A RATIONAL CANONICAL FORM ALGORITHM

K.R. Matthews

Department of Mathematics, University of Queensland QLD 4072, Australia

January 22, 2002

1 Introduction.

In this note we show how the Jordan canonical form algorithm of Väliaho[8] can be generalized to give the rational canonical form of a square matrix A over an arbitrary field F. If $m_{A}=p_{1}^{b_{1}} \cdots p_{t}^{b_{t}}$ is the factorization of the minimum polynomial of A into distinct monic irreducible factors, our objective is to find a non-singular matrix P over F such that

$$
P^{-1} A P=H_{1} \oplus \cdots \oplus H_{t}
$$

where

$$
H_{i}=H\left(p_{i}^{e_{i 1}}\right) \oplus \cdots H\left(p_{i}^{e_{i \gamma_{i}}}\right)
$$

and where the hypercompanion matrix $H\left(p_{i}^{e_{i j}}\right)$ is defined by

$$
H\left(p_{i}^{e_{i j}}\right)=\left[\begin{array}{cccc}
C\left(p_{i}\right) & 0 & \cdots & 0 \\
N & C\left(p_{i}\right) & \cdots & 0 \\
0 & N & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots \\
0 & \cdots & N & C\left(p_{i}\right)
\end{array}\right]
$$

There are $e_{i j}$ blocks on the diagonal and N is a square matrix of same size as $C\left(p_{i}\right)$, the companion matrix of p_{i}, where

$$
C(p)=\left[\begin{array}{ccccc}
0 & 0 & & 0 & -a_{0} \\
1 & 0 & \cdots & 0 & -a_{1} \\
0 & 1 & & 0 & -a_{2} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & 1 & -a_{n-1}
\end{array}\right]
$$

if $p=x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}$.

Every entry of N is zero, apart from the top right-hand corner, where there is a 1 . The overall effect is an unbroken subdiagonal of 1 's.

In the special case that $p_{i}=x-\lambda_{i}, H\left(p_{i}^{e_{i j}}\right)$ reduces to the elementary Jordan matrix

$$
J_{e_{i j}}\left(\lambda_{i}\right)=\left[\begin{array}{ccccc}
\lambda_{i} & 0 & & & 0 \\
1 & \lambda_{i} & \cdots & & 0 \\
0 & 1 & \cdots & & 0 \\
\vdots & \vdots & \ddots & & \vdots \\
0 & 0 & \cdots & \lambda_{i} & 0 \\
0 & 0 & & 1 & \lambda_{i}
\end{array}\right]
$$

We present our algorithm in terms of linear transformations. However for matrices, the algorithm is easily translated into one which can be used directly by any exact arithmetic matrix calculator which works over F and which computes the minimum polynomial m_{A} of a square matrix A and factorizes m_{A} as a product of monic irreducibles over $F[x]$.

Rational canonical forms were first introduced by Frobenius in 1879. (See [3, page 72] for references to this and other early papers.)

Of the many modern proofs of the rational form decomposition, typical are the ones in Friedberg, Insel, Spence [1, pages 339-354], Pearl [5, pages 157-164] and Rotman [7, pages 54-56]. Their proofs are inductive in nature and do not lend themselves to immediate computer implementation.

There is another standard proof based on the Smith canonical form of the matrix $x I-A$, where $A=[T]_{\beta}$ is the matrix of T relative to a basis β (see Perlis [6, page 162]). However, computationally the resulting algorithm is limited to matrices of small size.

As is well-known (see Jacobson [2, page 188]), V becomes a left- $F[x]$ module if left $-F[x]$ multiplication is defined by

$$
f v=f(T)(v), \quad f \in F[x], v \in V .
$$

With appropriate changes of terminology, our algorithm generalizes to give a proof of the structure theorem for finitely-generated torsion modules M over a principal ideal domain R : simply replace V by $M, F[x]$ by R and replace the scalar multiplication (3), defined below, by the left-module multiplication $f v, f \in R, v \in M$.

We finish the paper with an example of an 6×6 matrix over \mathbb{Z}_{3}.
In the interests of brevity, all proofs are omitted and left as exercises. Most are straightforward.

2 Definitions.

Let $T: V \rightarrow V$ be a linear transformation over F, with $\operatorname{dim} V=n$. Let $m_{T}=p_{1}^{b_{1}} \cdots p_{t}^{b_{t}}$ be the factorization of the minimum polynomial of T into distinct monic irreducible factors. We make crucial use of the vector spaces

$$
\begin{equation*}
N_{h, p_{i}}=\operatorname{Im} p_{i}^{h-1}(T) \cap \operatorname{Ker} p_{i}(T), \quad 1 \leq i \leq t, 1 \leq h \leq b_{i}, \tag{1}
\end{equation*}
$$

following Väliaho, who dealt with the special case $p_{i}=x-\lambda_{i}$.
In particular $N_{1, p_{i}}=\operatorname{Ker} p_{i}(T)$. Then we have the sequence of subspace containments:

$$
\begin{equation*}
N_{1, p_{i}} \supseteq \cdots \supseteq N_{b_{i}, p_{i}} \neq\{0\} . \tag{2}
\end{equation*}
$$

The following result is important for computing a basis for $N_{h, p_{i}}$:
If $\operatorname{Ker} p_{i}^{h}(T)=\left\langle u_{1}, \ldots, u_{r}\right\rangle$, the subspace generated by u_{1}, \ldots, u_{r}, then

$$
N_{h, p_{i}}=\left\langle p_{i}^{h-1}(T)\left(u_{1}\right), \ldots, p_{i}^{h-1}(T)\left(u_{r}\right)\right\rangle .
$$

Let $F_{p_{i}}=F[x] /\left(p_{i}\right)$ be the field of residue classes $\bmod p_{i}$. Then in addition to being an F-vector space, $N_{h, p_{i}}$ is also an $F_{p_{i}}$-vector space if $F_{p_{i}}$-scalar multiplication is defined as follows:

Let $\bar{f}=f+\left(p_{i}\right), f \in F[x]$ and $v \in N_{h, p_{i}}$. Then

$$
\begin{equation*}
\bar{f} v=f(T)(v) \tag{3}
\end{equation*}
$$

Some relevant properties of this scalar multiplication are:
(i) $\bar{f}=\bar{g} \Leftrightarrow p_{i} \mid f-g$ (that is p_{i} divides $f-g$).
(ii) Let $n_{i}=\operatorname{deg} p_{i}$. Then

$$
v=\overline{f_{1}} w_{1}+\cdots+\overline{f_{r}} w_{r} \Leftrightarrow v=\sum_{j=1}^{r} \sum_{k=0}^{n_{i}-1} c_{j k} T^{k}\left(w_{j}\right), \quad c_{j k} \in F .
$$

(iii) Vectors w_{1}, \ldots, w_{r} in $N_{h, p_{i}}$ are $F_{p_{i}}$-linearly independent if and only if

$$
f_{1}(T)\left(w_{1}\right)+\cdots+f_{r}(T)\left(w_{r}\right)=0 \Rightarrow p_{i}\left|f_{1}, \ldots, p_{i}\right| f_{r} .
$$

This last implication is in turn equivalent to the statement that

$$
\begin{equation*}
w_{1}, T\left(w_{1}\right), \ldots, T^{n_{i}-1}\left(w_{1}\right), \ldots, w_{r}, T\left(w_{r}\right), \ldots, T^{n_{i}-1}\left(w_{r}\right) \tag{4}
\end{equation*}
$$

are F-linearly independent.
We refer to the expanded array (4) as the padded array. It is the means whereby in numerical examples, $F_{p_{i}}$-basis calculations can be reduced to F-basis calculations.

From property (iii) we have

$$
\begin{equation*}
\nu_{h, p_{i}}=\operatorname{dim}_{F_{p_{i}}} N_{h, p_{i}}=\frac{1}{\operatorname{deg} p_{i}} \operatorname{dim}_{F} N_{h, p_{i}}=\frac{\nu\left(p_{i}^{h}(T)\right)-\nu\left(p_{i}^{h-1}(T)\right)}{\operatorname{deg} p_{i}}, \tag{5}
\end{equation*}
$$

where $\nu\left(p_{i}^{h}(T)\right)$ denotes the F-nullity of $p_{i}^{h}(T)$. (See Mirsky [4, page 161].)
The integers $\nu_{h, p_{i}}, 1 \leq i \leq t, 1 \leq h \leq b_{i}$, form a sequence called the Weyr characteristic (see MacDuffee [3, page 74]). In view of the sequence of
containments (2), we have for $1 \leq i \leq t$, the decreasing sequence of positive integers:

$$
\nu_{1, p_{i}} \geq \cdots \geq \nu_{b_{i}, p_{i}}
$$

where $\nu_{1, p_{i}}=\operatorname{dim}_{F_{p_{i}}} \operatorname{Ker} p_{i}(T)=\frac{\nu\left(p_{i}(T)\right)}{\operatorname{deg} p_{i}}$.
Telescopic cancellation using (5) gives

$$
\nu_{1, p_{i}}+\cdots+\nu_{b_{i}, p_{i}}=\frac{\nu\left(p_{i}^{b_{i}}(T)\right)}{\operatorname{deg} p_{i}} .
$$

We mention that this sum in fact equals a_{i}, where $p_{i}^{a_{i}}$ is the exact power of p_{i} which divides the characteristic polynomial $c h_{T}$. (This emerges as a consequence of taking characteristic polynomials of both sides of (10) in Section 3.)

It is helpful to visualize the above sum as a dot diagram formed by a tower of left-justified rows of dots, where the h-th row from the bottom contains $\nu_{h, p_{i}}$ dots. The height of the tower is b_{i}, while the width at the bottom is $\gamma_{i}=\nu_{1, p_{i}}$. For example with $b_{i}=4$ and $\nu_{1, p_{i}}=\nu_{2, p_{i}}=3, \nu_{3, p_{i}}=\nu_{4, p_{i}}=2$, we have the dot diagram

The integers represented by the respective columns of dots from left to right, form a decreasing sequence

$$
b_{i}=e_{i 1} \geq \cdots \geq e_{i \gamma_{i}}
$$

These sequences for $1 \leq i \leq t$ form the Segre characteristic of T (see MacDuffee [3, page 74]). For example, in the above dot diagram, the conjugate partition is $e_{i 1}=4, e_{i 2}=4, e_{i 3}=2$.

The polynomials $p_{i}^{e_{i j}}, 1 \leq i \leq t, 1 \leq j \leq \gamma_{i}$ are called the elementary divisors of T.

3 Decomposition of V into indecomposable T-cyclic subspaces.

(Good references for this section are Friedberg, Insel, Spence [1, pages 280300] and Pearl [5, pages 137-164].)

If $v \in V$, the T-invariant subspace $C_{T, v}$ of V defined by

$$
C_{T, v}=\{f(T)(v) \mid f \in F[x]\}
$$

is called the T-cyclic subspace generated by v. The minimum polynomial $m_{T, v}$ of v is the monic polynomial f of least degree such that $f(T)(v)=0$. If $v \neq 0$, then $m=\operatorname{deg} m_{T, v}>0$ and $C_{T, v}$ has a basis β :

$$
v, T(v), \ldots, T^{m-1}(v)
$$

called a T-cyclic basis. If $W=C_{T, v}$ and T_{W} denotes the restriction of T to W, then $\left[T_{W}\right]_{\beta}=C\left(m_{T, v}\right)$.

In the special case where $m_{T, v}=p^{e}$, where p is a monic irreducible polynomial of degree $n, C_{T, v}$ has another basis β^{\prime} :

$$
\begin{array}{cccc}
v, & T(v), & \ldots, & T^{n-1}(v) \\
p(T)(v), & T p(T)(v), & \ldots, & T^{n-1} p(T)(v) \\
\vdots & \vdots & \vdots & \vdots \\
p^{e-1}(T)(v), & T p^{e-1}(T)(v), & \ldots, & T^{n-1} p^{e-1}(T)(v)
\end{array}
$$

called a canonical basis. Here $\left[T_{W}\right]_{\beta}=H\left(p^{e}\right)$.
The well-known primary decomposition theorem (see Friedberg, Insel, Spence [1, pages 342-343]) states that

$$
\begin{equation*}
V=\operatorname{Ker} p_{1}^{b_{1}}(T) \oplus \cdots \oplus \operatorname{Ker} p_{t}^{b_{t}}(T) \tag{6}
\end{equation*}
$$

We will give an algorithm which decomposes each $\operatorname{Ker} p_{i}^{b_{i}}(T)$ into a direct sum of indecomposable T-cyclic subspaces:

$$
\begin{equation*}
\operatorname{Ker} p_{i}^{b_{i}}(T)=\bigoplus_{j=1}^{\gamma_{i}} C_{T, v_{i j}}, \quad \text { where } \quad m_{T, v_{i j}}=p_{i}^{e_{i j}} \tag{7}
\end{equation*}
$$

Consequently in view of (6), we have a decomposition of V as a direct sum of indecomposable T-cyclic subspaces:

$$
\begin{equation*}
V=\bigoplus_{i=1}^{t} \bigoplus_{j=1}^{\gamma_{i}} C_{T, v_{i j}} \tag{8}
\end{equation*}
$$

Then if $\beta_{i j}$ is the canonical basis for $C_{T, v_{i j}}$ and

$$
\begin{equation*}
\beta=\bigcup_{i=1}^{t} \bigcup_{j=1}^{\gamma_{i}} \beta_{i j} \tag{9}
\end{equation*}
$$

then β is a basis for V with the property that

$$
\begin{equation*}
[T]_{\beta}=\bigoplus_{i=1}^{t} \bigoplus_{j=1}^{\gamma_{i}} H\left(p_{i}^{e_{i j}}\right) \tag{10}
\end{equation*}
$$

We can now apply the result to the special case $T=T_{A}: V_{n}(F) \rightarrow V_{n}(F)$, where $V_{n}(F)$ is the F-space of n-dimensional column vectors over $F, A \in$ $M_{n \times n}(F)$ and $T_{A}(X)=A X$. If P is the non-singular matrix whose columns are the respective members of the basis β defined in (9):

$$
P=\left[v_{11}|\cdots| v_{1 \gamma_{1}}|\cdots| v_{t 1}|\cdots| v_{t \gamma_{t}}\right]
$$

then

$$
P^{-1} A P=\left[T_{A}\right]_{\beta}=\bigoplus_{i=1}^{t} \bigoplus_{j=1}^{\gamma_{i}} H\left(p_{i}^{e_{i j}}\right) .
$$

4 Constructing the vectors $v_{i j}$.

The motivation for the construction of the vectors $v_{i j}$ comes from a uniqueness result for the elementary divisors, which involves the $F_{p_{i}}$-vector spaces $N_{h, p_{i}}$. For we see that in any decomposition (7), we must have

$$
m_{T}=p_{1}^{e_{i 1}} \cdots p_{t}^{e_{i \gamma_{i}}}
$$

thereby determining the polynomials p_{1}, \ldots, p_{t} as the distinct monic irreducible factors of m_{T}. Also for each $i, 1 \leq i \leq t$, if $1 \leq h \leq b_{i}$, it is easy to prove that $N_{h, p_{i}}$ has the $F_{p_{i}}$-basis

$$
\begin{equation*}
p_{i}^{e_{i 1}-1} v_{i 1}, \ldots, p_{i}^{e_{i j}-1} v_{i j_{h}} \tag{11}
\end{equation*}
$$

where $e_{i 1}, \ldots, e_{i j_{h}}$ are the integers in the sequence $e_{i 1}, \ldots, e_{i \gamma_{i}}$ which are not less than h.

There are consequently $\operatorname{dim}_{F_{p_{i}}} N_{h, p_{i}}=\nu_{h, p_{i}}$ such integers and hence the number of integers $e_{i 1}, \ldots, e_{i \gamma_{i}}$ equal to h is equal to $\nu_{h, p_{i}}-\nu_{h+1, p_{i}}$, which depends only on T. In other words, for each i, the sequence $e_{i 1}, \ldots, e_{i \gamma_{i}}$ depends only on T.

In particular, $\operatorname{Ker} p_{i}(T)$ possesses a special type of $F_{p_{i}}$-basis

$$
\begin{equation*}
p_{i}^{e_{i 1}-1}(T)\left(v_{i 1}\right), \ldots, p_{i}^{e_{i \gamma_{i}}-1}(T)\left(v_{i \gamma_{i}}\right) \tag{12}
\end{equation*}
$$

with the property that the vectors (11) with $j_{h}=\nu_{h, p_{i}}$, form an $F_{p_{i}}$-basis for $N_{b_{i}, p_{i}}, 1 \leq h \leq b_{i}$.

In fact such a basis is easy to construct. We start with a $F_{p_{i}}$-basis for $N_{b_{i}, p_{i}}$, extending it to bases for the successive distinct subspaces in the sequence

$$
N_{b_{i}, p_{i}} \subseteq \cdots \subseteq N_{1, p_{i}},
$$

until we eventually reach an $F_{p_{i}}$-basis for $\operatorname{Ker} p_{i}(T)$ of the required form (12).
It is then straightforward to prove that the secondary decomposition (7) follows as a consequence. (The reader is urged to verify this statement in the particular case of the earlier dot diagram. A proof by induction of the general case, should then suggest itself.)

We illustrate the construction of the $F_{p_{i}}$-basis (12) using the earlier dot diagram: here $e_{i 1}=4, e_{i 2}=4, e_{i 3}=2$.

First choose an $F_{p_{i}}$-basis $p_{i}^{3}(T)\left(v_{i 1}\right), p_{i}^{3}(T)\left(v_{i 2}\right)$ for $N_{4, p_{i}}=N_{3, p_{i}}$. Then extend this to an $F_{p_{i}}$-basis $p_{i}^{3}(T)\left(v_{i 1}\right), p_{i}^{3}(T)\left(v_{i 2}\right), p_{i}(T)\left(v_{i 3}\right)$ for $N_{2, p_{i}}=$ $N_{1, p_{i}}$. Then $\operatorname{Ker} p_{i}^{4}(T)=C_{T, v_{i 1}} \oplus C_{T, v_{i 2}} \oplus C_{T, v_{i 3}}$, where $m_{T, v_{i 1}}=p_{i}^{4}=m_{T, v_{i 2}}$ and $m_{T, v_{i 3}}=p_{i}^{2}$.

5 A numerical example.

Let $A \in M_{6 \times 6}\left(\mathbb{Z}_{3}\right)$:

$$
A=\left[\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 2 \\
1 & 0 & 0 & 0 & 2 & 1 \\
0 & 1 & 0 & 0 & 2 & 2 \\
2 & 0 & 1 & 0 & 1 & 2 \\
0 & 0 & 0 & 1 & 1 & 1 \\
1 & 0 & 0 & 0 & 0 & 1
\end{array}\right] \in M_{6 \times 6}\left(\mathbb{Z}_{3}\right)
$$

Here $m_{A}=p_{1}^{2}, p_{1}=x^{2}+x+2 \in F[x], F=\mathbb{Z}_{3}, p_{1}(A)=A^{2}+A+2 I_{6}$.

$$
\begin{gathered}
p_{1}(A)=\left[\begin{array}{llllll}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 2 & 0 & 2 & 1 & 0 \\
0 & 1 & 2 & 2 & 0 & 1 \\
0 & 1 & 1 & 0 & 1 & 2 \\
0 & 0 & 1 & 2 & 2 & 2 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right], \quad \nu\left(p_{1}(A)\right)=4, \nu_{1, p_{1}}=\frac{\nu\left(p_{1}(A)\right)}{\operatorname{deg} p_{1}}=2 . \\
p_{1}^{2}(A)=0, \nu\left(p_{1}^{2}(A)\right)=6, \quad \nu_{2, p_{1}}=\frac{\nu\left(p_{1}^{2}(A)\right)-\nu\left(p_{1}(A)\right)}{\operatorname{deg} p_{1}}=\frac{6-4}{2}=1 .
\end{gathered}
$$

Hence we have a corresponding $F_{p_{1}}$-dot diagram:

$$
\begin{array}{|c|ll}
\hline \cdot & & \begin{array}{l}
\nu_{2, p_{1}} \\
\hline \cdot \\
\cdot
\end{array} \\
\nu_{1, p_{1}}
\end{array}
$$

We have to find an $F_{p_{1}}$-basis $p(A) v_{11}$ for $N_{2, p_{1}}$ and extend this to an $F_{p_{1}}-$ basis $p_{1}(A) v_{11}, v_{12}$ for $N\left(p_{1}(A)\right)=\operatorname{Ker} p_{1}\left(T_{A}\right)$.

An F-basis for $N\left(p_{1}^{2}(A)\right)$ is E_{1}, \ldots, E_{6}, the standard basis for $V_{6}(F)$. Then

$$
N_{2, p_{1}}=\left\langle p_{1}(A) E_{1}, \ldots, p_{1}(A) E_{6}\right\rangle=\left\langle p_{1}(A) E_{2}\right\rangle .
$$

Thus $p_{1}(A) E_{2}$ is an $F_{p_{1}}$-basis for $N_{2, p_{1}}$ so we can take $v_{11}=E_{2}$.
We find the columns of the following matrix form an F-basis for $N\left(p_{1}(A)\right)$:

$$
\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 2 & 1 & 0 \\
0 & 1 & 1 & 1 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] .
$$

We place $p_{1}(A) E_{2}$ in front of this matrix and then pad the resulting matrix to get

$$
\left[\begin{array}{llllllllll}
0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 2 \\
2 & 0 & 0 & 1 & 2 & 0 & 1 & 2 & 0 & 1 \\
1 & 2 & 0 & 0 & 1 & 2 & 1 & 0 & 1 & 2 \\
1 & 1 & 0 & 2 & 1 & 1 & 0 & 2 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 1
\end{array}\right] .
$$

The first four columns $p_{1}(A) E_{2}, A p_{1}(A) E_{2}, E_{1}, A E_{1}$ of this matrix form an F-basis for $N\left(p_{1}(A)\right)$ and hence $p_{1}(A) E_{2}, E_{1}$ form an $F_{p_{1}}$-basis for $N\left(p_{1}(A)\right)$. So we can take $v_{12}=E_{1}$.

Then $V_{6}\left(\mathbb{Z}_{3}\right)=N\left(p_{1}^{2}(A)\right)=C_{T_{A}, v_{11}} \oplus C_{T_{A}, v_{12}}$ and joining canonical bases $v_{11}, A v_{11}, p_{1}(A) v_{11}, A p_{1}(A) v_{11}$ for $C_{T_{A}, v_{11}}$ and $v_{12}, A v_{12}$ for $C_{T_{A}, v_{12}}$, gives a basis $v_{11}, A v_{11}, p_{1}(A) v_{11}, A p_{1}(A) v_{11}, v_{12}, A v_{12}$ for $V_{6}\left(\mathbb{Z}_{3}\right)$.

Finally, if P is the non-singular matrix whose columns are the respective members of this basis, we can transform A into a direct sum of hypercompanion matrices:

$$
P^{-1} A P=H\left(p^{2}\right) \oplus H(p)=\left[\begin{array}{cccccc}
0 & 1 & 0 & 0 & 0 & 0 \\
1 & 2 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 2 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 2
\end{array}\right],
$$

where

$$
P=\left[\begin{array}{llllll}
0 & 0 & 0 & 0 & 1 & 1 \\
1 & 0 & 2 & 0 & 0 & 1 \\
0 & 1 & 1 & 2 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 2 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

References

[1] S.H. Friedberg, A.J. Insel, L.E. Spence, Linear Algebra, Prentice-Hall, New Jersey, 1979.
[2] N. Jacobson, Basic algebra I, W.H. Freeman and Company, 1974.
[3] C.C. MacDuffee, The theory of matrices, Chelsea Publishing Company, New York, 1946.
[4] L. Mirsky, An introduction to linear algebra, Oxford University Press, London, 1961.
[5] M. Pearl, Matrix theory and finite mathematics, McGraw-Hill, New York, 1973.
[6] S. Perlis, Theory of matrices, Addison-Wesley, Second edition, Reading, Massachusetts, 1958.
[7] J. Rotman, The theory of groups, Allyn and Bacon, Second edition, Boston, 1973.
[8] H. Väliaho, An elementary approach to the Jordan canonical form of a matrix, Amer. Math. Monthly 93 (1986), 711-714.

