AT&T Bell Laboratories
Murray Hill, New Jersey 07974

Computing Science Technical Report No. 109
Data Abstraction in C

Bjarne Stroustrup

January 1, 1984

Data Abstraction.in C

Bjarne Stroustrup

AT&T Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

C++ is a superset of old C; it is fully implemented and has been used for
non-trivial projects. The facilities for data abstraction provided in C++ are
described. These include Simula-like classes providing (optional) data hiding,
(optional) guaranteed initialization of data structures, (optional) implicit type
conversion for user defined types, and (optional) dynamic typing; mechanisms for
overloading function names and operators; and mechanisms for user-controlled
memory management. It is shown how a new data type, like complex numbers,
can be implemented, and how an ‘‘object-based” graphics package can be struc-
tured. A program using these data abstraction facilities is at least as efficient as
an equivalent program not using them, and the compiler is faster than older C
compilers.

Introduction

The aim of this paper is to show how to write C++ programs using “data abstraction” as
described belowt. This paper presents some general discussion of each new language feature to
help the reader to understand where that feature fit in the overall design of the language, which
programming techniques it is intended to support, and what kind of errors and costs it is intended
10 help the programmer to avoid. However, the paper is not a reference manual, so it does give
not complete details of the language primitives; these can be found in reference 9.

C++ evolved from old C 5 through some intermediate stages, collectively known as ‘‘C with
classes” ®°. The primary influence on the design of the abstraction facilities was the Simula67
class concept 2. The intent was to create data abstraction facilities which are both expressive
enough to be of significant help in structuring large systems, and at the same time useful in areas
where C’s terseness and ability to express low level detail are great assets. Consequently, while C
classes provide general and flexible structuring mechanisms, great care has been taken to ensure
that their use does not cause run time or storage overhead which could have been avoided in old
C.

Except for details like introduction of new keywords, C++ is a superset of old C; see section
“Implementation and Compatibility” below. The language is fully implemented and in use. Tens
of thousands of lines of code have been written and tested by a dozen programmers.

The paper falls into three main sections:
[1] A brief presentation of the idea of data abstraction.

[2] The bulk of the paper describes the facilities provided for the support of that idea
through the presentation of small examples. This in itself falls into three sections:

{a] Basic techniques for data hiding, access to data, allocation, and initialization.
Classes, class member functions, constructors, and function name overloading are
presented. (Starts with section “‘Restriction of Access to Data’).

[b] Mechanisms and techniques for creating new types with associated operators.
Operator overloading, user defined type conversion, references, and free store
operators are presented. (Starts with section “Operator Overloading and Type
Conversion”). : '

[c] Mechanisms for creating abstraction hierarchies, for dynamic typing of objects,
and for creating polymorphic classes and functions. Derived classes and virtual
functions are presented. (Starts with section “Derived Classes™).

Sections [b] and [c] do not depend directly on each other.
[3] Finally some general observations on programming techniques, on language implemen-
tation, on efficiency, on compatibility with old C, and on other languages are offered.

(Starts with section “Input and Output”).

A few sections are marked as ‘‘digressions”; they contain information that, while important to a
programmer, and hopefully of interest to the general reader, does not directly relate to data
abstraction.

+ Note on the name C++: ++ is the C increment operator; when applied to a variable (typically a vector index
or a pointer) it increments the variable so that it denotes the succeeding element. The name C++ was coined by
Rich Mascitd. Consider ++ 2 surname, to be used only on formal occasions or to avoid ambiguity. Among
friends C+ + is referred to as C, and the C language described in the C book ? is “old C”. The slightly shorter
name C+ is a syntax error; it has also been used as the name of an unrelated language. Commaisseurs of C se-
mantics find C++ inferior to + +C, but the latter is not an acceptable name. The language is not called D, since
it is an extension of C and does not attempt to remedy problems inherent in the basic structure of C. The name

. C+ + signifies the evolutionary nature of the changes from old C. For yet another interpretation of the name

C+ + see the appendix of reference 7.

Data Abstraction

“Data abstraction” is a popular, but generally ill-defined, technique for programming. The
fundamental idea is to separate the incidental details of the implementation of a sub-program from
the properties essential to the correct use of it. Such a separation can be expressed by channeling
all use of the sub-program through a specific “interface”. Typically the interface is the set of func-
tions that may access the data structures which provide the representation of the ‘‘abstraction™.
One reason for the lack of a generally accepted definition is that any language facility supporting it
will emphasize some aspects of the fundamental idea at the expense of others. For example:

[1] Data hiding

Facilities for specifying interfaces that prevent corruption of data and relieve a user from the

need to know about implementation details.
[2] Interface tailoring

Facilities for specifying interfaces that support and enforce particular conventions for the use

of abstractions. Examples include operator overloading and dynamic typing.
[3] Instantiation

Facilities for creating and initializing of one or more “instances” (variables, objects, copies,

versions) of an abstraction.
[4] Locality

Facilities for simplifying the implementation of an abstraction by taking advantage of the fact

that all access is channeled through its interface. Examples include simplified scope rules

and calling conventions within an implementation.
[5] Programming Environment

Facilities for supporting the construction of programs using abstractions. Examples include

loaders which understand abstractions, libraries of abstractions, and debuggers that allow the

programmer to work in terms of abstractions.
[6] Efficiency

To be useful, a language facility must be “‘cfficient enough’. The intended range of applica-

tions is therefore a major factor in determining which facilities can be provided in a

language. Conversely, the efficiency of the facilities determine how freely they can be used

in a given program. Efficiency must be considered in three separate contexts: compile time,
link time, and run time.

The emphasis in the design of the C data abstraction facility was on 2, 3, and 6, that is, om
facilities enabling a programmer to provide elegant and efficient interfaces to abstractions. In C,
data abstraction is supported by enabling the programmer to define new types, called *‘classes”.
The members of a class cannot be accessed, except in an explicitly declared set of functions. Sim-~
ple data hiding can be achieved like this:

class data_type {
/% data declarations */
/* list of functions that may use the data declarations (’’friends’’) */
}s
where only the “friends” can access the representation of variables of class data_rype as defined by
the data declarations. Alternatively, and often more elegantly, one can define a data type where
the set of functions that may access the representation is an integral part of the type itself:

class object_type {

/* declarations used to implement object_type */
public:

/* declarations specifying the interface to object_type */
}s

-4-

One obvious, but non-trivial, aim of many modern language designs is to enable program-
mers to define “abstract data types” with properties similar to the properties of the fundamental
data types of the languages. Below it will be shown how to add a data type complex to the C
language, so that the usual arithmetic operators can be applied to complex variables. For example:

complex a, x, ¥y, Z;
a = X/y + 3*z;

The idea of treating an object as a black box is further supported by a mechanism for
hierarchically constructing classes out of other classes. For example:

class shape { ... }3
class circle : shape { ... };

The class circle can be used as a simple shape in addition to being used as a circle. Class circle is
said to be a derived class with class shape as its base class. It is possible to leave the resolution of
the type of objects sharing common base classes to run time. This allows objects of different types
to be manipulated in a uniform manner.

Restriction of Access to Data
Consider a simple old C fragmentt, outlining an implementation of the concept of a date:

struct date { int day, month, year; }:
struct date today;
extern void set_date(), next_date(), next_today(), print_date();

There are no explicit connections between the functions and the data type, and no indication that
these functions should be the only ones to access the members of the structure dare. It ought to be
possible to state such an intent.

A simple way of doing this is to declare a data type that can only be manipulated by a
specific set of functions. For example:

class date {
int day, month, year;
friend void set_date(date*, int, int, int),
next_date(date*),
next_today(),
print_date(date*);
}3

The keyword class indicates that only functions mentioned as ‘“‘friends” in the declaration can use
the class member names day, month, and year; otherwise a class behaves like a traditional C
struct. That is, the class declaration itself defines a new type of which variables can be declared.
For example:

date my_birthday, today;
set_date(&my_birthday,30,12,1850);
set_date(&today,23,6,1083);

print_date(&today);
next_date(&today);

Friend functions are defined in the usual manner. For example:

+ The keyword void specifies that a function does not return a value. It was introduced into old C about 1980.

-5.

void next_date(date* d)
{
if (++d->day > 28) {
/* do the hard part */
} .
}

This solution to the problem of data hiding is simple, and often quite effective. It is not per-
fectly flexible because it allows access by the “friends” to all variables of a type. For example, it is
not possible to have a different set of friends for the dates my_birthday and today. A function can,
however, be the friend of more than one class. The importance of this will be demonstrated below.
There is no requirement that a friend should only manipulate variables passed to it as arguments.
For example, the name of a global variable may be built into a function:

void next_today()
{
if (++today.day > 28) {
/* do the hard part */
}
}

The protection of the data from functions that are not friends relies on restriction on the use of the
class member names. It can therefore be circumvented by address manipulation and explicit type
conversion.

There are several benefits to be obtained from restricting access to a data structure to an
explicitly declared list of functions. Any error causing an illegal state of a dare must be caused by
code in the friend functions, so the first stage of debugging, localization, is completed before the
program is even run. This is a special case of the general observation that any change to the
behavior of the type date can and must be effected by changes to its friends. Another advantage is
that a potential user of such a type need only examine the definition of the friends to learn to use
it. Experience has amply demonstrated this.

Digression: Argument Types

The argument types of the functions above were declared. This could not have been done in
old C; neither would the matching function definition syntax used for next_date have been
accepted. In C++ the semantics of argument passing are identical to those of initialization. In
particular, the usual arithmetic conversions are performed. A function declaration that does not
specify an argument type, for example next_today(), specifies that the function does not accept any
argumentst. The argument types of all declarations and the definition of a function must match
exactly.

It is still possible to have functions which take an unspecified and possibly variable number
of arguments of unspecified types, but such relaxation of the type checking must be explicitly
declared. For example

int wild(...):
int fprintf(FILE*, char* ...);

The ellipsis specifies that any arguments (or none) will be accepted without any checking or
conversion exactly as in old C. For example:

+ This is different from old C; see section “Implementation and Compatibility” below.

-6-

wild(); wild("asdf",10); wild(1.3,"ghjk",wild);
fprintf(stdout, "x=%d",10);
fprintf(stderr,"file %s line %d\n", file name, line_no);

Note that the first two arguments of fpringf must be present and will be checked.

As ever, undeclared functions may be used and will be assumed to return integers. They
must, however, be used consistently. For example:

undef1(1, "asdf"); undef1(2, "ghjk"); /% fine */
undef2(1, "asdf"); undef2("ghjk", 2); /% error */

Objects

The structure of a program using the class/friend mechanism to restrict access to the
representation of a data type is exactly the same as the structure of a program not using it. This
implies that no advantage has been taken of the new facility to make the functions implementing
the operations on the type easier to write. For many types, a more elegant solution can be
obtained by incorporating such functions into the new type itself. For example:

class date {
int day, month, year;
public:
void set(int, int, int);
void next();
void print();
}s

Functions declared this way are called member functions and can be invoked only for a specific
variable of the appropriate type using the standard C structure member syntax. Since the function
names no longer are global they can be shorter:

my_birthday.print();
today.next();

On the other hand, to define a member function one must specify both the name of the func-
tion and the name of its class:

void date.next()
{
if (++day > 28) {
/% do the hard part */
}
}

Variables of such types are often referred to as objects. The object for which the function is
invoked constitutes a hidden argument to the function. In a member function, class member names
can be used without explicit reference to a class object. In that case, like the use of day above, the
name refers to that member of the object for which the function was invoked. A member function
sometimes needs to refer explicitly to this object, for example to return a pointer to it. This is
achieved by having the keyword this denote that object in every class function. Thus, in a member
function this— >day is equivalent to day for every member of the class daze.

The public label separates the class body into two parts. The names in the first, “private”,
part can only be used by member functions (and friends). The second, “public’’, part constitutes
the interface to objects of the class. A class function may access both public and private members
of every object of its class, not just members of the one for which it was invoked.

-7-

The relative merits of friends and member functions will be discussed in section “Friends vs
Members™ after a larger body of examples has been presented. For now, it is sufficient to notice
that a friend is not affected by the public/private mechanism and operates on objects in a standard
and explicit manner. A member, on the other hand, must be invoked for an object and treats that
object differently from all others.

Static Members

A class is a type, not a data object, and each object of the class has its own copy of the data
members of the class. However, there are concepts (abstractions) which are best supported if the
different objects of the class share some data. For example, to manage tasks in an operating sys-
tem or a simulation a list of all tasks is often useful:

class task {
task* next;
static task* task_chain;
void schedule(int);
void wait(event);

};

Declaring the member task_chain as static ensures that there will only be one copy of it, not ane
copy per task object. It is still in the scope of class sk, however, and can only be accessed from
“the outside” if it was declared public. In that case its name must be qualified by its class name:

task::task_chain

In a member function it can be referred to as plain task_chain. The use of szatic class members can
reduce the need for global variables considerably.

The operator :: (colon colon) is used to specify the scope of a name in expressions. As a
unary operator it denotes external (global) names. For example, if the task function wair in a
simulator needs to call a non-member function wait it can be done like this:

void task.wait(event e)
{

::wait(e);

Constructors and Overloaded Functions

The use of functions like sez_dare() to provide initialization for class objects is inelegant and
error prone. Since it is nowhere stated that an object must be initialized, a programmer can forget
to do so or, often with equally disastrous results, do so twice. A better approach is to allow the
programmer to declare a function with the explicit purpose of initializing objects. Because such a
function constructs values of a given type it is called a constructor. A constructor is recognized by
having the same name as the class itself. For example:

class date {

date(int, int, int);

-8-

When a class has a constructor all objects of that class must be initialized:
date today = date(23, 6, 1983);

date xmas(25, 12, 0); /* legal abbreviated form %/
date july4 = today;
date my_birthday; /7% illegal, initializer missing */

It is often nice to provide several ways of initializing a class object. This can be done by pro-
viding several constructors. For example:

class date {

date(int, int, int): /* day month year */

date(char*); /* date in string representation */
date(int); /* day, assume current month and year */
date(); /7* default date: today */

}3

As long as the constructor functions differ in their argument types the compiler can select the
correct one for each use:

date today(4);

date july4("July 4, 1983");

date guy("5 Nov");

date now; /% default initialized */

Constructors are not restricted to initialization, but can be used where ever it is meaningful
to have a class object:

date us_date(int month, int day, int year)
{
return date(day, month, year);

}

some_function(us_date(12,24,1983)):
some_function(date(24,12,1983));

When several functions are declared with the same name, that name is said to be overloaded.
The use of overloaded function names is not restricted to constructors. However, for non-member
functions the function declarations must be preceded by a declaration specifying that the name is to
be overloaded. For example:

overload print;
void print(int);
void print(char#*);

or possibly abbreviated like this:
overload void print(int), print(char=*);

As far as the compiler is concerned, the only thing common for a set of a set of functions of
the same name is that name. Presumably they are in some sense similar, but the language does
not constrain or aid the programmer. Thus, overloaded function names are primarily a notational
convenience. This convenience is significant for functions with conventional names like sqre, print,
and open. Where a name is semantically significant, as in the case of constructors, this convenience
becomes essential. For example, consider writing a single constructor for class date above.

-9.

For arguments to functions with overloaded names the C type conversion rules do not apply
fully. The conversions that may destroy information are not performed, leaving only
char—>short—>int—>long, float—>double, and int—>double. It is, however, possible to provide
different functions for integral and floating types. For example:

overload print(int), print(double);

The list of functions for an overloaded name will be searched in order of appearance for a match,
80 that print(1) will invoke the integer print function, and print(1.0) the floating-point print func-
tiont. Had the order of declaration been reversed both calls would have invoked the floating-point
print function with the double representation of 1.

Operator Overloading and Type Conversion

Some languages provide a complex data type, so that programmers can use the mathematical
notion of complex numbers directly. Since C does not, it is an obvious test of an abstraction facil-
ity to see to what extent the conventional notion of complex numbers can be supportedt. The aim
of the exercise is to be able to write code like this:

complex x;

complex a = complex(l, 1.23);
complex b = 1;

complex ¢ = PI;

if (x!=a) x = a+log(b*c)/2;

That is, the standard arithmetic and comparison operators must be defined for complex numbers
and for mixtures of complex and scalar constants and variables.

Here is a declaration of a very simple class complex:
class complex {
double re, im;

friend complex operator+ (complex, complex);
friend complex operator* (complex, complex);

friend int operator!= (complex, complex);
public:

complex() { re=im=0; }

complex(double r) { re=r; im=0; }

complex(double r, double i) { re=r; im=i; }

}3
An operator is recognized as a function name when it is preceded by the keyword operator. When
an operator is used for a class type the compiler will generate a call to the appropriate function, if
declared. For example, for complex variables xx and yy the addition xx+yy will be interpreted as
operator+(xx,yy) given the declaration of class complex above. The complex add function could be
defined like this:
complex operator+(complex al, complex a2)

{
}

return complex(al.re+a2.re, al.im+a2.im);

+ Note, however, that complex is an unusual data type in that it has an extremely simple representation and there
are very strong traditions for its proper use. It is therefore primarily a test of the abstraction facility’s power to
imitate conventional notation. In most other cases the designer’s attention will be directed towards finding a good
representation of the abstraction and towards finding a suitable way of presenting the abstraction to its users.

-10 -

Naturally, all names of the form operator@ are overloaded. To ensure that the language is
only extendible and not mutable, an operator function must take at least one class object argument.
By declaring operator functions the programmer can assign meaning to the standard C operators
applied to objects of user specified data types. These operators retain their usual places in the C
syntax, and it is not poscible to add new operators. It is therefore not possible to introduce a
unary plus operator, to change the precedence of an operator, or to introduce a new operator (for
example, *» for exponentiation). This restriction keeps the analysis of C expressions simple.

Declarations of functions for unary and binary operators are distinguished by their number of
arguments. For example:

class complex {
friend complex operator-(complex); /% unary %/
friend complex operator-(complex, complex); /% binary */
}s

There are three ways the designer of class complex could decide to handle mixed-mode arith-
metic, like xx+ 1, where xx is a complex variable. It can simply be considered illegal, so that the
user has to write the conversion from double to complex explicitly: xx+complex(1). Alternatively,
several complex add functions may be specified:

complex operator+(complex, complex);
complex operator+(complex, double);
complex operator+(double, complex);

so that the compiler will choose the appropriate function for each call. Finally, if a class has con-
structors that take a single argument then they will be taken to define conversions from their argu-
ment type to the type they construct values for. Thus, with the declaration of class complex above
xx+1] would automatically be interpreted as operator+(xx,complex(1)).

This last alternative violates many people’s idea of strong typing. However, using the second
solution will nearly triple the number of functions needed and the first provides little notational
convenience to the user of class complex. Note that complex numbers are typical with respect to the
desirability of mixed-mode arithmetic. A typical data type does not exist in a vacuum. Further-
more, for many types there exists a trivial mapping from the C numeric and/or string constants
into a subset of the values of the type (similar to the mapping of the C numeric constants into the
complex values on the real axis).

The friend approach was chosen in favor of using member functions for the operator func-
tions. The inherent asymmetry in the notion of objects does not match the traditional mathematical
view of complex numbers.

Digression: Default Arguments and Inline Functions

Class complex had three constructors, two of which simply provided the default value zero
for notational convenience of the programmer. This use of overloading is typical for constructors,
and has also been found to be quite common for other functions. However, overloading is a quite
elaborate and indirect way of providing default argument values and, in particular for more com-
plicated constructors, quite verbose. Consequently, an facility for expressing default arguments
directly is provided. For example:

class complex {
public:

complex(double r = 0, double i = 0) { re=r; im=i; }
}3

-11-

When a trailing argument is missing the default constant expression can be used. For example:

complex a(1,2);
complex b(1); /¢ b = complex(1,0) */
complex c; /% ¢ = complex(0,0) */

When a member function, like complex above, is not only declared, but also defined (that is, its
body is presented) in a class declaration it may be inline substituted when called, thus eliminating
the usual function call overhead. An inline substituted function is not a macro; its semantics are
identical to other functions. Any function can be declared inline by preceding its definition by the
keyword inline. Inline functions can make class declarations quite untidy, they will only improve
run-time efficiency if used judicially, and will always increase the time and space needed to com-
pile a program. They should therefore be used only when a significant improvement of run-time is
expected. They are included in C++ because of experience with old C macros. Macros are some-
times essential for an application (and it is not possible to have a class member macro), but more
often they create chaos by appearing to be functions without obeying the syntax, scope, and argu-
ment passing rules of functions.

Storage Management

There are three storage classes in C++: static, automatic (stack), and free (dynamic). Free
store is managed by the programmer through the operators new and delete. No standard garbage
collector is providedt.

Constructors are handy for hiding details of free store management. For example:
class string {

char* rep;
string(char#);
-string() { delete rep; }
}3
string.string(char* p)
{
rep = new char{strlen(p)+1};
strcpy(rep,p);
}

Here the use of free store is encapsulated in the constructor string() and its inverse, the destructor
“string(). Destructors are implicitly called when an object goes out of scope. They are also called
when an object is explicitly deleted by delete, but never for static objects. The new operator takes
a type as its argument and returns a pointer to an object of that type; delete takes such a pointer as
argument. A string may itself be allocated on the free store. For example:

string* p = new string("asdf");
delete p;
p = new string("qwerty");

It is furthermore possible for a class to take over the free store management for its objects. For
example:

+ It is, however, not that difficult to write a garbege collecting implementation of the new operator, as has been
done for the old C free store allocator function malloc(). It is not in general possible to distinguish pointers from
other data items when looking at the memory of a running C program, so a garbage collectar must be conserva-
tive in its choice of what to delete, and it must examine unappealingly large amounts of data. They have been
found useful for some applications, though.

-12-

class node {
int type;
node* 1;
node* r;
node() { if (this==0) this = new_node(); }
-node() { free_node(this); this = 0; }

33

For an object created by new, the this pointer will be zero when a constructor is entered. If the
constructor does not assign to shis the standard allocator function is used. The standard deallocator
function will be used at the end of a destructor if and only if ¢his is non-zero. An allocator pro-
vided by the programmer for a specific class or set of classes can be much simpler and often an
order of magnitude faster than the standard allocator.

Using constructors and destructors the designer may specify data types, like string above,
where the size of the representation of an object can vary, even though the size of every static and
automatic variable must be known at load time and compile time, respectively. The class object
itself is of fixed size, but its class maintains a variable sized secondary data structure.

Hiding Storage Management

Constructors and destructors cannot completely hide storage management details from the
user of a class. When an object is copied, either by explicit assignment or by passing it as a func-
tion argument, the pointers to secondary data structures are copied too. This is sometimes undesir-
able. Consider the problem of providing value semantics for a simple data type string. A user sees
a string as a single object, but the implementation consists of two parts as outlined above. After
the assignment s/=s2 both strings refer to the same representation, and the store used for the old
representation of s is unreferenced. To avoid this the assignment operator can be overloaded.

class string {
char* rep;
void operator=(string);

}3
void string.operator=(string source)
{
if (rep != source.rep) {
delete rep;
rep = new char[strlen(source.rep)+1];
strepy(rep,source.rep) ;
}
}

Since the function needs to modify the target swring it is best written as a member function taking
the source string as argument. The assignment s/=s2 will now be interpreted as sl.operator=(s2).

This leaves the problem of what to do with initializers and function arguments. Consider
string s1 = "asdf";
string s2 = 81}
do_something(s2);

This leaves the strings s!, s2, and the argument of do_somerthing with the same rep. The standard
bitwise copy clearly does not preserve the desired value semantics for strings.

-13-

The semantics of argument passing and initialization are identical; both involve copying an
object into an uninitialized variable. They differ from the semantics of assignment (only) in that
an object assigned to is assumed to contain a value, and an object being initialized is not. In par-
ticular, a constructors are used in argument passing exactly as in initialization. Consequently, the
undesirable bitwise copy can be avoided if we can specify a constructor to perform the proper copy
operation. Unfortunately, using the obvious constructor

class string {
string(string);
}

leads to infinite recursion. It is therefore illegal. To solve this problem a new type “reference” is
introduced. It is syntactically identified by the declarator & which is used in the same way as the
pointer declarator *. When a variable is declared to be a T&, that is a reference to T, it can be ini-
tialized either by a pointer to type T or an object of type T. In the latter case the address-of
operator & is implicitly applied. For example

int x;
int& r1 = &x;
int& r2 = x;

assigns the address of x to both rJ and r2. When used a reference is implicitly dereferenced, so for
example:

rl = r2

means copy the object pointed to by r2 into the object pointed to by rl. Note that initialization of a
reference is quite different from assignment to it.

Using references class string can now be declared like this:
class string {

char* rep;
string(char*);
string(string&);
-string();
void operator=(string&);
}3
string(string& source)
{
rep= new char[strlen(source.rep)+1 };
strepy(rep,source.rep);
}

Initialization of one string with another (and passing a string as an argument) will now involve a
call of the constructor string(string&) that will correctly duplicate the representation. The string
assignment operator was redeclared to take advantage of references. For example:

void string.operatorz(string& source)
{
if (this != &source) {
delete rep; _
rep = new char[strlen(source.rep)+1];
strcpy(rep,source.rep);

-14 -

This type string will not be efficient enough for many applications. It is, however, not diffi-
cult to modify it so that the representation is only copied when necessary and shared otherwise.

Further Notational Convenience

It is curious that references, a facility with great similarity to the ‘“‘call by reference” rules
for argument passing in many languages, are introduced primarily to enable a programmer to
specify “call by value” semantics for argument passing. They have several other uses as well,
however, including of course *‘by reference” argument passing. In particular, references provide a
way of having non-trivial expressions on the left-hand side of assignments. Consider a string type

with a substring operator:
class string {

void operators=(string&);
void operator=(char¥);

string& operator()(int, int); /* substring: (pos,length) =/

}s
where operator() denotes function application.

string s1 = "asdf";
string s2 = "ghjkl";
81(1,2) = "xyz"; /* 81 == "axyzf" */
82 = 81(0,3); /* 82 = "axy" */

The two assignments will be interpreted as:

(sl.operator()(1,2))->operators("xyz");
s2.operator=(sl.operator()(0,3));

The operator() function need not know whether it is invoked on the left-hand or the right-hand

side of the assignment. The operator= function can take care of that.

Vector element selection can be similarly overloaded by defining operator/].

Digression: References and Type Conversion

Conversions defined for a class are applied even when references are involved. Consider a
class sring where assignment of simple character strings is not defined, but the construction of a

string from such a character string is:
class string {

string(char#);
void operator=(string%);

}s

string s = "asdf";
The assignment

s = "ghjk";
is legal, and will produce the desired effect. It is interpreted as
s.operator=((temp.string("ghjk") ,&temp))

where temp is a temporary variable of type siring. Applying constructors before taking the address
as required by the reference semantics ensures that the expressive power provided by constructors
is not lost for variables of reference type. In other words, the set of values accepted by a function
expecting an argument of type T is the same as that accepted by a function expecting a T& (refer-

ence to T).

-15-

Derived Classes

Consider writing a system for managing geometric shapes on a terminal screen. An attrac-
tive approach is to treat each shape as an object that can be requested to perform certain actions
like “rotate” and ‘‘change color”. Each object will interpret such requests in accordance with its
type. For example, the algorithm for rotation is likely to be different (simpler) for a circle than
for a triangle. What is needed is a single interface to a variety of co-existing implementations. The
different kind of shapes cannot be assumed to have similar representations. They may differ
widely in complexity, and it would be a pity to be unable to utilize the inherent simplicity of basic
shapes like circle and triangle because of the need to support complex shapes like “mouse” and
“British Isles”.

The general approach is to provide a class shape defining the common properties of shapes,
in particular a “standard interface”. For example:

class shape {
point center;
int color;
shape* next;
static shape* shape_chain;
public:
void move(point to) { center = to; draw(); }
point where() { return center; }
virtual void rotate(int);
virtual wvoid draw();

}s

The functions that cannot be implemented without knowledge of the specific shape are declared
virtual. A virtual function is expected to be defined later. At this stage only its type is known,; this,
however, is sufficient to check calls to it.

A class defining a particular shape may be defined like this:

class circle : public shape {
float radius;

public:
void rotate(int angle) {}
void draw();

}s

This specifies a circle t0 be a shape, and as such it has all the members of class shape in addition
to its own members. The class circle is said to be derived from its “base class” shape. Circles can
now be declared and used:

circle ci1;
shape* sh;
point p(100,30);

cl.draw();
cl.move(p);
sh = &cl;
sh->draw();

Naturally the function called by cl.draw() is circle::draw(), and since circle did not define its own
move(), the function called by cl.move(p) is shape::move(), which class circle inherited from class
shape. However, the function called by sh—>draw() is also circle::draw() despite the fact that no
reference to class circle is found in the declaration of class shape. A virtual function is defined (or

-16 -

redefined) when a class is derived from its class. Each object of a class with virtual functions con-
tains a type indicator. This enables the compiler to find the proper virual function for a call even
when the type of the object is not known at compile time. Calling a virtual function is the only
way of using the hidden type indicator in a class (a class without virtual functions does not have
such an indicator).
A shape may also provide facilities which cannot be used without the programmer knowing
its particular type. For example:
class clock_face : public shape {
shape* face;
line h_hand, m_hand, s_hand;
publiec:
void draw():
void rotate(int);
void set(int, int, int);
void move(int);

}

The time displayed by the clock can be ser() to a particular time or one can move() the displayed
time a number of seconds ahead. Note that clock_face::move() hides shape::move(), so to change a
clock_face's location on the screen one must either use the qualified name shape::move or use a
shape pointer.

clock_face cf;

shape* sh = &cf;

cl.move(l); v

cl.shape::move(point(100,200));

sh->move(point(200,100));

Note that a virtual function must be a member. It cannot be a friend, and there is no
equivalent in the classifriend style of programming to the use of dynamic typing presented here and
in the following section.

Digression: Structures and Unions

The old C constructs struct and union are legal, but conceptually absorbed into classes. A
struct is a class with all members public, that is

struct s { ... }3
is equivalent to
class s { public: ... };

A union is a struct that can hold exactly one data member at a time.

These definitions imply that struct or a union can have function members. In particular they
can have constructors. For example:

union uu {
int i
char* p;

w(int ii) { i=ii; }
uu(char* pp) { p = pp; }

-17-

This takes care of most problems concerning initialization of unions. For example:

uu ul = 1;
uu u2 = "asdf";

Polymorphic Functions

By using derived classes one can design interfaces providing uniform access to objects of unk-
nown and/or different classes. This can be used to write polymorphic functions, that is functions
where the algorithm is specified so that it will apply to a set of different argument types. For
example:

void sort(object* v[], int size)
{

}

The sor function need only be able to compare objects to perform its task. So, if class object has a
virtual function cmpr(), sort() will be able to sort vectors of objects of any class derived from class
object for which cmpr() is defined. For example:

/% sort the vector of objects ‘‘v[size]’’ */

class object {

virtual int cmpr(object*);
}s

class apple : public object {

int key;
int cmpr(object* arg)
{ /* assume that arg is also an apple */

int k = ((apple*)arg)->key;
return (key==k) ? 0 : (key<k) ? -1 : 1;

}

class orange : public object {
int cmpr(object*);
}3

The empr() function was preferred to the superficially more attractive approach of overload-
ing the “'<** operator because my favorite sort algorithm uses a three-way compare. To write a
sory() to operate on a vector of objects, rather than on a vector of pointers to objects, a virtual
“size’’ function would be needed. :

Should it be desirable to compare an agpple with an orange, some way for the comparison
function to find its sort-key would be needed. Class object could, for example, contain a virzual
sort-key extraction function.

-18 -

Polymorphic Classes

Polymorphic classes can be constructed in the same way as polymorphic functions. For
example:

class set : public object {
class set_mem {
set_mem* next;
object* mem;
set_mem(object* m, set_mem* n) { mem=m; next=n; }
} *tail;
public:
int insert(object*);
int remove(object*);
int is_member(object*);
set() { tail = 0; }
~set() { if (tail) error(0,"non-empty set deleted"): }
};

That is, a set is implemented as a linked list of ser_mem objects, each of which points to an objec:.
Pointers to objects (not objects) are inserted. For completeness a set is itself an object so that you
can create a set of sets. Since class set is implemented without relying on data in the member
objects, an object can be member of two or more sets. This model is quite general and can be (and
indeed has been) used to create “abstractions’ like set, vector, linked_list, and table. The most dis-
tinctive feature of this model for “container classes” is that in general the container cannot rely on
data stored in the contained objects nor can the contained objects rely on data identifying their
container (or containers). This is often an important structural advantage; classes can be designed
and used without concerns about what kind of data structures programs using them may need. Its
most obvious disadvantage is that there is a minimum overhead of one pointer per member (two
pointers in the linked list implementation of class ser above)t. Another advantage is that such con-
tainer classes are capable of holding heterogeneous collections of members. Where this is undesir-
able, it is trivial to derive a class which will accept only members of one particular class. For
example:

class apple_set : public set {

public:
int insert(apple* a) { return set::insert(a); }
int remove(apple* a) { return set::remove(a); }
int is_member(apple* a) { return set::is_member(a); }
}s

Note that since the functions of class apple_set do not perform any actions in addition to those per-
formed by the base class ser, they will be optimized away. They serve only to provide compile time
type checking.

A class object with a “‘matching” set of polymorphic classes and functions is being designed.
The intention is to provide it as a standard library.
Input and Output

C does not have special facilities for handling input and output. Traditionally the program-
mer relies on library functions like prinyfi) and scanfl). For example, to print a data structure
representing a complex number one might write:

printf("real=%g imaginary=%g", zz.real, zz.imag);
Unfortunately, since the standard input/output functions know only the standard types it is

+ plus another pointer for the implementation of the virtual function mechanism. See section “Efficiency™ below.

-19-

necessary to print a structure member by member. This is often tedious and can only be done
where the members are accessible. The paradigm cannot be cleanly and generally extended to han-
dle user-defined types and input/output formats. The approach taken is to write a function put()
and a function gez() for each basic and user defined type, so that one can write code like this

while (get(zz)) put(zz);

Conventionally, a ger function takes a reference to an object which is to have a value read into it
and returns zero if the read succeeded and non-zero otherwise. For example, for class complex one
could declare:

int get(char*, complex&); /* read from string */
int get(FILE*, complexd); /* read from file */
inline int get(complext a) { return get(stdin,a); }

int put (char*, complex);

int put (FILE*, complex);

inline int put(complex a) { return put(stdout,a); }

Such input/output functions can be defined using previously defined pur and ger functions
unti] only basic types need to be handled. Then prinif() and scanfl) can be used. For large objects
put() can also take a reference. Surprisingly enough, it appears that the ger functions are the easi-
est to write, since there invariably is a constructor to do the non-trivial part of the job.

There is a loss of control over the formatting of output when using pur compared with using
printf directly. Where such finer control is necessary, one must revert to the old style. Macros like

#define putlab(x) (put("x= "), put(x), put("\n"))

are handy to overcome the lack of an output function taking a variable number of arguments of
varying types. A “%v’ option to printfi) and scanf{) for handling pointers to objects of class object
is being considered, but not yet implemented.

Friends vs Members

When a new operation are to be added to a class there are typically two ways it can be imple-
mented, as a friend or as a member. Why are two alternatives provided, and for what kind of
operations should each alternative be preferred?

A friend function is a perfectly ordinary function, distinguished only by its permission to use
private member names. Programming using friends is essentially programming as if there were no
data hiding. The friend approach cleanly implements the traditional mathematical view of values
that can be used in computation, assigned to variables, but never really modified. This paradigm
is then compromised by using pointer arguments.

A member function, on the other hand, is tied to a single class and invoked for one particu-
lar object. The member approach cleanly implements the idea of operations that change the state of
an object, for example assignment. Because a single object is distinguished the language can take
advantage of local knowledge to provide notational convenience, efficient implementation, and let
the meaning of the operation depend on the value of that object. Note that it is not possible to
have a virtual friend. Constructors, too, must be members.

As the first approximation, use a member to implement an operation if it might conceivably
modify the state of an object. Note that type conversion, if declared, is performed on arguments,
but not on the object for which a member is invoked. Consequently, the member implementation
should also be chosen for operations where type conversion is undesirable.

A friend function can be the friend of two or more classes while a member function is a
member of a single class. This makes it convenient to implement operations on two or more classes
as friends. For example:

-20 -

class matrix {
friend matrix operator*(matrix, vector);

}s

class vector {
friend matrix operator*(matrix, vector);

}3

It would take two members marrix.operator¥() and vector.operator+() to achieve what the friend
operator+() does.

The name of a friend is global while the scope of a member name is restricted to its class.
When structuring a large program one tries to minimize the amount of global information, there-
fore friends should be avoided in the same way as global data is. Ideally, at this level, all data is
encapsulated in classes and operated on using member functions. However, at a more detailed
level of programming this becomes tedious and often inefficient; here friends come into their own.

Finally, if there is no obvious reason for preferring one implementation of an operation over
another make that operation a member.

Separate Compilation

For separate compilation the traditional C approach has been retained. Type specifications
are shared by textually including them in separately compiled source files. There is no automatic
mechanism that ensures that the header files contain complete type specifications and that they are
used consistently. Such checks must be specifically requested and performed separately from the
compilation process. The names of external variables and functions from the resulting object files
are matched up by a loader which has no concept of data type. A loader that could check types
would be of great help, and would not be difficult to provide.

A class declaration specifies a type so it can be included in several source files without any ill
effects. It must be included in every file using the class. Typically, member functions do not
reside in the same file as the class declaration. The language does not have any expectations of
where member functions are stored. In particular, it is not required that all member functions for
a class should be in one file, or that they should be separated from other declarations.

Since the private and the public parts of a class are not physically separated, the private part
is not really ‘‘hidden” from a user of a class, as it would be in the ideal data abstraction facility.
Worse, any change to the class declaration may necessitate recompilation of all files using it. Obvi-
ously, if the change was to the private part, only the files containing member functions or friends
have to be recompiledt. A facility that could determine the set of functions (or the set of source
files) that needs to be re-compiled after a change to a class declaration would be extremely useful.
It is unfortunately non-trivial to provide one that does not slow down the compiler significantly.

Efficlency

Run time efficiency of the generated code was considered of primary importance in the
design of the abstraction mechanisms. The general assumption was that if a program can be made
to run faster by not using classes, many programmers will prefer speed. Similarly, if a program
can be made to use less store by not using classes, many programmers will prefer compact
representation. It is demonstrated below that classes can be used without any loss of run time effi-
ciency or data representation compactness compared to “‘old C” programs.

+ The addition of a new member function will in most cases not create a need for any re-compilation. The addi-
tion may, however, hide an extern function used in some other member function, thus changing the meaning of
the program. Unfortunately, this rare event is quite hard to detect.

-21-

This insistence on efficiency led to the rejection of facilities requiring garbage collection. To
compensate, the overloading facility was designed to allow complete encapsulation of storage
management issues in a class. Furthermore, it has been made easy for a programmer to provide
special purpose free store managers. As described above, constructors and destructors can be used
to handle allocation and deallocation of class objects. In addition, the functions operator new() and
operator delete() can be declared to redefine the meaning of the new and delete operators.

A class which does not use virual functions uses exactly as much space as a struct with the
same data members. There is no hidden per object store overhead. There is no per class store
overhead either. A member function does not differ from other functions in its store require-
ments. If a class uses virmual functions there is an overhead of one pointer per object plus one
pointer per virtual function.

When a (non-virtual) member function is called, for example ob fix), the address of the
object is passed as a hidden argument: f&ob,x). Thus call of a member function is as least as effi-
cient as a call of a non-member function. The call of a virmual function p—>fx) is roughly
equivalent to an indirect call (*(p—>virmal[5]))(p.x). Typically this causes three memory refer-
ences more than a call of an equivalent non-virtual function.

If the function call overhead is unacceptable for an operation on a class object the operation
can be implemented as an inline function, thus achieving the same run-time efficiency as if the
object had been directly accessed.

Implementation and Compatibility

The C++ compiler front end, cfront, consists of a YACC parser'! and a C++ program.
Classes are used extensively. It is about same size as the equivalent part of the PCC compiler for
old C (12000 lines including comments etc.). It runs a bit faster, but uses more store. The amount
of store used depends on the number of external variables and the size of the largest function. It
will never run on machines with a 128K byte address space (like a DEC PDP11/70); three times
that amount of store appears to be more reasonable. A completely type checked internal represen-
tation is produced. This can then be transformed into suitable input for a range of new and old
code generators. In particular, an “‘old C” version of any C++ program can be produced. This
makes it trivial to transfer ¢frons to any system with an old C compiler.

With few exceptions the C++ complier accepts old C. The runtime environment, the linkage
conventions, and the method for specifying separate compilation remain unchanged. The major
incompatibility is that a function declaration, for example

int £();

in old C declares a function with an unknown number of arguments of unknown types. In C++,
that declaration specifies that f takes no arguments. A C++ version of the declarations for the
standard libraries exists, and a program producing the “missing declarations’ for a set of source
files is being written. Another difference is that in C++ a non-local name can only be used in the
file in which it occurs, unless it is explicitly declared to be extern; in old C a non-local name is
common to all files in a multi-file program, unless it is explicitly declared to be staric. Name
clashes with the new key words class, const, delete, friend, inline, new, operator, overload, public,
this, and virtual may cause minor irritations.

It is often claimed that one of C's major virtues is that it is so small that every programmer
understands every construct in the language. In contrast, languages like PL/1 and Ada are
presented as if every programmer writes in his own subset of the language and can understand pro-
grams written by others only with great difficulty. It follows from this view that extension of C is
bad. This argument against “big languages” ignores the simple fact that the dependencies between
data structures and the functions using them exist in a program independently of whether or not
they have been recorded in a class declaration. Programs using classes tend to be marginally
shorter than their unstructured counterpartst. Furthermore, C is already large enough for sub-

+ 1% to0 10% shorter is typical; 50% shorter has been seen; the author has yet to see a program that grew without

-22.

cultures using subsets of the language to exist, and the macro facilities are often used to create
arbitrarily incomprehensible variations of the language.

The cfront manual is only 14% longer than the “‘old C” manual so the effort of learning the
new language facilities should not be prohibitively large. In particular, it should be a small effort
compared with learning a new language containing data abstraction features. However, when
classes are used to create new data types, a new dialect of the language is in fact created. This will
lead to different incompatible “dialects”. This is not that much different from the current state of
affairs, and hopefully classes providing basic facilities like sets, tables, strings and graphics will
win wide acceptance.

Comparison with Other Languages

To compare two languages takes a whole paper, if not a book. Consequently, this single
page can provide only a few personal opinions and pointers to the main areas of difference between
the languages. For completeness C itself is criticized in the same way as the other languages.

The C class facility is modeled on the original Simula67 classes 1%, Simula relies on garbage
collection both for class objects and procedure activation records, and does not provide facilities for
function name or operator overloading. It is, however, 8 most beautiful and expressive language,
and C classes owe more to it than to any other language.

Smalltalk ® is another language with the same kind of facilities for creating class hierarchies.
There, however, all functions are virtual and all type checking done at run time. This means that
where a C base class provides a fixed type-checked interface to a set of derived classes, a Smalltalk
superclass provides a minimal untyped set of facilities that can be arbitrarily modified. Smalltalk
relies on garbage collection and on dynamic resolution of member function names. It does not pro-
vide operator overloading in the usual sense, but an operator may be the name of a member func-
tion. Smalltalk provides an extremely nice integrated environment for program construction. The
resulting programs are very demanding of resources, however.

Modula-2 12 provides a rudimentary abstraction facility called a module. A module is not a
type but a single object containing data and access functions. It is somewhat similar to a class
with all data members staric. There is no facility equivalent to derived classes. It does not allow
overloading of function names or operators. No garbage collection is provided.

Mesa’s ¢ modules are distinguished by a clean and flexible separation of the interface of a
module from its implementation. This enables and requires sophisticated facilities for separate com-
pilation and linking. A module can import and export both procedure and type names. The rules
for instantiation of modules (object creation and initialization) are so general as to make them
inelegant. Some space and time overheads are incurred by using modules. There are no facilitics
for constructing module hierarchies and no facilities for operator overloading. Mesa relies on gar-
bage collection both for data objects and procedure activation records. Consequently, it will run
efficiently only where hardware support for garbage collection is available.

Ada’s * data abstraction facility, the package, is essentially similar to the classifriend facility
in C. There is no equivalent to member functions or constructors; this leads to verbosity. Nor is
there an equivalent to derived classes, so the shape example above does not appear to have an
elegant solution in Ada. Operators and function names can be overloaded; assignment can not.
Packages can be generic. That is, a package can be defined with types as arguments. The stan-
dard example is a stack of elements where the type of an element is an argument. The facility is
far less flexible than C “polymorphic classes”, but more space efficient for simple abstractions.
Ada does not provide garbage collection.

functionality being added.

-23.

C provides no integrated environment for edin‘ngl, debugging, control of separate compila-
tion, and source code control. The Unix/C environment 1+ provides a tool kit of such services, but
it leaves much to be desired. No garbage collection is provided. C classes distinguish themselves
by combining facilities for creating class hicrarchies with efficient implementation. The facilities
for object creation and initialization are notable. The facilities for overloading assignment and
argument passing are unique to C.

Conclusion

The addition of classes represents a quantum jump for the C language, the least extension
that provides facilities for data abstraction for systems programming. The experience of three
years with intermediate versions (“C with classes’’) demonstrated both the usefulness of classes
and the need for the more general facilities presented here. The efficiency of both the compiled
code and the compiler itself compares favorably with old C.

Acknowledgements

The concepts presented here would never have matured without the constant help and con-
structive criticism from my colleagues and users; notably, Tom Cargill, Stu Feldman, Sandy Fraser,
Steve Johnson, Brian Kernighan, Bart Locanthi, Doug Mcllroy, Dennis Ritchie, Ravi Sethi, and
Jon Shopiro.

224 -

References

(1]

(2]

(3]

(4]

[5]

[e]

(7]

(8]

(9]

Dahl, 0-J. and Hoare, C.A.R.
Hierarchical Program Structures
Structured Programming pp175-220
Academic Press (1972)

mhl, O-Jn, wrhaug, Bc, md Nygaal‘d, Ka
SIMULA Common Base Language
Norwegian Computing Center, S-22 (1970)

Goldberg A. and Robson D.
Smalltalk-80 The Language and its Implementation
Addison Wesley (1983)

Ichbiah J.D. et.al.
Rationale for the Design of the ADA Programming language
SIGPLAN Notices, Vol 14 no 6, June 1979

Kernighan B.W. and Ritchie, D.M.

The C Programming Language
Prentice Hall (1978)

Mitchell J.G. et.al.
Mesa Reference Manual
Xerox PARC CSL-79-3 (1979)

Orwell, G.
1984
Harcourt Brace Jovanovich, Inc. 1949

Stroustrup, B.
Classes: An Abstract Data Type Facility for the C Language
SIGPLAN Notices, Vol 17 no 1. pp42-15, January 19882

Stroustrup, B.
Adding Classes to C: An Exercise in Language Evolution
Software Practice and Experience, VOL 13, pp139-161 (1983)

[10] Stroustrup, B.

C++ Reference Manual
AT&T Bell Laboratories CSTR-108. January 1, 1984.

[11] Unix Programmer’s Manual

Bell Laboratories (1979)

[12] wirth N.

Programming in modula-2
Springer-verlag 1982

Operator Overloading in C

Bjarne Stroustrup

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

Thxs paper describes the mechanism for operator overloading provided in
C++!. A programmer can define 2 meaning for the standard C operators when
applied to objects of a specific class®. Most operators can be defined for objects of
a class; in addition to arithmetic, logical, and relational operators, call ‘/()’ and
element selection ‘‘f]’ can be defined, and both assignment and initialization can
be redefined. It is not possible to change the meaning of operators applied to
non-class objects, nor to change the syntax or precedence rules for operators.
Constructors can be used both to provide constants for a user-defined type and to
specify conversions between types.

Examples of how to define data types like complex, matrix, and string are
presented. In these examples it is shown how to handle expressions involving
objects of mixed type, large objects, and objects of varying size.

The overloading facilities are discussed in some detail to demonstrate the
run-time efficiency that can be achieved when using them and the simplicity of
their implementation in the compiler.

[1] Bjarne Stroustrup: “The C+ + Reference Manual™ AT&T Bell Laboratories CSTR-108. January 1, 1984.
[2] Bjarne Stroustrup: “Data Abstraction in C”* AT&T Bell Laboratories CSTR-109. January 1, 1984,

Introduction

Programs often manipulate objects that are concrete representations of abstract concepts. For
example, the C data type inr together with the operators + — # / etc., provides a (restricted)
implementation of the mathematical concept of integers. Such concepts typically include a set of
operators representing basic operations on objects in a terse, convenient, and conventional way.
Unfortunately, only very few such concepts are or can be directly supported by a programming
language. For example, ideas like complex' arithmetic, matrix algebra, logic signals, and strings
receive no direct support in C. Classes provide a facility for specifying a representation of non-
primitive objects in C together with a set of operations that can be performed on such objects.
Defining operators to operate on class objects sometimes allows a programmer to provide a more
conventional and convenient notation for manipulating class objects than could be achieved using
only the basic functional notation. For example:) .

class complex {
double re, im;
public:
complex(double r, double i) { re=r; im=i; }
friend complex operator+(complex, complex);
friend complex operatore*(complex, complex);
}

defines a simple implementation of the concept of complex numbers, where a number is
represented by a pair of double precision floating point numbers manipulated (exclusively) by the
operators + and *. The programmer provides a meaning for + and * by defining functions named
operator+ and operators. For example a=b+c*a means (by definition)
a=operator+(b,operator*(c,a)). It is now possible to approximate the conventional interpretation of
complex expressions. For example:

complex a = complex{1, 3.1}
complex b = complex(1.2, 2);
complex ¢ = b;

a = b+cy

b = b+c*a;
- ¢ = a*b+complex(1,2);

The usual C precedence rules hold so the second statement really does assign b+(c¥a) to b.

Overview
First the aims of the design of the overloading mechanism are briefly stated.

Then the facilities for defining class complex are described. Complex arithmetic was chosen
as the first example of a user-defined data type because a complex number has a trivial representa-
tion, because the set of basic operations is well known, and because there exists a conventional
notation for these operations. This allows the discussion of complex numbers to focus on the prob-
lem of providing that conventional notation. This will involve discussion of several language facili-
ties that do not directly concern operator overloading. These facilities (“‘friend functions™, *“‘con-
structors”, and *“‘overloaded function names”) can be used to make a user-defined data type con-
venient to use. It will be shown how to specify rules for initializing variables, how to provide con-
stants for a type, how to specify type conversion rules, and how to accommodate the need to use
conventional names like abs and + for operations on different types.

Once these techniques have been presented, it is possible to consider data types where the
representation is non-trivial. Class marrix is an example of a data type where it is prohibitively
expensive to copy an object each time an operation is performed on it. A new data type “refer-
ence” is introduced to cope with this. Class string shows how a data type whose implementation
involves free store management and sharing of objects can be implemented.

-3-

Finally, the techniques used to implement the overloading facilities are discussed.

Aims
The main aims for the design of the overloading mechanism described here are:

[1] It must be possible to define data types like complex, marrix, and string with a user
interface as elegant as one would expect from a built in data type.

[2] It must be possible to provide efficient implementations of the basic operations on such
user defined data types.

[3] The base language must remain immutable, that is, it should not be possible to redefine
the meaning of operators applied to objects of a non-class type.

[4] Programs using the overloading facilities must be relatively easy to compile.

In particular, the first aim is considered to imply

[a] that all storage management issues in the implementation of a new type can be hidden
from a user.

[b] that “mixed mode” operations between user defined types and between user defined
and basic types can be defined.

[c] that constants can be defined for a user defined type.
[d] that variables of a user defined type can be initialized like variables of basic data types.

It is not the intention to provide facilities for the user to change the syntax of the language in
any way. Furthermore, C++ is largely compatible with “‘old C”’; see reference 1 for detailst.

It is not the intention to provide any *‘default semantics” for operators, nor is it the intention
to restrict definitions of operators to some preconceived idea of what is reasonable. For example,
it is quite possible to define = to mean plus and + to mean assignment. The only protection pro-
vided against idiotic use is the guarantee that the base language is immutable.

Friends and Members

Two kinds of functions can be defined to manipulate the representation of a user-defined
data type: member functions and friend functions. They differ in both scope and calling syntax.
Consider a simple class complex with a conjugation function of each type:

class complex {

float re, im;
public:

complex member_conj();

friend complex friend_conj(complex arg):
33

The member function has the more elegant definition since it can refer to the representation
directly where the friend function must explicitly refer to it through its argument:

+ The major incompatibility is that ins /) declares a function taking no arguments and returning an ins.

-4-

complex complex.member_conj()

{
complex con;
con.re = re;
con.im = -im;
return con;

}

complex friend_conj(complex arg)

{
arg.im = -arg.im;
return arg;

}

However, only the friend can be called using conventional mathematical notation; the member
must use object.member notation:

complex a;
a.member_conj();
friend_conj(a);

For a conjugation operation the calling syntax for the friend function is obviously preferable. The
calls of a member function conj() are simply too ugly to live with. Consider, for example,
a+b.conj() and (a+b).conj().

Furthermore, consider a binary operator:

class complex {
complex operator+(complex);
complex operator+(double);
}s

This will allow one to write aa+aa and aa+2 but not 2+aa for a complex variable aa! Worse,
there is no way of adding a function to that class complex that would cope with the example 2+aa.
Using friends a better declaration of complex can be written:

class complex {
friend complex operator+(complex, complex);
friend complex operator+(complex, double);
friend complex operator+(double, complex);
}s

Friends are ideal for implementing traditional arithmetic operations. However, if it is neces-
sary to modify the contents of one operand, as in a function defining an assignment operator, a
member function must be used. Furthermore, where there is no other reason to prefer the one
implementation over the other an operation should be a member. A definition of a member is typi-
cally shorter than the definition of the equivalcnt friend, the implicit passing of the pointer identi-
fying the object for which a member is invoked is potentially more efficient than argument passing,
and the name of a member is restricted to its proper scope rather than global Finally, constructors
and destructors (see below) must be members.

Constructors

A class may have a function member with the name of the class itself, like complex() in class
complex above. Such a function is called a constructort. A constructor is a prescription for initial-
izing a class object (construct a value of the class type). If a class has a constructor then the

+ In earlier implementations of classes value constructors were called new() functions, and their use was limited to
class object initialization.

-5.

constructor will be called to initialize objects of the class before their use. If the constructor
requires arguments they must be provided. The following examples are equivalent, that is, the
three variables will be initialized to the same value:

complex a = complex(1,2);
complex b(1,2);
complex ¢ = b;
Initialization with an object of the same type is a legal alternative to calling the constructor.

A constructor can also be used in expressions, often replacing the use of a temporary vari-
able. For example, operator+() can be defined without use of an explicit temporary variable:

complex operator+(complex al, complex a2)

{
return complex(al.re+a2.re, al.im+a2.im);
}
Operator Functions
Functions defining meanings for the following operators can be declared for a class:

+ - * / % A & I - ! s < >
+= - L /= %= rz &= = << >> >>»= €<= &=
= <= »>= && 11 + - []1 O

The last two are subscript and function call (see below).

The name of an operator function is the keyword operator followed by the operator itself.
Such names are syntactically legal only in declarations, so an operator function cannot be called
directly, only through the use of its associated operator.

A binary operator can be defined either by a member function taking one argument or by a
friend function taking two arguments. Thus, for any binary operator @, aa@bb can be interpreted
as cither aa.operator@(bb) or operator@(aa,bb). If both operator@ functions are defined the
former interpretation is used. A unary operator, whether prefix or postfix, can be defined by
cither by a member function taking no arguments or a friend function taking one argument. Thus,
for any unary operator @, both aa@ and @aa can be interpreted as cither aa.operator@() ot
operator@(aa). If both operator@ functions are defined the former interpretation is used. For
example, operator&() defines the operator usually called “address of”’, and not the binary operator
“and”. An operator which can be used both as a unary and as a binary (—, *, and &) can be used
only as declared. When the operators ++ and —— are overloaded, it is not possible to distin-

" guish prefix application from postfix application.

The meanings of some C operators are defined to be equivalent to some combination of other
operators on the same arguments. For example: ++a means a+=1 which in turn means a=a+1.
Such relations do not hold for overloaded operators unless the user defines them that way. For
example, the definition of operator+= cannot be deduced from the definitions of operator+ and
operator=. No assumptions are made about the meaning of overloaded operators. In particular,
since an overloaded “assignment operator” is not assumed to implement assignment to its first
argument no test is made to ensure that that argument is an lvalue.

Because of historical accident the operators = and & have pre-defined meanings when
applied to class objects. There is no elegant way of *‘undefining” these two operators. They can,
however, be disabled for a class X. For example, by declaring X.operator&() but not providing &
definition for that function one can ensure that no program taking the address of an X will run. It
is not possible to define a meaning for the binary & (“‘and”) and retain the pre-defined meaning of
the unary & (“‘address of’).

An operator function must either be a member or take at least one class object argument.
This rule ensures that a user cannot change the meaning of any expression not involving a uses-

-6-

defined data type. In particular, it is not possible to define an operator function which operates
exclusively on pointers. It is not possible to define a new operator or to change the precedence of
an existing operator. The following operators can not be defined or re-defined:

-> . sizeof ?: .

Overloaded Function Names

The implementation of complex numbers presented in the introduction is too restrictive to
please anyone, so it must be extended. This is mostly a trivial repetiion of the techniques
presented above. However, two desirable features cannot be handled that easily: unary minus and
mixed operations on complex and real numbers. Both require two different interpretations for a
single operator symbol. For example:

class complex {
double re, im;
public:
complex(double r, double i) { resr; im=i; }

complex operator-(); /* unary minus */
friend complex operator-(complex, complex); /+* binary minus*/
friend complex operator+(complex, complex);
friend complex operator*(complex, complex);
friend complex operator*(complex, double);
friend complex operator*(double, complex);

}s

When several (different) function declarations are specified for a single name, that name is said to
be overloaded. When that name is called, the correct function to execute is selected by comparing
the types of the actual arguments with the argument types in the function declarations. Of the
“‘usual arithmetic conversions” defined in §6.6 of the C++ reference manual’ only the conversions
char—>short—>int, int—>double, int—>long, and floas—>double are performed.

With this declaration of complex we can now write:

complex a(1,1), b(2,2), ¢(3,3), d(4,4), e(5,5);
& = -b-c;

b = ¢*2.0%c;

¢ = (d+e)*a;

Any function name can be overloaded, not just operators. The names of non-class-member
functions must explicitly be declared overloaded. For example:

overload abs;

int abs(int);
double abs(double);
complex abs(complex);

When an overloaded nan:e is called, the list of functions is scanned in order to find one which can
be invoked. For example abs(12) will invoke abs(int) and abs(12.0) will invoke abs(double). Had
the order of declarations been reversed, both calls would have invoked abs(double).

All operators are by definition overloaded.

Conversion

Writing a function for each combination of complex and double, as for operator*() above, is
unbearably tedious. For example, a realistic facility for complex arithmetic provides more than 10
functions taking two complex or real arguments °, An alternative is to declare a constructor that

[3] Leonie V. Rose and Bjarne Stroustrup: “Complex Arithmetic in C* AT&T Bell Laboratories CSTR-109. Janu-
ary 1, 1984,

creates a complex given a double.For
class complex {

complex(double r) { re=r; im=0; }
b
A constructor requiring a single argument need not be called explicitly. For example

complex z1 = complex(23);
complex z2 = 23;

are both legal, and z/ and z2 will both be initialized calling by complex(23).

A constructor is a prescription for making a value of a given type. Where a value of a type is
expected, and where such a value can be created by a constructor, given the value to be assigned,
the constructor will be used. For example, class complex could be declared like this:

class complex {
double re, im;

public:
complex(double r, double i) { re
complex(double r) { re

}

r; i
H }

m
r; im

we we

i
0

friend complex operator+(complex, complex);
friend complex operator*(complex, complex);
}3

and operations involving complex variables and integer constants would be legal. An integer con-
stant will be interpreted as complex with the imaginary part zero. For example: a=b*2 generates
code like a=operator«(b,complex(double(2))).

An assignment to an object of class X is therefore legal if either the assigned value is an X,
or if X has a constructor accepting a single argument of the type of the assigned value.

In some cases a value of the desired type can be constructed by repeated use of constructors.
This must be handled by explicit use of constructors; only one level of implicit construction is legal.
Note that the standard conversions described above are always performed and do not count as
“implicit construction’. In some cases a value of the desired type can be constructed in more than
one way. Such cases are illegal. For example:

class x { ... x(int); x(char#*); };
class y { ... y(int); };
class z { ... z(x); };

overload f;
x f(x);
y £(y);

z g(z);

£(1); /* illegal: ambiguous f(x(1)) or f(y(1)) =/
f(x(1));

f(y(1));

g("asdf"); /7% illegal: g(z(x("asdf"))) not tried =/
g(z("asdf"));

Where an overloaded function takes an argument of a type for which a constructor exists
more than one interpretation may appear legal. For example:

-8-

class x { ... x(int); };
overload h(double), h(x);
h(1);

The call could be interpreted either as h(double(1)) or as h(x(1)) and would appear to be ambiguous
and therefore illegal according to the rule above. However, the first interpretation is an “exact
match” and will be chosen; the rule against ambiguities applies only to user-defined conversions.

These rules for conversion are neither the simplest to implement, the simplest to document,
nor the most general which could be devised. Consider the requirement that a conversion must be
unique to be legal. A simpler approach would allow the compiler to use any conversion it could
find; thus it would not be necessary to consider all possible conversions before declaring an expres-
sion legal. Unfortunately, this would mean that the meaning of a program depended on which
conversion was found. In effect, the meaning of a program would in some way depend on the
order of the declaration of the conversions. Since these will often reside in different source files
(written by different programmers), the meaning of a program would depend on the order in
which its parts were merged together. Alternatively, implicit conversions could be disallowed.
Nothing could be simpler, but this rule leads to either inelegant user interfaces or an explosion of
overloaded functions as seen in the class complex in the previous section.

The most general approach would take all available information into account. For example,
using the declarations above, it would handle aa=f(1) because the type of aa will determine a
unique interpretation. If aa is an x, fix(1)) is the only one yielding the x needed in the assignment.
The most general approach would also cope with g("asdf") because g(z(x("asdf"))) is a unique
interpretation. The problem with this approach is that it requires extensive analysis of a complete
expression to determine the interpretation of each operator and function call. This leads to slow
compilation and also to surprising interpretations and error messages, as the compiler considers
conversions defined in libraries etc. It simply takes more information into account than the pro-
grammer writing the code can be expected to know!

Constants

It is not possible to define constants of a class type in the sense that 1.2 and]2¢3 are con-
stants of type double. However, constants of the basic types can often be used instead if class
member functions are used to provide an interpretation for them. Constructors taking a single
argument provides a general mechanism for this. Where constructors are ‘“‘simple” and inline sub-
stituted, as in class complex above, it is quite reasonable to think of constructor invocations as con-
stants. For example zzI*3+z22*complex(1,2) will cause three function calls and not five.

References

For each use of a complex binary operator a copy of the second operand is passed as an argu-
ment to the function implementing the operator. The overhead of copying two doubles is noticeable
but probably quite acceptable. Unfortunately, not all classes have a conveniently small representa-
tion. To cope with this, one could try to declare operator functions to take pointer arguments.
For example:

class matrix {

double m[4][4]; /% 128 bytes on a VAX */
public:

matrix();

friend matrix operator+(matrix*, matrix#*);

friend matrix operator*(matrix#*, matrix+);
}3

Unfortunately, this leads to rather strange looking expressions.

-9.

matrix a, b, c;
a = &b + &c3

This is clearly not acceptable. Furthermore, the declarations of the marrix operator functions
above are illegal, since they do not take any class object arguments (pointers to class objects do not
count). The alternative is to define matrix operations to take “references’ as arguments, rather
than pointers.

A reference, like a pointer, embodies the idea of an address of an object. The notation X&
means reference to X. A reference differs from a pointer in that '

[1] Use: when a reference is used the dereference operator * will be implicitly applied.

[2] Initialization: when a variable is declared to be a X&, it can be initialized by an X. The
address operator & will be implicitly applied. It is also legal to initialize a X& by a X».
For example:

matrix m;

matrix r = m; /¥ means T = &m */
matrix m2 = r; /% means m2 = *r s/
T =z m; /% means *r' = m */
msz=r; /% means m = *T */

Note that initialization of a reference is treated very differently from assignment to it. This is rea-
sonable, since dereferencing of an uninitialized variable is known to be meaningless. For example:

int a3
int& rl = a; /% means rl = &a */
int& r2; r2 = a; /* error: uninitialized reference ./

Argument passing and function value return are considered to be initializations, so:

matrix& f(int); ,
matrix operator+(matrix&, matrix&);

ms £f(1)3 /* means m = *f(1); */
£(2) = n2; /* means *f(2) = m2; */
m+m2; /* means +(&m,&m2) */
T+m; /* means *r+m that is +(&*r,&m) that is +(r,&m) */

Despite appearances, no operator operates on a reference. For example,
int ii = 03
int& rr = ii;
TT++3

is legal, but rr++ does not increment the reference rr; rather, the interpretation is (*rrj++. That
is, ++ is applied to an int which happens to be ii.

The value of a reference cannot be changed after initialization. To get a pointer pp to denote
the same object as a reference 77 one can write pp=d&rr. This will be interpreted as pp=&*rr.

Consider the declaration
double& dr = 1;

Here, the initializer is not an lvalue. In fact, it is not even of the right type. In such cases
[1] first the conversion rules are applied,
[2] then the resulting value is placed in a temporary variable,
[3] finally the address of this is used as the value of the initializer.

Thus, the interpretation of the example above is:

-10 -

double* dr;
double temp;
temp = double(1);
dr = &temp;

References allow the use of conventional expressions involving the usual arithmetic operators
for “large objects” without requiring an implementation that causes excessive copying. The plus
operator could be defined like this:

matrix operator+(matrix& argl, matrix& arg2)

{
matrix sum;
int i, j;
for (i=0; ic<4; i++)
for (j=0; Jj<d; j++)
sum.m(i][j] = argl.m[i][j] + arg2.m[i][]];
return sum;
}

The dot is used for member selection, rather than —>, because arg! and arg2? are implicitly
dereferenced; argl.mem[i][j] means (*argl).mem/i][j].

Returning a Class Object

In the example above operator+(matrix&,marrix&) operates on the operands to + through
references, but returns an object value rather than a reference. Returning a reference would appear
to be more efficient. For example:

class matrix {
friend matrix& operator+(matrix&, matrix&);
friend matrix& operator*(matrix&, matrixi);
}s

This would be legal, and the matrix expression a*b+c would be interpreted as
operator+(operator+(&a,&b),&c). However, the user would have to implement some kind of tem-
porary variable to hold the result of operator(). Since a reference to it will be passed out of the
function as the return value, it cannot be a local variable. It would typically be allocated on the
free store, and later freed for re-use. ing the return value will often be cheaper (in execution
time, code space, and data space) and simpler to program.

For medium sized objects the style of declaring an operator function to take reference argu-
ments and return an object value is probably the best approach. The implementation of functions
returning medium and large objects relies on passing a pointer to an object where the result is
deposited. If a function, like the original operator+(marrix&, matrix&) above, composes its return
value in a local variable and then returns it, the compiler will ensure that the result value is com-
posed right in the object where it would eventually have been copied to (this will be explained in
greater detail below). This means that the code generated for an operator taking reference argu-
ments and returning an object value operates on three objects through pointers: the two reference
arguments and the result through a compiler provided target pointer.

Overloading Function Call: operator()

Function call, that is, the notation expression(expression-list), can be interpreted as a‘ binary
operation and the call operator () can be overloaded in the same way as other operators. For exam-

ple:

-11-

class string {

char* s; /* representation */
int length;
string* sub_of; /* substring of */
public:
string(char#*);
string();
string operator=(string&); /* assignment */

string operator()(int pos, int len); /¢ substring selector */
3
With suitable definitions of operator=() and operator()() one can define assignment and subscript-
ing to be used like this:
string a("foo"), b("bar"), c;
c = b

c = b(1,2);
a(0,1) = b;

The basic idea is to let the substring function return an object containing a pointer to the original
string which can be used to manipulate that string. For example:

string string.operator()(int pos, int 1lgt) {

{
string sub;
sub.sub_of = this;
sub.length = 1gt;
sub.s = s+pos;
return sub;

}

void string.operator=(string& from)

{ .
if (sub_of) { /* assign to sub_of-»>s, etc. */
}
else { /* assign to s, etc. */
}

} .

This technique for assigning to a part of an object through an object returned by a selector function
is useful in many contexts.

An argument list for an operator() function is evaluated and checked according to the usual
argument passing rules.

Overloading Subscripts: operator[]

An operator(] function can be used to give subscripts a meaning for class objects. For exam-
ple:

class string {

char* s;

char& operator[](int i) { return (0O<=i && i<length) ? s{i] : 0; }
}3

Note that because the value returned by string.operator[]() is a char& that function can be used on
cither side of an assignment. For example:

-12-

string ss = "asdf";
ss[1l] = ss[3];

The assignment is interpreted as
*(ss.operator[](1)) = *(ss.operator[](3))

that is, the new value of ss is "afdf”

The second argument (the subscript) of an operator[] function may be of any type. This
makes it possible to define associative arrays, etc.

Destructors

A destructort is a function that will be called (implicitly) when a class object is destroyed. A
class object is destroyed if it goes out of scope or if it is explicitly deleted using the delete operator.
The name of the destructor for class X is X, and it takes no argument. Destructors are often use-
ful to clean up secondary data structures. For example:

class vector {
int* v;
int size;
vector(int sz) { v = new int[size=sz}]; }
~vector() { delete v; }
}s

Note that a destructor is not invoked when a value is destroyed by assignment. For example,

vector vi(10), v2(20);
vl = v2;

will not cause the destructor “vector() to be invoked for vl. Otherwise, assignment of an object to
itself, for example vI=vl, would lead to chaos. To ensure that vI's vector of integers is not lost
vector.operator=() can be defined.

Constructors Revisited

When operator=() is declared it will be called for all uses of the assignment operator ‘="'
However, an object can also be copied as an argument to a function, as a return value, or as an
initializer for a new class object. Each of these three cases involves the construction of a value in
an uninitialized object. They are treated identically and are collectively referred to as initialization.

Consider the problem of implcmcnting “‘call by value” for objects of class string. A user sees
a string as a single object, but its mplementauon consists of two parts: the class object itself and
the string representation pointed to by it. When a copy is made of a class string object both copies
will denote the same representation and further operations on them may corrupt it. To handle
explicit assignments operator=() can be declared (for simplicity substrings and assignments like
s=s will be ignored here):

void string.operator=(string& from) {
delete s;
length = from->length;
s = new char{length+1];
strepy(s,from-»>8);

}

To cope with initialization for a class X, a constructor is needed since the default initialization
method, bitwise copy, may cause chaos. Intuitively, a constructor X(X) would implement

4 In earlier implementations destructors were called delere() functions.

-13 -

construction of one X from another. However, to avoid infinite regression the constructor invoked
to implement passing of arguments of type X cannot itself take an X as an argument. Conse-
quently, it is illegal to declare a constructor X(X), and a constructor X(X&) is used instead.

The constructor X(X&) will typically be simpler than the corresponding X.operator=() for the
same class. For example:

string.string(string& from)

{
length = from->length;
8 = new char[length+1];
strepy(s,from->s);

}

One can now use strings without ending up with shared representations.
string a = "asdf";

string b = a; /% a’s representation will be copied (b.string(&a)) */
f(a); /* a’s representation will be copied (see below) */
Function Return Revisited

In the following pseudo-C will be used to describe generated code. Syntactically illegal names
will be used freely. Consider the function

X f()

{
X a(l);
X b(2);
b->compute();
return b;

}

where the constructor X(X&) has been declared. The (unoptimized) code generated will be some-
thing like this:

void f(X* tp) { /* pass result location */
X a, b;
a.X(1); /* construct value */
b.X(2);

b.compute();
tp->X(&b); /% return result =/
a."X(); /* destroy value */
b.=X();

}

Assuming that the constructor X() and the destructor “X() have also been declared, they must be
called as the scope of the function is entered and left, respectively.

By using the result variable, *1p, as the local variable b the code can be optimized to some-
thing like this:

-14 -

void f(X* tp) {
X a;
a.X(1);
tp->X(2); /¥ b.X(2); */
tp-s>compute(); /% b.compute(); */
a."X();

}

The object denoted by rp now needs to be initialized because it is manipulated under the name b.
However, b is not deleted because it does not belong to the scope of this function.

Now consider a call of f{):

X x(0);
x = f();

Assuming X.operator=() is declared the code generated is

X X3

X temp;

Xx.X(0)3

f(&temp);

x.operator=(&temp);

temp.-X()
where temp is used nowhere else. Note that this code is independent of whether the return opera-
tion is optimized. :

An obvious optimization appears to have been missed here. Why wasn't fi&x) generated so
that the temporary could be omitted and no copying at all would occur? This further optimization
can only be done where it is known that the value of x is not used during the execution of ff).
Unfortunately, for most functions this cannot be deduced at compile time. However, where this is

known, it is considered legal to optimize away temporary variables of type X even when X(X&),
X.operator=(), or "X() is defined by the user.

Argument passing Revisited

Consider a function f{) that takes an argument of class X for which the constructor X(X&) has
been declared:

void f(X a) { ... }
The code generated will be something like this:
void f(X a) {

a.”X();
}
The code generated for calls
f(x);
f(g)); /% g() returns a class X object */

is something like this

-15 -

X temp; /* uninitialized */

temp.X(&x)

f(temp);

g(&temp); /* g() returns its value in temp */
f(temp);

Caveat

Like most programming language features, operator overloading can be both used and
misused. In particular, the ability to define new meanings for old operators can be used to write
programs that are well nigh incomprehensible to anyone. Imagine, for example, the problems fac-
ing a reader of a program where the operator + has been made to denote subtraction, or a pro-
gram where all common operations are invoked using the arithmetic operators even though the
data types used have no conventional association with those operators.

The mechanism presented here should protect the programmer/reader from the worst
excesses of overloading by not enabling a programmer to change the meaning of operators for
basic data types like int, and by preserving the syntax of expressions and the precedence of opera-
tors.

Acknowledgements

Stu Feldman, Doug Mcliroy, and Jonathan Shopiro contributed greatly to the design of these
mechanisms.

-16 -

Appendix A: class string

To demonstrate the overloading techniques in a larger example class string is outlined. It
implements a version of character strings with associated operators where the user need not worry
about the store management necessary for handling variable length strings. Many implementation
details are left as comments. Error handling is ignored. The standard C library string functions are
used for the low level character handling. It differs from the simpler string classes used above.

The major ideas behind class siring are

(1]

(2]
3]

[4]
5]
6]
(7]

to provide all operations on strings through a class srring which in effect is a pointer to
the strinj: representation.

to let class string take care of all storage management for string representations.

to present operations on strings as operators, and let the compiler take care of the
resulting temporaries.

to provide value, rather than pointer semantics, for strings. That is, if a string is
assigned or passed to a function it will be copied.

to delay such copying until it is neccesary by maintaining a shared representation for
several strings until they really differ.

to use operator() to denote both positional and contextually defined substrings. A sub-
string can be used whereever a string can.

to use C character string constants as constants for the class string operators.

A string simply contains a pointer to a string representation, srep. Only sring functions can
access srep members. An srep contains a use_count which is increased when "its" string is copied
and decreased when one of those copies goes out of scope. A function wanting to change the
representation of a string must examine the use_count and make its own copy of the srep if it is
larger than 1.

class srep {
friend string;

}s

srep* sub_of; /* this is a substring of "sub_of" =/
int use_count;

char* s; /% points to string representation */
int length; /* length of string */

char* a_s; /* points to allocated space */

int a_length; /* length of allocated space */

srep(charx*);
~srep();

Since the size of every string representation is known it is easy and probably worth while to
manage the free store for objects of class srep separately.

-17-

srep.srep(char* s8s) {
if (ss) {
a_length = length = strlen(ss);
a_s = 8 = myalloc(a_length+1);
strepy(s,ss);
}
use_count = 1;

}

srep.-srep() {
if (a_length) myfree(a_s,a_length+1);
}

A substring is a srring with an srep where sub_of?=0.

The string operators take reference arguments for efficiency and simple implementation of
the shared representation idea. A user is expected to pass strings as values, not pointers, so that
the constructor string(), the destructor “string(), and operator=() can ensure proper free store
management of the strings and consistent use of substrings.

class string {
srep* rep;

string(char#*);
string();
string(string&); /* initialization
string(srep*);
-string();
char* join(charx*); /* char* concatenation
char* join(string&);

public:
string operator()(int pos, int 1lgt); /* substring extraction
string operator()(string&);
char& operator([](int pos); /* character extraction
friend string operator+(string, string); /* concatenation
void operator= (string);
void operator+=s(string); /* add to end of string

}
The functions string(), “string(), and operator=() cooperate to implement value semantics for
strings. Together they ensure that no free store is ever "lost”, that is becomes unreferenced

without being deleted, even though each user function need only consider the use of its own
immediate arguments.

*/

*/
*/

-18-

string.string()
{
rep = new Srep("");
}
string.string(char* ss)
{
rep = new Srep(ss);
}
string.string(srep* p)
{
rep = p;
}
string.~string()
{
if (rep-»>use_count-- == 1) delete rep;
}
string.string(string& from) { /* assign to uninitialized »*/
srep* fr = from.rep;
if (fr->sub_of) { /* substring, make new representation */
int lgth = fr-slength;
char* ss = new char{lgth+1];
strnepy(ss,fr-»>s,lgth);
ss[1lgth] = 0;
Tep = new srep(ss);
}
else { /* string, share representation */
rep = fr;
rep->use_count++;
}
}

void string.operator=(string& from) {
srep* fr = from.rep;

if (sub_of) {
if (fr-s>sub_of) { /* substring = substring */

}
else { /* substring = string */
}
}
else {
if (fr-ssub_of) { /% string = substring */
}
else { /% string = string */
fr->use_count++;
if (rep-suse_count-- == 1) delete rep;
rep = fr;
}

-19 -

}

The result of applying operator()() 0 a string is a string that denotes a substring of that string.
This substring can then be used either to read from the original string or to write into the original
string. A substring is used at most once, since it can only be assigned or passed to a function. It
will therefore be interpreted and deleted by either string.operator=() or string(string&).

string string.operator()(int pos, int 1lgt)
{

srep* p = new srep(0);

p->a_s = (char#*)this;

p->a_length = 0;

p->s = &s[pos];

p->length = 1gt;

return string(p);
}

The rest of the class string functions are comparatively simple since they need not be concerned
with substrings or character strings. The “basic operations” on a string could have been imple-
mented using reference arguments so that they did not affect the use counts and did not incur the
overhead involved in updating them. Unfortunately, to do this implies that they would have to
know about substrings.

string operator+(string s1, string s2)

{
char* j = s8l.join(s2);
srep* p = new srep(j);
return string(p);
}
void string.operator+=(string arg)
{
char* j = join(arg);
delete rep;
rep = new srep(j);
}
Class string can be used like this:
void print(string a) {
char ch;
int i;
while (ch = a[i++]) putc(ch);
putc("\n") 3
}
main() {
string a,
b = "foo",

¢ = b+" bar";

a = b+cs

print(a);

a(1,2) = b(0,4);
print("a="+a+", bs"+b);

Complex Arithmetic in C

Leonie V. Roset
Bjarne Stroustrup

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

This memo describes a data type complex providing the basic facilities for
using complex arithmetic in C. The usual arithmetic operators can be used on
complex numbers and a library of standard complex mathematical functions is pro-
vided. For example:

#include <complex.h>

main(){
complex xx;
complex yy = complex(1,2.718);
xx = log(yy/3);
put (1+xx);
}

initializes yy as a complex number of the form (real<+imag*i), evaluates the
expressions and prints the result: (0.706107,1.10715).

The data type complcx is implemented as a class using the data abstraction
facilities in C (that is C++ 1, not old C). The arithmetic operators + — */, the
assignment operators = += —= »= /=, and the comparison operators == /=
are provided for complex numbers. So are the trigonometric and mathematical
functions: sin(), cos(), cosh(), sinh(), sqri(), log(), exp(), conj(), arg(), abs(), norm(),
pow(). Expressions such as (xx+1)*log(yy*log(3.2)) that involves a mixture of real
and complex numbers are handled correctly. The simplest complex operations, for
example + and +=, are implemented without function call overhead.

+ SRP student from Lehman College, City University of New York
[1] Bjarne Stroustrup: “The C+ + Reference Manual”™ AT&T Bell Laboratories CSTR-108. January 1, 1984,

Introduction

The C language does not have a built-in data type for complex numbers, but it (that is
C++1, not old C) does provide language facilities for defining new data types (see also references
2 and 3). The type complex was designed as a useful demonstration of the power of these facili-
ties.

There are three plausible ways to support complex numbers in C. First, the type complex
could be directly supported by the C compiler in the same way as the types int and floar are.
Alternatively, a preprocessor could be written to translate all use of complex numbers into stan-
dard C (for example, see reference 4 for a description of the exp pre-processor). A third approach
was used to implement type complex; it was specified as a user-defined type using the facilities of
C. This demonstrates that one can achieve the elegance and most of the efficiency of a built in
data type without modifying the compiler. It is even much easier to implement than the pre-
processor approach, which is likely to provide an inferior user interface.

This facility for complex arithmetic provides the arithmetic operators + / # —, the assign-
ment operators = += —= #= /=, and the comparison operators == /= for complex numbers.
Input and output can be done using the functions ger() and pur(). The initialization functions and
get() accept a Cartesian representation of a complex. The functions real() and imag() return the real
and imaginary part of a complex, respectively, and pur() prints a complex as (real,imaginary). The
internal representation of a complex, is, however, inaccessible and in principle unknown to a user.
Polar coordinates can also be used. The function polar() creates a complex given its polar
representation, and abs() and arg() return the polar magnitude and angle, respectively, of a com-
plex. The function norm() returns the square of the magnitude of a complex. The following com-
plex functions are also provided: sqri(), exp(), log(), sin(), cos(), sinh(), cosh(), pow(), conj(). The
declaration of complex and the declarations of the complex functions can be found in Appendix A.
A complete program using complex numbers can be found in Appendix B.

Complex Variables and Data Initialization

A program using complex arithmetic will contain declarations of complex variables. For
example:

complex zz = complex(3,-5);

will declare zz to be complex and initialize it with a pair of values. The first value of the pair is
taken as the real part of the Cartesian representation of a complex number and the second as the
imaginary part. The function complex() constructs a complex value given suitable argumentst. It
is responsible for initializing complex variables, and will convert the arguments to the proper type
(double). Such initializations may be written more compactly. For example:

complex zz(3,-5);
complex c¢_name(-3.9,7);
complex rpr(SQRT_2,root3);

A complex variable can be initialized to a real value by using the constructor with only one
argument. For example: S

complex ra = complex(1);

~ will set up ra as a complex variable initialized to (1,0). Alternatively the initialization to a real
value can also be written without explicit use of the constructor: '

[2] Bjarne Stroustrup: “Deta Abstraction in C” AT&T Bell Laboratories CSTR-109. Junuary 1, 1984,

{3] Bjarne Stroustrup: “Operator Overloading in C” AT&T Bell Laboratories CSTR-109. January 1, 1984.

[4] J. P. Brezin: “cxp: A Preprocessor for Complex Arithmetic Expressions in C Language Programs, Version 2”.
Bell Laboratories Internal Memorandum. July 1982. . : i

+ Such a function is called a constructor. A constructor for a type always has the same name as the type itself.

-3-

complex rb = 123;

The integer value will be converted to the equivalent complex value exactly as if the constructor
complex(123) had been used explicitly. However, no conversion of a complex into a double is
defined, so

double dd = complex(1,0);
is illegal and will cause a compile time error.

I there is no initialization in the declaration of a complex variable, then the variable is ini-
tialized to (0,0). For example:

complex orig;
is equivalent to the declaration:

complex orig = complex(0,0);

Naturally a complex variable can also be initialized by a complex expression. For example:
complex cx(-0.5000000e+02,0.8680254e+02);
complex cy = cx+log(cx);
It is also possible to declare arrays of complex numbers. For example:
complex carray{30];
sets up an array of 30 complex numbers, all initialized to (0,0). Using the above declarations:
complex carr{[] = { cx, cy, carray[2], complex(1.1,2.2) };

sets up a complex array carr[] of four complex elements and initializes it with the members of the
list. However, a struct style initialization cannot be used. For example:

complex cwrong[] = {1.5, 3.3, 4.2, 4};
is illegal, because it makes unwarranted assumptions about the representation of complex numbers.

Input and Qutput

Simple input and output can be done using the functions ger and pur. They are declared like
this using the facility for overloading function namest:

int put(FILE*, complex);
int put(complex z) { return put(stdout,z); }

int get(FILE*, complexk);
int get(complex& z) { return get(stdin,z); }

The integer returned is in all cases zero if the operation was performed, non-zero otherwise.
When zz is a complex variable the call gez(zz) reads a pair of numbers from swdin into zz. The first
number of the pair is interpreted as the real part of the Cartesian representation of a complex
number and the second as the imaginary part. The function pur() writes a complex argument to
stdowt. For example:

4+ In C, that is in C+ +, a name can be used to denote several functions. For each call the proper function to exe-
cute will be chosen based on the argument type. See the section on “efficiency” below for mare detail.

void copy()
{

complex zz;

while (get(zz)==0) put(zz):
}

reads a stream of complex numbers like (3.400000,5.000000) and writes them like (3.4,5). The
parentheses and comma are mandatory delimiters for input, while white space is optional. A single
real number, for example 10e-7 or (123), will be interpreted as a complex with 0 as the imaginary
part by ger().

A user who does not like the standard pus) and ger() functions can provide alternate ver-
sions.

Cartesian and Polar Coordinates

The functions real() and imag() return the real and imaginary parts of a complex number,
respectively. This can, for example, be used to create differently formatted output of a complex:

complex cc = complex(3.4,5);
printf(" %g+%g*i", real(cc), imag(cec));

will print 3.4+5%i.

The function polar() creates a complex given a pair of polar coordinates (magnitude, angle).
The functions arg() and abs() both take a complex argument and return the angle and magnitude
(modulus), respectively. For example:

complex cc = polar(SQRT_2,PI/4); /* also known as complex(1,1) */
double magn = abs(cc); /% magn = sqrt(2) =/

double angl = arg(cc); /% angl = PI/4 */

printf("(m=%g, a=%g)",magn,angl);

If input and output functions for the polar representation of complex numbers are needed
they can easily be written by the user.

Arithmetic operators

The basic arithmetic operators + — (unary and binary) / *, the assignment operators = + =
—= = /=, as well as the equality operators == /= can be used for complex numbers. The
operators have their conventional precedences. For example: a=b*c+d for complex variables a, b,
¢, and d is equivalent to a=(b*c)+d. There are no operators for exponentiation and conjugation;
instead the functions pow() and conj() are provided. The operators += —= #= /= do not pro-
duce a value that can be used in an expression; thus the following examples will cause compile time
errors:

complex a, b;

l:.é.((a+=2)==°) { e o }
b = a *= b;

Mixed Mode Arithmetic

Mixed mode expressions are handled correctly. Real values will be converted to complex
where necessary. For example:

complex xx(3.5,4.0);
complex yy = log(yy) + log(3.2);

This expression involves a mixture of real values: log(3.2), and complex values: log(yy) and the
sum. Another example of mixing real and complex, xx=1 is equivalent to xx=complex(l) which in

turn is equivalent to xx=complex(1,0)
The interpretation of the expression (xx+ 1)#yy*3.2 is (((xx+complex(1)yeyy)scomplex(3.2))

Mathematical Functions

A library of complex mathematical functions is provided. A complex function typically has a
counterpart of the same name in the standard mathematical library. In this case the function name
will be overloaded. That is, when called, the function to be invoked will be chosen based on the
argument type. For example, log(l) will invoke the real log(), and log(complex(1)) will invoke the
complex log(). In each case the integer 1 is converted to the real value 1.0.

These functions will produce a result for every possible argument. If it is not possible to pro-
duce a mathematically acceptable result, the function complex_error() will be called and some suit-
able value returned. In particular, the functions try to avoid actual overflow, calling
complex_error() with an overflow message instead. The user can supply complex_error(). Other-
wise a function that simply sets the integer errno is used. See appendix C for details.

complex conj(complex);
Conj(zz) returns the complex conjugate of zz.
double norm(complex);

Norm(zz) returns the square of the magnitude of zz. It is faster than abs(zz), but more likely to
cause an overflow error. It is intented for comparisons of magnitudes.

overload pow;

double pow(double, double);
complex pow(double, complex);
complex pow(complex, int);
complex pow(complex, double);
complex pow(complex, complex);

Pow(aa,bb) raises aa to the power of bb. For example, to calculate (1—ijx+4.
put(pow(complex(1,-1), 4));
The output is (—4,0).

overload log;
double log(double);
complex log(complex);

Log(zz) computes the natural logarithm of zz. Log(0) causes an error, and a huge value is
returned.

overload exp;
double exp(double);
complex exp(complex);

Exp(zz) computes e**zz, e being 2.718281828...

overload sqrt;
double sqrt(double);
complex sqrt(complex);

Sqgri(zz) calculates the square root of zz.

-6-

The trigonometric functions available are:

overload sing
double sin(double);
complex sin(complex);

overload cos;
double cos(double);
complex cos(complex);

Hyperbolic functions are also available:

overload sinh;
double sinh(double);
complex sinh(complex);

overload cosh;
double cosh(double);
complex cosh(complex);

Other trigonometric and hyperbolic functions, for example tan() and tanh(), can be written by
the user using overloaded function names.

Efficiency

C's facility for overloading function names allows complex to handle overloaded function
calls in an efficient manner. If a function name is declared to be overloaded, and that name is
invoked in a function call, then the declaration list for that function is scanned in order, and the
first occurrence of the appropriate function with matching arguments will be invoked. For further
detail see reference 4. For example, consider the exponential function:

overload exp;
double exp(double);
complex exp(complex);

When called with a double argument the first, and in this case most efficient, exp() will be
invoked. If a complex result is needed, the double result is then implicitly converted using the
appropriate constructor. For example:

complex foo = exp(3.5);
is evaluated as
complex foo = complex(exp(3.5));
and not
complex foo = exp(complex(3.5));

Constructors can also be used explicitly. For example:

complex add(complex al, complex a2) /* silly way of doing al+a2 */

{
return complex(real(al)+real(a2), imag(al)+imag(a2));
}

Inline functions are used to avoid function call overhead for the simplest operations, for
example, conj(), +, +=, and the constructors (See appendix A).

Acknowledgments

Phil Gillis supplied us with the complex functions used for the cxp package. Most of the
functions presented here are modified versions of those. Stu Feldman provided us with valuable
advice and some functions. Doug Mcliroy’s constructive comments led to a major re-write. Eric
Grosse suggested the FFT function in Appendix B as an example.

Appendix A: Type complex

This is the definition of type complex. It can be included as <complex.h>. A friend declara-
tion specifies that a function may access the internal representation of a complex. The names put
and ger need not be declared overload since that is done in stdio.h.

#include
#include

overload
overload
overload
overload
overload
overload
overload
overload
overload

#include

<stdio.h>
<errno.h>

cos;
cosh;
€xp;
log;
pow;
sin;
ginh;
sqrt;
abs;

<math.h>

class complex {
double re, im;
public:
complex(double r = 0, double i = 0) { re=r; im=i; }

friend double abs(complex);

friend double norm(complex);

friend double arg(complex);

friend complex conj(complex);

friend complex cos(complex);

friend complex cosh(complex);

friend complex exp(complex);

friend double imag(complex);

friend complex log(complex);

friend complex pow(double, complex);
friend complex pow(complex, int);
friend complex pow(complex, double);
friend complex pow(complex, complex);
friend complex polar(double, double = 0);
friend double real(complex);

friend complex sin(complex);

friend complex sinh(complex);

friend complex sqrt(complex);

friend complex operator+(complex, complex);
friend complex operator-(complex);

friend complex operator-(complex, complex);
friend complex operator*(complex, complex);
friend complex operator/(complex, complex);
friend int operator==(complex, complex);
friend int operator!=(complex, complex);

void operator+=(complex);
void operator-=(complex);
void operator*=(complex);
void operator/=(complex);

-10 -

int put(FILE*, complex);
int get(FILE*, complex&);
inline int put(complex z) { return put(stdout,z); }
inline int get(complex& z) { return get(stdin,z); }

inline complex operator+(complex al, complex a2)

{
return complex(al.re+a2.re, al.im+a2.im);

}

inline complex operator-(complex al,complex a2)
{
return complex(al.re-a2.re, al.im-a2.im);

}

inline complex operator-(complex a)
¢ return complex(-a.re, a.im);
}

inline complex conj(complex a)

¢ return complex(a.re, -a.im);
}

inline int operator==(complex a, complex b)
return (a.res=b.re && a.im==zb.im);

inline int operator!=z(complex a, complex b)
{

return (a.re!sb.re || a.im!=b.im);
}
inline void complex.operator+=z(complex a)
re += a.re;
im += a.im;

inline void complex.operator-=(complex a)

re -z a.re;
im -= a.im;

-11-

Appendix B: A FFT Function

Transcribed from Fortran as presented in “FFT as Nested Multiplication, with a Twist” by
Carl de Boor in SIAM Sci. Stat. Comput. Vol 1 No 1, March 1980.

#include <complex.h>

void fftstp(complex*, int, int, int, complex*);

const NEXTMX = 12;
int prime[NEXTMX) = { 2, 8, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37 };

complex* fft(complex *z1, complex *z2, int n, int inzee)

/*

./

Construct the discrete Fourier transform of z1 (or z2) in the
Cooley-Tukey way, but with a twist.

zl[before], z2[before].
inzee==1 means input in z1; inzee==2 means input in z2

int before = n;
int after = 1;
int next = 0;

int now;

do {

int np = prime[next];

if ((before/np)*np < before) {
if (++next < NEXTMX) continue;
now = before;
before = 1;

}
else {
now = np;
before /= np;
}

if (inzee == 1)

fftstp(zi, after, now, before,
else

fftstp(z2, after, now, before,
inzee = 3 - inzee;
after *=z= now;

} while (1 < before)

return (inzee==1) ? z1 : z2;

z2);

zl);

-12-

void fftstp(complex* zin, int after, int now, int before, complex* zout)

/®

./

zin(after,before,now)
zout (after,now,before)

there are ample scope for optimization

double angle = PI2/(now*after);
complex omega = complex(cos(angle), -sin(angle));
complex arg = 1;
int 33
for (j=0; j<now; j++) {
int ia;
for (ia=0; iacafter; ia++) {
int ib;
for (ibs=0; ib<before; ib++) {
int in;
/% value = zin(ia,ib,now) */
complex value = zin[ia + ib*after + (now-1)*before*after];

for (insnow-2; 0O<=zin; in--) {
/* value = value*arg + zin(ia,ib,in) */
value *s arg;
value += zin[ia + ib*after + in*before*after);
}
/% zout(ia, j,ib) = value */
zout[ia + j*rafter + ib*now*after] = value;
}
arg *= omega;

-13-

The main program below calls fi() with a sine curve as argument. The complete unedited
output is presented on the next page. All but two of the numbers ought to have been zero. The
very small numbers shows the roundoff errors. Since C floating-point arithmetic is done in
double-precision these errors are smaller than the equivalent errors obtained using the published
Fortran version.

#include <complex.h>

main()
/%
test fft() with a sine curve
*/
{
int i, n=26;
complex *z1;
complex *z2;
complex *zout;
extern complex* fft(complex*, complex*, int, int):

z1l = new complex[n];
22 = new complex([n);

printf("input: \n");

for (i = 0; i ¢ n ji+s+) {
z1[i) = sin(i*PI2/n);
put(z1[i]);
printf("\n");

}

errno = 0;
zout = fft(zi, z2, n, 1);
if (errno) printf("Cerror %d occurred\n",errno);

printf("output: \n");

for (i = 0; 1 < n ;i++) {
put(zout{i]);
printf("\n");

-14 -

input:

(0, 0)

(0.239316, 0)

(0.464723, 0)

(0.683123, 0)

(0.822884, 0)

(0.935016, 0)

(0.992709, 0)

(0.992709, O)

(0.935018, 0)

(0.822984, 0)

(0.863123, 0)

(0.464723, 0)

(0.239316, 0)

(4.35984e-17, 0)
(-0.238318, 0)

(-0.464723, 0)

(-0.6863123, 0)

(-0.822084, 0)

(-0.935018, 0)

(-0.992709, 0)

(-0.992708, 0)

(-0.935018, 0)

(-0.822984, 0)

{-0.663123, 0)

(-0.464723, 0)

(-0.238316, 0)

output:

(9.56401e-17, O0)
(-3.76685e-18, -13)
(9.39828e-17, 1.11261e-17)
(6.42219e-18, -4.20813e-17)
(7.37279e-17, 2.33319e-18)
(2.85084e-16, 2.87918e-186)
(4.03134e-17, 5.1789e-17)
(2.60885e-18, 6.78794e-17)
(-5.71687e-17, -3.86348e-17)
(2.76315e~16, 2.36902e-17)
(-6.43755e-17, -3.B0255e-17)
(1.95031e-16, 9.77858e-17)
(1.49087e-18, -7.57345e-17)
(3.17224e-16, 1.64284e-17)
(1.49087e-16, 7.57345e-17)
(2.7218e-16, -4.03777e-17)
(-8.43755e-17, 3.80255e-17)
(4.93805e-16, 3.36874e-17)
(-5.71667e-17, 3.88348e-17)
(7.86047e-16, -4.11088e-18)
(4.03134e-17, -5.1789e-17)
(1.60788e-15, -1.06841e-186)
(7.37279e-17, -2.33319e-18)
(5.45186e-15, 2.42719e-18)
(9.39828e-17, -1.11261e-17)
(-1.12013e-14, 13)

-15-

Appendix C: Errors and Error Handling
These are the declarations used by the error handling:

int errno;
int complex_error(int, double);

The user can supply complex_error(). Otherwise a function that simply sets errno is used. The
exceptions generated are:

cosh(zz):)

C_COSH_RE kz.re| too large. Value with correct angle and huge magnitude returned.
C_COSH_IM [zz.im] too large. Complex(0,0) returned.

exp(zz):

C_EXP_RE_POS zz.im too small. Value with correct angle and huge magnitude returned.
C_EXP_RE_NEG zz.re too small. Complex(0,0) returned.

C_EXP_M jz.im| too large. Complex(0,0) returned.

log(zz):

C_LOG_0 zz==0. Value with a large real part and zero imaginary part returned.
sinh(zz):

C_SINH_RE kz.1e| too large. Value with correct angle and huge magnitude returned.

C_SINH_IM kz.im| 100 large. Complex(0,0) returned.

