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INTRODUCTORY REMARKS

 

Graph Theory Day 54 was hosted by Manhattan College, Riverdale, New York. The local organizers were
Kathryn Weld and Richard Goldstone of Manhattan College. The meeting opened with welcoming remarks
from Richard Goldstone. The invited speakers were Gary Gordon and Claude Tardif. Articles based on these
talks can be found in this issue.

Although 

 

Graph Theory Notes of New York

 

 is not the proceedings of Graph Theory Days, we are always
pleased when papers by the invited speakers and by presenters of contributed talks at Graph Theory Days are
submitted for publication. In particular, we invite any readers of the 

 

Notes

 

 to submit articles for consider-
ation as per Instructions for Contributors listed on the inside of the back cover.

With respect to Graph Theory Days, there is an ongoing need for hosts of these events. Hosting is both good
for the host institution and for graph theory in general. Incidentally, taking students to Graph Theory Days is
a great way to introduce them to the mathematical community outside of the class room.

Graph Theory Day 55 organized by Gary E. Stevens will take place at Hartwick College, Oneonta, New
York on May 10, 2008. Also of interest to our readers is the complementary series of meetings, Discrete
Mathematics Days in the Northeast, organized by the DMD-NE Steering Committee (Seth Chaiken, Albany,
SUNY; Karen Collins, Wesleyan; Cristian Lenart, Albany, SUNY; Rosa Orellan, Dartmouth; and Lauren
Rose, Bard). The next meeting in this series will take place on June 7, 2008 at the Stevens Institute of
Technology, Hoboken, New Jersey. Organizer and contact person is Daniel Gross, Seton Hall University,
<grossdan@shu.edu>. The web site for the meeting is <http://www.math.shu.edu/DMD08>.

Thanks to all of the supporters of 

 

Graph Theory Notes of New York

 

 and Graph Theory Days.

JWK/LVQ
New York
April 2008
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GRAPH THEORY DAY 54

 

Organizing Committee 

 

Graph Theory Day 54, sponsored by the Mathematics Section of the New York Academy of Sciences, was
organized and hosted by the Department of Mathematics and Computer Science, Manhattan College, New
York on Saturday, October 27, 2007.

The featured presentations at Graph Theory Day 54 were: 

 

Honey, I Shrunk the Hedetniemi Conjecture

 

Claude Tardif [See this issue page 46]
Royal Military College of Canada
PO Box 17000 Stn Forces
Kingston, Ontario, CANADA

 

From the Chromatic Polynomial of a Graph to the Tutte Polynomial 
of a Greedoid with several stops along the way

 

Gary Gordon [See this issue page 34]
Department of Mathematics
Lafayette College
Easton, Pennsylvania, U.S.A.
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[GTN LIV:1] THE FIRE INDEX

 

D. Cariolaro –11 (2008) 

 

David Cariolaro

 

Institute of Mathematics, Academia Sinica
Nankang, Taipei 11529
TAIWAN
<cariolaro@math.sinica.edu.tw>

Fire Rescue Development Program
C.P. 35 Bracciano
Rome 00062, ITALY
<http://ww.frdp.org>

 

Dedicated to the memory of the 343 firefighters who lost 
their lives in New York City on the 11th of September 2001

 

Abstract

 

We introduce a new graph parameter , defined as the largest order among all fan digraphs asso-
ciated with the edge-deleted colorings of the critical subgraphs of 

 

G

 

. We show the fundamental
importance of this parameter in edge coloring. In particular, we provide generalizations of Vizing’s
Theorem, Shannon’s Theorem, and Vizing’s Adjacency Lemma. We offer an extension to multi-
graphs of the simple graph version of Vizing’s Theorem, obtained by proving that the chromatic index
of an arbitrary multigraph must assume one of only two possible values. We call 

 

f

 

*

 

 the fire index.

 

1. Introduction

 

A 

 

multigraph

 

 

 

G

 

 is, for the purposes of this paper, an ordered triple , where 

 

V

 

 and 

 

E

 

 are two disjoint
finite sets called, respectively, the set of vertices and the set of edges of 

 

G

 

, and  is a function,
called the 

 

incidence function

 

. Here and elsewhere in this paper, for a set 

 

X

 

, the symbol  is used to denote
the set of unordered pairs of distinct elements of 

 

X

 

. Thus, the incidence function associates to each edge 

 

e

 

 of

 

G

 

 an unordered pair  of distinct vertices of 

 

G

 

, which 

 

e

 

 is said to 

 

join

 

. The vertices 

 

u

 

 and 

 

v

 

 are also called
the 

 

endpoints

 

 of 

 

e

 

. Two edges are 

 

adjacent

 

 if they are distinct and have at least one common endpoint. The
set of edges joining two vertices 

 

u

 

 and 

 

v 

 

is denoted by 

 

uv

 

. The cardinality of 

 

uv

 

 is denoted by  and is
called (with a slight abuse of terminology) the 

 

multiplicity

 

 of the edge 

 

uv

 

. The number

is called the 

 

maximum multiplicity

 

 of 

 

G

 

.

If 

 

u

 

 is a vertex of 

 

G

 

, then , the number of edges incident with 

 

u

 

 in 

 

G

 

, is called the 

 

degree

 

 of 

 

u

 

and is denoted by . The maximum degree of 

 

G

 

, denoted by , is defined to be the maximum among
the degrees of the vertices of 

 

G

 

.

We adopt the convention that, whenever appropriate, the name of the multigraph to which a certain symbol
or quantity refers shall be attached to that symbol or quantity in any convenient manner, such as by means of
a subscript or superscript. This is particularly useful when more than one graph is under discussion.

Let 

 

C

 

 be a set, whose elements we conventionally call 

 

colors

 

. An 

 

edge coloring

 

 of a multigraph
 is a function  such that  for any pair  of adjacent edges of 

 

G

 

.
The 

 

chromatic index

 

 of 

 

G

 

, denoted by , is defined by

,

where 

 

C

 

 ranges over the color sets in all edge colorings of 

 

G

 

. An edge coloring of 

 

G

 

 is called 

 

optimal

 

 if its
color set 

 

C

 

 satisfies the condition .

It is easy to see that  for any multigraph 

 

G

 

. If , we say that 

 

G

 

 is 

 

Class 1

 

, otherwise
we say that 

 

G

 

 is 

 

Class 2

 

. Virtually nothing was known about the chromatic index of arbitrary multigraphs
until 1949, when C.E. Shannon 

 

[1]

 

 proved the following theorem.

f * G( )

V E ψ, ,( )
ψ: E V 2( )→

X 2( )

u v,{ }

μ uv( )

μ G( ) max μ uv( ){ }
u v,{ } V 2( )∈

=

μ uv( )v u≠∑
deg u( ) Δ G( )

G V E ψ, ,( )= ϕ: E C→ ϕ e( ) ϕ f( )≠ e f,{ }
χ′ G( )

χ′ G( ) min C{ }=

C χ′ G( )=

χ′ G( ) Δ G( )≥ χ′ G( ) Δ G( )=
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Theorem 1 (Shannon, 1949): For any multigraph G, . �

Shannon showed that the upper bound in his theorem is attained by an infinite family of graphs. Several years
later, V.G. Vizing [2] determined another formidable upper bound on the chromatic index of multigraphs,
namely

Theorem 2 (Vizing, 1964): For any multigraph G, �

Vizing’s result is particularly striking when ; that is, when G is a simple graph, because it restricts
the range of the values of the chromatic index to only two possible (consecutive) integers. It should be
noticed, however, that Theorem 1 is not an improvement of Theorem 2 nor is Theorem 2 an improvement of
Theorem 1.

The main objective of this paper is to prove a result that generalizes both Theorem 1 and Theorem 2, and from
which most theorems in edge coloring can be derived. Possibly this result could prove to be of use in an attack
on the foremost unsolved problem on edge coloring of multigraphs; the conjecture of Goldberg [3] and
Seymour [4].

Conjecture 1 (Goldberg–Seymour Conjecture): Let G be a Class 2 multigraph such that
. Then

where the maximum is over all submultigraphs H of G of order at least two. �

2. Edge Coloring Preliminaries

This paper is a natural continuation of [5], the notation, terminology, and results from which will be assumed.
However, for the convenience of the reader we reiterate a number of definitions given in [5]. An edge e of a
multigraph G is called critical if . A multigraph G is called critical if it is Class 2, has no
isolated vertex, and all of its edges are critical. An e-tense coloring φ of G is a partial edge coloring of G that
assigns no color to e and whose restriction to  is an optimal coloring of . The color set of φ is
defined to be the color set of its restriction to . Given an e-tense coloring φ of G with color set C and a
vertex , we say that a color  is missing at w (or that w is missing the color α) if there is no
edge, having w as an endpoint, that is assigned the color α by φ. The set of colors missing at w is denoted by
Cw and its cardinality is called the color-deficiency of w, denoted by .

Let . A fan at u with respect to φ is a sequence of edges of the form

where , , and where the vertex vi is missing the color of edge , for each ,
. An edge f is called a fan edge at u if it appears in at least one fan at u. A vertex w is called a fan vertex

at u if it is joined to u by at least one fan edge. The set of fan vertices is denoted by . A color  is
called a fan color if it is the color of a fan edge. The set of fan colors is denoted by CF. If w is a fan vertex at
u, we denote by  the number of fan edges joining u and w, and call  the fan multiplicity of the
edge uw. The main contribution of [5] was the introduction of a new concept in edge coloring, the fan digraph,
which we now define.

Definition: Let G be a Class 2 multigraph and let  be a critical edge. The e-fan
digraph at u with respect to φ is the directed multigraph  where
1. 
2. 
3.  , where wα is the unique fan vertex at u

missing color α and zα is the unique fan vertex at u joined to u by an edge colored α. �

Note that the existence of the vertices wα and zα is far from being obvious, and follows from deep results of
edge coloring (see Lemma 1 and Lemma 2 in [5]).

It follows immediately from definitions [5] that, under the above hypotheses, we have

(1)

χ′ G( ) 3Δ G( ) 2⁄≤

χ′ G( ) Δ G( ) μ G( ).+≤
μ G( ) 1=

χ′ G( ) Δ G( ) 1+>

χ′ G( ) max E H( )
V H( ) 2⁄

----------------------------- ,=

χ′ G e–( ) χ′ G( )<

E G e–( ) G e–
G e–

w V G( )∈ α C∈

cdef w( )

u V G( )∈

F e0 e1 … ek 1– ek, , , ,[ ],=

e0 e= ei uvi∈ ei 1+ i 0 1 …, ,=
k 1–

V F( ) α C∈

μ* uw( ) μ* uw( )

e uv∈
F V F( ) A F( ) ψF, ,( ),=

V F( ) w : w is a fan vertex at u{ };=
A F( ) CF α : α is a fan color at u{ };= =
ψF: A F( ) V F( ) V F( )× ,→ α� wα zα,( )

V F( ) 2≥
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and, for each ,

(2)

The following theorem expresses a central property of tense colorings and was obtained in [5] by counting the
number of arcs of the fan digraph in three different ways.

Theorem 3 (Fan Theorem): Let G be a Class 2 multigraph and let  be a critical
edge, where . Let φ be an e-tense coloring of G and let F be the corresponding fan
digraph. Then

�

3. A Formula for the Chromatic Index

We now deduce from Theorem 3 the formula for the chromatic index that was mentioned in the Introduction.
We use the same assumptions and notation of Theorem 3. Substituting (2) in the first identity of Theorem 3,
we obtain

where we have used the fact that  and 

Rearranging the terms, we obtain

from which

(3)

Note that this is an exact expression for the chromatic index of a multigraph, and hence, by its own nature, is
superior to all known upper and lower bounds on the chromatic index. However, a disadvantage of (3) is that
it contains several quantities that may not be immediately computable. We comment briefly on this. First,
note that the right-hand side of (3) can be evaluated only if we have a tense coloring φ of G (or, equivalently,
a fan digraph), which can be obtained only if one knows the chromatic index of G (since  is just the
number of colors used by φ plus one). In other words, knowledge of the right-hand side of (3) presupposes
knowledge of a tense coloring of G, which in turns implies a priori knowledge of the chromatic index of the
multigraph. Despite this being true, in practical situations, we are most often faced with an entirely different
problem; that is, we have only imprecise or partial information about the graph at hand and its chromatic prop-
erties, and we wish to test our information for accuracy. In this sense, Equation (3) may prove to be not only
a powerful theoretical tool, but also one useful in applications. Suppose, for instance, that we have con-
structed an e-tense coloring of G, but we do not know if e is a critical edge; or suppose, conversely, that we
know that e is a critical edge of G, but we are unable to tell if the coloring φ is an e-tense coloring. In both cir-
cumstances we may use (3) on the assumption that φ is an e-tense coloring and e is a critical edge, as a test that
(at least in some cases) may allow us to decide if our assumption is false.

An expression that is even more compact may be obtained from (3) by taking (1) into account. Thus,

(4)

From (4) it is easily seen that (3) generalizes Vizing’s Theorem since, obviously,  and
 for any fan vertex w. In a similar way several other classical upper bounds on the chromatic

index of multigraphs can be obtained (see [6]). The interesting feature of (4) is that it emphasizes the fact that
the chromatic index of G can be expressed as the ceiling of the “average” of a certain quantity associated with

w V G( )∈

cdef w( )
χ′ G( ) degG w( )– if w u or w v==

χ′ G( ) 1– degG w( )– if w u v.,≠⎩
⎨
⎧

=

e E G( )∈
e uv∈

cdef w( )
w V F( )∈

∑ μ* uw( ) 1–
w V F( )∈

∑ CF .= =

χ′ G( ) 1– degG w( )–( ) 1+
w V F( )∈

∑ μ* uw( ) 1,–
w V F( )∈

∑=

v V F( )∈ u V F( )∉ .

V F( ) χ′ G( )⋅ degG w( ) μ* uw( )+( ) V F( ) 2,–+
w V F( )∈

∑=

χ′ G( ) 1
V F( )
---------------- degG w( ) μ* uw( )+( ) V F( ) 2–

V F( )
-------------------------+

w V F( )∈
∑ .⋅=

χ′ G( )

χ′ G( ) 1
V F( )
---------------- degG w( ) μ* uw( )+( )

w V F( )∈
∑⋅ .=

degG w( ) Δ G( )≤
μ* uw( ) μ G( )≤



D. Cariolaro: The fire index 9

gtn 5401 Cario.fm page proofs printed (jwk) June 2, 2008 

each fan vertex w. This quantity depends, however, on the particular tense coloring (or fan digraph) chosen.
From this point of view (3) is much more interesting, since it is obvious that the quantity at the left-hand side
(and, consequently, at the right-hand side) of (3) is independent of the tense coloring chosen.

4. The Fire Index

For different reasons, some of which are indicated below, it is interesting to choose in (3) a tense coloring for
which , the order of the corresponding fan digraph (or, equivalently, the number of fan vertices), is
maximum. As a first justification for this choice, we now obtain a generalization of the well known Vizing
adjacency lemma [7]. Suppose that u is a vertex of a critical simple graph G and v is a neighbor of u. Let

. Let F be an e-fan digraph at u of maximum order. Then, from Theorem 3,

(5)

where we have used the fact that all fan multiplicities are equal to 1. Since G is simple and Class 2, we have
, by Vizing’s Theorem. Then from (2) we obtain

(6)  if 

and

(7)

Define the deficiency of vertex x by

Then, from (5), (6), and (7), we obtain

Since , we obtain

and hence,

(8)

This statement is more informative than Vizing’s adjacency lemma, which only gives information about the
vertices of maximum degree adjacent to u. Indeed Vizing’s adjacency lemma can be easily obtained from (8)
by simply noticing that the number of vertices of positive deficiency in  cannot exceed the right-
hand side of (8), and hence, the number of vertices of zero deficiency (that is, of maximum degree) in

 must be at least

These are all vertices that are adjacent to u and distinct from v, whence Vizing’s adjacency lemma follows.
It should now be apparent that, the larger , the larger the number of neighbors of u for which we have
some information. This example shows that it is of value to consider the largest possible fan digraph based at
a given vertex. We now make one further step in this direction, and consider the largest possible fan digraph
based at any vertex of G. In order to define this as a graph parameter, we initially start with an arbitrary
Class 2 multigraph M. Let G be the class of submultigraphs of M that have the same chromatic index as M
(and hence, are Class 2) and that have at least one critical edge. Note that G is non-empty, since there always
exists a critical submultigraph of M with the same chromatic index as M [7]. Consider then, for each ,
all the critical edges e of G and, for each of these, all the e-tense colorings φ of G. For each such tense coloring
φ, consider the corresponding fan digraph F. We define  to be the largest order among all the fan
digraphs F described above. Thus,

V F( )

e uv∈

cdef w( )
w V F( )∈

∑ V F( ) 1,–=

χ′ G( ) Δ G( ) 1+=

cdef w( ) Δ G( ) degG w( )–= w V F( )\ v{ }∈

cdef v( ) Δ G( ) 1 degG w( ).–+=

def x( ) Δ G( ) degG x( ).–=

def w( )
w V F( )∈

∑ V F( ) 2.–=

v V F( )∈

def v( ) def w( )
w V F( )\ v{ }∈

∑ V F( ) 2,–=+

def w( )
w V F( )\ v{ }∈

∑ V F( ) 2– def v( )– V F( ) 2– Δ G( )– degG v( ).+= =

V F( )\ v{ }

V F( )\ v{ }

V F( ) 1–( ) V F( ) 2– Δ G( )– degG v( )+( )– Δ G( ) 1 degG v( ).–+=

V F( )

G G∈

f * M( )



10 Graph Theory Notes of New York LIV (2008)

gtn 5401 Cario.fm page proofs printed (jwk) June 2, 2008 

(9)

where the maximum ranges over all the e-fan digraphs of G, G ranges over all the multigraphs in G, and e
ranges over all the critical edges of G. If M is a Class 1 multigraph, we simply define  to be ∞. We have
now defined the parameter  for all multigraphs. We propose to call  the fire index.

We now offer additional evidence of the importance that this parameter has in edge coloring. A more com-
prehensive study will form the subject of other publications by the author.

First note that we are now able to provide an extension to multigraphs of the simple graph version of Vizing’s
theorem, as follows.

Theorem 4: Let M be a multigraph. Then either  or there exists a submul-
tigraph G of M that admits a fan digraph F such that

�

The importance, theoretical and practical, of the above statement cannot be underestimated, since it restricts
the possible value of the chromatic index of an arbitrary multigraph to one of only two integers.

It is not too difficult to see (and it will be proved elsewhere) that, in order to evaluate the fire index, it suffices
to evaluate it for only critical multigraphs. More precisely, we have the following.

Lemma 1: Let M be a Class 2 multigraph. Then

�

Note that, if H is a critical multigraph,  is simply the largest order of a fan digraph of H. Thus, Lemma 1
provides a significant conceptual simplification to the definition of the fire index.

Assume now that M is a Class 2 multigraph. Using (1) and the definition of the fire index, it is easily seen that

(10)

Hence, using Theorem 4 and the obvious inequalities

and

we obtain

(11) .

Since the left-hand side of (11) is an integer, (11) implies

(12)

Because  is in the range (10), this inequality provides a generalization of Shannon’s theorem, which we
state below. (Clearly, for Class 1 multigraphs, the right-hand side of (12) must be interpreted in the limit
sense, that is, as ).

Theorem 5: For any multigraph M,

�

It is now clear from the monotonicity of the function  with respect to , that the larger the
value of , the better is the bound on the chromatic index provided by Theorem 5. This provides a fur-
ther motivation to the introduction of the fire index.

f * M( ) max V F( ){ },=

f * M( )
f * f *

χ′ M( ) Δ M( )=

χ′ M( ) 1
f * M( )
--------------- degG w( ) μG

* uw( )+( ) f * M( ) 2–
f * M( )

------------------------.+
w V F( )∈

∑⋅=

f * M( ) max f * H( ) : H M⊆ H  critical χ′ H( ) χ′ M( )=, ,{ }.=

f * H( )

2 f * M( ) Δ M( ).≤ ≤

degG w( ) Δ G( ) Δ H( )≤ ≤

μG
* uw( )

w V F( )∈
∑ μG uw( )

w V F( )∈
∑ degG u( ) Δ G( ) Δ H( ),≤ ≤ ≤ ≤

χ′ M( ) Δ M( ) Δ M( ) f * M( ) 2–+
f * M( )

-------------------------------------------+≤

χ′ M( ) Δ M( ) Δ M( ) f * M( ) 2–+
f * M( )

------------------------------------------- .+≤

f * M( )

Δ M( ) 1+

χ′ M( ) Δ M( ) Δ M( ) f * M( ) 2–+
f * M( )

------------------------------------------- .+≤

Δ f * 2–+( ) f *⁄ f *

f * M( )
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Finally we point out that, if we evaluate the right-hand side of the inequality of Theorem 5 by letting the fire
index take successive even integer values 2, 4, …, 12, we obtain the quantities

Curiously, these are precisely the quantities that appear in connection to the partial proofs of the Goldberg–
Seymour conjecture obtained, respectively, by Vizing [8], Goldberg [9], Andersen [10], Goldberg [11], Nish-
izeki and Kashiwagi [12], and Favrholdt et al. [13]. This clearly indicates a strong connection between the fire
index and the most elusive unsolved question on the edge coloring of multigraphs. This we will try to clarify
in the future.
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Abstract
Let  denote the graph whose vertex set is the set of all forests of order n with no vertex of
degree greater than f. Vertices G and H of  are adjacent if and only if G and H differ (up to iso-
morphism) by exactly one edge. Results and open problems concerning the order, size, diameter, and
traceability of  are presented.

1. Introduction

In [1] an extensive study of graphs with bounded vertex degree and the various contexts in which they appear
is provided. Among the topics explored are graphs whose vertices are graphs with bounded degree. In turn,
the study of these graphs suggests variations for consideration. For example, in [2] the distance properties of
graphs whose vertices are forests with bounded degree are studied. In [3] other properties of the latter graphs
are explored. In this paper, results and open problems concerning the order, size, diameter, and traceability of
graphs whose vertices are forests with bounded degree are presented.

2. Graphs Whose Vertices are Forests

Let  denote the graph whose vertex set consists of all forests having order n and no vertex of degree
greater than f. Vertices G and H of  are adjacent if and only if G and H differ (up to isomorphism) by
exactly one edge. For the purpose of illustrating the various properties that are considered here it is useful to
show all of the  with  and  (see Figures 1–18).

3. Order

Problem 1: What is the order of ? �

Table 1 shows the order of  based on the order n of each forest-vertex (a vertex in ) and f, the
largest vertex degree in each forest-vertex.

For any given number of vertices, there is a specific number of trees. The number of trees on i vertices is
denoted by . The values of  for  are shown in Table 2. Values of  for  can be found
in Table A4 page 253 of [1].

Table 1: Order of F(n,f) for 2 ≤ n ≤ 7 and 1 ≤ f ≤ n − 1.

n f = 1 f = 2 f = 3 f = 4 f = 5 f = 6

2 2

3 2 3

4 3 5 6

5 3 7 9 10

6 4 11 17 19 20

7 4 15 28 34 36 37

F n f,( )
F n f,( )

F n f,( )

F n f,( )
F n f,( )

F n f,( ) 4 n 7≤ ≤ 1 f 6≤ ≤

F n f,( )

F n f,( ) F n f,( )

ti ti 1 i 10≤ ≤ ti 1 i 30≤ ≤
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Figure 1: F(4, 3) Figure 2: F(4, 2) Figure 3: F(4, 1)

Figure 4: F(5, 4) Figure 5: F(5, 3) Figure 6: F(5, 2) Figure 7: F(5, 1)

Figure 8: F(6, 5) Figure 9: F(6, 4)

Figure 10: F(6, 3) Figure 11: F(6, 2) Figure 12: F(6, 1)
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Figure 13: F(7, 6)

Figure 15: F(7, 4)

Figure 14: F(7, 5)
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Figure 16: F(7, 3)

Figure 17: F(7, 2) Figure 18: F(7, 1)

Figure 19: Forests on 10 vertices partitioned into 4 + 6.

Figure 20: Isomorphic forests on 10 vertices.
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When looking at a diagram of , one can see that the vertices are partitioned into levels. These levels
correspond to the size of the forest-vertices at each level and may be numbered accordingly. This results in the
uppermost level being numbered 0 and the lowest level numbered . Because the order n is constant
throughout  and, on a given level, the size is constant, the number of components on that level is con-
stant and equal to . We can use this information to determine the number of vertices at a given level in

 and by summing over all levels obtain the number of vertices in .

First, note the following. Consider 10 vertices partitioned into two parts. One possible partition is 4 + 6. On
four vertices there are two trees and on six vertices there are six trees. Hence, there are 12 forests on 10 ver-
tices partitioned into two parts as 4 + 6. These are shown in Figure 19.

Next, consider 10 vertices partitioned into two parts, each part having five vertices. Now  =
. However, this includes graphs like G and H, shown in Figure 20, as two of the nine possible for-

ests associated with the partition 5 + 5. However, G and H are isomorphic and should not be counted as dis-
tinct vertices. To avoid this problem we consider the number of combinations of t objects taken m at a time
with repetition allowed; that is, . Hence, for 10 partitioned into 5 + 5 we obtain . This
can be seen in Figure 21 as the correct number of forests associated with this partition.

We now show how the order of  can be obtained. Consider level 4. There are two components since
6 − 4 = 2. There are three ways to partition 6 into two parts. These are 1 + 5, 2 + 4, and 3 + 3. When the parts
of the partitions are unequal, 1 + 5 and 2 + 4, the number of forests is easily seen to be 
and , respectively. The values of ti can be obtained from Table 2. For the partition 3 + 3
we must allow for isomorphic forest-vertices and thus the number of distinct forest-vertices with partition 3
+ 3 is

.

Consequently, the number of vertices of  on level 4 is . To determine the order of
 we repeat this process for each level and sum the results. This is illustrated in Table 3.

Table 2: Number of trees, ti, on i vertices, 1 ≤ i ≤ 10.

i ti

1 1

2 1

3 1

4 2

5 3

6 6

7 11

8 23

9 47

10 106

F n f,( )

n 1–
F n f,( )

n e–
F n f,( ) F n f,( )

t5 t5×
3 3× 9=

t m 1–+
m⎝ ⎠

⎛ ⎞ 3 2 1–+
2⎝ ⎠

⎛ ⎞ 6=

Figure 21: Forests on 10 vertices partitioned into 5 + 5.

F 6 5,( )

t1 t5× 1 3× 3= =
t2 t4× 1 2× 2= =

t1 2 1–+
2⎝ ⎠

⎛ ⎞ 2
2⎝ ⎠

⎛ ⎞ 1= =

F 6 5,( ) 3 2 1+ + 6=
F 6 5,( )
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On summing the right hand column we obtain 20, which is the order of  (see Figure 8).

The above procedure generalizes to one for determining the order of any  and, in fact, can be
extended to any  for which  by using , the number of trees having order i and no vertex with
degree greater than f, in place of . This is summarized in the following theorem, where trees (or forests)
having no vertex degree greater than f are called f-trees (or f-forests).

Theorem 1: Consider the graph , .

Let  be a partition of n into c parts, where the  are 

nonzero and distinct and . Let denote the number of f-trees of order i.

Then the number of vertices in  corresponding to f-forests of size e is

where the sum is over all partitions of n into c parts, .
The order of  is

.

Proof: Consider the graph , . On level e, the f-forest-vertices have  compo-
nents, since n is constant over the entire graph and for each level e is fixed (see Corollary 4.5(b) in [4]). 

Let  be a partition of n into c parts, where the  are nonzero and distinct and
let .

Let  denote the number of f-trees of order i. If the parts are distinct; that is, if there are c different parts, then
the number of forests with that partition is

.

However, if any part is repeated; that is, if  for any j, then the number of forests on  vertices par-
titioned into  parts of size  is the number of combinations of t objects taken m at a time with repetition.

Table 3: Order of F(6, 5).

Level e c = 6 – e Partitions of 6 into c parts Number of forests at level e

0 6 111111

1 5 11112

2 4 1113, 1122

3 3 114, 123, 222

4 2 15, 24, 33

5 1 6

t1 5+

6⎝ ⎠
⎛ ⎞ 6

6⎝ ⎠
⎛ ⎞ 1= =

t1 1+

4⎝ ⎠
⎛ ⎞ t2× 4

4⎝ ⎠
⎛ ⎞ 1× 1= =

t1 2+

3⎝ ⎠
⎛ ⎞ t3× t1 1+

2⎝ ⎠
⎛ ⎞ t2 1+

2⎝ ⎠
⎛ ⎞×+ 2=

t1 1+

2⎝ ⎠
⎛ ⎞ t4× t1 t2 t3×× t2 2+

3⎝ ⎠
⎛ ⎞+ + 4=

t1 t5× t2 t4× t3 1+

2⎝ ⎠
⎛ ⎞+ + 6=

t6 6=

F 6 5,( )

F n n 1–,( )
F n f,( ) f 1≠ ti

f

ti

F n f,( ) 2 f n 1–≤ ≤
a1m1 a2m2 … admd+ + + n= a j

m jj 1=
d∑ c= ti

f

F n f,( )

V e
tai

f mi 1–+

mi⎝ ⎠
⎛ ⎞

i 1=

d

∏⎝ ⎠
⎜ ⎟
⎛ ⎞

∑=

1 c n≤ ≤
F n f,( )

V e
e 0=

n 1–

∑

F n f,( ) 2 f n 1–≤ ≤ c n e–=

a1m1 a2m2 … admd+ + + n= a j
m jj 1=

d∑ c=

ti
f

ti
f

i 1=

c

∏

m j 2≥ m ja j
m j a j
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That is,

.

Therefore, the number of f-forests corresponding to the partition  is

.

Repeating this process for all possible partitions of n into c parts and summing results yields the number of
vertices of  on level e. Thus,

where the sum is over all partitions of n into c parts, .

Summing over all levels in  results in the order of . That is, the order of  is

. �

Note that if , then

.

Drawings of all trees with order  are shown in [4] (pp. 233–234). From these drawings  can be
obtained for  and . This data is given in Table 4. The number of trees  can be
generated through the counting series for trees given in Theorem 15.11 in [4]. Values for  for  are
given in Table A.4 of [1].

The number of trees  for  and for  can be found by using Tables F and N in [5]; see
also Table 1 in [6] for . Using the McKay packed Nauty geng algorithm, values of  can be generated
[7]. Values of  for  and  are shown in Table 4.

4. Size

Problem 2: What is the size of ? �

For  and , the size of  can be obtained from Figures 1–18, as shown in Table 5.
A general solution to Problem 2 is not known.

Table 5: Size of F(n,f) for 2 ≤ n ≤ 7 and 1 ≤ f ≤ n − 1.

n f = 1 f = 2 f = 3 f = 4 f = 5 f = 6

2 1

3 1 2

4 2 5 6

5 2 9 13 14

6 3 18 32 36 37

7 3 28 67 82 87 88

ta j

f m j 1–+

m j⎝ ⎠
⎛ ⎞

a jm jj 1=
d∑

tai

f mi 1–+

mi⎝ ⎠
⎛ ⎞

i 1=

d

∏

F n f,( )

V e
tai

f mi 1–+

mi⎝ ⎠
⎛ ⎞

i 1=

d

∏⎝ ⎠
⎜ ⎟
⎛ ⎞

∑=

1 c n≤ ≤

F n f,( ) F n f,( ) F n f,( )

V e
e 0=

n 1–

∑

m j 1=

ta j

f m j 1–+

m j⎝ ⎠
⎛ ⎞ ta j

f

1⎝ ⎠
⎛ ⎞ ta j

f= =

1 i 10≤ ≤ ti
f

1 i 10≤ ≤ 1 f 9≤ ≤ ti ti
i 1–=

ti i 30≤

ti
f f 1 2 3 4, , ,= i 25≤

i 25= ti
f

ti
f 2 f 16≤ ≤ 1 i 17≤ ≤

F n f,( )

2 n 7≤ ≤ 1 f n 1–≤ ≤ F n f,( )
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5. Distance Problems

Problem 3: What is the diameter of ? �

In [2] various distance properties of  are investigated. In particular, the following theorem concerning
the diameter of ,  is obtained.

Theorem 2 ([2]): If , then

Values for  can be obtained from Figures 1–18. Note that  and that
.

In a detailed study [1] of graphs with bounded degree the concepts of height and width of , a graph
whose vertices are graphs with bounded degree, are defined. Analogously, define the height of  to be
the length of a shortest path from level 0 to the lowest level in . Thus, the height of  is 
for all f except , where the height is . That is, for  the height is the distance from the empty
graph of order n to an f-tree of order n. On the other hand, the diameter of  can be thought of as the
width of . In , for small values of n, the width is equal to the height; however, for large values
of n, the width exceeds the height. Let  denote the least integer such that the width is greater than the
height. When considering ,  is the least integer such that .

Problem 4: What is the least order  for which the width exceeds the height 
of ? �

There are two known values for . From , , so that . Simi-
larly,  since .

The value of  in general is an open problem for both  and . For more information with
respect to this problem for  see Theorem 8,23 in [1].

6. Hamiltonian Paths

A graph is call traceable, if it contains a Hamilton path. The following theorem follows from Lemma 2.2 in
[8] adapted to apply to f-forests. This theorem enables us to eliminate the possibility for some  to have
a Hamilton path. On the other hand, only by finding a Hamilton path are we able to state that a given 
is traceable. Let  and  denote the number of unlabeled f-forests of order n having even size and
odd size, respectively.

Theorem 3: If  contains a Hamilton path , then

(1) The order  of  and the size of G have opposite parity.

(2)  when  is even;  when  is even.

(3)  has no more than two pendant edges. �

Problem 5: For what n and f does  contain a Hamilton path? �

F n f,( )

F n f,( )
F n f,( ) diam F n f,( )( )

f 2 3 n 2– n 1–, , ,=

diam F n f,( )( ) max n 1– n f 5–+,{ } n 1– if f 2 3,=

n f 5–+ if f n 2– n 1.–,=⎩
⎨
⎧

= =

diam F n f,( )( ) diam F 7 4,( )( ) 6=
diam F n 1,( )( ) n 2⁄=

U n f,( )
F n f,( )

F n f,( ) F n f,( ) n 1–
f 1= n 2⁄ f 2≥

F n f,( )
F n f,( ) U n f,( )

w f( )
F n f,( ) w f( ) diam F w f( ) f,( )( ) n 1–>

w f( )
F n f,( )

w f( ) F 6 5,( ) diam F 6 5,( )( ) 6 6 1–>= w 5( ) 6=
w 6( ) 7= diam F 7 6,( )( ) 7 7 1–>=

w f( ) F n f,( ) U n f,( )
U n f,( )

F n f,( )
F n f,( )

e f n( ) o f n( )

F n f,( ) Kn
c G→

N n f,( ) F n f,( )

e f n( ) o f n( )– 0= N n f,( ) e f n( ) o f n( )– 1= N n f,( )

F n f,( )

F n f,( )



R. Neville: Graphs whose vertices are forests with bounded degree 21

gtn 5402 Nevi.fm page proofs printed (jwk) June 2, 2008 

From Figures 4, 8–10, 13–16 and Theorem 3(2), it follows that
 does not have a Hamilton path when ,

;  ,  ;  and ,  .
Using Theorem 1, the number of vertices of even and odd size
can be determined. When this is calculated for ,

 and , , it can
be determined from Theorem 3(2) that there is no Hamilton
path. By inspection, it is easy to find a Hamilton path when

,  ;  ,  ;  ,
; and , . Figure 22 shows a Hamilton

path for .

Determining traceability in general is an open problem for both
 and , for elaboration on the latter see Chapter

9 in [1].
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Figure 22: A Hamilton path on F(7, 2).
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Abstract
A partition of , all of whose classes are dominating sets in G, is called a domatic partition of G.
The maximum number of classes in a domatic partition of G is called the domatic number of G. If
W is a domatic partition of G with cardinality k, then k is at most the domatic number of G. In this
paper, we first define recursively the number of all domatic partitions of a path and a cycle on n
vertices. Next, we give the solutions of recurrences using generating functions for Fibonacci or Lucas
numbers.

1. Introduction

Let G be a finite, undirected graph with no loop or multiple edge,  the set of vertices of G, and  the
set of edges of G. A set  is called a dominating set in G if every vertex not in D is adjacent to at least
one vertex in D. A domatic partition of a graph G is a partition of  into pairwise disjoint dominating sets.
The domatic number of G is the maximum cardinality among all domatic partitions of G and is denoted by

. The domatic number was introduced by E.J. Cockayne and S.T. Hedetniemi in [1].

We note the simple observation.

Observation 1: If  is a domatic partition of G, then .
Additionally, if , then , where  is a unique domatic 
partition of G. �

We now define the special classes of graphs that will be considered in this paper.

Let Pn and Cn, respectively, denote the path and cycle graphs of order n, with  for the path graphs and
 for the cycle graphs. It is immediately seen that:

Observation 2: 

(1)

(2) �

For concepts not defined in this paper see [2].

Because we express recurrences using Fibonacci numbers, Fn, or Lucas numbers, Ln, we recall their recur-
rence forms:

, , and for  ,

, , and for  .

The following notation is used in our investigation: Let S denote any assertion that may be true or false, then

V G( )

V G( ) E G( )
D V G( )⊆

V G( )

d G( )

W D1 … Dk, ,{ }= k d G( )≤
k 1= W D1{ }= D1 V G( )=

n 1≥
n 3≥

d Pn( )
1 for n 1=

2 otherwise.⎩
⎨
⎧

=

d Cn( )
2 if n � 0 (mod 3)

3 otherwise.⎩
⎨
⎧

=

F0 1= F1 2= n 1≥ Fn 1+ Fn Fn 1–+=

L0 2= L1 1= n 1≥ Fn 1+ Fn Fn 1–+=

S[ ] 1 if S is true

0 otherwise.⎩
⎨
⎧

=
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We make use of the following elementary generating functions:

Observation 3 [3]: 

(1) , for 

(2)

(3) �

Our aim is to determine the number of domatic partitions for the path graph Pn and the cycle graph Cn.

2. The Number of Domatic Partitions of the Path Graph, Pn

Initially, we establish the recurrence definition for the number of domatic partitions of the path Pn, . It
is clear that  is the unique domatic partition for P1. Therefore, assume . Let

 be a domatic partition of Pn. Recall that  and, therefore, . Taking
account of Observation 1, we consider only the case . Let

, and

The number  of domatic partitions of the path Pn into two sets  trivially satisfies the following
Fibonacci recurrence, as can be seen by simply considering whether  is in the same set as  or in
the set containing xn.

Lemma 1: For , , , and . �

Denote by  the cardinality of all possible domatic partitions of the graph Pn ( ). From the previous
lemma we obtain the following result.

Theorem 1: For , . �

We now specify explicitly the sequence of numbers , , described by the recurrence relation
from Lemma 1. Our aim is to solve this recurrence and to express its explicit formula in terms of Fibonacci
numbers. We begin with the relationship between the number  and the Fibonacci number Fn.

Lemma 2: For , .

This is simply a corollary of Lemma 1 and the definition of the Fibonacci number Fn. �

Using Theorem 1 and Lemma 2 we obtain

Theorem 2: For , . �

Next, we give a more explicit formula for the sequence , , described by recurrence of
Lemma 1. For this purpose we use the method of generating functions, see [3].

Theorem 3: For , , 
where  and .

Proof: We write the recurrence from Lemma 1 using one equality having the form

which is satisfied for all integers n, whence we define  for .

For brevity, instead of  we write in. Let the term in be associated with the generating function

.

Indeed, one has

n m=[ ]zn
n 0≥∑ zm= m � 0{ },∪∈

cnzn

n 0≥
∑ 1

1 cz–
--------------,=

m n⁄[ ]zn

n 0≥
∑ 1

1 zm–
---------------.=

n 1≥
W x1{ }{ }= n 2≥

W D1 … Dk, ,{ }= d Pn( ) 2= k 2≤
k 2=

I Pn( ) W  : W  is a domatic partition of Pn and W 2={ }=

i Pn( ) I Pn( ) .=

i Pn( ) D1 D2,{ }
xn 1– xn 1+

n 3≥ i Pn 1+( ) i Pn( ) i Pn 1–( )+= i P2( ) 1= i P3( ) 1=

ic Pn( ) n 2≥

n 2≥ ic Pn( ) i Pn( ) 1+=

i Pn( ) n 3 4 …, ,=

i Pn( )

n 3≥ i Pn( ) Fn 3–=

n 3≥ ic Pn( ) Fn 3– 1+=

i Pn( ) n 2 3 …, ,=

n 2≥ i Pn( ) Bφn 1 B–( ) 1 φ–( )n+=
B 5 5–( ) 10⁄= φ 1 5+( ) 2⁄=

i Pn( ) i Pn 1–( ) i Pn 2–( ) n 2=[ ],+ +=

i P n–( ) 0= n 1–≥
i Pn( )

I z( ) inzn
n∑=
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Thus, the generating function for in has the form

where φ is the golden ratio (that is,  and . Decomposing this rational function we
obtain

, where .

Consequently, the generating function has the form

by (1) and (2) from Observation 3.

This means that if , then , where  and .
�

3. The Number of Domatic Partitions of the Cycle Graph, Cn

In this section we define a recurrence for the number of domatic partitions of the cycle Cn, . Let
 be a domatic partition for Cn. By Observation 1 and Observation 2 (2), if 

(mod 3), then ; if  (mod 3), then . Recall that if , then , where
. It is not difficult to see that if  (mod 3), then there exists a unique domatic partition W of

Cn  such that  ,  where ,  ,  and
. For this reason, it remains to consider domatic partitions W with two classes; that is,

. For clarity, let  and let

This implies that the following subsets of  be considered:

It is not difficult to see that there is no domatic partition of C4 that belongs to  or , and that there
is no domatic partition of C5 that belongs to . Thus, assume that . In
other cases, all of the determining sets listed above are well defined.

The cardinalities of these sets are as follows:

 for  and .

Since there exists no domatic partition  where  and , we conclude
that

(1)  for .

I z( ) in 1– zn
n∑= in 2– zn

n∑ n 2=[ ]zn
n∑+ + inzn 1+

n∑ inzn 2+
n∑ z2+ +=

zI z( ) z2I z( ) z2.+ +=

I z( ) 1– z– 1+

1 φz–( ) 1 φ̂z–( )
---------------------------------------+ ,=

φ 1 5+( ) 2⁄= φ̂ 1 φ–=

I z( ) 1– B
1 φz–
-------------- 1 B–

1 φ̂z–
--------------+ += B 5 5–

10
----------------=

I z( ) n 0=[ ]– Bφn 1 B–( )φ̂n+ +{ }zn,
n 0≥
∑=

n 1≥ i Pn( ) Bφn 1 B–( )φ̂n+= B 5 5–( ) 10⁄= φ 1 5+( ) 2⁄=

n 3≥
W D1 … Dk, ,{ }= n � 0

W 2≤ n 0≡ W 3≤ k 1= W D1{ }=
D1 V Cn( )= n 0≡

W D1 D2 D3, ,{ }= D1 x1 x4 … xn 2–, , ,{ }= D2 x2 x5 … xn 1–, , ,{ }=
D3 x3 x6 … xn, , ,{ }=
k 2= W D1 D2,{ }=

I Cn( ) W  : W  is a domatic partition of Cn and W 2={ }.=

I Cn( )

I1 Cn( ) W  : W D1 D2,{ }= x1 x3 xn, , D1∈ x2 D2∈, ,{ },=

I2 Cn( ) W  : W D1 D2,{ }= x2 x3 xn, , D1∈ x1 D2∈, ,{ },=

I3 Cn( ) W  : W D1 D2,{ }= x1 xn, D1∈ x2 x3, D2∈, ,{ },=

I4 Cn( ) W  : W D1 D2,{ }= x3 xn, D1∈ x1 x2, D2∈, ,{ },=

I5 Cn( ) W  : W D1 D2,{ }= x2 xn, D1∈ x1 x3, D2∈, ,{ }.=

I1 C4( ) I2 C4( )
I3 C5( ) I1 C4( ) I2 C4( ) I3 C5( ) ∅= = =

i Cn( ) I Cn( ) ,=

is Cn( ) Is Cn( ) , = s 1 … 5, ,= n 4≥

W D1 D2,{ }= x1 x2 xn, , D1∈ x3 D2∈

i Cn( ) is Cn( )

s 1=

5

∑= n 4≥
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Let  denote the cardinality of the set of all possible domatic partitions of the cycle Cn, for . Then
we deduce the following:

Observation 4: For ,

�

In the next theorem, we give a recurrence for the number of domatic partitions of Cn with cardinality 2. To do
this we first prove the necessary lemmas.

Lemma 3: Let . Then 

Proof: Suppose that W is a domatic partition of  for , such that . Moreover, let
 and . Since for , , then . Thus,  of

the set  is a domatic partition of the graph , such that  and
 Furthermore,  Thus,

�

The next two lemmas can be proved analogously.

Lemma 4: Let . Then �

Lemma 5: Let . Then �

Lemma 6: Let . Then 

Proof: Assume  is a domatic partition of  for . Let  and
. Consider two cases.

Case 1: Let . Since  it follows that . Hence,  of the set
 is a domatic partition of the graph , where  and 

Thus, 

Case 2: Let . Then . It is clear that  of the set  is a
domatic partition of the graph , such that  and

 

Thus, 

From these two cases, we obtain , as required.
�

A similar proof can be used to obtain the next lemma.

Lemma 7: Let . Then �

Theorem 4: For ,

and 

Proof: It is not difficult to see that the initial conditions hold. Thus, we prove the recurrence relation for
. First, let . Construct the domatic partitions that belong to each of the sets  for

 (we already know that ). Evidently, these sets have the form:

ic Cn( ) n 3≥

n 3≥

ic Cn( )
i Cn( ) 2+ if n 0 (mod 3)≡

i Cn( ) 1+ otherwise.⎩
⎨
⎧

=

n 5≥ i1 Cn 1+( ) i5 Cn( ).=

Cn 1+ n 5≥ W D1 D2,{ }=
x1 x3 xn 1+, , D1∈ x2 D2∈ Cn 1+ x1 xn 1+, D1∈ xn D2∈ D1\ x1{ } D2,{ }

A V Cn 1+( )\ x1{ }= H1 Cn≅ V H1( ) A=
E H1( ) E Cn 1+( )\ x1x2 x1xn 1+,{ }( ) x2xn 1+{ }.∪= D1\ x1{ } D2,{ } I5 H1( ).∈

i1 Cn 1+( ) i5 H1( ) i5 Cn( ).= =

n 5≥ i2 Cn 1+( ) i5 Cn( ).=

n 5≥ i3 Cn 1+( ) i5 Cn 1–( ).=

n 5≥ i4 Cn 1+( ) i5 Cn( ) i5 Cn 1–( )+ .=

W D1 D2,{ }= Cn 1+ n 5≥ x3 xn 1+, D1∈
x1 x2, D2∈

x4 D1∈ x3 D1∈ x5 D2∈ D1\ x3{ } D2\ x2{ },{ }
B V Cn 1+( )\ x2 x3,{ }= H1 Cn 1–≅ V H1( ) B=

E H1( ) E Cn 1+( )\ x1x2 x2x3 x3x4, ,{ }( ) x1x4{ }.∪=

D1\ x3{ } D2\ x2{ },{ } I5 H1( ).∈

x4 D1∉ x4 D2∈ D1 D2\ x2{ },{ } C V Cn 1+( )\ x2{ }=
H2 Cn≅ V H2( ) C=

E H2( ) E Cn 1+( )\ x1x2 x2x3,{ }( ) x1x3{ }.∪=

D1 D2\ x2{ },{ } I5 H2( ).∈

i4 Cn 1+( ) i5 H1( ) i4 H2( )+ i5 Cn 1–( ) i5 Cn( )+= =

n 5≥ i5 Cn 1+( ) i4 Cn( ) i4 Cn 1–( )+ .=

n 4≥

i Cn 1+( )
i Cn( ) i Cn 1–( ) 2+ + if n 2 (mod 3)≡

i Cn( ) i Cn 1–( ) 1–+ otherwise⎩
⎨
⎧

=

i C3( ) i C4( ) 3.= =

n 4≥ n 4= I i C5( )
i 1 2 4 5, , ,= I3 C5( ) ∅=
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This means that , , and . In consequence, by Equa-
tion (1), , using the initial conditions, and for  this recurrence holds.

Now let . Combining (1) with Lemmas 3–7, the number  has the form

Additionally, put  and  (then the following statements for  and
 are true). By substituting for , , and again  using Lemma 7, Lemma 4, and

Lemma 3, respectively, we obtain

Replacing  by the equation from Lemma 6 and applying Lemma 5 to  using (1) we obtain

Now using Lemma 5 with , then adding , , , subtracting ones, and fur-
ther using (1) (replacing n by n − 1), we conclude that

Replacing  and  by the equations from Lemma 3 and Lemma 4, respectively, and using
Lemma 6, then

Next, adding terms , , subtracting ones, and applying Lemma 6 and Lemma 7 twice, we 

obtain

(2)

Finally, applying induction on n, , we arrive at

(3)

Finally, it is sufficient to apply (3) to (2) to conclude the proof of the theorem. �

We now explicitly specify the sequence of numbers , , described by the recurrence relation
in Theorem 4. Our aim is to present an explicit form for this sequence expressing it in terms of Lucas numbers.

Proposition 1: For  and  (mod 3),

where 

and 

Proof: Using  times the recurrence from Theorem 4 for  (mod 3) and expressing the numbers
, for  in terms of Lucas numbers we obtain

(4)

where 

I1 C5( ) x1 x3 x5, ,{ } x2 x4,{ },{ }{ }=

I2 C5( ) x2 x3 x5, ,{ } x1 x4,{ },{ }{ }=

I4 C5( ) x3 x5,{ } x1 x2 x4, ,{ },{ }{ }=

I5 C5( ) x2 x4 x5, ,{ } x1 x3,{ },{ } x2 x5,{ } x1 x3 x4, ,{ },{ },{ }.=

i1 C5( ) i2 C5( ) i4 C5( ) 1= = = i3 C5( ) 0= i5 C5( ) 2=
i C5( ) 5 i C4( ) i C3( ) 1–+= = n 4=

n 5≥ i Cn 1+( )

i Cn 1+( ) 3i5 Cn( ) 2i5 Cn 1–( ) i4 Cn( ) i4 Cn 1–( ).+ + +=

i4 C3( ) i5 C2( ) 1= = i5 C3( ) 0= n 5=
n 6= i5 Cn( ) i5 Cn 1–( ) i5 Cn 1–( )

i Cn 1+( ) 2i5 Cn( ) i4 Cn( ) 2i4 Cn 1–( ) i4 Cn 2–( ) i2 Cn( ) i1 Cn( ).+ + + + +=

i4 Cn 1–( ) i5 Cn 2–( )

i Cn 1+( ) i Cn( ) i5 Cn( ) i5 Cn 3–( ) i4 Cn 1–( ) i4 Cn 2–( ).+ + + +=

i5 Cn 3–( ) i1 Cn 1–( ) i2 Cn 1–( ) i5 Cn 1–( )

i Cn 1+( ) i Cn( ) i Cn 1–( ) i5 Cn( ) i5 Cn 1–( )– i4 Cn 2–( ) i4 Cn 1–( )– i1 Cn 1–( ).+ + + +=

i1 Cn 1–( ) i2 Cn 1–( )

i Cn 1+( ) i Cn( ) i Cn 1–( ) i5 Cn( ) i5 Cn 2–( )– i4 Cn 2–( ) i4 Cn( )– .+ + +=

i4 Cn 1–( ) i5 Cn 1–( )

i Cn 1+( ) i Cn( ) i Cn 1–( ) i5 Cn( ) i5 Cn 1+( )– i4 Cn 1+( ) i4 Cn( )– .+ + +=

n 4≥

i5 Cn( ) i5 Cn 1+( )– i4 Cn 1+( ) i4 Cn( )–+
2 if n 2 (mod 3)≡

1– otherwise.⎩
⎨
⎧

=

i Cn( ) n 5 6 …, ,=

n 5≥ n 2≡

i Cn 1+( ) 3Ln 3– 2L0 Lii An 4–∈∑– 2 Lii Bn 4–∈∑ ,+ +=

An 4– i � 0{ }∪∈  : i 0 (mod 3)≡ i 1 (mod 3)≡∨( ) i n 4–<∧{ }=

Bn 4– i � 0{ }∪∈  : i 2 (mod 3)≡ i n 4–<∧{ }.=

k 1+ n 1+ 0≡
i Cn 1+( ) n 5≥

i Cn 1+( ) Lk i Cn k–( )⋅ Lk 1– i Cn k– 1–( )⋅ 2L0 Li
i Ak∈
∑– 2 Li

i Bk∈
∑+ + + ,=
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 and

and  (this equality may be easily proved by applying induction on k). Letting  the
equality (4) takes the form

Applying the initial conditions from Theorem 4 and applying the definition of the Lucas number Ln to the
terms  and  we complete the proof. �

Analogously, the next two results can be derived.

Proposition 2: For  and  (mod 3), 

 where

 and
�

Proposition 3: For  and  (mod 3), 

 where

 and
�

In the last part of this paper we establish an explicit formula for the sequence , , using the
method of generating functions.

Theorem 5: For , , 
where , , , and .

Proof: We can write the recurrence in Theorem 4 using one equality with the form

(5) ,

which is satisfied for all integers n (we define  for ). For convenience, instead of  we
write in. Recall the term in is associated with the generating function .

Subsequently, applying (5) to the above we have

by Observation 3(2 and 3). This means that the generating function of in takes the form

where , , , and .

Decomposing this rational function we obtain

According to Observation 3(1 and 2), the generating function has the form

Ak i � 0{ }∪∈  : i 0 (mod 3)≡ i 1 (mod 3)≡∨( ) i n 4–<∧{ }=

Bk i � 0{ }∪∈  : i 2 (mod 3)≡ i n 4–<∧{ },=

k 1 … n 4–, ,= k n 4–=

i Cn 1+( ) Ln 4– i C4( )⋅ Ln 5– i C3( )⋅ 2L0 Li
i An 4–∈

∑– 2 Li
i Bn 4–∈
∑+ + + .=

Ln 4– Ln 5–

n 5≥ n 0≡

i Cn 1+( ) 3Ln 3– L0– 2 Lii Xn 4–∈∑ Lii Y n 4–∈∑–+ ,=

Xn 4– i � 0{ }∪∈  : i 0 (mod 3)≡ i n 4–<∧{ },=
Y n 4– i � 0{ }∪∈  : i 1 (mod 3)≡ i 2 (mod 3)≡∨( ) i n 4–<∧{ }.=

n 5≥ n 1≡

i Cn 1+( ) 3Ln 3– L0– Lii Sn 4–∈∑– 2 Lii T n 4–∈∑+ ,=

Sn 4– i � 0{ }∪∈  : i 0 (mod 3)≡ i 2 (mod 3)≡∨( ) i n 4–<∧{ },=
T n 4– i � 0{ }∪∈  : i 1 (mod 3)≡ i n 4–<∧{ }.=

i Cn( ) n 3 4 …, ,=

n 2≥ i Cn 1+( ) αn 1+ α̂n 1+ φn 1+ φ̂n 1++ + +( ) 2⁄=
α 1– 3i–( ) 2⁄= φ 1 5+( ) 2⁄= α̂ 1– α–= φ̂ 1 φ–=

i Cn( ) i Cn 1–( ) i Cn 2–( ) n 4>[ ] 3 3\n n 0>,[ ]+–+=

i Cn( ) 0= n 2≤ i Cn( )
I z( ) inzn

n∑=

I z( ) in 1– zn
n∑ in 2– zn

n∑ zn
n 4>∑– 3 3\n[ ]zn

n 0>∑+ +=

inzn 1+
n∑ zn 2+

n∑ zn
n 0≥∑– zn

n 0=

4∑ 3 3\n[ ]zn
n 0≥∑ 3 3\n[ ]zn

n 0=∑–+ + +=

zI z( ) z2I z( ) 1
1 z–
----------- 3

1 z3–
--------------+– z4 z3 z2 z 2,–+ + + + +=

I z( ) z2– 2– z4 z2– 2z– 2+

1 z–( ) 1 αz–( ) 1 α̂z–( ) 1 φz–( ) 1 φ̂z–( )
-------------------------------------------------------------------------------------------------+ ,=

α 1– 3i–( ) 2⁄= φ 1 5+( ) 2⁄= α̂ 1– α–= φ̂ 1 φ–=

I z( ) z2– 2– 1
2
--- 1

1 αz–
--------------- 1

1 α̂z–
--------------- 1

1 φz–
-------------- 1

1 φ̂z–
--------------+ + +⎝ ⎠

⎛ ⎞ .+=
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.

This completes the proof. �

Theorem 5 and the equality  if  (mod 3), imply the following corollary.

Corollary 1: If  (mod 3), then . �
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I z( ) n 2=[ ]– 2 n 0=[ ]– 1
2
--- αn α̂n φn φ̂n+ + +( )+

⎩ ⎭
⎨ ⎬
⎧ ⎫

zn

n 0≥
∑=

αn 1+ α̂n 1+ 1= = n 2≡

n 2≡ i Cn 1+( ) 1 φn 1+ φ̂n 1++( ) 2⁄+=
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Abstract
A digraph D is primitive if there exists an integer  such that for all ordered pairs of vertices

 (not necessarily distinct), there is a directed walk (vertices and arcs may be repeated)
from u to v of length k. The smallest such k is called the exponent of the digraph D and is denoted by

. A symmetric digraph is primitive, if and only if it is connected and contains at least one odd
cycle. Replacing two opposite arcs in the symmetric digraph D by an edge, we obtain a graph G, that
is called primitive if the digraph D is primitive. In this sense, we consider the primitivity of graphs.
We define the partial join  of graphs G and H with respect to an induced subgraph G0 of
the G (for short, ) as follows:  is the graph with vertex set  and edge
set , where  We estimate the exponent
of the primitive partial join using parameters related to the graph G.

1. Introduction

Let D be a directed graph (digraph) on n vertices, . Loops are permitted but not multiple arcs. A
sequence  (where  for ) of vertices and arcs is called a walk
from v0 to vk (a  walk) in D. The length of a walk is its number of arcs. Note that vertices can be
repeated in a walk. In a closed walk . If all vertices are distinct, then a closed walk is called a simple
cycle. Thus, the length of a simple cycle is no greater than n. The set of the lengths of all simple cycles in D
is denoted by . Loops are considered to be simple cycles of length 1.

A digraph D is called primitive if there is a positive integer t such that there exists a walk from u to v of length
t in D, for every ordered pair  (not necessarily distinct). It is not difficult to observe, that if the
above condition is satisfied for t, then it is also satisfied for . The smallest such t is denoted by 
and it is called the exponent of the primitive digraph D. If D is primitive, then we also define the exponent of
a pair of vertices . Denote by  the minimum positive integer t, such that there for each
integer , there is a  walk in D of length p. Obviously,

The following necessary and sufficient condition for a digraph to be primitive is well known. In the statement,
 denotes the greatest common divisor of the integers .

Theorem 1 [1]: Let , . Then D is primitive if and only if
D is strongly connected and . �

We discuss primitivity in the class of symmetric digraphs. If a digraph D is symmetric, then . More-
over, a symmetric digraph is primitive if and only if it is strongly connected and contains an odd simple cycle.
Let GD be the graph obtained from a symmetric digraph D by replacing two opposite arcs by an edge. In other
words, every simple cycle of length 2 in the symmetric digraph D is an edge in the graph GD. Thus, the prim-
itivity of a symmetric digraph can be discussed in terms of the resulting graph. If D is primitive, then the graph
GD is also called primitive. The existence of a  walk is equivalent to the existence of a  walk,
thus we use the notation  walk in GD instead of a  walk in D.

It is easy to see that .

k 0>
u v, V D( )∈

exp D( )

G0 G( ) H+
G0 G< G0 G( ) H+ V G( ) V H( )∪

E G( ) E H( ) E1∪ ∪ E1 uv : u V G0( ) and v V H( )∈∈{ }.=

n 2≥
W : v0 a1 v1 … ak vk, , , , , ai vi 1– vi= i 1 … k, ,=

v0 vk→
v0 vk=

l D( )

u v, V D( )∈
t 1+ exp D( )

u v, V D( )∈ expD u v,( )
p t≥ u v→

exp D( ) max
u v, V D( )∈

expD u v,( ){ }.=

gcd p1 … pt, ,( ) p1 … pt, ,

l D( ) p1 … pt, ,{ }= t 2≥
gcd p1 … pt, ,( ) 1=

2 l D( )∈

u v→ v u→
u—v u v→

exp D( ) exp GD( )=
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Corollary 2: G is primitive if and only if G is connected and contains 
at least one cycle of odd length. �

The exponent set problem and generalized exponents problem were considered in [2] and [3].

The exponent of a primitive graph has an interpretation in modeling a memoryless communication network
associated with a graph G [3]. Consider a system of n points in which there is one bit of information at each
point. Every point passes its information to each of its neighbors and then forgets its information. A point also
receives information from another point. The system continues in this way, until each point knows all n bits
of information. The shortest time problem for this to occur is the exponent problem.

The preceding application can be described using an operation called the partial join of two graphs. Let G0
be an induced subgraph of G and . Let H be an arbitrary graph. Define the partial join to be the
graph with vertex set  and edge set , where

Denote the resulting graph by . Note that if , then we obtain the join  of two
graphs G and H.

Suppose a new vertex with a new bit of information is added to the system of points and the new vertex is
joined to some of the original vertices. It seems natural to ask about the time needed for this process in the new
system of vertices. This question was resolved in [3] for a special case.

Theorem 3 [3]: Let G be primitive graph and . If ,
then �

Beasley and Kirkland obtained an upper bound for primitive graphs that contain a primitive subgraph. [4]

Theorem 4 [4]: Let D be a strongly connected digraph on  vertices that 
contains a primitive directed subdigraph D1 of order n. Then D is primitive 
and . �

The graph G is, in particular, a subgraph of . Since , for , Theorem 3
implies that  does not depend on the number of isolated vertices in H. In general, the expo-
nent of the supergraph of the primitive graph , which has the same set of vertices, is no greater
than . Therefore, it is most interesting to study edgeless graphs H. If the graph H is edgeless,
then, by Theorem 3, we can put  in Theorem 4 and an upper bound on the exponent of  is
obtained.

Corollary 5: If G is a primitive graph and , then .
�

Therefore, we can put  and write  instead of . We restrict our atten-
tion to such graphs. Our purpose is to study the primitivity of the partial join for the class of simple graphs
(graphs with no loop).

The following results will be useful in expressing upper bounds on the exponent of  using various
parameters of G.

Theorem 6 [3]: If G is primitive and r is the length of an odd simple cycle in G,
then . �

Lemma 7 [3]: Let G be primitive and . Let a and b be the lengths 
of the shortest odd and the shortest even walk, respectively.
Then . �

In particular,  is even.

2. Main Results

Proposition 8: Let G be primitive and .  such that ,
then 

V G0( ) n0=
V G( ) V H( )∪ E G( ) E H( ) E1∪ ∪

E1 uv : u V G0( ) and v V H( )∈∈{ }.=

G0 G( ) H+ G0 G= G H+

v V G( )∈ V G0( ) NG v( )=
exp G0 G( ) K1+( ) exp G( ).=

n k+

exp D( ) exp D1( ) 2k+≤
G0 G( ) H+ NG h( ) V G0( )= h V H( )∈

exp G0 G( ) H+( )
G0 G( ) H+

exp G0 G( ) H+( )
k 1= G0 G( ) H+

G0 G< exp G0 G( ) H+( ) exp G( ) 2+≤

H K1 h{ }= = G0 G( ) h+ G0 G( ) K1+

G0 G( ) h+

exp G( ) 2n r– 1–≤

u v, V G( )∈

expG u v,( ) max a b,{ } 1–=

expG u v,( )

v V G( )∈ G0 G< V G0( ) NG v( )⊆
exp G0 G( ) h+( ) exp G( ).≥
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Proof: Choose  satisfying  Then there is no  walk of length
 in G. Now suppose that  There must be an  walk of length
 containing the vertex h. Obviously, if there is an  walk of length k in  that con-

tains the vertex h, then there is an  walk of length k in G that contains the vertex v. Thus, there is an
 walk of length  in G, contrary to the fact that �

This means that if , then there is a partial join  satisfying  ≥
 However, in general, the number  does not depend on the number .

Example 9: Let G be the graph shown in the Figure. Clearly, G is primitive. It is easy to observe that
, , and . If , , then

Proposition 10 [4]: Let D be a strongly connected digraph on  vertices that contains
a primitive subdigraph D1 on n vertices. If , then there are pairs of
(not necessarily distinct) vertices of D1, , such that

, for . �

The following property provides a complete characterization of primitive graphs for which the upper bound
is attained.

Proposition 11: Let G  be a primitive graph and . Then  =
 if and only if , for every 

Proof: Assume that , for all . Thus, there is no  walk of length
 in G for any . This implies, that there is no  walk of length  in
 and, by Corollary 5, .

Now let . By Proposition 10, there are pairs of vertices of G, ,
…, , satisfying  for . It suffices to observe that every pair of vertices

 is one of these pairs. Proof of this fact is analogous to the proof of Proposition 10 and is omitted.
�

x y, V G( )∈ expG x y,( ) exp G( ).= x—y
exp G( ) 1– exp G0 G( ) h+( ) exp G( ) 1.–≤ x—y
exp G( ) 1– x—y G0 G( ) h+

x—y
x—y exp G( ) 1– expG x y,( ) exp G( ).=

V G0( ) Δ G( )≤ G0 G( ) h+ exp G0 G( ) h+( )
exp G( ). exp G0 G( ) h+( ) Δ G( )

Δ G( ) 4= V G( ) 2k 1+= exp G( ) 2k= V G0( ) v2k 1– 1+ … v2k, ,{ }⊆ k 1≥

exp G0 G( ) h+( ) exp G( ) 2+ 2k 2.+= =

Figure.

n k+
exp D( ) exp D1( ) 2k+=

u1 v1,( ) u2 v2,( ) … up vp,( ), , ,
expD1

ui vi,( ) exp D1( )= 1 i p≤ ≤

G0 G< exp G0 G( ) h+( )
exp G( ) 2+ expG u v,( ) exp G( )= u v, V G0( ).∈

expG u v,( ) exp G( )= u v, V G0( )∈ u—v
exp G( ) 1– u v, V G0( )∈ h—h exp G( ) 1+
G0 G( ) h+ exp G0 G( ) h+( ) exp G( ) 2+=

exp G0 G( ) h+( ) exp G( ) 2+= u1 v1,( ) u2 v2,( ),
up vp,( ) expG ui vi,( ) exp G( )= 1 i p≤ ≤

x y, V G0( )∈



32 Graph Theory Notes of New York LIV (2008)

gtn 5404 Rosia.fm page proofs printed (jwk) June 2, 2008 

Note that if  is odd, then  for all , consequently,  ≤
.

In general, primitivity of a connected graph G is not necessary for a partial join to be primitive. The existence
of an odd  walk in G for some  implies, by Corollary 2, that there is an odd simple cycle
in . Hence,  is primitive. If there is an odd  walk in G for at least one pair of ver-
tices , then primitivity of G is not required. We can bound the exponent of the partial join using
the length of such a walk.

Proposition 12: Let G be a connected graph, , and . Suppose that
there is an odd simple  walk in  and let p be the length of this walk. Then

.

Proof: There are simple  walks of lengths 2 and of length p in , so there is a subgraph of
 that is isomorphic with . Hence, by Theorem 4,

. �

In particular, if  and  is odd, then . Since
 and  is the length of a shortest odd  walk in , then, by

Lemma 5,

.

Let  and . The distance between the vertex v and the set X is defined by

Theorem 13: Let G be connected,  have no isolated vertex, and .
Then . Moreover, equality holds if and only if the vertices
can be relabeled so that:

(1) , where ;

(2) ; and

(3) the induced subgraph  is edgeless.

Proof: The induced subgraph  of the graph  is primitive. Since G0 has no isolated vertex,
then . Thus, the graph  is a supergraph of . We can put  and,
by Theorem 4, obtain . This proves the first part of the theorem.

Now let G be a graph satisfying (1), (2), and (3). Let  It is easy to see that there is no
 walk of length  in , consequently, . Hence,

by the first part of the proof, .

Now let  and . Then there exist  such that
. Note that 

.

Since  and , the equality

implies that  and , thus . This proves (1)
and (2). Thus, each vertex of  can be labeled using its distance from G0. We choose to order the
vertices of  in such a way that , for . Suppose
that there are  that are adjacent. Then  belongs to a cycle of length 3, and hence,

,

a contradiction. �

The exponent of the partial join  depends on the choice of G0. If there is no odd simple  walk
in G, for any pair , then the primitivity of G is necessary for the partial join to be primitive. If

exp G( ) expG u u,( ) exp G( )< u V G( )∈ exp G0 G( ) h+( )
exp G( ) 1+

u—v u v, V G0( )∈
G0 G( ) h+ G0 G( ) h+ u—v

u v, V G0( )∈

G0 G< u v, V G0( )∈
u—v G0 G( ) h+

exp G0 G( ) h+( ) 2n p– 1–≤
u—v G0 G( ) h+

G0 G( ) h+ C p 2+

exp G0 G( ) h+( ) 2 n 1+( ) p– 3–≤ 2n p– 1–=

u v, V G0( )∈ dG u v,( ) 3≥ expG0 G( ) h+ u v,( ) dG u v,( ) 1–≤
dG0 G( ) h+ u v,( ) 2= dG u v,( ) u—v G0 G( ) h+

expG0 G( ) h+ u v,( ) dG0 G( ) h+ u v,( ) 1– dG u v,( ) 1–≤=

X V G( )⊂ v V G( )∈

dG v X,( ) min
u X∈

dG v u,( ).=

G0 G< V G0( ) n0=
exp G0 G( ) h+( ) 2n 2n0– 2+≤

G V G0( )– Pn n0–≅ V G V G0( )–( ) vn0 1+ vn0 2+ … vn, , ,{ }=

NG V G0( )( ) vn0 1+{ }=

G NG0
vn0 1+( )[ ]

G0 h+ G0 G( ) h+
exp G0 h+( ) 2= G0 G( ) h+ G0 h+ k n n0–=

exp G0 G( ) h+( ) 2n 2n0– 2+≤
V G0( ) v1 … vn0

, ,{ }.=
vn—vn 2 n n0–( ) 1+ G0 G( ) h+ exp G0 G( ) h+( ) 2n 2n0– 2+≥

exp G0 G( ) h+( ) 2n 2n0– 2+=

G0 G< exp G0 G( ) h+( ) 2n 2n0– 2+= v v′, V G0 G( ) h+( )∈
expG0 G( ) h+ v v′,( ) 2n 2n0– 2+=

expG0 h+ v v′,( ) 2 dG0 G( ) h+ v V G0( ),( ) dG0 G( ) h+ v′ V G0( ),( )+ +≤

dG0 G( ) h+ v V G0( ),( ) n n0–≤ dG0 G( ) h+ v′ V G0( ),( ) n n0–≤

dG0 G( ) h+ v V G0( ),( ) dG0 G( ) h+ v′ V G0( ),( )+ 2n 2n0–=

dG0 G( ) h+ v V G0( ),( ) n n0–= dG0 G( ) h+ v′ V G0( ),( ) n n0–= v v′=
G V G0( )–

G V G0( )– dG0 G( ) h+ vn0 i+ V G0( ),( ) i= i 1 2 … n n0–, , ,=
x y, NG0

vn0 1+( )∈ vn0 1+

expG0 G( ) h+ vn vn,( ) 2 2 n n0– 1–( )+≤ 2n 2n0–=

G0 G( ) h+ u—v
u v, V G0( )∈
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G is primitive then, by Corollary 2, every connected supergraph is primitive. The exponent of a pair of verti-
ces in  can be estimated using the exponent in G. Clearly, the following results can be also applied
to primitive graphs with the property that there is an odd  walk for at least one pair .

Remark 14: Let G be primitive, , and . Then

(1)

(2)

(3)

These bounds are useful if there is no simple  walk in G.

The next proposition provides a characterization of the class of partial joins that satisfy  =
.

Proposition 15: Let G be a primitive graph and . Then,  =
 if and only if  for all

 or there exists  such that  
for all 

Proof: We prove only the necessary condition; proof of the sufficient condition is the same as in the proof of
Theorem 13 and is omitted.

If , then by (3) there are two cases.

(1) If , then  is odd. There is an  walk of length  if
and only if there is a pair of vertices  such that there is an  walk of length m in G. Thus,
there is no  walk of length  for any  and, hence, there is no simple  walk
of odd length in G. On the other hand, by (1),

,

therefore,  for all .

The case  means, by Lemma 7, that  is odd, a contradiction. Hence 
=  for all .

(2) If , then there is a  such that .
Thus, by (2), 

,

so that  for every . �
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Abstract
The chromatic polynomial of a graph is a one-variable polynomial that counts the number of ways the
vertices of a graph can be properly colored. It was invented in 1912 by G.D. Birkhoff in his unsuc-
cessful attempt to solve the four-color problem. In the 1940s, Tutte generalized Birkhoff’s polyno-
mial by adding another variable and analyzing its combinatorial properties. The Tutte polynomial
itself has been generalized to other combinatorial objects, with connections to knot theory, state
changes in physics, probability, and other areas. We concentrate on an extension to rooted trees where
the polynomial is a complete invariant; that is, two rooted trees T1 and T2 are isomorphic iff their
Tutte polynomials are equal.

1. Historical Introduction

How many colors are needed to color a map so that regions sharing a border receive different colors? This
problem traces its origin to October 23, 1852, when Francis Guthrie asked his professor, Augustus De Mor-
gan, whether he knew of a solution. De Morgan, in turn, asked his friend, Sir William Rowan Hamilton, who
was also stumped. This innocent question raised by a student inspired an enormous amount of research in
graph theory, with a final resolution of the question occurring more than 100 years later.

It is easy to see that at least four colors are necessary. For instance, in South America (see Figure 1) note that
the four countries Argentina, Brazil, Bolivia, and Paraguay must all receive different colors since each pair of
these countries shares a border. To prove that four colors also suffice for maps in the plane (or, equivalently,
on a sphere) occupied some of the best mathematicians of the Nineteenth and Twentieth Centuries.

Instead of coloring the regions of maps, most mathematicians prefer to color the vertices of graphs. A proper
vertex coloring of a graph G is an assignment of colors to the vertices of G so that adjacent vertices receive
different colors. Converting a map to a graph is straightforward: Each region of the map becomes a vertex of
the graph, and two vertices of the graph are joined by an edge precisely when the corresponding regions share
a boundary.

Guthrie’s problem can now be stated in graph-theoretic terms:

Conjecture 1.1 (Four Color Conjecture): Every planar graph can be properly colored
using at most four colors. �

A very quick history of the progress on the conjecture is given below, culminating in the famous proof of
Appel and Haken in 1976 that made extensive use of computers. This proved to be a source of controversy at
the time, and many mathematicians are still not completely satisfied with the nature of this proof. (A shorter
proof that still requires some computer checking can be found in [1].) See [2] for a fairly extensive recounting
of the colorful history of this problem.

• 1852 — Problem posed by Guthrie.
• 1871 — De Morgan dies.
• 1878 — Arthur Cayley revives interest in the problem.
• 1879 — Alfred Kempe “solves” the problem.
• 1889 — Percy Heawood finds a flaw in Kempe’s proof.
• 1912 — G.D. Birkhoff introduces the chromatic polynomial.
• 1976 — Appel and Haken publish “correct” proof.
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This paper is organized as follows. In Section 2, we define the chromatic polynomial and develop its basic
properties. Section 3 does the same for the Tutte polynomial, including the connections between the Tutte
polynomial and three one-variable polynomials: the chromatic, flow, and reliability polynomials.

In Section 4, we extend the definition of the Tutte polynomial to rooted graphs; that is, graphs with a distin-
guished vertex, concentrating especially on rooted trees. Section 5 explores the difference between the ordi-
nary Tutte polynomial and the rooted version. In sharp contrast to the situation for ordinary trees and the
(ordinary) Tutte polynomial, the rooted polynomial characterizes rooted trees (see Theorem 5.1).

If T is an ordinary tree, then it is possible to define two different Tutte polynomials, one based on cycle-rank
(the ordinary Tutte polynomial) and one based on a greedoid rank function. The greedoid version is much
sharper at distinguishing among different trees, but there is no characterization result analogous to that for
rooted trees.

It is possible to give combinatorial interpretations to the two greedoid-based Tutte polynomials defined in
Sections 4 and 5. In each case we can formulate the Tutte polynomial in purely graph theoretic terms, allow-
ing us to obtain tree reconstruction results.

We conclude with open problems in Section 6.

Figure 1: A famous continent.
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2. The Chromatic Polynomial of a Graph

In 1912, George Birkhoff introduced a polynomial, the chromatic polynomial to count the number of proper
colorings of a graph. More precisely, let  be the number of proper colorings of a graph G using λ (or
fewer) colors.

Example 2.1: Let G be the graph obtained by removing an
edge from K4, as shown in Figure 2.

In this case, we can determine the chromatic polynomial
“greedily”. There are λ colors available for vertex 1, 
colors left for vertex 2, and  colors for vertex 3. Now
there are also  colors available for vertex 4, so we
obtain

Note that , so it is possible to properly color
the vertices of G using three colors. Birkhoff hoped that
studying the roots of  could lead to a proof of the
four-color theorem.

Theorem 2.2 (Four Color Theorem): If G is a planar graph, then . �

Computing  for an arbitrary graph is difficult. In fact, determining if the chromatic number of a graph
is equal to k (for ) is an NP-complete problem. This was one of the first problems to be shown to be
NP-complete, in 1972—see [3]. More on the complexity of computing chromatic invariants can be found
in [4].

 satisfies an important recursive formula that allows for inductive proofs. Recall that if G is a graph
and e is an edge in G, then the deletion  is formed by simply removing the edge e from G. The contrac-
tion  of the (non-loop) edge e is obtained from G by identifying the two endpoints of e and then removing
e. Thus, if G has n edges, then  and  each have  edges.

Suppose u and v are the two endpoints of the edge e and partition the proper colorings of  as follows:
Colorings in which u and v receive different colors, and colorings in which they receive the same color. In the
former case, we obtain a proper coloring of G; in the latter case, we obtain a proper coloring of . Further-
more, all proper colorings of G and  arise in this way. This proves the next result.

Theorem 2.3. (Deletion–Contraction): Let G be a graph and e be a non-loop edge. Then

�

It follows from Theorem 2.3 and induction that  is actually a polynomial. Note that this is not imme-
diate from Birkhoff’s definition.

Corollary 2.4:  is a polynomial in λ. �

Example 2.5: As an example of the deletion–con-
traction method, we again compute  for the
graph G shown in Figure 2. In Figure 3, we show the
result of deleting and contracting the edge c. Note that

 is isomorphic with C4, the 4-cycle, and  is
isomorphic with a join of two 2-cycles. One can
check , whereas  =

 This agrees with our previ-
ous calculation:

One can use the deletion-contraction formula to
establish other results by induction. For instance, the
coefficients of  alternate in sign. More infor-
mation about the chromatic polynomial and its ele-
mentary properties can be found in [5] or [6], for
instance.

χ G λ;( )

Figure 2: .χ G λ;( ) λ λ 1–( ) λ 2–( )2=

λ 1–
λ 2–

λ 2–

χ G λ;( ) λ λ 1–( ) λ 2–( )2.=

χ G 3;( ) 6 0>=

χ G λ;( )

χ G 4;( ) 0>
χ G λ;( )

k 3≥

χ G λ;( )
G e–

G/e
G e– G/e n 1–

G e–

G/e
G/e

χ G λ;( ) χ G e λ;–( ) χ G/e λ;( ).–=

χ G λ;( )

χ G λ;( )

Figure 3: Deletion–contraction.

χ G λ;( )

G c– G/c

χ G/c λ;( ) λ λ 1–( )2= χ G c λ;–( )
λ λ 1–( ) λ2 3λ– 3+( ).

χ G λ;( )
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We need the next result, which is a standard exercise.

Proposition 2.6: Let T be a tree with n edges. Then . �

Study of the roots of  is still a very active area of research. For instance, a somewhat surprising appli-
cation to statistical mechanics is explained in [7], where the chromatic polynomial models state changes.

3. The Tutte Polynomial of a Graph

William Tutte was one of the giants of graph theory and combinatorics in the Twentieth Century. His work
at Bletchley Park as a code breaker has been called “one of the greatest intellectual feats of world war II.”

While working on a recreational problem involving the partition of a square into squares of distinct sizes
(the squared square problem), Tutte noticed that the number of spanning trees  in a connected graph
obeys a deletion–contraction recurrence:  (provided e is neither an isthmus (also
called a bridge) nor a loop). Tutte investigated other invariants that satisfied similar recursive formulæ, lead-
ing to the following definition.

Definition 3.1: Let G be a graph on the edge set E. The Tutte polynomial  is
defined as follows:

(1) If e is neither an isthmus (bridge) nor a loop, then .

(2) If e is an isthmus, then .

(3) If e is a loop, then .

To ensure  is well-defined, we must make sure the polynomial obtained from repeated deletions and
contractions does not depend on the order of operating on the edges. The following theorem establishes this.

Theorem 3.2: Let G be a graph with edge set E. For , let  be the size of the
largest cycle-free subset of A. Then

A proof of Theorem 3.2, using induction, is straightforward. �

The expression  is usually called the cycle rank of A, and it allows us to extend the definition of the Tutte
polynomial to any objects that possess a rank function. In particular, this invariant has been extended to
matroids and greedoids; see [8]. Borrowing terminology from linear algebra, the expression  is
called the corank of A and  is the nullity of A.

The reader is encouraged to use either Definition 3.1 or Theorem 3.2 to establish the following.

Proposition 3.3: 

(1) Let T be a tree with n edges. Then 

(2) Let Cn be a cycle with n edges. Then �

Example 3.4: As an example, we compute the Tutte polynomial  for the graph G shown in
Figure 2. Note that the deletion–contraction definition allows us to use the decomposition illustrated in
Figure 3. Thus,  This uses the fact that  =

, where  is the graph obtained from G1 and G2 by identifying a vertex of G1 with a ver-
tex of G2. Now we can use Proposition 3.3(2) to obtain .

The Tutte polynomial has a certain universal property: Any invariant satisfying a deletion–contraction recur-
rence is (essentially) an evaluation of the Tutte polynomial. This is made precise by a theorem of Brylwaski—
see 6.2.2 of [8]. For now, we list several important evaluations that can be obtained from .

Theorem 3.5: Let G be a graph.
(1) Subsets: The number of subsets of the edges of G is .

(2) Spanning trees: The number of spanning trees of G is .

(3) Spanning sets: The number of subsets of edges of G that contain
a spanning tree is .

χ T λ;( ) λ λ 1–( )n 1–=

χ G λ;( )

n G( )
n G( ) n G e–( ) n G/e( )+=

f G x y,;( )

f G x y,;( ) f G/e x y,;( ) f G e– x y,;( )+=

f G x y,;( ) x f G/e x y,;( )⋅=

f G x y,;( ) y f G e– x y,;( )⋅=

f G x y,;( )

A E⊆ r A( )

f G x y,;( ) x 1–( )r E( ) r A( )– y 1–( ) A r A( )–

A E⊆
∑ .=

r A( )

r E( ) r A( )–
A r A( )–

f T x y,;( ) xn.=

f Cn x y,;( ) xn 1– xn 2– … x y.+ + + +=

f G x y,;( )

f G( ) f G c–( ) f G/c( )+ f 2 C2( ) f C4( ).+= = f G1 G2⊕( )
f G1( ) f G2( ) G1 G2⊕

f G x y,;( ) x3 2x2 2xy x y y2+ + + + +=

f G x y,;( )

f G 2 2,;( )

f G 1 1,;( )

f G 1 2,;( )
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(4) Acyclic subsets of edges: The number of subsets of the edges of G 
that are contained in a spanning tree is .

(5) Acyclic orientations: The number of acyclic orientations of the edges of G is .

(6) Acyclic orientations with a unique specified source: 
The number of acyclic orientations of the edges of G in which a specified 
vertex v is the unique source is  (and, in particular, does not depend 
on the vertex v chosen as the source).

(7) Totally cyclic orientations: The number of orientations of G in which 
every edge is in some cycle is .

(8) Distinct score vectors: The number of distinct score vectors that arise 
from orientations of the edges of G is . �

Note that the evaluation  counts two distinct invariants; both the number of acyclic sets and the
number of score vectors. Property (5) is due to Stanley [9], and Properties (6) and (7) are proved in [10]. We
also draw the attention of the reader to Property (2), the prototypical evaluation Tutte noticed during the
1940s. Tutte was able to use basis activities to set up a bijection between spanning trees and individual terms
of the polynomial. His work is valid in the more general context of matroids; see 6.6.A of [8] for more.

In addition to these numerical invariants, the Tutte polynomial also encodes three important one-variable
graph polynomials. We now define the flow polynomial of a graph. A λ-flow is obtained by choosing an ori-
entation of the edges of G and assigning an element of the additive group �λ to each edge so that Kirchoff’s
law is satisfied at each vertex v (i.e., the sum of the weights of the edges directed toward v is equal to the sum
of the weights of the edges directed away from v). A λ-flow is nowhere zero if no edge is assigned 0.

Definition 3.6: The flow polynomial,  is the number of nowhere zero λ-flows of
the graph G. �

It is worth pointing out two features of this polynomial:

•  does not depend on the initial orientation chosen for the edges of G:
reversing the direction of an edge of weight x is equivalent to replacing its weight with −x.

•  does not depend on the Abelian group of order λ used in the definition.
We chose �λ, but any Abelian group of order λ would work equally well.

Our last one-variable invariant is the reliability polynomial. This polynomial is treated in depth in [4].

Definition 3.7: Let G be a graph and suppose each edge is independently operational with
probability p. The reliability polynomial,  is the probability that the number of com-
ponents of G does not increase. �

The chromatic, flow, and reliability polynomials can all be found from evaluations of the Tutte polynomial.

Theorem 3.8: Let G be a graph with m vertices, n edges, and c components.

(1)

(2)

(3) �

Proofs of these results follow from applying deletion and contraction and using induction; see Propositions
6.3.1, 6.3.4, and Example 6.2.7 of [8]. The close connection between the evaluations giving the chromatic and
flow polynomials has an interpretation via duality.

We conclude this section with a fundamental result concerning duality that extends to matroids.

Theorem 3.9: Let G be a planar graph with planar dual G*.
Then �

Thus, the flow polynomial carries information about coloring the dual graph when G is planar. When G is a
planar graph, one can then view the Tutte polynomial as simultaneously carrying information about coloring
a graph and its dual. In fact, Tutte called (a version of)  the dichromate for this reason.

f G 2 1,;( )

f G 2 0,;( )

f G 1 0,;( )

f G 0 2,;( )

f G 2 1,;( )

f G 2 1,;( )

χ* G λ;( )

χ* G λ;( )

χ* G λ;( )

R G p;( )

χ G λ;( ) λc 1–( )m c– f G 1 λ– 0,;( ).=

χ* G λ;( ) 1–( )n m– c+ f G 0 1 λ–,;( ).=

R G p;( ) 1 p–( )n m– c+ pm c– f G 0 1
1 p–
------------,;( ).=

f G* x y,;( ) f G y x,;( ).=

f G x y,;( )
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4. The Tutte Polynomial of a Rooted Graph

Rooted graphs are simply graphs with a distinguished vertex. Such graphs are important in many applications,
especially in communication theory in which one vertex plays a special role (a server, for instance). Thus, it
is worthwhile to search for an extension of the Tutte polynomial to rooted graphs.

We now define the Tutte polynomial of a rooted graph; this definition follows the lines of Theorem 3.2.

Definition 4.1: Let Gv be a rooted graph with edge set E and root vertex v. For ,
define the rank  via subtrees rooted at v:

Then the Tutte polynomial  is defined by

�

In this context,  is the branching rank of the greedoid associated with the edge set of the rooted graph.
Greedoids generalize matroids, which can be thought of as a simultaneous generalization of graphs and finite
subsets of a vector space. Greedoids were introduced by Korte and Lovász in a series of papers during
the 1980s; see [11] for general background in the subject. For our purposes, we will not need this level of
generality.

Given the variety of evaluations (Theorem 3.5) and the very important deletion–contraction property (Defi-
nition 3.1) the (ordinary) Tutte polynomial satisfies, it is reasonable to try to extend as many of these results
as possible to the rooted case.

We write  for  and  for  when computed in the rooted graph , and so on.

Theorem 4.2: Let Gv be a rooted graph on n edges and let e be an edge adjacent to v. Then

If there is no edge adjacent to the root, then . �

Theorem 4.2 is proved in [12]]. The term  does not appear in the recurrence for ordinary
graphs (or matroids, for that matter) because  provided e is not an isthmus (bridge). (An
alternative approach is taken in [11], where a one-variable greedoid Tutte polynomial is defined. That poly-
nomial can be obtained from the two-variable polynomial defined here by setting . This allows the
deletion–contraction recursion to match that given in Definition 3.1, but the one-variable polynomial carries
much less information than the two-variable version.)

Example 4.3: We compute  for the graph G shown in Figure 2, rooted at vertex 1. We need the fol-
lowing formula for rooted cycles.

Proposition 4.4: Let Cn be a cycle on n edges, where the root can be placed at any vertex.
Then

The proof of Proposition 4.4 follows from Theorem 4.2 and induction. �

To determine , we use deletion–contraction from Theorem 4.2. As before, we obtain
. This time, using the formula from Proposition 4.4, we

obtain

Unlike the ordinary Tutte polynomial,  can have negative coefficients. Although it is still true that
 counts the number of spanning trees of Gv, it is not possible to set up a direct bijection between

the spanning trees and the terms of the polynomial. Despite the problem with negative coefficients, the rooted
Tutte polynomial shares many of the same evaluations the ordinary polynomial possesses.

A E⊆
r A( )

r A( ) max F  : F  is a rooted subtree of T{ }.
F A⊆

=

f Gv x y,;( )

f Gv x y,;( ) x 1–( )r E( ) r A( )– y 1–( ) A r A( )–

A E⊆
∑ .=

r A( )

r Gv( ) r E( ) r Gv e–( ) r E e–( ) Gv e–

f Gv x y,;( ) f Gv/e x y,;( ) x 1–( )r Gv( ) r Gv e–( )– f Gv e– x y,;( ).+=

f Gv x y,;( ) yn=

x 1–( )r Gv( ) r Gv e–( )–

r G( ) r G e–( )=

x 1=

f G1 x y,;( )

f Cn x y,;( ) n 1– y n k–( ) x 1–( )kyk 1–

k 1=

n 1–

∑ .+ +=

f G1 x y,;( )
f G1( ) f G1 c–( ) f G1/c( )+ f 2 C2( ) f C4( )+= =

f G1 x y,;( ) 3x x2 3y 2xy– 2x2y 3xy2 3x2y2– x3y2.+ + + + +=

f Gv x y,;( )
f G1 1 1,;( )
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Proposition 4.5: Let Gv be a graph rooted at vertex v.

(1) Subsets: The number of subsets of edges of Gv is 

(2) Spanning trees: The number of spanning trees of Gv is 

(3) Spanning sets: The number of subsets of edges of Gv that contain 
a spanning tree is 

(4) Rooted subtrees: The number of rooted subtrees of Gv is 

(5) Acyclic orientations with unique source v: The number of acyclic 
orientations of the edges of Gv in which v is the unique source is �

Properties (1)–(4) can be proved in much the same way as before. Property (5) is also straightforward using
induction [13]. Connections between the different expansions of the ordinary Tutte polynomial are developed
in [14]. For rooted graphs, it is still possible to develop a theory of activities; see [15].

5. Chromatic and Tutte Uniqueness

A class of graphs C is said to be Tutte unique if any two graphs in C have different Tutte polynomials. A sim-
ple example of a Tutte-unique class of graphs is the class consisting of all cycles.

In the opposite direction, it is easy to find two graphs with the same Tutte polynomial: Any tree on n edges
has  (Proposition 3.3(1)). It follows from Theorem 3.8(1) (or Proposition 2.6) that the chro-
matic polynomial also fails to distinguish two trees with the same number of edges. Even if we ignore trees
(which are not 2-connected), it is hopeless to expect the Tutte polynomial to distinguish all graphs; there are
simply more graphs than there are potential Tutte polynomials. It follows from the pigeonhole principle that
for any positive integer N, there are N non-isomorphic 2-connected graphs all having the same Tutte polyno-
mial. See Exercise 6.9 in [8] for the matroid version of this argument.

5.1. Rooted Trees

The situation for rooted trees and the Tutte polynomial is much different. In this case, using the branching
rank function, we obtain the following.

Theorem 5.1: Let T1 and T2 be rooted trees. Then  iff T1 and T2
are isomorphic.

This is the main result of [12]. We give a sketch of the proof, which follows from two lemmas, both of which
are proved in [12].

Lemma 5.2: Let G1 and G2 be two disjoint graphs, rooted at vertices v1 and v2, respec-
tively. Let  be the rooted graph formed by gluing G1 and G2 together, with new
root vertex created by identifying the two roots v1 and v2. Then

�

Lemma 5.3: Let Tv be a rooted tree and suppose the root vertex v has degree 1. Then
 is an irreducible polynomial in the polynomial ring . �

Sketch of Proof for Theorem 5.1: We show how to reconstruct the rooted tree Tv from the polynomial
. The proof uses the two lemmas and mathematical induction.

Case  1 : The  po lynomia l
 factors in a non-trivial

way. Then each irreducible factor
of  must correspond to a
rooted subtree in which the degree
of the root is 1 (this follows from
Lemmas 5.2 and 5.3). Now recon-
struct each factor by induction,
then glue them all together by
identifying all of the roots, as
illustrated in Figure 4.

f Gv 2 2,;( ).

f Gv 1 1,;( ).

f Gv 1 2,;( ).

f Gv 2 1,;( ).

f Gv 1 0,;( ).

f T x y,;( ) xn=

f T 1 x y,;( ) f T 2 x y,;( )=

G1 G2⊕

f G1 G2⊕( ) f G1( ) f G2( ).=

f T v x y,;( ) � x y,[ ]

f T v x y,;( )

Figure 4: Tree identification.

f T v x y,;( )

f T v( )
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Case 2:  does not factor. Then the root vertex v must have degree 1 (again from Lemmas 5.2 and
5.3). Let e be the edge incident to v and suppose the highest power of x appearing in  is n. Then

. By induction, we can now reconstruct , so we can recon-
struct Tv by adding the edge e. �

5.2. Unrooted Trees

When T is an ordinary (unrooted) tree, the ordinary Tutte polynomial is well-defined. Unfortunately,
 gives no information about the structure of T. We now give a finer invariant for ordinary trees.

We first need to define the rank of a subset of edges.

Definition 5.4: Let T be an unrooted tree with edge set E, and let . For ,
define the rank of A to be the size of the largest subtree complement contained in A:

�

It is probably easier to think of  algorithmically. Given a subset A, we repeatedly prune the leaves of A:
More precisely, given , remove all leaves in A (a leaf is an edge incident on a vertex of degree 1), then
remove all edges of A that became leaves after the first batch of leaves is removed, and so on. Let F be the col-
lection of all edges of A that were removed at some stage in this process. Then . F is called a fea-
sible set.

This rank function is usually called the pruning rank and it gives T an antimatroid structure. As usual, we will
not need that level of generality. Antimatroids are an important class of greedoids with closed sets that satisfy
a certain anti-exchange condition. See [11] for more on antimatroids and their relationship to greedoids.

This definition of rank enables us to define a Tutte polynomial  exactly as before:

In light of Theorem 5.1, it is reasonable to make the following conjecture:

Conjecture 5.5: Let T1 and T2 be unrooted trees. Then  iff T1 and
T2 are isomorphic. �

However, this conjecture is false. We give a counterexample from [16].

Example 5.6: Let T1 and T2 be the two trees shown in Figure 5. Note that each tree has 10 edges, so the def-
inition of  requires us to compute the rank of all 210 subsets of the edges of each tree. We postpone the
computation of  until we give a combinatorial interpretation and we then have a better way to express

. We promise to return to this.

T1 and T2 are examples of caterpillars; that is, trees in which every leaf is incident on a single path. The cen-
tral path is called the spine of the caterpillar, even though caterpillars are invertebrates.

5.3. Combinatorial interpretations

The Tutte polynomial of a rooted or unrooted tree can be expressed in purely graph-theoretic terms. The basic
idea is to group the terms in the subset expansions of the polynomials so that we can sum over subtrees instead
of subsets.

We need the following notation. For a rooted tree Tv having n edges, let S be the collection of all subtrees of
T rooted at v. If , then let  be the number of edges x that can be added to S so that  is a
rooted subtree. If T is unrooted, let S be the collection of all subtrees of T, and if , then let  be the
number of internal edges of S; that is, the edges of S that are not leaves.

The following Theorem is proved in [17].

f T v x y,;( )
f T v x y,;( )

f T v/e x y,;( ) f T v x y,;( ) x 1–( )nyn 1––= T v/e

f T( ) xn=

E n= A E⊂

r A( ) max F  : E F  is a subtree–{ }.
F A⊆

=

r A( )
A E⊆

r A( ) F=

g T x y,;( )

g T x y,;( ) x 1–( )r E( ) r A( )– y 1–( ) A r A( )–

A E⊆
∑ .=

g T 1 x y,;( ) g T 2 x y,;( )=

g T( )
g T i( )

g T( )

Figure 5: .g T1( ) g T2( )=

S S∈ m S( ) S x{ }∪
S S∈ i S( )
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Theorem 5.7: 

(1) Let Tv be a rooted tree. Then 

(2) For an unrooted tree T, we have 

Sketch of Proof: We give the idea for part (2). Let S be a subtree and consider all subsets  with
 and  maximum. For each such A, F is the unique subtree complement contained in A of

maximum size. This follows because the union of two subtree complements is also a subtree complement
(equivalently, the intersection of any two subtrees is a subtree). Then  for all these sub-
sets A, so they all have .

What can A look like? Using our idea of repeated pruning to determine , we note that A must contain
. What additional edges can be in A? Precisely those edges that cannot be pruned after F has been

pruned; that is, the internal edges of S. The binomial theorem allows us to group these terms together:

�

Example 5.6, continued: We now apply Theorem 5.7 to complete the computation of  from Example
5.6 (see Figure 5)—thus, keeping our promise. Note that T1 and T2 have the same degree sequence. Since

, we also have  for any subtree of T1 or T2. In the Table below we list the sizes of
all the subtrees, together with the number of internal edges each subtree has. We omit entries in the table with
no subtrees. For example, there are no subtrees with 8 edges and 2 internal edges. We also point out that the
counts are facilitated by noticing that the only edges that can be internal in any subtree are the four edges
along the spine of T1 or T2. 

Table: Subtree data for T1 and T2 of Figure 5.

Count Term
0 0 1 1

1 0 10

2 0 14

3
0 6

1 13

4

0 1

1 14

2 9

5

1 6

2 15

3 7

6

1 1

2 9

3 18

4 2

f T v x y,;( ) x 1–( )n S– yn S– m S( )–

S S∈
∑ .=

g T x y,;( ) x 1–( ) S yi S( )

S S∈
∑ .=

A E⊆
F E S– A⊆= F

r A( ) F n S–= =
r E( ) r A( )– S=

r A( )
F E S–=

x 1–( ) S y 1–( ) A F–∑ x 1–( ) S yi S( ).=

g T( )

i T 1( ) i T 2( ) 4= = i S( ) 4≤

E S( ) i S( )

10 x 1–( )

14 x 1–( )2

6 x 1–( )3

13 x 1–( )3y

x 1–( )4

14 x 1–( )4y

9 x 1–( )4y2

6 x 1–( )5y

15 x 1–( )5y2

7 x 1–( )5y3

x 1–( )6y

9 x 1–( )6y2

18 x 1–( )6y3

2 x 1–( )6y4
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Summing the final column gives the shared Tutte polynomial. For convenience, we set ,

We now restate Theorem 5.1 in combinatorial terms. We also include a related result obtained by using a
pruning rank function for rooted trees [17]. For a rooted tree Tv, let  be the number of subtrees S rooted
at v with precisely i internal edges and l external edges. Let  be the number of rooted subtrees S on s
edges having exactly m edges e of  with  a rooted subtree.

Corollary 5.8: Let Tv be a rooted tree.
(1) Tv can be uniquely reconstructed from the sequence 
(2) Tv can be uniquely reconstructed from the sequence �

More colloquially, we can reconstruct a rooted tree from the knowledge of the number of subtrees with i inter-
nal and l external edges for all i and l.

The counterexample of Example 5.6 shows that the same is not true for unrooted trees. In purely combinato-
rial terms, we have:

Unrooted Trees: 
It is not possible in general to reconstruct a tree from the sequence �

6. Open Problems

(1) In the spirit of the study of chromatic- and Tutte-uniqueness for ordinary graphs, it would be interesting
to extend Theorem 5.1 to other classes of rooted graphs. For instance, is it true that any two rooted graphs on
n edges and n vertices have distinct rooted Tutte polynomials? More generally, we propose the following:

Problem 6.1: Find a non-trivial class of rooted graphs C so that, for ,
we have  iff . �

(2) There are several interesting evaluations of the Tutte polynomial—see Theorem 3.5. In Proposition 4.5,
we list a few evaluations of the rooted version of the Tutte polynomial. It should be possible to extend or inter-
pret other evaluations of the ordinary Tutte polynomial in the rooted case.

Problem 6.2: Extend all parts of Theorem 3.5 to the rooted case. �

(3) The chromatic polynomial is an evaluation of the ordinary Tutte polynomial (Theorem 3.8):

.

This suggests that it should be possible to extend the definition of the chromatic polynomial to rooted graphs
by applying the same evaluation to the rooted Tutte polynomial:

7

2 2

3 17

4 7

8
3 7

4 9

9
3 1

4 5

10 4 1

Table: Subtree data for T1 and T2 of Figure 5.

Count TermE S( ) i S( )

2 x 1–( )7y2

17 x 1–( )7y3

7 x 1–( )7y4

7 x 1–( )8y3

9 x 1–( )8y4

x 1–( )9y3

5 x 1–( )9y4

x 1–( )10y4

t x 1–=

g T i t 1+ y,;( ) y4t10 5y4t9 y3t9 9y4t8 7y3t8 7y4t7 17y3t7+ + + + + +=

2y2t7 2y4t6 18y3t6 9y2t6 yt6 7y3t5 15y2t5+ + + + + + +

6yt5 9y2t4 14yt4 t4 13yt3 6t3 14t2 10t 1.+ + + + + + + + +

ci l,
ds m,

T v S– S e{ }∪

ci l,{ }.
ds m,{ }.

ci l,{ }.

G1 G2, C∈
f G1( ) f G2( )= G1 G2≅

χ G λ;( ) λc 1–( )m c– f G 1 λ– 0,;( )=
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.

It should be worthwhile to study this polynomial and the combinatorial interpretations of its evaluations at
positive integers. A similar comment applies to the flow polynomial.

(4) Although the Tutte polynomial of an unrooted tree (Section 5) does not uniquely determine the tree, there
may be interesting classes of trees for which this data is a complete invariant. Information in this direction
appears in [18]. More precisely, we propose the following:

Problem 6.3: Find a non-trivial class of trees T so that, for ,
we have  iff . �

(5) It is possible to extend the Tutte polynomial for rooted trees to posets. This is the focus of [19] and [20].
In this context, it is not difficult to find combinatorial interpretations for the polynomial. It is also possible to
find two posets with the same Tutte polynomial: . We conjecture that the Tutte polynomial
is a complete invariant for series–parallel posets, however.

Conjecture 6.4: If P1 and P2 are series–parallel posets with ,
then . �
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Abstract
Hedetniemi’s conjecture states that the chromatic number of a categorical product of graphs is equal
to the minimum of the chromatic numbers of the factors. We survey the many partial results surround-
ing this conjecture, to review the evidence and the counter evidence.

1. Introduction

The categorical product  of two graphs G and H is the graph with vertex set , where
 if and only if  and . It is easy to derive a proper vertex col-

oring of  from a proper vertex coloring of G or of H. More than forty years ago, Hedetniemi conjec-
tured that this is essentially the best way to color the categorical product of two graphs:

Conjecture 1.1 [1]: 
where  is the chromatic number of the graph K. �

The year was 1966 and Hedetniemi was a graduate student at the University of Michigan. To put matters in
perspective, the four color problem was still the biggest open problem in graph coloring, only probabilistic
constructions were known for graphs with large girth and large chromatic number, and the concept of
NP-completeness had not yet been formulated. Arguably, the supporting evidence for Hedetniemi’s conjec-
ture is scanty by today’s standards. Yet the conjecture survived and the research that grew out of it over the
years revealed the depth and richness of the subject of product colorings.

There have been two previous surveys [2][3] of Hedetniemi’s conjecture. In the present survey, we classify
partial results surrounding it as supporting evidence or counter evidence, and discuss stronger and weaker
conjectures and related problems. For the sake of fluidity, we omit proofs and limit the presentation of some
useful auxiliary concepts such as homomorphisms, topological bounds, fractional graph theory; the interested
reader should consult the references provided on these subjects. Our goal is to give a clear picture of the mod-
esty of our state of knowledge concerning colorings of products of general graphs, and indicate that the study
of Hedetniemi’s conjecture for specific classes of factors is perhaps worthy of more attention than it has
received so far.

2. Reformulations

The inequality

follows easily from the fact that for any coloring c of a factor (say G), we can define a coloring c′ of 
by . The difficulty lies in deriving a coloring of a factor from a coloring of the product, to
prove the second inequality,

It is convenient to consider each chromatic number separately, by introducing the statements

 If  is n-colorable, then G or H is n-colorable.

Thus, Hedetniemi’s conjecture holds if and only if  holds for all n. This section of the paper consists of
various reformulations of the conjecture in the language of graph homomorphisms.

G H× V G( ) V H( )×
u v,( ) u′ v′,( ) E G H×( )∈ uu′ E G( )∈ vv′ E H( )∈

G H×

χ G H×( ) min χ G( ) χ H( ),{ },=
χ K( )

χ G H×( ) min χ G( ) χ H( ),{ }≤

G H×
c′ u v,( ) c u( )=

χ G H×( ) min χ G( ) χ H( ),{ }.≥

H n( ): G H×
H n( )
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2.1. Multiplicative Graphs

Following [4], a homomorphism from G to K is a map  such that, if , then
. The statement: “there exists a homomorphism from G to K” is denoted by  and its

negation by . We write  when  and ; G and H are then called homomorphically
equivalent.

A graph K is called multiplicative if, whenever we have , then  or . Let Kn denote
the complete graph on n vertices, then  if and only if . This allows the reformulation:

Proposition 2.1 [5]: H(n) is equivalent to the statement: Kn is multiplicative. �

The adjective multiplicative has become standardized although the property was previously introduced under
the name productivity [6]. Hedetniemi’s conjecture falls within the more general problem of characterizing
multiplicative graphs, digraphs, and relational structures (see also [2][7]–[9]). It is difficult to prove the mul-
tiplicativity of a single graph, since this property depends on the structure of the whole category of graphs. In
fact, the question as to whether a graph is multiplicative is not even known to be decidable. Exponential
graphs, introduced next, have been the most successful tools in the study of multiplicative graphs.

2.2. Exponential Graphs

Given two graphs G and K, the exponential graph KG has for vertices the set of all functions 
(not just homomorphisms), and edges the pairs  such that for every , .
Exponentiation and exponential structures have many applications in algebra and elsewhere. It follows from
the definition of KG that the evaluation map  defined by  is a homomor-
phism. Moreover, we have  if and only if . Thus, for an integer n and a graph G, there
exists a graph H such that  if and only if  has this property. This implies:

Proposition 2.2 [10]: H(n) is equivalent to the statement:
If , then . �

In [5][10][11] this version is exploited, not by considering  itself, but suitable subgraphs of , where
. Indeed, if , then  and thus it is sufficient to color a subgraph of  containing a

homomorphic image of . It is not clear that this method can be generalized to prove more cases of Hedet-
niemi’s conjecture. However, a second enlightening use of exponentiation is to apply it to an entire category
of graphs rather than to a single graph.

Let  be the set of all graphs of the form . The relation → induces a preorder on . The quotient
structure  is well known to be a Boolean lattice (see [8]). Thus, in a sense, the structure  is
much better understood than that of the single elements in . H(n) is equivalent to the statement that

 is a two-element lattice. The maximal element of  consists of all graphs  containing loops;
that is, all graphs  such that . (The homomorphisms  are the loops of .) The min-
imal element of  consists of all graphs  such that ; conjecturally, this coincides with the
class of all graphs  such that .

2.3. Retracts and Products

A graph K is called a retract of a graph G if there exist homomorphisms  and  such that
 is the identity on K. In particular, if the complete graph Kn is a retract of G, then ,

where  is the clique number of G. For general graphs, the clique number is often smaller than the chro-
matic number. Thus, to express the chromatic number of a graph G in terms of retracts we need to add a dis-
joint copy of Kn:  if and only if Kn is a retract of the disjoint union of G and Kn. Doing this to both
factors of a product, we obtain the following.

Proposition 2.3 [12]: H(n) is equivalent to the statement: Whenever Kn 
is a retract of a product of graphs, it is a retract of one of the factors. �

A graph is called a core if it has no proper retracts. Every (finite) graph has a core that is unique up to iso-
morphism, and Proposition 2.3 generalizes to a characterization of the multiplicative cores as the cores that
cannot be expressed as a retract of a product without being a retract of a factor. In many structure theories, one
objective is to similarly characterize “irreducible” elements that cannot be built up as retracts of products in
a nontrivial way.

φ: V G( ) V K( )→ uv E G( )∈
φ u( )φ v( ) E K( )∈ G K→

G�K G H↔ G H→ H G→

G H× K→ G K→ H K→
G Kn→ χ G( ) n≤

ϕ: V G( ) V K( )→
ϕ1 ϕ2,( ) uv E G( )∈ ϕ1 u( )ϕ2 u( ) E K( )∈

ε: G KG× K→ ε u ϕ,( ) ϕ u( )=
G H× K→ H KG→

χ G H×( ) n≤ H Kn
G=

χ G( ) n> χ Kn
G( ) n=

Kn
G Kn

C

C G→ C G→ Kn
G Kn

C→ Kn
C

Kn
G

Kn
G Kn

G Kn
G

Kn
G/↔ Kn

G/↔
Kn
G

Kn
G/↔ Kn

G/↔ Kn
G

Kn
G G Kn→ ϕ: G Kn→ Kn

G

Kn
G/↔ Kn

G Kn
G Kn→

Kn
G G�Kn

ρ: G K→ γ : K G→
ρ � γ χ G( ) ω G( ) n= =

ω G( )

χ G( ) n≤
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The statement can also be presented from an order-theoretic point of view: The relation → induces a preorder
on the category G of all graphs. It is well known (see [4]) that the natural quotient G/↔ is a distributive lattice,
with the meet operation induced by the categorical product and the join operation induced by the disjoint
union. The multiplicative graphs turn out to correspond to the meet-irreducible elements of G/↔. Thus
Hedetniemi’s conjecture states that the complete graphs are meet-irreducible.

3. Supporting Evidence

The statements H(1) and H(2) are relatively trivial. H(3) is nontrivial and was proved by El-Zahar and Sauer.

Theorem 3.1 [10]: The chromatic number of the product of 
two 4-chromatic graphs is 4. �

Note that the formulation of Theorem 3.1 (which is the title of [10]) is contrapositive. The exposition in [10]
is closer to a direct proof of H(3), through a 3-coloring of some connected components of , where C is

an odd cycle contained in G or H. In [13], it is shown that this gives a polynomial procedure to derive a
3-colouring of G or of H from a 3-coloring of .

None of the other statements H(n) are proved. However, many partial results for large chromatic numbers
have been obtained by restricting the class of factors considered.

Theorem 3.2 [14]: Let G be a graph such that every vertex of G is in an n-clique. 
For every graph H, if , then . �

Theorem 3.3 [15]: Let G be a graph such that  and for every pair e1, e2 of edges
of G, there is an edge e3 incident to both of them. For every graph H, if , then

. �

The Hajos sum of two graphs G and H with respect to the edges [  and  is the graph
obtained from the disjoint union of G and H by removing uv and u′v′, identifying u and u′ to a single vertex,
and adding the edge vv′.

Theorem 3.4 [16]: Let G be a Hajos sum of two graphs A and B, where  and B
is obtained from copies of  by means of adding vertices and edges, taking Hajos
sums, and at most one identification of nonadjacent vertices. For every graph H, if

, then . �

In the preceeding three results, the factor G is heavily constrained (to find an n-coloring of , but the factor
H is free. The next results show that it is possible to impose weaker conditions, but on both factors at the same
time.

Theorem 3.5 [17][18]: Let G and H be connected graphs containing n-cliques.
If , then . �

Theorem 3.6 [11]: Let G and H be connected graphs containing odd wheels.
If , then . �

It is interesting to compare Theorem 3.5 with the products and retracts version of Hedetniemi’s conjecture.
Theorem 3.5 can be shown to be equivalent to the statement that whenever the complete graph Kn is a retract
of a product of two connected graphs, it is a retract of a factor. By Proposition 2.3, if we drop the requirement
that the factors be connected, we get a statement that is equivalent to Hedetniemi’s conjecture. Theorem 3.1
can be seen as a stronger version of Theorem 3.5, when , replacing the condition that the factors
contain triangles by the (trivial) condition that the factors contain odd cycles. This point of view inspired
Theorem 3.6 from Theorem 3.5 when , replacing the condition that the factors contain 4-cliques
by the condition that the factors contain odd wheels. However, this approach has serious limitations (see
Theorem 4.3).

Other results of this type involve well known lower bounds for the chromatic number. In [19], the value of
two plus “the connectivity of the geometric realization of the neighborhood complex of a graph” is introduced
as a lower bound on the chromatic number of a graph. Here we call it the topological bound, although there
are many similarly defined “topological bounds” (see [20]).

K3
C

G H×

χ G H×( ) n= min χ G( ) χ H( ),{ } n=

χ G( ) n≥
χ G H×( ) n=

min χ G( ) χ H( ),{ } n=

uv E G( )∈ u′v′ E H( )∈

χ Kn
A( ) n=

Kn 1+

χ G H×( ) n= min χ G( ) χ H( ),{ } n=

Kn
G

χ G H×( ) n= min χ G( ) χ H( ),{ } n=

χ G H×( ) 4= min χ G( ) χ H( ),{ } 4=

n 3=

n 4=
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Theorem 3.7 [21]: Let G and H be graphs for which the topological bound on the 
chromatic number is tight. Then �

Another such bound is the fractional chromatic number  of a graph G; that is, the common linear relax-
ation of its clique number and its chromatic number (under suitable integer programming formulations, see
[22] and Section 7). In particular, for every graph G, we have 

Theorem 3.8 [23]: . �

The partial results of this section are susceptible of refinements and variations. It is unlikely that any of them
will yield a complete proof of Hedetniemi’s conjecture, but even partial results are interesting in their own
right. For instance, suppose , the topological bound is tight on G and , then
Hedetniemi’s conjecture states that  but a common refinement of Theorems 3.7 and 3.8 would
be needed to confirm this. This suggests the following.

Problem 3.9: Is there a natural lower bound on the chromatic number of a graph that is a
common refinement of the topological bound and the fractional chromatic number? �

In the same vein, consider the following two results.

Theorem 3.10 [24]: Let G be a Cayley graph on . If G contains an odd cycle,
then . �

Theorem 3.11 [25]: Let G be a vertex-transitive graph such that G contains a 
triangle and  is not a multiple of 3. Then . �

If G and H satisfy the hypotheses of Theorems 3.10 and 3.11, respectively, then by Theorem 3.1,
. It would be interesting to prove this result directly in the context of vertex-transitive graphs.

Problem 3.12: Is there a natural class of non 3-colorable vertex-transitive graphs
that generalizes both the hypotheses of Theorem 3.10 and Theorem 3.11? �

4. Stronger Conjectures

4.1. Fiber Products

El-Zahar and Sauer actually proved a stronger result than Theorem 3.1.

Theorem 4.1 [10]: Let G and H be connected 4-chromatic graphs, and let C and C′ be
odd cycles contained in G and H, respectively. Then the subgraph of  induced by

 is 4-chromatic. �

They conjectured that a similar phenomenon holds for higher chromatic numbers.

Conjecture 4.2 [10]: Let G and H be connected (n + 1)-chromatic graphs, and let G′ and H′
be n-chromatic subgraphs of G and H, respectively. Then the subgraph of  induced
by  is (n + 1)-chromatic. �

This, however, turns out to be false.

Theorem 4.3 [11]: There exists a 4-chromatic graph K such that for each  there exists
an n-chromatic graph Gn containing K as a subgraph, such that the subgraph of 
induced by  is 4-chromatic. �

The fiber product yields another hypothesis on the structure of n-chromatic subgraphs of products of n-chro-
matic graphs. Given two n-chromatic graphs with n-colorings  and , their fiber
product over cG and cH is the subgraph  of  induced by

Conjecture 4.4 [26]: The fiber product of two n-chromatic graphs over n-colorings is
n-chromatic. �

In [26], the conjecture is proved for ; it is still open for . Note that both Conjectures 4.2 and 4.4
suggest that the critical subgraphs of  are smaller that  itself.

χ G H×( ) min χ G( ) χ H( ),{ }.=

χ f G( )

χ f G( ) χ G( ).≤

χ G H×( ) min χ f G( ) χ f H( ),{ } 2⁄≥

χ G( ) χ H( ) n= = χ f H( ) n=
χ G H×( ) n=

�2
n

χ G( ) 4≥

V G( ) χ G( ) 4≥

χ G H×( ) 4≥

G H×
C H×( ) G C′×( )∪

G H×
G′ H×( ) G H′×( )∪

n 5≥
Gn Gn×

K Gn×( ) Gn K×( )∪

cG: G Kn→ cH : H Kn→
G cG,( ) H cH,( )× G H×

V G cG,( ) H cH,( )×( ) u v,( ) V G H×( )∈  : cG u( ) cH v( )={ }.=

n 3= n 4=
G H× G H×
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4.2. Uniquely Colorable Graphs

In [27] it is proved that if G is connected and , then  is uniquely n-colorable. This motivates
the following refinements of H(n) in terms of uniquely colorable graphs.

A(n): If G and H are uniquely n-colorable, then each n-coloring of  is induced by a
coloring of G or H.

B(n): If G is uniquely n-colorable, H is connected, and , then  is uniquely
n-colorable.

In [17] it is proved that A(n) implies B(n) and B(n) implies H(n). It is also conjectured that A(n) holds for all n.

4.3. Circular Colorings

Following [28], for relatively prime integers r, s such that  the circular complete graph  has the
elements of �s for vertices and for edges the pairs (i, j) such that . The circular
chromatic number  of a graph G is the (well-defined) smallest rational q such that . In partic-
ular, ; hence, χc is a refinement of χ. Zhu proposed the following strengthening of Hedet-
niemi’s conjecture:

Conjecture 4.5 [28]: �

The result of El-Zahar and Sauer has been adapted to the circular case, as well as the result of Duffus–Sands–
Woodrow and Welzl.

Theorem 4.6 [9]: If , then 
�

Theorem 4.7 [29]: If G and H are connected graphs containing 
and , then . �

To date, the only graphs known to be multiplicative (up to homomorphic equivalence) are the circular com-
plete graphs K1 and Kq, .

5. Counter Evidence

There is no known counterexample to Hedetniemi’s conjecture. However, there are natural extensions of this
conjecture that are known to be false, most notably for directed graphs and infinite chromatic numbers.

5.1. Infinite Graphs

The chromatic number of an infinite graph is a (finite or infinite) cardinal. The product of two infinite chro-
matic graphs is still infinite chromatic, but nonetheless Hajnal notes that Hedetniemi’s conjecture fails for
infinite chromatic numbers.

Theorem 5.1 [30]: For every infinite cardinal κ, there exist graphs G and H such that
 and . �

The examples provide an interesting application of the theory of stationary sets, although they cannot be
directly adapted to the finite case. Extensions of Theorem 5.1 involve models of set theory; Soukup [31]
proved that the following statement:

There are two graphs G and H both of cardinality ℵ2 such that 
 and .

is consistent with the axioms of Zermelo–Fraenkel set theory, with the axiom of choice, and the generalized
continuum hypothesis, although Hajnal notes that it cannot be proved in this axiom system.

In the finite case, Hedetniemi’s conjecture implies that the formula

is valid for any finite n. Miller [32] notes that it cannot be extended to an infinite number of factors. Indeed,
the product of any family of graphs with unbounded odd girth is bipartite.

χ G( ) n> G Kn×

G H×

χ H( ) n> G H×

2r s≤ Ks r⁄
j i– r r 1+ … s r–, , ,{ }∈

χc G( ) G Kq→
χ G( ) χc G( )=

χc G H×( ) min χc G( ) χc H( ),{ }.=

min χc G( ) χc H( ),{ } 4≤
χc G H×( ) min χc G( ) χc H( ),{ }.=

Ks r⁄
χc G H×( ) s r⁄= min χc G( ) χc H( ),{ } s r⁄=

2 q 4<≤

χ G( ) χ H( ) κ+= = χ G H×( ) κ=

χ G( ) χ H( ) ℵ2= = χ G H×( ) ℵ0=

χ Gi
i 1=

n

∏⎝ ⎠
⎜ ⎟
⎛ ⎞

min χ G1( ) … χ Gn( ), ,{ }=
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5.2. Directed Graphs

A coloring c of the vertices of a directed graph  is called proper if for every arc , .
Thus the constraints are not affected by the orientation, and the minimum number  of colors needed
to properly color  is just the chromatic number of the underlying undirected graph obtained from . The
categorical product  of two directed graphs  and  has vertex set , and its arcs are the
couples  such that  is an arc of  and  is an arc of . Categorical products of
directed graphs have fewer edges than their undirected counterparts and tend to be easier to color. Poljak and
Rödl [33] noted that Hedetniemi’s conjecture fails for directed graphs, even with relatively small examples.
To date, the strongest results in this direction are the following.

Theorem 5.2 [34]: For every  and , there exists an integer  and directed
graphs  and  such that  and . �

Theorem 5.3 [35][36]: For each , there exist directed graphs  and  such that
, , and . �

Theorem 5.4 [35]: There exist directed graphs  and  such that 
 and . �

The Poljak–Rödl function  is defined by

Its undirected counterpart is the function  defined by

Thus, Hedetniemi’s conjecture states that  for all n, whereas Theorem 5.2 shows that asymptotically
. The two functions are obviously nondecreasing, and  for all n. The values  =

, , , and  are the only known values
of f and g. In fact, the functions are not even known to be unbounded. Building on Poljak and Rödl’s work
with the arc-graph construction, Poljak, Schmerl,1 and Zhu independently proved the following intriguing
statements.

Proposition 5.5 [3][37]: 
(1) Either f is unbounded or  for all n.
(2) Either g is unbounded or  for all n. �

Theorem 5.3 suggests that f may be bounded. However, this would contradict Hedetniemi’s conjecture.

Proposition 5.6 [38]: f is bounded if and only if g is bounded. �

Perhaps the strongest argument against Hedetniemi’s conjecture is the difficulty in proving that g is
unbounded. Many interesting developments center around this question (see Section 6).

5.3. Hypergraphs

Following [39], the box product of two graphs G and H is the hypergraph  with vertex set 
and hyperedges  for every  and . A coloring of the vertices of a
hypergraph is called proper if it has no monochromatic hyperedge, and the chromatic number of a hypergraph
is the minimum number of colors needed to properly color the hypergraph.

Mubayi and Rödl [39] propose a general conjecture that admits the following particular case.�

Conjecture 5.7: There exists a bound c such that for every n, there exist graphs Gn and Hn
such that  and . �

Note that a proper coloring of  can be derived from a proper coloring of any product  of an ori-
entation of G and orientation of H. Thus, the fallacy of Conjecture 5.7 would imply that the Poljak-Rödl func-
tion f is unbounded. Nonetheless Mubayi and Rödl base their conjecture on the fact that the statement is true
for products of hypergraphs, when the size of the hyperedges of the factors is not bounded.
1 J. Schmerl’s unpublished result was obtained at the 1984 Banff conference Graphs and Order, after hearing of Poljak
and Rödl’s result. His contribution is mistakenly attributed to Schelp in [3].

G u v,( ) c u( ) c v( )≠
χ G( )

G G
G H× G H V G( ) V H( )×

u u′,( ) v v′,( ),( ) u v,( ) G u′ v′,( ) H

ε 0> N 0> n N>
Gn Hn χ Gn( ) χ Hn( ) n= = χ Gn Hn×( ) 2

3
---n ε+≤

n 4≥ G H
χ Gn( ) n= χ Hn( ) 4= χ Gn Hn×( ) 3=

G H
χ Gn( ) χ Hn( ) 5= = χ Gn Hn×( ) 3=

f : � �→

f n( ) min χ G H×( ) : χ G( ) χ H( ) n= ={ }.=

g: � �→

g n( ) min χ G H×( ) : χ G( ) χ H( ) n= ={ }.=

g n( ) n=
f n( ) 2n 3⁄≤ f n( ) g n( )≤ f 1( )
g 1( ) 1= f 2( ) g 2( ) 2= = f 3( ) g 3( ) 3 f 4( ) f 5( )= = = = g 4( ) 4=

f n( ) 3≤
g n( ) 9≤

G�H V G( ) V H( )×
uu′ uv′ vu′ vv′, , ,{ } uv E G( )∈ u′v′ E H( )∈

χ Gn( ) χ Hn( ) n= = χ Gn�Hn( ) c≤
G�H Gn Hn×
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Theorem 5.8 [39]: For every integer n there exists a hypergraph Hn such that 
and . �

This refutes a conjecture of [40], although [41] shows that variants of Theorems 3.2 and 3.5 can be adapted
to products of hypergraphs. In a sense, this weakens the support that Theorems 3.2 and 3.5 offer to Hedetni-
emi’s conjecture.

5.4. Multicolorings

For an integer r, an r-coloring of a graph G is an assignment of an r-set  to each vertex u of G, such that
if , then . The r-chromatic number  of G is the least integer s such that G
admits an r-coloring c with . In particular, a 1-coloring is an ordinary coloring and

.

An r-coloring of  can be derived from an r-coloring of G or H, but also from the disjoint union of an
r1-coloring of G with an r2-coloring of H, where . This is the basis of the following result:

Theorem 5.9 [42]: There are graphs G and H and integers r such that
�

Multichromatic numbers can also be defined in terms of homomorphisms to Kneser graphs. For integers r and
s, the Kneser graph  has the r-subsets of  as vertices and two vertices are adjacent if they

correspond to disjoint subsets. Thus, for a graph G,  is the least integer s such that G admits a homo-
morphism in . Hence, Theorem 5.9 admits the following reformulation.

Theorem 5.10 [42]: There are nonmultiplicative Kneser graphs. �

Nonetheless, the adaptation of Theorem 3.5 is valid for multichromatic numbers.

Theorem 5.11 [12]: Whenever a Kneser graph is a retract of a product of connected
graphs, it is a retract of a factor. �

Theorems 5.10 and 5.11 weaken the support that Theorem 3.5 gives to Hedetniemi’s conjecture.

6. Weaker Conjectures

6.1. Ramsey Theory

Burr, ErdŒs, and Lovász [14] rediscovered Hedetniemi’s conjecture independently, and applied it to a prob-
lem in Ramsey Theory. For any graph G, there exists at least one graph F such that whenever the edges of F
are colored in red and blue, then F contains a copy of G with all its edges having the same color. The smallest
possible chromatic number for such a graph F is called the chromatic Ramsey number  of G. These
authors proved the inequality , and proposed the following conjecture.

Conjecture 6.1 [14]: For every integer , there exists a graph Gr that  
and . �

There is a natural candidate Gr constructed as follows. For every coloring pi of the edges of  in red
and blue, there exists a monochromatic subgraph Hi of  such that . Let Gr be the cate-
gorical product of all the graphs Hi. Assuming Hedetniemi’s conjecture, then , and using this
hypothesis, Burr, ErdŒs and Lovász [14] conclude that Gr verifies Conjecture 6.1. Theorem 3.2 is used to
prove Conjecture 6.1 for . In [43], this is extended to the case .

6.2. The Weak Hedetniemi Conjecture

The main open problem surrounding Hedetniemi’s conjecture is the asymptotic behavior of the Poljak–Rödl
functions f and g.

Conjecture 6.2 (The Weak Hedetniemi Conjecture): For every integer n, there exists an
integer mn such that if , then . �

By Theorem 5.5, it suffices to prove the result for , or a directed version of the result for .
Thus, a strengthening of Theorem 3.1 to prove H(9) would be sufficient to prove Conjecture 6.2. Duffus and
Sauer [44] observe that a common strengthening of Theorems 3.2 and 3.5 would also be sufficient.

χ Hn( ) n≥
χ Hn�Hn( ) 2=

c u( )
uv E G( )∈ c u( ) c v( )∩ ∅= χr G( )

c u( )
u V G( )∈∪ s=

χ1 G( ) χ G( )=

G H×
r1 r2+ r=

χr G H×( ) min χr G( ) χr H( ),{ }.<

K r s,( ) 1 2 … s, , ,{ }

χr G( )
K r s,( )

rc G( )
rc G( ) χ G( ) 1–( )2 1+≥

r 1≥ χ Gr( ) r=
rc Gr( ) r 1–( )2 1+=

K r 1–( )2 1+
K r 1–( )2 1+ χ Hi( ) r≥

χ Gr( ) r=

r 4≤ r 5=

χ G( ) χ H( ) mn= = χ G H×( ) n≥

n 10= n 4=
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Proposition 6.3 [44]: Consider the following hypothesis:
For any integer n and for any graphs G and H such that G is connected, G contains Kn, and

, then .
If this hypothesis is true, then the weak Hedetniemi conjecture is also true. �

Let G be the class of finite undirected graphs. The lattice  is well known to be Boolean (see [8]). If the
lattice is finite or even if it has an atom  then for , , whence, by Proposition 5.5, g is
unbounded and the weak Hedetniemi conjecture is true. If, however,  has no atoms, then it is dense,
and up to isomorphism there is only one countable dense Boolean lattice. Therefore, at least one of the fol-
lowing statements holds.

(1) The weak Hedetniemi conjecture is true.

(2) The lattice  is the unique dense countable Boolean lattice.

Both eventualities suggest a rich, and as yet undiscovered, structure in the category of graphs. Now, let D be
the class of finite directed graphs. By Theorem 5.3, the lattice  is at least known to be infinite. Perhaps
it is possible to determine its exact structure.

Problem 6.4: Is  isomorphic with the unique dense countable Boolean lattice? �

The weak Hedetniemi conjecture has interesting potential within the field of graph coloring (see Problem
3.9), but also in other fields of mathematics. In particular, Schmerl [45] linked the weak Hedetniemi conjec-
ture to models of Peano arithmetic.

Proposition 6.5 [45]: Let M be an arithmetically saturated model of Peano arithmetic that
is not a model of true arithmetic. Then M has a generic automorphism if and only if the
weak Hedetniemi conjecture holds. �

The weak Hedetniemi conjecture is reasonable, but so is the hypothesis that the Poljak–Rödl function g is
bounded by 4. Indeed, El-Zahar and Sauer’s proof of H(3) relies on odd cycles, hence on the fact that the topo-
logical bound is (essentially) tight for 3-chromatic graphs, whereas it is not always tight for larger chromatic
numbers. However, it is harder to imagine the true bound on the Poljak–Rödl function being a number larger
than 4. The case of directed graphs does not present such unacceptable alternatives: Either the function f is
unbounded, or  for all . Thus, it would be interesting to refine Proposition 5.5, and eventually
prove that g is either unbounded or bounded by 4. The circular versions of the Poljak–Rödl functions consid-
ered next provide insight in this direction.

6.3. The Circular Weak Hedetniemi Conjecture

The circular versions of the Poljak–Rödl functions are the functions  defined by

,

.

Obviously, fc and gc are bounded if and only if f and g are. By Theorem 4.6, we have  for .
Thus, if gc is bounded, the bound is somewhere between 4 and 9. If fc is bounded, the bound is at most 3, but
to date there is not even a proof that fc is not identically equal to 2. We can formulate the conjecture that fc is
not identically equal to 2 in terms of homomorphisms to odd cycles as follows.

Conjecture 6.6 (The Circular Weak Hedetniemi Conjecture): There exists an 
odd cycle  and an integer n such that if , then there is no 
homomorphism from  to . �

Hedetniemi’s conjecture trivially implies the weak Hedetniemi conjecture, which implies that f and fc are
unbounded (by Proposition 5.6), which implies Conjecture 6.6. However, even the latter seems to be a hard
problem.

Tighter bounds on fc would also improve the bounds on g, as shown by the following result.

Proposition 6.7: If fc is bounded by 5/2, then g is bounded by 8, and if fc is bounded 
by 7/3, then g is bounded by 7.

min χ G( ) χ H( ),{ } n> χ G H×( ) n>

K9
G/↔

G/↔ n χ K9
G( )> g n( ) 10≥

K9
G/↔

K9
G/↔

K3
D/↔

K3
D/↔

f n( ) 3= n 3≥

f c gc, : 2 ∞ ),[ 2 ∞ ),[→

f c x( ) inf{χc G H×( ) : χc G( ) χc H( ), x}≥=

gc x( ) inf χc G H×( ) : χc G( ) χc H( ), x≥{ }=

g x( ) x= x 2 4,[ ]∈

C2k 1+ χc G( ) χc H( ), n≥
G H× C2k 1+
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Proof: We include a sketch of proof here, since this result has not appeared elsewhere. Suppose that fc is
bounded by 5/2. Then, for every , there exist directed graphs  and  such that  =
n and there exists a homomorphism . Put

.

The undirected graphs An and Bn are defined as follows: An is obtained from  by ignoring its orien-
tation, and Bn is obtained by ignoring the orientation in , where  is the digraph obtained from

 by reversing its orientation. By definition of mn, we have . Define a function
 by

.

Let  be an edge of . Without loss of generality we can assume that
 is an arc of . If  is also an arc of , then 

is an arc of , whence  is an edge of C5. Otherwise,  is an arc of
, whence  is an arc of , and  is an edge of C5. There-

fore, n is a homomorphism from  to the very strong product  defined by

Therefore, . It is known (see [46]) that  and this proves the first
statement. The second statement is proved in a similar way, using the fact that . �

For every k we have . Therefore, the proof method of Proposition 6.7 cannot exhibit
further links between the potential upper bounds of fc and g.

7. Related Problems

7.1. Multiplicative Graphs

Many variations and strengthenings of Hedetniemi’s conjecture, such as Conjecture 4.5, fall within the larger
framework of characterizing multiplicative graphs in general. The problem is indeed interesting and deep, in
view of the scarcity of known examples. Delhommé and Sauer [7] have shown that the class of square-free
graphs is a promising candidate, where it might be possible to adapt the methods of [10]. In particular, they
prove that if G and H are connected graphs each containing a triangle and K is square-free, then 
implies  or . This suggests the following question.

Problem 7.1: Are all square-free graphs multiplicative? �

Of course, the multiplicativity of square-free graphs does not impact directly on Hedetniemi’s conjecture, but
clearly a better understanding of the class of multiplicative graphs would be an asset, and the work in [9]
shows that it is sometimes possible to prove the multiplicativity of some graphs by using the known multipli-
cativity of other graphs.

Other variations on Hedetniemi’s conjecture are independent of multiplicativity. We present two of them
next.

7.2. The Fractional Chromatic Number

The fractional chromatic number of a graph can also be defined in terms of multicolorings or homomorphisms
into Kneser graphs:

The fractional version of Hedetniemi’s conjecture is the following.

Problem 7.2: Does the identity  always hold? �

Note that the identity would follow directly from the multiplicativity of all Kneser graphs; however, by The-
orem 5.10, there are nonmultiplicative Kneser graphs. Nonetheless, in [47], it is shown that the identity

 holds whenever one factor belongs to a well behaved class of graphs, and

n 3≥ Gn Hn χ Gn( ) χ Hn( )=
φn: Gn Hn× C5→

mn max{χ Kn 1–
Gn( ) χ Kn 1–

Hn( )}, 1+=

Gn Gmn×
Hn R× R

Hmn χ An( ) χ Bn( ) n= =
ψn: V An Bn×( ) V C5 C5×( )→

ψn u v,( ) w x,( ),( ) φn u w,( ) φmn
v x,( ),( )=

u v,( ) w x,( ),( ) u′ v′,( ) w′ x′,( ),( ), A B×
u v,( ) u′ v′,( ),( ) Gn Gmn× w x,( ) w′ x′,( ),( ) Hn R× u w,( ) u′ w′,( ),( )

Gn Hn× φn u w,( )φn u′ w′,( ) w′ x′,( ) w x,( ),( )
Hn R× v x,( ) v′ x′,( ),( ) Gmn Hmn× φmn

v x,( )φmn
v′ x′,( )

An Bn× C5�C5

E C5�C5( ) i j,( ) i′ j′,( ),( ) : ii′ E C5( )∈  or jj′ E C5( )∈{ }.=

χ An Bn×( ) χ C5�C5( )≤ χ C5�C5( ) 8=
χ C7�C7( ) 7=

χ C2k 1+ �C2k 1+( ) 7≥

G H× K→
G K→ H K→

χ f G( ) min
r �∈

χr G( )

r
------------- min s

r
-- : G K s r,( )→

⎩ ⎭
⎨ ⎬
⎧ ⎫

.= =

χ f G H×( ) min χ f G( ) χ f H( ),{ }=

χ f G H×( ) min χ f G( ) χ f H( ),{ }=
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in [36], it is shown that the inequality  always holds. Thus, there are
some grounds for believing that the identity is always true.

When G is vertex-transitive, then , thus Problem 7.2 admits as a subquestion the
vertex-transitive case of the problem of determining of the independence number in categorical products of
graphs. This is a very active research area [29][48]–[50], where not only the cardinality of large independent
sets but also their structure is analyzed.

The examples in Theorem 5.2 are tournaments, which implies that the directed version of the fractional
Hedetniemi conjecture fails. The fractional version of the Poljak–Rödl functions

,

,

are essentially linear. Using lexicographic products with complete graphs, it can be shown (see [36]) that
, with , and  with .

Either Hedetniemi’s conjecture or its fractional version would imply the inequality  ≥
. The inequality  of Theorem 3.8 is known to

hold both for directed and undirected graphs. The interesting phenomenon arising in these fractional versions
of Hedetniemi’s conjecture is that the lower bounds obtained so far for undirected graphs also hold for
directed graphs. Distinguishing the undirected case from the directed case could perhaps help to understand
the structure of independent sets in exponential graphs, and possibly impact on the non-fractional Hedetniemi
conjecture.

7.3. The Local Chromatic Number

The local chromatic number of a graph G is the value

that is, the maximum number of colors used “locally” (around a vertex) in a proper coloring of G. It can also
be presented in terms of homomorphisms, by defining the graph  of “local r-colorings with s colors”
as follows. The vertices of  are the couples  where A is an r-subset of  and , and
the edges of  are the pairs  such that  and . Thus,

At the 2007 Canadian Discrete and Algorithmic Mathematics conference in Banff, G. Simonyi asked about
the validity of the local version of Hedetniemi’s conjecture:

Problem 7.3: Does the identity  always hold? �

As in the fractional version, the identity in Problem 7.3 would follow from the multiplicativity of the graphs
, although it does not depend on it. In [51] the inequalities  are proved, and in

[52] another lower bound is obtained; namely, one half of (one version of) the topological bound on the chro-
matic number. Therefore,  could differ significantly from  only both the frac-
tional chromatic number and the topological bound are poor estimates for the chromatic number of a factor.
The same criteria are also necessary for  to differ significantly from .
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A
acyclic orientation, 38
adjacency lemma, Vizing, 9
adjacent edge, 6
antimatroid, 41
arc-graph construction, 51
arithmetic, Peano, 53

B
basis activities, 38
Boolean lattice, 47
bounded vertex degree, 12
box product, 51
branching rank, 39

function, 40
bridge (isthmus), 37

C
categorical product, 46, 51
caterpillar, 41

spine, 41
Cayley graph, 49
chromatic

index, 6, 8
number, 46, 48

circular, 50
fractional, 49
hypergraph, 51
infinite graph, 50
local, 55
Ramsey, 52
topological bound, 48

polynomial, 36, 38
roots, 37

circular
chromatic number, 50
coloring, 50
complete graph, 50
weak Hedetniemi conjecture, 53

clique number, 47
closed walk, 29
color, 6

deficiency, 7
fan, 7
missing, 7

colorable, uniquely, 50
coloring

circular, 50
digraph, 51
edge, 6

optimal, 6
e-tense, 7
hypergraph, 51
vertex, 34, 46

communication
network, memoryless, 30
theory, 39

complete graph, circular, 50
conjecture

four color, 34
Hedetniemi, 46, 50

weak, 52
weak circular, 53

construction, arc-graph, 51
contraction, edge, 36
corank, 37
core, 47
critical

edge, 7
multigraph, 7

cycle
graph, number of domatic partitions, 24
rank, 37
simple, 29

D
deficiency

color, 7
vertex, 9

degree, 6
bounded, 12

deletion
contraction theorem, 36
edge, 36

dichromate, 38
digraph, 29, 51

fan, 7
primitive, 29

exponent, 29
proper coloring, 51
symmetric, primitivity, 29

domatic
number, 22
partition, 22

number in cycle graph, 24
number in path graph, 23

dominating set, 22
dual, planar, 38
duality, 38

E
edge

adjacent, 6
coloring, 6

optimal, 6
contraction, 36
critical, 7
deletion, 36
endpoint, 6
fan, 7
internal, 41
multiplicity, 6
subset, rank, 41

endpoint, edge, 6
equivalent, homomorphically, 47
e-tense coloring, 7
evaluation map, 47
exponent

primitive digraph, 29
set problem, 30

exponential graph, 47
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F
fan, 7

color, 7
digraph, 7
edge, 7
multiplicity, 7
vertex, 7

feasible set, 41
f-forest, 17
fiber product, 49
fire index, 10
flow

nowhere zero, 38
polynomial, 38

forest, 12
vertex, 12

four color
conjecture, 34
problem, 46
question, history, 34
theorem, 36

fractional chromatic number, 49
f-tree, 17

G
generalized exponent problem, 30
greedoid, 37, 39

H
Hajos sum, 48
Hamilton path, 20
Hedetniemi conjecture, 46, 50

circular weak, 53
weak, 52

height, 20
history, four color question, 34
homomorphically equivalent, 47
homomorphism, 47
hypergraph, 51

chromatic number, 51
coloring, proper, 51

I
incidence function, 6
index

chromatic, 6, 8
fire, 10

infinite graph, 50
chromatic number, 50

internal edge, 41
isthmus (bridge), 37

J
join, 6, 30

partial, 30

K
Kirchoff law, 38
Kneser graph, 52

L
lattice, Boolean, 47
leaf, 41
lemma, Vizing adjacency, 9
length, walk, 29
linear algebra, 37
local chromatic number, 55

M
map, evaluation, 47
matroid, 37, 38
maximum multiplicity, 6
memoryless communication network, 30
missing color, 7
multichromatic number, 52
Multicolorings, 52
multigraph, 6

citical, 7
multiplicative graph, 47
multiplicity

edge, 6
fan, 7
maximum, 6

N
network, memoryless communication, 30
nowhere zero flow, 38
nullity, 37
number

chromatic, 46, 48
circular, 50
fractional, 49
hypergaph, 51
local, 55
Ramsey, 52

clique, 47
domatic, 22

partitions in cycle graph, 24
partitions in path graph, 23

multichromatic, 52

O
optimal edge coloring, 6
orientation, acyclic, 38

P
partial join, 30
partition, domatic, 22
path graph, number of domatic partitions, 23
Peano arithmetic, 53
planar dual, 38
Poljak–Rödl function, 51
polynomial

chromatic, 36, 38
roots, 37

flow, 38
reliability, 38
Tutte, 37, 38

rooted graph, 39
primitive

digraph, 29
exponent, 29

graph, 29
primitivity, symmetric digraph, 29
problem

exponent set, 30
generalized exponent, 30
squared square, 37

product
box, 51
categorical, 46, 51
fiber, 49
very strong, 54

productivity, 47
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proper coloring
digraph, 51
hypergraph, 51

pruning rank, 41

R
Ramsey

number, chromatic, 52
theory, 52

rank
branching, 39
cycle, 37
edge subset, 41
function, branching, 40
pruning, 41

reliability polynomial, 38
retract, 47
Rödl–Poljak function, 51
rooted graph, 39

Tutte polynomial, 39
roots of chromatic polynomial, 37

S
score vector, 38
simple cycle, 29
South America, 34
spanning tree, 37
spine, caterpillar, 41
squared square problem, 37
statistical mechanics, 37
sum, Hajos, 48
symmetric digraph, primitivity, 29

T
theorem

deletion–contraction, 36
four color, 36

topological bound, chromatic number, 48
traceable, 20
tree, spanning, 37
Tutte

polynomial, 37, 38
rooted graph, 39

unique, 40

U
unique graph, Tutte, 40
uniquely colorable graph, 50

V
vertex

coloring, 34, 46
deficiency, 9
degree, bounded, 12
fan, 7
forest, 12
transitive, 49

very strong product, 54
Vizing adjacency lemma, 9

W
walk, 29

closed, 29
length, 29

weak Hedetniemi conjecture, 52
width, 20
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