as the alternative to steady state growth 
reduces most of history to the category of stagnation, despite such 
inventions as the wheel, Euclidean geometry, the plow, and the 
compass. It is ironic that growth theorists are building models with 

25. David Romer has pointed out that a model with + > 1 and T < 1 could 
match the population of the Americas, although it would be inconsistent with data 
from the modern period. 
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sharp breaks at a time when most development economists reject 
the notion of takeoff and many economic historians stress continu- 
ity rather than a discontinuous industrial revolution. 

Future research may seek to quantitatively model the demo- 
graphic transition and to allow for slow diffusion of technology and 
for stochastic shocks to population and technology. This paper has 
abstracted from fluctuations in research productivity per capita, since it 
focuses on extremely long periods over which they may average out. 
However, the study of how economic and political institutions affect 
research productivity remains critical for understanding time series 
dynamics over shorter periods and cross-section differences between 
countries, since in these contexts the variance of research productivity 
per capita is often large relative to that of population. 

Although the model is designed to reflect historical, rather 
than current conditions, it is worth considering its implications for 
the present, both for policy and for growth theory. If research 
productivity per person depends on income, the short-run impact 
of pro-natal policies, such as tax allowances for children, on the 
speed of technological change is ambiguous. For example, child 
subsidies that increase birth rates might lower research productiv- 
ity per capita. However, in the long run this model implies that 
faster population growth leads to faster technological change. For 
+ = 1, the growth rate of technology equals research productivity 
per capita times population, and the one-time fall in research 
productivity per capita caused by an increase in fertility will 
eventually be outweighed by the cumulative effect of population 
growth. For 4 < 1, Jones shows that the asymptotic growth rate of 
technology is proportional to the growth rate of population and is 
independent of research productivity per capita. However, while 
pro-natal policies may be growth-enhancing from the point of view 
of the world as a whole, individual countries may wish to let their 
citizens choose the privately optimal family size and to free ride off 
technological innovations made in other countries. Moreover, the 
model used in this paper does not allow for either exhaustible 
natural resources or for an ultimate limit on the level of technol- 
ogy, and in models incorporating these features, population growth 
could reduce long-run income per capita. Thus, the model should 
not be taken as a call for increased population. It does suggest, 
however, that economists should conduct further research to 
measure the growth and welfare effects of population growth under 
nonrival technology, rather than simply following conventional wisdom 
and concentrating on the negative effects of population growth. 

The model's implications for growth theory are clearer. Most 
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models of endogenous technological change imply that all else 
equal, higher population spurs technological change. This result, I 
believe, is due not to any quirk of modeling, but to the fundamental 
nonrivalry of technology as described by Romer. Perhaps it is 
possible to argue that technological change is independent of 
population, and to construct some other explanation of why the 
growth rate of population has historically been proportional to its 
level. Perhaps it is even possible to explain why among technologi- 
cally separate regions, those with higher population have had 
faster technological change. However, given that our theoretical 
models of technological change predict that higher population leads 
to faster technological change, what is noteworthy is not that other 
models might be able to explain the data, but that an extremely stylized 
model, based on theory, provides such a good description of the data 
over such a long period. Endogenous growth theorists have dismissed 
the population implications of their models as empirically untenable. 
This paper suggests that we should take them seriously. 

APPENDIX 
A. POPULATION GROWTH: EUROPE, CHINA, AND INDIA 

Europe Europe China China India India 
population growth population growth population growth 

Year (millions) rate (%) (millions) rate (%) (millions) rate (%) 

-200 26 0.0875 42 0.1157 31 0.0604 
1 31 0.0751 53 0.0869 35 0.0795 

200 36 -0.0748 63 -0.0864 41 0.0683 
400 31 -0.0879 53 -0.0291 47 0.0601 
600 26 0.0546 50 0.0000 53 0.0943 
800 29 0.1081 50 0.1388 64 0.1053 

1000 36 0.2007 66 0.4643 79 0.0494 
1100 44 0.2763 105 0.0910 83 0.0355 
1200 58 0.3090 115 -0.2906 86 0.0565 
1300 79 -0.2751 86 -0.0599 91 0.0639 
1400 60 0.3001 81 0.3060 97 0.0792 
1500 81 0.2107 110 0.3747 105 0.2513 
1600 100 0.0976 160 -0.2671 135 0.2107 
1650 105 0.2671 140 0.2671 150 0.1906 
1700 120 0.3083 160 0.6819 165 0.1177 
1750 140 0.5026 225 0.7660 175 0.1645 
1800 180 0.7735 330 0.5525 190 0.3821 
1850 265 0.6914 435 -0.1883 230 0.4127 
1875 315 0.8543 415 0.5401 255 0.5145 
1900 390 0.7463 475 0.4382 290 0.5168 
1925 470 0.3657 530 0.4290 330 1.1959 
1950 515 0.8378 590 1.3892 445 2.2119 
1975 635 835 775 
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APPENDIX (CONTINUED) 

B. DURAND DATAa 

(Population figures are based on midpoints of Durand's ranges) 

Year Population (millions) Growth rate (%) 

1 300 0.00328 
1000 310 0.0996 
1500 510 0.1648 
1750 770 0.5201 
1900 1680 1.1567 
1975 4000 

C. DEEVEY DATA 

Year Population (millions) Growth rate (%) 

-1,000,000 0.125 0.000297 
-300,000 1 0.000439 

-25,000 3.34 0.0031 
-8000 5.32 0.0697 
-4000 86.5 0.0108 

1 133 0.0835 
1650 545 0.2895 
1750 728 0.4375 
1800 906 0.5750 
1900 1610 0.7985 
1950 2400 

D. CLARK DATA 

Year Population (millions) Growth rate (%) 

14 256 -0.00233 
350 254 -0.0277 
600 237 0.0482 
800 261 0.0351 

1000 280 0.1579 
1200 384 -0.0112 
1340 378 0.0762 
1500 427 0.1538 
1600 498 0.0710 
1650 516 0.4338 
1700 641 0.2628 
1750 731 0.3936 
1800 890 0.6282 
1900 1668 0.8270 
1920 1968 0.8612 
1930 2145 0.8701 
1940 2340 0.6574 
1950 2499 1.6221 
1962 3036 

a. Population figures are based on midpoints of Durand's ranges. 
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