Motivations	Classical glasses	Quantum glasses	Superglass	Lattice models	Conclusions

A new quantum glass phase: the superglass

Giulio Biroli, Claudio Chamon, and Francesco Zamponi* Phys. Rev. B 78, 224306 (2008)

*Laboratoire de Physique Théorique, Ecole Normale Supérieure, 24 Rue Lhomond, 75231 Paris Cedex 05

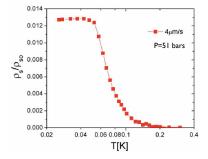
February 25, 2009

Motivations O	Classical glasses	Quantum glasses 000	Superglass 000000	Lattice models	Conclusions
Outline					
 Mo 	tivations				

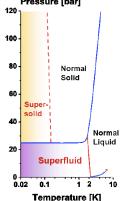
- Supersolidity of He⁴
- 2 The glass transition of classical liquids
 - Phenomenology
 - Mean field spin glass models for the glass transition
- 3 The quantum glass transition
 - Quantum p-spin and QREM
 - Helium 4: Monte Carlo results
- A model for the superglass phase
 - Mapping on classical diffusive dynamics
 - The phase diagram
 - Quantum slow dynamics
 - Condensate fluctuations
 - Superfluid properties
 - Perspectives
- 5 Lattice models
 - Disordered Bose-Hubbard model: the Bose glass
 - Quantum Biroli-Mézard model: a superglass?
 - Solution of Bose-Hubbard models on the Bethe lattice

Motivations ○	Classical glasses	Quantum glasses 000	Superglass 000000	Lattice models	Conclusions
Outlin	e				
	Notivations Supersolidity of H 	le ⁴			
	he glass transition Phenomenology Mean field spin g			ition	
	he quantum glass				

- Quantum p-spin and QREM
- Helium 4: Monte Carlo results
- A model for the superglass phase
 - Mapping on classical diffusive dynamics
 - The phase diagram
 - Quantum slow dynamics
 - Condensate fluctuations
 - Superfluid properties
 - Perspectives
- 5 Lattice models
 - Disordered Bose-Hubbard model: the Bose glass
 - Quantum Biroli-Mézard model: a superglass?
 - Solution of Bose-Hubbard models on the Bethe lattice



Possible interpretation: supersolidity



- Supersolidity excluded in perfect He⁴ crystals (Boninsegni, Ceperley et al.)
- Supersolidity strongly enhanced by fast quenches (RITTNER AND REPPY)
- History dependent response and some evidence for aging (DAVIS ET AL.)

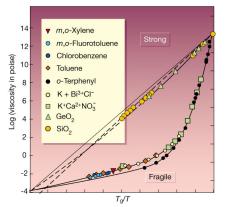
Motivations O	Classical glasses	Quantum glasses 000	Superglass 000000	Lattice models	Conclusions
Outline					

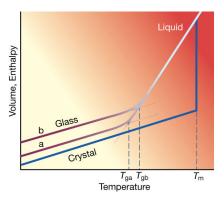
- Motivation
 - Supersolidity of He⁴
- 2 The glass transition of classical liquids
 - Phenomenology
 - Mean field spin glass models for the glass transition
- 3 The quantum glass transition
 - Quantum p-spin and QREM
 - Helium 4: Monte Carlo results
- 4 model for the superglass phase
 - Mapping on classical diffusive dynamics
 - The phase diagram
 - Quantum slow dynamics
 - Condensate fluctuations
 - Superfluid properties
 - Perspectives
- 5 Lattice models
 - Disordered Bose-Hubbard model: the Bose glass
 - Quantum Biroli-Mézard model: a superglass?
 - Solution of Bose-Hubbard models on the Bethe lattice

Motivations	Classical glasses	Quantum glasses	Superglass	Lattice models	Conclusions
O	●○○	000	000000	000	
Dhanan	a a na la mu				

Phenomenology

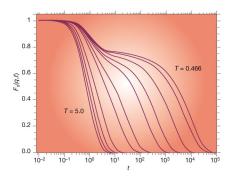
Classical particle system (e.g. Lennard-Jones like potential) No external disorder





Huge increase of the viscosity (or density relaxation time) in a small range of temperature

Second order phase transition: jump in compressibility



Two steps relaxation:

- 1. Intra-cage vibrational motion (τ_{β})
- 2. Structural relaxation (τ_{α})

First six decades of dynamic slowing down is well described by Mode-Coupling Theory (MCT)

- MCT predicts power-law divergence, $\tau \sim (T T_c)^{-\gamma}$, with too large T_c
- The divergence is "activated" $\tau \sim \exp(A/(T T_0))$ instead
- Activation is neglected in MCT (mean field theory)

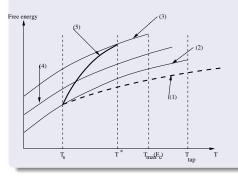
Motivations Classical glasses Quantum glasses Superglass OOOOOO Conclusions OOO

A mean field model for the glass transition: the *p-spin model*:

$$H = \sum_{i < j < k} J_{ijk} S_i S_j S_k$$

 S_i Ising spins

 J_{ijk} independent Gaussian random variables with zero average



- Liquid phase: dynamics is described by MCT-like equations
- "Activated" liquid phase: $e^{N\Sigma}$ states are populated
- Glass phase: "condensation", finite number of ground states

In a suitable limit (infinite number of spin in each interaction) reduces to the Random Energy Model (REM): 2^N levels E_i , i.i.d. Gaussian variables

Motivations 0	Classical glasses	Quantum glasses	Superglass 000000	Lattice models	Conclusions
Outline					
 S The F M The G F A n M T G S F Lat 	tivations Supersolidity of He e glass transition of Phenomenology Mean field spin glas e quantum glass t Quantum p-spin at Helium 4: Monte of nodel for the supe Mapping on classion Fhe phase diagram Quantum slow dyr Condensate fluctur Superfluid properti Perspectives tice models Disordered Bose-H	of classical liquids ass models for the transition nd QREM Carlo results erglass phase cal diffusive dynam namics ations ies	e glass trans mics		

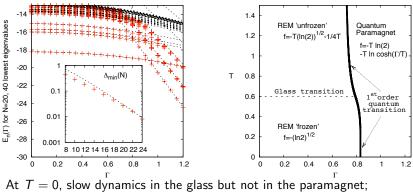
- Quantum Biroli-Mézard model: a superglass?
- Solution of Bose-Hubbard models on the Bethe lattice

Quantum p-spin and QREM

Quantum p-spin in a transverse field: (Goldschimdt; Cugliandolo et al.; Jorg et al.)

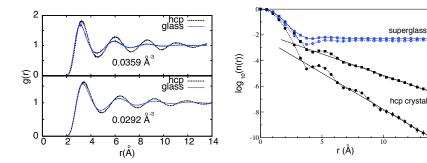
$$H = \sum_{i < j < k} J_{ijk} S_i^z S_j^z S_k^z - \Gamma \sum_i S_i^x$$

For infinite-body interaction: quantum REM, full spectrum First order quantum phase transition (paramagnet \rightarrow glass) at T = 0



no slowing down observed on approaching Γ_c from above.

Quantum Monte Carlo simulation of He⁴ at high pressure P > 32 bar Quench from the liquid phase down in the solid phase (Boninsegni et al.)

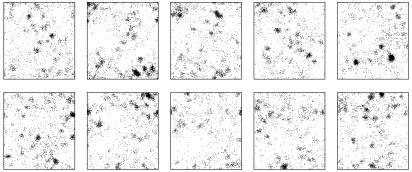


Density-density correlations similar to the liquid (large Lindemann ratio)

ODLRO observed in the one-particle density matrix \rightarrow BEC, superfluidity At P = 32 bar, $n_0 = 0.5\%$ and $\rho_s/\rho = 0.6$

Helium 4: Monte Carlo results

Amorphous condensate wavefunction: $n(r - r') \sim n_0 \phi(r) \phi(r')$



Plot of $\phi(x, y, z)$ on slices at fixed z

Many open problems

What is the nature of the transition? Is it accompanied by slow dynamics in the liquid phase? Where does superfluidity come from?

Motivations O	Classical glasses	Quantum glasses 000	Superglass	Lattice models	Conclusions
Outline					
 S The F M The C F A n M T C S E Latt D 	Phenomenology Aean field spin g a quantum glass Quantum p-spin Ielium 4: Monte model for the sup Aapping on class The phase diagra Quantum slow dy Condensate fluctu Superfluid proper Perspectives tice models Disordered Bose-	of classical liquid class models for the transition and QREM e Carlo results perglass phase sical diffusive dyna m ynamics uations	ne glass trans amics the Bose glas		

• Solution of Bose-Hubbard models on the Bethe lattice

Motivations Classical glasses Quantum glasses Superglass Lattice models Conclusions OOO OOO OOO OOO OOO OOO OOO OOO

- General mapping: Quantum Hamiltonian ← Fokker-Planck operator
- Diffusive dynamics (Brownian motion, Langevin equation):

$$\gamma_i \frac{d\mathbf{x}_i}{dt} = -\frac{\partial}{\partial \mathbf{x}_i} U_N(\mathbf{x}_1, \dots, \mathbf{x}_N) + \boldsymbol{\eta}_i(t) , \qquad i = 1, \dots, N ,$$

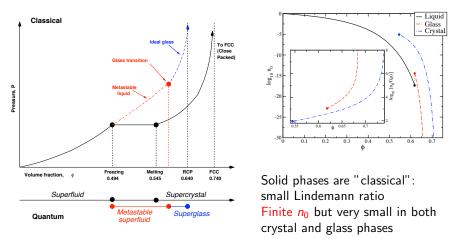
- Evolution of probability $P(\mathbf{x}_i; t)$: Fokker-Planck eq. $\partial_t P = -H_{FP}P$
- Equilibrium distribution $P_G = \exp(-\beta U_N)/Z$, $H_{FP}P_G = 0$ All other eigenvectors $H_{FP}P_E = E P_E$ such that E > 0
- Associated quantum (Hermitian) Hamiltonian: $H = P_G^{-1/2} H_{FP} P_G^{1/2}$
- Ground state $\Psi_G(\mathbf{x}_i) = \sqrt{P_G(\mathbf{x}_i)}$ is a Jastrow wavefunction Full spectrum of H equal to spectrum of $H_{FP} \Rightarrow$ access to real time quantum dynamics

Remarks:

- \diamond H has special properties! No inverse mapping in general...
- \diamond Jastrow wavefunctions are good variational ground states for ${\rm He^4}$

The phase diagram

We choose $U_N(\mathbf{x}_i) = \sum_{i < j} V_{HS}(\mathbf{x}_i - \mathbf{x}_j)$ (classical Hard Spheres) Quantum potential: sticky Hard Sphere + sticky three-body interactions Glass transition on increasing density



Slow dynamics approaching the glass phase

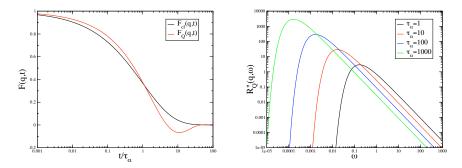
Density-density correlation function:

- $F_{cl}(q,t) = \langle \rho_q(t) \rho_{-q}(0) \rangle = \int_0^\infty \frac{d\omega}{2\pi} \rho_q(\omega) e^{-\omega t}$
- $F_Q(q,t) = \langle 0|\{\rho_q(it),\rho_q(0)\}|0\rangle = \int_0^\infty \frac{d\omega}{2\pi} \rho_q(\omega) \cos(\omega t)$

Separation of time scales: $\rho_q(\omega) = \rho_\beta(\omega\tau_\beta) + \rho_\alpha(\omega\tau_\alpha)$ with $\tau_\beta \ll \tau_\alpha$ For $\tau_\beta \ll t \ll \tau_\alpha$:

- the contribution of ρ_β(ωτ_β) decays to zero
- the contribution of $\rho_{\alpha}(\omega \tau_{\alpha})$ is the same since $e^{-\omega t} \sim \cos(\omega t) \sim 1$

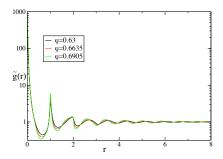
hence $F_{cl}(q,t) \sim F_Q(q,t) \sim \int_0^\infty \frac{d\omega}{2\pi} \rho_\alpha(\omega \tau_\alpha) \Rightarrow$ same plateau!



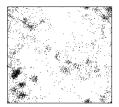
Motivations Classical glasses Quantum glasses Superglass OCO Conclusions

Condensate fluctuation in the glass

In the glass state $\tau_{\alpha} = \infty \rightarrow$; liquid freezes in many possible states Amorphous density profile $\rho_{\alpha}(r)$ and condensate profile $\phi_{\alpha}(r)$



 $g_{\phi}(r-r') \propto \sum_{\alpha} p_{\alpha} \phi_{\alpha}(r) \phi_{\alpha}(r')$ correlation function of condensate fluctuations

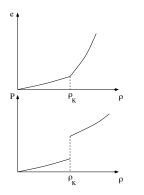


Superfluid properties

Superfluidity requires a linear spectrum ("phonons"): $v_c \leq \min_k [\epsilon(k)/k]$

In our model
$$e(\rho) \equiv 0 \Rightarrow$$
 sound velocity $c = \frac{d}{d\rho}\rho^2 \frac{de}{d\rho} = 0 \Rightarrow v_c = 0$
(follows from a special symmetry that allows to map *H* into a Fokker-Planck operator)

Introduce a perturbation $\delta v(r)$; then $\delta e(\rho) = \frac{\rho}{2} \int dr g(r) \, \delta v(r)$



- sound velocity $c \neq 0 \Rightarrow \rho_s \neq 0$
- first order transition at ρ_K [very weak jump in $e'(\rho) = P/\rho^2$]

Motivations 0	Classical glasses 000	Quantum glasses 000	Superglass ○○○○○●	Lattice models	Conclusions
Perspec	tives				

Weak points in the theory:

- "Classical"-like solids, small Lindemann ratio and superfluid fraction
- "Ad hoc" inclusion of phonons
- New quantum phase transition: first order with slow dynamics. How general?
- Quantitative computation for He⁴, cold atoms... [ρ_K for He⁴ is 10 times larger than the one of Boninsegni et al.]
- What happens at finite temperature?

Possible strategies:

- Better variational wavefunctions: Shadow and Jastrow with three body interactions; should give larger Lindemann ratio and ρ_s
- Quantum Mode Coupling Theory (Reichmann and Miyazaki)
- Replica computation at finite temperature
- Leggett bound: relation between $\rho(r)$ and ρ_s , apply to superglass It seems that disorder does not help superfluidity

Motivations O	Classical glasses	Quantum glasses 000	Superglass 000000	Lattice models	Conclusions
Outlin	e				
	Motivations Supersolidity of H The glass transition Phenomenology Mean field spin g The quantum glass Quantum p-spin a Helium 4: Monte Mapping on class The phase diagra Quantum slow dy Condensate fluctu Superfluid proper Perspectives Lattice models Disordered Bose-I	of classical liquid lass models for the transition and QREM carlo results berglass phase sical diffusive dyna m mamics uations ties	he glass trans amics		
	Quantum Biroli-N		-	5	

• Solution of Bose-Hubbard models on the Bethe lattice

$$H = -J\sum_{\langle i,j\rangle} (a_i^{\dagger}a_j + a_j^{\dagger}a_i) + \frac{U}{2}\sum_i n_i(n_i - 1) - \sum_i (\mu + \varepsilon_i)n_i$$

 $\varepsilon_i \in [-\Delta, \Delta]$ quenched external disorder



- Mott insulator: one particle/site Strong localization \Rightarrow no BEC, $\rho_s = 0$ Zero compressibility
 - Bose glass: additional defects Anderson localization Finite compressibility

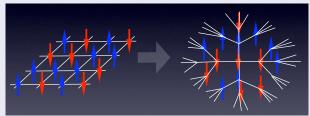
No frustration, no RSB No slow dynamics

$$H = -J\sum_{\langle i,j\rangle} (a_i^{\dagger}a_j + a_j^{\dagger}a_i) + \sum_{\langle i_1,\cdots,i_k\rangle} V(n_{i_1},\cdots,n_{i_k}) - \sum_i \mu n_i$$

Classical model (J = 0): glass transition similarly to Hard Spheres Self-generated disorder, RSB, slow dynamics

Add quantum fluctuations $(J \neq 0)$

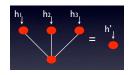
A quantum glass transition? Slow dynamics? Aging? Nature of the transition (first or second order)?

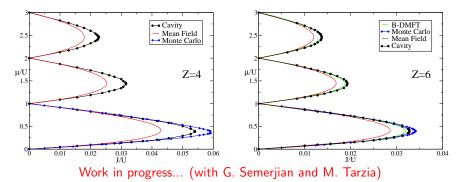


Strategy: solve the model on the Bethe lattice

Solution of Bose-Hubbard models on the Bethe lattice

- Solution of functional recurrence equations for the local action
- Gives back DMFT for $Z \to \infty$
- Successfully tested on the ordered Bose-Hubbard





Motivations 0	Classical glasses 000	Quantum glasses 000	Superglass 000000	Lattice models	Conclusions
Conclus	ions				

Our results:

- A semi-realistic model for interacting Bosons displays a superglass phase
- First order quantum glass transition with real time slow dynamics
- Variational calculation for more realistic potentials
- Possibility of exact solution for Bethe lattice models

Related works:

- Quantum Mode Coupling Theory (Reichmann, Miyazaki)
- B-DMFT (Vollhardt, Hofstetter, et al.)
- Monte Carlo simulations (Boninsegni, Prokof'ev, Svistunov, et al.)