
Mixed Criticality Systems - A Review∗

Alan Burns and Robert I. Davis
Department of Computer Science,

University of York, York, UK.
email: {alan.burns, rob.davis}@york.ac.uk

Abstract

This review covers research on the topic of mixed criticality systems that
has been published since Vestal’s 2007 paper. It covers the period up to and
including March 2019. The review is organised into the following topic-
s: introduction and motivation, models, single processor analysis (including
job-based, hard and soft tasks, fixed priority and EDF scheduling, shared
resources and static and synchronous scheduling), multiprocessor analysis,
related topics, realistic models, formal treatments, systems issues and indus-
trial practice. A list of PhDs awarded for research relating to mixed-criticality
systems is also included.

∗twelfth edition, March 2019.

1

Contents

1 Introduction 4

2 Mixed Criticality Models 6

3 Single Processor Analysis 8
3.1 Job Scheduling . 8
3.2 Fixed Priority Scheduling . 9

3.2.1 RTA-Based approaches 9
3.2.2 Slack scheduling . 13
3.2.3 Period transformation . 14

3.3 EDF Scheduling . 15
3.4 Shared Resources . 17
3.5 Static and Synchronous Scheduling 18
3.6 Varying Speed Processors . 19

4 Multiprocessor Analysis 19
4.1 Task Allocation . 20
4.2 Schedulability Analysis . 22
4.3 Communication and other Resources 23

5 Links to other Research Topics 27
5.1 Hard and Soft Tasks . 27
5.2 Fault Tolerant Systems (FTS) . 28
5.3 Security . 29
5.4 Hierarchical Scheduling . 30
5.5 Cyber Physical Systems and Internet of Things 30
5.6 Probabilistic Real-Time Systems 31

6 More Realistic MCS Models 33

7 More Formal Treatments 37
7.1 Utilisation Bounds . 37
7.2 Speedup Factors . 38
7.3 Formal Language and Modelling Issues 39

8 Systems Issues 40
8.1 Run-Time Monitoring and Overheads 40
8.2 Virtualisation and Operating System Support 41
8.3 Hardware Aspects . 42

2

8.4 Benchmarks and Comparative Studies 43
8.5 Criticality-Aware Power Consumption 44
8.6 Issues Relating to Modeling and Tool Support 45

9 Industry Practice and Standards 45

10 PhD Awards for Research within the Field of MCS 46

11 Conclusion and Directions for Future Work 47

Literature 50

3

1 Introduction

An increasingly important trend in the design of real-time and embedded systems
is the integration of components with different levels of criticality onto a common
hardware platform. At the same time, these platforms are migrating from single
cores to multi-cores and in the future many-core architectures. Criticality is a des-
ignation of the level of assurance against failure needed for a system component.
A mixed criticality system (MCS) is one that has two or more distinct levels (for
example safety critical, mission critical and low-critical). Perhaps up to five levels
may be identified (see, for example, the IEC 61508, DO-178B and DO-178C, DO-
254 and ISO 26262 standards). Typical names for the levels are ASILs (Automo-
tive Safety and Integrity Levels), DALs (Design Assurance Levels or Development
Assurance Levels) and SILs (Safety Integrity Levels). It should be noted that not
all standards and papers on MCS assign the same meaning to ‘criticality’, an issue
explored by Graydon and Bate [215], Esper et al. [181], Paulitsch et al. [400], Ernst
and Di Natale [180] and Wilhelm [492].

Most of the complex embedded systems found in, for example, the automotive
and avionics industries are evolving into mixed criticality systems in order to meet
stringent non-functional requirements relating to cost, space, weight, heat gener-
ation and power consumption (the latter being of particular relevance to mobile
systems). Indeed the software standards in the European automotive industry (AU-
TOSAR1) and in the avionics domain (ARINC2) address mixed criticality issues;
in the sense that they recognise that MCS must be supported on their platforms.

The fundamental research question underlying these initiatives and standards
is: how, in a disciplined way, to reconcile the conflicting requirements of parti-
tioning for (safety) assurance and sharing for efficient resource usage. This ques-
tion gives rise to theoretical problems in modelling and verification, and systems
problems relating to the design and implementation of the necessary hardware and
software run-time controls.

A key aspect of MCS is that system parameters, such as tasks’ worst-case ex-
ecution times (WCETs), become dependent on the criticality level of the tasks.
So the same code will have a higher WCET if it is defined to be safety-critical
(as a higher level of assurance is required) than it would if it is just considered
to be mission critical or indeed non-critical. This property of MCS significantly
modifies/undermines many of the standard scheduling results. This report aims to
review the research that has been published on MCS.

The first paper on the verification of a Mixed Criticality System used an exten-
1http://www.autosar.org/
2http://www.arinc.com/

4

sion of standard fixed priority (FP) real-time scheduling theory, and was published
by Vestal (of Honeywell Aerospace) in 2007 [480]3. It employed a somewhat
restrictive work-flow model, focused on a single processor and made use of Re-
sponse Time Analysis [28]. It showed that neither rate monotonic [344] nor dead-
line monotonic [329] priority assignment is optimal for MCS; however Audsley’s
optimal priority assignment algorithm [26] was found to be applicable.

This paper was followed by two publications in 2008 by Baruah and Vestal [78],
and Huber et al. [274]. The first of these papers generalises Vestal’s model by using
a sporadic task model and by assessing fixed job-priority scheduling and dynamic
priority scheduling. It contains the important result that EDF (Earliest Deadline
First) does not dominate FP when criticality levels are introduced, and that there
are feasible systems that cannot be scheduled by EDF. The latter paper address-
es multi-processor issues and virtualisation (though it did not use that term). It
focused on AUTOSAR and resource management (encapsulation and monitoring)
with time-triggered applications and a trusted network layer.

Further impetus to defining MCS as a distinct research topic came from the
white paper produced by Barhorst et al. [43], the keynote talk that Baruah gave
at the 2010 ECRTS conference4 and a workshop report from the European Com-
mission [470]. These have been followed up by tutorials on MCS at ESWEEK in
2012 and 20135, a workshop at HiPEAC in January 20136, a workshop (WICERT)
at DATE 20137, a workshop (ReTiMiCS) at RTCSA 20138, workshops (WMC)
at RTSS 20139, RTSS 201410, RTSS 201511, RTSS 201612, RTSS 201713, and
RTSS 201814; a workshop at the 19th International Conference on Reliable Soft-
ware Technologies (Ada-Europe) in June 2014, and Dagstuhl Seminars on Mixed

3The term Mixed Criticality had been used before 2007 to address issues of non-interference in
non-federated architectures such as IMA [254]; Vestal changed the focus of research by concentrating
on real-time performance. Systems with more than one criticality level but aim to only give complete
isolation are called multiple-criticality systems; the use of mixed-criticality implies some tradeoff
between isolation and integration that involves resource sharing.

4Available from the conference web site: http://ecrts.eit.uni-kl.de/index.php?id=53.
5Embedded Systems Week: http://www.esweek.org/
6http://www.hipeac.net/conference/berlin/workshop/integration-mixed-criticality-subsystems-

multi-core-processors
7http://atcproyectos.ugr.es/wicert/index.php/conference-proceedings
8http://igm.univ-mlv.fr/rtalgo/Events/RETIMICS/
9http://www.cs.york.ac.uk/ robdavis/wmc2013/

10http://www.cs.york.ac.uk/ robdavis/wmc2014/
11http://www.cs.york.ac.uk/ robdavis/wmc/
12https://gsathish.github.io/wmc2016/
13https://cps-research-group.github.io/WMC2017/
14https://drive.google.com/file/d/14sLpczS6wpQN99dPET08sZP3qjvEr5S2/view?usp=sharing

5

Criticality and Many Core Platforms in 201515 and 201716.
This review [109] is organised as follows. In Section 2 we first consider mixed

criticality models. Then in Section 3 single processor systems are covered (includ-
ing fixed priority and EDF scheduling). Section 4 covers multiprocessor issues and
Section 5 links this research to other topics such as hard and soft real-time schedul-
ing and hierarchical scheduling. More realistic models are covered in Section 6,
more formal work is covered in Section 7 and systems work is covered in Section
8. Industry practice and safety standards provide a somewhat different perspective
on MCS to Vestal’s model; these differences are discussed in Section 9. Section 10
lists PhD dissertations that have been produced on MCS since 2014. The review
concludes with Section 11 which outlines a number of open problems and areas
where further research is needed.

An adaptation of this review, covering publications up to the end of 2016, has
been published in ACM Computer Surveys [108]. This should be used as the
main citation for this report. Other overviews/surveys on MCS have also been
produced [21, 232].

2 Mixed Criticality Models

Inevitably not all papers on mixed criticality have used the same system or task
model. Here we define a model that is generally applicable and is capable of de-
scribing the main results considered in this review.

A system is defined as a finite set of components K. Each component has a
level of criticality (designated by the systems engineer responsible for the entire
system), L, and contains a finite set of sporadic tasks. Each task, τi, is defined
by its period (minimum arrival interval), deadline, computation time and criticality
level: (Ti, Di, Ci, Li). Tasks give rise to a potentially unbounded sequence of jobs.

The primary concern with the implementation of MCS is one of separation.
Tasks from different components must not be allowed to interfere with each other.
In particular, mechanisms must be in place to prevent a job from executing for
more than the computation time C defined for its task, and to ensure that a task
does not generate jobs that are closer together than T 17.

The requirement to protect the operation of one component from the faults of
another is present in all systems that host multiple applications. It is however of
particular significance if components have different criticality levels. Since without

15http://www.dagstuhl.de/15121
16http://www.dagstuhl.de/17131
17Or (period minus release jitter) if that is part of the task model.

6

such protection, all components would need to be engineered to the strict standards
of the highest criticality level, potentially massively increasing development costs.

After concerns of partitioning comes the need to use resources efficiently. This
is facilitated by noting that the task parameters are not independent, in particu-
lar the worst-case computation/execution time estimate, Ci, will be derived by a
process dictated by the criticality level. The higher the criticality level, the more
conservative the verification process and hence the greater will be the value of Ci.
This was the observation at the heart of the paper by Vestal [480].

For systems executing on hardware platforms with deterministic behaviour, any
particular task will have a single real WCET (worst-case execution time); howev-
er, this value typically cannot be known with complete certainty. This uncertainty
is primarily epistemic (uncertainty in what we know, or do not know, about the
system) rather than aleatory (uncertainty in the system itself). Although it is rea-
sonable to assume confidence increases (i.e. uncertainty decreases) with larger
estimates of worst-case execution time, this may not be universally true [215]. It
would certainly be hard to estimate what increase in confidence would result from,
say, a 10% increase in all Cs.

For systems executing on hardware platforms with time-randomised hardware
components [120], then a probabilistic WCET (pWCET) [18, 144, 154, 172] can
be obtained. The exceedance function for this probability distribution defines for
any specific probability, derived from a required maximum failure rate associated
with a criticality level, an execution time budget which has no greater probabili-
ty of being exceeded on any given run [143]. The pWCET distribution therefore
effectively defines different estimates of the WCET budget for the same task, for
different criticality levels due to their different requirements on the maximum tol-
erable failure rate.

The focus on different computation times was extended to task periods in sub-
sequent papers [47, 51, 53, 61, 66, 101, 105, 503]. Here tasks are event handlers.
The higher the criticality level the more events must be handled, and hence the task
must execute more frequently even if it does not execute for longer.

In MCS a task is now defined by: (~T , D, ~C, L), where ~C and ~T are vectors of
values – one per criticality level, with the constraints:

L1 > L2⇒ C(L1) ≥ C(L2)

L1 > L2⇒ T (L1) ≤ T (L2)

for any two criticality levels L1 and L2.
Note the completion of the model, by making D criticality dependent [61] has

not as yet been addressed in detail. But it could have the constraint:

7

L1 > L2⇒ D(L1) ≥ D(L2)

So a task may have a ‘safety critical’ deadline and an early Quality of Service
(QoS) deadline. Alternatively:

L1 > L2⇒ D(L1) ≤ D(L2)

in which case the conservative ‘safety critical’ deadline is shorter then the one
deemed necessary if the criticality level is lower.

Another feature of many of the papers considered in this review is that the
system is defined to execute in a number of criticality modes. A system starts in
the lowest criticality mode. If all jobs behave according to this mode then the
system stays in that mode. But if any job attempts to execute for a longer time,
or more frequently, than is acceptable in that mode then a criticality mode change
occurs. Ultimately the system may change to the highest criticality mode.

Some papers allow the criticality mode to move down as well as up, but others
(indeed the majority) restrict the model to increases in criticality only. We return
to this issue in Section 6.

Finally, many papers restrict themselves to just two criticality levels; high (HI)
and low (LO) with HI > LO. These are referred to as dual-criticality systems.
Where modes are used, the system is either in a LO-criticality (or normal) mode
or a HI-criticality mode. And the set of task parameters is typically: (Ti, Di,
Ci(HI), Ci(LO), Li). At the other extreme are the models presented by Ekberg et
al. [173, 175, 177] in which any number of modes are allowed and the movement
between modes is represented by a directed acyclic graph.

3 Single Processor Analysis

Since Vestal’s 2007 paper [480] there has been a series of publications. Most of
these papers address single processor platforms and independent components.

3.1 Job Scheduling

Initially a number of papers considered the restricted problem of scheduling, on
a single processor, a finite set of mixed criticality jobs with criticality dependent
execution times [46,54,56,70,72,77,221,236,295,331,332,395,435,444,445,449].
This work has, however, largely been superseded by work on the more widely
applicable task model.

8

3.2 Fixed Priority Scheduling

In this section we look at MCS schemes that are based on applying Response-Time
Analysis (RTA), then those that consider slack scheduling and finally approaches
that are derived from period transformations.

3.2.1 RTA-Based approaches

Vestal’s approach was formalised (i.e. proof that the use of Audsley’s priority
assignment algorithm [26] was optimal) by Dorin et al. [163] in 2010. They also
extended the model to include release jitter, and showed how sensitivity analysis
could be applied.

Vestal’s approach allowed the priorities of high and low criticality tasks to be
interleaved, but all tasks had to be evaluated as if they were of the highest criticality.
By introducing monitoring of task execution time, and the prevention of execution
time over-runs, higher resource usage can be delivered [61]. This is a crucial issue
in mixed criticality scheduling; by the introduction of more trusted components a
high utilisation of the available resources is facilitated.

In 2011 this approach was further extended [64,101] to give a scheduling model
and associated analysis framework for a single processor system that dominates
all previous published analysis for MCS (using fixed priority scheduling) in that
it made better use of the processor and could schedule all systems that could be
guaranteed by other approaches, plus many that could not. These papers were
however restricted to just two criticality levels (or modes). The system’s run-time
behaviour is either low-criticality (which relies on all execution times being bound
by the low-criticality values and guarantees that all deadlines are met) or high-
criticality (where only high criticality work is guaranteed but the rely condition18

is weakened – the bound on high-criticality execution times is increased). The
system’s criticality change (from Low to High, i.e. LO to HI) is triggered by
the observation, at run-time, that the stronger rely condition has been violated. In
the context of control applications Cheng et al [125] also allow the state of the
controlled plant to trigger a criticality mode change.

This change in criticality level has a number of similarities to systems that
move between different operational modes (although there are also some signifi-
cant differences [99, 215]). In the HI-criticality mode there are fewer tasks, but
they have longer execution times or shorter periods. The literature on mode change
protocols [40,113,178,401,416,439,471,472], however, highlights one important
problem: a system can be schedulable in every mode, but not schedulable during a
mode change [472]. This is also true for systems that change criticality levels.

18A rely condition formalises the assumptions required for the guarantees to be valid [288].

9

An optimal priority ordering is defined in the paper from Baruah et al. [64] in
that it maximises the priority of high criticality tasks, subject to the system being
schedulable. Both the high and low criticality tasks are ordered via deadline (dead-
line monotonic) and a simplified version of Audsley’s algorithm is used to assign
priorities from the lowest to the highest level. At each priority level the lowest
priority task from the low criticality task set is tried first, if it is schedulable then
the algorithm moves up to the next priority level; if it is not schedulable then the
lowest priority task from the high criticality set is tested. If it is schedulable then
again the algorithm moves on to the next level. But if neither of these two tasks are
schedulable then the search can be abandoned as the task set is unschedulable. In
total a maximum of 2N tests are needed (where N is the number of tasks in the sys-
tem)19. Note that this result follows from work on robust priority assignment [152].
As each set of LO/HI criticality tasks can be viewed as additional interference on
the other subset, an optimal priority ordering can be obtained with each subset in
Deadline Monotonic priority order and a merge operation between them.

The protocol (dropping all LO-criticality work if any task executes for more
than its C(LO) value20), the derived analysis and the use of optimal priority or-
dering is shown [64] to out-perform other schemes (in terms of success ratio for
randomly generated task sets). The analysis is based on standard RTA (Response-
Time Analysis). For any task, τi, first its LO-criticality response-time (R(LO))
is computed using LO-criticality parameters for all the tasks. A criticality switch
must occur before this value if the task is to be impacted by the change, otherwise it
will have completed execution. The worst-case response-time in the HI-criticality
mode (R(HI)) is computed by noting that all LO-criticality tasks must be aban-
doned by time R(LO). The paper contains two methods for computing R(HI)21,
one involves a single upper bound, the other looks at all the possible critically
change points before R(LO) and computes the worst-case. The latter is more ac-
curate, though still not exact; however, the gain in performance is not significant
and the simple upper bound test is probably sufficient in most cases.

To illustrate the above approaches one of the graphs from [64] is reproduced in
Figure 1. This figure plots the percentage of task sets generated that were deemed
schedulable for a system of 20 tasks, with on average 50% of those tasks having
high criticality and each task having a high criticality execution time that is twice its
low criticality execution time. The compared approaches are (from least effective
to most effective): CrMPO which assigned priorities in criticality order, SMC-NO

19Strictly, only 2N-1 tests are needed as the highest priority task must be schedulable as its com-
putation time is less than its deadline.

20First proposed by Baruah [46, 54].
21 In [64] the example in Section IV.B (final step) should have a worst-case response-time of 90,

not 85 as reported in the paper; however 90 is still below the deadline of 100.

10

0%

20%

40%

60%

80%

100%

120%

0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95

Utilisation

Sc
he

du
la

bl
e

Ta
sk

se
ts

UB-H&L
AMC-max
AMC-rtb
SMC
SMC-NO
CrMPO

Figure 1: Percentage of Schedulable Task Sets

(static mixed criticality with no run-time monitoring) which is Vestal’s original
approach, SMC which is an adaptation of Vestal’s approach in whichLO-criticality
tasks are monitored at run-time and are prevented from executing for more than
C(LO), and AMC-rtb and AMC-max which are the two methods introduced in
the previous paragraph (AMC for adaptive mixed criticality). In the graph the UB-
H&L line bounds the maximum possible number of schedulable task sets. It serves
to illustrate the quality of the AMC-max approach. Almost all publications on
MCS assume that the task deadlines are constrained (D ≤ T). For AMC, Burns
and David [107] removed this constraint and a version of the analysis for AMC
now allows arbitrary deadlines.

The AMC-rtb approach was extended by Zhao et al [506, 507, 510] in 2013 to
incorporate preemption thresholds [424] into the model. They demonstrated a re-
duction in stack usage and improved performance for some parameter ranges. An-
other approach to combining AMC-rtb and existing scheduling theory is taken by
Burns and Davis [106]. They consider the use of deferred preemption [97,149] and
demonstrate a significant improvement over fully preemptive AMC-rtb. The gain
in schedulability they demonstrate is obtained by having a final non-preemptive re-
gion (FNPR) at the end ofC(LO) andC(HI), and by combining the assignment of

11

priority and the determination of the size of these FNPRs. Where scheduling anal-
ysis is part of a design optimisation Zhao and Zeng [511] argue that even AMC-rtb
is too complex. They propose a new simpler test that is still safe and has bounded
pessimism. At the other extreme, Asyaban and Kargahi [23] develop exact analysis
for AMC, unfortunately at the cost of loosing optimal priority ordering.

In keeping with a number of papers on MCS, the work of Baruah et al. [64]
(and most of the subsequent modifications) restricted itself to dual criticality sys-
tems. Fleming and Burns [190] extended these models to an arbitrary number of
criticality levels, focusing particularly on five levels as this is the maximum found
in automotive and avionics standards. They observed that AMC-rtb remains a good
approximation to AMC-max, and that AMC-max became computational expensive
for increased numbers of criticality levels. They concluded that AMC-rtb repre-
sented an adequate and effective form of analysis. A relatively minor improvement
to AMC-max was published by Huang et al. [264] (they termed it AMC-IA); how-
ever there are cases where their analysis is optimistic (i.e. unsound) [194].

One characteristic of all the schemes defined above is that tasks do not change
their priority after a criticality mode change. If priorities can change then a sim-
ple form of sufficient analysis is possible [65]. This work defines a new approach,
PMC (priority may change). Evaluations show that PMC performs similarly to
AMC-rtb, though neither dominates the other. An improved scheme, GFP (Gen-
eralised Fixed Priority) is proposed by Chen et al. [124]. They assign (using an
heuristic) three priorities to each task. One for each of the two criticality level-
s, and one for the transition between the criticality modes. They demonstrate an
improvement over AMC-rtb.

It was noted in the section on Mixed Criticality Models that the period pa-
rameter (T) can be criticality dependent as well as the worst-case execution time
estimate (C). An application may consist of event handlers, and have different
levels of constraint over the arrival patterns of the events. The higher the criti-
cality, the closer together the events are assumed to arrive; and hence the smaller
the T parameter. Baruah and Chattopadhyay [66] have reformulated the SMC and
AMC analysis (introduced above) to apply to this model, in which the T s rather
than the Cs vary with criticality. Their evaluation results show similar behaviour
to that depicted in Figure 1. Criticality specific periods are also address by Burns
and Davis [105], Baruah [53], and by Zhang et al. [503] (who derived an improved
analysis that they termed SAMC – Sufficient AMC).

For periodic task sets with offsets, Asyaban et al. [24] has produced feasibility
analysis showing that simulation over an interval of length four times the hyperpe-
riod plus the largest offset forms a sufficient test of schedulability.

12

3.2.2 Slack scheduling

An alternative approach to scheduling mixed criticality fixed priority systems is,
for dual-criticality systems, to use a slack scheduling scheme in which low criti-
cality jobs are run in the slack generated by high criticality jobs only using their
low criticality execution budgets. This was first explored by Niz et al. [382]. One
difficulty with this approach is to incorporate sporadic tasks. At what point can
the ‘slack’ of a non-appearing sporadic task be allocated to low criticality jobs?
Even for periodic tasks, ensuring schedulability of high criticality tasks in all cir-
cumstances is not straightforward. Niz et al. [382] compute the time at which a
high criticality task must be released to ensure that it meets its deadline (a scheme
similar to the dual-priority approach outlined in Section 5.1). However, Huang et
al. [263] demonstrated that if a low criticality (high priority) task executes beyond
its deadline, a high criticality (lower priority) task could miss its deadline. They
show that either the low criticality task must be aborted at its deadline or (more
practically) its priority must be reduced to a background level. They then derive
safe analysis. Niz et al. subsequently modified the enforcement rule in their model
to remove the problem and improved its performance [383, 384].

While slack is usually generated by tasks not executing for their full budget, it
is also produced by the arrival of jobs being less frequent than anticipated in the
worst-case. Neukirchner et al. [377, 378] adapt and extend a number of schemes
for monitoring activation patterns. Their multi-mode approach is proved to be
safe (no false negatives) and efficient (few false positives). Hu et al. [261] also
consider budget management, and produce an effective scheme for minimising the
overheads associated with slack management.

For a dual-criticality system C(LO) values must, of course, be known. Once
schedulability has been established however, it is possible to derive [431], using
sensitivity analysis [87, 409], a scaling factor F (F > 1) such that the system
remains schedulable with all C(LO) values replaced by F · C(LO). Using these
scaled values at run-time will increase the robustness of the system, as the LO-
criticality tasks will be able to execute for a greater time before a criticality change
is triggered. Scaling can also be applied to the C(HI) values. Volp et al. [485]
look at an alternative means of obtaining C(LO) and C(HI) values; they do not
consider them to be estimates of worst-case execution time, but budgets set by some
design optimisation process. Sensitivity analysis is also addressed by Santinelli and
Guo [428].

As scaling involves changing a task’s computation time, and computation time
influences priority assignment, it is possible to extend this approach by also allow-
ing priorities to change as the system is made more robust [102]. A more dynamic
budget management scheme is used by Gu and Easwaran [223, 225] to postpone

13

criticality level mode changes within the context of the EDF-VD scheme (see Sec-
tion 3.3). Hu et al. [258] also look to postpone the criticality mode change by
tighter control over the available slack.

Sciandra et al. [434] are extending and applying scaling factors to intelligent
transport systems. Issues of robustness are also addressed by Herman et al. [250].

3.2.3 Period transformation

As Vestal noted [480], an older protocol period transformation [437, 438] (PT), is
also applicable to the mixed criticality scheduling problem. Period transformation
splits a task with period T and computation time C into two (or more) parts so that
the task now has the parameters T/2 and C/2. Assuming all tasks have deadlines
equal to their periods, the application of the optimal rate monotonic priority as-
signment scheme [344] will increase the relative priority of all transformed tasks.
If all high criticality tasks are transformed so that their transformed periods are
shorter than all low criticality tasks then the rate monotonic algorithm will deliver
partitioned (i.e. criticality monotonic) priorities. All high criticality tasks will have
priorities greater than all lower criticality tasks. The scheme can easily be extended
to task sets with constrained deadlines (D < T). However, the scheme does in-
troduce extra overheads from the increased number of context switches, and these
could be excessive if there are low criticality tasks with short deadlines. A simple
example of a period transformed task would be one with T = D = 16,C(HI) = 8
andC(LO) = 4; this task could be transformed to one with T = D = 4 andC = 2
Note, this is C(HI)/4, not C(LO)/4). The computation time is such that if the
task executes according to its HI-criticality parameter it will take four invocations
of the transformed task to complete, but if the LO-criticality assumption is valid it
will only take two.

If overheads are ignored then Period Transformation performs well. Baruah
and Burns postulate [62] (and prove for two tasks) that this is primarily due to the
inherent property of PT to deliver tasks sets with harmonic periods (that are then
more likely to be schedulable). It does not seem that PT is of specific benefit to
MCS.

To split the code of a task, either a static code transformation process must be
used or the run-time must employ an execution-time server. With code transfor-
mation, the programmer must identify where in the code the split should be made.
This does not lead to good code modularisation and is similar to the problems en-
countered when functions must to be split into short sections so that they can be
‘packed’ into the minor cycles of a cyclic executive [114]. There is also the prob-
lem of OS locks being retained between slices of the code; making the protected
resource unavailable to other tasks.

14

With a dual-criticality task such as the one in the example above the point at
which the task can be assumed to have executed for two units of time is itself crit-
icality dependent. This to all intents and purposes makes code transformation im-
practical. Therefore, if the code is not to be changed then a run-time server must be
used to restrict the amount of computation allowed per release of the (transformed)
task. In practice this means that:

• Without PT, LO-criticality tasks may have high priorities and hence their
execution times must be monitored (and enforced);HI-criticality tasks must
also be monitored as they may need to trigger a criticality change if they
execute for more than C(LO) thereby triggering the abandonment of LO-
criticality tasks.

• With PT, LO-criticality tasks have the lower priorities and hence they do not
need to be monitored, HI-criticality tasks must be monitored to enforce the
per release budget.

In general, there is less run-time intervention with PT. But recall there is consid-
erably more task switching overhead if the periods of all HI-criticality tasks are
reduced to less than all LO-criticality task periods.

For multiple criticality levels a number of transformations may be required to
generate a criticality monotonic ordering [190]. For example if there are three tasks
(H, M, and L) with criticality levels implied by their names, and periods 5, 33 and
9. Then first M must be divided by 11 to get a period of 3 (so less than 9), but
then H must be divided by 5 to move it below the new value for M. As a result the
transformed periods become 1, 3 and 9. It also seems that the theoretical benefit of
PT diminishes with an increased number of criticality levels [190].

3.3 EDF Scheduling

The first paper to consider MCS with EDF scheduling was Baruah and Vestal [78]
in 2008. Park and Kim [395] later introduced a slack-based mixed criticality
scheme for EDF scheduled jobs which they called CBEDF (Criticality Based EDF).
In essence they use a combination of off- and on-line analysis to run HI-criticality
jobs as late as possible, and LO-criticality jobs in the generated slack. In effect
they are utilising an older protocol developed by Chetto and Chetto [126] for run-
ning soft real-time tasks in the ‘gaps’ produced by running hard real-time tasks so
as to just meet their deadlines.

A more complete analysis for EDF scheduled systems was presented by Ekberg
and Yi [174, 228]. They mimicked the FP scheme by assigning two relative dead-
lines to each high criticality task. One deadline is the defining ‘real’ deadline of the

15

task, the other is an artificial earlier deadline that is used to increase the likelihood
of high criticality tasks executing before low criticality ones. At the point that the
criticality of the system changes from low to high (due to a task exceeding its low
criticality budget), all low criticality tasks are abandoned and the high criticality
tasks revert to their defining deadlines. They demonstrate a clear improvement
over previous schemes [229]. Later work [175] generalises the model to include
changes to all task parameters and to incorporate more than two criticality levels.
Tighter analysis is provided by Easwaran [169], although it is not clear that the
method will scale to more than two criticality levels. Further improvements are
presented by Yao et al. [496]. They use an improved schedulability test for EDF
(a scheme called QPA [502]), and a genetic algorithm (GA) to find better artificial
deadlines.

A similar scheme was presented by Baruah et al. [57,59], called EDF-VD (ED-
F - with virtual deadlines). Again for a dual-criticality system, HI-criticality tasks
have their deadlines reduced (if necessary) during LO-criticality mode execution.
All deadlines are reduced by the same factor. They demonstrate both theoretically
and via evaluations that this is an effective scheme. Note, however, that this scheme
is not as general as those reported above [169,174,228]. In these approaches a dif-
ferent reduction factor is used for each task. Nevertheless the use of a single value
does allow schedulability bounds to be derived (see Section 7). An intermediate
approach that uses just two scaling factors is provided by Masrur et al. [356]; there
motivation being to develop an efficient scheme that could be used at run-time.
In later work [79] Baruah has generalised the underlying MCS model to include
criticality-specific values for period and deadline as well as WCET. EDF-VD was
further improved by Gu and Easwaran [224] by the development of a new schedul-
ing test.

EDF scheduling of MCS is also addressed by Lipari and Buttazzo [343] us-
ing a reservation-based approach. Here sufficient budget is reserved for the high
criticality tasks, but if they only make use of what is assumed by their low critical-
ity requirements then a set of low criticality tasks can be guaranteed. Again only
two criticality levels are assumed. In effect low criticality tasks run in capacity
reclaimed from high criticality tasks. Deadlines for the high criticality tasks are
chosen to maximise the amount of capacity reclaiming.

A different approach to using spare capacity was derived by Su at al. [458,459]
by exploiting the elastic task model [116] in which the period of a task can change.
They propose a minimum level of service for each LO-criticality task τi that is
defined by a maximum period, Tmax

i . The complete system must be schedulable
when all HI-criticality tasks use their C(HI) values and all LO-criticality tasks
use their C(LO) and Tmax values. At run-time ifHI-criticality tasks use less than
their full HI-criticality entitlement then the LO-criticality tasks can run more fre-

16

quently. They demonstrate that for certain parameter sets their approach performs
better than EDF-VD.

Alternative analysis for EDF scheduled MCS is presented by Mahdiani and
Masrur [353] and Santinelli et al. [426]. The latter make use of multiple demand-
bound curves to allow sensitivity analysis to be derived that can be applied to the
trade-off between resource usage and schedulability (within the context of MCS).

3.4 Shared Resources

With mixed criticality systems it is not clear to what extent data should flow be-
tween criticality levels. There are strong objections to data flowing from low to
high criticality applications unless the high criticality component is able to deal
with potentially unreliable data [436] – this happens with some security protocol-
s [86]. Even with data flowing in the other direction there remains the scheduling
problem of not allowing a high criticality task to be delayed by a low criticality task
that has either locked a shared resource for longer than expected or is executing at
a raised priority ceiling level for too long.

Sharing resources within a criticality level is however a necessary part of any
usable tasking model. In single criticality systems a number of priority ceiling pro-
tocols have been developed [42, 440]. These are beginning to be assessed in terms
of their effectiveness for mixed criticality systems. Burns [98] extends the analy-
sis for fixed priority systems by adding criticality specific blocking terms into the
response-time analysis. He notes that the original form of the priority ceiling pro-
tocol (OPCP) [440] has some useful properties when applied to MCS. Resources
can be easily partitioned between criticality levels and starvation of LO-criticality
tasks while holding a lock on a resource can be prevented. With AMC-OPCP, a
task can only suffer direct blocking if a resource is locked by a lower priority task
of the same criticality.

Rather than use a software protocol, Engel [179] employs Hardware Transac-
tional Memory to roll back any shared object to a previous state if a LO-criticality
task overruns its budget while accessing the object.

For EDF-based scheduling Zhao et al. [506,509] attempt to integrate the Stack
Resource Protocol (SRP) [42] and Preemption Threshold Scheduling [489] with
approaches to EDF scheduling that involve tasks having more than one deadline.
This is not straightforward as these schemes assume that relative deadlines are
fixed.

Alternative approaches are proposed by Lakshmanan et al. [316] by extend-
ing their single processor zero slack scheduling approach [382] to accommodate
task synchronisation across criticality levels for fixed priority systems. They de-
fine two protocols: PCIP (Priority and Criticality Inheritance Protocol) and PCCP

17

(Priority and Criticality Ceiling Protocol). Both of these contain the notion of crit-
icality inheritance. This notion is also used by Zhao et al. [508] in their HLC-PCP
(Highest-Locker Criticality Priority Ceiling Protocol) which they apply to the AM-
C scheduling scheme (see Section 3.2.1). For a dual criticality system they define
three modes of execution, the usual two plus an intermediate mode which covers
the time during which LO-criticality tasks are allowed to continue to execute if
they are holding a lock on a resource that is shared with a HI-criticality task.

A more systematic scheme is proposed by Brandenburg [94]. Here all shared
resources are placed in resource servers and all access to these servers is via a
MC-IPC protocol. As a result only these servers and the support for the MC-IPC
protocol have to be developed to the highest criticality level. Resource users can
be of any criticality level, including non-critical. Data sharing within the context
of the MC2 architecture (see Section 4) is address by Chisholm et al. [128].

3.5 Static and Synchronous Scheduling

The move between criticality levels can be captured in a static schedule by switch-
ing between previously computed schedules; one per criticality level. This is ex-
plored by Baruah and Fohler [71]. Socci et al. [447, 449, 450] show how these
Time-Triggered (TT) tables can be produced via first simulating the behaviour one
would obtain from the equivalent fixed priority task execution. Their approach is
improved upon by Behera and Bhaduri [82] (their algorithm has lower computa-
tional complexity). Construction of the tables via tree search is addressed by Theis
et al [466], and via the use of linear programming (LP) by Jan et al. [284]. For
legacy systems Theis and Fohler [465] show how an existing single table may be
used to support MCS.

A particularly simple table driven approach is to use a cyclic executive, this
is investigated by Burns et al. [63, 103, 110, 158, 189, 192, 193] for multiprocessor
systems in which the change from minor cycle to minor cycle is synchronised as
is the change from executing code of one criticality to that of another. Both global
and partitioned approaches are investigated, as are systems that use less processors
for the HI-criticality work than they do for the LO-criticality work [193]. Both
LP and ILP based formulations are used to construct the cyclic executives.

A hyper-period optimisation algorithm is used to reduce the size of the static
tables in the work of Zhou et al. [512]. They also address the issue of reducing the
run-time overheads with these partitioning schemes.

The use of tables is extended to synchronous reactive programs by Baruah [48,
49]. Here a DAG (Directed Acyclic Graph), of basic blocks that execute accord-
ing to the synchrony assumption, is produced that implements a dual-criticality
program. The synchronous approach is also considered by Yip et al. [497] and

18

by Cohen et al. [138]. The latter proving an application of mixed criticality from
the railway industry, and an example of why data needs to flow between criticality
levels.

3.6 Varying Speed Processors

Most analysis for MCS assumes a constant speed processor, but there are situa-
tions in which the speed of the processor is not known precisely (for example with
asynchronous circuitry). Baruah and Guo [73] consider power issues that could
lead to a processor having variable speed. As a processor slows down the execu-
tion time of the tasks increase. They simplify the model by assuming two basic
speeds, normal and degraded. At the normal speed a scheduling table is used; at
the degraded speed only HI-criticality jobs are executed and they use EDF. The
authors have extended this work [74,231,233] to include a more expressive model,
issues of processor self-monitoring (or not), and a probabilistic approach to perfor-
mance variation. They have also considered system which have both uncertainty
in execution times and processor speed [234].

Voltage scheduling, and thereby variable speed computation, is used by Huang
et al. [269, 270] to respond to a temporal overload – if a C(HI) value is exceeded
and could lead to a LO-criticality task missing its deadline then energy is utilised
to enable the processor to reduce computation times. Overall, their approach aims
to reduce the system’s expected energy consumption. Taherin et al. [460] present
some alternative DVFS schemes and compare their results with those of Huang.
DVFS management is also addressed by Haririan and Garcia-Ortiz [245] in their
provision of a simulation framework for power management.

A link between imprecise executions and varying speed processors is made by
Sruto et al. [453] in the context of EDF-VD scheduling.

4 Multiprocessor Analysis

The first paper to discuss mixed criticality within the context of multiprocessor
or multi-core platforms was by Anderson et al. [20] in 2009 and then extended
in 2010 [368]. Five levels of criticality were identified; going from level-A (the
highest) to level-E (the lowest). They envisaged an implementation scheme, which
they call MC2, that used a cyclic executive (static schedule) for level-A, parti-
tioned preemptive EDF for level-B, global preemptive EDF for levels C and D and
finally global best-effort for level-E. They considered only harmonic workloads
but allowed slack to move between containers (servers). Each processor had a con-
tainer for each criticality level, and a two-level hierarchical scheduler (see Section

19

5.4). Later work from this group [129, 250] evaluates the OS-induced overheads
associated with multiprocessor platforms. They also experimented with isolation
techniques for LLC (last level cache) and DRAM. And have demonstrated, us-
ing MC2, the benefits of having different isolation techniques for each criticality
level [302, 303]. The support for mode changes within MC2 is considered by
Chrisholm [127]. This MC2 framework is also used by Bommert [93] to support
segmented mixed criticality parallel tasks.

In the remainder of this section we first look at task allocation (with global
or partitioned scheduling), then consider analysis and finally communications and
other systems resources. We note that there has also been work on implementing
mixed-criticality synchronous systems on multiprocessor platforms [50].

4.1 Task Allocation

The issue of allocation was addressed by Lakshmanan et al. [317] by extending
their single processor slack scheduling approach [382] to partitioned multiproces-
sor systems employing a Compress-on-Overload packing scheme. Allocation in
a distributed architecture was addressed by Tamas-Selicean and Pop [461–464] in
the context of static schedules (cyclic executives) and temporal partitioning. They
observed that scheduling can sometimes be improved by increasing the criticality
of some tasks so that single-criticality partitions become better balanced. This in-
crease comes at a cost and so they employ search/optimisation routines (Simulated
Annealing [200, 462] and Tabu [275, 276, 461, 463]) to obtain schedulability with
minimum resource usage. Search routines, this time GAs (Genetic Algorithms),
are also used by Zhang et al. [504] to undertake task placement in security-sensitive
MCS. Their objective is to minimise energy consumption “while satisfying strict
security and timing constraints”. A toolset to aid partitioning is provided by Alonso
et al. [17].

A more straightforward investigation of task allocation was undertaken by Kel-
ly et al [299]. They considered partitioned homogeneous multiprocessors and com-
pared first-fit and best-fit approaches with pre-ordering of the tasks based on either
decreasing utilization or decreasing criticality. They used the original analysis of
Vestal to test for schedulability on each processor, and concluded that in general
first-fit decreasing criticality was best. For heterogeneous multiprocessors Awan et
al. [38] propose a mapping scheme that is energy efficient.

A comprehensive evaluation of many possible schemes is reported by Ro-
driguez at al. [420]. They consider EDF scheduling and used the analysis frame-
work of EDF-VD (see Section 3.3). One of their conclusions is the effectiveness
of a combined criticality-aware scheme in which HI-criticality tasks are allocated
Worst-Fit and LO-criticality tasks are allocated using First-Fit; both with Decreas-

20

ing Density. The same result is reported by Gu et al. [220]. They additionally
note that if there are some very ‘heavy’ LO-criticality tasks (i.e. high utilisation
or density) then space must be reserved for them before the HI-criticality tasks
are allocated. Partitioning with EDF-VD is also addressed by the work of Han et
al. [241]. Ramanathan and Easwaran [411] demonstrate that an effective partition-
ing scheme can be derived from evenly distributing the differences between HI-
criticality and LO-criticality utilisation. Their results being applicable to EDF-VD
and fixed-priority AMC.

A global allocation scheme for MCS is proposed by Gratia et al. [212, 214].
They adapt the RUN scheduler [418], which uses a hierarchy of servers, to ac-
commodate HI and LO criticality tasks. The latest version of their schedular
(GMC-RUN) [213] has been extended to deal with more criticality levels.

Between fully partitioned and fully global scheduling is the class of schemes
termed semi-partitioned. This is being addressed by Bletsas at al. [31, 33, 90, 91]
and Al-Bayati et al. [8]. The latter work uses two allocations for their two criticality
modes. HI-criticality tasks do not migrate. During a mode change, carry-overLO-
criticality jobs are dropped and new LO-criticality jobs executing on a different
processor are given extended deadlines/periods (i.e. they utilise the elastic task
model). A different approach is taken by Xu and Burns [494]; here a mode change
on one processor results in LO-criticality jobs migrating to a different processor
that has not suffered a criticality mode change. No deadlines are missed. If all
processors suffer such a mode change then at least the timing needs of all HI-
criticality tasks are protected.

A different approach, that aims to maximise the benefits of partitioning and
global scheduling, is that based on clusters. A multi-core platform is statically par-
titioned into a number of clusters, within a cluster tasks execute ‘globally’. Ali and
Kim [13] investigate a scheme in which small clusters are used when the system
is in the LO-criticality mode, but larger clusters are employed when the system
moves to the HI-criticality mode. Nagalakshmi and Gomathi [373] also use clus-
ters but within a EDF-scheduled fully partitioned approach. Within each cluster is
a single HI-criticality task and one or more LO-criticality tasks. As a result the
impact of a HI-criticality task executing beyond its C(LO) value is limited to just
those LO-criticality tasks within the same cluster.

With dual-criticality fault tolerant systems, a scheme in which high criticality
tasks are replicated (duplicated) while low criticality tasks are not is investigated
by Axer et al. [39] for independent periodic tasks running on a MPSoC (multi-
processor system-on-chip). They provide reliability analysis that is used to inform
task allocation.

A more theoretical approach (i.e. it is not directly implementable) is proposed
by Lee et al. [322] with their MC-Fluid model. A fluid task model [68, 256] ex-

21

ecutes each task at a rate proportional to its utilisation. If one ignores the cost of
slicing up tasks in this way then the scheme delivers an optimal means of schedul-
ing multiprocessor platforms. To produce a mixed criticality version of the fluid
task model the fact that tasks do not have a single utilisation needs to be addressed.
Lee et al. [322, 323] do this and they also produce an implementable version of
the model that performs well in simulation studies (when compared with other ap-
proaches). Baruah et al. [44, 69] derived a simplified fluid algorithm which they
call MCF. Two further algorithms, MC-Sort and MC-slope, are proposed by Ra-
manathan and Easwaran [410, 413].

All the above work is focussed on standard single threaded tasks. In addition
there has been some studies on parallel tasks and MCS – see Liu et al. [334, 335,
347], Pathan [399], Agrawal and Baruah [4] and Gill et al. [204].

4.2 Schedulability Analysis

For globally scheduled systems Li and Baruah [333] take a ‘standard’ multiproces-
sor scheme, fpEDF [45] and combine it with their EDF-VD approach (see Section
3.3). Evaluations indicate that this is an effective combination. Extensions of this
work [67] compare the use of partitioning or global scheduling for MCS. Their in-
terim conclusion is that partitioning is by far the most effective approach to adopt.

Notwithstanding this result, Pathan derives [396] analysis for globally sched-
uled fixed priority systems. They adopt the single processor approach [64] (see
Section 3.2) and integrate this with a form of analysis for multiprocessor schedul-
ing that is amenable to optimal priority ordering, via Audsley’s algorithm [26].
They demonstrate the effectiveness of their approach (by comparing success ra-
tios). Jung and Lee subsequently improved on this analysis [291]. The glob-
al scheduling scheme of EDZL (Earliest Deadline first until Zero Laxity) is also
adapted for MCS by Jung et al. [290]. They show how it can be used with EDF-
VD and fixed-priority scheduling.

A different and novel approach to multi-core scheduling of MCS is provided
by Kritikakou et al. [309, 312]. They identify that a HI-criticality task will suffer
interference from a LO-criticality task running on a different core due to the hard-
ware platform’s use of shared buses and memory controllers etc.. They monitor the
execution time of the HI-criticality task and can identify when no further interfer-
ence can be tolerated. At this point they abort the LO-criticality task even though
it is not directly interfering. An implementation on a multi-core platform demon-
strated effective performance of their scheme [312]. They subsequently improved
on this static approach by utilising a dynamic version that reduces the time spent
in the controller [310].

Extensions to deal with precedence constraints were given by Socci et al. [448]

22

but only for jobs (not tasks). A full pipeline scheme is considered by de Niz et
al. [157].

4.3 Communication and other Resources

With a more complete platform such as a multiprocessor or System on Chip (SoC),
perhaps with a NoC (Network-on-Chip), more resources have to be shared be-
tween criticality levels. The first design issue is therefore one of partitioning (as
addressed above), how to ensure the behaviour of low criticality components does
not adversely impact on the behaviour of higher criticality components. Pellizzoni
et al. [402] in 2009 was the first to consider the deployment of mixed criticality
systems (MCS) on multi-core and many-core platforms. They defined an Archi-
tectural Analysis and Design Language (AADL), a form of ADL (Architectural
Description Language), for mixed criticality applications that facilitates system
monitoring and budget enforcement of all computation and communication. Later
Obermaisser et al. [389, 390] introduce a system model with gateways and end-to-
end channels over hierarchical, heterogeneous and mixed criticality networks.

For a bus-based architecture it is necessary to control access to the bus so that
applications on one core do not impact unreasonably on applications on other cores
(whether of different or indeed the same criticality level). Pellizzoni et al. [403]
show that a task can suffer a 300% increase in its worst-case execution time due
to memory access interference even when it only spends 10% of its time on fetch-
ing from external memory on an 8-core system. To counter this, Yun et al. [498]
propose a memory throttling scheme for MCS. Kotaba et al [307] also propose a
monitoring and control protocol to prevent processes flooding any shared commu-
nication media be it a bus or network. Kritikakou et al. [311] consider a scenario
in which there are a few critical tasks that can suffer indirect interference from
many lower critical tasks. They attempt to allow as much parallelism as possible
commensurate with the critical tasks retaining their temporal validity. Hassan and
Patel [246] claim an improved bus arbitrator, called Carb, that is more criticality
aware. Bounding the interference that a safety-critical task can suffer from lower
criticality tasks using the same shared communication resources on a multi-core
platform is also addressed by Nowotsch et al. [387]. Freitag et al. [195] utilise a
fully isolated model (each core only has tasks of only one criticality), those core
that have LO-criticality tasks are slowed down (or even stopped) if their measured
interference on the HI-criticality cores is above statically derived bounds.

Within the time-triggered model of distributed computation and communica-
tion a mixed criticality system is often viewed as one that has both time-triggered
and event-triggered activities, also referred to as synchronous and asynchronous
[408, 454]. The time-triggered traffic is deemed to have the highest criticality,

23

the event-triggered traffic can be either just best-effort or can have some level of
assurance if its impact on the system is bounded; what Steiner [454] calls rate-
constrained. Protocols that support this distinction can be supported on networks
such as TTEthernet. Another TDMA-based approach, though this time built into
the Real-Time Ethernet protocol, is proposed by Carvajal and Fischmeister in their
open-source framework, Atacama [119]. Cilku at al. [134] describe a TDMA-
based bus arbitration scheme. Novalk et al. [385] propose a scheduling algorithm
for time-triggered traffic that minimises jitter while allowing HI-criticality mes-
sages to be re-transmitted (following failure) at the expense of LO-criticality mes-
sages (which are abandoned). They also [386] consider how to produce an effective
static schedule when there are unforeseen re-transmissions (for two and three lev-
els of criticality). Analysis of AFDX (Avionics Full Duplex Switched Ethernet)
within the context of MCS is provided by Finzi et al. [188].

A reconfigurable SDRAM controller is proposed by Goossen et al. [210] to
schedule concurrent memory requests to the same physical memory. They also
use a TDMA approach to share the controller’s bandwidth. A key aspect of this
controller is that it can adapt to changes in the run-time characteristics of the ap-
plication(s). For example, a criticality mode change which should result in more
bandwidth being assigned to the higher criticality tasks can be accommodated by
what the authors call a use-case switch. Criticality aware DRAMs are also ad-
dressed by Jalle et al [283] in the context of a Space case study in which there are
two criticality levels: ‘control’ and ‘payload’.

Virtual DRAMs are adapted by Ecco et al. [171] to isolate critical tasks (which
are guaranteed) from non-critical tasks that, although not guaranteed, do perform
adequately. Each virtual device represents a group of DRAM banks supports one
critical task and any number of non-critical tasks. All critical tasks run on dedicated
cores, and hence the only potential source of inter-criticality interference is from
the interconnection fabric (bus). By use of virtual devices, the critical tasks benefit
from interference-free memory access. DRAMs are also the focus of the work by
Hassen et al [247], Awan et al [32] and Guo and Pellizzon [230].

Kim at al. [300] propose a priority-based DRAM controller for MCS that sep-
arates critical and non-critical memory accesses. They demonstrate improved per-
formance for the non-critical traffic. Note this work is focussed on supporting
critical and non-critical traffic on the same memory banks (rather than mixed-
criticality). A similar approach and result is provided by Goossens et al. [209]
with their open-page policy.

Giannopoulou et al. [200, 201] use a different time-triggered approach. They
partition access to the multiprocessor bus so that at any time, t, only memory ac-
cesses from tasks of the same criticality can occur. This may introduce some in-
efficiencies, but it reduces the temporal modelling of a mixed criticality shared

24

bus to that of a single criticality shared bus. The latter problem is not, however,
straightforward (but is beyond the scope of this review). In later work they gener-
alise their approach by introducing the notion of isolation scheduling [266]. They
also demonstrate the implementation of their approach on a Layray MPPA-256
many-core platform [475].

The problems involved in using a shared bus has lead Giannopoulou et al. to
also include a Network-on-Chip (NoC) in their later work [203]. Burns et al. [63,
103,110,192] apply a ‘one criticality at a time’ approach to MCS scheduled by the
use of a Cyclic Executive; they considered both partitioned and global allocation
of jobs to frames.

Tobuschat et al. [473, 474] have developed a NoC explicitly to support MCS.
Their IDAMC protocol uses a back suction technique [160] to maximise the band-
width given to low (or non) critical messages while ensuring that high-criticality
messages arrive by their deadlines. The more familiar wormhole routing [381]
scheme for a NoC has been expanded by Burns, Harbin and Indrusiak [111, 278]
to provide support for mixed criticality traffic. Response-time analysis, already
available for such protocols [441]22, is augmented to allow the size and frequen-
cy of traffic to be criticality aware. Wormhole routing is also used by Hollstein et
al [255] to provide complete separation of mixed-criticality code; they also support
run-time adaptability following any fault identified by a Built-In Self Test. Anoth-
er wormhole router (DAS - double arbiter and switching) is described by Dridi
et al. [165–167]; they use wormhole for the LO-criticality traffic, but store-and-
forward for the HI-criticality messages.

On-chip networks require reliable/trusted interfaces to prevent babbling be-
haviour [96]; Ahmadian and Obermaisser [6] describe how to provide this via a
time-triggered extension layer for a mixed-criticality NoC. Dynamic and adaptive
control of a mixed-criticality NoC is considered by Kostrzewa t al. [305,306]. Oth-
er work focuses on COTS RTOS solutions [30, 183]. Control over I/O contention
via an Ethernet-based criticality-aware NoC is advocated by Abdallah et al. [1].
A focus on NoC security, in which HI-criticality messages need more protection
than LO-criticality is taken by Papastefanakis et al. [394].

An alternative to using a NoC for all traffic (task to task and task to off chip
memory) is proposed by Audsley [27, 206]. They advocate the use of a separate
memory hierarchy to link each core to off chip memory. A criticality aware pro-
tocol is used to pass requests and data through a number of efficient multiplexers.
If the volume of requests and data is criticality dependent then analysis similar to
that used for processor scheduling can be used on this memory traffic. The separa-

22This analysis has been show to be optimistic in some circumstances, see discussion by Xiong et
al. [493].

25

tion of execution-time from memory-access time is explored by Li et al. [337,338].
They demonstrate that this distinction improves schedulability.

Controller Area Network (CAN) [205] is a widely used network for real-time
applications, particularly in the automotive domain. It has been the subject of
considerable attention with Response-Time Analysis derived [153] for what is, in
essence, a fixed priority non-preemptive protocol. The use of CAN in mixed crit-
icality applications has been addressed by Burns and Davis [105]. In this work it
is the period of the traffic flows and the fault model that changes between criti-
cality levels. A MixedCAN protocol was developed that makes use of a Trusted
Network Component that polices the traffic that nodes are allowed to send over the
network. Evaluations are used to show the advantages of using MixedCAN rather
than a criticality agnostic approach. However the paper, in keeping with many
other publications, only considered dual-criticality systems.

Herber et al. [249] also addressed the CAN protocol. They replaced the phys-
ical network controller with a set of virtual controllers that facilitate spacial sepa-
ration. A weighted round robin scheduler in then used to give temporal isolation.
Their motivation is to support virtualisation in an automotive platform. They do
not however use criticality specific parameters for the different applications host-
ed on the same device. Nager et al. [374] show how CAN can be used in a more
flexible way to support MCS.

Other protocols that have been considered in terms of their support for mixed
criticality systems include FlexRay [211] and switched Ethernet [141,142,324]. In
the latter work, a change in criticality mode is broadcast to the entire system by
adding a new field to the IEEE 1588 PTP (Precision Time Protocol). The work by
Lee at al. [324] makes use of a SDN (Software-Defined Networking).

George et al. [197] assume the speed of the wireless communication medi-
a varies over time. Each node monitors this speed and only send messages that
are compatible with its current estimate. Offline analysis partitions the messages
according to criticality and required speed.

A further communication protocol is addressed by Addisu et al. [3]. They con-
sider JPEG2000 Video streaming over a wireless sensor network. With such a
network the available bandwidth varies in an unpredictable way. They propose a
bandwidth allocation scheme that is criticality aware. A wireless protocol (Wire-
lessHART) is also used by Jin at al. [286,287] to support delay analysis with fixed
priority scheduling for sensor networks. A hybrid scheduling approach for sensor
nodes with mixed-criticality tasks is investigated by Micea et al. [365].

AirTight [112, 244] is a wireless protocol that has been designed specifically
to support mixed-criticality traffic. High criticality packets must be able to survive
a greater intensity and frequency of faults than lower criticality packets. This is
modelled by means of criticality-aware fault models.

26

A means of modelling an entire end-to-end vehicular embedded system includ-
ing various forms of networking is provided by Mubeen et al. [370].

A novel scheduling approach (triangle scheduling) for mixed-criticality mes-
sages is proposed by Dürr et al. [168]. The adaptation of synchronisation protocols
such as MSRP (Multiprocessor Stack Resource Policy) to multiprocessor platform-
s and mixed-criticality software scheduled using partitioned EDF is addressed by
Han et al. [240].

5 Links to other Research Topics

5.1 Hard and Soft Tasks

Although the label ‘Mixed Criticality Systems’ is relatively new, many older re-
sults and approaches can be reused and reinterpreted under this umbrella term. In
particular dual-criticality systems in which there are hard and soft tasks combined
has been studied since at least 1987 [327]. Hard tasks must be guaranteed. Soft
tasks are then given the best possible service. But soft tasks are usually unbound-
ed in some sense (either in terms of their execution time or their arrival frequency)
and hence they must be constrained to execute only from within servers (execution-
time servers). Servers have bounded impact on the hard tasks. Since 1987 a number
of servers have been proposed. The major ones for fixed priority systems being the
Periodic Server, the Deferrable Server, the Priority Exchange Server (all described
by Lehoczky et al. [327]), and the Sporadic Server [451]. The ability to run soft
tasks in the slack provided by the hard tasks is also supported by the Slack Steal-
ing schemes [146, 155, 326, 415] which have similar properties to servers. These
all have equivalent protocols for dynamic priority (EDF) systems; and some EDF
specific ones exist such as the Constant Bandwidth server [341].

Since their initial specification, analysis has improved and means of allocat-
ing and sharing capacity between servers have been investigated (see for exam-
ple [83,84,499]). However, these results on servers (and examples of how they can
be implemented in Operating Systems and programming languages) are general-
ly known (see standard textbooks [114, 117, 348]), hence they are not reviewed in
more detail here. Note however, that standard servers only deal with the isolation/
partitioning aspect of MCS. To support sharing (of resources) there must be some
means of moving capacity from the under utilised servers of high criticality tasks
to the under provisioned servers of lower criticality tasks. The Extended Priority
Exchange server [451] as well as work on making use of gain time, show how this
can be achieved.

Another way of maximising the slack available for soft tasks is the dual-priority
scheme [115, 156]. Here there are three bands of priority. The soft tasks run in the

27

middle band while the hard tasks start in the lower band but are promoted to the
higher band at the latest possible time commensurate with meeting their deadlines.
So hard tasks execute when they have to, or when there are no soft tasks, soft tasks
run otherwise.

Run-time adaptability for MCS has been addressed by Hu et al. [259, 260].
They present an approach to adaptively shape at runtime the inflow workload of
LO-criticality tasks based on the actual demand of HI-criticality tasks. This im-
proves the QoS of LO-criticality tasks; but it not clear what level of guarantee is
provided for these tasks. An alternative scheme, with the same aim, is given by
Hikmet [253]. A QoS focus is also taken by Vaidhun et al. [478] with respect to
pervasive systems.

5.2 Fault Tolerant Systems (FTS)

Fault tolerant systems typically have means of identifying a fault and then recov-
ering before there is a system failure. Various recovery techniques have been
proposed including exception handling, recovery blocks, check-points, task re-
execution and task replication. If, following a fault, extra work has to be un-
dertaken then it follows that some existing work will need to be abandoned, or
at least postponed. And this work must be less important than the tasks that are
being re-executed. It follows that many fault tolerant systems are, in effect, mixed
criticality.

To identify a fault, timeouts are often used. A job not completing before a
deadline is evidence of some internal problem. Earlier warning can come from
noting that a job is executing for more than its assumed worst-case execution time.
Execution-time monitoring is therefore common in safety critical systems that are
required to have at least some level of fault tolerance. Again this points to common
techniques being required in FTS and MCS.

As noted earlier, in the discussion on CAN (Section 4.3), a fault model can be
criticality dependent [105] – a task may, for example, be required to survive one
fault if it is mission critical, but two faults if it is safety critical. The difference
between the assumed computation times at different criticality levels may be a
result of the inclusion or not of recovery techniques in the assumed worst-case
execution time of tasks.

Although there is this clear link between FTS and MCS there has not yet been
much work published that directly addresses fault-tolerant mixed criticality sys-
tems. Exceptions being work by Huang et al. [272, 273], a paper by Pathan [397]
that focuses on service adaptation and the scheduling of fault-tolerant MCS, and a
four-mode lockstep model developed by Al-Bayati et al. [7] (the requirement for
lockstep execution is relaxed in later work [118]). Work by Thekkilakattil uses
Zonal Hazard Analysis and Fault Hazard Analysis [468] and Error-Burst model-

28

s [467] to deliver both flexibility and real-time guarantees for the most critical
tasks. Thekkilakattil et al. [469] also considers the link between MCS and the
tolerance of permanent faults. Lin et al. [339] attempt to integrate mixed critical-
ity with the use of primary and backup executions in both of the two criticality
modes they consider. Islam at al. [279], in a paper that preceded that of Vestal,
looked at combining different levels of replication for different levels of critical-
ity. Co-scheduling loosely-coupled replicas for MCS is shown to be effected by
Rambo and Ernst [414]. Ahmadian et al. [5] invoke reconfiguration to provide for
fault tolerance in the context of a time-triggered NoC based MCS. Alahmad and
Gopalakrishnan [10] use what they term ‘isochronous’ execution to synchronise
the execution of redundant versions of critical software over ‘regular’ and ‘safe’
processors. Improved response-time analysis for FT MCS is provided for multi-
core systems by Choi et al. [130].

As highlighted already in this review, many models and protocols for mixed
criticality behaviour allow the system to move through a sequence of criticality
modes. With a two mode system (HI and LO) the system starts in the LO mode
in which all deadlines of all tasks are guaranteed, but can then transition to the HI
mode in which only the HI-criticality tasks are guaranteed (and the LO-criticality
tasks may actually be abandoned). It may, or may not, later return to the LO mode
when it is safe to do so. Burns [99] attempts to compare these criticality mode
changes with the more familiar system mode change. He concludes that the LO
mode behaviour should be considered to be the ‘normal’ expected behaviour. A
move away from this mode is best classified as a fault; with all other modes being
considered forms of graceful degradation. Such a mode change is planned but may
never occur. A move back to the fully functional LO mode is closest in nature to
an operational (sometime known as exceptional) mode change.

5.3 Security

Many MCS papers have, either explicitly or implicitly, focused on issues of safety
and reliability. Criticality can however also refer to security. Within this domain
it is usual to have different security levels. And hence much of the extensive lit-
erature on security is relevant, but is out of scope of this review. Some work is
nevertheless applicable to safety and security; for example the definition of a sep-
aration kernel for a system-on-chip built using a time-triggered architecture [490].
An overview of the security (and other) issues associated with MPSoCs is provided
by Hassan [248].

Another paper directly linking security and MCS is from Baek and Lee [41].
They incorporate the cost of flushing between security levels in a non-preemptive
version of AMC (for fixed priority scheduling).

29

5.4 Hierarchical Scheduling

One means of implementing a MCS where strong partitioning is needed between
applications is to use a hierarchical (typically two-level) scheduler. A trusted base
scheduler assigns budgets to each application. Within each application a secondary
scheduler manages the threads of the application. There are a number of rele-
vant results for such resource containment schemes (e.g. [122, 150, 151, 342, 422,
501]). Both single processor and multiprocessor platforms can support hierarchical
scheduling.

Unfortunately when hierarchical scheduling is applied to MCS there is a loss
of performance [315]. A simple interface providing a single budget and replen-
ishment period (which is often associated with virtualisation or the use of a hy-
pervisor [16]) is too inflexible to cater for a system that needs to switch between
criticality levels. To provide a more efficient scheme, Lackorznshi et al. [315] pro-
pose ‘flattening’ the hierarchy by exposing some of the interval structure of the
scheduled applications. They develop the notion of a scheduling context which
they apply to MCS [484]. In effect they assign more than one budget to each
‘guest’ OS. As a result, applications that would otherwise not be schedulable are
shown to utilise criticality to meet all deadlines. An alternative, but still flexible
approach, is provided by Groesbrink et al. [217,218]. They allow budgets to move
between virtual machines executing on a hypervisor that is itself executing on a
multi-core platform. The hypervisor controls access to the processor, the memory
and shared I/O devices. Yet another scheme is described by Marinescu et al [354];
they are more concerned with partitioning as opposed to resource usage, but they
do address distributed heterogeneous architectures. Hypervisors are also used by
Cilku and Puschner [135], to give temporal and spacial separation on a multipro-
cessor platform, and Perez et al. [405] use a hierarchical scheduler to statically
partition a wind power mixed criticality embedded system requiring certification
under the IEC-61508 standard. A hypervisor for a mixed criticality on-board satel-
lite software system is discussed by Salazar et al. [15, 425]. And one that uses and
supports general control theory is addressed by Crespo et al [139, 140]. The issue
of minimising the overheads of a hypervisor is addressed by Blin et al. [92].

5.5 Cyber Physical Systems and Internet of Things

In parallel with the development of a distinct branch of research covering MCS has
been the identification of Cyber Physical Systems (CPS) as a useful focus for sys-
tem development. Not surprisingly it has been noted that many CPS are also mixed
criticality. For example Schneider et al. [433] note that many CPS are a combina-
tion of deadline-critical and QoS-critical tasks. They propose a layered scheme in

30

which QoS is maximised while hard deadline tasks are guaranteed. Izosimov and
Levholt [282] use a safety-critical CPS to explore how metrics can be used to map
potential hazards and risk from top level design down to mixed criticality compo-
nents on a multi-core architecture. Issues of composability within an open CPS are
introduced in the short paper by Lee et al. [320].

Maurer and Kirner [358] consider the specification of cross-criticality inter-
faces (CCI) in CPSs that define the level of communication allowed between ‘open’
subsystems/components. Lee at al. [319] also look at interfaces and composition
for mixed criticality CPSs.

The link between the Internet of Things, IoT, and MCS is made by Kamienski
et al. [298] in the context of development methods for energy management in public
buildings. Smart buildings are also the focus of the work of Dimopoulos et al. [162]
on a context-aware management architecture. A Model-based approach for man-
aging criticality in an e-health IoT system is developed by Kotronis et al. [308].

5.6 Probabilistic Real-Time Systems

In mixed criticality systems, the worst-case execution time of a task is expressed
as a function of the criticality level (e.g. C(LO) and C(HI)) with larger values
for the WCET obtained for higher criticality levels. Research into probabilistic
hard real-time systems can be viewed as extending this model to a continuum (or
at least a large number of discrete values). Instead of a number of single values
for the WCET with different levels of confidence, the worst-case execution time is
expressed as a probability distribution, referred to as a pWCET [85].

The exceedance function (or 1 - CDF 23) for the pWCET gives the probabili-
ty that the task will exceed the specified execution time budget on any given run.
Conversely, the exceedance function may be used to determine the execution time
budget required such that the probability of overrunning that budget does not ex-
ceed a specified probability. This is illustrated in Figure 2. Here, an execution
time budget of 55 has a probability of being exceeded of 10−5, whereas the exe-
cution time budget required to ensure that the probability of exceedance is at most
10−9 is 70. We note that exceedance probabilities and failure rates (e.g. 10−9 fail-
ure per hour) are not the same, but that such probabilities can be transformed into
failure rates by accounting for the number of jobs in a given time period, or via
probabilistic schedulability analysis techniques.

Probabilistic analysis provides an alternative treatment for mixed criticality
systems, where high criticality tasks are specified as having an extremely low ac-
ceptable failure rate (e.g. 10−9 per hour), whereas a higher failure rate (e.g. 10−6

23Cumulative Distribution Function.

31

1.E-16
1.E-15
1.E-14
1.E-13
1.E-12
1.E-11
1.E-10
1.E-09
1.E-08
1.E-07
1.E-06
1.E-05
1.E-04
1.E-03
1.E-02
1.E-01
1.E+00

0 20 40 60 80 100

Ex
ce

ed
an

ce
 P

ro
ba

bi
lit

y

Execution Time

Figure 2: pWCET distribution as an Exceedance function

or 10−7 per hour) is permitted for lower criticality tasks. Probabilistic worst-case
execution times [18,120] and the probabilistic worst-case response times [159,349]
derived from them provide a match to requirements specified in this way. These
techniques can potentially be used to show that pathological cases with very high
execution times / high response times have a provably vanishingly low probability
of occurring, thus avoiding the need to over-provision compute resources to handle
these cases.

Just as MCS has expanded from a focus on worst-case execution times to one
that includes arrival rates (for sporadic work), probabilistic analysis has been de-
veloped [12] for the case where the arrival rate of tasks is described by a proba-
bility distribution. This work could form a further link between MCS and prob-
abilistic analysis. Indeed Masrur [355] uses random jitter on the arrival time of
LO-criticality tasks to improve schedulability.

Guo et al. [235] demonstrate the usefulness of a probabilistic framework in
their analysis of an EDF scheduled system in which there is a permitted (but low)
probability of timing faults. The chances of a HI-criticality task executing for
more than its LO-criticality value is also expressed as a probability. Their cur-
rent work assumes that task execution times are independent; this is an unreal-
istic assumption, but one that could be weakened in future work. Santinelli and
George [427] also explore the probability space of worst-case execution times for

32

MCS. Probabilistic analysis for the SMC and AMC schemes is derived by Maxim
et al. [359, 360]. And a constrained Markov decision process is used by Alahmad
and Gopalakrishnan [9,11] to model job releases in MCS. A discrete time Markov
chain is also used by Singh et al. [443].

Probabilistic analysis is used to investigate the safety of each criticality lev-
el [164]. Abdeddaim and Maxim [2] derived probabilistic response time analysis
for mixed criticality tasks under fixed priority preemptive scheduling, computing
the probability of deadline misses for each task in each criticality mode. Their work
does not assume any monitoring, hence they assume that lower criticality tasks
continue to execute in higher criticality modes. Kttler et al. [313] use symbolic
execution to derive probabilistic estimates of the LO-criticality tasks’ completing
before their deadlines.

One further use of stochastic models is to estimate the amount of time that LO-
criticality tasks are unavailable (not executed). Medina et al. [361, 363] provide
such availability analysis for MCS hosted on multi-core platforms scheduled using
data-flow graphs.

6 More Realistic MCS Models

The abstract behavioural model described in Section 2 has been very useful in
allowing key properties of mixed criticality systems to be derived, but it is open
to criticism from systems engineers that it does not match their expectations. In
particular:

• In the HI-criticality mode, LO-criticality tasks should not be abandoned.
Some level of service should be maintained if at all possible, asLO-criticality
tasks are still critical.

• For systems which operate for long periods of time it should be possible
for the system to return to the LO-criticality mode when the conditions are
appropriate. In this mode all functionality should be provided.

It can be argued that these criticisms are, at least partly, misplaced as any high
integrity system should remain in the LO-criticality mode for its entire execu-
tion: the transition to HI-criticality mode is only a theoretical possibility that
the scheduling analysis can exploit [64]. Nevertheless, in less critical applica-
tions (such as those envisaged in the automotive industry) actual criticality mode
changes may be experienced during operation and the above criticisms should be
addressed. Of course for some applications it is acceptable to provide only lim-
ited timing guarantees during these rare events, and hence no online controls are
required [486].

33

Recent reflections (at two 2017 events – the WMC workshop and Dagstuhl
seminar) has identified two distinct roles for what is now called the ‘Vestal Mod-
el’: the verification of a MCS, and its run-time survivability. For the former it may
be only necessary to argue that theHI-criticality work is guaranteed (in all circum-
stances) and hence no guarantees need be developed for the LO-criticality work.
But survivability concerns all criticality levels. If faults are occurring (in particular
timing overruns) then criticality-aware graceful degradation should result. Note
material linking MCS and fault tolerance was reviewed in Section 5.2.

With this dual role for the Vestal Model it is not true to say that it advocates
dropping all LO-criticality tasks are soon as there is any, even minor, budget over-
run. Rather it is saying that for static verification the interference from lower crit-
icality tasks must be demonstrably bounded. Within this bound a variety of of
techniques are available to increase the survivability of the LO-criticality work.

To distinguish between two forms of survivability, Burns et al. [104] define
Robustness to imply those techniques used to deliver full functionality within an
explicit bound on the duration and severity of the temporal faults, and Resilience to
encompass the wide range of techniques available to give different levels of grace-
ful degradation when the system’s faulty behaviour is beyond the lower bound.
Means of enhancing Robustness (by ”mode-switch procrastination”) are also con-
sidered by Hu et al. [262].

The wide range of techniques addressing Resilience include:

1. Letting any LO-criticality job that has started, run to completion (this is in
effect what is assumed by many forms of analysis [64]).

2. Reducing the priorities of the LO-criticality tasks [61], or similar with EDF
scheduling [267, 268].

3. Increasing the periods and deadlines of LO-criticality jobs [204, 285, 412,
455, 457–459], called task stretching, the elastic task model or multi-rate.

4. Imposing only a weakly-hard constraint on theLO-criticality jobs [198,362].

5. Decreasing the computation times of some or all of the LO-criticality tasks
[102]24 [44], perhaps by utilising an imprecise mixed-criticality (IMC) mod-
el [265, 345, 346, 398] or budget control [223, 225].

6. Moving some LO-criticality tasks to a different processor that has not expe-
rienced a criticality mode change [277, 494, 495].

24Note equation (6) in this paper has a typo, both Ri(LO) terms should be starred (R∗
i (LO)).

34

7. Abandoning LO-criticality work in a disciplined sequence [191, 227, 271,
321, 419].

The fifth action leads to a modification to the system model; whereas for HI-
criticality tasks we have C(HI) ≥ C(LO), for LO-criticality tasks we now have
C(HI) ≤ C(LO). For some tasks C(HI) = 0, that is they are abandoned. For
others a lower level of service can be guaranteed. For some they may be able to
continue with their full computation time budgets.

The final approach is addressed by Fleming and Burns [191]; they introduce
a further notion into the standard model; tasks are allocated to applications and
each application is assigned (by the system designers) an importance level. LO-
criticality tasks are abandoned in inverse order of importance. The notion of impor-
tance is explored further by Bletas et al. [88]; they draw a distinction between crit-
icality as used for verification and importance to control run-time graceful degra-
dation. A task may have low criticality but high importance, or vice versa (though
of course there is often a close coordinated relation).

Huang et al. [271] introduce an extension to the standard model by the use of
an ICG (Interference Constraint Graph) to capture more specifically which tasks
need to be dropped when particular higher criticality tasks exceed their allocated
criticality-aware execution times. Controlled abandonment by the use of partition-
ing is advocated by Mahdiani and Masrur [352] in the context of the EDF-VD
scheduling.

Obviously all seven schemes can be used together: complete or move all started
jobs, allow some new jobs to have an extended deadline or reduced computation
time or a weakly-hard constraint, reduce the priorities of some others jobs and
abandon those of lowest importance in particular partitions. Such an approach is
advocated by Su et al. [456]; here LO-criticality tasks have two periods (short and
long) and two priorities. At the criticality mode change these tasks switch to their
longer periods and new priorities. Analysis is provided to show that all modes are
schedulable.

A flexible scheme utilising hierarchical scheduling is proposed by Easwaran et
al. [170, 226]. They differentiate between minor violations of LO-criticality exe-
cution time which can be dealt with within a component (an internal mode change)
and more extensive violations that requires a system-wide external mode change.
In doing so they introduce a new mixed-criticality resource interface model for
component-based systems which supports isolation, virtualisation and composi-
tionality.

Within the context of EDF-VD Chen et al. [123] allow the overrunning HI-
criticality task to progress through multiple intermediate levels rather than assume
a single jump to C(HI). They term this a Multiple-Shot transition. It facilitates a

35

more control impact on LO-criticality tasks. A similar idea is utilised by Chwa et
al. [132].

Papadopoulos et al. [393] also address small overruns of LO-criticality bud-
gets, they use a control-theoretic approach to automatically make minor and stable
modifications to future budgets so as to return the system to normal behaviour with-
out the need for mode changes or other significant reductions in system function-
ality. A more controlled response to small overruns is also considered by Massaro
et al. [357]; they use a proactive mode change to anticipate an overrun before it
actually occurs, thereby reducing its impact.

In keeping with other mode change situations ([113, 178, 401, 416, 439, 471,
472]) a simple protocol for controlling the time of the change of mode back to LO-
criticality is to wait until the system is idle (has no application tasks to run) and
then the change can safely be made [471]. Santy et al. [432] extend this approach
and produce a somewhat more efficient scheme that can be applied to globally
scheduling multiprocessor systems, in which the system may never get to an idle
tick. With a dual criticality system that has just transitioned into the HI-criticality
mode (and hence no low-criticality jobs are executing); their protocol first waits
until the highest priority HI-criticality job completes, then its waits until the next
highest priority job is similarly inactive. This continues until the lowest priority
job is inactive; it is then safe to reintroduce all LO-criticality tasks. Obviously if
there is a further violation of the C(LO) bound then the protocol is abandoned and
subsequently restarted. The authors call this a SCR (Safe Criticality Reduction);
their paper also has a second protocol, but this is less intuitive and considerably
more expensive at run-time.

A more aggressive scheme for returning a system back to its LO-criticality
mode is proposed by Bate et al. [80, 81]. In this approach a bailout protocol is
proposed. HI-criticality tasks take out a loan if they execute for more than their
C(LO) estimate. Other tasks repay the loan by either not executing at all or by
executing for less than expected. When the loan is repaid (and a further condition
is met) the system returns to it normal mode. The authors demonstrate, using
a scenario-based assessment, that the bailout protocol returned the system to the
normal mode much quicker than the ‘wait for idle tick’ scheme.

As well as experiencing a criticality mode change a system can, of course, be
structured to behave in a number of operational or behavioural modes. As indicated
earlier, Burns [99] compares and contrasts these two forms of mode change. De
Niz and Phan [383] note that the criticality of a task can depend on the behavioural
mode of the system. They develop scheduling analysis for this dependency and
consider the static allocation of such tasks to multiprocessor platforms.

Another aspect of the ‘standard model’ for MCS that can be argued to be unre-
alistic is the idea that a system with, say, five criticality levels would also have five

36

different estimates of worst-case execution time for its most critical tasks. An aug-
mented model has been proposed [100, 382] that restricts each task to having just
two estimates of WCET. So, in the general case where there are V criticality levels,
L1 to LV (with L1 being the highest criticality), each task just has two C values.
One represents its estimated execution time at its own criticality level (Ci(Li)) and
the other an estimate at the base (i.e., lowest) criticality level (Ci(LV)). It follows
that if a job is of the lowest criticality level (i.e., Li = LV) then it only has one
WCET parameter. For all other jobs, C(Li) ≥ C(LV). The two parameters of this
augmented model have been referred to as C(self) (or C(SF)) and C(normal)
(C(NL)); the model seems to be sufficiently expressive to capture most of the key
properties of mixed criticality systems. However, Baruah and Guo [75] has shown
that: “The Burns model is strictly less expressive than the Vestal model. Deter-
mining whether a given instance can be scheduled correctly remains NP-hard in
the strong sense. Lower bounds on schedulability, as quantified using the speedup
factor metric, are no better for the Burns model than for the Vestal model.” This
quote makes use of terms described in the next section.

An important property of any realistic form of analysis is that it is sustain-
able [60]. This, informally, implies that a systems that is deemed schedulable by
some appropriate test will remain schedulable when the application’s characteris-
tics improve (for example, worst-case execution times are reduced, or period and
deadlines extended). Guo et al [237] consider the sustainability of various form-
s of analysis for MCS. For example, they showed that AMC and EDF-VD are
sustainable forms of analysis. This not only included reductions in C(HI) and
C(LO) but also a reduction in the criticality level assigned to a task (e.g. a re-
duction from HI-criticality to LO-criticality). They showed that other methods of
implementing MCS such as criticality-monotonic are not sustainable. Sustainabil-
ity of MCS is also considered by Kahil et al [292,294] who introduce the notion of
MC-Sustainable, and link sustainability to predictability.

7 More Formal Treatments

In this section we consider utilisation bounds, speedup factors and (formal) lan-
guage issues.

7.1 Utilisation Bounds

For normal single criticality systems there are well known bounds on task set u-
tilisation that will deliver a schedulable system with either fixed priority or EDF
scheduling. Although the definition of utilisation is not straightforward when a

37

task has more than one worst-case computation time, it is possible to give an ef-
fective definition and to derive least upper bounds (LUBs) for MCS. Santos-Jr et
al. [430] derive a number of useful results for LUB. They construct a task set that
is unschedulable (during a criticality mode change) with LUB arbitrarily close to
0. But where tasks have harmonic periods LUB can reach 1 (for a uniprocessor
system). Between these two extremes they show that if higher criticality tasks do
not have periods longer than lower criticality tasks then LUB lies between ln2 and
2(
√
2− 1).

7.2 Speedup Factors

It has been shown [46,48,54,56,242] that the mixed criticality schedulability prob-
lem (preemptive or non-preemptive) is strongly NP-hard even if there are only two
criticality levels. Hence only sufficient rather than exact analysis is possible. A list
of open problems with regard to the schedulability of MCS was provided by Ekberg
and Yi [176] in 2015. More recently (in 2017) Kahil et al. [292,293] claim to have
found a counter-example to the proof that the mixed-criticality optimality problem
belongs to the class NP. This study was continued [295] with an exploration of the
algorithmic complexity of correctness testing (simulation) for job-based MCS.

For approaches and tests that are only sufficient, an assessment of their quality
is possible if a speedup factor can be computed. A speedup factor [297] ofX(X >
1) for schedulability test S implies that a task set that is schedulable on a processor
of speed 1 will be deemed schedulable by S if the processor’s speed is increased
to X . Of course, in general, it is not possible to know if the task set is schedulable
on the original speed 1 processor (this would require an exact and possibly even
a clairvoyant test), but a real scheduling scheme and test with a speedup factor of
say 2 is clearly better than one with a speed up factor of 10.

For job-based fixed priority scheduling, a priority assignment scheme and test
has been found [55, 56, 76, 332] with a speed up factor of SL (for L criticality
levels), where SL is the root of the equation xL = (1 + x)L−1. For L = 2 the
result is S2 = (1 +

√
5)/2 which is equal to the golden ratio, φ = 1.618. This

can be compared with a partitioned approach (allHI-criticality jobs have priorities
higher than all LO-criticality jobs) which has an unbounded speedup factor. This
latter result is easily illustrated by considering a two job system. TheLO-criticality
job has a small computation time, 1, and deadline of 2. The HI-criticality job has
a huge computation time of G and a deadline of G + 1. These two jobs will both
meet their deadlines if the LO-criticality task is given the highest priority. But the
reverse priority assignment (which executes the HI-criticality job first) will only
be schedulable if G + 1 will fit into the deadline 2. To obtain this a speedup of
(G+1)/2 is required. As G can be arbitrary large the speedup factor is effectively

38

unbounded.
For EDF scheduled systems Baruah et al. [59, 76] prove that a variant of EDF

(EDF-VD, described in Section 3.3) in which HI-criticality sporadic tasks (in a
dual-criticality system) have their deadlines reduced (in the LO-criticality mode)
is also schedulable on a single processor that is speeded up by a factor φ. They also
show that a finite set of independent jobs? scheduled on m identical multiproces-
sors is schedulable with a speed-up factor of φ + 1 + 1/m. And on a partitioned
system a speed-up factor of φ + ε is derivable for any value of ε > 0. In later
work [58] they improve this bound to 4/3 (1.333) rather than φ (1.618). Further
formal analysis of EDF-VD is provided by Li [330], Muller and Masrur [371] and
Gu and Easwaran [222]. The MC-Fluid approach also has a speed-up factor of
4/3 [69], as does EDF-VD when applied to systems with degraded/imprecise guar-
antees [346].

7.3 Formal Language and Modelling Issues

The application of formal design languages, such as real-time BIT (Behavior Inter-
actions Priorities), are being used to model MCS. And verification approaches such
as model checking or simulation are being applied to both application software and
multi-core platforms. See, for example, the work of Socci et al. [446]. State-space
explosion is of course always an issue with these approaches.

A 2005 paper by Amey at al. [19], which predates Vestal’s work, looked at
the (smart) certification of mixed criticality systems. They report real industrial
application of formal code analysis to prove isolation between tasks of difference
criticality levels. In one application, concerning safety-critical landing guidance
for ship-borne helicopters, SIL 4 code (the highest in UK Defence Standard 00-
55 [366]) was executing in the same processor and memory space as SIL3 and
SIL2 code. Another application (a civil jet engine monitoring unit) have Level-C
and Level-E code co-located (DO-178B standard [421] has levels A down to E).
In both of these examples formal analysis of information flow at the program level
was able to demonstrate code segregation.

Compile time checking is also advocated by Lindgren at al. [340] with their
experimental RTFM-language. Language constructs allow static assessment of the
interfaces between critical and non-critical code. At run-time however separation
is achieved by assigning higher priorities to the critical tasks. As indicated earlier
this is not a very effective strategy in terms of efficient resource usage.

Model-based design using Synchronous Reactive models is used to design em-
bedded control systems and is formalised within languages such as LUSTRE, SIG-
NAL and Simulink. Its application to MCS is considered in detail by Zhao et
al [505]; where they adopt the elastic mixed-criticality task model for fixed-priority

39

scheduling.
An alternative task model to that which underpins most scheduling research on

MCS is the sporadic DAG (Directed Acyclic Graph) task model. An initial study,
within the context of multiprocessor federated systems, is provided by Baruah [52].
Wang and Wang [488], Medina et al. [362] and Liu et al. /citeLIU2018 also con-
sider this model.

8 Systems Issues

In this section we consider a number of what are often terms systems issues. These
include run-time monitoring and system overhead, virtualisation and Operating
System support, hardware aspects, benchmarks and comparative studies, power
consumption, and issues relating to modeling and tool support.

8.1 Run-Time Monitoring and Overheads

A fundamental issue with MCS is separation. Many of the more theoretical papers
reviewed here assume various levels of run-time monitoring and control. However,
few papers consider or demonstrate how the required mechanisms can be imple-
mented, Neukirchner et al. [379] presented one such paper. They consider mem-
ory protection, timing fault containment, admission control and (re-)configuration
middleware for MCS. Their framework [187] is aimed at supporting AUTOSAR
conforming applications within the automotive domain. An early paper looking at
non-interference at the memory level for IMA platforms within the avionics indus-
try is that of Hill and Lake [254].

Another detailed study of the overheads for two common implementations
schemes for MCS is presented by Sigrist et al. [442]. They conclude that over-
heads of up to 97% can be encountered and they recommend that all scheduling
models be extended to include parameters to capture the impact of run-time over-
heads. One source of overhead is the context switch time between tasks. Davis
et al. [147] note that switching between tasks of the same criticality should be
quicker than between tasks of different criticality. They produce analysis for the
standard fixed priority approach for MCS (AMC and SMC) that explicitly caters
for varying context switch times; they note however that priority assignment is not
straightforward for this model [148].

The issue of monitoring is also addressed by Motruk et al. [369] in the context
of their IDAMC (Integrated Dependable Architecture for Many Cores). This work
builds on the more general (i.e. not MCS specific) work on separation, isolation
and monitoring for SoC/NoC architectures.

40

8.2 Virtualisation and Operating System Support

The MultiPARTES project is addressing virtualisation in terms of Model Driven
Engineering for MCS [16, 133, 134, 476, 477]. Goossens et al. [207, 208] are also
looking at virtualisation “to allow independent design, verification and execution”
with their CompSOC architecture. Paravirtualisation of legacy RTOSs to provide
the necessary memory isolation is considered by Armbrust et al. [22].

Hypervisor technology is also being used to give the appropriate level of iso-
lation in MCS. The DREAMS architecture uses it [318] to minimise interference
via modelling patterns of execution. Evripidou and Burns [186] employ different
execution-time servers (deferrable server for short deadline event-triggered work,
and periodic server for periodic work) under the control of a hypervisor to bound
the overheads associated with server technology. If there is a criticality induced
mode change then the deferrable servers are transposed to the much more efficient
(but less responsive) periodic servers. General hypervisor architectures for multi-
core MCS are proposed by Pérez et al. [404] and Avramenko et al. [29]. Within
the context of ARMv8-A, Lucas et al. [350] have developed a VOSYSmonitor that
allows a safety-critical RTOS and a non-critical general purpose OS to co-exist
on the same hardware platform. With a large Nuclear Fusion project, Cinque et
al. [137] argue that virtualisation will not scale to the ‘tens of thousands’ of thread-
s envisaged in this application. They propose a more lightweight solution using
containers [136].

The issue of monitoring and testing MCS, including the use of HIL (hardware-
in-the-loop), is addressed in a number of papers. Particular attention being given
to multi-core platforms [184, 185, 388].

A separation kernel has been developed by West et al. [336, 367, 491]. They
can host guest operating systems, such as Linux or their own real-time operating
system (RTOS), QUEST-V. They partition the available cores into Sandboxes that
have different criticality levels. Their architecture is aimed at achieving efficient
resource partitioning and performance isolation. One means of achieving this is
for interrupts to go directly to the appropriate partition, they do not have to be
first handled by the hypervisor. An RTOS that addresses partitioning for the NoC
(network-on-chip) as well as the processor is developed by Esposito et al. [183]
and extended by Avramenko and Violante [30]. A capability-based structuring of
OS interactions is proposed by Gadepalli et al. [196] to provide fine-grain control
over sharing and separation.

PikeOS [296] also employs a separation microkernel to provide ‘a powerful
and efficient paravirtualization real-time operating system’ [423] for a partitioned
multi-core platform. Vanga et al. [479] present a case study in the use of PikeOS
in which they aim to give effective support to low criticality tasks that have short

41

deadlines (low latency). Another high-assurance (micro) kernel is sel 4. Lyons
and Heiser [351] show how the sel 4 model can be extended to cater for mixed
criticality. VMs (virtual machines) that are appropriate for real-time Java-based
mixed-criticality systems have been designed by Ziarek and Blanton [513] and
Hamza et al. [239].

To implement the criticality mode change the run-time support system must
support execution time monitoring, the modes and mode changes. Baruah and
Burns [61] show how this can be achieved within the facilities provided by the Ada
programming language. Kim and Jin do the same for a standard RTOS [304]. They
make use of bitmaps to provide a very efficient implementation. DMPL [121] is a
language designed specifically for distributed real-time MCS.

A further operating system designed to support mixed criticality is Kron-OS
[145]. This controls the execution of RSFs (Repetitive Sequence of Frames) that
is partitioned between two criticality levels. Instead of a purpose built RTOS a
COTS platform is preferred by Raghenzani et al. [417]. They focus on Linux and
attempt to characterise the interference that the platform can produce. HIPPER-
OS [392] is a multi-core OS designed for use in the avionics domain. They use
one core to make all scheduling decisions. They also use the elastic task model
(see Section 3.3) to allow LO-criticality tasks to degrade when an overrun occurs.
Vetter et al. [481] show how a low latency criticality-aware network channel can be
constructed between different OSs, in particular between Linux and one utilising
an ARM TrustZone. Extensions to the OSEK RTOS to support mixed-criticality is
considered by Gupta et al. [238].

8.3 Hardware Aspects

As an alternative to using an RTOS to give the right level of protection and (safe)
resource sharing, Zimmer et al. [514] have designed a processor (FlexPRET) to di-
rectly support MCS. They use fine-grained multithreading and scratchpad memory
to give protection to hard real-time tasks while increasing the resource utilisation
of soft tasks. In effect soft tasks (threads) can safely exploit the spare capacity
generated from the hard tasks at the cycle level. They have a soft-core FPGA im-
plementation that caters for up to 8 hardware threads, each of which can support
a number of software threads. A more focused scheme aimed at partitioning the
cache is described by Lesage et al. [328]. An LC (least critical) cache replace-
ment policy is evaluated by Kumar et al. [314]. The effective use of cache, for a
multi-core platform, is also considered by Chrisholm et al. [131]. Similarly, Ali
Awan et al. incorporate criticality into their dynamic last-level cache partitioning
scheme [34], and memory bandwidth regulation [35, 36]. Partial lockdown and
cache reclamation is also considered by this group [89]. Sritharan et al. [452] pro-

42

pose a time-based cache coherence protocol for bounding latencies from critical
memory accesses.

The development of purpose built hardware (FPGA based) to support reliable
MCS is being undertaken as part of the RECOMP project. They aim to reduce the
cost of certification for MCS on multiprocessor architectures by use of open source
hardware and software [364, 380, 407]. Santos et al. [429] are also looking at sys-
tems built on FPGA platforms. They have developed a criticality-aware scrubbing
mechanism that improves system reliability by up to 79%. Scrubbing is a tech-
nique for recovering from SEU (single event upsets) that affect FPGA platforms
in harsh environments such as space. Another hardware implementation of a MCS
schedular is being considered by Hounsinou at al. [257].

A hardware platform that supports applications of different criticality must
manage its I/O functions in a partitioned and hence safe (and secure) way. If
lower criticality work can cause an interrupt to occur ‘at any time’ then unpre-
dictable overheads may be suffered by high criticality applications. This is a topic
addressed by Paulitsch et al. [400]. They rightly claim that this topic is often over-
looked. Later, support for I/O and IPC via fine-grained OS isolation is considered
by Kim at al. [301] within the context of MC2 (see Section 4).

8.4 Benchmarks and Comparative Studies

Although research on MCS has generated many different approaches, there have
been few empirical benchmarks or comparative studies. One useful study howev-
er was published in 2012 by Huang et al. [263]. They compared Vestal’s scheme
with its optimal priority assignment, their improved slack scheduling scheme and
Period Transformation (PT) (see Section 5.1). They conclude that Vestal’s ap-
proach and period transformation usually, though not always, outperform slack
scheduling; and that there are additional overheads with period transformation and
slack scheduling. Nevertheless the overheads were not excessive, typically an extra
0.3%. Later Fleming and Burns [190] compared Vestal’s approach, AMC (see Sec-
tion 3.2) and PT for multiple criticality levels. As the number of criticality levels
increased the relative advantage of PT, even when overheads are ignored, was ob-
served to decrease. This observation was also supported by Huang et al. [264] who
updated their study in 2014 and concluded that AMC-based scheduling gave the
best performance for fixed priority sporadic task systems. This study also looked
at the overheads involved in user-space implementation of AMC on top of Linux,
without kernel modifications.

The need for useful benchmarks is noted in a number of papers. One industri-
ally inspired case study is provided by Harbin et al. [243]. The use of realistic sim-
ulations to evaluate schemes is discussed by Bate et al. [80, 81], Griffin et al [216]

43

and Ittersshagen et al. [280]. A brief comparison of approaches to multiprocessor
scheduling of MCS is provided by Osmolovskiy et al. [391]. The evaluation of
communications within a MCS is considered by the work of Napier et al. [375]
and Petrakis et al. [406].

8.5 Criticality-Aware Power Consumption

Another systems issue of crucial important in many mobile embedded systems is
power consumption. The work of Broekaert et al. [95] allocates and monitors pow-
er budgets to different criticality levels. If a crucial VM (Virtual Machine) “over-
passed its power budget during its time partition, the extra power consumed will be
removed from the initial power budget of the next low critical VM scheduled”. En-
ergy consumption is also addressed by Legout et al. [325]. They trade energy usage
with deadline misses of low-criticality tasks, and claim a 17% reduction in energy
with deadline misses kept below 4%. The objective of minimising energy usage is
used by Zhang et al. [504] to drive task allocation in a multiprocessor system. As
discussed earlier, a slightly different approach is taken by Huang et al. [269]. They
advocate the use of DVFS (Dynamic Voltage and Frequency Scaling) to increase
the speed of the processor if HI-criticality tasks need more than their C(LO) re-
quirement. Hence LO-criticality work is not abandoned, but more energy is used.
They integrate their approach with the EDF-VD scheduling scheme (see Section
3.3) and have, more recently, addressed multi-core platforms [376]. This approach
is extended by Ali et al. [14] who propose a new dynamic power-aware scheduling
scheme for hardware with discrete frequency levels. Awan et al. [37] consider how
energy-aware task allocation can be utilised in the context of heterogeneous multi-
core systems. A leakage aware DVFS scheme is proposed by Digalwar et al. [161]
and is shown to be more energy efficient when compared to existing approaches.

Where energy is limited or indeed the system is energy neutral, then criticality-
aware energy usage becomes crucially important [483]. ENOS [487] is an experi-
mental OS that addresses mixed resources (time and energy) and mixed criticality.
It transforms the system through a series of ‘energy modes’ including one that
ensures all state is safely stored in persistent memory before system blackout. En-
ergy harvesting in the context of a battery-less real-time system is considered by
Asyaban et al. [25]. They propose a scheduling scheme that satisfies both temporal
and success-ratio constraints whilst addressing uncertainty in the platform’s power
management. Even where energy is not limited, isolation in terms of power usage
and temperature control is important; an issue addressed by Grüttner in the context
of heterogeneous MPSoCs [219]. Power management in also addressed by Juhasz
and Jantsch [289] in order to manage QoS in a MCS.

44

8.6 Issues Relating to Modeling and Tool Support

Complex mixed criticality systems also present a number of significant challenges
at the specification and design stage. Herrera et al. [251, 252] propose a modelling
and design framework for MCS hosted on Systems-on-Chip and/or Systems-of-
Systems. They present a core ontology but freely admit that there is considerable
work to do before a sound engineering process is available for system builders/ar-
chitects. Ittershagen et al. [281] go further and propose a systematic method for
constructing workload and integration flow models for time-triggered MPSoC plat-
forms. Design space exploration for MCS is considered by Muttillo et al. [372].

Giannopoulou et al. [199] support the development of MCS on multi-core plat-
forms by the development of an appropriate tool chain. This group has also con-
sidered [202, 500] the mapping and design of fault-tolerant MCS to multi-core
platforms.

9 Industry Practice and Standards

This survey covers the considerable body of research into MCS stemming from the
model presented by Vestal [480]. Industry practice and safety standards; howev-
er, provide a somewhat different perspective on MCS [182]. There are different
meanings assumed for some of the commonly used terms, and different objectives.

Determining the criticality of an application (or system function implement-
ed via both hardware and software) is done via a system safety assessment that
involves Hazard Analysis (HA) Failure Modes and Effects Analysis (FMAE) and
Fault Trees Analysis (FTA). The criticality level typically depends on (i) an evalua-
tion of the consequences of a failure, (ii) the probability that the failure occurs, and
(iii) the provision of means to mitigate or cope with the fault. Hence the critical-
ity level of an application may not necessary reflect the severity or consequences
of failure. An example given by Esper et al. [181] and Ernst and Di Natale [180]
comes from ISO 26262. If the probability of failure occurrence is very low, the
ASIL level assigned may be low, despite severe consequences if a failure actually
happens. A different application with a high probability of failure may be assigned
a higher ASIL despite having lower severity consequences. With this interpreta-
tion, the idea of dropping low-criticality functionality in favour of completing that
of higher criticality does not hold; the consequences would be more severe. ISO
26262 also permits high-criticality applications to be composed from lower criti-
cality components with diverse implementations, again dropping one of the lower
criticality components would remove the diversity and undermine the safety argu-
ment for the high-criticality function. The message here is that the criticality level
is not the same as the importance of the application. Functionality that has low

45

criticality cannot simply be dropped.
The standards require that “sufficient independence” or “freedom from inter-

ference” is demonstrated between functions of different criticality levels in both
spatial and timing domains. If this is not done, then the whole system needs to be
designed and developed according to methods appropriate for the highest criticali-
ty level involved, which would be untenable in practice for cost reasons. It remains
a significant challenge to achieve the necessary separation, while also providing
an efficient means of sharing resources. This is particularly apposite with the ad-
vent of multi-core and many-core platforms. Tool are required to verify that the
necessary level of independence is indeed manifest in the design of MCS [482].

10 PhD Awards for Research within the Field of MCS

As an indication of the richness of the landscape for research within the many
aspects of MCS we note (some) of the PhDs (or equivalent) that have been awarded
to students studying topics within the domain of mixed criticality systems:

Mohemed El Mehdi Aichouch, Evaluation of a Multiple-Criticality Real-Time Vir-
tual Machine System and Configuration of an RTOS Resource Allocation Tech-
niques, INSA Rennes, 2014.

Christos Evripidou, Scheduling for Mixed-criticality Hypervisor Systems in the Au-
tomotive Domain, University of York, 2016.

Thomas Fleming, Allocation and Optimisation of Mixed Criticality Cyclic Execu-
tives, University of York, 2017.

Georgia Giannopoulpou, Implementation of Mixed-Criticality Applications on Multi-
Core Architectures, ETH Zurich, 2016.

Chetan Govindaiah, Hardware Architecture Support for Mixed-Criticality and Real-
Time Systems, Iowa State University, 2016.

Romain Gratia, A Generic, Efficient Approach to Mixed Criticality Sequencing for
Multi-Core Processors, Telecom Paristech, 2017.

Xiaozhe Gu, Schedulability Analysis and Low-Criticality Execution Support for
Mixed-Criticality Real-Time Systems on Uniprocessors, Nanyang Technological
University, 2017.

Zhishan Guo, Real-Time Scheduling of Mixed-Criticality Workloads upon Plat-
forms with Uncertainty, University of North Carolina at Chapel Hill, 2016.

Biao Hu, Schedulability Analysis of General Task Model and Demand Aware Schedul-
ing in Mixed-Criticality Systems, University of Munchen, 2017.

46

Pengcheng Huang, Design and Optimisation of Mixed-Criticality Systems, EFL
Zurich, 2016.

Jaewoo Lee, Resource-Efficient Scheduling of Multiprocessor Mixed-Criticality
Real-Time Systems, University of Pennsylvania, 2017.

Haohan Li, Scheduling Mixed-Criticality Real-Time Systems, University of North
Carolina at Chapel Hill, 2013.

Dario Socci, Scheduling of Certifiable Mixed-Criticality Systems, University of
Grenoble, 2016.

Jens Theis, Certification-Cognizant Mixed-Criticality Scheduling in Time-Triggered
Systems, University of Kaiserslaitern, 2015.

Irune Agirre Troncoso, Development and Certification of Mixed-Criticality Em-
bedded Systems based on Probabilisitc Timing Anallysis, Universitat Politecnica
de Catalunya, 2018.

Hao Xu, A Semi-Partitioned Model for Scheduling Mixed-Criticality Multi-Core
Systems, University of York, 2017.

Michael Zimmer, Predictable Processors for Mixed-Criticality Systems and Precision-
Timed I/O, University of California at Berkeley, 2015.

11 Conclusion and Directions for Future Work

As identified in the introduction, the fundamental issue with MCS is how to recon-
cile the differing needs of separation (for safety) and sharing (for efficient resource
usage). These concerns have lead to somewhat of a bifurcation in the resulting re-
search. Much of the implementation and systems work has concentrated on how to
safely partition a system so that high-integrity components can, in some way, share
computational and communication resources. By comparison, the more theoretical
and scheduling research has largely focused on how criticality-specific worst-case
execution times can be utilised to deliver systems that are schedulable at each crit-
icality level but have high processor utilisation. Unfortunately these two areas of
research are not easily integrated. Flexible scheduling requires, at least, dynamic
partitioning. Certified systems require complete separation or at least static parti-
tioning. Future work must address this mismatch.

A second topic for future work is a move away from a processor-centric view of
MCS to one that incorporates other shared resources, for example communication;
particularly on a multi-core or many-core platform. Can a shared bus provide the
required separation, or is a Network-on-Chip protocol required? Work is only
beginning to address these issues.

47

What becomes clear from reading the extensive literature that has been pro-
duced since the seminal paper of Vestal [480] in 2007, is that MCS presents a col-
lection of interesting issues that are both theoretically intriguing and challenging
from the perspective of implementation.

We finish this survey by listing open issues identified from reading the exten-
sive research literature. (Many of these issues were presented by Alan Burns in
his keynote talk at the Dagstuhl Seminar on Mixed Criticality Systems on Multi-
core/Many-core Platforms in March 2015).

1. Holistic analysis is needed considering all system resources, particularly
communications buses, networks, and access to memory, as well as the pro-
cessor(s).

2. Appropriate models of system overheads and task dependencies are required,
and need to be integrated into the analysis. In particular, attention needs to be
paid to how overheads arising from tasks of one criticality level may impact
tasks of different (particularly higher) criticality.

3. More work is needed to integrate run-time behaviour, i.e. monitoring and
control, with the assumptions made during static analysis and verification.

4. Effective protocols are needed for sharing information between criticality
levels.

5. There are a number of open issues with regards to graceful degradation and
fault recovery. These include timely recovery back to the low-criticality
mode of operation, and support for limited low-criticality functionality in
higher criticality modes, avoiding the abandonment problem.

6. To be of practical use, techniques need to scale to more than two (possibly
up to five) levels of criticality.

7. Better WCET analysis is needed to reduce the sound C(HI) and C(LO)
estimates used, and to improve the confidence in these values.

8. How many different WCET estimates are required (or useful) for the same
software?

9. Much of the existing research has looked at mixed criticality within a single
scheduling scheme; however, further work is needed on integrating different
schemes (e.g. cyclic executives for safety-critical applications, fixed priority
for mission-critical applications, on the same processor).

48

10. Mechanisms are needed to tightly bound the impact of lower criticality tasks
on those of higher criticality, independent of the behaviour or misbehaviour
of the former, without significantly compromising performance, which may
happen if strict isolation is enforced.

11. Time composability is needed across different criticality levels, so that the
timing behaviour of tasks determined in isolation can be used when they are
composed during system integration.

12. So far there has been little work on security as an aspect of criticality in
real-time systems.

13. Probabilistic and statistical methods are a good match to requirements spec-
ified in terms of failure rates for different criticality levels; however, little
work has been done on applying these techniques to MCS.

14. There are a number of formal aspects of scheduling still to be investigated.

15. Openly available benchmarks and case studies are needed for the evaluation
of MCS techniques and analysis.

16. For research on MCS to have real impact it will be necessary to influence
the relevant standards in the various application domains (e.g. automotive,
aerospace).

Returning to the fundamental question underlying MCS research: how, in a
disciplined way, to reconcile the conflicting requirements of partitioning for safety
assurance and sharing for efficient resource usage. As yet we do not have the
structures (models, methods, protocols, analysis etc.) needed to allow the tradeoffs
between partitioning and separation to be properly evaluated. It is clear that MCS
will continue to be a focus for practical and theoretical work for some time to come.

Acknowledgements

The authors would like to thank Sanjoy Baruah for a number of very useful dis-
cussions on the topic of this paper. The research that went into writing this pa-
per is funded in part by the ESPRC grants, MCC (EP/K011626/1) and MCCps
(EP/P003664/1).

49

Literature
[1] L. Abdallah, M. Jan, J. Ermont, and C. Fraboul. I/O contention aware mapping of multi-

criticalities real-time applications over many-core architectures. In Proc. WiP, RTAS, pages
25–28, 2016. 25

[2] Y. Abdeddaim and D. Maxim. Probabilistic schedulability analysis for fixed priority mixed
criticality real-time systems. In Proc DATE, pages 596–601, 2017. 33

[3] A. Addisu, L. George, V. Sciandra, and M. Agueh. Mixed criticality scheduling applied to
jpeg2000 video streaming over wireless multimedia sensor networks. In Proc. WMC, RTSS,
pages 55–60, 2013. 26

[4] K. Agrawal and S. Baruah. A Measurement-Based Model for Parallel Real-Time Tasks. In
Sebastian Altmeyer, editor, 30th Euromicro Conference on Real-Time Systems (ECRTS 2018),
volume 106 of Leibniz International Proc. in Informatics (LIPIcs), pages 5:1–5:19. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, 2018. 22

[5] H. Ahmadian, F. Nekouei, and R. Obermaisser. Fault recovery and adaptation in time-
triggered networks-on-chips for mixed-criticality systems. In Proc. 12th International Sym-
posium on Reconfigurable Communication-centric Systems-on-Chip (ReCoSoC), pages 1–8,
2017. 29

[6] H. Ahmadian and R. Obermaisser. Time-triggered extension layer for on-chip network inter-
faces in mixed-criticality systems. In Proc. Digital System Design (DSD), pages 693–699.
IEEE, 2015. 25

[7] Z. Al-Bayati, J. Caplan, B.H. Meyer, and H. Zeng. A four-mode model for efficient fault-
tolerant mixed-criticality systems. In Proc. DATE, pages 97–102. IEEE, 2016. 28

[8] Z. Al-Bayati, Q. Zhao, A. Youssef, H. Zeng, and Z. Gu. Enhanced partitioned scheduling
of mixed-criticality systems on multicore platforms. In 20th Asia and South Pacific Design
Automation Conference (ASP-DAC), pages 630–635, 2015. 21

[9] B. Alahmad and S. Gopalakrishnan. A Risk-Constrained Markov Decision Process Approach
to Scheduling Mixed-Criticality Job Sets. In Proc 4th WMC (RTSS), 2016. 33

[10] B. Alahmad and S. Gopalakrishnan. Isochronous execution models for mixed-criticality sys-
tems on parallel processors. In WiP, RTSS, pages 354–356, 2017. 29

[11] B. Alahmad and S. Gopalakrishnan. Risk-aware scheduling of dual criticality job systems
using demand distributions. Leibniz Transactions on Embedded Systems, 5(1):01–1–01:30,
2018. 33

[12] B. Alahmad, S. Gopalakrishnan, L. Santinelli, and L. Cucu-Grosjean. Probabilities for mixed-
criticality problems: Bridging the uncertainty gap. In WiP, RTSS, pages 1–4, 2011. 32

[13] A. Ali and K.H. Kim. Cluster-based multicore real-time mixed-criticality scheduling. Journal
of Systems Architecture, 79:45 – 58, 2017. 21

[14] I. Ali, J. Seo, and K.H. Kim. A dynamic power-aware scheduling of mixed-criticality real-time
systems. In Computer and Information Technology; Ubiquitous Computing and Communica-
tions; Dependable, Autonomic and Secure Computing; Pervasive Intelligence and Computing
(CIT/IUCC/DASC/PICOM), pages 438–445, 2015. 44

[15] A. Alonso, J.A. de la Puente, J. Zamorano, M.A. de Miguel, E. Salazar, and J. Garrido. Safety
concept for a mixed criticality on-board software system. IFAC-PapersOnLine, 48(10):240–
245, 2015. 30

50

[16] A. Alonso, C. Jouvray, S. Trujillo, M.A. de Miguel, C. Grepet, and J. Simo. Towards model-
driven engineering for mixed-criticality systems: MultiPARTES approach. In Proc. of the
Conference on Design, Automation and Test in Europe, WICERT, DATE, 2013. 30, 41

[17] A. Alonso, E. Salazar, and M.A. de Miguel. A toolset for the development of mixed-criticality
partitioned systems. In HiPEAC Workshop, 2014. 20

[18] S. Altmeyer, L. Cucu-Grosjean, and R.I. Davis. Static probabilistic timing analysis for real-
time systems using random replacement caches. Real-Time Systems, 51(1):77–123, 2015. 7,
32

[19] P. Amey, R. Chapman, and N. White. Smart certification of mixed criticality systems. In Re-
liable Software Technologies, Proc. of the Ada Europe Conference, pages 144–155. Springer
Verlag, LNCS 3555, 2005. 39

[20] J.H. Anderson, S.K. Baruah, and B.B. Brandenburg. Multicore operating-system support for
mixed criticality. In Proc. of the Workshop on Mixed Criticality: Roadmap to Evolving UAV
Certification, San Francisco, 2009. 19

[21] R. Arbaud, D. Juhsz, and A. Jantsch. Resource management for mixed-criticality systems on
multi-core platforms with focus on communication. Technical report, ResearchGate, 2018. 6

[22] E. Armbrust, J. Song, G. Bloom, and G. Parmer. On spatial isolation for mixed-criticality,
embedded systems. In L. Cucu-Grosjean and R. Davis, editors, Proc. 2nd Workshop on Mixed
Criticality Systems (WMC), RTSS, pages 15–20, 2014. 41

[23] S. Asyaban and M. Kargahi. An exact schedulability test for fixed-priority preemptive mixed-
criticality real-time systems. Real-Time Systems Journal, 54:32–90, 2018. 12

[24] S. Asyaban and M. Kargahi. Feasibility interval for fixed-priority scheduling of mixed-
criticality periodic tasks with offsets. IEEE Embedded Systems Letters - online, pages 1–4,
2018. 12

[25] S. Asyaban, M. Kargahi, L. Thiele, and M. Mohaqeqi. Analysis and scheduling of a battery-
less mixed-criticality system with energy uncertainty. ACM Transactions on Embedded Com-
puting Systems (TECS), 16(1):23, 2016. 44

[26] N.C. Audsley. On priority assignment in fixed priority scheduling. Information Processing
Letters, 79(1):39–44, 2001. 5, 9, 22

[27] N.C. Audsley. Memory architectures for NoC-based real-time mixed criticality systems. In
Proc. WMC, RTSS, pages 37–42, 2013. 25

[28] N.C. Audsley, A. Burns, M. Richardson, K. Tindell, and A.J. Wellings. Applying new schedul-
ing theory to static priority preemptive scheduling. Software Engineering Journal, 8(5):284–
292, 1993. 5

[29] S. Avramenko, S. Esposito, M. Violante, M. Sozzi, M. Traversone, M. Binello, and M. Ter-
rone. An hybrid architecture for consolidating mixed criticality applications on multicore
systems. In Proc. IEEE 21st International On-Line Testing Symposium (IOLTS), pages 26–
29, 2015. 41

[30] S. Avramenko and M. Violante. RTOS solution for noc-based COTS MPSoC usage in mixed-
criticality systems. Journal of Electronic Testing, 35(1):29–44, 2019. 25, 41

[31] M. A Awan, K. Bletsas, P.F. Souto, and E. Tovar. Semi-partitioned mixed-criticality schedul-
ing. In 30th International Conference on Architecture of Computing Systems (ARCS), pages
205–218, 4 2017. 21

51

[32] M.A. Awan, K. Bletsas, P. Souto, B. Akesson, E. Tovar, and J. Ali. Mixed-criticality schedul-
ing with memory regulation. In Proc. WiP, ECRTS, page 22, 2016. 24

[33] M.A. Awan, K. Bletsas, P. Souto, and E. Tovar. Semi-partitioned mixed-criticality scheduling.
Technical report, CISTER/ISEP, 2016. 21

[34] M.A. Awan, K. Bletsas, P.F. Souto, B. Akesson, and E. Tovar. Mixed-criticality scheduling
with dynamic redistribution of shared cache. In Marko Bertogna, editor, Proc. Euromicro
Conference on Real-Time Systems (ECRTS), volume 76 of Leibniz International Proc. in In-
formatics (LIPIcs), pages 18:1–21:20. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
2017. 42

[35] M.A. Awan, K. Bletsas, P.F. Souto, B. Akesson, and E. Tovar. Mixed-criticality scheduling
with dynamic memory bandwidth regulation. In Proc. 24th International Conference on Em-
bedded and Real-Time Computing Systems and Applications (RTCSA), pages 111–117, 2018.
42

[36] M.A. Awan, K. Bletsas, P.F. Souto, B. Akesson, and E. Tovar. Mixed-criticality scheduling
with memory bandwidth regulation. In Proc. Design, Automation Test in Europe Conference
Exhibition (DATE), pages 1277–1282, 2018. 42

[37] M.A. Awan, D. Masson, and E. Tovar. Energy-aware task allocation onto unrelated heteroge-
neous multicore platform for mixed criticality systems. In WiP, RTSS, 2015. 44

[38] M.A. Awan, D. Masson, and E. Tovar. Energy efficient mapping of mixed criticality appli-
cations on unrelated heterogeneous multicore platforms. In Proc. 11th IEEE Symposium on
Industrial Embedded Systems (SIES), pages 1–10, 2016. 20

[39] P. Axer, M. Sebastian, and R. Ernst. Reliability analysis for mpsocs with mixed-critical, hard
real-time constraints. In Proc. of the seventh IEEE/ACM/IFIP international conference on
Hardware/software codesign and system synthesis, CODES+ISSS ’11, pages 149–158. ACM,
2011. 21

[40] A. Azim and S. Fischmeister. Efficient mode changes in multi-mode systems. In Proc. Com-
puter Design (ICCD), pages 592–599. IEEE, 2016. 9

[41] H. Baeh and J. Lee. Incorporating security constraints into mixed-criticality real-time schedul-
ing. IEICE Trans. on Information and Systems, E100-D(9):2068–2080, 2017. 29

[42] T.P. Baker. A stack-based resource allocation policy for realtime processes. In Proc. IEEE
Real-Time Systems Symposium (RTSS), pages 191–200, 1990. 17

[43] J. Barhorst, T. Belote, P. Binns, J. Hoffman, J. Paunicka, P. Sarathy, J. Scoredos, P. Stanfill,
D. Stuart, and R. Urzi. White paper: A research agenda for mixed-criticality systems, April
2009. Available at http://www.cse.wustl.edu/˜ cdgill/CPSWEEK09 MCAR. 5

[44] S. K. Baruah, A. Burns, and Z. Guo. Scheduling mixed-criticality systems to guarantee some
service under all non-erroneous behaviours. In Proc. ECRTS, pages 131–140, 2016. 22, 34

[45] S.K. Baruah. Optimal utilization bounds for fixed priority scheduling of periodic task systems
on identical multiprocessors. IEEE Transactions on Software Engineering, 53(6), 2004. 22

[46] S.K. Baruah. Mixed criticality schedulability analysis is highly intractable. Technical report,
University of North Carolina at Chapel Hill, 2009. 8, 10, 38

[47] S.K. Baruah. Certification-cognizant scheduling of tasks with pessimistic frequency specifica-
tion. In Proc. 7th IEEE International Symposium on Industrial Embedded Systems (SIES’12),
pages 31–38, 2012. 7

52

[48] S.K. Baruah. Semantic-preserving implementation of multirate mixed criticality synchronous
programs. In Proc. RTNS, 2012. 18, 38

[49] S.K. Baruah. Implementing mixed-criticality synchronous reactive programs upon uniproces-
sor platforms. Real-Time Systems Journal, 49(6), 2013. 18

[50] S.K. Baruah. Implementing mixed criticality synchronous reactive systems upon multipro-
cessor platforms. Technical report, University of North Carolina at Chapel Hill, 2013. 20

[51] S.K. Baruah. Response-time analysis of mixed criticality systems with pessimistic frequency
specification. Technical report, University of North Carolina at Chapel Hill, 2013. 7

[52] S.K Baruah. The federated scheduling of systems of mixed-criticality sporadic DAG tasks. In
Proc. Real-Time Systems Symposium (RTSS), pages 227–236. IEEE, 2016. 40

[53] S.K. Baruah. Schedulability analysis of mixed-criticality systems with multiple frequency
specifications. In Proc. International Conference on Embedded Software (EMSOFT), page 24.
ACM, 2016. 7, 12

[54] S.K. Baruah, V. Bonifaci, G. D’Angelo, H. Li, A. Marchetti-Spaccamela, N. Megow, and L. S-
tougie. Scheduling real-time mixed-criticality jobs. In P. Hlinený and A.ı́n Kucera, editors,
Proc. of the 35th International Symposium on the Mathematical Foundations of Computer
Science, volume 6281 of Lecture Notes in Computer Science, pages 90–101. Springer, 2010.
8, 10, 38

[55] S.K. Baruah, V. Bonifaci, G. D’Angelo, H. Li, A. Marchetti-Spaccamela, N. Megow, and
L. Stougie. Mixed-criticality scheduling. In 10th Workshop on Models and Algorithms for
Planning and Scheduling Problems (MAPSP), Nymburk, Czech Republic, pages 1–3, 2011.
38

[56] S.K. Baruah, V. Bonifaci, G. D’Angelo, H. Li, A. Marchetti-Spaccamela, N. Megow, and
L. Stougie. Scheduling real-time mixed-criticality jobs. IEEE Transactions on Computers,
61(8):1140–1152, 2012. 8, 38

[57] S.K. Baruah, V. Bonifaci, G. D’Angelo, H. Li, A. Marchetti-Spaccamela, S. Van Der Ster, and
L. Stougie. Preemptive uniprocessor scheduling of mixed-criticality sporadic task systems.
Journal of the ACM (JACM), 62(2):14, 2015. 16

[58] S.K. Baruah, V. Bonifaci, G. D’Angelo, H. Li, A. Marchetti-Spaccamela, S. van der Ster, and
L. Stougie. The preemptive uniprocessor scheduling of mixed-criticality implicit-deadline
sporadic task systems. In Proc. of ECRTS, pages 145–154, 2012. 39

[59] S.K. Baruah, V. Bonifaci, G. D’Angelo, A. Marchetti-Spaccamela, S. van der Ster, and L. S-
tougie. Mixed-criticality scheduling of sporadic task systems. In Proc. of the 19th Annual
European Symposium on Algorithms (ESA 2011) LNCS 6942, Saarbruecken, Germany, pages
555–566, 2011. 16, 39

[60] S.K. Baruah and A. Burns. Sustainable schedulability analysis. In Proc. of IEEE Real-Time
Systems Symposium (RTSS), pages 159–168, 2006. 37

[61] S.K. Baruah and A. Burns. Implementing mixed criticality systems in Ada. In A. Ro-
manovsky, editor, Proc. of Reliable Software Technologies - Ada-Europe 2011, pages 174–
188. Springer, 2011. 7, 9, 34, 42

[62] S.K. Baruah and A. Burns. Fixed-priority scheduling of dual-criticality systems. In Proc. 21st
RTNS, pages 173–182. ACM, 2013. 14

[63] S.K. Baruah and A. Burns. Achieving temporal isolation in multiprocessor mixed-criticality
systems. In L. Cucu-Grosjean and R. Davis, editors, Proc. 2nd Workshop on Mixed Criticality
Systems (WMC), RTSS, pages 21–26, 2014. 18, 25

53

[64] S.K. Baruah, A. Burns, and R. I. Davis. Response-time analysis for mixed criticality systems.
In Proc. IEEE Real-Time Systems Symposium (RTSS), pages 34–43, 2011. 9, 10, 12, 22, 33,
34

[65] S.K. Baruah, A. Burns, and R.I. Davis. An extended fixed priority scheme for mixed criticality
systems. In L. George and G. Lipari, editors, Proc. ReTiMiCS, RTCSA, pages 18–24, 2013.
12

[66] S.K. Baruah and B. Chattopadhyay. Response-time analysis of mixed criticality systems with
pessimistic frequency specification. In Proc. RTCSA, 2013. 7, 12

[67] S.K. Baruah, B. Chattopadhyay, H. Li, and I. Shin. Mixed-criticality scheduling on multipro-
cessors. Real-Time Systems Journal, 50:142–177, 2014. 22

[68] S.K. Baruah, N. Cohen, G. Plaxton, and D. Varvel. Proportionate progress: A notion of
fairness in resource allocation. Algorithmica, 15(6):600–625, 1996. 21

[69] S.K. Baruah, A. Easwaran, and Z. Guo. MC-Fluid: Simplified and optimally quantified. In
Proc. IEEE Real-Time Systems Symposium (RTSS), pages 327–337, 2015. 22, 39

[70] S.K. Baruah, A. Easwaran, and Z. Guo. Mixed-criticality scheduling to minimize makespan.
In LIPIcs-Leibniz International Proc. in Informatics, volume 65, 2016. 8

[71] S.K. Baruah and G. Fohler. Certification-cognizant time-triggered scheduling of mixed-
criticality systems. In Proc. of IEEE Real-time Systems Symposium 2011, December 2011.
18

[72] S.K. Baruah and Z. Guo. Mixed criticality scheduling upon unreliable processors. Technical
report, University of North Carolina at Chapel Hill, 2013. 8

[73] S.K. Baruah and Z. Guo. Mixed-criticality scheduling upon varying-speed processors. In
Proc. IEEE 34th Real-Time Systems Symposium, pages 68–77, 2013. 19

[74] S.K. Baruah and Z. Guo. Scheduling mixed-criticality implicit-deadline sporadic task systems
upon a varying-speed processor. In Proc. IEEE Real-Time Systems Symposium, pages 31–400.
IEEE, 2014. 19

[75] S.K. Baruah and Z. Guo. Mixed-criticality job models: a comparison. In L. Cucu-Grosjean
and R. Davis, editors, Proc. 3rd Workshop on Mixed Criticality Systems (WMC), RTSS, pages
1–5, 2015. 37

[76] S.K. Baruah, H. Li, and L. Stougie. Mixed-criticality scheduling: Improving resource-
augmented results. In Computers and Their Applications, ISCA, pages 217–223, 2010. 38,
39

[77] S.K. Baruah, H. Li, and L. Stougie. Towards the design of certifiable mixed-criticality sys-
tems. In Proc. of the IEEE Real-Time Technology and Applications Symposium (RTAS), pages
13–22. IEEE, 2010. 8

[78] S.K. Baruah and S. Vestal. Schedulability analysis of sporadic tasks with multiple criticality
specifications. In ECRTS, pages 147–155, 2008. 5, 15

[79] S.K. Barugh. Scheduling analysis for a general model of mixed-criticality recurrent real-time
tasks. In Proc. IEEE RTSS, pages 25–34, 2016. 16

[80] I. Bate, A. Burns, and R.I. Davis. A bailout protocol for mixed criticality systems. In Proc.
27th ECRTS, pages 259–268, 2015. 36, 43

[81] I. Bate, A. Burns, and R.I. Davis. An enhanced bailout protocol for mixed criticality embedded
software. IEEE Transactions on Software Engineering, 43(4):298–320, 2016. 36, 43

54

[82] L. Behera and P. Bhaduri. Time-triggered scheduling for multiprocessor mixed-criticality
systems. In Atul Negi, Raj Bhatnagar, and Laxmi Parida, editors, Proc. Distributed Computing
and Internet Technology, pages 135–151. Springer International Publishing, 2018. 18

[83] G. Bernat and A. Burns. New results on fixed priority aperiodic servers. In Proc. 20th IEEE
Real-Time Systems Symposium, pages 68–78, 1999. 27

[84] G. Bernat and A. Burns. Multiple servers and capacity sharing for implementing flexible
scheduling. Real-Time Systems Journal, 22:49–75, 2002. 27

[85] G. Bernat, A. Colin, and S.M. Petters. Wcet analysis of probabilistic hard real-time systems.
In 23rd IEEE Real-Time Systems Symposium, pages 279–288. IEEE, 2002. 31

[86] K.J. Biba. Integrity considerations for secure computer systems. Mtr-3153, Mitre Corpora-
tion, 1977. 17

[87] E. Bini, M. Di Natale, and G.C. Buttazzo. Sensitivity analysis for fixed-priority real-time
systems. In Proc. ECRTS, pages 13–22, 2006. 13

[88] K. Bletsas, M.A. Awan, P.F. Souto, B. Akesson, A. Burns, and E. Tovar. Decoupling criticality
and importance in mixed-criticality scheduling. In Jing Li and Zhishan Guo, editors, Proc.
6th Workshop on Mixed Criticality Systems (WMC), RTSS, pages 25–32, 2018. 35

[89] K. Bletsas, M.A. Awan, P.F. Souto, B. Akesson, and E. Tovar. Mixed-criticality systems with
partial lockdown and cache reclamation upon mode change. In Proc. WiP at ECRTS, pages
22–24, 2017. 42

[90] K. Bletsas and S.M. Petters. Using NPS-F for mixed criticality systems. In Proc. WiP, RTSS,
page 25, 2012. 21

[91] K. Bletsas and S.M. Petters. Using NPS-F for mixed criticality multicore ystems. Cister-tr-
130303, CISTER, 2013. 21

[92] A. Blin, C. Courtaud, J. Sopena, and G. Muller. Maximizing parallelism without exploding
deadlines in a mixed-criticality embedded system. In Proc. ECRTS, pages 109–119, 2016. 30

[93] M. Bommert. Schedule-aware distributed of parallel load in a mixed criticality environment.
In Proc. JRWRTC, RTNS, pages 21–24, 2013. 20

[94] B.B. Brandenburg. A synchronous IPC protocol for predicatable access to shared resources
in mixed-criticality systems. In Proc. IEEE Real-Time Systems Symposium, pages 196–206.
IEEE, 2014. 18

[95] F. Broekaert, A. Fritsch, L. Sa, and S. Tverdyshev. Towards power-efficient mixed-critical
systems. In Proc. of OSPERT 2013, pages 30–35, 2013. 44

[96] I. Broster and A. Burns. An analysable bus-guardian for event-triggered communication. In
Proc. of the 24th Real-time Systems Symposium, pages 410–419. Computer Society, IEEE,
2003. 25

[97] A. Burns. Preemptive priority based scheduling: An appropriate engineering approach. In
S.H. Son, editor, Advances in Real-Time Systems, pages 225–248. Prentice-Hall, 1994. 11

[98] A. Burns. The application of the original priority ceiling protocol to mixed criticality systems.
In L. George and G. Lipari, editors, Proc. ReTiMiCS, RTCSA, pages 7–11, 2013. 17

[99] A. Burns. System mode changes - general and criticality-based. In L. Cucu-Grosjean and
R. Davis, editors, Proc. 2nd Workshop on Mixed Criticality Systems (WMC), RTSS, pages
3–8, 2014. 9, 29, 36

55

[100] A. Burns. An augmented model for mixed criticality. In Davis Baruah, Cucu-Grosjean
and Maiza, editors, Mixed Criticality on Multicore/Manycore Platforms (Dagstuhl Semi-
nar 15121), volume 5(3), pages 92–93. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
Dagstuhl, Germany, 2015. 37

[101] A. Burns and S.K. Baruah. Timing faults and mixed criticality systems. In Jones and Lloyd,
editors, Dependable and Historic Computing, volume LNCS 6875, pages 147–166. Springer,
2011. 7, 9

[102] A. Burns and S.K. Baruah. Towards a more practical model for mixed criticality systems. In
Proc. 1st Workshop on Mixed Criticality Systems (WMC), RTSS, pages 1–6, 2013. 13, 34

[103] A. Burns and S.K. Baruah. Semi-partitioned cyclic executives for mixed criticality systems.
In L. Cucu-Grosjean and R. Davis, editors, Proc. 3rd Workshop on Mixed Criticality Systems
(WMC), RTSS, pages 36–41, 2015. 18, 25

[104] A. Burns, R. Davis, S. K. Baruah, and I. Bate. Robust mixed-criticality systems. IEEE
Transactions on Computers, 67(10):1478–1491, 2018. 34

[105] A. Burns and R.I. Davis. Mixed criticality on controller area network. In Proc. Euromicro
Conference on Real-Time Systems (ECRTS), pages 125–134, 2013. 7, 12, 26, 28

[106] A. Burns and R.I. Davis. Adaptive mixed criticality scheduling with deferred preemption. In
Proc. IEEE Real-Time Systems Symposium, pages 21–30. IEEE, 2014. 11

[107] A. Burns and R.I. Davis. Response-time analysis for mixed-criticality systems with arbi-
trary deadlines. In Agrawal and Easwaran, editors, Proc. 5th Workshop on Mixed Criticality
Systems (WMC), RTSS, pages 13–18, 2017. 11

[108] A. Burns and R.I. Davis. A survey of research into mixed criticality systems. ACM Computer
Surveys, 50(6):1–37, 2017. 6

[109] A. Burns and R.I. Davis. Mixed criticality systems: A review. Technical Report MCC-
1(L), available at http://www-users.cs.york.ac.uk/burns/review.pdf, Department of Computer
Science, University of York, 2019. 6

[110] A. Burns, T. Fleming, and S.K. Baruah. Cyclic executives, multi-core platforms and mixed-
criticality applications. In Proc. 27th ECRTS, pages 3–12, 2015. 18, 25

[111] A. Burns, J. Harbin, and L.S. Indrusiak. A Wormhole NoC protocol for mixed criticality
systems. In Proc. IEEE Real-Time Systems Symposium, pages 184–195. IEEE, 2014. 25

[112] A. Burns, J. Harbin, L.S. Indrusiak, I. Bate, R.I. Davis, and D. Griffin. Airtight – a resilient
wireless communication protocol for mixed-criticality systems. In Proc. RTCSA, 2018. 26

[113] A. Burns and T.J. Quiggle. Effective use of abort in programming mode changes. Ada Letters,
1990. 9, 36

[114] A. Burns and A. J. Wellings. Real-Time Systems and Programming Languages. Addison
Wesley Longman, 4th edition, 2009. 14, 27

[115] A. Burns and A.J. Wellings. Dual priority scheduling in Ada 95 and real-time POSIX. In
Proc. of 21th IFAC/IFIP Workshop on Real-Time Programming (WRTP96),, 1996. 27

[116] G. Buttazzo, G. Lipari, and L. Abeni. Elastic task model for adaptive rate control. In IEEE
Real-Time Systems Symposium, pages 286–295, 1998. 16

[117] G.C. Buttazzo. Hard Real-Time Computing Systems. Springer, 2005. 27

[118] J. Caplan, Z. Al-bayati, H. Zeng, and B.H. Meyer. Mapping and scheduling mixed-criticality
systems with on-demand redundancy. IEEE Transactions on Computers, PP(99):1–1, 2017.
28

56

[119] G. Carvajal and S. Fischmeister. An open platform for mixed-criticality real-time ethernet.
In Proc. of the Conference on Design, Automation and Test in Europe, Proc. DATE, pages
153–156, 2013. 24

[120] F.J. Cazorla, E. Quiones, T. Vardanega, L. Cucu-Grosjean, B. Triquet, G. Bernat, E.D. Berger,
J. Abella, F. Wartel, M. Houston, L. Santinelli, L. Kosmidis, C. Lo, and D. Maxim. PROAR-
TIS: Probabilistically analyzable real-time systems. ACM Trans. Embedded Comput. Syst.,
12(2):94, 2013. 7, 32

[121] S. Chaki and D. Kyle. Dmpl: Programming and verifying distributed mixed-synchrony and
mixed-critical software. Technical Report CMU/SEI-2016-TR-005, 2016. 42

[122] F. Checconi, T. Cucinotta, D. Faggioli, and G. Lipari. Hierarchical multiprocessor cpu reser-
vations for the linux kernel. In Proc. of 5th International Workshop on Operating Systems
Platforms for Embedded Real-Time Applications (OSPERT 2009), 2009. 30

[123] G. Chen, N. Guan, B. Hu, and W. Yi. Edf-vd scheduling of flexible mixed-criticality system
with multiple-shot transitions. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 2018. 35

[124] Y. Chen, K.G. Shin, and H. Xiong. Generalizing fixed-priority scheduling for better schedu-
lability in mixed-criticality systems. Information Processing Letters, 116(8):508–512, 2016.
12

[125] L. Cheng, K. Huang, G. Chen, B. Hu, and A. Knoll. Mixed-criticality control system with
performance and robustness guarantees. In Proc. IEEE Trustcom/BigDataSE/ICESS, pages
767–775, 2017. 9

[126] H. Chetto and M. Chetto. Some results of the earliest deadline scheduling algorithm. IEEE
Transactions on Software Engineering, 15(10):1261–1269, 1989. 15

[127] M. Chisholm, N. Kim, S. Tang, N. Otterness, J.H. Anderson, F.D. Smith, and D. Porter.
Supporting mode changes while providing hardware isolation in mixed-criticality multicore
systems. In Proc. RTNS, 2017. 20

[128] M. Chisholm, N. Kim, B.C. Ward, N. Otterness, J.H. Anderson, and F.D. Smith. Reconcil-
ing the tension between hardware isolation and data sharing in mixed-criticality, multicore
systems. In Proc. Real-Time Systems Symposium (RTSS), pages 57–68. IEEE, 2016. 18

[129] M. Chisholm, B. Ward, N. Kim, and J. Anderson. Cache sharing and isolation tradeoffs in
multicore mixed-criticality systems. Technical report, University of North Carolina, 2015. 20

[130] J. Choi, H. Yang, and S. Ha. Optimization of fault-tolerant mixed-criticality multi-core sys-
tems with enhanced wcrt analysis. ACM Trans. Des. Autom. Electron. Syst., 24(1):6:1–6:26,
2018. 29

[131] M. Chrisholm, B. Ward, N. Kim, and J. Anderson. Cache-sharing and isolation tradeoffs in
multicore mixed-criticality systems. In Proc. IEEE Real-Time Systems Symposium (RTSS),
pages 305–316, 2015. 42

[132] H.S. Chwa, K.G. Shin, H. Baek, and J Lee. Physical-state-aware dynamic slack management
for mixed criticality systems. In Proc. RTAS, 2018. 36

[133] B. Cilku, A. Crespo, P. Puschner, J. Coronel, and S. Peiro. A memory arbitration scheme for
mixed-criticality multocore platforms. In L. Cucu-Grosjean and R. Davis, editors, Proc. 2nd
Workshop on Mixed Criticality Systems (WMC), RTSS, pages 27–32, 2014. 41

[134] B. Cilku, A. Crespo, P. Puschner, J. Coronel, and S. Peiro. A TDMA-based arbitration scheme
for mixed-criticality multicore platforms. In Proc EBCCSP, pages 1–6. IEEE, 2015. 24, 41

57

[135] B. Cilku and P. Puschner. Towards temporal and spatial isolation in memory hierarchies
for mixed-criticality systems with hypervisors. In L. George and G. Lipari, editors, Proc.
ReTiMiCS, RTCSA, pages 25–28, 2013. 30

[136] M. Cinque and D. Cotroneo. Towards lightweight temporal and fault isolation in mixed-
criticality systems with real-time containers. In Proc. 48th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks Workshops (DSN-W), pages 59–60, 2018.
41

[137] M. Cinque and G.D. Tommasi. Real-time containers for large-scale mixed-criticality systems.
In WiP, RTSS, pages 369–371, 2017. 41

[138] A. Cohen, V. Perrelle, D. Potop-Butucaru, E. Soubiran, and Z. Zhang. Mixed-criticality in
railway systems: A case study on signaling application. Ada User Journal, Proc of Workshop
on Mixed Criticality for Industrial Systems (WMCIS’2014), 35(2):138–143, 2014. 19

[139] A. Crespo, A. Alonso, M. Marcos, J.A. Puente, and P. Balbastre. Mixed criticality in control
systems. In Proc. 19th World Congress The Federation of Automatic Control, pages 12261–
12271, 2014. 30

[140] A. Crespo, P. Balbastre, and J. Simo. Execution control in mixed-criticality systems. In Proc.
Int. Conf. Embedded Systems, Cyber-Physical Systems and Applications, pages 77–82, 2018.
30

[141] O. Cros, F. Fauberteau, L. George, and X. Li. Mixed-criticality over switched ethernet net-
works. Ada User Journal, Proc of Workshop on Mixed Criticality for Industrial Systems
(WMCIS’2014), 35(2):138–143, 2014. 26

[142] O. Cros, L. George, and X.Li. A protocol for mixed-criticality management in switched
ethernet networks. In L. Cucu-Grosjean and R. Davis, editors, Proc. 3rd Workshop on Mixed
Criticality Systems (WMC), RTSS, pages 12–17, 2015. 26

[143] L. Cucu-Grosjean. Independence - a misunderstood property of and for probabilistic real-time
systems. In N. Audsley and S.K. Baruah, editors, In Real-Time Systems: the past, the present
and the future, pages 29–37, 2013. 7

[144] L. Cucu-Grosjean, L. Santinelli, M. Houston, C. Lo, T. Vardanega, L. Kosmidis, J. Abella,
E. Mezzetti, E. Quiones, and F.J. Cazorla. Measurement-based probabilistic timing analysis
for multi-path programs. In Proc. 24th Euromicro Conference on Real-Time Systems (ECRTS),
pages 91–101, 2012. 7

[145] V. David, A. Barbot, and D. Chabrol. Dependable real-time system and mixed criticality:
Seeking safety, flexibility and efficiency with Kron-OS. Ada User Journal, 35(4):259–265,
2014. 42

[146] R.I. Davis. On exploiting spare capacity in hard real-time systems. PhD thesis, University of
York, UK, 1995. 27

[147] R.I. Davis, S. Altmeyer, and A. Burns. Mixed criticality systems with varying context switch
costs. In Proc. RTAS, 2018. 40

[148] R.I. Davis, S. Altmeyer, and A. Burns. Priority assignment in fixed priority pre-emptive
systems with varying context switch costs. In Proc. RTSS Workshop on Open Problems,
pages 11–12, 2018. 40

[149] R.I. Davis and M. Bertogna. Optimal fixed priority scheduling with deferred pre-emption. In
Proc. IEEE Real-Time Systems Symposium, pages 39–50, 2012. 11

[150] R.I. Davis and A. Burns. Hierarchical fixed priority preemptive scheduling. In Proc. of IEEE
Real-Time Systems Symposium (RTSS), pages 389–398, 2005. 30

58

[151] R.I. Davis and A. Burns. Resource sharing in hierarchical fixed priority preemptive systems.
In Proc. IEEE Real-Time Systems Symposium (RTSS), 2006. 30

[152] R.I. Davis and A. Burns. Robust priority assignment for fixed priority real-time systems. In
Proc. of IEEE Real-Time Systems Symposium (RTSS), 2007. 10

[153] R.I. Davis, A. Burns, R.J. Bril, and J.J. Lukkien. Controller area network (CAN) schedula-
bility analysis: Refuted, revisited and revised. Journal of Real-Time Systems, 35(3):239–272,
2007. 26

[154] R.I. Davis, L. Santinelli, S. Altmeyer, C. Maiza, and L. Cucu-Grosjean. Analysis of proba-
bilistic cache related pre-emption delays. In ECRTS, pages 129–138, 2013. 7

[155] R.I. Davis, K. Tindell, and A. Burns. Scheduling slack time in fixed priority preemptive
systems. In Proc. 14th IEEE Real-Time Systems Symposium, 1993. 27

[156] R.I. Davis and A. J. Wellings. Dual priority scheduling. In Proc. 16th IEEE Real-Time Systems
Symposium, pages 100–109, 1995. 27

[157] D. de Niz, B. Andersson, H. Kim, M. Klein, L.T.X. Phan, and R. Rajkumar. Mixed-criticality
processing pipelines. In Design, Automation Test in Europe Conference Exhibition (DATE),
pages 1372–1375, 2017. 23

[158] C. Deutschbein, T. Fleming, A. Burns, and S. Baruah. Multi-core cyclic executives for safety-
critical systems. In Kim Guldstrand Larsen, Oleg Sokolsky, and Ji Wang, editors, Proc. De-
pendable Software Engineering. Theories, Tools, and Applications, SETTA, pages 94–109.
Springer International Publishing, 2017. 18

[159] J.L. Dı́az, D.F. Garcia, K. Kim, C.G. Lee, L.L. Bello, J.M. López, and O. Mirabella. Stochastic
analysis of periodic real-time systems. In IEEE Real-Time Systems Symposium (RTSS), 2002.
32

[160] J. Diemer and R. Ernst. Back suction: Service guarantees for latency-sensitive on-chip net-
works. In Proc. of the 2010 Fourth ACM/IEEE International Symposium on Networks-on-
Chip, Proc. NOCS ’10, pages 155–162. IEEE Computer Society, 2010. 25

[161] M. Digalwar, B.K. Raveendran, and S. Mohan. LAMCS: A leakage aware DVFS based
mixed task set scheduler for multi-core processors. Sustainable Computing: Informatics and
Systems, 15(Supplement C):63 – 81, 2017. 44

[162] A.C. Dimopoulos, G. Bravos, G. Dimitrakopoulos, M. Nikolaidou, V. Nikolopoulos, and
D. Anagnostopoulos. A multi-core context-aware management architecture for mixed-
criticality smart building applications. In Proc. System of Systems Engineering Conference
(SoSE), pages 1–6. IEEE, 2016. 31

[163] F. Dorin, P. Richard, M. Richard, and J. Goossens. Schedulability and sensitivity analysis
of multiple criticality tasks with fixed-priorities. Real-Time Systems Journal, 46(3):305–331,
2010. 9

[164] S. Draskovic, P. Huang, and L. Thiele. On the safety of mixed-criticality scheduling. In Proc.
4th WMC (RTSS), page 6, 2016. 33

[165] M. Dridi, M. Lallali, S. Rubin, F. Singhoff, and J-P. Diguet. Modeling and validation of a
mixed-criticality NoC router using the IF language. In Proc. NoCArc, International Workshop
on Network on Chip Architectures. ACM, 2017. 25

[166] M. Dridi, S. Rubin, M. Lallali, J. Sepulveda, F. Singhoff, and J-P. Diguet. DAS: An efficient
NoC router for mixed-criticality real-time systems. In Proc. ICCD, International Conference
on Computer Design. IEEE, 2017. 25

59

[167] M. Dridi, S. Rubini, M. Lallali, M.J.S. Florez, F. Singhoff, and J-P Diguet. Design and multi-
abstraction level evaluation of a NoC router for mixed-criticality real-time systems. ACM
Journal on Emerging Technologies in Computing Systems, 2018. 25

[168] C. Dürr, Z. Hanzálek, C. Konrad, R. Sitters, O.C. Vásquez, and G. Woeginger. The triangle
scheduling problem. arXiv preprint arXiv:1602.04365, 2016. 27

[169] A. Easwaran. Demand-based scheduling of mixed-criticality sporadic tasks on one processor.
In Proc. IEEE 34th Real-Time Systems Symposium, pages 78–87, 2013. 16

[170] A. Easwaran and I. Shin. Compositional mixed-criticality scheduling. CRTS 2014, 2014. 35

[171] L. Ecco, S. Tobuschat, S. Saidi, and R. Ernst. A mixed critical memory controller using bank
privatization and fixed priority scheduling. In Proc. Embedded and Real-Time Computing
Systems and Applications (RTCSA), pages 1–10. IEEE, 2014. 24

[172] S. Edgar and A. Burns. Statistical analysis of WCET for scheduling. In Proc. 22nd IEEE
Real-Time Systems Symposium, 2001. 7

[173] P. Ekberg, M. Stigge, N. Guan, and W. Yi. State-based mode switching with applications to
mixed criticality systems. In Proc. WMC, RTSS, pages 61–66, 2013. 8

[174] P. Ekberg and W. Yi. Bounding and shaping the demand of mixed-criticality sporadic task
systems. In ECRTS, pages 135–144, 2012. 15, 16

[175] P. Ekberg and W. Yi. Bounding and shaping the demand of generalized mixed-criticality
sporadic task systems. Journal of Real-Time Systems, 50:48–86, 2014. 8, 16

[176] P. Ekberg and W. Yi. A note on some open problems in mixed-criticality scheduling. In Proc.
RTOPS, 27th ECRTS, pages 1–2, 2015. 38

[177] P. Ekberg and W. Yi. Schedulability analysis of a graph-based task model for mixed-criticality
systems. Real-Time Systems, 52:1–37, 2016. 8

[178] P. Emberson and I. Bate. Minimising task migrations and priority changes in mode transitions.
In Proc. of the 13th IEEE Real-Time And Embedded Technology And Applications Symposium
(RTAS 07), pages 158–167, 2007. 9, 36

[179] B. Engel. Tightening critical section bounds in mixed-criticality systems through preemptible
hardware transactional memory. In Proc. OSPERT, pages 17–22, 2016. 17

[180] R. Ernst and M. Di Natale. Mixed criticality systems?a history of misconceptions? IEEE
Design & Test, 33(5):65–74, 2016. 4, 45

[181] A. Esper, G. Neilissen, V. Neils, and E. Tovar. How realistic is the mixed-criticality real-time
system model. In 23rd International Conference on Real-Time Networks and Systems (RTNS
2015), pages 139–148, 2015. 4, 45

[182] A. Esper, G. Nelissen, V. Nélis, and E. Tovar. An industrial view on the common academic
understanding of mixed-criticality systems. Real-Time Systems, 54(3):745–795, 2018. 45

[183] S. Esposito, S. Avramenko, and M. Violante. Rtos for mixed criticality applications deployed
on noc-based cots mpsoc. In Proc. IEEE 19th Latin-American Test Symposium (LATS), pages
1–6, 2018. 25, 41

[184] S. Esposito, J. Sini, and M. Violante. Real-time validation of mixed-criticality applications.
In Proc. IEEE 19th Latin-American Test Symposium (LATS), pages 1–6, 2018. 41

[185] S. Esposito, M. Violante, M. Sozzi, M. Terrone, and M. Traversone. A novel method for
online detection of faults affecting execution-time in multicore-based systems. ACM Trans.
Embed. Comput. Syst., 16(4):94:1–94:19, 2017. 41

60

[186] C. Evripidou and A. Burns. Scheduling for mixed-criticality hypervisor systems in the auto-
motive domain. In Proc. 4th WMC (RTSS), page 6, 2016. 41

[187] G. Farrall, C. Stellwag, J. Diemer, and R. Ernst. Hardware and software support for mixed-
criticality multicore systems. In Proc. of the Conference on Design, Automation and Test in
Europe, WICERT, DATE, 2013. 40

[188] A. Finzi, A. MIFDAOUI, F. Frances, and E. Lochin. Mixed-Criticality on the AFDX Network:
Challenges and Potential Solutions. In Proc. 9th Embedded Real-Time Software and Systems
(ERTS), pages pp. 1–9, 2018. 24

[189] T. Fleming, S.K. Baruah, and A. Burns. Improving the schedulability of mixed criticality
cyclic executives via limited task splitting. In Proc. of the 24th International Conference
RTNS, pages 277–286. ACM, 2016. 18

[190] T. Fleming and A. Burns. Extending mixed criticality scheduling. In Proc. 1st Workshop on
Mixed Criticality Systems (WMC), RTSS, pages 7–12, 2013. 12, 15, 43

[191] T. Fleming and A. Burns. Incorporating the notion of importance into mixed criticality sys-
tems. In L. Cucu-Grosjean and R. Davis, editors, Proc. 2nd Workshop on Mixed Criticality
Systems (WMC), RTSS, pages 33–38, 2014. 35

[192] T. Fleming and A. Burns. Investigating mixed criticality cyclic executive schedule generation.
In L. Cucu-Grosjean and R. Davis, editors, Proc. 3rd Workshop on Mixed Criticality Systems
(WMC), RTSS, pages 42–47, 2015. 18, 25

[193] T. Fleming and A. Burns. Utilising asymmetric parallelism in multi-core mcs implemented
via cyclic executives. In Proc. 4th WMC (RTSS), page 6, 2016. 18

[194] T. Fleming, H-M.Huang, A. Burns, C. Gill, S. Baruah, and C. Lu. Corrections to and discus-
sion of ”implementation and evaluation of mixed-criticality scheduling approaches for spo-
radic tasks”. ACM Trans. Embed. Comput. Syst., 16(3):77:1–77:4, 2017. 12

[195] J. Freitag, S. Uhrig, and T. Ungerer. Virtual Timing Isolation for Mixed-Criticality Systems.
In Sebastian Altmeyer, editor, 30th Euromicro Conference on Real-Time Systems (ECRTS
2018), volume 106 of Leibniz International Proc. in Informatics (LIPIcs), pages 13:1–13:23.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2018. 23

[196] P. K. Gadepalli, R. Gifford, L. Baier, M. Kelly, and G. Parmer. Temporal capabilities: Access
control for time. In Proc. IEEE Real-Time Systems Symposium (RTSS), pages 56–67, 2017.
41

[197] L. George, D. Masson, and V. Neli. Selective real-time data emission in mobile intelligent
transport systems. In Agrawal and Easwaran, editors, Proc. 5th Workshop on Mixed Criticality
Systems (WMC), RTSS, pages 7–12, 2017. 26

[198] O. Gettings, S. Quinton, and R.I. Davis. Mixed criticality systems with weakly-hard con-
straints. In Proc. 23rd International Conference on Real-Time Networks and Systems (RTNS
2015), pages 237–246, 2015. 34

[199] G. Giannopoulou and et al. DOL-BIP-Critical: A tool chain for rigorous design and imple-
mentation of mixed-criticality multi-core systems. Technical Report TR-2016-363, Verimag,
2016. 45

[200] G. Giannopoulou, P. Huang, A. Gomez, and L. Thiele. Mixed-criticality runtime mechanisms
and evaluation on multicore. In Proc. RTAS, 2015. 20, 24

[201] G. Giannopoulou, N. Stoimenov, P. Huang, and L. Thiele. Scheduling of mixed-criticality
applications on resource-sharing multicore systems. In Proc. Int. Conference on Embedded
Software (EMSOFT), Montreal, 2013. 24

61

[202] G. Giannopoulou, N. Stoimenov, P. Huang, and L. Thiele. Mapping mixed-criticality applica-
tions on multi-core architectures. In Proc. Design, Automation and Test in Europe Conference
and Exhibition (DATE), pages 1–6. IEEE, 2014. 45

[203] G. Giannopoulou, N. Stoimenov, P. Huang, L. Thiele, and B. D. de Dinechin. Mixed-criticality
scheduling on cluster-based manycores with shared communication and storage resources.
Real-Time Systems, pages 1–51, 2015. 25

[204] C. Gill, J. Orr, and S. Harris. Supporting graceful degradation through elasticity in mixed-
criticality federated scheduling. In Jing Li and Zhishan Guo, editors, Proc. 6th Workshop on
Mixed Criticality Systems (WMC), RTSS, pages 19–24, 2018. 22, 34

[205] Robert Bosch GmbH. CAN specification version 2.0. Technical report, Postfach 30 02 40,
D-70442 Stuttgart, 1991. 26

[206] M. Gomony, J. Garside, B. Akesson, N. Audsley, and K. Goossens. A globally arbitrated
memory tree for mixed-time-criticality systems. IEEE Transactions on Computers, 2016. 25

[207] K. Goossens, A. Azevedo, K. Chandrasekar, M.D. Gomony, S. Goossens, M. Koedam, Y. Li,
D. Mirzoyan, A. Molnos, A.B. Nejad, A. Nelson, and S. Sinha. Virtual execution platforms
for mixed-time-criticality systems: The compsoc architecture and design flow. SIGBED Rev.,
10(3):23–34, 2013. 41

[208] K. Goossens, M. Koedam, A. Nelson, S. Sinha, S. Goossens, Y. Li, G. Breaban, R. van Kam-
penhout, R. Tavakoli, J. Valencia, H.A. Balef, B. Akesson, S. Stuijk, M. Geilen, D. Goswami,
and M. Nabi. NoC-based multiprocessor architecture for mixed-time-criticality applications.
In Soonhoi Ha and Jürgen Teich, editors, Handbook of Hardware/Software Codesign, pages
1–40. Springer Netherlands, Dordrecht, 2017. 41

[209] S. Goossens, B. Akesson, and K. Goossens. Conservative open-page policy for mixed time-
criticality memory controllers. In Proc. DATE, pages 525–530, 2013. 24

[210] S. Goossens, J. Kuijsten, B. Akesson, and K. Goossens. A reconfigurable real-time SDRAM
controller for mixed time-criticality systems. In Int’l Conf. on Hardware/Software Codesign
and System Synthesis (CODES+ISSS), 2013. 24

[211] D. Goswami, M. Lukasiewycz, R. Schneider, and S. Chakraborty. Time-triggered imple-
mentations of mixed-criticality automotive software. In Proc. of the Conference on Design,
Automation and Test in Europe, Proc. DATE, pages 1227–1232, 2012. 26

[212] R. Gratia, T. Robert, and L. Pautet. Adaptation of RUN to mixed-criticality systems. In Proc.
8th Junior Researcher Workshop on Real-Time Computing, RTNS, 2014. 21

[213] R. Gratia, T. Robert, and L. Pautet. Generalized mixed-criticality scheduling based on RUN.
In 23rd International Conference on Real-Time Networks and Systems (RTNS 2015), pages
267–276, 2015. 21

[214] R. Gratia, T. Robert, and L. Pautet. Scheduling of mixed-criticality systems with run. In Proc.
ETFA, pages 1–8. IEEE, 2015. 21

[215] P. Graydon and I. Bate. Safety assurance driven problem formulation for mixed-criticality
scheduling. In Proc. WMC, RTSS, pages 19–24, 2013. 4, 7, 9

[216] D. Griffin, I. Bate, B. Lesage, and F. Soboczenski. Evaluating mixed criticality scheduling
algorithms with realistic workloads. In L. Cucu-Grosjean and R. Davis, editors, Proc. 3rd
Workshop on Mixed Criticality Systems (WMC), RTSS, pages 24–29, 2015. 43

[217] S. Groesbrink, L. Almeida, M. de Sousa, and S.M. Petters. Towards certifiable adaptive
reservations for hypervisor-based virtualization. In Proc. of the 20th Real-Time and Embedded
Technology and Applications Symposium (RTAS), 2014. 30

62

[218] S. Groesbrink, S. Oberthr, and D. Baldin. Architecture for adaptive resource assignment to
virtualized mixed-criticality real-time systems. In Special Issue on the 4th Workshop on Adap-
tive and Reconfigurable Embedded Systems (APRES 2012), volume 10(1). ACM SIGBED
Review, 2013. 30

[219] K. Grüttner. Empowering mixed-criticality system engineers in the dark silicon era: To-
wards power and temperature analysis of heterogeneous mpsocs at system level. In Model-
Implementation Fidelity in Cyber Physical System Design, pages 57–90. Springer, 2017. 44

[220] C. Gu, N. Guan, Q. Deng, and W. Yi. Partitioned mixed-criticality scheduling on multiproces-
sor platforms. In Design, Automation and Test in Europe Conference and Exhibition (DATE),
2014, pages 1–6. IEEE, 2014. 21

[221] C. Gu, N. Guan, Q. Deng1, and W. Yi. Improving ocbp-based scheduling for mixed-criticality
sporadic task systems. In Proc. RTCSA, 2013. 8

[222] X. Gu and A. Easwaran. Optimal speedup bound for 2-level mixed-criticality arbitrary dead-
line systems. In Proc. RTSOPS (ECRTS), pages 15–16, 2014. 39

[223] X. Gu and A. Easwaran. Dynamic budget management with service guarantees for mixed-
criticality systems. In Proc. Real-Time Systems Symposium (RTSS), pages 47–56. IEEE, 2016.
13, 34

[224] X. Gu and A. Easwaran. Efficient schedulability test for dynamic-priority scheduling of
mixed-criticality real-time systems. ACM Trans. Embed. Comput. Syst., 17(1):24:1–24:24,
2017. 16

[225] X. Gu and A. Easwaran. Dynamic budget management and budget reclamation for mixed-
criticality systems. Real-Time Systems, 2019. 13, 34

[226] X. Gu, A. Easwaran, K.M. Phan, and I. Shin. Compositional mixed-criticality scheduling.
Technical report, Nanyang Technological University, Singapore, 2014. 35

[227] X. Gu, K.-M. Phan, A. Easwaran, and I. Shin. Resource efficient isolation mechanisms in
mixed-criticality scheduling. In Proc. 27th ECRTS, pages 13–24. IEEE, 2015. 35

[228] N. Guan, P. Ekberg, M. Stigge, and W. Yi. Effective and efficient scheduling of certifiable
mixed-criticality sporadic task systems. In IEEE RTSS, pages 13–23, 2011. 15, 16

[229] N. Guan and W. Yi. Improveing the scheduling of certifiable mixed criticality sopradic task
systems. Technical report, University of Uppsala, 2012. 16

[230] D. Guo and R. Pellizzoni. A requests bundling dram controller for mixed-criticality systems.
In Proc. IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS),
pages 247–258, 2017. 24

[231] Z. Guo. Mixed-criticality scheduling on varying-speed platforms with bounded performance
drop rate. In Proc. SMARTCOMP, pages 1–3. IEEE, 2016. 19

[232] Z. Guo and S. Baruah. Mixed-criticality real-time systems. In X. Wang, editor, Cyber-
Physical Systems: A Reference. Springer, Berlin, Heidelberg, 2017. 6

[233] Z. Guo and S.K. Baruah. Implementing mixed-criticality systems upon a preemptive varying-
speed processor. Leibniz Transactions on Embedded Systems, 1(2):03–103:19, 2014. 19

[234] Z. Guo and S.K. Baruah. The concurrent consideration of uncertainty in WCETs and pro-
cessor speeds in mixed criticality systems. In 23rd International Conference on Real-Time
Networks and Systems (RTNS 2015), pages 247–256, 2015. 19

[235] Z. Guo, L. Santinelli, and K. Yang. EDF schedulability analysis on mixed-criticality systems
with permitted failure probability. In Proc. RTCSA, 2015. 32

63

[236] Z. Guo, L. Santinelli, and K. Yang. Mixed-criticality scheduling withlimited HI-criticality
behaviors. In Xinyu Feng, Markus Müller-Olm, and Zijiang Yang, editors, Dependable Soft-
ware Engineering. Theories, Tools, and Applications, pages 187–199. Springer International
Publishing, 2018. 8

[237] Z. Guo, S. Sruti, B. Ward, and S. Baruah. Sustainability in mixed-criticality scheduling. In
Proc. Real-Time Systems Symposium (RTSS), pages 24–33. IEEE, 2017. 37

[238] T. Gupta, E.J. Luit, M.M.H.P. van den Heuvel, and R.J. Bril. Experience report: Toward-
s extending an osek-compliant rtos with mixed criticality support. e-Informatica Software
Engineering Journal, 12(1):305–320, 2018. 42

[239] H. Hamza, A. Hughes, and R. Kirner. On the design of a Java virtual machine for mixed-
criticality systems. In Proc. JTRES. ACM, 2015. 42

[240] J. J. Han, X. Tao, D. Zhu, and L. T. Yang. Resource sharing in multicore mixed-criticality
systems: Utilization bound and blocking overhead. IEEE Transactions on Parallel and Dis-
tributed Systems, 28(12):3626–3641, 2017. 27

[241] J.J. Han, X. Tao, D. Zhu, and H. Aydin. Criticality-aware partitioning for multicore mixed-
criticality systems. In Proc. Parallel Processing (ICPP), pages 227–235. IEEE, 2016. 21

[242] Z. Hanzálek, T. Tunys, and P. Sucha. An analysis of the non-preemptive mixed-criticality
match-up scheduling problem. Journal of Scheduling, pages 1–7, 2016. 38

[243] J. Harbin, T. Fleming, L.S. Indrusiak, and A. Burns. GMCB: An industrial benchmark for use
in real-time mixed-criticality networks-on-chip. In Proc. WATERS, 27th ECRTS, 2015. 43

[244] J. Harbin, D. Griffin, A. Burns, I. Bate, R.I. Davis, and L.S. Indrusiak. Supporting critical
modes in airtight. In Jing Li and Zhishan Guo, editors, Proc. 6th Workshop on Mixed Criti-
cality Systems (WMC), RTSS, pages 7–12, 2018. 26

[245] P. Haririan and A. Garcia-Ortiz. A framework for hardware-based DVFS managemen-
t in multicore mixed-criticality systems. In Proc. 10th Symposium on Reconfigurable
Communication-centric Systems-on-Chip (ReCoSoC), pages 1–7. IEEE, 2015. 19

[246] M. Hassan and H. Patel. Criticality-and requirement-aware bus arbitration for multi-core
mixed criticality systems. In Proc. RTAS, pages 1–11. IEEE, 2016. 23

[247] M. Hassan, H. Patel, and R. Pellizzoni. A framework for scheduling dram memory accesses
for multi-core mixed-time critical systems. In Proc. RTAS, pages 307–316. IEEE, 2015. 24

[248] Mohamed Hassan. Heterogeneous mpsocs for mixed criticality systems: Challenges and
opportunities. CoRR, abs/1706.07429, 2017. 29

[249] C. Herber, A. Richter, H. Rauchfuss, and A. Herkersdorf. Spatial and temporal isolation of
virtual can controllers. In Proc. VtRES, RTCSA, 2013. 26

[250] J. Herman, C. Kenna, M. Mollison, J. Anderson, and D. Johnson. RTOS support for multicore
mixed-criticality systems. In Proc. of the 18th IEEE Real-Time and Embedded Technology
and Applications Symposium (RTAS), 2012. 14, 20

[251] F. Herrera, S.H.A. Niaki, and I. Sander. Towards a modelling and design framework for
mixed-criticality socs and systems-of-systems. In Proc. 16th Euromicro Conf. on Digital
Systems Design, pages 989–996, 2013. 45

[252] F. Herrera, P. Penil, and E. Villar. A model-based, single-source approach to design-space
exploration and synthesis of mixed-criticality systems. In Proc. SCOPES, pages 88–91, 2015.
45

64

[253] M. Hikmet, M.M. Kuo, P.S. Roop, and P. Ranjitkar. Mixed-criticality systems as a service for
non-critical tasks. In Proc. ISORC, pages 221–228, 2016. 28

[254] M.G. Hill and T.W. Lake. Non-interference analysis for mixed criticality code in avionics sys-
tems. In Proc. of the 15th IEEE international conference on Automated software engineering,
pages 257–260. IEEE Computer Society, 2000. 5, 40

[255] T. Hollstein, S.P Azad, T. Kogge, and B. Niazmand. Mixed-criticality NoC partitioning based
on the NoCDepend dependability technique. In Proc. 10th Symposium on Reconfigurable
Communication-centric Systems-on-Chip (ReCoSoC), pages 1–8. IEEE, 2015. 25

[256] P. Holman and J.H. Anderson. Adapting Pfair scheduling for symmetric multiprocessors.
Journal of Embedded Computing, 1(4):543–564, 2005. 21

[257] S. Hounsinou, A. Vasu, and H. Ramaprasad. Hardware implementation of a multi-mode-aware
mixed-criticality scheduler: Work-in-progress. In Proc. of the International Conference on
Hardware/Software Codesign and System Synthesis, CODES ’18, pages 8:1–8:2. IEEE Press,
2018. 43

[258] B. Hu, G. Chen, and K. Huang. Semi-slack scheduling arbitrary activation patterns in mixed-
criticality systems. IEEE Access, 6:68507–68524, 2018. 14

[259] B. Hu, K. Huang, G. Chen, L. Cheng, and A. Knoll. Adaptive runtime shaping for mixed-
criticality systems. In Proc. 12th International Conference on Embedded Software, EMSOFT,
pages 11–20. IEEE Press, 2015. 28

[260] B. Hu, K. Huang, G. Chen, L. Cheng, and A. Knoll. Adaptive workload management in
mixed-criticality systems. ACM Transactions on Embedded Computing Systems (TECS),
16(1):14, 2016. 28

[261] B. Hu, K. Huang, P. Huang, L. Thiele, and A. Knoll. On-the-fly fast overrun budgeting for
mixed-criticality systems. In Proc. International Conference on Embedded Software (EM-
SOFT), pages 1–10. IEEE, 2016. 13

[262] B. Hu, L. Thiele, P. Huang, K. Huang, C. Griesbeck, and A. Knoll. Ffob: efficient online
mode-switch procrastination in mixed-criticality systems. Real-Time Systems, 2018. 34

[263] H-M. Huang, C. Gill, and C. Lu. Implementation and evaluation of mixed criticality schedul-
ing approaches for periodic tasks. In Proc. of the IEEE Real-Time Technology and Applica-
tions Symposium (RTAS), pages 23–32, 2012. 13, 43

[264] H-M. Huang, C. Gill, and C. Lu. Implementation and evaluation of mixed criticality schedul-
ing approaches for sporadic tasks. ACM Trans. Embedded Systems, 13:126:1– 126:25, 2014.
12, 43

[265] L. Huang, I-H. Hou, S.S. Sapatnekar, and J. Hu. Graceful degradation of low-criticality tasks
in multiprocessor dual-criticality systems. In Proc. of the 26th International Conference on
Real-Time Networks and Systems, RTNS ’18, pages 159–169. ACM, 2018. 34

[266] P. Huang, G. Giannopoulou, R. Ahmed, D.B. Bartolini, and L. Thiele. An isolation scheduling
model for multicores. In Proc. IEEE Real-Time Systems Symposium (RTSS), pages 141–152,
2015. 25

[267] P. Huang, G. Giannopoulou, N. Stoimenov, and L. Thiele. Service adaptions for mixed-
criticality systems. Technical Report 350, ETH Zurich, Laboratory TIK, 2013. 34

[268] P. Huang, G. Giannopoulou, N. Stoimenov, and L. Thiele. Service adaptions for mixed-
criticality systems. In Proc. 19th Asia and South Pacific Design Automation Conference (ASP-
DAC), Singapore, 2014. 34

65

[269] P. Huang, P. Kumar, G. Giannopoulou, and L. Thiele. Energy efficient DVFS scheduling for
mixed-criticality systems. In Proc. Embedded Software (EMSOFT), pages 1–10. IEEE, 2014.
19, 44

[270] P. Huang, P. Kumar, G. Giannopoulou, and L. Thiele. Run and be safe: mixed-criticality
scheduling with temporal processor speedup. In Proc. DATE, 2015. 19

[271] P. Huang, P. Kumar, N. Stoimenov, and L. Thiele. Interference constraint grapha new spec-
ification for mixed-criticality systems. In Proc. 18th Emerging Technologies and Factory
Automation (ETFA), pages 1–8. IEEE, 2013. 35

[272] P. Huang, H. Yang, and L. Thiele. On the scheduling of fault-tolerant mixed-criticality sys-
tems. Technical report, Technical Report 351, ETH Zurich, Laboratory TIK, 2013. 28

[273] P. Huang, H. Yang, and L. Thiele. On the scheduling of fault-tolerant mixed-criticality sys-
tems. In Proc. Design Automation Conference (DAC), pages 1–6. IEEE, 2014. 28

[274] B. Huber, C. El Salloum, and R. Obermaisser. A resource management framework for mixed-
criticality embedded systems. In 34th IEEE IECON, pages 2425–2431, 2008. 5

[275] M. Hussein. Function allocation and bandwidth reservation for mixed-critical adaptive soft-
ware systems. Global Journal of Research in Engineering, 18(4), 2018. 20

[276] M. Hussein, A. Radermacher, and R. Nouacer. Model-based function mapping and bandwidth
reservation for mixed-critical adaptive systems. In Proc. Euromicro Conference on Digital
System Design (DSD), pages 435–439, 2017. 20

[277] S. Iacovelli, R. Kirner, and C. Menon. Atmp: An adaptive tolerance-based mixed-criticality
protocol for multi-core systems. In 2018 IEEE 13th International Symposium on Industrial
Embedded Systems (SIES), pages 1–9, 2018. 34

[278] L.S. Indrusiak, J. Harbin, and A. Burns. Average and worst-case latency improvements in
mixed-criticality wormhole networks-on-chip. In Proc. European/Euromicro Conference on
Real-Time Systems (ECRTS), pages 47–56. IEEE, 2015. 25

[279] S. Islam, R. Lindstrom, and N.Suri. Dependability driven integration of mixed criticality
SW components. In 9th IEEE International Symposium on Object and Component-Oriented
Real-Time Distributed Computing, ISORC 2006, page 11, 2006. 29

[280] P. Ittershagen, K. Gruttner, and W. Nebel. Mixed-criticality system modelling with dynamic
execution mode switching. Technical report, Technical Report OFFIS, Oldenburg, Germany,
2015. 44

[281] P. Ittershagen, K. Grüttner, and W. Nebel. An integration flow for mixed-critical embed-
ded systems on a flexible time-triggered platform. ACM Trans. Des. Autom. Electron. Syst.,
23(4):51:1–51:25, 2018. 45

[282] V. Izosimov and E. Levholt. Mixed criticality metric for safety-critical cyber-physical systems
on multicore archiectures. MEDIAN: Methods, 2(8), 2015. 31

[283] J. Jalle, E. Quinones, J. Abella, L. Fossati, M. Zulianello, and F.J. Cazorla. A dual-criticality
memory controler (DCmc): Proposal and evaluation of a space case study. In Proc. IEEE
Real-Time Systems Symposium, pages 207–217. IEEE, 2014. 24

[284] M. Jan, L. Zaourar, V. Legout, and L. Pautet. Handling criticality mode change in time-
triggered systems through linear programming. Ada User Journal, Proc of Workshop on
Mixed Criticality for Industrial Systems (WMCIS’2014), 35(2):138–143, 2014. 18

[285] M. Jan, L. Zaourar, and M. Pitel. Maximizing the execution rate of low criticality tasks in
mixed criticality system. In Proc. 1st WMC, RTSS, pages 43–48, 2013. 34

66

[286] X. Jin, J. Wang, and P. Zeng. End-to-end delay analysis for mixed-criticality WirelessHART
networks. Automatica Sinica, 2(3):282–289, 2015. 26

[287] X. Jin, C. Xia, H. Xu, J. Wang, and P. Zeng. Mixed criticality scheduling for industrial
wireless sensor networks. Sensors, 16(9):1376, 2016. 26

[288] C.B. Jones. Tentative steps toward a development method for interfering programs. Transac-
tions on Programming Languages and System, 5(4):596–619, 1983. 9

[289] D. Juhasz and A. Jantsch. Addressing the execution control problem in mixed-criticality
systems. Technical report, ResearchGate, 2018. 44

[290] N. Jung, H. Baek, D. Lim, and J. Lee. Incorporating zero-laxity policy into mixed-criticality
multiprocessor real-time systems. EICE Trans. on Fundamentals of Electronics, Communi-
cations and Computer Sciences, E101-A(11):1888–1899, 2018. 22

[291] N. Jung and J. Lee. Improved Schedulability Analysis of Fixed-Priority for Mixed-Criticality
Real-Time Multiprocessor Systems, pages 1403–1409. Springer Singapore, Singapore, 2018.
22

[292] R. Kahil, P. Poplavko, D. Socci, and S. Bensalem. Revisiting the computational complexity of
mixed-critical scheduling. In Agrawal and Easwaran, editors, Proc. 5th Workshop on Mixed
Criticality Systems (WMC), RTSS, pages 25–30, 2017. 37, 38

[293] R. Kahil, P. Poplavko, D. Socci, and S. Bensalem. Revisiting the computational complexity
of mixed-critical scheduling. Technical Report TR-2017-7, Verimag Research Report, 2017.
38

[294] R. Kahil, P. Poplavko, D. Socci, and S. Bensalem. Predictability in mixed-criticality systems.
Technical Report TR-2018-8, Verimag Research Report, 2018. 37

[295] R. Kahil, D. Socci, P. Poplavko, and S. Bensalem. Algorithmic complexity of correctness test-
ing in mc-scheduling. In Proc. of the 26th International Conference on Real-Time Networks
and Systems, RTNS ’18, pages 180–190. ACM, 2018. 8, 38

[296] R. Kaiser. The PikeOS concept history and design,. Technical Report white paper, SYSGO,
2007. 41

[297] B. Kalyanasundaram and K. Pruhs. Speed is as powerful as clairvoyance. Journal of the ACM
(JACM), 47(4):617–643, 2000. 38

[298] C. Kamienski, M. Jentsch, M. Eisenhauer, J. Kiljander, E. Ferrera, P. Rosengren, J. Thestrup,
E. Souto, W. S. Andrade, and D. Sadok. Application development for the internet of things: A
context-aware mixed criticality systems development platform. Computer Communications,
2016. 31

[299] O.R. Kelly, H. Aydin, and B. Zhao. On partitioned scheduling of fixed-priority mixed-
criticality task sets. In IEEE 10th International Conference on Trust, Security and Privacy
in Computing and Communications, pages 1051–1059, 2011. 20

[300] H. Kim, D. Broman, E. Lee, M. Zimmer, A. Shrivastava, and J. Oh. A predictable and
command-level priority-based DRAM controller for mixed-criticality systems. In Proc. Real-
Time and Embedded Technology and Applications Symposium (RTAS), pages 317–326. IEEE,
2015. 24

[301] N. Kim, S. Tang, N. Otterness, J.H. Anderson, F.D. Smith, and Donald E. D.E. Porter. Sup-
porting I/O and IPC via fine-grained OS isolation for mixed-criticality real-time tasks. In
Proc. of the 26th International Conference on Real-Time Networks and Systems, RTNS ’18,
pages 191–201. ACM, 2018. 43

67

[302] N. Kim, B.C. Ward, M. Chisholm, J.H. Anderson, and F.D. Smith. Attacking the one-out-of-m
multicore problem by combining hardware management with mixed-criticality provisioning.
Real-Time Systems, 53(5):709–759, Sep 2017. 20

[303] N. Kim, B.C. Ward, M. Chisholm, C-Y. Fu, J.H. Anderson, and F.D. Smith. Attacking the
one-out-of-m multicore problem by combining hardware management with mixed-criticality
provisioning. In Proc. RTAS, pages 1–12. IEEE, 2016. 20

[304] Y.-S. Kim and H.-W. Jin. Towards a practical implementation of criticality mode change in
RTOS. Technical report, Konkuk University, Korea, 2014. 42

[305] A. Kostrzewa, S. Saidi, and R. Ernst. Dynamic control for mixed-criticality networks-on-chip.
In Proc. IEEE Real-Time Systems Symposium (RTSS), pages 317–326, 2015. 25

[306] A. Kostrzewa, S. Tobuschat, L. Ecco, and R. Ernst. Adaptive load distribution in mixed-
critical networks-on-chip. In Proc. 22nd Asia and South Pacific Design Automation Confer-
ence (ASP-DAC), pages 732–737, 2017. 25

[307] O. Kotaba, J. Nowotschy, M. Paulitschy, S.M. Petters, and H. Theiling. Multicore in real-
time systems – temporal isolation challenges due to shared resources. In Proc. Conference on
Design, Automation and Test in Europe, WICERT, DATE, 2013. 23

[308] C. Kotronis, M. Nikolaidou, G. Dimitrakopoulos, D. Anagnostopoulos, A. Amira, and F. Ben-
saali. A model-based approach for managing criticality requirements in e-health iot systems.
In Proc. 13th Annual Conference on System of Systems Engineering (SoSE), pages 60–67,
2018. 31

[309] A. Kritikakou, O. Baldellon, C. Pagetti, C. Rochange, M. Roy, and F. Vargas. Monitoring
on-line timing information to support mixed-critical workloads. In WiP, RTSS, pages 9–10,
2013. 22

[310] A. Kritikakou, T. Marty, and M. Roy. DYNASCORE: Dynamic software controller to in-
crease resource utilization in mixed-critical systems. ACM Trans. Des. Autom. Electron. Syst.,
23(2):13:1–13:26, 2017. 22

[311] A. Kritikakou, C. Pagetti, O. Baldellon, M. Roy, and C. Rochange. Run-time control to
increase task parallelism in mixed-critical systems. In ECRTS, pages 119–128, 2014. 23

[312] A. Kritikakou, C. Pagetti, C. Rochange, M. Roy, M. Faugre, S. Girbal, and D.G. Prez. Dis-
tributed run-time WCET controller for concurrent critical tasks in mixed-critical systems. In
Proc. RTNS, 2014. 22

[313] M. Kttler, M. Roitzsch, C-J. Hamann, and M. Vlp. Probabilistic analysis of low-criticality ex-
ecution. In Agrawal and Easwaran, editors, Proc. 5th Workshop on Mixed Criticality Systems
(WMC), RTSS, pages 19–24, 2017. 33

[314] N.G. Kumar, S. Vyas, R.K. Cytron, C.D. Gill, J. Zambreno, and P.H. Jones. Cache design for
mixed criticality real-time systems. In Proc. ICCD, pages 513–516. IEEE, 2014. 42

[315] A. Lackorzynski, A. Warg, M. Voelp, and H. Haertig. Flattening hierarchical scheduling. In
Proc. ACM EMSOFT, pages 93–102, 2012. 30

[316] K. Lakshmanan, D. de Niz, and R. Rajkumar. Mixed-criticality task synchronization in zero-
slack scheduling. In IEEE RTAS, pages 47–56, 2011. 17

[317] K. Lakshmanan, D. de Niz, R. Rajkumar, and G. Moreno. Resource allocation in distributed
mixed-criticality cyber-physical systems. In ICDCS, pages 169–178, 2010. 20

[318] A. Larrucea, I. Martinez, V. Brocal, S. Peirò, H. Ahmadian, J. Perez, and R. Obermaisser.
DREAMS: Cross-domain mixed-criticality patterns. In Proc. 4th WMC (RTSS), page 6, 2016.
41

68

[319] J. Lee, H.S. Chwa, A. Easwaran, I. Shin, and I. Lee. Towards compositional mixed-criticality
real-time scheduling in open systems. In L. Almeida and D. de Niz, editors, Proc. 8th Work-
shop on Compositional Real-Time Systems (CRTS), RTSS, 2015. 31

[320] J. Lee, H.S. Chwa, A. Easwaran, I. Shin, and I. Lee. Towards compositional mixed-criticality
real-time scheduling in open systems: invited paper. ACM SIGBED Review, 13(3):49–51,
2016. 31

[321] J. Lee, H.S. Chwa, L.T.X. Phan, I. Shin, and I. Lee. MC-ADAPT: Adaptive task dropping in
mixed-criticality scheduling. ACM Trans. Embed. Comput. Syst., 16:163:1–163:21, 2017. 35

[322] J. Lee, K.-M. Phan, Z Gu, J. Lee, A. Easwaran, I. Shin, and I. Lee. MC-Fluid: Fluid model-
based mixed-criticality scheduling on multiprocessors. In Proc. IEEE Real-Time Systems
Symposium, pages 41–52. IEEE, 2014. 21, 22

[323] J. Lee, S. Ramanathan, K.-M. Phan, A. Easwaran, I. Shin, and I. Lee. Mc-fluid: Multi-core
fluid-based mixed-criticality scheduling. IEEE Transactions on Computers, online, 2017. 22

[324] K. Lee, T. Park, M. Kim, H. S. Chwa, J. Lee, S. Shin, and I. Shin. Mc-sdn: Supporting mixed-
criticality scheduling on switched-ethernet using software-defined networking. In Proc. IEEE
Real-Time Systems Symposium (RTSS), pages 288–299, 2018. 26

[325] V. Legout, M. Jan, and L. Pautet. Mixed-criticality multiprocessor real-time systems: Ener-
gy consumption vs deadline misses. In L. George and G. Lipari, editors, Proc. ReTiMiCS,
RTCSA, pages 1–6, 2013. 44

[326] J.P. Lehoczky and S. Ramos-Thuel. An optimal algorithm for scheduling soft-aperiodic tasks
fixed-priority preemptive systems. In Proc. 13th IEEE Real-Time Systems Symposium, pages
110–123, 1992. 27

[327] J.P. Lehoczky, L. Sha, and J.K. Strosnider. Enhanced aperiodic responsiveness in a hard real-
time environment. In Proc. 8th IEEE Real-Time Systems Symposium, pages 261–270, 1987.
27

[328] B. Lesage, I. Puaut, and A. Seznec. PRETI: Partitioned real-time shared cache for mixed-
criticality real-time systems. In Proc. 20th RTNS, pages 171–180, 2012. 42

[329] J. Y-T. Leung and J. Whitehead. On the complexity of fixed-priority scheduling of periodic
real-time tasks. Performance Evaluation (Netherlands), 2(4):237–250, Dec. 1982. 5

[330] H. Li. Scheduling Mixed-Criticality Real-Time Systems. PhD thesis, The University of North
Carolina at Chapel Hill, 2013. 39

[331] H. Li and S.K. Baruah. An algorithm for scheduling certifiable mixed-criticality sporadic
task systems. In Proc. of the Real-Time Systems Symposium, pages 183–192, San Diego, CA,
2010. IEEE Computer Society Press. 8

[332] H. Li and S.K. Baruah. Load-based schedulability analysis of certifiable mixed-criticality
systems. In Proc. EMSOFT, pages 99–107. ACM Press, 2010. 8, 38

[333] H. Li and S.K. Baruah. Global mixed-criticality scheduling on multiprocessors. In Proc,
ECRTS, pages 99–107. IEEE Computer Society Press, 2012. 22

[334] J. Li, D. Ferry, S. Ahuja, K. Agrawal, C. Gill, and C. Lu. Mixed-criticality federated schedul-
ing for parallel real-time tasks. In Proc. RTAS, pages 1–12. IEEE, 2016. 22

[335] J. Li, D. Ferry, S. Ahuja, K. Agrawal, C. Gill, and C. Lu. Mixed-criticality federated schedul-
ing for parallel real-time tasks. Real-Time Systems, 53(5):760–811, 2017. 22

[336] Y. Li, R. West, and E. Missimer. The quest-v separation kernel for mixed criticality systems.
In Proc. 1st WMC, RTSS, pages 31–36, 2013. 41

69

[337] Z. Li and S. He. Fixed-priority scheduling for two-phase mixed-criticality systems. ACM
Trans. Embed. Comput. Syst., 17(2):35:1–35:20, 2018. 26

[338] Z. Li and L. Wang. Memory-aware scheduling for mixed-criticality systems. In Proc ICCSA,
pages 140–156. Springer, LNCS 9787, 2016. 26

[339] J. Lin, A.M.K. Cheng, D. Steel, and M.Y.-C. Wu. Scheduling mixed-criticality real-time tasks
with fault tolerance. In L. Cucu-Grosjean and R. Davis, editors, Proc. 2nd Workshop on Mixed
Criticality Systems (WMC), RTSS, pages 39–44, 2014. 29

[340] P. Lindgren, D. Pereira, J. Eriksson, M. Lindner, and L. Miguel. Rtfm-lang static semantics
for systems with mixed criticality. Ada User Journal, Proc of Workshop on Mixed Criticality
for Industrial Systems (WMCIS’2014), 35(2):128–132, 2014. 39

[341] G. Lipari and S.K. Baruah. Greedy reclaimation of unused bandwidth in constant bandwidth
servers. In IEEE Proc. of the 12th Euromicro Conference on Real-Time Systems, Stokholm,
Sweden, June 2000. 27

[342] G. Lipari and E. Bini. A methodology for designing hierarchical scheduling systems. J.
Embedded Comput., 1(2):257–269, 2005. 30

[343] G. Lipari and G. Buttazzo. Resource reservation for mixed criticality systems. In Proc. of
Workshop on Real-Time Systems: the past, the present, and the future, pages 60–74, York,
UK, 2013. 16

[344] C.L. Liu and J.W. Layland. Scheduling algorithms for multiprogramming in a hard real-time
environment. JACM, 20(1):46–61, 1973. 5, 14

[345] D. Liu, N. Guan, J. Spasic, G. Chen, S. Liu, T. Stefanov, and W. Yi. Scheduling analysis of
imprecise mixed-criticality real-time tasks. IEEE Transactions on Computers, 67(7):975–991,
July 2018. 34

[346] D. Liu, J. Spasic, N. Guan, G. Chen, S. Liu, T. Stefanov, and W. Yi. EDF-VD scheduling
of mixed-criticality systems with degraded quality guarantees. In Proc. IEEE RTSS, pages
35–46, 2016. 34, 39

[347] G. Liu, Y. Lu, S. Wang, and Z. Gu. Partitioned multiprocessor scheduling of mixed-criticality
parallel jobs. In Proc. Embedded and Real-Time Computing Systems and Applications (RTC-
SA). IEEE, 2014. 22

[348] J.W.S. Liu. Real-Time Systems. Prentice Hall, 2000. 27

[349] J. López, J. Dı́az, J. Entrialgo, and D. Garcı́a. Stochastic analysis of real-time systems under
preemptive priority-driven scheduling. Real-Time Systems, pages 180–207, 2008. 32

[350] P. Lucas, K. Chappuis, M. Paolino, N. Dagieu, and D. Raho. VOSYSmonitor, a low latency
monitor layer for mixed-criticality systems on ARMv8-A. In Marko Bertogna, editor, Proc.
Euromicro Conference on Real-Time Systems (ECRTS), volume 76 of Leibniz International
Proc. in Informatics (LIPIcs), pages 6:1–6:18. Schloss Dagstuhl–Leibniz-Zentrum fuer Infor-
matik, 2017. 41

[351] A. Lyons and G. Heiser. Mixed-criticality support in a high-assurance, general-purpose micro-
kernel. In L. Cucu-Grosjean and R. Davis, editors, Proc. 2nd Workshop on Mixed Criticality
Systems (WMC), RTSS, pages 9–14, 2014. 42

[352] M. Mahdiani and A. Masrur. Introducing utilization caps into mixed-criticality scheduling. In
Proc. Digital System Design (DSD), pages 388–395. IEEE, 2016. 35

[353] M. Mahdiani and A. Masrur. On bounding execution demand under mixed-criticality EDF. In
Proc. of the 26th International Conference on Real-Time Networks and Systems, RTNS ’18,
pages 170–179. ACM, 2018. 17

70

[354] S.O. Marinescu, D. Tamas-Selicean, V. Acretoaie, and P. Pop. Timing analysis of mixed-
criticality hard real-time applications implemented on distributed partitioned architectures.
In 17th IEEE International Conference on Emerging Technologies and Factory Automation,
2012. 30

[355] A. Masrur. A probabilistic scheduling framework for mixed-criticality systems. In Proc. DAC,
page 132. ACM, 2016. 32

[356] A. Masrur, D. Muller, and M. Werner. Bi-level deadline scaling for admission control in
mixed-criticality systems. In Proc. 21st IEEE Embedded and Real-Time Computing Systems
and Applications (RTCSA), pages 100–109. IEEE, 2015. 16

[357] F.R. Massaro, E.L. Ursini, and P.O. Martins. Integrating proactive mode changes in mixed
criticality systems. arXiv [cs.OS], 2018. arXiv: 1806.11432. 36

[358] S. Maurer and R. Kirner. Cross-criticality interfaces for cyber-physical systems. In Proc.
1st IEEE Int’l Conference on Event-based Control, Communication, and Signal Processing,
2015. 31

[359] D. Maxim, R.I. Davis, L. Cucu-Grosjean, and A. Easwaran. Probabilistic analysis for mixed
criticality scheduling with SMC and AMC. In Proc. 4th WMC (RTSS), page 6, 2016. 33

[360] D. Maxim, R.I. Davis, L. Cucu-Grosjean, and A. Easwaran. Probabilistic analysis for mixed
criticality systems using fixed priority preemptive scheduling. In Proc RTNS, International
Conference on Real-Time Networks and Systems, page 10, 2017. 33

[361] R. Medina, E. Borde, and L. Pautet. Availability analysis for synchronous data-flow graphs in
mixed-criticality systems. In Proc. 11th IEEE Symposium on Industrial Embedded Systems
(SIES), pages 1–6, 2016. 33

[362] R. Medina, E. Borde, and L. Pautet. Directed acyclic graph scheduling for mixed-criticality
systems. In Johann Blieberger and Markus Bader, editors, Reliable Software Technologies –
Ada-Europe, pages 217–232. Springer International Publishing, 2017. 34, 40

[363] R. Medina, E. Borde, and L. Pautet. Availability enhancement and analysis for mixed-
criticality systems on multi-core. In Proc. Design, Automation Test in Europe Conference
Exhibition (DATE), pages 1271–1276, 2018. 33

[364] M. Mendez, J.L.G. Rivas, D.F. Garca-Valdecasas, and J. Diaz. Open platform for mixed-
criticality applications. In Proc. of the Conference on Design, Automation and Test in Europe,
WICERT, DATE, 2013. 43

[365] M-V. Micea, C-S. Stangaciu, V. Stangaciu, and D-I. Curiac. Novel hybrid scheduling tech-
nique for sensor nodes with mixed criticality tasks. Sensors, 17(7), 2017. 26

[366] Minstry of Defence. Requirements for safety related software in defence equipment. Defence
standard, 00-55, Minstry of Defence, 1997. 39

[367] E. Missimer, K. Missimer, and R. West. Mixed-criticality scheduling with i/o. In Proc.
ECRTS, pages 120–130, 2016. 41

[368] M. Mollison, J. Erickson, J. Anderson, S.K. Baruah, and J. Scoredos. Mixed criticality real-
time scheduling for multicore systems. In Proc. of the 7th IEEE International Conference on
Embedded Software and Systems, pages 1864–1871, 2010. 19

[369] B. Motruk, J. Diemer, R. Buchty, R. Ernst, and M. Berekovic. Idamc: A many-core platform
with run-time monitoring for mixed-criticality. Ninth IEEE International Symposium on High-
Assurance Systems Engineering (HASE’05), pages 24–31, 2012. 40

71

[370] S. Mubeen, M. Gålnander, J. Lundbäck, and K-L Lundbäck. Extracting timing models from
component-based multi-criticality vehicular embedded systems. In Shahram Latifi, editor, In-
formation Technology - New Generations, pages 709–718. Springer International Publishing,
2018. 27

[371] D. Muller and A. Masrur. The scheduling region of two-level mixed-criticality systems based
on EDF-VD. In Proc. of the Conference on Design, Automation and Test in Europe, Proc.
DATE, pages 978–981, 2014. 39

[372] V. Muttillo, G. Valente, and L. Pomante. Criticality-aware design space exploration for mixed-
criticality embedded systems. In Companion of the ACM/SPEC International Conference on
Performance Engineering, ICPE ’18, pages 45–46. ACM, 2018. 45

[373] K. Nagalakshmi and N. Gomathi. Criticality-cognizant clustering-based task scheduling on
multicore processors in the avionics domain. International Journal of Computational Intelli-
gence Systems, 11:219–238, 2018. 21

[374] M. Nager, M. Baunach, P. Priller, and J. Wurzinger. Real-time multiplexing of mixed-
criticality data streams for automotive multi-core test systems. In Proc. IEEE International
Conference on Vehicular Electronics and Safety (ICVES), pages 220–227, 2017. 26

[375] K. Napier, O. Horst, and C. Prehofer. Comparably evaluating communication performance
within mixed-criticality systems. In Proc. 4th WMC (RTSS), page 6, 2016. 44

[376] S. Narayana, P. Huang, G. Giannopoulou, L. Thiele, and R.V. Prasad. Exploring energy saving
for mixed-criticality systems on multi-cores. In Proc. RTAS, pages 1–12. IEEE, 2016. 44

[377] M. Neukirchner, P. Axer, T. Michaels, and R. Ernst. Monitoring of workload arrival functions
for mixed-criticality systems. In Proc. IEEE 34th Real-Time Systems Symposium, pages 88–
96, 2013. 13

[378] M. Neukirchner, S. Quinton, and K. Lampka. Multi-mode monitoring for mixed-criticality
real-time systems. In Int’l Conf. on Hardware/Software Codesign and System Synthesis
(CODES+ISSS), 2013. 13

[379] M. Neukirchner, S. Stein, H. Schrom, J. Schlatow, and R. Ernst. Contract-based dynamic task
management for mixed-criticality systems, pages 18–27. IEEE, 2011. 40

[380] R. Nevalainen, U. Kremer, O. Slotosch, D. Truscan, and V. Wong. Impact of multicore plat-
forms in hardware and software certification. In Proc. of the Conference on Design, Automa-
tion and Test in Europe, WICERT, DATE, 2013. 43

[381] L.M. Ni and P.K. McKinley. A survey of wormhole routing techniques in direct networks.
Computer, 26(2):62–76, Feb 1993. 25

[382] D.de Niz, K. Lakshmanan, and R. Rajkumar. On the scheduling of mixed-criticality real-time
task sets. In Real-Time Systems Symposium, pages 291–300. IEEE Computer Society, 2009.
13, 17, 20, 37

[383] D.de Niz and L.T.X. Phan. Partitioned scheduling of multi-modal mixed-criticality real-time
systems on multiprocessor platforms. In Proc. Real-Time and Embedded Technology and
Applications Symposium (RTAS), pages 111–122, April 2014. 13, 36

[384] D.de Niz, L. Wrage, A. Rowe, and R. Rajkumar. Utility-based resource overbooking for
cyber-physical systems. In Proc. RTCSA, 2013. 13

[385] A. Novak, P. Sucha, and Z. Hanzalek. Efficient algorithm for jitter minimization in time-
triggered periodic mixed-criticality message scheduling problem. In Proc. RTNS, pages 23–
31. ACM, 2016. 24

72

[386] A. Novak, P. Sucha, and Z. Hanzalek. On solving non-preemptive mixed-criticality match-up
scheduling problem with two and three criticality levels. arXiv preprint arXiv:1610.07384,
2016. 24

[387] J. Nowotsch, M. Paulitsch, D. Bhler, H. Theiling, S. Wegener, and M. Schmidt. Multi-core
interference-sensitive WCET analysis leveraging runtime resource capacity enforcement. In
Proc. ECRTS, pages 109–118, 2014. 23

[388] J. Nowotsch, M. Paulitsch, A. Henrichsen, W. Pongratz, and A. Schacht. Monitoring and wcet
analysis in cots multi-core-soc-based mixed-criticality systems. In Design, Automation Test
in Europe Conference Exhibition (DATE), pages 1–5, 2014. 41

[389] R. Obermaisser, Z. Owda, M. Abuteir, H. Ahmadian, and D. Weber. End-to-end real-time
communication in mixed-criticality systems based on networked multicore chips. In Proc
17th Euromicro Conference on Digital Systems Design, pages 293–302. IEEE, 2014. 23

[390] R. Obermaisser and D. Weber. Architectures for mixed-criticality systems based on networked
multi-core chips. In Proc. ETFA, pages 1–10, 2014. 23

[391] S. Osmolovskiy, I. Fedorov, V. Vinogradov, E. Ivanova, and D. Shakurov. Mixed-criticality
scheduling in real-time multiprocessor systems. In Proc. Conference of Open Innovations
Association and Seminar on Information Security and Protection of Information Technology
(FRUCT-ISPIT), pages 257–265, 2016. 44

[392] A. Paolillo, P. Rodriguez, V. Svoboda, O. Desenfans, J. Goossens, B. Rodriguez, S. Girbal,
M. Faugre, and P. Bonnot. Porting a safety-critical industrial application on a mixed-criticality
enabled real-time operating system. In Agrawal and Easwaran, editors, Proc. 5th Workshop
on Mixed Criticality Systems (WMC), RTSS, pages 1–6, 2017. 42

[393] A.V. Papadopoulos, E. Bini, S. Baruah, and A. Burns. AdaptMC: A Control-Theoretic Ap-
proach for Achieving Resilience in Mixed-Criticality Systems. In Sebastian Altmeyer, editor,
30th Euromicro Conference on Real-Time Systems (ECRTS 2018), volume 106 of Leibniz
International Proc. in Informatics (LIPIcs), pages 14:1–14:22. Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik, 2018. 36

[394] E. Papastefanakis, X. Li, and L. George. A mixed criticality approach for the security of
critical flows in a network-on-chip. ACM SIGBED Review, 13(4):67–72, 2016. 25

[395] T. Park and S Kim. Dynamic scheduling algorithm and its schedulability analysis for certifi-
able dual-criticality systems. In Proc. ACM EMSOFT, pages 253–262, 2011. 8, 15

[396] R.M. Pathan. Schedulability analysis of mixed criticality systems on multiprocessors. In Proc.
of ECRTS, pages 309–320, 2012. 22

[397] R.M. Pathan. Fault-tolerant and real-time scheduling for mixed-criticality systems. Journal
of Real-Time Systems, 50(4):509–547, 2014. 28

[398] R.M. Pathan. Improving the quality-of-service for scheduling mixed-criticality systems on
multiprocessors. In Marko Bertogna, editor, Proc. Euromicro Conference on Real-Time Sys-
tems (ECRTS), volume 76 of Leibniz International Proc. in Informatics (LIPIcs), pages 19:1–
19:22. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2017. 34

[399] R.M. Pathan. Improving the Schedulability and Quality of Service for Federated Scheduling
of Parallel Mixed-Criticality Tasks on Multiprocessors. In Sebastian Altmeyer, editor, 30th
Euromicro Conference on Real-Time Systems (ECRTS 2018), volume 106 of Leibniz Interna-
tional Proc. in Informatics (LIPIcs), pages 12:1–12:22. Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik, 2018. 22

73

[400] M. Paulitsch, O.M. Duarte, H. Karray, K. Mueller, D. Muench, and J. Nowotsch. Mixed-
criticality embedded systems–a balance ensuring partitioning and performance. In Proc. Eu-
romicro Conference on Digital System Design (DSD), pages 453–461. IEEE, 2015. 4, 43

[401] P. Pedro and A. Burns. Schedulability analysis for mode changes in flexible real-time systems.
In 10th Euromicro Workshop on Real-Time Systems, pages 172–179. IEEE Computer Society,
1998. 9, 36

[402] R. Pellizzoni, P. Meredith, M-Y. Nam, M. Sun, M. Caccamo, and L. Sha. Handling mixed-
criticality in soc-based real-time embedded systems. In Proc. of the 7th ACM international
conference on Embedded software, EMSOFT, pages 235–244. ACM Press, 2009. 23

[403] R. Pellizzoni, A. Schranzhofery, J. Cheny, M. Caccamo, and L. Thiele. Worst case delay
analysis for memory interference in multicore systems. In Design, Automation Test in Europe
Conference Exhibition (DATE), pages 741–746, 2010. 23

[404] H. Pérez, J.J. Gutiérrez, S. Peiró, and A. Crespo. Distributed architecture for developing
mixed-criticality systems in multi-core platforms. Journal of Systems and Software, 123:145–
159, 2017. 41

[405] J. Perez, D. Gonzalez, S. Trujillo, T. Trapman, and J. M. Garate. A safety concept for a wind
power mixed criticality embedded system based on multicore partitioning. In Proc. 1st WMC,
RTSS, pages 25–30, 2013. 30

[406] P. Petrakis, M. Abuteir, M.D. Grammatikakis, K. Papadimitriou, R. Obermaisser, Z. Owda,
A. Papagrigoriou, M. Soulie, and M. Coppola. On-chip networks for mixed-criticality system-
s. In Proc. Application-specific Systems, Architectures and Processors (ASAP, pages 164–169.
IEEE, 2016. 44

[407] P. Pop, L. Tsiopoulos, S. Voss, O. Slotosch, C. Ficek, U. Nyman, and A. Ruiz. Methods and
tools for reducing certification costs of mixed-criticality applications on multi-core platform-
s: the RECOMP approach. In Proc. of the Conference on Design, Automation and Test in
Europe, WICERT, DATE, 2013. 43

[408] T. Pop, P. Eles, and Z. Peng. Holistic scheduling and analysis of mixed time/event-triggered
distributed embedded systems. In Proc. of the tenth international symposium on Hardware/-
software codesign, CODES ’02, pages 187–192. ACM, 2002. 23

[409] S. Punnekkat, R.I Davis, and A. Burns. Sensitivity analysis of real-time task sets. In Proc. of
the Conference of Advances in Computing Science - ASIAN ’97, pages 72–82. Springer, 1997.
13

[410] S. Ramanathan and A. Easwaran. MC-Fluid: rate assignment strategies. In L. Cucu-Grosjean
and R. Davis, editors, Proc. 3rd Workshop on Mixed Criticality Systems (WMC), RTSS, pages
6–11, 2015. 22

[411] S. Ramanathan and A. Easwaran. Utilization difference based partitioned scheduling of
mixed-criticality systems. In Design, Automation Test in Europe Conference Exhibition
(DATE), pages 238–243, 2017. 21

[412] S. Ramanathan, A. Easwaran, and H. Cho. Multi-rate fluid scheduling of mixed-criticality
systems on multiprocessors. Real-Time Systems, 54:247–277, 2018. 34

[413] S. Ramanathan, X. Gu, and A. Easwaran. The feasibility analysis of mixed-criticality systems.
In Proc. RTOPS, ECRTS, 2016. 22

[414] E.A. Rambo and R. Ernst. Replica-aware co-scheduling for mixed-criticality. In Marko
Bertogna, editor, Proc. Euromicro Conference on Real-Time Systems (ECRTS), volume 76
of Leibniz International Proc. in Informatics (LIPIcs), pages 20:1–20:20. Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik, 2017. 29

74

[415] S. Ramos-Thuel and J.P. Lehoczky. Algorithms for scheduling hard aperiodic tasks in fixed
priority systems using slack stealing. In Proc. 15th IEEE Real-Time Systems Symposium,
pages 22–35, 1994. 27

[416] J. Real and A. Crespo. Mode change protocols for real-time systems: A survey and a new
protocol. Journal of Real-Time Systems, 26(2):161–197, 2004. 9, 36

[417] F. Reghenzani, G. Massari, and W. Fornaciari. Mixed time-criticality process interferences
characterization on a multicore linux system. In Proc. Euromicro Conference on Digital Sys-
tem Design (DSD), pages 427–434, 2017. 42

[418] P. Regnier, G. Lima, E. Massa, G. Levin, and S. Brandt. RUN: Optimal multiprocessor real-
time scheduling via reduction to uniprocessor. In Real-Time Systems Symposium (RTSS),
pages 104–115. IEEE, 2011. 21

[419] J. Ren and L.T.X. Phan. Mixed-criticality scheduling on multiprocessors using task grouping.
In Proc. 27th ECRTS, pages 25–36. IEEE, 2015. 35

[420] P. Rodriguez, L. George, Y. Abdeddaim, and J. Goossens. Multi-criteria evaluation of parti-
tioned EDF-VD for mixed criticality systems upon identical processors. In Proc. 1st WMC,
RTSS, pages 49–54, 2013. 20

[421] RTCA-EUROCAE. Software Considerations in Airborne Systems and Equipment Certifica-
tion DO-178B/ED-12B. RTCA, Inc, December 1992. 39

[422] S. Saewong, R. Rajkumar, J.P. Lehoczky, and M.H. Klein. Analysis of hierarchical fixed- pri-
ority scheduling. In Proc. of the 14th Euromicro Conference on Real-Time Systems (ECRTS),
pages 173–181, 2002. 30

[423] S. Saidi, R. Ernst, S. Uhrig, H. Theiling, and B.D. de Dinechin. The shift to multicores in
real-time and safety-critical systems. In Proc. 10th International Conference on Hardware/-
Software Codesign and System Synthesis, pages 220–229. IEEE Press, 2015. 41

[424] M. Saksena and Y. Wang. Scaleable real-time systems design using preemption thresholds.
In Proc. 21st IEEE Real-Time Systems Symposium., pages 25–34, 2000. 11

[425] E. Salazar, A. Alejandro, and J. Garrido. Mixed-criticality design of a satellite software sys-
tem. In Proc. 19th World Congress The Federation of Automatic Control, pages 12278–12283,
2014. 30

[426] L. Santinelli, D. Doose, G. Durrieu, F. Boniol, C. Lesire-Cabaniols, and C. Grand. Schedula-
bility analysis for mixed critical cyber physical systems. In IEEE Industrial Cyber-Physical
Systems (ICPS), pages 297–303, 2018. 17

[427] L. Santinelli and L. George. Probabilities and mixed-criticalities: the probabilistic C-Space.
In L. Cucu-Grosjean and R. Davis, editors, Proc. 3rd Workshop on Mixed Criticality Systems
(WMC), RTSS, pages 30–35, 2015. 32

[428] L. Santinelli and Z. Guo. A sensitivity analysis for mixed criticality: Trading criticality with
computational resource. In IEEE 23rd International Conference on Emerging Technologies
and Factory Automation (ETFA), volume 1, pages 313–320, 2018. 13

[429] R. Santos, S. Venkataraman, A. Das, and A. Kumar. Criticality-aware scrubbing mechanism
for SRAM-based FPGAs. Technical report, Nanyang Technological University, Singapore,
2014. 43

[430] J. A. Santos-Jr, G. Lima, and K. Bletsas. Considerations on the least upper bound for mixed-
criticality real-time systems. In 5th Brazilian Symposium on Computing Systems Engineering
(SBESC), 2015. 38

75

[431] F. Santy, L. George, P. Thierry, and J. Goossens. Relaxing mixed-criticality scheduling strict-
ness for task sets scheduled with FP. In Proc. of the Euromicro Conference on Real-Time
Systems, pages 155–165, 2012. 13

[432] F. Santy, G. Raravi, G. Nelissen, V. Nelis, P. Kumar, J. Goossens, and E. Tovar. Two protocols
to reduce the criticality level of multiprocessor mixed-criticality systems. In Proc. RTNS,
pages 183–192. ACM, 2013. 36

[433] R. Schneider, D. Goswami, A. Masrur, M. Becker, and S. Chakraborty. Multi-layered schedul-
ing of mixed-criticality cyber-physical systems. Journal of Systems Architecture, 59(10, Part
D):1215 – 1230, 2013. 30

[434] V. Sciandra, P. Courbin, and L George. Application of mixed criticality scheduling model to
intelligent transportation systems architecture. In Proc. WiP, RTSS, page 11, 2012. 14

[435] Y. Seddik and Z. Hanzlek. Match-up scheduling of mixed-criticality jobs: Maximizing the
probability of jobs execution. European Journal of Operational Research, 262(1):46 – 59,
2017. 8

[436] L. Sha. Resilient mixed criticality systems. CrossTalk The Journal of Defense Software
Engineering, pages 9–14, October 2009. 17

[437] L. Sha, J.P. Lehoczky, and R. Rajkumar. Solutions for some practical problems in prioritizing
preemptive scheduling. In Proc. 7th IEEE Real-Time Sytems Symposium, 1986. 14

[438] L. Sha, J.P. Lehoczky, and R. Rajkumar. Task scheduling in distributed real-time systems. In
Proc. of IEEE Industrial Electronics Conference, 1987. 14

[439] L. Sha, R. Rajkumar, J. Lehoczky, and K. Ramamritham. Mode change protocols for priority-
driven premptive scheduling. Journal of Real-Time Systems, 1(3):244–264, 1989. 9, 36

[440] L. Sha, R. Rajkumar, and J.P. Lehoczky. Priority inheritance protocols: An approach to real-
time synchronisation. IEEE Transactions on Computers, 39(9):1175–1185, 1990. 17

[441] Z. Shi and A. Burns. Real-time communication analysis for on-chip networks with worm-
hole switching. In Proc. of the 2nd ACM/IEEE International Symposium on Networks-on-
Chip(NoCS), pages 161–170, 2008. 25

[442] L. Sigrist, G. Giannopoulou, N. Stoimenov, P. Huang, and L. Thiele. Mapping mixed-
criticality applications on multi-core architectures. In Proc. DATE, pages 1–6, 2014. 40

[443] J. Singh, L. Santinelli, D. Doose, J. Brunel, and G. Infantes. Mixed criticality probabilistic
real-time systems analysis using discretetime markov chain. In Jing Li and Zhishan Guo,
editors, Proc. 6th Workshop on Mixed Criticality Systems (WMC), RTSS, pages 13–18, 2018.
33

[444] D. Socci, P. Poplavko, S. Bensalem, and M. Bozga. Mixed critical earliest deadline first.
Technical Report TR-2012-22, Verimag Research Report, 2012. 8

[445] D. Socci, P. Poplavko, S. Bensalem, and M. Bozga. Mixed critical earliest deadline first. In
Proc. Euromicro Conference on Real-Time Systems (ECRTS), 2013. 8

[446] D. Socci, P. Poplavko, S. Bensalem, and M. Bozga. Modeling mixed-critical systems in real-
time bip. In L. George and G. Lipari, editors, Proc. ReTiMiCS, RTCSA, pages 29–34, 2013.
39

[447] D. Socci, P. Poplavko, S. Bensalem, and M. Bozga. Time-triggered mixed critical scheduler.
In Proc. WMC, RTSS, pages 67–72, 2013. 18

76

[448] D. Socci, P. Poplavko, S. Bensalem, and M. Bozga. Multiprocessor scheduling of precedence-
constrained mixed-critical jobs. Technical Report TR-2014-11, Verimag, Research Report,
2014. 22

[449] D. Socci, P. Poplavko, S. Bensalem, and M. Bozga. Time-triggered mixed-critical scheduler
on single- and multi-processor platforms. In Proc. HPCC/CSS/ICESS, pages 684–687, 2015.
8, 18

[450] D. Socci, P. Poplavko, S. Bensalem, and M. Bozga. Time-triggered mixed-critical scheduler
on single- and multi-processor platforms. Technical Report TR-2015-8, Verimag, 2015. 18

[451] B. Sprunt, J. Lehoczky, and L. Sha. Exploiting unused periodic time for aperiodic service
using the extended priority exchange algorithm. In Proc. 9th IEEE Real-Time Systems Sym-
posium, pages 251–258, 1988. 27

[452] N. Sritharan, A.M. Kaushik, M. Hassan, and H.D. Patel. Hourglass: Predictable time-based
cache coherence protocol for dual-critical multi-core systems. CoRR, abs/1706.07568, 2017.
42

[453] S. Sruti, A. A. Bhuiyan, and Z. Guo. Work-in-progress: Precise scheduling of mixed-
criticality tasks by varying processor speed. In Proc. IEEE Real-Time Systems Symposium
(RTSS), pages 173–176, 2018. 19

[454] W. Steiner. Synthesis of static communication schedules for mixed-criticality systems. 2012
IEEE 15th International Symposium on Object/Component/Service-Oriented Real-Time Dis-
tributed Computing Workshops, pages 11–18, 2011. 23, 24

[455] H. Su, P. Deng, D. Zhu, and Q. Zhu. Fixed-priority dual-rate mixed-criticality systems:
Schedulability analysis and performance optimization. In Proc. Embedded and Real-Time
Computing Systems and Applications (RTCSA), pages 59–68. IEEE, 2016. 34

[456] H. Su, P. Deng, D. Zhu, and Q. Zhu. Fixed-priority dual-rate mixed-criticality systems:
Schedulability analysis and performance optimization. In IEEE International Conference
on Embedded and Real-Time Computing Systems and Applications (RTCSA), pages 59–68,
2016. 35

[457] H. Su, N. Guan, and D. Zhu. Service guarantee exploration for mixed-criticality systems. In
Proc. Embedded and Real-Time Computing Systems and Applications (RTCSA), pages 1–10.
IEEE, 2014. 34

[458] H. Su and D. Zhu. An elastic mixed-criticality task model and its scheduling algorithm. In
Proc. of the Conference on Design, Automation and Test in Europe, DATE, pages 147–152,
2013. 16, 34

[459] H. Su, D. Zhu, and D. Mosse. Scheduling algorithms for elastic mixed-criticality tasks in
multicore systems. In Proc. RTCSA, 2013. 16, 34

[460] A. Taherin, M. Salehi, and A. Ejlali. Reliability-aware energy management in mixed-
criticality systems. IEEE Transactions on Sustainable Computing - online, 2018. 19

[461] D. Tamas-Selicean and P. Pop. Design optimisation of mixed criticality real-time applications
on cost-constrained partitioned architectures. In Real-Time Systems Symposium (RTSS), pages
24–33, 2011. 20

[462] D. Tamas-Selicean and P. Pop. Optimization of time-partitions for mixed criticali-
ty real-time distributed embedded systems. In 14th IEEE International Symposium on
Object/Component/Service-Oriented Real-Time Distributed Computing Workshops, pages 2–
10, 2011. 20

77

[463] D. Tamas-Selicean and P. Pop. Task mapping and partition allocation for mixed criticality
real-time systems. In IEEE Pacific Rim Int. Sym. on Dependable Computing, pages 282–283,
2011. 20

[464] D. Tamas-Selicean and P. Pop. Design optimisation of mixed criticality real-time applica-
tions on cost-constrained partitioned architectures. ACM Transactions on Embedded Systems,
14(3):50:1–50:29, 2015. 20

[465] J. Theis and G. Fohler. Mixed criticality scheduling in time-triggered legacy systems. In Proc.
WMC, RTSS, pages 73–78, 2013. 18

[466] J. Theis, G. Fohler, and S.K. Baruah. Schedule table generation of time-triggered mixed
criticality systems. In Proc. WMC, RTSS, pages 79–84, 2013. 18

[467] A. Thekkilakattil, R. Dobrin, and S. Punnekkat. Fault tolerant scheduling of mixed critical-
ity real-time tasks under error bursts. In The International Conference on Information and
Communication Technologies ICICT’14. Elsevier Procedia Computer Science, 2014. 29

[468] A. Thekkilakattil, R. Dobrin, and S. Punnekkat. Mixed criticality scheduling in fault-tolerant
distributed real-time systems. In Embedded Systems (ICES), 2014 International Conference
on, pages 92–97. IEEE, 2014. 28

[469] A Thekkilakattl, A. Burns, R. Dobrin, and S. Punnekkat. Mixed criticality systems: Beyond
transient faults. In L. Cucu-Grosjean and R. Davis, editors, Proc. 3rd Workshop on Mixed
Criticality Systems (WMC), RTSS, pages 18–23, 2015. 29

[470] H. Thompson. Mixed criticality systems. http://cordis.europa.eu/fp7/ict/embedded-systems-
engineering/documents/sra-mixed-criticality-systems.pdf, EU, ICT, February 2012. 5

[471] K. Tindell and A Alonso. A very simple protocol for mode changes in priority preemptive
systems. Technical report, Universidad Politecnica de Madrid, 1996. 9, 36

[472] K. Tindell, A. Burns, and A. J. Wellings. Mode changes in priority preemptive scheduled
systems. In Proc. Real Time Systems Symposium, pages 100–109, Phoenix, Arizona, 1992. 9,
36

[473] S. Tobuschat, P. Axer, R. Ernst, and J. Diemer. IDAMC: A NoC for mixed criticality systems.
In Proc. RTCSA, 2013. 25

[474] S. Tobuschat and R. Ernst. Efficient latency guarantees for mixed-criticality networks-on-chip.
In Proc. IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS),
pages 113–122, 2017. 25

[475] R. Trüb, G. Giannopoulou, A. Tretter, and L. Thiele. Implementation of partitioned
mixed-criticality scheduling on a multi-core platform. ACM Trans. Embed. Comput. Syst.,
16(5s):122:1–122:21, 2017. 25

[476] S. Trujillo, A. Crespo, and A. Alonso. MultiPARTES: Multicore virtualization for mixed-
criticality systems. In Digital System Design (DSD), 2013 Euromicro Conference on, pages
260–265, 2013. 41

[477] S. Trujillo, A. Crespo, A. Alonso, and J. Perez. MultiPARTES: Multi-core partitioning and
virtualization for easing the certification of mixed-criticality systems. Microprocessors and
Microsystems (online version), 2014. 41

[478] S. Vaidhun, S.A. Arefin, Z. Guo, H. Xiong, and S.K. Das. Response time in mixed-critical
pervasive systems. In Proc. IEEE International Conference on Ubiquitous Intelligence and
Computing, 2017. 28

78

[479] M. Vanga, H. Theiling, A. Bastoni, and B.B. Brandenburg. Supporting low-latency, low-
criticality tasks in a certified mixed-criticality OS. In Proc. RTNS, 2017. 41

[480] S. Vestal. Preemptive scheduling of multi-criticality systems with varying degrees of exe-
cution time assurance. In Proc. of the IEEE Real-Time Systems Symposium (RTSS), pages
239–243, 2007. 5, 7, 8, 14, 45, 48

[481] J. Vetter, J. Fanguede, K. Chappuis, and D. Raho. VOSYSVirtualNet: Low-latency inter-
world network channel for mixed-criticality systems. Technical report, ResearchGate, 2018.
42

[482] E. Vitali and G. Palermo. Early stage interference checking for automatic design space ex-
ploration of mixed critical systems. In Proc. of the 9th Workshop on Rapid Simulation and
Performance Evaluation: Methods and Tools, RAPIDO, pages 3:1–3:8. ACM, 2017. 46

[483] M. Völp, M. Hähnel, and A. Lackorzynski. Has energy surpassed timeliness? scheduling
energy-constrained mixed-criticality systems. In Proc. RTAS, pages 275–284. IEEE, 2014. 44

[484] M. Völp, A. Lackorzynski, and H. Härtig. On the expressiveness of fixed priority scheduling
contexts for mixed criticality scheduling. In Proc. WMC, RTSS, pages 13–18, 2013. 30

[485] M. Völp, M. Roitzsch, and H. Härtig. Towards an interpretation of mixed criticality for
optimistic scheduling. In 21st IEEE RTAS, Work-in-Progress, pages 15–16, 2015. 13

[486] G. von der Brüggen, K-H. Chen, W-H. Huang, and J-J. Chen. Systems with dynamic real-
time guarantees in uncertain and faulty execution environments. In Proc. Real-Time Systems
Symposium (RTSS), pages 303–314. IEEE, 2016. 33

[487] P. Wagemann, T. Distler, H. Janker, P. Raffeck, and V. Sieh. A kernel for energy-neutral
real-time systems with mixed criticalities. In Proc. RTAS, pages 1–12. IEEE, 2016. 44

[488] J. Wang and H. Wang. Work-in-progress: Scheduling of graph-based end-to-end tasks for
distributed multi-criticality systems. In Proc. IEEE Real-Time and Embedded Technology
and Applications Symposium (RTAS), pages 129–132, 2017. 40

[489] Y. Wang and M. Saksena. Scheduling fixed-priority tasks with preemption threshold. In 6th
Real-Time Computing Systems and Applications (RTCSA), pages 328–335. IEEE, 1999. 17

[490] A. Wasicek, C. El-Salloum, and H. Kopetz. A system-on-a-chip platform for mixed-criticality
applications. In 3th IEEE International Symposium on Object/Component/Service-Oriented
Real-Time Distributed Computing (ISORC), pages 210–216, 2010. 29

[491] R. West, Y. Li, E. Missimer, and M. Danish. A virtualized separation kernel for mixed-
criticality systems. ACM Transactions on Computer Systems (TOCS), 34(3):8, 2016. 41

[492] R. Wilhelm. Mixed Feelings About Mixed Criticality (Invited Paper). In Florian Brandner,
editor, 18th International Workshop on Worst-Case Execution Time Analysis (WCET), vol-
ume 63 of OpenAccess Series in Informatics (OASIcs), pages 1:1–1:9, Dagstuhl, Germany,
2018. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. 4

[493] Q. Xiong, F. Wu, Z. Lu, and C. Xie. Extending real-time analysis for wormhole nocs. IEEE
Transactions on Computers, 2017. 25

[494] H. Xu and A. Burns. Semi-partitioned model for dual-core mixed criticality system. In 23rd
International Conference on Real-Time Networks and Systems (RTNS 2015), pages 257–266,
2015. 21, 34

[495] H. Xu and A. Burns. A semi-partitioned model for mixed criticality systems. Journal of
Systems and Software, 150:51 – 63, 2019. 34

79

[496] C. Yao, L. Qiao, L. Zheng, and X. Huagang. Efficient schedulability analysis for mixed-
criticality systems under deadline-based scheduling. Chinese Journal of Aeronautics, 2014.
16

[497] E. Yip, M.M.Y Kuo, D. Broman, and P.S Roop. Relaxing the synchronous approach for
mixed-criticality systems. In Proc. Real-Time and Embedded Technology and Application
Symposium (RTAS), pages 89–100. IEEE, 2014. 18

[498] H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha. Memory access control in multiproc-
cessor for real-time mixed criticality. In Proc. of ECRTS, pages 299–308, 2012. 23

[499] A. Zabos, R.I. Davis, A. Burns, and M. González Harbour. Spare capacity distribution using
exact response-time analysis. In 17th International Conference on Real-Time and Network
Systems, pages 97–106, 2009. 27

[500] L. Zeng, P. Huang, and L. Thiele. Towards the design of fault-tolerant mixed-criticality sys-
tems on multicores. In Proc. Compilers, Architectures and Synthesis for Embedded Systems,
page 6. ACM, 2016. 45

[501] F. Zhang and A. Burns. Analysis of hierarchical EDF preemptive scheduling. In Proc. of
IEEE Real-Time Systems Symposium (RTSS), pages 423–435, 2007. 30

[502] F. Zhang and A. Burns. Schedulability analysis for real-time systems with EDF scheduling.
IEEE Transaction on Computers, 58(9):1250–1258, 2008. 16

[503] N. Zhang, C. Xu, J. Li, and M. Peng. A sufficient response-time analysis for mixed criticality
systems with pessimistic period. Journal of Computational Information Systems, 11(6):1955–
1964, 2015. 7, 12

[504] X. Zhang, J. Zhan, W. Jiang, Y. Ma, and K. Jiang. Design optimization of security-sensitive
mixed-criticality real-time embedded systems. In L. George and G. Lipari, editors, Proc.
ReTiMiCS, RTCSA, pages 12–17, 2013. 20, 44

[505] Q. Zhao, Z. Al-Bayati, Z. Gu, and H. Zeng. Optimized implementation of multirate mixed-
criticality synchronous reactive models. ACM Trans. Des. Autom. Electron. Syst., 22(2):23:1–
23:25, 2016. 39

[506] Q. Zhao, Z. Gu, and H. Zeng. Integration of resource synchronization and preemption-
thresholds into EDF-based mixed-criticality scheduling algorithm. In Proc. RTCSA, 2013.
11, 17

[507] Q. Zhao, Z. Gu, and H. Zeng. PT-AMC: Integrating preemption thresholds into mixed-
criticality scheduling. In Proc. DATE, pages 141–146, 2013. 11

[508] Q. Zhao, Z. Gu, and H. Zeng. HLC-PCP: A resource synchronization protocol for certifiable
mixed criticality scheduling. Embedded Systems Letters, IEEE, 6(1), 2014. 18

[509] Q. Zhao, Z. Gu, and H. Zeng. Resource synchronization and preemption thresholds within
mixed-criticality scheduling. ACM Transactions on Embedded Computing Systems (TECS),
14(4):81, 2015. 17

[510] Q. Zhao, Z. Gu, H. Zeng, and N. Zheng. Schedulability analysis and stack size minimization
with preemption thresholds and mixed-criticality scheduling. Journal of Systems Architecture,
2017. 11

[511] Y. Zhao and H. Zeng. An efficient schedulability analysis for optimizing systems with adap-
tive mixed-criticality scheduling. Real-Time Systems, 53(4):467–525, 2017. 12

[512] Y. Zhou, S. Samii, P. Eles, and Z. Peng. Partitioned and overhead-aware scheduling of mixed-
criticality real-time systems. In Proc. of 24th Asia and South Pacific Design Automation
Conference, ASPDAC, pages 39–44. ACM, 2019. 18

80

[513] L. Ziarek and E. Blanton. The Fiji MultiVM archiecture. In Proc. JTRES. ACM, 2015. 42

[514] M. Zimmer, D.Broman, C. Shaver, and E.A. Lee. FlexPRET: A processor platform for mixed-
criticality systems. In Proc. RTAS, pages 101–110, 2014. 42

81

	Introduction
	Mixed Criticality Models
	Single Processor Analysis
	Job Scheduling
	Fixed Priority Scheduling
	RTA-Based approaches
	Slack scheduling
	Period transformation

	EDF Scheduling
	Shared Resources
	Static and Synchronous Scheduling
	Varying Speed Processors

	Multiprocessor Analysis
	Task Allocation
	Schedulability Analysis
	Communication and other Resources

	Links to other Research Topics
	Hard and Soft Tasks
	Fault Tolerant Systems (FTS)
	Security
	Hierarchical Scheduling
	Cyber Physical Systems and Internet of Things
	Probabilistic Real-Time Systems

	More Realistic MCS Models
	More Formal Treatments
	Utilisation Bounds
	Speedup Factors
	Formal Language and Modelling Issues

	Systems Issues
	Run-Time Monitoring and Overheads
	Virtualisation and Operating System Support
	Hardware Aspects
	Benchmarks and Comparative Studies
	Criticality-Aware Power Consumption
	Issues Relating to Modeling and Tool Support

	Industry Practice and Standards
	PhD Awards for Research within the Field of MCS
	Conclusion and Directions for Future Work
	Literature

