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Abstract

This thesis focuses on creating a better understanding of bamboozle structures. Any informa-
tion that can be found about the list of bamboozle structures (considering its completeness,
underlying structures, or completeness under assumptions) is to be considered as valuable
outcome. Since bamboozle structures are a relatively new concept that have so far strictly
been viewed as single orbits under space groups, there are still possibilities to improve our
understanding of such structures. In this thesis, we relate bamboozle structures to tessella-
tions of three dimensional Euclidean space, namely convex uniform honeycombs. This is done
by relating the problem to its two dimensional equivalent, identifying what convex uniform
honeycombs hold (near-)bamboozle structures, proving of completeness of the list of used
convex uniform honeycombs with the help of computer calculations, and considering what
adjustments convex uniform honeycombs can withstand in order to create bamboozle struc-
tures. Though the search for new bamboozle structures proved unfruitful, we found that the
hexagonal bamboozle structure was in fact not a bamboozle structure, discovered that the
square bamboozle structure and the four-coloured rectangular bamboozle structure actually
form continuous families, and gained a better understanding of the bamboozle structure and
what areas should be considered to find a complete list of possible structures.
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Chapter 1

Problem Discription

1.1 Definitions

Consider R3 equipped with the standard inner product and corresponding distance function
d(). We introduce the following concepts, adapted from [5]:

Definition 1. A group is defined as a set of operations that combine in such a way that they
meet the following requirements:

1. If two operations a and b are elements of the group, then their product c=ab, is also an
element of the group.

2. The group contains an identity element e, so that for every element a it holds that
ea=ae=a.

3. For every element a, there exists an element a−1, such that aa−1 = a−1a = e.

4. The group is associative: a(bc) = (ab)c.

Definition 2. A sub-group of the group of orthogonal 3× 3 matrices that transforms a finite
physical object to configurations that are indistinguishable from the original and leave at least
one point unchanged is defined as a point group.

The elements of point groups are rotations, reflections and improper rotations (the combina-
tion of rotations and reflections). Within three-dimensional Euclidean space, there are seven
distinct point groups. [5]

Definition 3. A space lattice (in R3) is an infinite set of points of the form n1·u+n2·v+n3·w,
with u, v, w three fixed linearly independent vectors, and n1, n2, n3 three integers that can vary
to form the points within the lattice.

A space lattice always contains translative symmetry: if d = n1 · u + n2 · v + n3 · w and
d∗ = n∗1 · u + n∗2 · v + n∗3 · w are both contained within the lattice, then so is d + d∗, since
ni + n∗i is an integer. Furthermore, a space lattice may have more symmetry, i.e., rotational
and reflective symmetry. In fact, all latices have the symmetry of one of seven point groups.
To define space lattices in a way that clearly shows their point group, we use unit cells:

Definition 4. A unit cell is defined as the parallelepiped spanned by three non-coplanar lattice
translations.
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Definition 5. A unit cell is primitive if its set of translations has the minimal sum of lengths
for such a set, or if it defines a cell with a volume equal to the volume of the shortest set.

Sometimes, it might be more convenient to define a unit cell with lattice translations that
are related to the symmetry operations, for instance parallel to rotation axes or lying in a
mirror plane. This may lead to a unit cell with a volume that is two, three or four times the
volume of the primitive unit cell. This influences where in the unit cell lattice points can be
found. This leads to various centering schemes, namely body-centered, single-face-centered,
and all-face-centered (or simply face-centered). Taking account of symmetry and the various
centering schemes, there are fourteen distinct space lattices[5] which are known as the Bravais
lattices, named after their discoverer, A. Bravais.

The nature of space lattices allows for linear operations O of the form Ox = Ax + b
with A a matrix and b a vector of the same dimensions as x. If there exists an n such that
Onx = x+a with a a vector of the same dimensions as x, then the operator O defines a group
that is a super group of the translation group. If a is the null vector, then O is a point group.
However, if a is a lattice translation, we can define two new symmetry operations:

Definition 6. A screw axis is the combination of a rotation, A, and a translation, b, parallel
to the rotation axis and such that, if An = I, nb is a lattice translation.

Definition 7. A glide plane is the combination of a mirror operation, A, and a translation,
b, parallel to the mirror plane and such that 2b is a lattice translation.

Combining this set of symmetry operations with the 14 Bravais lattices, provides 230 distinct
groups, known as the space groups.

Let K be a subset of R3, such that there exists a δ ∈ R so that ∀k0 ∈ K ∀k ∈ K \ k0 it holds
that d(k, k0) > δ.

Definition 8. The minimal distance on K is defined by dmin = inf
k1 6=k2∈K

{d(k1, k2)}.

Definition 9. The (undirected) minimal distance graph of K is defined as (K, E), where
E = {(k1, k2) | d(k1, k2) = dmin}.

We embed the minimal distance graph G by means of line segments for edges. This all allows
us to define the following new concepts:

Definition 10. The polytope representation of a vertex v within G is created by taking the
convex hull of the centers of all edges incident to v.

Definition 11. The polytope structure of G is the combination of the polytope representations
of all v ∈ V .

Definition 12 (Bamboozle Structures). Let K be generated by a single orbit under one of
the 230 space groups. The polytope structure of the minimal distance graph of K is called a
bamboozle structure if it meets the following three criteria:

1. The minimal distance graph of K is connected.

2. All polytopes contained within the structure are polygons, i.e. lie within a 2-d plane.

3. If u and v are neighbours, then their polytope representations do not lie within the same
plane.
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1.2 List of Known Bamboozle Structures

Currently, five such structures are known. These are the square bamboozle structure, the
triangular bamboozle structure, the hexagonal bamboozle structure, and two rectangular
bamboozle structures. The square bamboozle structure was already known for some unknown
time. The triangular structure was discovered by Koos and Tom Verhoeff, and Tom Verhoeff
later discovered the others. In this section we will discuss the known structures, accompanied
by imagery created by Tom and Koos Verhoeff.

1.2.1 Square Bamboozle Structure

The square bamboozle structure consist of squares that are placed at angles of 90 degrees.
There are three distinct orientations the squares take, represented by the three different
colours. See Figure 1.1.

1.2.2 Triangular Bamboozle Structure

The triangular bamboozle structure was the first structure that was recognized by Tom and
Koos Verhoeff[6]. The discovery of this structure was what set off the curiosity for similar
structures. The name bamboozle structure comes from the name Bamboozle, which was given
to this structure. It consists of regular triangles meeting pairwise at angles of arccos(13) ≈ 70.5
degrees. There are four distinct orientations the triangles take, represented by the four colours.
See Figure 1.2.

1.2.3 Hexagonal Bamboozle Structure

The hexagonal bamboozle structure can be seen as a triangular bamboozle structure combined
with its mirror image. This is first done around a vertex, where the triangle (and also the
structure it is connected to) is reflected to create a regular hexagon. Since the bamboozle
structure needs to be point uniform, the other triangles are also changed into regular hexagons.
This leaves a structure of regular hexagons meeting pairwise at an angles of arccos(13). There
are four distinct orientations the triangles take, represented by the four colours. See Figure
1.3.

1.2.4 The Rectangular Bamboozle Structures

There are two rectangular bamboozle structures. Both use rectangles with edge ratios
√

2 : 1.
Both have their rectangles meeting pairwise at angles of 60 degrees. The difference between is
created by the relative orientation of neighbours of a given rectangle. Given a rectangle, and
a neighbour at one of the four corners of the rectangle. If we look at the diagonally opposite
corner, we have two ways to place a rectangle so that it meets the original rectangle at an
angle of 60 degrees. In the four coloured rectangular bamboozle structure, such opposites are
placed parallel. Whereas in the six coloured rectangular bamboozle structure, they are not.
See Figure 1.4.
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Figure 1.1: Square Bamboozle Structure

Figure 1.2: Triangular Bamboozle Structure
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Figure 1.3: Hexagonal Bamboozle Structure

Figure 1.4: Four and Six Coloured Rectangular Bamboozle Structure
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1.3 Goal

The goal of this thesis is to try conclude something about the completeness of this given
list of bamboozle structures. Though it is conjectured to be complete, there is no prove for
this conjecture yet. In order to conclude anything about bamboozle structures, we will also
look into underlying structures. This might also lead to finding new requirements bamboozle
structures must adhere to, which could therefore narrow the search for new structures, or help
in a proof of completeness. Lastly, focussing on underlying structures might also lead to a
proof of completeness under certain assumptions, i.e., completeness of bamboozle structures
that have a certain quality.
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Chapter 2

Shortest Distance Graphs in R2

Though this thesis is aimed at understanding bamboozle structures within three-dimensional
Euclidean space, it might be valuable to study the requirements of bamboozle structures in
two-dimensional Euclidean space. Consider R2 equipped with the standard inner product and
corresponding distance function d(), with K thus a subset of R2. We consider only the cases
for which K is generated by a single orbit under one of the 17 wallpaper groups[4], which are
the R2 equivalent of the space groups. The goal in this chapter is to find all subsets K ⊂ R2

generated in this fashion for which the minimal distance graph is connected.

Definition 13. Within a tiling, we define the vertex type of a vertex around which there are,
in a cyclic order, an a-gon, a b-gon, a c-gon, etc. as a.b.c.... [4]

Definition 14. A uniform convex tiling is a tiling of R2 with regular polygons for which all
vertices are of the same vertex type.

2.1 The 11 Uniform Convex Tilings

There are exactly 11 uniform convex tilings [4]. Three of these tilings are completely regular,
meaning that not only are they vertex and edge transitive, they are also face transitive, and
thus contain only one type of regular polygon. They are shown in Figure 2.1. This leaves 8
semi-regular tilings, which are not fully face transitive. They are shown in Figure 2.2.

The Square Tiling The Triangular Tiling The Hexagonal Tiling

Figure 2.1: The three regular uniform convex tilings.
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The Snub Square Tiling The Elongated Triangular Tiling

The Truncated Square Tiling The Truncated Trihexagonal Tiling

The Trihexagonal Tiling
The Snub Trihexagonal Tiling

The Truncated Hexagonal Tiling
The Rhombitrihexagonal Tiling

Figure 2.2: The eight semi-regular uniform convex tilings.
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2.2 Skew Representations

Definition 15. A polygon is equilateral if all edges have the same length.

Definition 16. A polygon is isogonal if given two vertices, there exist a symmetry that will
move one vertex to the other. A polygon is m-isogonal if it contains a minimum of m classes
of vertices so that all vertices in a single class are isogonal.

This allows us to introduce the following new concept:

Definition 17. A skew representation of a uniform convex tiling allows for distortion of
n-gons that occur m times at every vertex under the following requirements:

1. The regular n-gons can be distorted into m-isogonal equilateral n-gons

2. The internal angle α of these distorted n-gons is bounded by 60◦ < α < 240◦

3. The distorted tiling remains point uniform

The limits for α are based on the fact that an angle less than or equal to 60◦ creates an
isosceles triangle with a third edge length that is either equal to, or less than dmin. An
internal angle greater than or equal to 240◦ creates an external angle of less than or equal to
60◦, for which the same applies.

Lemma 1. Skew representations of uniform convex tilings can also be generated by a single
orbit under a wallpaper group.

This can be concluded due to the point uniformity of the skew representations, combined with
the fact that they span R2. Some examples of skew representations and their corresponding
wallpaper groups can be seen in Figure 2.3.

Theorem 1. The list of all subsets K ⊂ R2 generated by a wallpaper group for which the
minimal distance graph is connected is a list of skew representations of the list of all uniform
convex tilings of R2.

Proof. There are exactly 11 convex uniform tilings. These 11 and their skew representations
follow symmetries of the wallpaper groups. Since only equilateral polygons are used, the edges
between vertices all have the same length, and there will not be two vertices that could be
connected by a shorter edge, since the internal angles of the distorted polygons is bounded.
Therefore, taking the vertices of any convex uniform tiling or skew representation creates
a subset K ⊂ R2 generated by a wallpaper group for which the minimal distance graph is
connected.
Conversely, given a subset K ⊂ R2 generated by a wallpaper group for which the minimal
distance graph is connected, we know that its minimal distance graph will form equilateral
polygons. If not, every vertex of the graph is of rank two, but then it can never be connected
due to the symmetrical properties of the wallpaper groups. This means that we can give this
graph a vertex type in the same way as the convex uniform tilings.
If one of the polygons contained in the graph has m different angles between consecutive
edges, we know that all these m angles must be present at every vertex. This is because we
only put a single point within a cell, and rotation, translation and (glide-)reflection do not
change the relative angles of outgoing edges at a vertex. Furthermore, we know the relative
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4.4.4.4 graph, located in group pg 4.8.8 graph, located in group p4

3.12.12 graph, located in group p6
6.6.6 graph, located in p2

Figure 2.3: Examples of skew representations of tilings, and their wallpaper group.

occurrence frequency of these angles within polygons is the same as the relative occurrence
frequency within the vertices. This is because we know that relative occurence frequency
within the vertices is equal to the relative occurence frequency taken over all vertices, since
all vertices share the same vertex type, and because we know that the relative occurence
frequency within polygons is also equal to the relative occurence frequency taken over all
vertices, since inequality would require vertices with different relative occurence frequencies.
If the polygon has n-vertices, we thus know that m | n. If σ is the sum over these m different
angles, we know that σ · nm = n · 180◦ − 360◦, i.e. σ = m · (180◦ − 360◦

n ). This means that
the total angle used for this polygon per vertex is only dependent on the type of polygon and
how often it is present at the vertex, and not on the different angles this polygon contains.
Therefore, we know the desired minimal distance graph can only have one of the 21 vertex
types defined by Grünbaum [4].
Of course, not every type translates to a convex uniform tiling. Therefore, it might still be
the case that the minimal distance graphs allow a unique vertex type. For this to be the
case, the vertex type would have to have multiple occurrences of an n-gon for n > 3 (Since
an equilateral triangle is always a regular polygon). This leaves the types 3.3.6.6, 3.4.4.6,
and 5.5.10. For 5.5.10 it holds that the pentagons have to be equiangular, since 2 - 5. So
this leaves two options which are not represented by a uniform convex tiling. However, both
these options quickly turn out not to work when drawing them out, because they lose point
uniformity.
The symmetry of the wallpaper groups require point uniformity. This trivially leads to the
equilateral and m-isogonal properties of the polygons used in the tilings. Therefore the list of
all subsets K ⊂ R2 generated by a wallpaper group for which the minimal distance graph is
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connected is a list of skew representations of the list of all uniform convex tilings of R2.

We can now conclude that every shortest distance graph generated by the orbit of a single
point under a wallpaper group can be represented by a uniform convex tiling.
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Chapter 3

Bamboozles in R3

3.1 Scaling up from R2

In R2 we saw that shortest distance graphs generated by the orbit of a single point under a
wallpaper group were limited to tilings that could be represented by uniform convex tilings.
In R3, we want to look at shortest distance graphs generated by the trajectory of a single
point under a space group. It could thus be very useful to look at the three dimensional
uniform convex tessellations, i.e. the convex uniform honeycombs. For this we introduce the
following concepts:

Definition 18. A polyhedron is a three dimensional solid, which has straight edges and polyg-
onal faces.

Definition 19. A polyhedron is vertex-transitive if and only if for any given vertices u and
v, the polyhedron has some automorphism f() so that f(u) = v.

Definition 20. A polyhedron is called uniform if and only if its faces are regular polygons,
and the polyhedron is vertex-transitive.

Definition 21. A tessellation is (point-)uniform if and only and only if if for any given
vertices a and b, the tessellation has some automorphism f() so that f(a) = b.

This leads to the following definition of a convex uniform honeycomb:

Definition 22. A Convex Uniform Honeycomb is a (point-)uniform tessellation of three
dimensional Euclidean space consisting of non-overlapping convex uniform polyhedra

There are 28 of these Convex Uniform Honeycombs known [3]. These 28 could possibly be
used to find bamboozle structures. If we look at the vertices within these honeycombs, we see
that the minimal distance graph is connected and the affine span of its edges is R3, and that
the vertices form an orbit of a single vertex within a space group. However, the neighbours
of a given vertex within the minimal distance graph do not lie in a plane. Therefore, we must
think of a method to find bamboozles contained within honeycombs.

For instance, we might look at vertex v within a honeycomb, and find a subset U of the
neighbours of v, so that the vertices u ∈ U and v lie in a plane. Since all vertices share
the same vertex type, we can select a symmetrical subset of neighbours for all u ∈ U (that
includes v). We can repeat this process until we have a sub-graph of the minimal distance
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graph that does have the property that all neighbours of each vertex lie within a plane. It
could then be the case that the vertices we excluded from the subsets of the neighbours no
longer occur in the sub-graph, so that the minimal distance graph of this sub-graph is the
sub-graph itself. If this is the case, the new sub-graph meets all requirements for a bamboozle
structure. If this is not the case, it technically does not meet the requirements.

There are some issues with this method. The first one has to do with selecting the particu-
lar subset of neighbours. If a certain vertex-type has more than three neighbours contained
within a plane, then it might be possible to create a bamboozle structure without including
all these neighbours, but instead using only a subset of available neighbours. Since we want
to limit the choices that need to be made whilst constructing these bamboozle structures,
we adopt the following rule: Given a vertex, a neighbour that has to be included, and an
orientation for the plane, there should only be one possible polygon. It is quite possible that
adding other rules for the placement of polygons could result in more bamboozle structures,
consisting of polygons we do not consider. However, this limitation makes the existence of
a bamboozle in a given honeycomb almost completely dependent of the vertex-type of that
particular honeycomb.

Another important issue is to do with parallel neighbouring polygons. Initially, allowing
neighbouring polygons to be parallel goes against the criteria for bamboozle structures, but
it could also be useful, as can be seen in some of the examples. As long as not all the neigh-
bours of a particular polygon are parallel to that polygon, a structure similar to a bamboozle
structure could still be achieved.

The structures that fail to meet all requirements since some neighbouring polygons are par-
allel, or the fact that their sub-graph is not a minimal distance graph, shall be referred to
as near-bamboozle structures, in contrast to the true bamboozle structures that fulfil all
requirements.

3.2 Results of This Method

We will now discuss the eleven honeycombs for which this method gives a non trivial result.
Ten of the eleven prismatic honeycombs are left out of consideration, because they all require
square polygons to reach between layers of two dimensional tilings, which would therefore all
create trivially similar results. Furthermore, there are seven honeycombs that do not allow a
polygon fitted in a vertex type. These honeycombs are thus also not listed. That leaves the
following eleven honeycombs:
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Figure 3.1: Vertex type of the Cubic Honeycomb, and a fitting polygon

Figure 3.2: Cubic Bamboozle, within the Cubic Honeycomb

3.2.1 Cubic Honeycomb

The cubic honeycomb has eight cubes put together at every vertex. Its vertex type can be
seen in Figure 3.1. It is clear that every vertex allows three planes in which sub-groups of
neighbours lie. These three planes are perpendicular to the edges from v to one of the pair
of neighbours that are not contained in the subset. Within these planes there lie four neigh-
bours. This gives us the choice to leave one of these neighbours out of the subset.

If we choose to use all four neighbours, and choose non parallel planes to choose the subset
of the neighbours’ neighbours, we end up with the cubic bamboozle that was already discov-
ered by Koos Verhoeff, depicted in Figure 3.2. Since the vertices that were left out of the
subsets, do not occur in later subsets, this structure fits all requirements to be a bamboozle
structure.
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Figure 3.3: Vertex type of the Truncated Cubic Honeycomb, and a fitting polygon

Figure 3.4: Triangles within the Truncated Cubic Honeycomb

3.2.2 Truncated Cubic Honeycomb

The truncated cubic honeycomb consists of truncated cubes, and octahedra filling up the
truncated space. Every vertex contains one octahedron, and four truncated cubes. If we
take the vertex type described in figure 3.3, we can expand the polygons across the rest
of honeycomb. However, in two of the three directions contained within the triangles, we
are forced to place a polygon that is parallel to the original polygon. It is also noteworthy
that the complete bamboozle structure, depicted in Figure 3.4, looks quite similar to the cubic
bamboozle structure, depicted in Figure 3.2. This is caused by the parallelism of neighbouring
polygons combined with the fact that the honeycombs are quite similar.
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Figure 3.5: Vertex type of the Alternated Cubic Honeycomb, and fitting polygons

Figure 3.6: Squares within Alternated Cubic Honeycomb

3.2.3 Alternated Cubic Honeycomb

The alternated cubic honeycomb has eight tetrahedra and 6 octahedra put together at every
vertex. In Figure 3.5 we can see this vertex type, and the polygons that fit inside. However,
not all three polygons can be used to form bamboozle structures. If we choose the square,
all the polygons need to be parallel as can be seen in Figure 3.6, and this parallelism violates
the connectivity requirement. In Figure 3.7, we can see the placement of hexagons within
the alternated cubic honeycomb. Note that it does not fulfil all the requirements to be
a bamboozle structure, since the sub-graph contains all vertices, and is thus not a minimal
distance graph. In Figure 3.8, we can see the placement of triangles within the alternated cubic
honeycomb, which does fulfil all the requirements, and can be recognized as the Bamboozle,
that hangs near the elevators of the Metaforum building.
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Figure 3.7: Hexagons within Alternated Cubic Honeycomb

Figure 3.8: Triangles within the Alternated Cubic Honeycomb
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Figure 3.9: Vertex type of the Cantellated Cubic Honeycomb, and a fitting polygon

Figure 3.10: Triangles within the Cantellated Cubic Honeycomb

3.2.4 Cantellated Cubic Honeycomb

The cantellated cubic honeycomb has two cubes, one cuboctahedron, and two rhombicuboc-
tahedra to a vertex. The vertex type can be seen in Figure 3.9. Although the vertex type
allows multiple orientations of the fitting triangle, when we expand the bamboozle structure
we find that all the polygons need to be parallel. This means that all connected polygons
lie within a plane, and therefore a structure that spans across R3 cannot be connected. The
structure is shown in Figure 3.10

20



Figure 3.11: Vertex type of the Quarter Cubic Honeycomb, and a fitting polygon

Figure 3.12: Rectangles within the Quarter Cubic Honeycomb

3.2.5 Quarter Cubic Honeycomb

The quarter cubic honeycomb has six truncated tetrahedra and 2 tetrahedra to a vertex. The
vertex type is shown in Figure 3.11. In Figure 3.12, we can see the bamboozle structure
within this honeycomb. Neighbours that were not included in the sub-graph do eventually
become part of the sub-graph. This can be concluded from the honeycomb edges that connect
two polygons, but that are not contained within these polygons. Thus the sub-graph is not a
minimal-distance graph, so this bamboozle structure does not fit all requirements. However,
it is important to note that this bamboozle structure is quite similar to the 4-rectangle
bamboozle structure by Tom Verhoeff. The main difference is the ratios of the rectangles.
In Verhoeff’s structure, rectangle have the ratio

√
2 : 1, whereas these rectangles have the

ratio
√

3 : 1. Furthermore, this bamboozle structure looks slightly crooked compared to the
bamboozle structure of Tom and Koos Verhoeff. There is likely to be a link between the two
differences, and the fact that Verhoeff’s bamboozle structure does meet all the requirements.
This shall be discussed in more detail in Chapter 4.
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Figure 3.13: Vertex type of the Rectified Cubic Honeycomb, and a fitting polygon

Figure 3.14: Rectangles within the Rectified Cubic Honeycomb

3.2.6 Rectified Cubic Honeycomb

The rectified cubic honeycomb has four cuboctahedra and one octahedron to a vertex. The
vertex type can be seen in Figure 3.13. In Figure 3.14, we can see the bamboozle structure
within this honeycomb. The sub-graph of the bamboozle structure is not a minimal distance
graph, meaning the bamboozle structure does not fit all the requirements. Like the bamboozle
structure contained within the quarter cubic honeycomb, the structure appears to be crooked,
although it is unclear what structure it is based on. The only candidate for this would be the
square bamboozle structure, and in Chapter 4 we discuss this possibility.
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Figure 3.15: Vertex type of the Runcic Cubic Honeycomb, and a fitting polygon

Figure 3.16: Triangles within the Runcic Cubic Honeycomb

3.2.7 Runcic Cubic Honeycomb

The runcic cubic honeycomb has four rhombicuboctahedra, one cube, and one tetrahedron to
a vertex. Its vertex type is shown in Figure 3.15. In Figure 3.16, we can see the bamboozle
structure within this honeycomb. The subgraph is a minimal distance graph, but some
neighbouring polygons are forced to be parallel. Therefore, it does not fulfil all requirements.
However, it is a near-bamboozle structure.
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Figure 3.17: Vertex type of the Runcitruncated Cubic Honeycomb, and a fitting polygon

Figure 3.18: Triangles within the Runcitruncated Cubic Honeycomb. Whilst developing this
structure, one of the blue triangles was forced to have three parallel neighbours.

3.2.8 Runcitruncated Cubic Honeycomb

The runcitruncated cubic honeycomb has two octogonal prims, one rhombioctahedron, one
cube, and one truncated cube to a vertex. The vertex type is shown in 3.17. While developing
this vertex type into a bamboozle structure, we came across a polygon that needed three
neighbours that were parallel. This meant the the structure was no longer point-uniform, and
could therefore not be a bamboozle structure.
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Figure 3.19: Vertex type of the Gyroelongated Triangular Prismatic Honeycomb, and a
fitting polygon

Figure 3.20: Pentagons within the Gyroelongated Triangular Prismatic Honeycomb

3.2.9 Gyroelongated Triangular Prismatic Honeycomb

The gyroelongated triangular prismatic honeycomb has six triangular prisms, and four cubes
to a vertex. In Figure 3.19 the vertex type is shown. In Figure 3.20, the bamboozle structure
within this honeycomb is shown. The subgraph is not a minimal distance graph, and only one
out of five neighbours is not parallel to a given polygon. Therefore the bamboozle structure
does not fulfil all requirements, but could be referred to as a near-bamboozle structure.
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Figure 3.21: Vertex type of the Gyrated Triangular Prismatic Honeycomb, and fitting
polygons

Figure 3.22: Triangles within the Gyrated Triangular Prismatic Honeycomb

3.2.10 Gyrated Triangular Prismatic Honeycomb

The gyrated triangular prismatic honeycomb has twelve triangular prims to a vertex. The
vertex type is shown in 3.21. In Figures 3.22 and 3.23 we can see the structures within the
honeycomb. However, neither of the two fulfil the connectivity requirement, and can thus not
be bamboozle structures. Furthermore, both structures use a subgraph that is not a minimal
distance graph, and the structure in Figure 3.23 has polygons that are all parallel.
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Figure 3.23: Trapezoids within the Gyrated Triangular Prismatic Honeycomb

3.2.11 Gyroelongated Alternated Cubic Honeycomb

The gyroelongated alternated cubic honeycomb has six triangular prisms, four tetrahedra,
and three octahedra to a vertex. Its vertex type is shown in Figure 3.24. However, the vertex
type does not allow expansion along the entire honeycomb; If the edge that is shared by the
triangular prisms is used for a polygon, there is no way to determine the orientation of the
neighbouring polygon in that direction. See Figure 3.25. Since the triangular prisms lie in
plane formation, at least one of these edges is required to fulfil the connectivity requirement.
Therefore, there could not exist a bamboozle structure within this honeycomb, unless an
alternate system is used to determine the orientation of these polygons, which is out of our
consideration.

Figure 3.24: Vertex type of the Gyroelongated Alternated Cubic Honeycomb
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Figure 3.25: Triangles within the Gyroelongated Alternated Cubic Honeycomb. This figure
depicts two ways to link the triangles within the honeycomb, and that it is not possible to

determine which of these to use.
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3.2.12 Conclusion

The method has proven to be fruitful. Though it has found only two bamboozle structures
which fit all the requirements, both of which were already known, it has produced lots of results
that fulfil nearly all requirements. Furthermore, we have seen that the hexagonal bamboozle
structure created by Tom and Koos Verhoeff does not fulfil all requirements, namely, the
graph between used vertices is not a minimal distance graph. Therefore, all results that share
the same qualities as the hexagonal bamboozle structure should be considered interesting
enough for further investigation.

The structures that failed to fulfil the requirement that neighbouring polygons should
not be parallel require more consideration. Though they might not receive true bamboozle
structure status, they should too be deemed sufficiently interesting. One quality that is worth
investigating is their relationship to known bamboozle structures. Since most honeycombs
are built as variation on the cubic honeycomb, it is interesting to see what effect these vari-
ations have on the square bamboozle structure contained within this honeycomb, as can be
seen with the truncated cubic honeycomb. Furthermore, the bamboozle structure contained
within the gyroelongated triangular primsatic honeycomb can also be linked to a different
method of structuring squares within the cubic honeycomb.

Lastly, it is important to note that this method did not produce a complete list of bam-
boozle structures. This is clear since the 6 coloured rectangular bamboozle structure found
by Tom Verhoeff did not appear using this method. It might therefore be interesting to see
if an underlining structure can be found for this bamboozle structure, and find out why it
did not appear in the list of honeycombs. An important note on this is that there are point
uniform tessellations of R3 that consist of solids that are not all point uniform, and which
therefore do not appear in the list of convex uniform honeycombs.

3.3 Completeness of Honeycombs

In order to validate a proof of completeness for bamboozle structures based on honeycombs, a
complete list of honeycombs is required. The list of honeycombs we use (based on [3]) consists
of 28 unique honeycomb structures. However, as of 2006 the completeness of this list was yet
to be proven, though it is conjectured to be complete.

Theorem 2. The list of 28 Convex Uniform Honeycombs is complete.

We want to prove this theorem. In order to do so, we first need a list of multisets of convex
uniform polyhedra that fit together at a vertex, and see which of these could tessellate the full
Euclidean space. The convex uniform polyhedra can be classified in to four different groups:
platonic solids, archimedean solids, prisms, and anti-prisms.

Definition 23. A uniform polyhedron is a platonic solid if and only if all its faces are con-
gruent regular polygons.

Definition 24. A uniform polyhedron is a prism if and only if every vertex is of vertex type
4.4.n, with n > 2.1

Definition 25. A uniform polyhedron is an anti-prism if and only if every vertex is of vertex
type 3.3.3.n, with n > 2.2

1A cube is both a platonic solid and a prism.
2A dodecahedron is both a platonic solid and an anti-prism.
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Octahedron, a Platonic Solid Truncated Octahedron, an Archimedean Solid

Pentagonal Prism
Square Anti-Prism

Figure 3.26: Examples of the different types of Convex Uniform Polyhedra

Definition 26. A uniform polyhedron is an archimedean solid if and only if it does not fit
the discriptions of platonic solids, prisms, or anti-prisms.

It is important to note that the definitions for prisms and anti-prisms allow any n > 2, which
means that there is an infinite number of prisms and anti-prisms. This makes it impossible
to run an analysis over all the convex uniform polyhedra. Therefore, we need to make a
restriction for which prisms and anti-prisms we want to consider in our analysis, and justify
this restriction by proving that the remaining polyhedra could never be used in a honeycomb.

If we look at honeycombs that consist solemnly of prisms and anti-prisms, we see that
these are in fact just tessellations of two dimensional euclidean space stacked on top of each
other. We know the number of two dimensional tessellations is 11. We also know that prisms
and anti-prisms have the same n-gon on both sides. Therefore, we can conclude that one
layer of the stack contains a particular tessellation of two dimensional euclidean space, the
layer on top of it will have the same tessellation, and in general every layer will.

The largest polygon that can be used in a two dimensional uniform convex tessellation
is the dodecagon, so we know that prisms and anti-prisms used in these honeycombs cannot
contain polygons larger than the dodecagon. Furthermore, since the platonic and euclidean
solids do not have faces larger than the decagon, we know we do not have to consider more
than the first 10 prisms and anti-prisms (up to the dodecagonal prism and anti-prism). This
is because the polygon faces of the other prisms and anti-prisms cannot connect to platonic
or archimedean solids, or be used to form a two dimensional tessellation.

It is important to note that there is third way to combine the different types of polyhedra:
One could make stacks of prisms or anti-prisms so that their n-gon sides touch, and then fill
up the rest of the space with platonic solids, archimedean solids, prisms and anti-prisms in
such a way that it is not a stack of a two dimensional tiling. This way there is no obvious
limit on n. Since the existing lists of honeycombs does not include such honeycombs, such
a honeycomb is hard to find, but non-existence would be difficult to prove, we assume that
such honeycombs do not exist. However, it is important to remember this possibility.
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Now that we have a list of polyhedra that could be used to form honeycombs, we need a way
to see which of these polyhedra could fit together in a vertex. To do this we introduce the
following concept:

Definition 27. The solid angle of an object given an origin, expressed in steradians, is the
surface of the projection of the object on a unit sphere centred at the origin

This quickly leads to the following lemma:

Lemma 2. The total amount of steradians at a single point is equal to the area of the surface
of a unit sphere, i.e. 4π

If we measure the solid angles of our polyhedra with the origin at a vertex, we can determine
which of these polyhedra fit together by computing the combinations of solid angles that add
up to 4π.

Luckily, there exist simple formulas to determine such solid angles, based on what poly-
gons come together in a point. These formulas use the planar angles αi. Since we use regular
n-gons, these planar angles are equal to the internal angles of these n-gons: αi = (n−2)·π

n . For
three polygons to a point, the solid angle θ can be determined by: [1]
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For five polygons to a point, the polyhedron can be split in such a way that the five polygons
are split into two groups, which form a polyhedron with four polygons to that point, and a
polyhedron with three polygons to a point. In both cases the extra polygon comes from the
facet that was created by the split. Now, we can use the previous two formulas to determine
the total solid angle, given that we can compute the planar angle for the new facet. There are
no polyhedra with more than five polygons to a point contained within the group of convex
uniform polyhedra.

This gave us Table 3.1, which is a list of all polyhedra we considered and their cor-
responding solid angle expressed in a numerical value. The polyhedra are named by the
polygons that meet at vertices. This means that a tetrahedron, where three regular triangles
meet in every vertex, is denoted by 33, and a rhombicuboctahedron, where three squares and
a regular triangle meet at every vertex, is denoted by 3.43.

Now that we know the solid angles, we can determine which combinations of these add up to
4π. To do this we created an algorithm to determine the sums of combinations of solid angles.
Of course, backtracking every possible combination would be timely, so we implemented some
helpful pruning. The key to this pruning is to first order the solid angles from small to large.
This allows you to know that if the nth solid angle doesn’t fit anymore, neither will any of
the other solid angles that could otherwise be added later in the process. The algorithm then
works as follows:
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Polyhedra Solid Angle

33 0.55129
3.42 1.04720
34 1.35935
43 1.57080
33.4 1.79377
42.5 1.88496
3.62 1.91063
33.5 2.05956
42.6 2.09440
33.6 2.23826
42.7 2.24399
42.8 2.35619
33.7 2.36648
42.9 2.44346
32.42 2.46192
33.8 2.46290
42.10 2.51327
33.9 2.53803
42.11 2.57039
33.10 2.59821
42.12 2.61799
35 2.63455
33.11 2.64749
33.12 2.68858
3.82 2.80176
53 2.96174
4.62 3.14159
3.43 3.48143
34.4 3.58963
32.52 3.67375
3.102 3.87132
3.6.8 3.92699
5.62 4.24874
3.42.5 4.44631
34.5 4.50969
4.6.10 4.71239

Table 3.1: Solid Angles
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Algorithm Polyhedra Combinations(Solid(1..n))
1. i← 1
2. j ← 1
3. Combinations← {}
4. Choice←constant zero array of length n
5. Sum← 0
6. Working ← True
7. while Working
8. do if |Sum− 4π| <= Solid[i]
9. then Choice[i]← Choice[i] + 1
10. Sum← Sum+ Solid[i]
11. j ← i
12. else if Sum = 4π
13. then Append Choice to Combinations
14. if j = n
15. then j ← j − 1
16. while Choice[j] = 0 and j > 1
17. do j ← j − 1
18. if Choice[j] > 0
19. then Choice[j]← Choice[j]− 1
20. Sum← Sum− Sold[j]
21. i← j + 1
22. for k ← j + 1 to n
23. do sum← sum− Choice[k] · Solid[k]
24. choice[k]← 0
25. else Working ← False
26. return Combinations

It is important to note that all the equality checks in this algorithm are done on numerical
representations instead of exact values. Though we use values that are more accurate than
the values in Table 3.1, there is still a rounding error. This could lead to mistakes if the
rounding error is too large, but this did not seem to be the case.

This algorithm generated a rather large set of allowed combinations. However, for these
to be possible honeycombs, all the touching faces have to be the same polygons. This allowed
for a very simple reduction: Every combination which contained an odd number of a par-
ticular polygon could never be a honeycomb. Though this was a rather simple deduction, it
still eliminated roughly four fifths of the possible combinations. This left 113 possible com-
binations. After this, we ran an analysis to find the polyhedra that occurred in none of the
combinations, so that we did not have to do further calculations on polyhedra that are not
used.

The list of combinations only showed which combinations of polyhedra had solid angles that
add up to 4π. However, for these combinations to be possible honeycombs, the polyhedra
should be able to fit together in a non-overlapping way. To see which combinations of polyhe-
dra could fit this constraint, we tried to fit the polyhedra together in a non-overlapping way.
To do this, we first introduced the following concepts:
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Definition 28. The central vertex is the vertex around which we try to fit the polyhedra.

Definition 29. The circumcenter of a set of vertices is a point with equal distance to every
vertex in the set.

Definition 30. The central vector of a polyhedron is a vector used for the construction of the
polyhedron which points from the central vertex towards the circumcenter of the neighbours of
the central vertex within that polyhedron.3

Lemma 3. Given two polyhedra that share a face, we can check if the polyhedra overlap by
checking if the central vectors of the polyhedra are on the same side of the face (which can be
done with linear equations).

We then work in the following manner: Given a certain combination of polyhedra, we choose
one of these polyhedra, and then try all the ways it could add the rest of the polyhedra (so
that they touched one of the faces of the polyhedra that were already placed, and the central
vectors are not on the same side of this face). If all the polyhedra from the combination are
placed, we check if all the faces of the new polyhedra are also the face of a polyhedron on
the other side. This is done by storing the faces that are connected to the central vertex
for every new polygon. We then check if all faces occur twice in the overall storage. From
this we can conclude that the faces of every polyhedron are also faces of a polyhedron on
the other side. If this is the case, this fact combined with the fact that the solid angles add
up to 4π means that the polyhedra do not overlap, meaning the combination is possibly the
point configuration of a honeycomb. If the model runs through all orders to add polyhedra
from the combination, without ever reaching an accepted order, this means that there is no
non-overlapping way to fit the polyhedra from the combination together in a point.

It is important to note that a combination does not necessarily uniquely determine its
relative placement; there might be multiple ways this combination of polyhedra fits together.
Therefore, we cannot implement pruning that stops trying to fit some combination as soon as
a solution is found. However, the lack of this pruning also means that some solutions might
occur multiple times, so we must filter through our solution set to find the unique placements.

For this filtering it is important to note the form in which the polyhedra are stored. For
the calculations we restricted the polyhedra combinations to verfs:

Definition 31. Given a vertex v, and a number of polyhedra that contain this vertex, the verf
is defined as the convex hull of v and the vertices that neighbour v in the polyhedra.

Lemma 4. Given two convex polyhedra A and B that meet at vertex v: The verfs of these
polyhedra with vertex v do not overlap if and only if the polyhedra do not overlap.

Proof. If the two verfs do not overlap, then for every face of a verf that contains vertex v, we
can make a plane that separates the verfs of A and B. If there exists a vertex u in polyhedra
A that is on the other side of the plane, then either u was also a neighbour of v, or A is not
convex. Both of these options neglect the conditions of the lemma. The other direction is
trivial, since the verfs are subsets of the polyhedra.

This lemma justifies limiting calculations to verfs, i.e., it shows that our proves of non-
overlapping verfs suffice. Furthermore, given a combination of polyhedra, and two solutions,

3Though in general a circumcenter of three or more points does not need to exist, it does exist for neighbours
of a vertiex in a convex uniform polyhedron.
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Row 33 3.42 34 43 5.42 3.62 6.42 8.42 32.42 10.42 12.42 3.82 4.62 3.43 4.6.8

1 8 0 6 0 0 0 0 0 0 0 0 0 0 0 0
2 8 0 6 0 0 0 0 0 0 0 0 0 0 0 0
3 4 6 3 0 0 0 0 0 0 0 0 0 0 0 0
4 2 0 0 0 0 6 0 0 0 0 0 0 0 0 0
5 2 0 0 0 0 6 0 0 0 0 0 0 0 0 0
6 1 2 0 0 0 3 2 0 0 0 0 0 0 0 0
7 1 0 0 1 0 0 0 0 0 0 0 0 0 3 0
8 0 12 0 0 0 0 0 0 0 0 0 0 0 0 0
9 0 12 0 0 0 0 0 0 0 0 0 0 0 0 0
10 0 8 0 0 0 0 2 0 0 0 0 0 0 0 0
11 0 8 0 0 0 0 2 0 0 0 0 0 0 0 0
12 0 6 0 4 0 0 0 0 0 0 0 0 0 0 0
13 0 6 0 4 0 0 0 0 0 0 0 0 0 0 0
14 0 4 0 2 0 0 0 0 0 0 2 0 0 0 0
15 0 4 0 2 0 0 0 0 0 0 2 0 0 0 0
16 0 4 0 0 0 0 4 0 0 0 0 0 0 0 0
17 0 4 0 0 0 0 4 0 0 0 0 0 0 0 0
18 0 4 0 0 0 0 4 0 0 0 0 0 0 0 0
19 0 2 0 4 0 0 2 0 0 0 0 0 0 0 0
20 0 2 0 0 0 0 0 0 0 0 4 0 0 0 0
21 0 0 2 0 0 0 0 0 4 0 0 0 0 0 0
22 0 0 1 0 0 0 0 0 0 0 0 4 0 0 0
23 0 0 0 8 0 0 0 0 0 0 0 0 0 0 0
24 0 0 0 2 0 0 2 0 0 0 2 0 0 0 0
25 0 0 0 2 0 0 0 4 0 0 0 0 0 0 0
26 0 0 0 2 0 0 0 0 1 0 0 0 0 2 0
27 0 0 0 1 0 0 0 2 0 0 0 1 0 1 0
28 0 0 0 1 0 0 0 0 0 0 0 0 1 0 2
29 0 0 0 0 4 0 0 0 0 2 0 0 0 0 0
30 0 0 0 0 0 2 0 0 1 0 0 0 2 0 0
31 0 0 0 0 0 1 0 0 0 0 0 1 0 0 2
32 0 0 0 0 0 0 6 0 0 0 0 0 0 0 0
33 0 0 0 0 0 0 0 2 0 0 0 0 0 0 2
34 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0

Table 3.2: Unique Placements of Combinations; columns indicate what polyhedra are used,
rows indicate the combinations. Some rows are identical because some combinations can be

placed in multiple distinct ways.

the verfs can be used to see if the relative placement is different. Since different relative
placement means different verfs. This filtering is kept manual on purpose, since making a
script that tries to rotate verfs to see if they can be aligned with a different verf would take
a long time and is very susceptible to numerical errors. The small number of instances for
which this check is required justifies the simplicity of the manual check, which is sufficiently
reliable.

3.3.1 Results

The discribed method generated a set of 67 correct combinations of polyhedra. After filtering
out the doubles, and removing polyhedra that do not occur in any combination, we were left
with the combinations in Table 3.2.

This list includes the 28 known honeycombs. These require no further investigation since
it is already known that they form honeycombs. This allows us to remove 26 vertex types
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Figure 3.27: Vertex Configuration in row 4

Figure 3.28: Cross-sections of the vertex types in rows 10 and 16

from consideration. This is because the gyroelongated triangular prismatic honeycomb and
the elongated triangular prismatic honeycomb share the same vertex type, as do the gyroelon-
gated alternated cubic honeycomb and the elongated alternated cubic honeycomb. This leaves
us with 8 vertex types, namely those in rows 4, 6, 10, 14, 15, 16, 18, and 29. The types in
rows 14, 15, 18, and 29 are prismatic stacks. Though their polygon faces do fit together, they
cannot be used to create a tessellation of two-dimensional space, so these polyhedra combina-
tions cannot be honeycombs. This leaves four combinations that require further investigation.

The combination of polyhedra in row 4 is identical to that of the quarter cubic honeycomb.
The difference in the configuration comes from the fact that the two tetrahedra have to share
a face. In Figure 3.27 this vertex type is shown around the green vertex, with only the nearest
neighbours showing. If we consider the purple vertex, we can see that the tetrahedron it is
connected to needs another tetrahedron attached to one of its faces in order to have the same
vertex type as the green vertex. However, if this is happens, then the red and/or the green
vertex will be attached to three tetrahedra, and will therefore be of a different vertex type.
Therefore this vertex type cannot be used for a honeycomb.

In the left half of Figure 3.28 we can see a cross-section of the vertex type in row 10. We used
a cross-section due to the prismatic nature of the polyhedra in use. The rectangles at the
bottom are in fact triangular prisms that are oriented horizontally. The other polygons are
faces of prisms, both above and below the cross-section. The vertex type is created around
the green vertex. In order for the purple vertex to be of the same type as the green vertex, we
need to add hexagonal prisms to the edge between the red and the purple vertex. However,
this means that the red vertex can no longer be of the same vertex type. Therefore, this
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Figure 3.29: Vertex type in row 6

vertex type cannot be used for a honeycomb.
In the right half of Figure 3.28 we can see the cross-section of the vertex type in row

16. It is similar to row 10, with the difference being that the horizontally oriented prisms
now include a hexagonal prism, making them indistinguishable from the other prisms. The
argument used for row 10 can also be used for row 16: if the purple and green vertex need to
share a vertex type, the red vertex cannot also share this vertex type.

In Figure 3.29 we see various views of the vertex type described in row 6, centered around
the green vertex. We show the neighbours of the green vertex, but also the neighbours of
the purples and red vertices. There is also an emphasis on the triangular prisms around the
green vertex. If we want to use this vertex type for a point-uniform honeycomb, both the red
and the purple vertex need to have the same vertex type as the green vertex. For the purple
vertex this would mean extending the surrounding triangles outward into triangular prisms.
However, this would mean the the red vertex would be surrounded by two triangular prisms
which have different orientations. Therefore, the red vertex would not have the same vertex
type, and thus, this vertex type cannot be used for a convex uniform honeycomb.

To conclude, we can say that we have proven Theorem 2. This means that our list of bam-
boozle structures contained within (unadjusted) convex uniform honeycombs is also complete.
From here on, we can see what adjustments could be made to honeycombs that contain struc-
tures that are almost bamboozle structures.
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Chapter 4

Adjustments of Honeycombs

In this chapter, we will focus on broadening our list of existing bamboozle structures by
adjusting the honeycombs they are contained in. It could be seen as the three-dimensional
version of the skew representation discussed in Chapter 2. With this skew representation, we
acknowledged that minimal distance graphs are not necessarily part of the finite list of uniform
convex tilings, but must be variations of uniform convex tilings. In this chapter, we try to find
out what adjustments on convex uniform honeycombs could create bamboozle structures. To
achieve this, we will restrict ourselves to structures discussed in Section 3.2. In that section,
we excluded some honeycombs because their vertex type did not contain three edges within
one plane. The adjustments discussed in this chapter could potentially change this. However,
it is not directly clear what steps should be taken so that the adjusted honeycomb contains
a bamboozle structure. Therefore, they will be excluded from consideration, though it might
be fruitful to study these cases in more depth.

4.1 The Rectangular Bamboozle Structures

A good place to start our search for allowed adjustments is the rectangular bamboozle struc-
tures. We found a rectangular structure within the quarter cubic honeycomb that appeared
to be a crooked version of the four coloured rectangular bamboozle structure. This might
indicate that the four coloured rectangular bamboozle structure is contained within a valid
variation of the quarter cubic honeycomb. Furthermore, it is noteworthy that none of the
found structures appeared to be a different version of the six coloured rectangular structure,
which justifies further attention for the six coloured rectangular structure.
We start by observing the four coloured bamboozle structure as described by Tom and Koos
Verhoeff. If we create the minimal distance graph, we see that it does not contain polyhedra.
However, if we also allow edges of another length (in this particular case dmin · 2√

3
) we can see

a variation of the quarter cubic honeycomb. This particular honeycomb uses adjusted tetra-
hedra (known as a tetragonal disphenoids [2]) and adjusted truncated tetrahedra (truncated
tetragonal disphenoids). These polyhedra are depicted in Figure 4.1. They are put together
so that two neighbouring longer edges are always parallel.
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Figure 4.1: The Tetragonal Disphenoid and the Truncated Tetragonal Disphenoid. The red
edges are longer than the black edges with a ratio of 2√

3
: 1.

Figure 4.2: Four Coloured Rectangular Bamboozle Structure within a variation of the
Quarter Cubic Honeycomb
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These disphenoids can be defined by two edge lengths. If we look at the tetragonal disphe-
noid, we see that one edge length occurs on four edges, and the other edge length occurs
on two edges. We require that the second edge length is larger than the first edge length.
Furthermore, if the second edge length is larger than the first length edge by a ratio of

√
2 : 1,

the tetragonal disphenoid degenerates to a square, with the larger edges being the diagonals.
For any ratio larger than this, the disphenoids ceases to exist. This means that the adjusted
honeycomb exists for ratio α : 1 if and only if 1 < α <

√
2. However, some of these ratios

do not form bamboozle structures, because of new edges with length smaller than 1. There-
fore, we know that the four-coloured bamboozle structure exists as a continuous family for

1 < α <

√
15
2

2 . In Figure 4.2, such a bamboozle structure is shown for ratio 2√
3

: 1. This is

the structure found by Tom and Koos Verhoeff.

When we look at the six-coloured rectangular bamboozle structure in a similar fashion, we can
see that it too lies within a honeycomb that consists of tetragonal disphenoids. However, the
placement of these disphenoids is different. The four coloured rectangular bamboozle structure
has its disphenoids placed so that two neighbouring longer edges are always parallel, whereas
the six coloured rectangular bamboozle places its disphenoids so that two neighbouring long
edges are always perpendicular, while leaving short edges parallel. This change in placement
of the tetragonal disphenoids results in a different filling of the rest of the space. Depicted
in Figure 4.3, we can see that the other cells are no longer polyhedra, because not all faces
are polygons. There are multiple ways to counter this, all of which requires accepting a
third edge length. However, one method loses rotational symmetry of cell type, one method
require a third cell type, and one method requires vertices that do not occur in the bamboozle
structure. In Figure 4.3 the third option is depicted, for this seemed the most logical option,
though there is not much reasoning for this choice.

This cell explains why the six-coloured honeycomb did not appear in any form on the
list in Chapter 3.2. For starters, in its current form it is not convex, and no change in edge
lengths could change this, since there are vertex types that contain six triangles. In order
to fit these together in a non-flat way, a non-convex arrangement is required. Furthermore,
neither the cell nor the honeycomb it builds is vertex transitive. A different way to turn the
cells into polyhedra could make the honeycomb itself vertex-transitive, but as long as the cell
is not vertex transitive, it would still not be a uniform honeycomb. Lastly, we could try to
find out what equilateral polyhedron the cell is based on. To do this, we tried to recreate
the cell as if the surrounding disphenoids were regular tetrahedra. However, as depicted in
Figure 4.4, this forced the red square to become a rectangle instead, which therefore did not
lead to an equilateral polyhedron. Since we cannot place the underlying honeycomb cells as
modified regular polyhedra, it might be easier to see the honeycomb as a further variation on
the quarter cubic honeycomb where the tetrahedra are twisted.

4.2 Applying Adjustments

After seeing some allowed adjustments on honeycombs used to create the rectangular bam-
boozle structures, namely elongating certain unused edges, and rotating around vertices, we
can try to apply these adjustments to create true bamboozle structures out of the remaining
structures found in chapter 3.2. In some cases, we will refrain from exact proofs of non-
existence, due to the complexity of such proofs. In these cases, will we try to persuade with
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Figure 4.3: Cell type used to create the six coloured rectangular bamboozle structure

Figure 4.4: Local effect of basing the cell around a regular tetrahedron

speculations, but always consider the lack of complete certainty. Furthermore, the reader
is strongly encouraged to participate in these speculations, by either drawing or trying to
picture certain possibilities mentioned, for they are hard to put into a flat image.

The first case we investigate is the near-bamboozle structure found within the rectified cu-
bic honeycomb. Since the structure fails to use a minimal distance graph as its sub-graph,
we will try to elongate unused edges. This leads us to the shortened triangular anti-prism,
depicted in Figure 4.6. Any edge elongation with a ratio of α : 1 with 1 < α <

√
3 creates

an adjusted honeycomb. However, only if 1 < α < 2
√

2
3 does said honeycomb contain a

bamboozle structure. This again generates a continuous family of bamboozle structures. If
we use a ratio of

√
2 : 1, we get the square bamboozle structure, depicted in Figure 4.7.

Another interesting case is that of the hexagonal bamboozle structure. It turns out there
is no way to adjust the alternated cubic honeycomb in such a way that the subgraph used by
the hexagonal honeycomb is a minimal distance graph. This is due to the fact that polygons
used for bamboozle structures need to have a centroid located at equal distance x from all
the vertices, and the fact that hexagons divide 360◦ up amongst 6 vertices. When this is done
equally, all the sides have length x too, because regular triangles are formed, and when it is
done unequally, some angles become less than 60◦, making those sides have lengths less than
x. Therefore, if hexagons are used in a bamboozle structure, two adjacent neighbours of a
given hexagon will have to be neighbours amongst themselves, which can only create a two
dimensional tessellation.

The following case concerns the near-bamboozle structure within the truncated cubic
honeycomb. In this structure, neighbouring polygons might be parallel. It is quite clear that
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Figure 4.5: Six-Coloured Rectangular Bamboozle Structure within a variation of the
Quarter Cubic Honeycomb

Figure 4.6: Shortened Triangular Anti-Prism, with edge ratio
√

2 : 1 (red:black)
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Figure 4.7: Square Bamboozle Structure within a variation of the Rectified Cubic
Honeycomb

the structure is strongly related to the square bamboozle structure, but losing this paral-
lelism could change this relation. In order to achieve this we need an adjusted octahedron
that contains a ring of four vertices, which are connected by four equilateral edges and do no
lie within a plane. This can be achieved by taking a regular octahedron, defining what ring of
four vertices is used, and extending and shortening the other edges in a manner depicted in
Figure 4.8. The ratio between the various edge lengths is enough to define this octahedron.
When using this adjusted octahedron to construct a honeycomb, this also allows a rotation
along edges that connect two octahedra. If we assume that, like the rectangular bamboozle
structure, existence occurs for various ratios of edge lengths, we can limit our search by only
varying two variables. However, after numerous attempts, all variations seem to be fruitless.

Another case concerns the near-bamboozle structure within the gyroelongated triangular
prismatic honeycomb. This structure has neighbouring parallel polygons, as well as a sub-
graph that is not a minimal distance graph. The first problem cannot be solved. The way
the polygons are connected creates a strip of regular triangles. Combined with the fact that
the neighbours of any vertex must lie within a plane, this means that this strip of regular
triangles must lie within a plane. Therefore, some neighbouring polygons will be parallel. An
important observation is the fact that, like the near-bamboozle structure inside the truncated
cubic honeycomb, this structure can be collapsed into a square-based structure within the
cubic honeycomb, as depicted in Figure 4.9. However, neighbouring polygons can still be
parallel. To fix this, we would need to alternate connections of polygons. To do this we would
need to shift the different layers of square tilings so that they allow such alternation. However,
this leads us to the alternated cubic honeycomb, which has already been investigated.
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Figure 4.8: Adjusted Octahedron, with a black regular ring, red shortened edges, and blue
extended edges.

Since neighbours will always remain parallel within this near-bamboozle structure, it is
not important to see if the other problem could be dealt with. However, if we were interested,
it probably could be done. Though the edges that would need to be elongated lie parallel to
edges that cannot be elongated, it might be possible to zig-zag the elongated edges so that
they become longer, but do not span further in the original direction.

That leaves the near-bamboozle structure within the Runcic Cubic Honeycomb. The ap-
proach to turn it into a true bamboozle structure would be to twist it along an edge that
connects two parallel polygons. However, when attempting this, some edges are elongated,
and symmetry then causes other edges to also elongate. Some of these newly elongated edges
are used for other polygons. Therefore twisting the edges destroys the structure.

In conclusion, we can say that the list of bamboozle structures lying within adjusted versions
of convex uniform honeycombs based on our allowed adjustments coincides with the list of
bamboozle structures given by Tom and Koos Verhoeff, minus the hexagonal bamboozle
structure and allowing the discussed variations.
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Figure 4.9: Collapsed version of the structure within the Gyroelongated Triangular
Prismatic Honeycomb
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Chapter 5

Conclusion, Discussion, and Further
Research

The goal of this thesis was to explore what bamboozle structures exist. We started out with
simplifying the problem to a two dimensional space, where we created a proof of completeness
by relating all single orbits under wallpaper groups to uniform convex tilings. As we scaled
back up to three-dimensional space, where we looked at the three-dimensional equivalent of
the uniform convex tiling, the convex uniform honeycomb, suggesting that since the convex
uniform honeycombs can be described as single trajectories under space groups they too might
hold bamboozle structures. Since the list of honeycombs was not proven to be complete, we
proved this completeness, with the exception of a particular case of possible honeycombs
consisting of a stack of prisms or anti-prism with the rest of the space being filled up with
non-parallel prism or anti-prism, or platonic or Archimedean solids. We found that three out
of five known bamboozle structures do lie within convex uniform honeycombs, and that the
other convex uniform honeycombs do not hold other bamboozle structures, only some near-
bamboozle structures. We found that the two other known bamboozle structures lie within
adjusted versions of the same convex uniform honeycomb. We speculated on adjustments of
the convex uniform honeycombs that hold the near-bamboozle structures, and found that two
of them were adjusted versions of known bamboozle structures, whereas the others did not
appear to be adjustable into true bamboozle structures. The most notable entry of this is
the hexagonal bamboozle structure, which turned out to not fulfil all qualities of a bamboozle
structure. Lastly, we found that both the square bamboozle structure, and the four-coloured
rectangular bamboozle structure are actually part of continuous families.

However, we have not proven the completeness of the list of bamboozle structures, and in my
opinion the list is not necessarily complete. Though we have proven completeness of the bam-
boozle structures restricted to the convex uniform honeycombs, under the assumption that a
particular type of honeycomb does not exist, the rectangular bamboozle structures prove that
not all bamboozle structures are restricted to convex uniform honeycombs. Another notewor-
thy point is that in section 3.2, we only considered bamboozle structures that were choice free
as soon as one polygon was placed, though this was never justified. It could also be the case
that some bamboozle structures require choice algorithms when placed. Moreover, though we
have attempted to adjust honeycombs that contain near-bamboozle structures, this section
is mostly speculation instead of proofs of impossibility. Furthermore, the restriction of only
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considering honeycombs that contain near-bamboozle structures could eliminate honeycombs
that could be adjusted to hold bamboozle structures. However, taking all convex uniform
honeycombs into account here would require a difficult search strategy.

Another thing to consider is the fact we know for certain that single trajectories under
space groups are not restricted to convex uniform honeycombs. With convex uniform honey-
combs, only vertex-transitive polyhedra are used. This is an unnecessary requirement, because
we need only a vertex-transitive honeycomb. There exist so-called scaliform honeycombs, that
are created with non-vertex-transitive cells, but are still vertex transitive themselves. In the
two-dimensional case, this was taken into account with skew representation, but no three-
dimensional equivalent was used. The reason scaliform honeycombs were not discussed, is
because they allow so-called Johnson solids, of which there are 92. This would have made the
proof of completeness of the honeycombs a lot harder, especially since the method of looking
at a single vertex would no longer be sufficient, since we also need to make sure the structure
is in fact point uniform. Furthermore, the strict convexity of polyhedra is also not required,
which is used in the two-dimensional case, but not in the three-dimensional case.

Furthermore, it is important to understand that for a vertex transitive bamboozle struc-
ture, the underlying honeycomb does not need to be vertex transitive. As long as the vertices
used for the bamboozle structure are in the same vertex transitivity class, the honeycomb
could have any number of vertex transitivity classes. Allowing convex k-uniform honeycombs
could lead to more bamboozle structures.

All of these topics could be studied more thoroughly to widen our understanding of bamboozle
structures. However, the possibilities for interesting research related to bamboozle structures
are not restricted to these topics. For instance, one could instead focus on k-uniform bamboo-
zle structures, where the minimal distance graph of the trajectory of k points under a space
group is considered. Another interesting field of research would be bamboozle structures in
higher dimenions, where the neighbouring points of any point lie within a hyperplane. Yet an-
other interesting research could focus on bamboozle structures within spherical or hyperbolic
space. All in all, there is still a lot of research possible.
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