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Substantial disagreement exists over appropriate PET segmentation techniques for 
non-small cell lung cancer. Currently, no segmentation algorithm explicitly consid-
ers tumor motion in determining tumor borders. We developed an automatic PET 
segmentation model as a function of target volume, motion extent, and source-to-
background ratio (the VMSBR model). The purpose of this work was to apply the 
VMSBR model and six other segmentation algorithms to a sample of lung tumors. 
PET and 4D CT were performed in the same imaging session for 23 patients (24 
tumors) for radiation therapy planning. Internal target volumes (ITVs) were autoseg-
mented on maximum intensity projection (MIP) of cine CT. ITVs were delineated 
on PET using the following methods: 15%, 35%, and 42% of maximum activity 
concentration, standardized uptake value (SUV) of 2.5 g/mL, 15% of mean activity 
concentration plus background, a linear function of mean SUV, and the VMSBR 
model. Predicted threshold values from each method were compared to measured 
optimal threshold values, and resulting volume magnitudes were compared to cine-
CT–derived ITV. Correlation between predicted and measured threshold values 
ranged from slopes of 0.29 for the simplest single-threshold techniques to 0.90 for 
the VMSBR technique. R2 values ranged from 0.07 for the simplest single-threshold 
techniques to 0.86 for the VMSBR technique. The VMSBR segmentation technique 
that included volume, motion, and source-to-background ratio, produced accurate 
ITVs in patients when compared with cine-CT–derived ITV.  
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I.	 INTRODUCTION

The use of fluorodeoxyglucose positron emission tomography (FDG-PET) in radiation therapy 
planning of lung cancer grew substantially after the hardware fusion of PET/CT scanners in the 
last decade facilitated the inherent coregistration of anatomical and functional imaging. The 
ability of PET/CT to image distant metastases can change treatment intent from curative to 
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palliative,(1-4) and the use of PET/CT for target definition can significantly change gross tumor 
volumes (GTVs) by distinguishing between malignant tissue and atelectasis.(5-8)  

A noted advantage of PET/CT for target delineation is the reduction of interobserver varia-
tion.(2,4,5,9) If a target delineation method is not clearly defined, however, significant differences 
between observers may remain.(10,11) Automated segmentation techniques can decrease inter-
observer variation, and several methods based on phantom and/or patient imaging have been 
investigated.(6,12-19) Erdi et al.(16) found that 36%–44% of maximum activity concentration 
(ACmax) correlated well with known sphere volumes in a stationary phantom and, in a later pub-
lication, the group settled on a single threshold of 42%.(6) Paulino and Johnstone(17) suggested 
a standardized uptake value (SUV) threshold of 2.5 g/mL, a value that originated from differ-
entiation of benign versus malignant lesions in diagnostic PET imaging of non-small cell lung  
cancer.(20) Nestle et al.(18) proposed thresholds at 15% of mean activity concentration (ACmean) 
plus background activity concentration to compare with CT-defined GTV. Black et al.(13) devel-
oped a linear function of mean SUV using CT scans of different-sized spheres.  

Few studies actually consider motion in PET-defined target volumes, despite the trend towards 
4D imaging and increased margins to treat the “motion envelope” of the tumor.  Acknowledging 
that moving objects are blurred in PET due to long acquisition times, Caldwell et al.(15) found 
that a threshold of 15% of ACmax can incorporate motion extent into the resulting contour. In a 
phantom study, Okubo et al.(19) found that 35% was the optimal threshold for large stationary 
or moving spheres.

We developed a segmentation method which incorporated tumor size, motion extent, and 
source-to-background ratio (SBR) in the determination of optimal activity concentration 
threshold.(21) Using an extensive series of phantom scans at varying sphere volume, sinusoidal 
motion extent, and SBR, multiple regression techniques were used to fit an analytical function 
called volume/motion/SBR or “VMSBR” model. This model described the threshold which 
best matched the motion envelope of the tumor as defined on cine CT.  

The purpose of this study was to apply the VMSBR model and six other published segmen-
tation methods to a group of lung tumors previously planned for radiation therapy. Ultimately, 
we hope to apply the VMSBR model to complex tumors where CT and PET can be used in a 
complementary fashion.  

 
II.	 Materials and Methods

A. 	 Imaging
Lung cancer patients who underwent 4D CT and PET/CT simulation in the same imaging ses-
sion and demonstrated one or more solid lesions with relatively homogeneous uptake on PET 
without invasion into the chest wall or mediastinal regions were retrospectively included in 
the study under an IRB-approved protocol. PET/CT and 4D CT simulations were performed 
on a Discovery ST 8-slice PET/CT scanner (GEMS, Waukesha, WI). The 4D CT protocol 
used 120 kV, 100 mA, 0.5 s gantry rotation, 2 cm axial beam width, 2.5 mm slice thickness, 
0.25 s cine interval, and cine duration equal to 1 average breathing cycle plus 1 s. For PET 
imaging, patients were injected with 477 to 740 MBq of 18F-FDG and PET was acquired in 
2-D mode for 3 min per bed position from base of skull to midthigh. Attenuation correction 
was performed with respiratory-averaged CT to ensure registered CT and PET data.(22) Images 
were reconstructed with OSEM iterative reconstruction utilizing 30 subsets and two iterations. 
Both PET and CT imaging used a 50 cm field of view with a 128 × 128 and 512 × 512 image 
matrix respectively. PET slice thickness was 3.27 mm and CT slice thickness was 2.5 mm. 
PET and 4D CT images were transferred to Pinnacle3 version 8.1w (Philips Medical Systems, 
Madison, WI) for contouring.  
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B. 	 Target delineation on CT and PET
To form ITV on CT (ITVCT), gross tumor was contoured on the maximum intensity projection 
(MIP) generated from cine-CT images.(23,24) Cine-CT images are unsorted reconstructed CT 
images that are retrospectively sorted to form 4D CT phase imaging in General Electric CT 
scanners (GE Healthcare, Waukesha, WI). Since forming MIP from cine CT includes all images 
during a respiratory cycle (not a sampled subset), these MIPs can often more accurately capture 
full motion extent.(23) ITVs were generated using seed-based 3D region growing autosegmenta-
tion, which was used to minimize observer variation and bias. A threshold of -425 HU was used 
to limit the region-growing algorithm.(25,26) A radiation oncologist reviewed the cine-generated 
MIP and 4D CT phase images and adjusted the ITVCT contours if necessary.  

It should be noted that ITV in this work refers to the motion envelope of the tumor — that 
is, the voxels that contain tumor at some point during the respiratory cycle. This concept dif-
fers from the ICRU-defined ITV, which includes a margin for microscopic extension and a 
population-based expansion for motion.(27) Here, we explicitly determine the motion envelope 
of the tumor with cine CT.

ITVs were delineated on PET using six segmentation methods from the literature (collectively 
referred to as ITVPET, summarized in Table 1). ITV15%, ITV35%, ITV42%, and ITV2.5 were all 
single thresholds of ACmax or standardized uptake value (SUV).(6,15-17,19) ITV15%+BG was formed 
by calculating 15% of ACmean and adding the result to a background measurement. As described 
in Nestle et al.,(18) ACmean was measured in pixels above 70% of ACmax and background was 
measured in a small region of interest (ROI) defined in the adjacent anatomical structure with 
the highest background activity. For ITVSUVmean, a starting threshold was required to measure 
SUVmean and was not explicitly stated. As per the authors’ suggestion, we chose an arbitrary 
threshold (70% ACmax) and iterated through the regression function five times.(13) All ITVs 
were formed using seed-based, region-growing automatic segmentation in Pinnacle3. 

 

C. 	 New segmentation method of volume, motion, and SBR
The VMSBR model was developed by scanning a NEMA IEC phantom containing six spheres 
of varying diameter (10–37 mm) at varying sinusoidal motion amplitudes (0–30 mm) and vary-
ing SBR (0–50) for a total of 252 combinations of these parameters.(21) Optimal thresholds 
as percent of ACmax were geometrically fit to the motion envelopes of the moving spheres by 
minimizing the surface separation between the two volumes. Results of these phantom analyses 
are shown in Fig. 1. An analytical function was fit to the optimal thresholds and the resulting 
function is shown in Eq. (1), where w is optimal threshold normalized to background, x is tumor 
volume in cubic centimeters, y is motion extent in millimeters, and z is SBR (which is unitless). 
The model was initially validated in our previous work using a phantom dataset acquired on 
a different PET/CT scanner with different reconstruction parameters (the same scanner and 

Table 1.  Tumor delineation methods.

	 Delineation Technique	 Notation

	 15% of ACmax
(15) 	 ITV15%

	 35% of ACmax
(19) 	 ITV35%

	 42% of ACmax
(6,16) 	 ITV42%

	 SUV = 2.5 g/mL(17) 	 ITV2.5
	 15% of ACmean+BG(18) 	 ITV15%+BG
	0.307×SUVmean+0.588(13) 	 ITVSUVmean
	 volume/motion/SBR(21) 	 ITVVMSBR

ACmax = maximum activity concentration; ACmean = mean activity concentration; SUV = standardized uptake value; 
BG = background; ITV = internal target volume.
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reconstruction parameters used in the current study) and three moving lung tumors. Surface 
agreement between PET and reference CT volumes was less than 2 mm.(21) 

 
		  (1)
	  

To determine input for Eq. (1), tumor volume and motion were determined by autoseg-
menting the end-inspiration and end-expiration phases of 4D CT. Volume was measured at 
end-expiration, and motion was measured as the distance between the end-inspiration and 
end-expiration centroids. SBR of the PET image was determined by dividing tumor ACmean by 
background ACmean. ACmean in the tumor was determined by creating a ROI at 80% of ACmax 
and measuring the ACmean in the ROI. Background was measured by segmenting the ipsilateral 
lung, removing any areas of high uptake (e.g., tumors, inflammation, imperfect segmentation 
near the mediastinum), and measuring ACmean.

(28) If a lesion was located close to the chest wall 
or mediastinum and the contour “bled” into these areas, ITVPET was manually trimmed based 
on structural boundary information from CT to eliminate spillover.

The measured SBR value was degraded by partial volume averaging(29) and tumor motion.(30)  
When Eq. (1) was derived from phantom scans, the nondegraded SBR value was used for 
regression. We therefore multiplied the degraded SBR in patient scans by a recovery coefficient 
(RC) derived from phantom scans to correct for size and motion degradation (Eq. (2)), where 
x is volume in cubic centimeters and y is motion in millimeters.(21) 

	 	 (2)

a	 Reprinted with permission from Med Phys. 2010;37:1742–53.

Fig. 1.  Phantom-derived optimal activity concentration thresholds versus motion, source to background, and volume 
(denoted by different symbols). Threshold values are normalized to background. These values were used to generate the 
analytical expression in Eq. (1).a 
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The recovered SBR value, tumor volume, and motion were plugged into Eq. (1) to gen-
erate the optimal threshold for each lesion. ITV produced using the VMSBR regression 
model (ITVVMSBR) was created by seed-based, region-growing autosegmentation of the  
PET image. 

 
D. 	 Analysis
Accuracy of the segmentation techniques was assessed two ways. First, the threshold value 
generated by each technique was compared to the optimal threshold value. The optimal threshold 
value was measured via the surface separation algorithm in a manner similar to our previous 
work on phantoms.(21) ROIs were segmented on PET images in 1% intervals of ACmax, con-
verted to triangular mesh surfaces, and compared with ITVCT (Fig. 2). The volume producing 
the smallest surface separation was deemed “optimal”.  Predicted threshold values from each 
segmentation technique were correlated with this measured optimal threshold. The second 
analysis compared ITVPET volume magnitudes with ITVCT using paired t-tests.

 

a	 Reprinted with permission from Med Phys. 2010;37:1742–53.

Fig. 2.  Two simple spherical meshes are compared via the surface separation algorithm. From each sampling point on 
the “reference” mesh (in this case, the smaller sphere), the closest point on the other mesh surface is calculated. This 
method was used to determine the optimal activity concentration threshold which best matched ITVCT for each patient. 
Correlations between measured optimal values and predicted values are shown in Fig. 5.a  
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III.	 Results 

Twenty-four tumors (23 patients) fit our criteria, were registered, and were included in the 
analysis. ITV15% could not be segmented for six tumors because 15% of ACmax fell below the 
background activity concentration. Similarly, ITV2.5 could not be segmented for two tumors 
for the same reason. As such, t-tests were performed with paired values, limiting the sample 
to 18 and 22 tumors respectively.

Figures 3 and 4 illustrate typical patient examples for all segmentation methods. ITVCT is 
denoted by the thick red line.

Fig. 3.  PET/CT images of tumor 1 with internal target volume (ITV) contours: (a) transverse, (b) sagittal, and (c) coronal. 
ITVCT, shown in red, was delineated on the maximum intensity projection. Other ITVs were delineated on PET using 
methods described in Table 1. The VMSBR model (ITVVMSBR) is shown in green.

Fig. 4.  PET/CT images of tumor 13 with internal target volume (ITV) contours: (a) transverse, (b) sagittal, and (c) coronal. 
ITVCT, shown in red, was delineated on the maximum intensity projection. Other ITVs were delineated on PET using 
methods described in Table 1. The VMSBR model (ITVVMSBR) is shown in green.
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Volume, motion, “source”, and background measurements for the 24 tumors are shown in 
Table 2. Linear correlations (y = mx+b) of the measured thresholds and the predicted thresholds 
for each segmentation technique are shown in Fig. 5. The correlation of ITVVMSBR thresholds 
with measured values has a slope close to 1 (m = 0.90), a y-intercept closest to 0 (b = 1.40), 
and the highest R2 value (R2 = 0.86).

Volume magnitude differences are summarized in Table 3.  ITVSUVmean, ITV15%+BG, and 
ITVVMSBR all yielded nonsignificant differences with ITVCT, with the VMSBR technique yield-
ing the lowest percent difference (-5.15%). All single-threshold techniques yielded volumes 
whose differences with ITVCT were statistically significant. 

 

Table 2.  Volume, motion, tumor, and background characteristics of 24 lung tumors.

			   Volume 	 Motion	 Tumor AC	 Background AC
	Lesion	 Location	 (cm3)	  (mm)	  (Bq/mL)	    (Bq/mL)

	 1	 RLL	 21.1	 10.8	 99801.6	 3576.5
	 2	 RUL	 15.3	 7.8	 63799.8	 2515.8
	 3	 RLL	 1.1	 10.3	 11910.4	 3127.5
	 4	 RLL	 0.8	 6.2	 60414.2	 2267.4
	 5	 LUL	 1.0	 6.6	 67181.7	 5692.0
	 6	 RUL	 28.0	 1.5	 38936.3	 2890.4
	 7	 RLL	 2.5	 13.6	 33286.9	 2781.2
	 8	 LUL	 1.5	 2.4	 79330.4	 3702.4
	 9	 RUL	 0.7	 4.6	 36930.2	 3118.9
	 10	 RML	 0.6	 2.2	 27270.3	 3110.9
	 11	 RUL	 13.6	 1.0	 121006	 3043.0
	 12	 LUL	 1.1	 8.0	 10314.4	 3202.8
	 13	 LUL	 10.3	 8.6	 46834.6	 1953.3
	 14	 LLL	 0.4	 8.8	 12710.3	 3078.1
	 15	 RUL	 3.6	 4.0	 20158.7	 2750.5
	 16	 LLL	 2.2	 15.0	 18006.2	 3510.5
	 17	 LUL	 4.8	 3.1	 21106.1	 2330.7
	 18	 RUL	 2.7	 2.7	 42787.6	 1809.4
	 19	 RLL	 0.7	 1.5	 38805.8	 2488.2
	 20	 RUL	 1.6	 6.3	 65668.8	 3080.7
	 21	 LUL	 1.5	 2.7	 41978.3	 3384.9
	 22	 LUL	 5.2	 0.6	 65254.3	 3680.7
	 23	 LUL	 0.1	 1.0	 8586.72	 2409.0
	 24	 LUL	 0.5	 5.1	 42631.4	 3683.0

AC = activity concentration; RUL = right upper lobe; RML = right middle lobe; RLL = right lower lobe; LUL = left 
upper lobe; LLL = left lower lobe.
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Fig. 5.  Correlation between predicted threshold values and measured optimal threshold values for each segmentation 
method. Best-fit lines, their equations, and R2 values are shown in each plot.

Table 3.  Comparison of ITVPET with ITVCT for different segmentation methods.

		  Volume±SEM			   Percent Difference
	 Notation	  (cm3)	 p-value	 (ITVPET -ITVCT)±SEM	  (%)

	 ITV15%
a	 10.93±2.71	 0.01c	 +1.05±0.89	 +10.7%

	 ITV35%	 4.15±0.99	 <0.01c	 -4.17±1.24	 -50.1%
	 ITV42%	 3.12±3.93	 <0.01c	 -5.21±1.38	 -62.5%
	 ITV2.5

b	 6.93±2.14	 <0.01c	 -1.99±0.73	 -22.3%
	ITV15%+BG	 6.36±1.67	 0.14	 -1.96±0.60	 -23.6%
	ITVSUVmean	 7.02±1.67	 0.33	 -1.30±0.65	 -15.7%
	 ITVVMSBR	 7.89±1.76	 0.39	 -0.43±0.55	 -5.15%
	 ITVCT	 8.32±2.16	 ---	 ---	 ---

a	 N = 18. Statistics calculated using paired values.
b	N = 22.
c	 Statistically significant differences.
SEM = standard error of the mean.
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IV.	 DISCUSSION

Definition of target volumes using PET has been the topic of much research in recent years, 
but little agreement exists on how to use PET to define a target volume.(31-33) The current study 
compares seven contouring methods of varying complexity, including a new PET segmenta-
tion method developed using a series of phantom calibrations that incorporates tumor volume, 
motion, and SBR into a threshold-producing analytical function.  

The methodology utilized in the current study of comparing PET-segmented volumes 
to CT-segmented volumes is similar to several publications in the literature.(18,34-36) Hanna  
et al.(34) compared volumes from three single-threshold and two SBR-based PET segmenta-
tion techniques to 4D CT-derived ITV and found that no segmentation algorithm adequately 
matched. Schaefer et al.(35) used regression methods to develop an SBR-based approach and 
validated the technique on eight NSCLC patients by comparing PET volumes to CT volumes 
delineated by a radiation oncologist. The investigators found that percent volume difference 
ranged from -9% to +28%, averaging 6% larger in PET than CT. The authors attributed this 
positive skew to respiratory motion. Lamb et al.(36) used 4D PET to create “PET-MIP” image 
sets and segmented PET ITVs at thresholds ranging from 20% to 40% of maximum SUV. The 
investigators compared these volumes to ITVs drawn by radiation oncologists on the 4D CT 
MIP and found good overlap between PET-MIP volumes and CT-MIP volumes.    

The correlation of ITVVMSBR threshold and optimal threshold produced a slope close to  
1 (m = 0.90), implying good correlation of predicted and optimal values, the y-intercept closest 
to 0 (b = 1.40), implying little systematic over- or underestimation, and the highest R2 value 
(R2 = 0.86), implying the tightest spread of predicted values. 

Previously, we found that SBR was the most influential variable in threshold prediction.(21) 
This result was consistent with Brambilla et al.(14), who found that SBR was more influential 
than size for spheres over 10 mm in diameter. The fact that both ITV15%+BG and ITVSUVmean 
explicitly or implicitly account for SBR and both perform nearly as well as our technique sug-
gests that considering SBR in segmentation is critical. Other authors have previously put forth 
this notion.(18,28,33) Our results indicate that considering motion, in addition to size and SBR, 
can further increase the accuracy of PET delineation when compared with 4D CT or cine CT.  

The current manifestation of the VMSBR model represents a first approximation to many 
moving tumors and there are several ways the model can be improved. The measurement of 
SBR, and particularly the measurement of background, is evidently critical for segmentation 
and factors that affect SBR should be further investigated. Additionally, several assumptions 
were made in the development of the VMSBR model that should be explored further. First, the 
model was developed using one-dimensional sinusoidal motion, which is obviously inaccurate 
for many lung tumors.(37,38) Second, the model was developed with spherical objects; tumors 
with spiculations or substantial asymmetry may not conform to the model. Third, we assumed 
that motion during 4D CT acquisition was essentially the same as motion during PET acquisi-
tion. Motion patterns, including amplitude, frequency, and baseline position, can change over 
time(39), leading to mismatching volumes or misregistration. Fourth, the model was developed 
assuming homogeneous uptake, which is a reasonable assumption for smaller tumors, but not 
for larger tumors where heterogeneity, hypoxia, or necrosis occur. The impact of AC hetero-
geneity on the VMSBR model should be evaluated.  

Nevertheless, the VMSBR model, along with other SBR-inclusive algorithms, produced 
promising results. Single-threshold techniques may be simpler, but Biehl et al.(12) suggest that 
single thresholds are inappropriate for target delineation and, given the results of this work, 
we must concur. Nestle et al.(18) found that 40% of ACmax underestimates CT volumes with a 
population-based motion expansion. We had similar findings for both ITV42% (-62.5%) and 
ITV35% (-50.1%) when compared with a motion envelope explicitly determined on cine CT. 
Though access to 4D CT for motion measurement may be a limitation, considerable motion 
information can be extracted from image sets processed directly from cine CT.(23,24)
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The focus of the current study was segmentation of relatively homogeneous and spherical 
primary tumors where extent was easy to determine with CT. We wanted first to validate our 
model in simple clinical cases where PET and CT data are supplementary (they indicate the 
same volume), before applying the model to the larger lung cancer population where PET and 
CT are complementary (PET may indicate malignancies that are indiscernible on CT).(40) In 
future work, we will assess the efficacy of the VMSBR model in complex primary tumors and 
mediastinal lymph nodes (which can demonstrate significant motion(41,42) for delineation of 
locally advanced non-small cell lung cancer.    

 
V.	 Conclusions

A segmentation model for moving lung lesions in PET that incorporates tumor volume, motion, 
and SBR into determination of optimal activity concentration threshold was developed. The 
model, calibrated with an extensive series of phantom scans, was applied to 24 lung lesions to 
form ITVs. These ITVs, as well as six others generated using methods published in the literature, 
were compared with cine-CT–defined ITV. The VMSBR model produced ITVs that correlated 
well with ITVs generated from cine CT. Further research is required to examine portability of 
the model to different patient and scan conditions.
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