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1 Introduction.

In this note we show how the Jordan canonical form algorithm of Véliaho[8]
can be generalized to give the rational canonical form of a square matrix A
over an arbitrary field F. If my = plf e pft is the factorization of the min-
imum polynomial of A into distinct monic irreducible factors, our objective
is to find a non-singular matrix P over F' such that

P'AP=H, & --® H,

where .
H;=H(p;")® - H(p;™")

K3 3

and where the hypercompanion matrix H(p;”) is defined by

(2

C(I?i) 0 0
N Cp) - 0
0 N Cl)

There are e;; blocks on the diagonal and N is a square matrix of same size
as C(p;), the companion matrix of p;, where

[0 0 0 —ap |

10 --- 0 —aq
C(p); 01 0 —as9

(00 -+ 1 —ap |

ifp=a+a,_ 12" '+ + a1z + ao.



Every entry of N is zero, apart from the top right-hand corner, where
there is a 1. The overall effect is an unbroken subdiagonal of 1’s.

In the special case that p; = x — \;, H(p;”) reduces to the elementary
Jordan matrix

[\ 0 0 ]
1 0
Jeij()‘i):
0 0 - X\ O
0 0 \;

We present our algorithm in terms of linear transformations. However for ma-
trices, the algorithm is easily translated into one which can be used directly
by any exact arithmetic matrix calculator which works over F' and which
computes the minimum polynomial m 4 of a square matrix A and factorizes
m4 as a product of monic irreducibles over F[z].

Rational canonical forms were first introduced by Frobenius in 1879. (See
(3, page 72] for references to this and other early papers.)

Of the many modern proofs of the rational form decomposition, typical
are the ones in Friedberg, Insel, Spence [1, pages 339-354], Pearl [5, pages
157-164] and Rotman [7, pages 54-56]. Their proofs are inductive in nature
and do not lend themselves to immediate computer implementation.

There is another standard proof based on the Smith canonical form of
the matrix 2/ — A, where A = [T']|3 is the matrix of T relative to a basis
(see Perlis [6, page 162]). However, computationally the resulting algorithm
is limited to matrices of small size.

As is well-known (see Jacobson [2, page 188]), V' becomes a left—F[z]
module if left—F[z] multiplication is defined by

fo=f(T)(v), feFl veV

With appropriate changes of terminology, our algorithm generalizes to give a
proof of the structure theorem for finitely—generated torsion modules M over
a principal ideal domain R: simply replace V' by M, F[z] by R and replace
the scalar multiplication (3), defined below, by the left-module multiplication
fu, feR ve M.

We finish the paper with an example of an 6 x 6 matrix over Zs.

In the interests of brevity, all proofs are omitted and left as exercises.
Most are straightforward.

2 Definitions.

Let T : V — V be a linear transformation over F', with dimV = n. Let
mp = po' - p? be the factorization of the minimum polynomial of T into
distinct monic irreducible factors. We make crucial use of the vector spaces

Npp =Impl  (T)NKerpi(T), 1<i<t, 1<h<b, (1)

(2
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following Valiaho, who dealt with the special case p; = © — A;.

In particular N; ,, = Kerp;(T"). Then we have the sequence of subspace
containments:

vapi 22 mepi 7é {O} (2)

The following result is important for computing a basis for N, ,,:
If Ker p?(T) = (uy,...,u,), the subspace generated by uy, ..., u,, then

Nh,pi = <p?_1(T)(U1), s ,p?_l(T)(UT».

Let F,, = F[z]/(p;) be the field of residue classes mod p;. Then in addition
to being an F'-vector space, Ny, p, is also an Fj, —vector space if F}, —scalar
multiplication is defined as follows:

Let f = f+ (pi), f € F[z] and v € N, ,. Then

fuv=f(D)(v). (3)
Some relevant properties of this scalar multiplication are:
(i) f=9< pi| f— g (that is p; divides f — g).

(ii) Let n; = degp;. Then

r n;—1
v=fiw, + -+ frw, S v = Zchka(wj), ¢k € F.
j=1 k=0
(ili) Vectors wy,...,w, in Ny, ,, are F, -linearly independent if and only if

fM)(w) + -+ f(T)(w) =0=pi | fr,oopi | fie
This last implication is in turn equivalent to the statement that
wy, T(wy),...,T" Y wy),...,w., T(w,),...,T" (w,) (4)
are F-linearly independent.

We refer to the expanded array (4) as the padded array. It is the means
whereby in numerical examples, [}, —basis calculations can be reduced to
F—basis calculations.

From property (iii) we have

1 v(p’ —v h—1
dlmF Nh,pi — (P?(T)) (pz (T))’ (5)

Vhp, = dimp Np , =
h, pi d F;D—; h, pi eg p; degpi

where v(pl'(T)) denotes the F—nullity of p?'(T). (See Mirsky [4, page 161].)

The integers vy, ,,, 1 < ¢ <t, 1 < h <, form a sequence called the
Weyr characteristic (see MacDuffee [3, page 74]). In view of the sequence of



containments (2), we have for 1 <i <, the decreasing sequence of positive
integers:
V1, ps > 2 Vb, pis

o V(pi(T)).

where vy, = dimp, Kerp;(T) =

deg p;
Telescopic cancellation using (5) gives
b.
v(p;"(T
Vip, T+ Upyp, = %

We mention that this sum in fact equals a;, where p}* is the exact power
of p; which divides the characteristic polynomial chy. (This emerges as a
consequence of taking characteristic polynomials of both sides of (10) in
Section 3.)

It is helpful to visualize the above sum as a dot diagram formed by a tower
of left—justified rows of dots, where the h—th row from the bottom contains
Vp,p, dots. The height of the tower is b;, while the width at the bottom is
Vi = Vi,p,- For example with b; = 4 and vy, = Vo, = 3, V3 p, = Vap, = 2,
we have the dot diagram

V4, p;
V3, pi
V2, pi
V1, pi

The integers represented by the respective columns of dots from left to
right, form a decreasing sequence

bi=¢€i1 > 2 €y

These sequences for 1 < i < ¢ form the Segre characteristic of T' (see Mac-
Duffee [3, page 74]). For example, in the above dot diagram, the conjugate
partition is e;; = 4, e, =4, e;3 = 2.

The polynomials p;”, 1 <i <t, 1 < j < ; are called the elementary
divisors of T.

3 Decomposition of VV into indecomposable
T'—cyclic subspaces.

(Good references for this section are Friedberg, Insel, Spence [1, pages 280
300] and Pearl [5, pages 137-164].)
If v € V, the T-invariant subspace Cr,, of V' defined by

Cro ={f(T)(0)|f € Flal}

is called the T—cyclic subspace generated by v. The minimum polynomial
mr., of v is the monic polynomial f of least degree such that f(7")(v) = 0.
If v # 0, then m = degmy , > 0 and Cr , has a basis 3:

v, T(v),...,T"(v)

4



called a Tcyclic basis. If W = Cr,, and Ty denotes the restriction of 7" to
W, then [Tw]g = C(mr,).

In the special case where mp, = p° where p is a monic irreducible
polynomial of degree n, Cr,, has another basis 3"

v, T(v), e T 1(v)
pT)), T @), ..., T 'p(T)w)
P D)), T (D)), ..., T (T)()

called a canonical basis. Here [Tw|z = H(p°).

The well-known primary decomposition theorem (see Friedberg, Insel,
Spence [1, pages 342-343]) states that

V =Kerpt"(T) @ - - - @ Ker p2(T). (6)

We will give an algorithm which decomposes each Ker p?i (T') into a direct
sum of indecomposable T—cyclic subspaces:

i
Ker p? (T) = EB Cr,vy, where mp ., =p;”. (7)

Jj=1

Consequently in view of (6), we have a decomposition of V" as a direct sum
of indecomposable T—cyclic subspaces:

V=& @ Cr, (8)

i=1 j=1

Then if 3;; is the canonical basis for Cr ,,; and

5=UUs. (9)

i=1j=1

then (3 is a basis for V' with the property that

7], = DD H). (10)

i=1 j=1

We can now apply the result to the special case T'= Ty : V,(F) — V,(F),
where V,,(F) is the F—space of n—dimensional column vectors over F, A €
M, un(F) and T4 (X) = AX. If P is the non—singular matrix whose columns
are the respective members of the basis ( defined in (9):

P =[vn| - vy |- Jval - v,

then

PTAP = [Tals = EB H(p;").

i=1 j=1



4 Constructing the vectors v;;.

The motivation for the construction of the vectors v;; comes from a unique-
ness result for the elementary divisors, which involves the F},,—vector spaces
Ny, ;- For we see that in any decomposition (7), we must have
_ il Civ;

mr=p; Dt
thereby determining the polynomials pq,...,p; as the distinct monic irre-
ducible factors of my. Also for each 7, 1 <i <t,if 1 < h < b;, it is easy to
prove that Nj_,, has the F, —basis

e;1—1 €ijp, —1

D; Vily .- -5 D; Uijh7 (11>

where e;1, ..., €;, are the integers in the sequence e;1,. . ., €;,, which are not
less than h.

There are consequently dimpg, Np p, = v,y such integers and hence the
number of integers e;i,...,e;, equal to h is equal to v, p, — Vpt1,p,, Which
depends only on 7. In other words, for each i, the sequence e;i, ..., e;,
depends only on T

In particular, Ker p;(T") possesses a special type of F}, —basis

-1

P (i), o () (i) (12)

with the property that the vectors (11) with j, = vy, p,, form an F,,~basis for
Ny, piy 1 < h <b;.

In fact such a basis is easy to construct. We start with a F}, —basis for
Ny, p;» extending it to bases for the successive distinct subspaces in the se-
quence

A&nm C---C Aﬁmﬂ

until we eventually reach an Fj, —basis for Ker p;(T") of the required form (12).

It is then straightforward to prove that the secondary decomposition (7)
follows as a consequence. (The reader is urged to verify this statement in
the particular case of the earlier dot diagram. A proof by induction of the
general case, should then suggest itself.)

We illustrate the construction of the F,,—~basis (12) using the earlier dot
diagram: here e;; =4, e;0 = 4, e;3 = 2.

First choose an F),,~basis p}(T)(vi1), p3(T)(vi2) for Ny, = N3 p,. Then
extend this to an F, —basis p(T)(va), p}(T)(vi2), pi(T)(viz) for Na, =
Ny p,. Then Ker p}(T) = Cr 4,y @ C1, B Cr 455, Where mp o, = pf = mr o,
and mr ,,, = p?.

5 A numerical example.

Let A € Mﬁxﬁ(Zg):



o N O ==

S oo~k OO

00 0 2
00 21
00 2 2
1 O 1 2 €M6X6(23)'
0111
0001,

Here ma = p?, py =2 +x+2€ Flz], F =Zs, pi(A) = A2+ A+ 2.

0

pi(A) =

OO OO OO
OO~~~ N O
O~ N OO

SN DN N

0

O = O =

O NN = OO

o u(pi(A) =4, vy, =X o

v(p2(A))—v A _
PA) = 0, V(R(A)) = 6. 1oy, = WA oot g

deg p1 2

Hence we have a corresponding F,,,—dot diagram:

Vval

’ ‘ Vl»pl

We have to find an F, ~basis p(A)vy; for Ny, and extend this to an
F,,~basis p1(A)viy, vig for N(pi1(A)) = Kerpy(Ta).
An F-basis for N(p?(A)) is Ei, ..., Eg, the standard basis for Vi(F).

Then

Ny, py = (P1(A) By, ..., pi(A)Es) = (p1(A) Ea).

Thus p;(A)Es is an F,,—basis for Ny ,, so we can take vy, = FEs.
We find the columns of the following matrix form an F—basis for N (p;(A)):

We place pi(A)E, in front

matrix to get

OO~ R N O

O = = DN OO

OO OO O

OO OO O =
OO~ = N O
SO = O = = O
_ O O = O O

of this matrix and then pad the resulting

O~ = N OO
O, N O DNO
= O N =N

_— o N O ==
OO~ Rk NO
O = O = = O
_ o O~ OO



The first four columns p;(A)Ey, Ap(A)E,, Ey, AE; of this matrix form
an F'-basis for N (p;(A)) and hence py(A)Es, E; form an F, —basis for N (p;(A)).
So we can take vy = Fj.

Then V5(Z3) = N(p3(A)) = Cr,. vy, ® C1,, 00, and joining canonical bases
v11, Avir, pr(A)vrr, Api(A)vey for Cpy 4y, and vie, Avig for Cr, 4,,, gives a
basis v11, Aviy, p1(A)vir, Ap1(A)vir, v12, Avig for Vi(Zs).

Finally, if P is the non—singular matrix whose columns are the respective
members of this basis, we can transform A into a direct sum of hypercom-
panion matrices:

[0 1 00 0 0]
1 20000
1 _ 9 1010100
0 00O0O0°1
0000 1 2]
where ~ _
000O0T11
102 001
011200
P= 00110 2
000100
00000 1]
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