
Spice remote computing 
protocol definition v1.0

Draft 1

  Copyright © 2009 Red Hat, Inc.
  Licensed under a Creative Commons Attribution-Share Alike 3.0

  United States License (see
  http://creativecommons.org/licenses/by-sa/3.0/us/legalcode).

http://creativecommons.org/licenses/by-sa/3.0/us/legalcode


Table of Contents
 1.Introduction............................................................................................................................................4
 2.Common Protocol definition..................................................................................................................4
 2.1.Endianness..........................................................................................................................................4
 2.2.Data types............................................................................................................................................4
 2.3.Protocol Magic number UINT8[4].....................................................................................................5
 2.4.Protocol version..................................................................................................................................5
 2.5.Compatibility – UINT32[]..................................................................................................................6
 2.6.Channel types – UINT8......................................................................................................................6
 2.7.Error codes UINT32............................................................................................................................6
 2.8.Warning codes.....................................................................................................................................6
 2.9.Information codes................................................................................................................................6
 2.10.public key buffer size........................................................................................................................7
 2.11.Channel link: establishing a channel connection..............................................................................7
 2.12.Protocol message definition..............................................................................................................9
 2.13.Common messages and messaging naming convention...................................................................9
 2.14.Server messages that are common to all channels..........................................................................10
 2.15.Client messages that are common to all channels...........................................................................10
 2.16.Messages acknowledgment.............................................................................................................10
 2.17.Ping.................................................................................................................................................11
 2.18.Channel migration...........................................................................................................................11
 2.19.Channel synchronization.................................................................................................................12
 2.20.Disconnect reason...........................................................................................................................13
 2.21.Server notification...........................................................................................................................13
 3.Main Channel definition......................................................................................................................14
 3.1.Server messages................................................................................................................................14
 3.2.Client messages.................................................................................................................................14
 3.3.Migration control..............................................................................................................................14
 3.4.Mouse modes....................................................................................................................................15
 3.5.Main channel init message................................................................................................................16
 3.6.Server side channels notification......................................................................................................16
 3.7.Multimedia time................................................................................................................................17
 3.8.Spice agent........................................................................................................................................17
 4.Inputs channel definition......................................................................................................................19
 4.1.Client messages.................................................................................................................................19
 4.2.Server Messages................................................................................................................................19
 4.3.Keyboard messages...........................................................................................................................19
 4.4.Mouse messages................................................................................................................................20
 5.Display channel definition...................................................................................................................21
 5.1.Server messages................................................................................................................................22
 5.2.Client messages.................................................................................................................................22
 5.3.Operation flow..................................................................................................................................22
 5.4.Draw area control..............................................................................................................................23
 5.5.Raster operation descriptor...............................................................................................................23
 5.6.Raw raster image...............................................................................................................................24
 5.7.LZ with palette..................................................................................................................................26
 5.8.Spice Image.......................................................................................................................................27
 5.9.Glyph String......................................................................................................................................28



 5.10.Data Types......................................................................................................................................29
 5.11.Rendering command.......................................................................................................................32
 5.12.Video streaming commands............................................................................................................35
 5.13.Cache control..................................................................................................................................37
 6.Cursor channel definition.....................................................................................................................38
 6.1.Server messages................................................................................................................................38
 6.2.Drawing the cursor shape according to the cursor type....................................................................41
 7.Playback channel definition.................................................................................................................42
 7.1.Server messages................................................................................................................................42
 7.2.Audio format.....................................................................................................................................42
 7.3.Playback data mode..........................................................................................................................42
 7.4.Playback channel capabilities...........................................................................................................42
 7.5.RED_PLAYBACK_MODE, RedPlaybackMode.............................................................................42
 7.6.RED_PLAYBACK_START, RedRecordStart.................................................................................43
 7.7.RED_PLAYBACK_DATA, RedPlaybackPacket............................................................................43
 7.8.RED_PLAYBACK_STOP, VOID...................................................................................................43
 8.Record Channel definition...................................................................................................................43
 8.1.Server messages................................................................................................................................43
 8.2.Client messages.................................................................................................................................44
 8.3.Audio format.....................................................................................................................................44
 8.4.Record data mode..............................................................................................................................44
 8.5.Record channel capabilities...............................................................................................................44
 8.6.REDC_RECORD_MODE, RedcRecordMode.................................................................................44
 8.7.RED_RECORD_START, RedRecordStart......................................................................................44
 8.8.REDC_RECORD_START_MARK, UINT32..................................................................................45
 8.9.REDC_RECORD_DATA, RedcRecordPacket................................................................................45
 8.10.RED_RECORD_STOP, VOID.......................................................................................................45



 1. Introduction

Spice protocol defines a set of protocol messages for accessing, controlling, and receiving inputs 
from remote computing devices (e.g., keyboard, video, mouse) across networks, and sending 
output to them. A controlled device can reside on either side, client and/or server. In addition, 
the protocol defines a set of calls for supporting migration of a remote server from one  network 
address to another. Encryption of transported data,  with one exception,  was kept out of the 
protocol  for  maximum  flexibility  in  choosing  an  encryption  method.  Spice  uses  simple 
messaging and does not depend on any  RPC standard or a specific transport layer. 

Spice communication session is split into multiple communication channels (e.g., every channel 
is a  remote device) in order to  have the ability to  control communication and execution of 
messages  according  to  the  channel  type  (e.g.  QoS  encryption),  and  to  add  and  remove 
communication channels during run time (which is supported by spice protocol definition). The 
following communication channels are defined in the current protocol definition: a). the main 
channel serves as the main spice session connection  b). display channel for receiving remote 
display updates c). inputs channel for sending mouse and keyboard events d). cursor channel for 
receiving pointer shape and position e). Playback channel for receiving audio stream, and f). 
Record channel for sending audio capture. More channel types will be added as the protocol 
evolves. Spice also defines a set of protocol definitions for synchronizing channels` execution 
on the remote site.

 2. Common Protocol definition

 2.1. Endianness

Unless stated otherwise, all data structures are packed and byte and bit order is in little 
endian format.

 2.2. Data types

 a) UINT8 – 8 bits unsigned integer

 b) INT16 – 16 bits signed integer

 c) UINT16 – 16 bits unsigned  integer

 d) UINT32 – 32 bits unsigned  integer

 e) INT32 - 32 bits signed integer

 f) UINT64 – 64 bits unsigned  integer

 g) ADDRESS - 64 bits unsigned integer, value is the offset of the addressed data from the 



beginning  of  spice  protocol  message  body  (i.e.,  data  following  RedDataHeader  or 
RedSubMessage). 

 h) FIXED28_4 – 32 bits fixed point number. 28 high bits are signed integer. Low 4 bits is 
unsigned integer numerator of a fraction with denominator 16.

 i) POINT

INT32 x
INT32 y

 j) POINT16

INT16 x
INT16 y

 k) RECT

INT32 top
INT32 left
INT32 bottom
INT32 right

 l) POINTFIX

FIXED28_4 x
FIXED28_4 y

 2.3. Protocol Magic number UINT8[4]

RED_MAGIC = { 0x52, 0x45, 0x44,  0x51}

 2.4. Protocol version

Protocol version defined as  two UINT32 values, major protocol version and minor protocol 
version. Server and client having the same major version must keep compatibility regardless 
of minor version (i.e., incrementing the major version brakes compatibility). Major protocol 
version  with  "huge"  value  are  reserved  for  development  purposes  and  are  considered 
unsupported and unreliable.  "huge"  values  are  defined as  having bit  31 set.  The  minor 
protocol version is incremented on every protocol change that does not break compatibility. 
It is  set to zero on  major protocol version increment.

Current Protocol version
▪ RED_VERSION_MAJOR = 1
▪ RED_VERSION_MINOR = 0



 2.5. Compatibility – UINT32[]

In order to allow some degree of flexibility in client and server implementation and in order 
to  improve  compatibility,  spice  protocol  supports bidirectional  exchange  of  channels 
compatibilities.  Compatibilities  are  expressed  in  UINT32  vector  that  is  split  into  two 
groups:  common  compatibilities  and  channels  compatibilities.  Common compatibilities 
stands for compatibilities shared by all channels, and  channels compatibilities stands for 
channel specific compatibilities. Splitting the vector into two types allows us to add channel 
compatibilities independently. Each compatibility is expressed using one or more bits in the 
compatibilities vector.

 2.6. Channel types – UINT8

▪ RED_CHANNEL_MAIN = 1
▪ RED_CHANNEL_DISPLAY = 2
▪ RED_CHANNEL_INPUTS = 3
▪ RED_CHANNEL_CURSOR = 4
▪ RED_CHANNEL_PLAYBACK = 5
▪ RED_CHANNEL_RECORD = 6

 2.7. Error codes UINT32

▪ RED_ERROR_OK = 0
▪ RED_ERROR_ERROR = 1
▪ RED_ERROR_INVALID_MAGIC = 2
▪ RED_ERROR_INVALID_DATA = 3
▪ RED_ERROR_VERSION_MISMATCH = 4
▪ RED_ERROR_NEED_SECURED = 5
▪ RED_ERROR_NEED_UNSECURED = 6
▪ RED_ERROR_PERMISSION_DENIED = 7
▪ RED_ERROR_BAD_CONNECTION_ID = 8
▪ RED_ERROR_CHANNEL_NOT_AVAILABLE = 9

 2.8. Warning codes

▪ RED_WARN_GENERAL = 0

 2.9. Information codes

▪ RED_INFO_GENERAL = 0



 2.10. public key buffer size.

▪ RED_TICKET_PUBKEY_BYTES = 162,  size needed for holding 1024 bit RSA public 
key in X.509 SubjectPublicKeyInfo format.

 2.11. Channel link: establishing a channel connection.

 a) Connection process

The channel connection process is initiated by the client. The client sends RedLinkMess. 
In response, the server sends RedLinkReply. When the client receives  RedLinkReply, it 
examines the error code and in case there is no error it encrypts its password with public 
key  received  in  RedLinkReply  and  sends  it  to  the  server.  The  server  receive  the 
password and sends the link result to the client. The client examines the link result, and 
in case the result equals to RED_ERROR_OK, a valid connection is established.

Channel connection for channel types other then RED_CHANNEL_MAIN is allowed 
only after the client has active RED_CHANNEL_MAIN channel connection.  Only one 
RED_CHANNEL_MAIN  connection  is  allowed,  and  this  channel  connection 
establishes  spice session with the remote server.

 b) Ticketing

Ticketing is a mechanism implemented in spice to ensure connections are opened only 
from  authorized  sources.  To  enable  this  mechanism  a  ticket  is  set  in  spice  server 
consisting of a password and time validity. After time validity passes, the whole ticket is 
expired. The ticket is encrypted. To encrypt, server generates a 1024 bit RSA key and 
send the public part to the client (via RedLinkInfo). Client uses this key to encrypt the 
password and send it back to server (after RedLinkMess). Server decrypt the password, 
compare it to ticket and ensure it was received within the allowed time-frame.

 c) RedLinkMess definition.

UINT32 magic - value of this fields must be equal to RED_MAGIC

UINT32 major_version - value of this fields must be equal to 
RED_VERSION_MAJOR.

UINT32 minor_version - value of this fields must be equal to 
RED_VERSION_MINOR.

UINT32 size - number of bytes following this field to the end of this 
message.

UINT32 connection_id - In  case  of  a  new  session  (i.e.,  channel  type  is 



RED_CHANNEL_MAIN)  this  field  is  set  to  zero,  and  in  response  the  server  will 
allocate session id and will send it via the RedLinkReply message. In case of all other 
channel types, this field will be equal to the allocated session id. 

UINT8 channel_type -  one of RED_CHANNEL_?

UINT8 channel_id - channel id to connect to. This enables having multiple 
channels of the same type.

UINT32 num_common_caps - number of common client channel capabilities words

UINT32 num_channel_caps - number of specific client channel capabilities words

UINT32 caps_offset - location of the start of the capabilities vector given by the 
bytes offset  from the “ size” member (i.e.,  from the address of the “connection_id” 
member).

 d) RedLinkReply  definition

UINT32 magic - value of this field must be equal to RED_MAGIC

UINT32 major_version - server major protocol version.

UINT32 minor_version - server minor protocol version.

UINT32 size - number of bytes following this field to the end of this 
message.

UINT32  error - Error codes (i.e., RED_ERROR_?)

UINT8[RED_TICKET_PUBKEY_BYTES]  pub_key – 1024 bit RSA public key in 
X.509 SubjectPublicKeyInfo format.

UINT32 num_common_caps - number of common server channel capabilities words

UINT32 num_channel_caps - number of specific server channel capabilities words

UINT32 caps_offset - location of the start of the capabilities vector given by the 
bytes offset from the “ size” member (i.e., from the address of 

the “connection_id” member) . 

 e) Encrypted Password

Client  sends  RSA  encrypted  password,  with  public  key  received  from  server  (in 
RedLinkReply).  Format  is  EME-OAEP  as  described  in  PKCS#1  v2.0  with  SHA-1, 
MGF1 and an empty encoding parameter.

 f) Link Result UINT32



The server sends link result error code (i.e., RED_ERROR_?)

 2.12. Protocol message definition

All messages transmitted after the link stage have a common message layout. It begins with 
RedDataHeader which describes one main message and an optional sub messages list.

 a) RedDataHeader 

UINT64 serial – serial number of the message within the channel.  Serial numbers start 
with a value of 1 and are incremented on every message transmitted. 

UINT16  type  –  message  type  can  be  one  that  is   accepted  by  all  channel  (e.g., 
RED_MIGRATE),  or  specific  to  a  channel  type  (e.g.,  RED_DISPLAY_MODE for 
display channel).

UINT32 size – size of the message body in bytes. In case sub_list (see below) is not zero 
then  the  actual  main  message  size  is  sub_list.  The  message  body  follows 
RedDataHeader. 

UINT32  sub_list – optional sub-messages list. If this field is not zero then sub_list is 
the offset in bytes to RedSubMessageList from the end of  RedDataHeader.  All sub-
messages need to be executed before the main message, and in the order they appear in 
the sub-messageslist. 

 b) RedSubMessageList 

UINT16 size – number of sub-messages in this list.

UINT32[]  sub_messages – array of offsets to sub message, offset is number of bytes 
from the end of RedDataHeader to start of RedSubMessage.

 c) RedSubMessage

UINT16  type - message type can be one that is  accepted by all channel (e.g., 
RED_MIGRATE), or specific to a channel type (e.g., RED_DISPLAY_MODE for 
display channel).

UINT32 size - size of the message body in bytes.  The message body follows 
RedSubMessage.

 2.13. Common messages and messaging naming convention

Messages types and message body structures  are prefixed according to the source of the 
message. The prefixes for messages sent from the server to the client are RED for types and 
Red for structures. For messages sent from the client the prefixes are REDC and Redc.



 2.14. Server messages that are common to all channels

RED_MIGRATE = 1
RED_MIGRATE_DATA = 2
RED_SET_ACK = 3
RED_PING = 4
RED_WAIT_FOR_CHANNELS = 5
RED_DISCONNECTING = 6
RED_NOTIFY = 7

RED_FIRST_AVAIL_MESSAGE = 101

Specific channel server messages start from RED_FIRST_AVAIL_MESSAGE. All 
message types from RED_NOTIFY + 1 to RED_FIRST_AVAIL_MESSAGE – 1 are 
reserved for further use.
 

 2.15. Client messages that are common to all channels

REDC_ACK_SYNC = 1
REDC_ACK = 2
REDC_PONG = 3
REDC_MIGRATE_FLUSH_MARK = 4
REDC_MIGRATE_DATA = 5
REDC_DISCONNECTING = 6

REDC_FIRST_AVAIL_MESSAGE = 101

Specific channel client messages start from REDC_FIRST_AVAIL_MESSAGE. All 
message types from REDC_ACK_SYNC+ 1 to REDC_FIRST_AVAIL_MESSAGE – 1 are 
reserved for further use.

 2.16. Messages acknowledgment.

Spice provides a set of messages for requesting an acknowledgment on every one or more 
messages that the client consumes. In order to request acknowledgment messages, the server 
sends  RED_SET_ACK with the requested acknowledgment frequency – after how many 
received  messages  the  client  sends  acknowledgment.  .  In  response,  the  client  sends 
REDC_ACK_SYNC. From this  point,  for every requested number of messages that the 
client receive, it will send  a REDC_ACK message.

 a) RED_SET_ACK, RedSetAck

UINT32 generation – the generation of the acknowledgment sequence. This value will 
be  sent  back  by   REDC_ACK_SYNC.  It  is  used  for  acknowledgment  accounting 



synchronization.

UINT32 window – the window size. Spice client will send acknowledgment for every 
“window” messages.  Zero window size will disable  messages acknowledgment.

 b) REDC_ACK_SYNC, UINT32

UINT32 – Spice client sends  RedSetAck.generation in response to RED_SET_ACK

 c) REDC_ACK, VOID

Spice client sends  REDC_ACK message for every RedSetAck.window messages it 
consumes.

 2.17. Ping

Spice  protocol  provides  ping  messages  for  debugging  purpose.  Spice  server  sends 
RED_PING and the client responses with REDC_PONG. The server can measure round trip 
time by subtracting current time with the time that is returned in REDC_PONG message.

 a) RED_PING, RedPing

UINT32 id – the id of this message

UINT64 time – time stamp of this message

 b) REDC_PONG, RedPong

UINT32 id – Spice client copies it from RedPing.id

UINT64 time – Spice client copies it from RedPing.time

 2.18. Channel migration

Spice supports migration of Spice server. The following common messages combined 
with  specific  main  channel  messages  is  used  for  migrating  channels  connections 
between  spice  servers.  We will  refer  these  servers  as  source  and destination.  Main 
channel  is  used  for  initiating  and  controlling  the  migration  process.  The  following 
describes the actual channel migration process.

Channel  migration  process  starts  with  sending  RED_MIGRATE  message  from  the 
server. The client receives the message, examine the attached flags and:
• if the server requests messages flush (i.e., RED_MIGRATE_NEED_FLUSH flag is 

on),  the  client  sends  REDC_MIGRATE_FLUSH_MARK message  to  the  server. 
This procedure can be used to ensure safe delivery of all mid air messages before 
performing the migration action.



• if  the  server  requests  data  transfer  (i.e., 
RED_MIGRATE_NEED_DATA_TRANSFER  flag  is  on),  the  client  expects  to 
receive  one  last  message  from  the  server  before  migrating  to  destination.  This 
message type must be RED_MIGRATE_DATA type. The content of the received 
message will be transmitted to the destination on connection swap.

Afterward, the client swaps communication channels (i.e., starts using the connection 
with the destination server). The client can close connection with the source server only 
after all other channels also have finished the migration process. If the server side has 
requested data  transfer,  the  client  first  transmits  REDC_MIGRATE_DATA message 
containing the data received on RED_MIGRATE_DATA.

 a) Migration flags

RED_MIGRATE_NEED_FLUSH = 1
RED_MIGRATE_NEED_DATA_TRANSFER = 2

 b) RED_MIGRATE, RedMigrate

UINT32 flags – combination of red migration flags.

 c) RED_MIGRATE_DATA, UINT8[]

Server migrate data, body of this message is variable length raw data that is determined 
by each channel type independently

 d) REDC_MIGRATE_FLUSH_MARK, VOID

This messages mark completion of client communication channel flushing.

 e) REDC_MIGRATE_DATA, UINT8[]

Post migration data, sent by client to the destination, containing the data sent by the 
source using the RED_MIGRATE_DATA message.

 2.19. Channel synchronization

Spice provides mechanism for synchronizing channels message execution on the client side. 
The  server  sends  RED_WAIT_FOR_CHANNELS  message  which  contains  a  list  of 
channels messages to wait for (i.e., RedWaitForChannels). The Spice client will wait for 
completion of all the messages that are in that list before executing any more messages.

 a) RedWaitForChannel

UINT8 type – channel type (e.g., RED_CHANNEL_INPUTS)

UINT8 id – channel id.



UIN64 serial – message serial id (i.e, RedDataHeader.serial) to wait for

 b) RED_WAIT_FOR_CHANNELS, RedWaitForChannels

UINT8 wait_count – number of items in wait_list

RedWaitForChannel[] wait_list – list of channels to wait for.

 2.20. Disconnect reason

The following messages are used for notification about orderly disconnection   of the 
server or client.

 a) RED_DISCONNECTING, RedDisconnect

UINT64 time_stamp – time stamp of disconnect action on the server. 

UINT32 reason – disconnect reason, RED_ERROR_?

 b) REDC_DISCONNECTING, RedcDisconnect

UINT64 time_stamp – time stamp of disconnect action on the client. 

UINT32 reason – disconnect reason, RED_ERROR_?

 2.21. Server notification

Spice  protocol  defines  message  for  delivering  notifications  to  the  client  using 
RED_NOTIFY message. Messages are categorized by severity and visibility. The later 
can be used as hint for the way the message is displayed to the user. For example high 
visibility notifications will trigger message box and low visibility notifications will be 
directed to the log.

 a) RED_NOTIFY, RedNotify

UINT64 time_stamp – server side time stamp of this message.

UINT32 severity – one of RED_NOTIFY_SEVERITY_?

UINT32 visibility - one of  RED_NOTIFY_VISIBILITY_?

UINT32 what – one of RED_ERROR_?, RED_WARN_? Or RED_INFO_?, depending 
on severity. 

UINT32 message_len – size of message



UINT8[] message – message string in UTF8.

UINT8 0 – string zero termination

 3. Main Channel definition

 3.1. Server messages

RED_MAIN_MIGRATE_BEGIN = 101
RED_MAIN_MIGRATE_CANCEL = 102
RED_MAIN_INIT = 103
RED_MAIN_CHANNELS_LIST = 104
RED_MAIN_MOUSE_MODE = 105
RED_MAIN_MULTI_MEDIA_TIME = 106

RED_MAIN_AGENT_CONNECTED = 107
RED_MAIN_AGENT_DISCONNECTED = 108
RED_MAIN_AGENT_DATA = 109
RED_MAIN_AGENT_TOKEN = 110

 3.2. Client messages

REDC_MAIN_RESERVED  = 101
REDC_MAIN_MIGRATE_READY = 102
REDC_MAIN_MIGRATE_ERROR = 103
REDC_MAIN_ATTACH_CHANNELS = 104
REDC_MAIN_MOUSE_MODE_REQUEST = 105

REDC_MAIN_AGENT_START = 106
REDC_MAIN_AGENT_DATA = 107
REDC_MAIN_AGENT_TOKEN = 108

 3.3. Migration control

Spice  migration  control  is  performed  using  the  main  channel  messages.  Spice  server 
initiates migration process by sending RED_MAIN_MIGRATE_BEGIN message. Once the 
client  has  completed  its  pre-migrate  procedure  it  notifies  the  server  by  transmitting 
REDC_MAIN_MIGRATE_READY message. In case of pre-migrate procedure error, the 
client  sends  REDC_MAIN_MIGRATE_ERROR.  Once  the  server  receives 
REDC_MAIN_MIGRATE_READY he can commence the migration process. The server 
can send RED_MAIN_MIGRATE_CANCEL in order to instruct the client to cancel the 



migration process.

 a) RED_MAIN_MIGRATE_BEGIN, RedMigrationBegin

UINT16 port – port of destination server

UINT16 sport – secure port of destination server

UINT8[] host_name – host name of destination server

 a) RED_MAIN_MIGRATE_CANCEL, VOID 

Instruct the client to cancel migration process

 a) REDC_MAIN_MIGRATE_READY, VOID

Notify the server of successful completion of the pre-migrate stage

 a) REDC_MAIN_MIGRATE_ERROR, VOID

Notify the server of pre-migrate stage error

 3.4. Mouse modes

Spice protocol specifies two mouse modes, client mode and server mode. In client mode, 
the affective mouse is the client side mouse: the client sends mouse position within the 
display and the server sends mouse shape messages. In server mode, the client sends relative 
mouse movements and the server sends position and shape commands. Spice main channel 
is used for mouse mode control.

 a) Modes 

RED_MOUSE_MODE_SERVER = 1
RED_MOUSE_MODE_CLIENT = 2

 b) RED_MAIN_MOUSE_MODE, RedMouseMode

Spice server sends this message on every mouse mode change

UINT32 supported_modes – current supported mouse mode, this is any combination of 
RED_MOUSE_MODE_?

UINT32  current_mode  –  the  current  mouse  mode.  Can  be  one  of 
RED_MOUSE_MODE_?

 c) REDC_MAIN_MOUSE_MODE_REQUEST, UINT32



Spice client sends this message to request specific mouse mode. It is not guarantied that 
the server will accept the request. Only on receiving  RED_MOUSE_MODE message, 
the client can know of actual mouse mode change.   

UINT32 – requested mode, one of RED_MOUSE_MODE_?
 

 3.5. Main channel init message

Spice server must send RedInit as the first transmitted message t and is disallowed to 
send it at any other point.

 a) RED_MAIN_INIT, RedInit

UINT32 session_id – session id is generated by the server. This id will be send on every 
new channel connection within this session (i.e., in RedLinkMess.connection_id).

UINT32 display_channels_hint – optional hint of expected number of display channels. 
Zero is defined as an invalid value 

UINT32 supported_mouse_modes – supported mouse modes. This is any combination 
of RED_MOUSE_MODE_?

UINT32  current_mouse_mode  –  the  current  mouse  mode,  one  of 
RED_MOUSE_MODE_?

UINT32 agent_connected – current state of Spice agent (see Section 3.8), 0 and 1 stand 
for disconnected and  connected state respectively.

UINT32  agent_tokens  –  number  of  available  tokens  for  sending  messages  to  Spice 
agent.

UINT32 multi_media_time – current server multimedia time. The multimedia time is 
used for synchronizing video (for more information see “Multimedia time”). 

UINT32  ram_hint  -   optional  hint  for  help  in  determining  global  LZ  compression 
dictionary size (for more information see section “Spice Image” in “Display Channel”). 

 3.6. Server side channels notification

In order to have the ability to dynamically attach to the server side channels, Spice protocol 
includes  RED_MAIN_CHANNELS_LIST  message.  This  massage  informs  the  client  of 
available channels in the server side. In response to this message the client can decide to 
link  with  the  new  available  channel(s).  The  server  must  receive 
REDC_MAIN_ATTACH_CHANNELS  before  sending  any 
RED_MAIN_CHANNELS_LIST message. 

 a) RED_MAIN_CHANNELS_LIST, RedChannels



UINT32 num_of_channels – number of channels in this list

RedChanneID[] channels – vector of “num_of_channels” channel ids

 b) RedChanneID

UINT8  type  –  channel  type,  one  of  RED_CHANNEL_?  channel  types,  except  for 
RED_CHANNEL_MAIN 

UINT8 id – channel id

 3.7. Multimedia time

Spice defines messages for setting multimedia time for synchronization of video and audio 
streams. Two methods for updating multimedia time are supported. The first method uses 
the time stamp of data that arrives on the playback channel.The second method uses the 
main  channel  RED_MAIN_MULTI_MEDIA_TIME message.  The latter  method is  used 
when  no active playback channel exist. 

 a) RED_MAIN_MULTI_MEDIA_TIME, UINT32

UINT32 – multimedia time

 3.8. Spice agent

Spice  protocol  defines  a  set  of  messages  for  bidirectional  communication  channel 
between  Spice  client  and  spice  client  agent  on  the  remote  server.  Spice  provides  a 
communication  channel  only,  the  actual  transferred  data  content  is  opaque  to  the 
protocol.  This  channel  can  be  used  for  various  purposes,  for  example,  client-guest 
clipboard sharing, authentication and display configuration.

Spice  client  receives  notifications  of  remote  site  agent  connection  as  part  of  the 
RED_MAIN_INIT  message  or  by  a  specific  server 
RED_MAIN_AGENT_CONNECTED.  Remote  agent  disconnection  notification  is 
delivered by RED_MAIN_AGENT_DISCONNECTED message. A bidirectional tokens 
mechanism  is  used  in  order  to  prevent  blocking  of  the  main  channel  with  agent 
messages (e.g., in case the agent stops consuming the data). Each side is not allowed to 
send more messages than the tokens allocated to it by the other side. The number of 
tokens that are allocated for the client is initialized from RED_MAIN_INIT message, 
and farther allocation of tokens is done using RED_MAIN_AGENT_TOKEN. Server 
tokens  initial  count  is  delivered  in  REDC_MAIN_AGENT_START  message.  This 
message  must  be  the  first  agent  related message  that  the  client  sends to  the  server. 
Farther tokens allocation for the server is done using  REDC_MAIN_AGENT_TOKEN. 
Actual  data  packets  are  delivered  using  RED_MAIN_AGENT_DATA  and 
REDC_MAIN_AGENT_DATA.



 a) Although agent messages are opaque for the protocol, agent data stream is defined by 
Spice protocol in order to delineate messages. Still, the  client-server communication is 
independent from the agent channel, e.g., agent protocol conflicts don't affect the rest of 
the channels. Agent stream is defined as a run of messages having the following format:

UINT32 protocol - unique protocol of this message. The protocol id must be 
registered in order to prevent conflicts.

UINT32 type – protocol dependent message type.

UINT64 opaque - protocol dependent opaque data.

UINT32 size – size of data  in bytes.

UINT8 data[0] – data of this message.

Client and server must continue processing unknown protocols messages or messages 
having unknown type (i.e., receive and dump).

 b) RED_MAIN_AGENT_CONNECTED, VOID

 c) RED_MAIN_AGENT_DISCONNECTED, UINT32

UINT32 – disconnect error code RED_ERROR_?

 d) RED_AGENT_MAX_DATA_SIZE = 2048

 e) RED_MAIN_AGENT_DATA, UINT8[]

Agent  packet  is  the  entire  message  body  (i.e.  RedDataHeader.size).  The  maximum 
packet size is RED_AGENT_MAX_DATA_SIZE.

 f) RED_MAIN_AGENT_TOKEN, UINT32

UINT32 – allocated tokens count for the client

 g) REDC_MAIN_AGENT_START, UINT32

UINT32 – allocated tokens count for the server

 h) REDC_MAIN_AGENT_DATA, UINT8[]

Agent  packet  is  the  entire  message  body  (i.e.  RedDataHeader.size).  The  maximum 
packet size is RED_AGENT_MAX_DATA_SIZE.

 i) REDC_MAIN_AGENT_TOKEN, UINT32

UINT32 – allocated tokens count for the server



 4. Inputs channel definition

Spice Inputs channel controls the server mouse and the keyboard.

 4.1. Client messages

REDC_INPUTS_KEY_DOWN = 101
REDC_INPUTS_KEY_UP = 102
REDC_INPUTS_KEY_MODIFAIERS = 103

REDC_INPUTS_MOUSE_MOTION = 111
REDC_INPUTS_MOUSE_POSITION = 112
REDC_INPUTS_MOUSE_PRESS = 113
REDC_INPUTS_MOUSE_RELEASE = 114

 4.2. Server Messages

RED_INPUTS_INIT = 101
RED_INPUTS_KEY_MODIFAIERS = 102

RED_INPUTS_MOUSE_MOTION_ACK = 111

 4.3. Keyboard messages

Spice supports sending keyboard key events and keyboard leds synchronization. The client 
sends   key  event  using  REDC_INPUTS_KEY_DOWN  and  REDC_INPUTS_KEY_UP 
messages. Key value is expressed using PC AT scan code (see KeyCode).   Keyboard leds 
synchronization is done by sending RED_INPUTS_KEY_MODIFAIERS message by the 
server or by sending REDC_INPUTS_KEY_MODIFAIERS by the client, these messages 
contain  keyboard  leds  state.  Keyboard  modifiers  is  also  sent  by  the  server  using 
RED_INPUTS_INIT, this message must be sent as the first server message and the server 
mustn't send it  at any other point. 

 a) Keyboard led bits

RED_SCROLL_LOCK_MODIFIER = 1
RED_NUM_LOCK_MODIFIER = 2
RED_CAPS_LOCK_MODIFIER = 4

 b) RED_INPUTS_INIT, UINT32

UINT32 – any combination of keyboard led bits. If bit is set then the led is on.



 c) RED_INPUTS_KEY_MODIFAIERS, UINT32

UINT32 – any combination of keyboard led bits. If bit is set then the led is on.

 d) REDC_INPUTS_KEY_MODIFAIERS, UINT32

UINT32 – any combination of keyboard led bits. If bit is set then the led is on.

 e) KeyCode

UINT8[4] - the value of key code is a PC AT scan code. The code is composed by up to 
four bytes for supporting extended codes. A code is terminated by a zero byte.

 f) REDC_INPUTS_KEY_DOWN, KeyCode

KeyCode – client sends this message to notify of key press event. 

 g) REDC_INPUTS_KEY_UP,  KeyCode

KeyCode – client sends this message to notify of key release event.

 4.4. Mouse messages

Spice support two modes of mouse operation: client mouse and server mouse (for more 
information see “Mouse modes”). In  server mouse mode the client sends mouse motion 
message  (i.e.,  REDC_INPUTS_MOUSE_MOTION),  and in  client  mouse  mode it  sends 
position message (i.e., REDC_INPUTS_MOUSE_POSITION). Position message holds the 
position of the client mouse on the display and the id of the display channel,  which is 
derived from RedLinkMess.channel_id. In order to prevent flood of mouse motion/position 
events,  the  server  sends  RED_INPUTS_MOUSE_MOTION_ACK  message  on  every 
RED_MOTION_ACK_BUNCH messages it receive. This mechanism allows the client to 
keep track on  the server's messages consumption rate  and to change the event pushing 
policy  according  to  it.  Mouse  button  events  are  sent  to  the  server  using 
REDC_INPUTS_MOUSE_PRESS and REDC_INPUTS_MOUSE_RELEASE messages. 

 a) Red Button ID

REDC_MOUSE_LBUTTON = 1, left button 
REDC_MOUSE_MBUTTON = 2, middle button
REDC_MOUSE_RBUTTON = 3, right button
REDC_MOUSE_UBUTTON = 4, scroll up button
REDC_MOUSE_DBUTTON = 5, scroll down button

 b) Buttons masks

REDC_LBUTTON_MASK = 1,  left button mask



REDC_MBUTTON_MASK = 2,  middle button mask
REDC_RBUTTON_MASK = 4, right button mask

 c) RED_MOTION_ACK_BUNCH = 4

 d) REDC_INPUTS_MOUSE_MOTION, RedcMouseMotion

INT32 dx – number of pixels the mouse had moved on x axis

INT32 dy - number of pixels the mouse had moved on y axis

UINT32 buttons_state  –  any combination  of  buttons  mask.  Set  bit  describe  pressed 
button and clear bit describe unpressed button.

 e) REDC_INPUTS_MOUSE_POSITION, RedcMousePosition

UINT32 x – position on x axis

UINT32 y - position on y axis

UINT32  buttons_state  -  any combination of buttons mask.  Set bit  describe  pressed 
button and clear bit describe unpressed button.

UINT8 display_id – id of the display that client mouse is on.

 f) REDC_INPUTS_MOUSE_PRESS, RedcMousePress

UINT32 button_id – one of REDC_MOUSE_?BUTTON

UINT32  buttons_state - any combination of buttons masks. Set bit describes pressed 
button, and clear bit describes unpressed button.

 g) REDC_INPUTS_MOUSE_RELEASE, RedcMouseRelease

UINT32 button_id – one of REDC_MOUSE_?BUTTON

UINT32  buttons_state - any combination of buttons mask. Set bit describes pressed 
button and clear bit describes unpressed button.

 5. Display channel definition

Spice protocol defines a set of messages for supporting rendering of the remote display area on 
the client display. The protocol supports rendering of graphics primitives (e.g., lines, images) 
and video streams. The protocol also supports caching of images and color palettes on the client 
side. Spice display channel supports several images compression methods for reducing network 
traffic.  



 5.1. Server messages

RED_DISPLAY_MODE = 101
RED_DISPLAY_MARK = 102
RED_DISPLAY_RESET = 103
RED_DISPLAY_COPY_BITS = 104

RED_DISPLAY_INVAL_LIST = 105
RED_DISPLAY_INVAL_ALL_IMAGES  = 106
RED_DISPLAY_INVAL_PALETTE = 107
RED_DISPLAY_INVAL_ALL_PALETTES = 108

RED_DISPLAY_STREAM_CREATE = 122
RED_DISPLAY_STREAM_DATA = 123
RED_DISPLAY_STREAM_CLIP = 124
RED_DISPLAY_STREAM_DESTROY = 125
RED_DISPLAY_STREAM_DESTROY_ALL = 126
    
RED_DISPLAY_DRAW_FILL = 302
RED_DISPLAY_DRAW_OPAQUE = 303
RED_DISPLAY_DRAW_COPY = 304
RED_DISPLAY_DRAW_BLEND = 305
RED_DISPLAY_DRAW_BLACKNESS = 306
RED_DISPLAY_DRAW_WHITENESS = 307
RED_DISPLAY_DRAW_INVERS = 308
RED_DISPLAY_DRAW_ROP3 = 309
RED_DISPLAY_DRAW_STROKE = 310
RED_DISPLAY_DRAW_TEXT = 311
RED_DISPLAY_DRAW_TRANSPARENT = 312
RED_DISPLAY_DRAW_ALPHA_BLEND = 313

 5.2. Client messages

REDC_DISPLAY_INIT = 101

 5.3. Operation flow

Spice  server  sends  to  the  client  a  mode  message  using  RED_DISPLAY_MODE  for 
specifying the current draw area size and format. In response the client creates a draw area 
for  rendering  all  the  followed rendering  commands  sent  by  the  server.  The  client  will 
expose the new remote display area content (i.e., after mode command) only after it receives 
a mark command (i.e., RED_DISPLAY_MARK) from the server. The server can send a 
reset command using RED_DISPLAY_RESET to instruct the client to drop its draw area 
and palette cache.  Sending  mode message is allowed only while no active draw area exists 
on the client side. Sending reset message is  allowed only while active draw area exists on 
client side. Sending mark message is allowed only once, between mode and reset messages. 



Draw commands, copy bits command and stream commands are allowed only if the client 
have  an  active  display  area  (i.e.,  between  RED_DISPLAY_MODE  to 
RED_DISPLAY_RESET). 

On  channel  connection,  the  client  optionally  sends  an  init  message,  using 
REDC_DISPLAY_INIT,  in  order  to  enable  image  caching  and  global  dictionary 
compression. The message includes the cache id and its size and the size of the dictionary 
compression window. These sizes and id are determined by the client.  It is disallowed to 
send more then one init message.

Color  pallets  cache  are  manged  by  the  server.  
Items cache insertion commands are sent as part of  the rendering commands. Cache items 
removal  are  sent  explicitly  using  RED_DISPLAY_INVAL_LIST  or 
RED_DISPLAY_INVAL_LIST server messages. Resetting client caches is done by sending 
RED_DISPLAY_INVAL_ALL_IMAGES or  RED_DISPLAY_INVAL_ALL_PALETTES 
server messages.

 5.4. Draw area control

 a) RED_DISPLAY_MODE,  RedMode

UINT32 width – width of the display area

UINT32 height - height of the display area

UINT32 depth – color depth of the display area. Valid values are 16bpp  or 32bpp.

 b) RED_DISPLAY_MARK, VOID

Mark the beginning of the display area visibility

 c) RED_DISPLAY_RESET, VOID

Drop current display area of the channel and reset palette cache

 5.5. Raster operation descriptor

The following defines a set of flags for describing raster operations that can be applied on a 
source  image,  source  brush,  destination  and  the  result  during  a  rendering  operation. 
Combination of those flags defines the necessary steps that are needed to be preformed 
during a rendering operation. In the the following definitions of rendering commands this 
combination is referred to by 'rop_descriptor'.

ROPD_INVERS_SRC = 1
Source Image need to be inverted before rendering



 
ROPD_INVERS_BRUSH = 2
Brush need to be inverted before rendering

ROPD_INVERS_DEST = 4
Destination area need to be inverted before rendering

ROPD_OP_PUT = 8
Copy operation should be used. 

ROPD_OP_OR = 16
OR operation should be used.

ROPD_OP_AND = 32
AND operation should be used.

ROPD_OP_XOR =64
XOR operation should be used.

ROPD_OP_BLACKNESS = 128
Destination pixel should be replaced by black

ROPD_OP_WHITENESS = 256
Destination pixel should be replaced by white

ROPD_OP_INVERS = 512
Destination pixel should be inverted

ROPD_INVERS_RES = 1024
Result of the operation needs to be inverted

▪ OP_PUT,  OP_OR,  OP_AND,  OP_XOR,  OP_BLACKNESS,  OP_WHITENESS,  and 
OP_INVERS are mutually exclusive

▪ OP_BLACKNESS, OP_WHITENESS, and OP_INVERS are exclusive

 5.6. Raw raster image

The following section describes Spice raw raster image (Pixmap). Pixmap is one of several 
ways to transfer images in Spice protocol (for more information see “Spice Image”).

 a) Pixmap format types

PIXMAP_FORMAT_1BIT_LE = 1
1 bit per pixel and bits order is little endian. Each pixel value is an index in a color table. 
The color table size is 2. 



PIXMAP_FORMAT_1BIT_BE = 2
1 bit per pixel and bits order is big endian. Each pixel value is index in a color table. The 
color table size is 2. 

PIXMAP_FORMAT_4BIT_LE = 3
4 bits per pixel and nibble order inside a byte is little endian. Each pixel value is an 
index in a color table. The color table size is 16. 

PIXMAP_FORMAT_4BIT_BE = 4
4 bits per pixel and nibble order inside a byte is big endian. Each pixel value is an index 
in a color table. The color table size is 16. 

PIXMAP_FORMAT_8BIT = 5 
8 bits per pixel. Each pixel value is an index in a color table. The color table size is 256. 

PIXMAP_FORMAT_16BIT = 6
pixel format is 16 bits RGB555. 

PIXMAP_FORMAT_24BIT = 7 
pixel format is 24 bits RGB888.

PIXMAP_FORMAT_32BIT = 8 
pixel format is 32 bits RGB888.

PIXMAP_FORMAT_RGBA = 9 
pixel format is 32 bits ARGB8888.

 b) Palette

UINT64 id -  unique id of the palette

UINT16 table_size – number of entries in the color table

UINT32[]  color_table  –  each entry is  RGB555 or  RGB888 color  depending on the 
current display area mode. If  display area mode color depth is 32, the effective format is 
RGB888.  If  display area mode color depth is 16 the effective format is  RGB555.

 c) Pixmap flags

PIXMAP_FLAG_PAL_CACHE_ME = 1
Instruct the client to add the palette to cache

PIXMAP_FLAG_PAL_FROM_CACHE = 2
Instruct the client to retrieve palette from cache.

PIXMAP_FLAG_TOP_DOWN = 4
Pixmap lines are ordered from top to bottom (i.e., line 0 is the highest line).

 d) Pixmap



UINT8 format – one of PIXMAP_FORMAT_?

UINT8 flags -  combination of PIXMAP_FLAG_?

UINT32 width – width of the pixmap

UINT32 height – height of the pixmap

UINT32 stride – number of bytes to add for moving from the beginning of line n to the 
beginning  of line n+1

union {
ADDRESS palette – address of the color palette. Must be zero if no color table is 
required for format.

UINT64 palette_id – id of the palette, valid if FLAG_PAL_FROM_CACHE is set
} 

ADDRESS data – address of line 0 of the pixmap.

 5.7. LZ with palette

This  section  describes  a  data  structure  that  is  combination  of  a  color  palette  and  a 
compressed pixmap data. The pixmap is compressed using our implementation of LZSS 
algorithm (see next section). Each decoded pixel value is an index in the color palette.

 a) LZPalette Flags

LZPALETTE_FLAG_PAL_CACHE_ME = 1
Instruct the client to add the palette to the cache

LZPALETTE_FLAG_PAL_FROM_CACHE = 2
Instruct the client to retrieve palette from the cache.

LZPALETTE_FLAG_TOP_DOWN = 4
pixmap lines are ordered from top to bottom (i.e. line 0 is the highest line).

 b) LZPalette 

UINT8 flags – combination of LZPALETTE_FLAG_?

UINT32 data_size – size of compressed data

union {
ADDRESS palette - address of the color palette (see Palette section in “Raw raster 
image”). Zero value is disallowed.



UINT64 palette_id - id of the palette, valid if FLAG_PAL_FROM_CACHE is set.
}

UINT8[] data – compressed pixmap

 5.8. Spice Image

The following section describes Spice image. Spice image is used in various commands and 
data structures for representing a raster image. Spice image supports several compression 
types  in  addition  to  the  raw  mode:  Quic,  LZ  and  GLZ.  Quic  is  a  predictive  coding 
algorithm. It is a generalization of SFALIC from gray-scale to color images withe addition 
of RLE encoding. By LZ we refer to the our implementation of the LZSS algorithm, which 
was adjusted for images in different formats. By GLZ we refer to an extension of LZ that 
allows it to use a dictionary that is based on a set of images and not just on the image being 
compressed.

 a) Image types

IMAGE_TYPE_PIXMAP = 0
IMAGE_TYPE_QUIC = 1
IMAGE_TYPE_LZ_PLT = 100
IMAGE_TYPE_LZ_RGB = 101
IMAGE_TYPE_GLZ_RGB = 102
IMAGE_TYPE_FROM_CACHE = 103

 b) Image flags

IMAGE_FLAG_CACHE_ME = 1, this flag instruct the client to add the image to image 
cache, cache key is ImageDescriptor.id (see below).

 c) ImageDescriptor

UINT64 id – unique id of the image

UINT8 type – type of the image. One of IMAGE_TYPE_?

UINT8 flags -  any combination of IMAGE_FLAG_?

UINT32 width -  width of the image

UINT32 height -  height of the image

 d) Image data

Image data follows ImageDescriptor and its content depends on ImageDescriptor.type:



In case of PIXMAP – content is Pixmap.

In case of QUIC – content is Quic compressed image. Data begins with   the size of the 
compressed data, represented by UINT32,  followed by the compressed data.

In case of LZ_PLT – content is  LZPalette.

In case of LZ_RGB – content is LZ_RGB  – LZ encoding of an RGB image. Data 
begins with  the size of the compressed data, represented by UINT32, followed by the 
compressed data.

In case of GLZ_RGB – content is GLZ_RGB – GLZ encoding of an RGB image. Data 
begins with the size of the compressed data, represented by UINT32, ,  followed by the 
compressed data.

In case of FROM_CACHE –  No image data. The client should use ImageDescriptor.id 
to retrieve the relevant image from cache.

 5.9. Glyph String

Glyph string defines an array of glyphs for rendering. Glyphs in a string can be in A1, A4 or 
A8  format  (i.e.,  1bpp,  4bpp,  or 8bpp alpha mask).  Every glyph contains its  rendering 
position on the destination draw area.

 a) RasterGlyph

POINT render_pos – location of the glyph on the draw area

POINT glyph_origin– origin of the glyph. The origin is relative to the upper left corner 
of the draw area. Positive value on x axis advances leftward and  positive value on y 
axis advances upward.

UINT16 width -  glyph's width

UINT16 height -  glyph's height

UINT8[] data – alpha mask of the glyph. Actual mask data depends on the glyph string's 
flags. If the format is A1 then the line stride is ALIGN(width, 8) / 8. If the format is A4, 
the line stride is ALIGN(width, 2) / 2. If the format is A8,  the line stride is width.

 b) Glyph String flags

GLYPH_STRING_FLAG_RASTER_A1 = 1
Glyphs type is 1bpp alpha value (i.e., 0 is transparent 1 is opaque)

GLYPH_STRING_FLAG_RASTER_A4 = 2
Glyphs type is 4bpp alpha value (i.e., 0 is transparent 16 is opaque)



GLYPH_STRING_FLAG_RASTER_A8 = 4
Glyphs type is 4bpp alpha value (i.e., 0 is transparent 256 is opaque)

GLYPH_STRING_FLAG_RASTER_TOP_DOWN = 8
Line 0 is the top line of the mask

 c) GlyphString

UINT16 length - number of glyphs
UINT16 flags – combination of GLYPH_STRING_FLAG_?
UINT8[] data - glyphs

 5.10. Data Types

 a) RectList

UINT32 count – number of RECT items in rects

RECT[] rects – array of <count> RECT

 b) Path segment flags

PATH_SEGMENT_FLAG_BEGIN = 1
this segment begins a new path

PATH_SEGMENT_FLAG_END = 2
this segment ends the current path

PATH_SEGMENT_FLAG_CLOSE = 8
this segment closes the path and is invalid if PATH_SEGMENT_FLAG_END is not set

PATH_SEGMENT_FLAG_BEZIER = 16
this segment content is a Bezier curve

 c) PathSeg

UINT32 flags – any combination of PATH_SEGMENT_FLAG_?  

UINT32 count – number of points in the segment

POINTFIX[] points – segment points

 d) PathSegList

List of PathSeg items. End of the list is reached if the sum of all previous PathSegs' 
sizes  is  equal  to   list_size.  Address  of  next  segment  is  the  address  of 



PathSeg.points[PathSeg.count]

UINT32 list_size – total size of in bytes of all PathSegs in the list,

PathSeg seg0 – first path segment.

 e) Clip types

CLIP_TYPE_NONE = 0
no clipping

CLIP_TYPE_RECTS = 1
data is RectList and union of all rectangles in RectList is the effective clip

CLIP_TYPE_PATH = 2
data is PathSegList and the figure described by PathSegList is the effective clip

 f) Clip

UIN32 type – one of CLIP_TYPE_?

ADDRESS data – address of clip data. The content depends on <type>

 g) Mask flags

MASK_FLAG_INVERS = 1, the effective mask is the inverse of the mask

 h) Mask

UINT8 flags – flags of the mask, combination of MASK_FLAG_?

POINT position - origin of the mask in bitmap coordinates

ADDRESS bitmap – address of the mask's image, the format of the image must be 1bpp. 
If the bitmap is zero then no masking operation needs to be preformed.

• In all rendering commands, the mask must be big enough to cover the destination 
rectangle

 i) Brush types

BRUSH_TYPE_NONE = 0, the brush is invalid.
BRUSH_TYPE_SOLID = 1, the brush is solid RGB color
BRUSH_TYPE_PATTERN = 2, the brush is a pattern.

 j) Pattern

ADDRESS image – address of the pattern's Image



POINT position – origin coordinates of the pattern in the image

 k) Brush

UINT32 type – one of BRUSH_TYPE_?

Union {

UINT32 color – RGB color. The format of the color depends on current draw area 
mode.

Pattern pattern;
}

 l) Image scale mode

The following defines the method for scaling image

IMAGE_SCALE_INTERPOLATE = 0
The client is allowed to INTERPOLATE pixel color.

IMAGE_SCALE_NEAREST = 1
The client must use the nearest pixel.

 m) LineAtrr flags  

LINE_ATTR_FLAG_START_WITH_GAP = 4
first style segment if gap (i.e., foreground)

LINE_ATTR_FLAG_STYLED = 8
style member of LineAtrr is valid and contains effective line style for the rendering 
operation.

 n) LineAtrr join style

LINE_ATTR_JOIN_ROUND = 0
LINE_ATTR_JOIN_BEVEL = 1
LINE_ATTR_JOIN_MITER = 2

 o) LineAtrr cap style

LINE_ATTR_CAP_ROUND = 0
LINE_ATTR_CAP_SQUARE = 1
LINE_ATTR_CAP_BUTT = 2

 p) LineAttr

UINT8 flags – combination of LINE_ATTR_?



UINT8 join_style – one of LINE_ATTR_JOIN_?

UINT8 cap_style - one of LINE_ATTR_CAP_?

UINT8 style_num_segments – number of style segments in line style

FIXED28_4 width – width of the line in pixels

FIXED28_4 miter_limit – miter limit in pixels

ADDRESS style – address of line style
line style is array of FIXED28_4. The array defines segments that each represents length 
of   foreground or  background pixels  in  the  style.  If  FLAG_START_WITH_GAP is 
defined then the first segment in the style is  background, otherwise it is foreground. 
Renderer uses  this array of segments repeatedly during rendering operation.

 5.11. Rendering command

 a) RedDrawBase

Common field to all rendering command 

RECT bounding_box – the affected area on the display area

Clip clip – the effective clip to set before rendering a command

 b) RED_DISPLAY_COPY_BITS

RedDrawBase
POINT source_position

Copy bits from the draw area to bounding_box on the draw area. Source area left top 
corner is source_position and its height and width is equal to bounding_box height and 
width. Source and  destination rectangles can overlap.

 c) RED_DISPLAY_DRAW_FILL

RedDrawBase
Brush brush
UINT16 rop_descriptor
Mask mask

Fill  bounding_box using brush as the fill pattern and rop_descriptor instructions. If the 
mask is valid, it will limit the modified area (i.e., only pixels on the destination area that 
their corresponding bits are set will be affected).

 d) RED_DISPLAY_DRAW_OPAQUE



RedDrawBase
ADDRESS source_image
RECT source_area
Brush brush
UINT16 rop_descriptor
UINT8 scale_mode
Mask mask

Combine  pixels  from  source_area  in  source_image  with  the  brush's  pattern  using 
rop_descriptor instructions. The result  image will be rendered into bounding_box. In 
case scaling of source image is required it will be performed according to scale_mode 
and before the combination with brush pixels. If mask is valid it will limit the modified 
area.

 e) RED_DISPLAY_DRAW_COPY

RedDrawBase
ADDRESS source_image
RECT source_area
UINT16 rop_descriptor
UINT8 scale_mode
Mask mask

Copy pixels from source_area in source_image to bounding_box using rop_descriptor 
instructions. In case scaling of source image is required it will be performed according 
to scale_mode and before the copying to the draw area. If mask is valid it will limit the 
modified area. 

 f) RED_DISPLAY_DRAW_BLEND

RedDrawBase
ADDRESS source_image
RECT source_area
UINT16 rop_descriptor
UINT8 scale_mode
Mask mask

Mixing pixels from source_area in source_image with bounding_box pixels on the  draw 
area using rop_descriptor instructions. In case scaling of source image is required it will 
be performed according to scale_mode and before the mixing with the draw area. If 
mask is valid it will limit the modified area.

 g) RED_DISPLAY_DRAW_BLACKNESS

RedDrawBase
Mask mask

Fill bounding_box with black pixels. If mask is valid it will limit the modified area.



 h) RED_DISPLAY_DRAW_WHITENESS

RedDrawBase
Mask mask

Fill bounding_box with white pixels. If mask is valid it will limit the modified area.

 i) RED_DISPLAY_DRAW_INVERS

RedDrawBase
Mask mask

Inverse all pixels in bounding_box. If mask is valid it will limit the modified area.

 j) RED_DISPLAY_DRAW_ROP3

RedDrawBase
ADDRESS source_image
RECT source_area
Brush brush
UINT8 rop3
UINT8 scale_mode
Mask mask

Mix pixels from source_area in source_image, bounding_box pixels in the draw area, 
and the brush pattern. The method for mixing three pixels into the destination area (i.e., 
bounding_box) is defined by rop3 (i.e.,  ternary raster operations). In case scaling of 
source image is required it will be performed according to scale_mode and before the 
mixing. If mask is valid it will limit the modified area.

 k) RED_DISPLAY_DRAW_TRANSPARENT

RedDrawBase
ADDRESS source_image
RECT source_area
UINT32 transparent_color
UINT32 transparent _true_color

Copy pixels from source_area on source_image to  bounding_box on the draw area. In 
case scaling of source image is required  it will use IMAGE_SCALE_NEAREST. Pixels 
with  value  equal  to  the  transparent  color  will  be  masked out.  Transparent  color  is 
provided in two forms: true color (i.e., RGB888) and  the color in the original format 
(i.e., before compression) .

 l) RED_DISPLAY_DRAW_ALPHA_BLEND

RedDrawBase
UINT8 alpha



ADDRESS source_image
RECT source_area

Alpha blend source_area of source_image on  bounding_box of draw area using alpha 
value or alternatively per pixel alpha value.  In case scaling of source image is required, 
it will use IMAGE_SCALE_INTERPOLATE mode. Alpha value is defined as 0 is full 
transparency and 255 is  full  opacity.  Format  of  source  image can be  pre-multiplied 
ARGB8888 for per pixel alpha value.

New RGB color is defined as:
color' =   (source_color *  alpha)  /  255
alpha' =   (source_alpha *  alpha)  /  255
new_color = color' + ((255 - alpha' ) * destination_color) / 255
 

 m) RED_DISPLAY_DRAW_STROKE

RedDrawBase
ADDRESS path – address of the PathSegList that defines the path to render
LineAttr attr
Bush brush
UINT16 fore_mode -  foreground rop_descriptor
UINT16 back_mode – background rop_descriptor

Render path using brush line attribute and rop descriptors.  If  the line is styled (i.e., 
LINE_ATTR_FLAG_STYLED is set in attr.falgs) then background (i.e., inverse of the 
style) is drawn using back_mode and the foreground is drawn using fore_mode. If the 
line is not  styled, the entire path is rendered using fore_mode.

 n) RED_DISPLAY_DRAW_TEXT

RedDrawBase
ADDRESS string – address of GlyphString
RECT back_area
Brush fore_brush
Brush back_brush
UINT16 fore_mode
UINT16 back_mode

Render string of glyph on the display area using brush fore_brush and the rop_descriptor 
fore_mode. If back_area is not empty the renderer fill  back_area on the display area 
prior  to  rendering  the  glyph  string.  back_area  is   filled  using  back_brush  and  the 
rop_descriptor back_mode.

 5.12. Video streaming commands

Spice supports the creation of video streams by the server for rendering video content on the 
client display area.  Unlike other rendering commands, the stream data can  be compressed 



using lossy or video specific  compression algorithms. It  is not required to  render video 
frames as they arrive and it is also allowed to drop video frames. This enables using video 
frames  buffering  for  having  smoother  playback  and  audio  synchronization.  Audio 
synchronization  is  achieved  by   using  time  stamp that  is  attached  to  audio  and  video 
streams. By using video streaming the network traffic can be dramatically reduced. When 
the  stream  is  created,  the  server  sends  create  message  using 
RED_DISPLAY_STREAM_CREATE. After the server creates a stream he can send data 
using  RED_DISPLAY_STREAM_DATA,  or  set  new  stream  clipping  by  sending  clip 
message  using  RED_DISPLAY_STREAM_CLIP.  Once  the  server  no  longer  needs  the 
stream, he can send destroy command using RED_DISPLAY_STREAM_DESTROY. The 
server  can  also  destroy  all  active  streams  by  sending  destroy  all  message  using 
RED_DISPLAY_STREAM_DESTROY_ALL.

 a) Stream flags

STREAM_FLAG_TOP_DOWN = 1, stream frame line order is from top to bottom

 b) Codec types

STREAM_CODEC_TYPE_MJPEG = 1, this stream uses motion JPEG  codec

 c) RED_DISPLAY_STREAM_CREATE,  RedStreamCreate

UINT32 id – id of the new stream. It is the server's responsibility to manage stream ids 

UINT32 flags – flags of the stream, any combination of STREAM_FLAG_?

UINT32  codec_type  –  type  of  codec  used  for  this  stream,  one  of 
STREAM_CODEC_TYPE_?

UINT64 reserved – must be zero 

UINT32 stream_width - width of the source frame.

UINT32 stream_height - height of the source frame

UINT32  source_width  –  actual  frame  width  to  use,  must  be  less  or  equal  to 
stream_width.

UINT32  source_height  -   actual  frame  height  to  use,  must  be  less  or  equal  to 
stream_height.

RECT destination – area to render into on the client display area 

Clip clip – clipping of the stream

 d) RED_DISPLAY_STREAM_DATA, RedStreamData

UINT32 id – stream id (i.e., RedStreamCreate.id)



UINT32 multimedia_time – frame time stamp

UINT32 data_size – stream data size to consume in bytes

UINT32 pad_size – additional data padding in bytes

UINT8[] data – stream data depending on RedStreamCreate.codec_type. Size of  data is 
( data_size +  pad_size)

 e) RED_DISPLAY_STREAM_CLIP, RedStreamClip

UINT32 id - stream id (i.e., RedStreamCreate.id)

Clip clip – new clipping of the stream

 f) RED_DISPLAY_STREAM_DESTROY, UINT32

UINT32 – id of stream to destroy  

 g) RED_DISPLAY_STREAM_DESTROY_ALL, VOID

Destroy all active streams

 5.13. Cache control

 a) Resource type

RED_RES_TYPE_IMAGE = 1

 b)  RedResourceID

UINT8 type – type of the resource, one of RED_RES_TYPE_?

UINT64 id – id of the resource

 c) RedResourceList

UINT16 count – number of items in resources

RedResourceID[] resources - list of  resources id

 d) RED_DISPLAY_INVAL_LIST, RedResourceList

RedResourceList – list of resources to remove from cache 

 e) RED_DISPLAY_INVAL_ALL_IMAGES, RedWaitForChannels



Remove all images from the image cache. The client must use RedWaitForChannels (for 
more info see 2.19 Channel synchronization) to synchronize with other channels before 
clearing the cache.

 f) RED_DISPLAY_INVAL_PALETTE, UINT64

UINT64 – id of palette, client needs to remove palette with that id from the cache 

 g) RED_DISPLAY_INVAL_ALL_PALETTES, VOID

Remove all palettes from palette cache

 6. Cursor channel definition

Spice protocol defines a set of messages for controlling cursor shape and position on the remote 
display  area,  cursor  position  messages  are  irrelevant  for  client  mouse  mode (see  “Mouse 
mode”). Spice protocol also defines a set of messages for managing cursor shape cache on the 
client  site.  Client  must  strictly  obey  all  such  instructions.  The  server  sends 
RED_CURSOR_INIT to set current pointer state (i.e., shape, position, visibility etc.) and to 
clear shape cache. After the server sends init message it can send  any other cursor command 
except for RED_CURSOR_INIT. The server can send RED_CURSOR_RESET message - this 
will disable the cursor and reset the cursor cache. After this message the only valid message the 
server can send is  RED_CURSOR_INIT. The relevant remote display area for a cursor channel 
is the one of the display channel that has the same channel id (i.e., RedLinkMess.channel_id).

 6.1. Server messages

RED_CURSOR_INIT = 101
RED_CURSOR_RESET = 102
RED_CURSOR_SET = 103
RED_CURSOR_MOVE = 104
RED_CURSOR_HIDE = 105
RED_CURSOR_TRAIL = 106
RED_CURSOR_INVAL_ONE = 107
RED_CURSOR_INVAL_ALL = 108

 a) Cursors types

▪ CURSOR_TYPE_ALPHA = 0
▪ CURSOR_TYPE_MONO = 1
▪ CURSOR_TYPE_COLOR4 = 2
▪ CURSOR_TYPE_COLOR8 = 3
▪ CURSOR_TYPE_COLOR16 = 4



▪ CURSOR_TYPE_COLOR24 = 5
▪ CURSOR_TYPE_COLOR32 = 6

 b) CursorHeader

UINT64 unique – unique identifier of the corresponding cursor shape. It  is used for 
storing and retrieving cursors from the cursor cache.

UINT16 type – type of the shape, one of CURSOR_TYPE_?

UINT16 width – width of the shape 

UINT16 height - height of the shape

UINT16 hot_spot_x – position of hot spot on x axis

UINT16 hot_spot_y - position of hot spot on y axis

 c) Cursor flags

CURSOR_FLAGS_NONE = 1 
set when RedCursor (see below) is invalid

CURSOR_CURSOR_FLAGS _CACHE_ME = 2
set  when  the  client  should  add  this  shape  to  the  shapes  cache.  The  client  will  use 
CursorHeader.unique as cache key.

CURSOR_FLAGS_FROM_CACHE = 4
set when the client should retrieve the cursor shape, using CursorHeader.unique as key, 
from the shapes cache. In this case all fields of CursorHeader except for 'unique' are 
invalid.

 d) RedCursor 

UINT32 flags – any valid combination of  RED_CURSOR_?
    
CursorHeader header

UINT8[] data – actual cursor shape data, the size is determine by width, height and type 
from CursorHeader. Next we will describe in detail the  shape data format according to 
cursor type:

• ALPHA, alpha shape – data contains pre-multiplied ARGB8888 pixmap. Line 
stride is is <width * 4>.

• MONO, monochrome shape -  data contains two bitmaps with size  <width> * 
<height>. The first bitmap is AND mask and the second is XOR mask.  Line 
stride is ALIGN(<width>, 8) / 8.  Bits order within every byte is big endian.



• COLOR4, 4 bits per pixel shape -  First data region is pixmap: the stride of the 
pixmap is ALIGN(width , 2) / 2; every nibble is translated to a color usingthe 
color palette; Nibble order is big endian. Second data region contain 16 colors 
palette: each entry is 32 bit RGB color. Third region is a bitmap mask:  line 
stride is ALIGN(<width>, 8) / 8; bits order within every byte is big endian.

• COLOR4, 8 bits per pixel shape -  First data region is pixmap: the stride of the 
pixmap is  <width>;  every  byte  is  translated to  color  using the  color  palette. 
Second data region contain 256 colors palette: each entry is 32 bit RGB color. 
Third region is a bitmap mask: line stride is ALIGN(<width>, 8) / 8; bits order 
within every byte is big endian.

• COLOR16, 16 bits per pixel shape -  First data region is pixmap: the stride of the 
pixmap is <width * 2>; every UINT16 is RGB_555. Second region is a bitmap 
mask: line stride is ALIGN(<width>, 8) / 8; bits order within every byte is big 
endian.

• COLOR24, 24 bits per pixel shape -  First data region is pixmap: the stride of the 
pixmap is <width * 3>; every UINT8[3] is RGB_888. Second region is a bitmap 
mask: line stride is ALIGN(<width>, 8) / 8; bits order within every byte is big 
endian.

• COLOR32, 32 bits per pixel shape -  First data region is pixmap: the stride of the 
pixmap is <width * 4>,;every UINT32 is RGB_888. Second region is a bitmap 
mask: line stride is ALIGN(<width>, 8) / 8; bits order within every byte is big 
endian.

For more deatails on drawing the cursor shape see Section 6.2.

 e) RED_CURSOR_INIT, RedCursorInit

POINT16 position – position of mouse pointer on the relevant display area. Not relevant 
in client mode. 

UINT16 trail_length – number of cursors in the trail excluding main cursor. 

UINT16 trail_frequency – millisecond interval between trail updates. 

UIN8 visible – if 1, the cursor is visible. If 0, the cursor is invisible.

RedCursor cursor – current cursor shape

 f) RED_CURSOR_RESET, VOID

 g) RED_CURSOR_SET, RedCursorSet

POINT16 position - position of mouse pointer on the relevant display area. not relevant 



in client mode. 

UINT8 visible – if 1, the cursor is visible. If 0, the cursor is invisible.

RedCursor cursor – current cursor shape

 h) RED_CURSOR_MOVE, POINT16

POINT16  –  new  mouse  position.  Not  relevant  in  client  mode.  This  message  also 
implicitly sets cursor visibility to 1. 

 i) RED_CURSOR_HIDE, VOID

Hide pointer on the relevant display area. 

 j) RED_CURSOR_TRAIL

UINT16 length - number of cursors in the trail excluding main cursor. 

UINT16 frequency - millisecond interval between trail updates

 k) RED_CURSOR_INVAL_ONE, UINT64

UINT64 – id of cursor shape to remove from the cursor cache   

 l) RED_CURSOR_INVAL_ALL, VOLD

Clear cursor cache

 6.2. Drawing the cursor shape according to the cursor type

This  section  is  relevant  only  for  server  mouse  mode.  Cursor  shape  positioning  on  the 
display area is done by placing cursor hot spot on the current cursor position.

 a) Alpha - no spacial handling, just bland the shape on the display area.

 b) Monochrome -
• For each cleared bit in the AND mask clear the corresponding bits in the relevant 

pixel on the display area 
• For each set bit in the XOR mask reverse the corresponding bits in the relevant pixel 

on the display area

 c) Color -
• If the source color is black and mask bit is set,  NOP.
• Else,  if  the  source color is white  and the  mask bit  is  set,  reverse all  bits  in  the 

relevant pixel on the display area.
• Else, put source color.



 7. Playback channel definition

Spice supports sending audio streams for playback on the client side. An audio stream is sent by 
the server in an audio packet using RED_PLAYBACK_DATA message. The content of the 
audio  packet  is  controlled  by  the  playback  mode  that  the  server  sends  using 
RED_PLAYBACK_MODE  message.  The  server  can  start  and  stop  the  stream  using 
RED_PLAYBACK_START and RED_PLAYBACK_STOP messages. Sending audio packet is 
allowed only between  start and stop messages. Sending  start message is allowed only in stop 
state and after at least one mode message was sent. Sending a stop message is allowed only 
during a start state.

 7.1. Server messages

RED_PLAYBACK_DATA = 101
RED_PLAYBACK_MODE = 102
RED_PLAYBACK_START = 103
RED_PLAYBACK_STOP = 104

 7.2. Audio format

RED_PLAYBACK_FMT_S16 = 1, each channel sample is a 16 bit signed integer  

 7.3. Playback data mode

Two types of data mode are available: (1) raw PCM data and (2) compressed data in CELT 
0_5_1 format.

RED_PLAYBACK_DATA_MODE_RAW = 1
RED_PLAYBACK_DATA_MODE_CELT_0_5_1= 2

 7.4. Playback channel capabilities

RED_PLAYBACK_CAP_CELT_0_5_1 = 0

Spice client needs to declare support of CELT_5_1 in channel capabilities in order to allow 
the server to send playback packets in CELT_0_5_1 format.

 7.5. RED_PLAYBACK_MODE, RedPlaybackMode

UINT32 time – server time stamp



UINT32 mode – one of RED_PLAYBACK_DATA_MODE_?

UINT8[] data – specific data, content depend on mode

 7.6. RED_PLAYBACK_START, RedRecordStart

UINT32 channels – number of audio channels

UINT32 format – one of RED_PLAYBACK_FMT_?

UINT32 frequency –  channel samples per second

 7.7. RED_PLAYBACK_DATA, RedPlaybackPacket

UINT32 time - server time stamp

UINT8[] data – playback data , content depend on mode

 7.8. RED_PLAYBACK_STOP, VOID

Stop current audio playback

 8. Record Channel definition

Spice supports transmitting of audio captured streams from the client to the server. Spice server 
starts  audio  capturing  using  RED_RECORD_START  message.  This  message  instructs  the 
client to  start  transmitting captured audio .  In  response,  the client sends time stamp of the 
stream start using REDC_RECORD_START_MARK. After the client sends start mark it can 
start transmitting audio stream data using REDC_RECORD_DATA. One mode message must 
be sent by the client before any other message using REDC_RECORD_MODE. This, in order 
to  inform the  server  on  what  type  of  data  will  be  transferred.  Mode  message  can  also  be 
transmitted  at  any  other  time  in  order  to  switch  the  data  type  delivered  by 
REDC_RECORD_DATA. The Server can send RED_RECORD_STOP for stopping captured 
audio streaming. Sending a start  message is allowed only while the stream is in stop state. 
Sending a stop message and data messages is allowed only while the stream is in start state. 
Sending mark message is  allowed only between start message and the first data message. 

 8.1. Server messages

RED_RECORD_START = 101
RED_RECORD_STOP = 102



 8.2. Client messages

    
REDC_RECORD_DATA = 101
REDC_RECORD_MODE = 102
REDC_RECORD_START_MARK = 103

 8.3. Audio format

RED_RECORD_FMT_S16 = 1, each channel sample is a 16 bit signed integer  

 8.4. Record data mode

Two types of data mode are available: (1) raw PCM data (2) compressed data   in CELT 
0.5.1 format.

RED_RECORD_DATA_MODE_RAW = 1
RED_RECORD_DATA_MODE_CELT_0_5_1 = 2

 8.5. Record channel capabilities

RED_PLAYBACK_CAP_CELT_0_5_1 = 0

Spice server needs to declare support of CELT_5_1 in channel capabilities in order to allow 
the client to send recorded packets in CELT_0_5_1 format.

 8.6. REDC_RECORD_MODE, RedcRecordMode

UINT32 time – client time stamp

UINT32 mode – one of RED_RECORD_DATA_MODE_?

UINT8[] data – specific data, content depend on mode

 8.7. RED_RECORD_START, RedRecordStart

UINT32 channels – number of audio channels

UINT32 format – one of RED_AUDIO_FMT_?

UINT32 frequency –  channel samples per second



 8.8. REDC_RECORD_START_MARK, UINT32

UINT32 – client time stamp of stream start

 8.9. REDC_RECORD_DATA, RedcRecordPacket

UINT32 time - client time stamp

UINT8[] data – recorded data , content depend on mode

 8.10. RED_RECORD_STOP, VOID

Stop current audio capture


	 1. Introduction
	 2. Common Protocol definition
	 2.1. Endianness
	 2.2. Data types
	 2.3. Protocol Magic number UINT8[4]
	 2.4. Protocol version
	 2.5. Compatibility – UINT32[]
	 2.6. Channel types – UINT8
	 2.7. Error codes UINT32
	 2.8. Warning codes
	 2.9. Information codes
	 2.10. public key buffer size.
	 2.11. Channel link: establishing a channel connection.
	 2.12. Protocol message definition
	 2.13. Common messages and messaging naming convention
	 2.14. Server messages that are common to all channels
	 2.15. Client messages that are common to all channels
	 2.16. Messages acknowledgment.
	 2.17. Ping
	 2.18. Channel migration
	 2.19. Channel synchronization
	 2.20. Disconnect reason
	 2.21. Server notification
	 3. Main Channel definition
	 3.1. Server messages
	 3.2. Client messages
	 3.3. Migration control
	 3.4. Mouse modes
	 3.5. Main channel init message
	 3.6. Server side channels notification
	 3.7. Multimedia time
	 3.8. Spice agent
	 4. Inputs channel definition
	 4.1. Client messages
	 4.2. Server Messages
	 4.3. Keyboard messages
	 4.4. Mouse messages
	 5. Display channel definition
	 5.1. Server messages
	 5.2. Client messages
	 5.3. Operation flow
	 5.4. Draw area control
	 5.5. Raster operation descriptor
	 5.6. Raw raster image
	 5.7. LZ with palette
	 5.8. Spice Image
	 5.9. Glyph String
	 5.10. Data Types
	 5.11. Rendering command
	 5.12. Video streaming commands
	 5.13. Cache control
	 6. Cursor channel definition
	 6.1. Server messages
	 6.2. Drawing the cursor shape according to the cursor type
	 7. Playback channel definition
	 7.1. Server messages
	 7.2. Audio format
	 7.3. Playback data mode
	 7.4. Playback channel capabilities
	 7.5. RED_PLAYBACK_MODE, RedPlaybackMode
	 7.6. RED_PLAYBACK_START, RedRecordStart
	 7.7. RED_PLAYBACK_DATA, RedPlaybackPacket
	 7.8. RED_PLAYBACK_STOP, VOID
	 8. Record Channel definition
	 8.1. Server messages
	 8.2. Client messages
	 8.3. Audio format
	 8.4. Record data mode
	 8.5. Record channel capabilities
	 8.6. REDC_RECORD_MODE, RedcRecordMode
	 8.7. RED_RECORD_START, RedRecordStart
	 8.8. REDC_RECORD_START_MARK, UINT32
	 8.9. REDC_RECORD_DATA, RedcRecordPacket
	 8.10. RED_RECORD_STOP, VOID

