
ENSILO.COM

TURNING (PAGE) TABLES
BYPASSING ADVANCED KERNEL MITIGATIONS USING PAGE TABLES MANIPULATIONS

BSidesLV 2018

2 // ENSILO.COM

ABOUT US

• Omri Misgav
– Security Research Team Leader @ enSilo

– Reverse Engineering, OS internals and malware research

– Past speaker in BSidesLV

• Udi Yavo
– CTO & Co-Founder @ enSilo

– Former CTO, Rafael Cyber Security Division

– Past speaker in Blackhat, RSA and BSidesLV

• Our technical blog: BreakingMalware.com

https://www.breakingmalware.com/

3 // ENSILO.COM

AGENDA

• Windows 10 Kernel Exploit Mitigations

• Memory Management Overview

• Virtualization, VBS & KMCI

• Turning Tables Technique

• Demo

• Mitigations

4 // ENSILO.COM

WINDOWS 10 KERNEL EXPLOIT MITIGATIONS

• Microsoft puts a lot of effort into kernel mitigations

• This is only partial list of improvements:

1. Not enabled by default
2. Require VBS
3. Mitigations that constantly improved

Mitigation/OS Windows 7 Windows 8.1 Windows 10
Windows 10
November

Update

Windows 10
Redstone 1

Windows 10
Redstone 2

Windows 10
Redstone 3

Windows 10
Redstone 4

Safe Unlinking X X X X X X X X

NULL Page Allocation X X X X X X X

Disable Win32k Syscalls3 X X X X X X X

KASLR3 X X X X X X X

SMEP X X X X X X X

Page Table Randomization X X X X

GDI Pointers Removal X X X X

NULL SecurityDescriptor X X X X

UserHandleTable Stripping X X X

HAL Heap Randomization X X X

KCFG1 X X X

Win32k Type Isolation X X

KMCI1,2 X X X X X X

5 // ENSILO.COM

WINDOWS 10 KERNEL EXPLOIT MITIGATIONS

• Many new exploits techniques were developed to bypass these mitigations:
– Taking Windows 10 Kernel Exploitation To The Next Level

– Abusing GDI Objects for ring0 Primitives Revolution

– Abusing GDI for ring0 exploit primitives

– A New CVE-2015-0057 Exploit Technology (Vulnerability disclosed by us)

– …

• Still in no generic exploitation methods with KMCI enabled

• Until now…

https://www.blackhat.com/docs/us-17/wednesday/us-17-Schenk-Taking-Windows-10-Kernel-Exploitation-To-The-Next-Level%E2%80%93Leveraging-Write-What-Where-Vulnerabilities-In-Creators-Update.pdf
https://sensepost.com/blog/2017/abusing-gdi-objects-for-ring0-primitives-revolution/
https://www.coresecurity.com/system/files/publications/2016/10/Abusing-GDI-Reloaded-ekoparty-2016_0.pdf
https://www.blackhat.com/docs/asia-16/materials/asia-16-Wang-A-New-CVE-2015-0057-Exploit-Technology-wp.pdf

6 // ENSILO.COM

MEMORY MANAGEMENT OVERVIEW
Virtual memory

Virtual
pages

Physical memory

Page table
entries

FFFFFFFF’ FFFFFFFF

FFFF8000’00000000

00000000’00000000

00000000’00000000

Source: Windows Internals 6th edition

7 // ENSILO.COM

MEMORY MANAGEMENT OVERVIEW
Virtual memory address translation

Page map
level 4

Page directory
pointers

Page
directories

CR3

PFN 0

1

2

3

4

5

6

7

8

9

10

11

12
Page

tables
Physical pages

(up to 248)

• • •

Page map level
4 selector

47
Page directory

pointer selector
Page table

selector
Page table

entry selector
Byte within

page

0

VA: fffff1be`6e4f3050

Binary: 11111111 11111111 11110001 10111110 01101110 01001111 00110000 01010000

Page map level 4
selector

3947

9 bits

Page directory
pointer selector

3038

9 bits

Page table
selector

2129

9 bits

Page table
entry selector

1220

9 bits

Byte within
page

011

12 bits

Source: Windows Internals 6th edition

8 // ENSILO.COM

MEMORY MANAGEMENT OVERVIEW
PTEs and shared memory

Source: Windows Internals 6th edition

DLL Code

Physical
memory

• • •

Process 1
virtual memory

• • •

Process 2
virtual memory

• • •

VVWOWtCdADLGlCwPUNX
Software

(working set
index)

Reserved
Page frame

number

No execute
Software field (write)
Software field (prototype PTE)
Software field (copy-on-write)
Global
Large page
Dirty
Accessed
Cache disabled
Write through
Owner
Write
Valid

63 62 52 51 40 39 12 11 10 9 8 7 6 5 4 3 2 1 0

x64 PTE

9 // ENSILO.COM

MEMORY MANAGEMENT OVERVIEW
Prototype PTEs

Source: Windows Internals 6th edition

PFN database
entry

PFN n

Physical
memory

Share count=1

PFN n

PTE address

Prototype page
table

Valid – PFN 5

Invalid – in page
file

Segment
structureValid – PFN n

Invalid – points
to prototype PTE

PFN

Page tablePage directory

0VPProto address

Software field (prototype PTE)
Valid

63 16 15 11 10 9 8 7 3 2 1 0

Invalid PTE

10 // ENSILO.COM

MEMORY MANAGEMENT OVERVIEW
Copy-on-Write

After

Source: Windows Internals 6th edition

DLL Code

Physical
memory

• • •

Process 1
virtual memory

• • •

Process 2
virtual memory

• • •

Before

Physical memory

Process
address
space

Original data

Process
address
space

Original data

Page 1

Page 2

Page 3

VVWOWtCdADLGlCwPUNX
Software
(working
set index)

Reserved
Page frame

number

No execute
Software field (write)
Software field (prototype PTE)
Software field (copy-on-write)
Global
Large page
Dirty
Accessed
Cache disabled
Write through
Owner
Write
Valid

63 62 52 51 40 39 12 11 10 9 8 7 6 5 4 3 2 1 0

x64 PTE

Physical memory

Process
address
space

Modified data

Process
address
space

Original data

Page 1

Page 2

Page 3

Copy of page 2

11 // ENSILO.COM

MEMORY MANAGEMENT OVERVIEW

• Second Level Address Translation - SLAT

• Translation of Guest Physical Address (GPA) to Machine Physical Address (MPA)

• Same page table hierarchy: PML4 -> PDP -> PD -> PT

Virtualization

typedef struct _ept_pte {
uint64 read
uint64 write
uint64 execute
uint64 ept_mt
uint64 ignore_pat_mt
uint64 is_large_page
uint64 accessed
uint64 dirty
uint64 user_execute
uint64 ignored1
uint64 pfn
uint64 ignored2
uint64 supress_ve

} ept_pte;

: 1; // bits 2..0
: 1; // bits 2..0
: 1; // bits 2..0
: 3; // bits 5..3
: 1; // bit 6
: 1; // bit 7
: 1; // bit 8
: 1; // bit 9
: 1; // bit 10
: 1; // bit 11
: 40; // bits 51..12
: 11; // bits 62..52
: 1; // bit 6

Virtual Machine 1

Process 1 Process 2Process 1 Process 2

Virtual Machine 2

Guest Virtual Page

Guest Physical Page

Machine Physical Page

12 // ENSILO.COM

VIRTUALIZATION-BASED SECURITY
Architectural overview

Hyper-V Hypervisor

SKM Ring 0

Ring 3IUM DLL NT DLL

IUM Base Base Client (KERNALBASE)

NTOS

KERNEL32RPCRT4

NT DLL

Base Client (KERNALBASE)

VTL 1 VTL 0

KERNEL32RPCRT4

13 // ENSILO.COM

VIRTUALIZATION-BASED SECURITY
Kernel-Mode Code Integrity (KMCI)

• HVCI - HyperVisor Code Integrity

• Blocking +RX / +RWX
– Preventing execution of code, or modification of code

• Blocking +W
– Preventing modification of executable pages shared with VTL 1

• SKCI.DLL (Secure Kernel Code Integrity)
– Same functionally of CI.DLL, the normal world Code Integrity library

• Upon loading a new driver the Secure Kernel is invoked in order to validate the digital
signature and check it’s authorized within the current policy

14 // ENSILO.COM

QUICK RECAP

• Virtual memory management is a joint effort by hardware and software

• Virtual memory is the foundation for many important OS capabilities
– Shared memory

– Flexible physical memory management

– …

• Microsoft leverages virtualization hardware capabilities to enhance security
– HVCI: Raises the bar for exploitation

– Credential Guard

– Secure memory enclaves

– …

15 // ENSILO.COM

GOALS AND MOTIVATION

• Most privilege escalation exploits runs a payload in kernel-mode in their course of action

• KMCI effectively prevents it
– New kernel code can’t be allocated if unsigned

– Existing kernel code cannot be modified

• Previous publications assume KMCI is disabled (except data only attacks)

• The real goal of most kernel exploits is to run code with highest possible privileges

• Basically, we want to achieve arbitrary code execution with system privileges
– “…a place where architecturally, we do not currently define a defensible security boundary.”

16 // ENSILO.COM

TURNING TABLES TECHNIQUE
Prerequisites

• Essentially only read/write primitives are needed

• This is common in every modern exploit

• And that’s it ☺

17 // ENSILO.COM

TURNING TABLES TECHNIQUE
Outline

• Make a user-mode shared code page PTE writable in our process
– Which typically runs also in system processes

– Simply flipping a bit, remember?

• Change the code

• Wait…

• …And run as SYSTEM

18 // ENSILO.COM

TURNING TABLES BUILDING BLOCKS

• Assuming you already leaked NTOSKRNL.exe base address

• MmGetVirtualForPhysical
– Exported and contains the PTE base address

– The constant value is different in memory

• Additional method can be through MiGetPteAddress
– Presented in Blackhat 2017

Bypassing page-table randomization

19 // ENSILO.COM

TURNING TABLES BUILDING BLOCKS

• Quite a few processes runs as user SYSTEM
– svchost.exe

– winlogon.exe, lsass.exe

– MsMpEng.exe (Windows Defender) and most AVs…

• We can also use non-SYSTEM process with higher privileges

• Running in such processes may allow to avoid detection by
some security products as they are excluded from
monitoring due to performance/stability issues

Finding targets

20 // ENSILO.COM

TURNING TABLES BUILDING BLOCKS

• The targeted modules can’t be used by VTL1 components
– UI DLLs are prime candidates

– Parsers and network libraries also provide good options

• Preferably the module should be a one which is already loaded in the origin process

• The following DLLs fit the description:
– ole32.dll

– oleaut32.dll

– imm32.dll

– user32.dll

Finding targets

21 // ENSILO.COM

TURNING TABLES BUILDING BLOCKS

• A place that is shared but unused
– So it won’t lead to a crash

• Code caves in PEs are very common
– At the end of .text section, so it’s shared (and executable)

– Thus, placing the payload is quite straightforward

• On RS4 build 17134:
– ole32.dll: 0x939 bytes

– oleaut32.dll: 0x3ef bytes

– user32.dll: 0xcf7 bytes

– Imm32.dll: 0x119 bytes

Finding targets

22 // ENSILO.COM

TURNING TABLES BUILDING BLOCKS

• The selected module needs to be used quite often in the target process
– But not too often so overhead won’t becomes an issue

– May also be code that can be triggered from the origin process, for instance via RPC

• DLL entrypoints are very appealing
– Invoked on every thread start and exit

– Services on Windows 10 constantly create new threads

– MSVC CRT main can be easily altered to reach the code cave

Triggering the payload

23 // ENSILO.COM

TURNING TABLES BUILDING BLOCKS

• Make sure we are in the target process
– We don’t know the specific target process ID

– Check the process name and username

• Synchronize the execution between multiple processes so it will execute only once
– Obtain a named mutex on start

• Continue to the main payload
– Map a data section from the origin process

– Read it directly from the origin process memory

– Download it from a remote machine

Crafting the payload

24 // ENSILO.COM

TURNING TABLES TECHNIQUE WALKTHROUGH

Hyper-V

NTOS

EdgeCP

ole32.dll

Code Pages

svchost

ole32.dll

Code Pages

Protects

25 // ENSILO.COM

TURNING TABLES TECHNIQUE WALKTHROUGH

Hyper-V

NTOS

EdgeCP

ole32.dll

Code Pages

svchost

ole32.dll

Code Pages

Protects

Make shared
pages writeable

26 // ENSILO.COM

TURNING TABLES TECHNIQUE WALKTHROUGH

Hyper-V

NTOS

EdgeCP

ole32.dll

Code Pages

svchost

ole32.dll

Code Pages

Protects

Write initial payload

27 // ENSILO.COM

TURNING TABLES TECHNIQUE WALKTHROUGH

Hyper-V

NTOS

EdgeCP

ole32.dll

Code Pages

svchost

ole32.dll

Code Pages

Protects

Manipulate shared
code to call payload

Payload Payload

28 // ENSILO.COM

TURNING TABLES TECHNIQUE WALKTHROUGH

Hyper-V

NTOS

EdgeCP

ole32.dll

Code Pages

svchost

ole32.dll

Code Pages

Protects

Wait for shared
code to execute

Payload Payload

29 // ENSILO.COM

TURNING TABLES TECHNIQUE WALKTHROUGH

Hyper-V

NTOS

EdgeCP

ole32.dll

Code Pages

svchost

ole32.dll

Code Pages

Protects

Initial payload loads
the full payload and
executes it

Payload Payload

30 // ENSILO.COM

DEMO

31 // ENSILO.COM

TURNING TABLES VS KERNEL MITIGATIONS

• Page table randomization
– Easy to bypass using read primitive

• Kernel CFG is bypassed by design
– No code runs in kernel-mode

• Bypassing KMCI
– Again, no code runs in kernel-mode

– No need to bypass the allowed drivers policy

32 // ENSILO.COM

TURNING TABLES VS OTHER TECHNIQUES

• Doesn’t change the process token
– Which can be monitored and detected

– Windows Defender System Guard

• Based on simple operations
– Does not run shellcode in kernel-mode

– Read operations are of simple, well-defined data structures

• Following a successful privilege escalation we already run in a different process
– Usually exploited processes, like browsers, has a relatively short life span

• Can also target protected processes

33 // ENSILO.COM

MITIGATIONS

• UMCI (User-Mode Code Integrity)
– Though not really feasible for general purpose scenarios

• Block +WX with SLAT on every prototype page
– Already done for shared code with VTL1

34 // ENSILO.COM

CLOSING REMARKS

• Even with latest Windows 10 mitigations generic exploitation methods still work
– Relevant for current insider build too (RS5)

– With RS5 VBS and KMCI is planned to be enabled by default

– Suggested mitigations sent to Microsoft

• Relevant without KMCI as well

• Control flow integrity mitigations are not an issue
– No need to manipulate function pointers

– Will work even with protections like CET (hardware enforced CFI)

• Not limited to Windows
– Copy-On-Write/Shared Memory is used on every modern OS

35 // ENSILO.COM

REFERENCES

• Intel Software Developer’s Manual

• AMD-V Nested Paging

• Windows Internals 6th edition

• Battle Of SKM And IUM - How Windows 10 Rewrite OS Architecture

• Taking Windows 10 Kernel Exploitation To the Next Level – Leveraging Write-What-
Where Vulnerabilities In Creators Update

https://software.intel.com/en-us/download/intel-64-and-ia-32-architectures-sdm-combined-volumes-1-2a-2b-2c-2d-3a-3b-3c-3d-and-4
http://developer.amd.com/wordpress/media/2012/10/NPT-WP-1 1-final-TM.pdf
http://www.alex-ionescu.com/blackhat2015.pdf
https://www.blackhat.com/docs/us-17/wednesday/us-17-Schenk-Taking-Windows-10-Kernel-Exploitation-To-The-Next-Level%E2%80%93Leveraging-Write-What-Where-Vulnerabilities-In-Creators-Update.pdf

// ENSILO.COM36

QUESTIONS?

THANK YOU

udi@ensilo.com in/udiyavo @UdiYavo

omri@ensilo.com

www.breakingmalware.com

in/omri-misgav

