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Abstract
There have been steady improvements in protein structure prediction during the past 2 decades.
However, current methods are still far from consistently predicting structural models accurately with
computing power accessible to common users. Toward achieving more accurate and efficient
structure prediction, we developed a number of novel methods and integrated them into a software
package, MUFOLD. First, a systematic protocol was developed to identify useful templates and
fragments from Protein Data Bank for a given target protein. Then, an efficient process was applied
for iterative coarse-grain model generation and evaluation at the Cα or backbone level. In this process,
we construct models using interresidue spatial restraints derived from alignments by
multidimensional scaling, evaluate and select models through clustering and static scoring functions,
and iteratively improve the selected models by integrating spatial restraints and previous models.
Finally, the full-atom models were evaluated using molecular dynamics simulations based on
structural changes under simulated heating. We have continuously improved the performance of
MUFOLD by using a benchmark of 200 proteins from the Astral database, where no template with
>25% sequence identity to any target protein is included. The average root-mean-square deviation
of the best models from the native structures is 4.28 Å, which shows significant and systematic
improvement over our previous methods. The computing time of MUFOLD is much shorter than
many other tools, such as Rosetta. MUFOLD demonstrated some success in the 2008 community-
wide experiment for protein structure prediction CASP8.
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INTRODUCTION
Knowledge of the three-dimensional structure of a protein often gives a basis for understanding
its function. However, the gap between numbers of known protein sequences and structures
has been dramatically increasing. As a comparison, Release 40.6 of July 28, 2009 of
UniProtKB/TrEMBL1 contained 8,926,016 nonredundant sequence entries, whereas there
were 59,790 structures (representing 34,480 nonredundant sequences) in Protein Data Bank
(PDB)2 as of August 25, 2009, two orders of magnitude fewer. One important tool to bridge
this gap is computational prediction, which has become more and more important because of
a huge number of biological sequences being generated by new sequencing technologies.
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Compared with experimental approaches, computational methods are cheap and fast, and they
can be applied at a much larger scale.

Computational protein structure prediction methods can be classified into three categories: (1)
comparative modeling (CM),3–7 (2) threading,8–16 and (3) ab initio prediction.17–21 Both CM
and threading are template-based, whereas ab initio methods do not require templates. CM
methods, based on the fact that evolutionarily related proteins typically share a similar
structure, build models for the target protein by aligning the target sequence to evolutionarily
related (i.e., homologous) template structures. Although ab initio methods, not relying on any
template, predict a protein structure by optimizing some scoring functions, which describe the
physical/statistical properties of a protein. In contrast to CM and ab initio predictions, threading
methods are designed to match target sequence to templates of similar structural folds, where
the target and template sequences are not required to be evolutionarily related.

Although significant progress has been made in the protein structure prediction over the past
2 decades, current computational methods are still far from consistently providing accurate
structures with reasonable computing time. For proteins sharing more than 30% sequence
identity to their homologous templates, models built by CM or threading methods are typically
comparable to low-resolution experimental structures. However, when the sequence identity
drops below 30%, modeling accuracy sharply decreases because of substantial alignment
errors. Ab initio methods require extensive computing resources because searching space is
huge and optimizing process has very high computational complexity, whereas the prediction
results are generally unreliable because of limitations of scoring functions and conformational
search. Currently, heuristic optimization methods such as genetic algorithms and Monte Carlo
simulations are time-consuming so as to generate structural models often far from the global
optimal solution of a scoring function. In addition, widely used scoring functions are generally
not accurate enough to identify the best structure from the generated structure pool. Hence,
although a number of prediction servers, such as Modeller,5 HHpred,7 I-TASSA,16 and
Robetta,21 have been developed, protein structure prediction has not been widely applied in
molecular biology studies other than homology modeling with structural templates of high-
sequence identity, because of low prediction accuracies and long computing time.

To address the above two issues, we propose a hybrid methodology of using whole and partial
template information, MUFOLD, to cover both template-based and ab initio predictions using
the same framework toward achieving improved accuracies and fast computing in automated
predictions. The key advantages of MUFOLD are as follows: (1) a fast model generation
method based on exploring different folds and alignments for the same target in short
computing time, and (2) an effective molecular dynamics (MD) simulation method to identify
the best structure from generated models. MUFOLD uses template information, but does not
assume that the correct fold is uniquely identified. Theoretically, for any given protein up to
100 residues, there is at least one already solved structure in the PDB that has a root-mean-
square deviation (RMSD) < 4 Å for 90% of its residues regardless of whether it is evolutionarily
related to other proteins with solved structures,15 which suggests that the protein structure
prediction problem can be solved in principle by using template-based methods. The main issue
is to identify the correct fold and alignment, which is often a daunting task for CM or threading
methods in most cases. In contrast to the conventional CM and threading methods, which
mainly rely on one fold and one alignment, we use a set of possible folds, and for each fold,
multiple templates (full-size and partial fragments) and various alignments are applied. This
is made possible by a much faster graph-based method, multidimensional scaling (MDS)22 in
coarse-grain model generation than the time-consuming optimization methods such as genetic
algorithms and Monte Carlo optimizations by current popular servers. Furthermore, we rank
models using their dynamics properties in addition to static scoring functions. We have
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demonstrated that the behavior of simulated unfolding under heating in MD simulation can
reveal the quality of structural model more effectively than static scoring functions.

We have implemented our methods into the software package MUFOLD, which is available
upon request. As a new framework for protein structure prediction, MUFOLD is at its early
stage of development. Nevertheless, MUFOLD demonstrated proof of principles in the 2008
community-wide experiment for protein structure prediction CASP23 (critical assessment of
techniques for protein structure prediction), which provides an assessment of the state-of-the
art in this field.

MATERIALS AND METHODS
The overview of MUFOLD is presented in Figure 1, which includes three main parts: (1)
template selection and alignments, that is, recognizing potentially useful templates/fragments
in PDB for the target sequence and finding alignments; (2) coarse-grain model generations and
evaluations, including fast model generations using MDS at the Cα or backbone atoms level
based on the spatial restraints derived from alignments, evaluations of models through
clustering and static scoring functions, and iterative improvement of selected models by
integrating spatial restraints and previous models; and (3) full-atom model evaluation through
MD simulations.

Template selection and alignment
MUFOLD is designed to cover the CM, threading, and ab initio structure predictions using a
unified framework. The first step of MUFOLD is to find suitable templates and alignments.
Here, the “template” is a general concept including the global homologous templates,
nonevolutionarily related (analogous) templates, and the locally compatible protein fragments
for the targets from PDB. MUFOLD adaptively applies different strategies for various targets.
In general, target sequences are classified into three categories as follows:

1. “Easy” targets that have significant hits by applying sequence-profile alignment tool
such as PSI-BLAST24 against the PDB database, that is, there is at least one alignment
hit (reported by PSI-BLAST) that can cover more than 70% of the target sequence
and with E-value 1e−3 or less. As homologous templates with high confidence
alignments can be easily found for this case, it is intuitive that the sequence alignments
can be used to obtain high-quality distance restraints directly.

2. “Medium” targets that have remote homologies to templates obtained by using
profile–profile alignment (e.g., HHSearch25), that is, there is at least one alignment
hit (reported by PSI-BLAST or HHsearch) with E-value less than 1e−2 (excluding
“easy” targets defined earlier). These targets probably have the correctly identified
fold information, but the alignments may be incorrect. Therefore, we try to obtain
various alignments by applying different tools and parameters for the correct fold.
For example, we apply PSI-BLAST with the parameters of “−j 3 −e 0.001 and nr90”
for profile and “−e 11000” for alignment. We also apply HHsearch with default
parameters. Coupled with the optimization of MDS, we sample distance restraints
and improve the restraints iteratively.

3. “Hard” targets that cannot be assigned to any template even by profile–profile
alignment, that is, targets other than the above two cases. We use a simple fast
threading approach to search for possible templates by aligning secondary structures.
Here, we apply BLAST to obtain alignments between the predicted secondary
structures of the target sequence and the actual secondary structures of templates.
More specifically, we predict secondary structures of a target protein using in-house
tool MUPRED,26 PSIPRED,27 and SSPro,28 and we convert the predicted secondary
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structures of H, E, C to 9 or 21 alphabets according to their predicted secondary
structure types and associated confidence values. We then train score matrixes
(similar to the Blosum matrix) for either 9 or 21 alphabets. In such fast alignments
using BLAST, although the top-1 hit may not represent the correct fold, the
compatible protein fragments of top-n (20–100) folds usually include the correct fold.

As we often obtain multiple alignments for one template protein sequence, we select top
alignment hits for the model generation using the following score:

Here Xi represents the i-th feature value in terms of the likelihood of the alignment to be correct.
For example, X1 is the sequence similarity of the hit, X2 the secondary structure similarity of
the hit, X3 the solvent accessibility similarity of the hit, and so forth. Note, both the secondary
structure and the solvent accessibility for a target are predicted based on its sequence, and the
corresponding values for a template are calculated based on its 3D structure. X̄i is the average
value of Xi from all alignment hits, and dev(Xi) is the standard deviation of Xi from X̄i. We rank
the alignment hits of a given template according to their scores and select top-k (k < 20)
alignments to generate the models.

Coarse-grain model generation
The main idea of MUFOLD is to construct models by optimally satisfying spatial restraints
derived from the alignments, which is similar to the existing system such as Modeller.5
However, there are two main differences: (1) instead of constructing full-atom models directly,
we model the structure hierarchically, that is, retrieving the spatial restraints for Cα or backbone
atoms to generate coarse-grain model at first and then constructing full-atom models based on
the coarse-grain model. In this way, we speed up the modeling dramatically without
significantly sacrificing accuracy. The fast modeling allows us to explore different folds and
alignments for the same target in reasonable computing time automatically. (2) In Modeller,
the spatial restraints derived from the aligned homologous proteins are expressed as probability
density functions (pdfs). Optimizing pdf and physical energy function simultaneously in
Modeller often works well when using a single template with good alignment or homogeneous
templates with consistent restraints. When the alignment has significant gaps or templates are
heterogeneous with inconsistent restraints, models generated by Modeller are often distorted,
as it cannot satisfy the pdf restraints or energy function well. In contrast, MUFOLD can better
accommodate diverse spatial restraints retrieved from heterogeneous alignments including
global or local alignments tailored for individual target. This is achieved through an iterative,
graph-based model generation method, which is free of any energy function. In the following
sections, we describe our methods of coarse-grain model generation in detail.

Graph-based model generation formulation
We formulate the structure prediction problem as a graph realization problem29 and then apply
an efficient optimization approach to solve it. The basic idea is to estimate the distances
between Cα (or backbone) atoms for each pair of amino acids in the target sequence (i.e., spatial
distance restraints) and then calculate the corresponding coordinates for all amino acids by
applying MDS to the distance restraints. Assume that there are n points (each representing the
Cα atom of a residue) Xk ∈ R3, k = 1,…,n in a 3D space. If we know the distances between
some pairs of points specified in the edge set, for example, dij between residue i at Xi and
residue j at Xj, then the graph realization problem is to determine the coordinates of the points
from the partial distance restraints, such that the distance between each pair of points matches
the given distance restraint, ||Xi − Xj|| = dij for all dij. If the distance restraints are inaccurate
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(e.g., estimated based on the aligned positions of the structure template), usually there is no
exact or unique solution to the overdetermined system of equations (in this article, we use
“restraint” to indicate “soft restraint,” which does not have to be satisfied as a hard condition).
Instead, the problem is formulated as an optimization problem that minimizes the sum of
squared errors. The basic realization problem can be formulated as minimizing the squared
error for a smoother function:

(1)

The optimization problem of Eq. (1) is generally non-convex with many local minima.
Traditional local optimization techniques, such as the Levenberg-Marquardt method,30 require
good initial points to produce good solutions. Global search methods such as simulated
annealing or genetic algorithms are very slow in the large continuous search space. However,
MDS is suitable for this optimization problem.

Multidimensional scaling
MDS method is efficient for solving the graph realization problem, which has been applied in
many fields such as machine learning and computational chemistry. MDS starts with one or
more distance matrices (or dissimilarity matrices) that are derived from points in a
multidimensional space, and it finds a placement of the points in a low-dimensional space,
where the distances between points resemble the original dissimilarities. Here, we estimate the
distances between Cα (or backbone) atoms for each pair of amino acids in the target sequence
as distance matrix and then calculate the coordinates of the Cα atom for each amino acid. We
obtain various distance restraints through the alignments to structural templates and then build
one model for each set of distance restraint through applying MDS. In MUFOLD, we generate
models using different techniques of MDS: classical metric MDS (noted as CMDS),31

weighted MDS (noted as WMDS),32 and split-and-combine MDS (noted as SC-MDS).33

CMDS is the first and simplest MDS algorithm. If the distance constraints are applied without
error in the Euclidean space, CMDS will exactly recreate the configuration of points (or its
mirror configuration) with a computational complexity of O(n3), where n is the number of
points. When there are errors in the distance constraints, CMDS minimizes the sum of least
squared errors between the estimated distances and the actual distances in the output model
for all pairs of points. In practice, the technique can gracefully tolerate errors due to the
overdetermination of the solution. This is important in the protein structure prediction, as our
distance restraints can be incomplete, inaccurate, and inconsistent.

Besides CMDS, we also apply WMDS in MUFOLD. At first, we roughly assess the confidence
of a distance constraint using the number of alignments that cover the residue pair and the
quality of each alignment. For a residue pair covered by high-quality alignments (e.g., PSI-
BLAST alignments with low E-values), we set higher weight for the corresponding restraint
to force WMDS to satisfy these restraints with high priority. The experiments show that WMDS
can generate more accurate results than CMDS.

We also use the SC-MDS technique to accelerate computation of large proteins. The main idea
of SC-MDS is divide-and-conquer.33 First, the whole set of points is divided into overlapping
subsets with relatively small intersections. Then, an MDS algorithm, such as CMDS or WMDS,
is applied to compute the coordinates of the points in each subset. Finally, the overlapping
subsets are combined through affine transformation between the coordinates of their
overlapping points. Let the size of intersections be p and the total number of points be n, the
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complexity of SC-MDS is O(p2n). When p ≪ n, its complexity is O(n), much faster than CMDS.
Note that SC-MDS speeds up the computation but does not improve the accuracy of the models.

Spatial distance restraints
As mentioned in the earlier section, predicted distance restraints are often noisy. Hence, our
strategy is to keep refining the initial models by sampling and improving the distance restraints
(or contact maps) iteratively.

The initial contact maps of a target protein are retrieved from alignments between the target
sequence and various template proteins in PDB obtained in the above step of “template
selection and alignment.” More specifically, we classify the alignments into two categories:
one is global (longer) alignment between the target protein and its homologous or analogous
template; the other is local (shorter) alignment between the target protein and some protein
fragment. The number of fragments depends on two factors: (1) the gaps in the template hits
and (2) the structural consistency or compatibility between the local alignments and the global
alignments. We first select the fragments that can cover the gaps in global alignments. We then
further select those fragments that have more consistent structures in the overlapping regions
between the local alignment and the global alignment. The number of fragments is typically
50–200.

For a given alignment between the target and a template, we first estimate the pair-wise distance
of the aligned residues in the target by the distance of the corresponding residues in the template.
For those residues that have not been covered by the alignment (i.e., gaps in the alignment),
we search for more fragments and then calculate the distance restraints from the corresponding
alignments. Nevertheless, there may still be residues of the target that are aligned to gaps or
two residues that are not covered by any single hit simultaneously so that related pair-wise
distances cannot be derived. For these missing pair-wise distances, we estimate them by the
shortest path distance. We know that the distance between the Cα atoms of adjacent amino
acids is about 3.8 Å, which means that any two Cα atoms can be connected at least by adjacent
Cα atoms. In fact, there are many different paths to connect two Cα atoms with adjacent Cα
atoms or Cα pairs that have estimated distances from alignments. Each path has a length that
equals to the sum of the distances of these connecting Cα pairs. The shortest path distance is
used to estimate the unknown pair-wise distance. Although the shortest path often
overestimates the distance, it provides an initial complete contact map for calculating a model
by MDS.

Although using multiple templates and fragments can generate models that are closer to the
native structure than any template alone, inconsistent restraints from different alignments and
distances estimated by the shortest path method may compromise the quality of the models.
Our strategy is to refine and improve the restraints iteratively by combining the original
restraints derived from the alignments (Dalignment) and the measured distances from the
generated models (Dmodel) as: Drefine = λ * Dalignment + (1 −λ)* Dmodel, 0 ≤ λ ≤1. There are
different ways to set the value of λ. For example, a simple way is to set λ = 0.5 if Dalignment is
available, otherwise λ = 0. Another way is to set λ according to the confidence level of
Dalignment. By performing this iterative generation, the quality of models often gets better and
better, while many deficiencies in the models are fixed over iterations.

An example of iteratively improved coarse-grain model generation is shown in Figure 2, where
we show the original and improved contact maps in (a) and (c) and the corresponding models
in (b) and (d), respectively. In the image of contact map, we use colors to illustrate the distances
between pair-wise residues, where the lighter the color is, the larger the distance is. By
comparing the data between Figure 2(a) and Figure 2(c), we can observe some changes in
colors. For example, the colors around the column (and row) of 20, 40, 80, and 180 are heavier
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in Figure 2(c) than those in Figure 2(a), which means that the distances of the corresponding
residues to the other residues have been shortened.

It should be mentioned that MDS generates two mirror models for any given contact map. As
we derive the model from template alignment, we can easily distinguish between correct and
mirror configurations. Technically, we superimpose the model configuration to the template
and calculate the reflection factor of the superimposition. If the reflection factor equals to 1, it
indicates that the configuration is correct; otherwise, it is the incorrect mirror.

Coarse-grain model evaluation
Model generation using MDS leads to a large number of candidate structures. In MUFOLD, a
process is used to select the near-native ones from the candidate set. Currently, structure quality
assessment and model selection generally use the scoring functions in two categories34:
physics-based energy functions and knowledge-based statistical potentials. The knowledge-
based statistical potentials are typically fast, easy to construct, and hence are most widely used
in the structure quality assessment. In MUFOLD, we apply a clustering-based and knowledge-
based scoring method to evaluate and select the models for the next iteration of model
improvement.

The main idea of MUFOLD model evaluation is an integrative approach by applying machine-
learning methods based on the values of various scoring functions for the candidate structures.
These scoring functions are normalized to z-scores, and the selected models are combined from
the representative of clustered structures and ranked by z-score. Specifically, the method
consists of four steps: filtering, clustering, cluster reduction, and centroid construction.

In the filtering step, poor structures are removed based on the thresholds and values of existing
scoring functions. We have investigated some state-of-the-art scoring functions, such as OPUS,
35 Dope,36 Model Evaluator,37 Rapdf,38 Dfire energy,39 Hopp score,40 and a geometric
potential (Li and Liang, Submitted). The correlations between RMSDs of the models to native
structures and the values of these functions vary significantly for different model sets: some
work well on high-accuracy CM models, whereas others work well on hard cases. Through
extensive experiments, we chose to use a subset of the scoring functions to filter and empirically
set the corresponding threshold values.

Next, the remaining structures are grouped into clusters based on pair-wise similarity measured
by RMSD. Most clustering methods including SPICKER41 use pairwise root-mean-squared
distance (pRMSD) between structures to indicate how these structures are similar to each other.
Here, we use an efficient way to approximate pRMSD, referred to as reference root-mean-
squared distance (rRMSD) developed by Li and Zhou.42 Our basic clustering process consists
of computing rRMSD and finding a proper cutoff of rRMSD to form clusters.

For cluster reduction, we try to find a subset of good models in a cluster, which often leads to
a better cluster centroid. We first apply the CMDS to map protein structures onto two-
dimensional space using their rRMSD values as similarity measures. Empirically, we found
that in the 2D map, points corresponding to good structures are often densely located together,
whereas points corresponding to poor structures tend to scatter throughout the space. Thus, we
develop several cluster reduction techniques, including cluster border shrinking, half-plane
pruning, and quadrant-based pruning to iteratively remove sparsely distributed points.43 In
cluster border shrinking, a bounding rectangle along the x- and y-axis is created for all the
points in the two-dimensional space. The distances from the medoid of all points to the four
sides of the bounding box are computed. In each round, the four sides will move toward the
medoid for a certain ratio, for example, 10%. Points outside the reduced bounding box are
removed. A new medoid is computed based on remaining points, and so on. In half-plane
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pruning, the distances of the medoid to the four borders (up, down, left, and right) are compared,
and then the longest distance side is pruned with all points on the opposite side of the medoid
are removed in each round. In quadrant-based pruning, a quadrant centering at the medoid is
pruned in each round. The two-dimensional plane is divided into four quadrants by drawing
two lines parallel to the two axes crossing at the cluster medoid. The quadrant with the largest
area is removed. This technique is more conservative than the half-plane pruning. These cluster
reduction techniques can be applied alone or combined. In our experiments, we found that a
combination of these techniques usually generated better results.

Finally, one model is selected or generated from each cluster. One method is to select the
medoid of the cluster, that is, to select a structural model whose average RMSD to all the
models in the cluster is minimal. Another way is to use the centroid of a cluster, that is, a model
that averages the coordinates of all the models in the cluster. A centroid model is usually better
than the medoid in the RMSD measure, but is often more likely to produce clashes among
atoms. Therefore, we allow users to set either medoid or centroids as the final models. A user
can also set the number of final models. For example, in CASP8 predictions, five final models
were generated for each target.

Full-atom model evaluation
The coarse-grain model generation and evaluation method described in the earlier section
provides various structures with significantly different conformations. How to identify the best
of them, that is, the one with the smallest RMSD compared with the unknown native structure
is highly challenging. Existing methods generally use static scoring functions35–40 to rank
models. However, the dynamics properties of a model may reveal its structural quality better
than static scoring functions. We assume that near native models are more stable than poor-
quality models during simulated heating, that is, the latter unfold at lower temperatures than
the former. Thus, the quantitative assessment of relative stabilities of structural models against
gradual heating provides an alternative way of ranking the structures’ quality. In this article,
we propose an MD-Ranking (MDR) method based on full-atom MD simulations44 to evaluate
and rank protein models according to their stabilities against external perturbations, for
example, change in temperature or externally applied forces. The basic idea is to build all-atom
models from the coarse-grain (Cα or backbone level) models, optimize models by energy
minimization, gradually heat the models, and then rank the models based on their structural
changes during heating.

More specifically, first, an all-atom model is built for each of the top 5–20 selected structures
by the above coarse-grain model generation and evaluation process. The coordinates of the
missing backbone and side-chain heavy atoms are predicted by using the program Pul-chra,
45 and the hydrogen atoms are added by using psfgen, which is part of the VMD package.46

Next, the obtained structures are optimized by removing the bad contacts through energy
minimization. Finally, the stability of a structure is tested by monitoring the change of its Cα
RMSD (cRMSD) with respect to its initial structure during the MD simulation of a scheduled
heating at a rate of 1 K/ps. The MD simulations are carried out in vacuum by coupling the
system to a Langevin heat bath whose temperature can be varied (i.e., the dynamics of protein
atoms is described by a Langevin equation). All energy minimization and MD simulations
were performed by using the CHARMM27 force field and the parallel NAMD2.6 MD
simulation program.44 It should be noted that besides our own generated models, the MDR
method can evaluate models from other software tools, such as Rosetta.21

To demonstrate how the MDR method works, Figure 3 shows three typical plots of the changes
in cRMSD during the heating MD simulations. For the first case [Fig. 3(a)], it contains a
structure with RMSD < 3 Å to the native one, and the selection of the best structure from the
dataset often works well. When the best structure in the set has RMSD > 3 Å, the RMSD of
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the top ranked structure is within 0.5 Å from the best structure in most cases [Fig. 3(b)]. In a
few cases, however, the MDR method yielded only mediocre results, as shown in Figure 3(c),
where the curves of different cRMSD changes mostly overlap with the lack of discerning
power. In summary, the performance of MDR varies for different cases, while it is most
efficient when the pool of decoys contains high-quality models (RMSD < 3 Å) besides poor
ones.

RESULTS
Over the past 2 years, MUFOLD has been consistently improved with the same 200 target
proteins and the same template database of 2248 proteins as the benchmark. In addition,
MUFOLD was applied to the category of “tertiary structure predictions” in CASP8. Here, we
evaluate MUFOLD models on the 200 target proteins and CASP8 targets.

Structure predictions for 200 benchmark sequences
The 2248 database proteins are selected from the December 2006 release of PDBSelect
database47 with length varying from 50 to 1500. The PDBSelect database consists of proteins
such that the sequence identity between any two proteins in the database does not exceed 25%.
The 200 target proteins were selected from the July 2005 release of Astral database,48 and they
satisfy the following criteria: (1) length ≤150 and (2) the sequence identity to any protein in
the template database does not exceed 25%.

We compared the performance of MUFOLD by implementing five different methods, (1) AA
+CMDS, (2)(AA+SS)+CMDS, (3) (AA+SS)+WMDS, (4) and (5) iterative (AA+SS)+CMDS,
over time as shown in Table I. Here “AA” represents sequence alignment information, “SS”
means secondary structure alignment information, and “CMDS” and “WMDS” indicate
generating model by classical MDS and weighted MDS, respectively. As the SC-MDS method
just speeds up the calculation but does not improve the accuracy of the models, we did not
include it in this table. In the first four methods, (1), (2), (3), and (4), we only used our in-house
tool MUPRED to predict the secondary structure and PSI-BLAST to obtain alignments,
whereas in method (5), we applied PSIPRED and SSPro to do the secondary structure
prediction, and HHSearch to obtain more alignment information. In future, we will apply our
in-house threading tool Prospect10 to obtain more alignments information.

For the model generation of each target protein, about 10,000 models are produced, and the
best model against the native structure is recorded to assess the model generation capacity.
From the data of methods (1) and (2), we can see that there is a significant improvement after
using secondary structure alignments. This is because secondary structure alignments can help
us find some hits without significant sequence similarity but still having similar structures. The
data of method (3) show that WMDS can obtain more accurate models than CMDS. However,
WMDS needs much more computational resources (an order of magnitude more CPU time).
From the data in method (4), we can see that the iterative method with CMDS is very powerful
to improve the prediction results. The data in method (5) indicate that by using different
predicted secondary structure information and applying different alignment tools, we can
obtain more alignment information, which can further help improve the prediction accuracy.
This is probably because we can sample more diverse folds and alignments to include more
accurate distance restraints. In addition, the GDT_TS scores of various methods have similar
improvements as RMSD. Note that GDT_TS (Global Distance Test Total Score)49

measurements are used as a major assessment criterion in the structure prediction. Here
GDT_TS = 100*(GDT_P1 + GDT_P2 + GDT_P4 + GDT_P8)/4, where GDT_Pn denotes the
percentage of residues in the model structure falling within a defined distance cutoff nÅ of
their position in the experimental structure. For example, the average gain of GDT_TS score
of method (5) over method (4) on the 200 target proteins is 2.79.
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Structure predictions for CASP8 targets
A total of 81 automated servers participated in the “tertiary structure predictions” of CASP8.
The CASP8 organizers used two broad categories to classify modeling difficulties of the
targets: the “template-based modeling” category, including domains where a suitable template
can be identified that covers all or nearly all of the target, and the “template-free
modeling” (FM) category including 13 proteins for which no suitable template can be
identified. As in previous CASPs, independent assessors evaluated five submitted models for
each target sequence.

In the category of “tertiary structure predictions,” we registered two servers in the CASP8
competition: MUFOLD-Server (with team code of 462) and MUFOLD-MD server (with team
code of 404). MUFOLD-Server included the template selection and alignment, and coarse-
grain model generation and evaluation described earlier. MUFOLD-MD applied Rosetta
(version 2.2.0) for ab initio generation of models. When Rosetta failed to provide structures
for large proteins, the models were generated by MUFOLD-Server. MUFOLD-MD applied
Rosetta to generate 10,000 ab initio models, selected the top 64 models using the Rosetta energy
function (when Rosetta failed, the top 64 models were provided by the MUFOLD-server), ran
MD simulation with scheduled heating from 40 to 140 K, at a rate of 1 K/ps, and ranked models
using their relative change in cRMSD during heating.

As a completely new framework for protein structure prediction, MUFOLD is at its early stage
of development and its performance as an automated server had not been fine-tuned before
CASP8 (that is why we used Rosetta models for MUFOLD-MD). Nevertheless, our servers
still worked very well for some targets, including both template-based targets and template-
free targets. For example, for some of template-based targets, such as T0398, T0443, T0444,
and T0499, MUFOLD-Server models are ranked top 3 among 81 competing servers based on
their GDT-TS scores. For some FM targets, such as for T0510_D3, a MUFOLD-MD model
was ranked the best model by the three independent assessors. For target T0405_D2, which
was a particularly difficult target, a MUFOLD-MD prediction was rated in the top 3 by two of
the assessors. For target T0416-D2, two of the assessors rated MUFOLD-MD model as No.1.

For target T0444 as shown in Figure 4, the first MUFOLD-Server model (T0444_TS462_1)
has the closest structural alignment to the native structure with an RMSD of 1.02 Å and the
GDT_TS score of 94.6. A comparison of top 20 models generated by various servers for T0444
in terms of the percentage of correctly aligned residues (by structure alignment) shows that the
MUFOLD-Server model is capable of achieving more accurate alignment at the C-terminal
region than other server models. One advantage of MUFOLD over some other servers is that
it applied fragments alignment information, which helps cover regions that do not have
significant structural information in the full-length template.

T0510 is a template-free target and it has three domains: D1: 1–163, D2: 168–235, and D3:
236–279. We did remarkably well on target T0510_D3, as shown in Figure 5. The best model
of MUFOLD-MD is the fourth model (T0510_4_D3), which was rated “the best” by the three
independent assessors with RMSD of 6.8 Å and GDT_TS of 55.81. The C-terminal region
(residues 255–279) has better prediction quality than the N-terminal one. This example
demonstrates the proof of principles that dynamic properties can better rank models than static
scoring functions.

For target T0416_D2, two of the assessors rated the second model T0416_2_D2 as the best
model, as shown in Figure 6. Furthermore, this model is in a different “structural” cluster from
models generated by other groups for this target. This is because most of existing methods use
static scoring functions to rank models, and they tended to select models from similar
“structural” clusters while we used the dynamics properties, which not only give a better
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ranking to the best candidate in the pool but also select a distinct structure from the candidate
pool. This example illustrates the uniqueness and novelty of our method.

Based on the official CASP8 results, in the FM category MUFOLD-MD is ranked No. 1 among
all server predictions, as shown in Table II. The No. 1 ranking has been confirmed by the
official CASP8 evaluation.51 The ranking of the servers was done according to the total GDT-
TS score (last column) obtained by summing up the GDT-TS scores of the best of the submitted
five models for each of the 13 FM targets. It should be noted that this evaluation does not
include manual predictions and various evaluation methods may give different rankings of
servers. The success of MUFOLD-MD in the FM category is attributed not only to Rosetta but
also to our MDR method that overall outperformed (though only marginally) the structure
ranking based on the Rosetta scoring function, referred to as the RSR method. This point is
illustrated in Figure 7, where we compare GDT-TS scores for structures of the 13 FM targets
obtained as follows: (i) the best of the 104 structures generated by Rosetta (dark blue); (ii) the
best of the top 64 structures obtained using the RSR method (light blue); (iii) the best of the
top 5 structures selected by RSR (red); (iv) the best of the top 5 structures selected with our
MDR method (green); and (v) the best of the five models submitted by the BAKER-ROBETTA
server. In most of the cases, the MDR method outperformed both RSR and ROBETTA. The
MDR method might have performed even better if the quality of the top 64 structures
determined through RSR would have been better.

To further demonstrate the advantages of MDR with respect to RSR, we have compared the
GDT-TS scores of the best of top 5 structures, corresponding to 41 CASP8 targets from the
Human and Server category, generated by MUFOLD-MD and selected by using the MDR and
RSR methods, respectively. The results are shown in Table III and Figure 8. Although in most
of the cases the difference between the GDT-TS scores was smaller than 5% (blue bars in Fig.
8), the MDR result (green bars) was substantially better than the RSR one (red bars) in almost
twice as many cases.

Improvement of MUFOLD-server since CASP8
The MUFOLD-Server that we applied in CASP8 was newly developed and did not go through
sufficient tests and validations. Hence, its performance was not satisfactory. In particular, it
failed completely in a number of easy targets where most servers predicted well. We have kept
improving the algorithms and the software of MUFOLD since CASP8. Major changes include
(1) database upgrading, (2) template and fragment selection, and (3) fine-tuning of the program.
For example, instead of the 30% nonredundant template database used in CASP8, the new
version uses a complete template database consisting of all PDB entries. Therefore, for each
target the new version often obtains closer templates and better alignments. In addition, the
new version uses more stringent criteria to select templates and fragment alignments, and fewer
models with poor quality are included in the structural model pool. Consequently, the clustering
and ranking methods are able to work better on these new models with narrower structural
diversities, especially for “easy” and “medium” cases. Furthermore, the new version better
handles many technical details, such as nonstandard amino acids in templates and optimization
of various parameters used in MUFOLD.

We tested the latest MUFOLD on the 50 prediction targets in the CASP8 Human and Server
section (http://predictioncenter.org/casp8/targetlist.cgi) that have available PDB files. Here,
we used a template database as of May 13, 2008 (which was earlier than submission deadline
of any CASP8 target). For each target, around 6000 models were generated, and finally, only
the top-1 ranked model by MUFOLD was selected. We compared the performance between
the latest MUFOLD-Server (named as MUFOLD-Server-New) and the MUFOLD-Server in
CASP8 (named as MUFOLD-Server-Old), as shown in Figure 9(a). We also evaluated the
capacity of clustering and ranking of models generated by MUFOLD by comparing the best
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model that MUFOLD-Server-New generated and the top-1 model that MUFOLD-Server-New
ranked, as shown in Figure 9(b). Figure 9(a) shows a dramatic improvement of MUFOLD since
CASP8. Especially for eight targets, MUFOLD-Server models in CASP8 have less than 40
GDT-TS scores and new models have more than 60 GDT-TS scores. Figure 9(b) shows that
the ranking method works particularly well for easier cases (with the GDT-TS score larger
than 50), although it still fails for most of the hard cases.

We also compared the MUFOLD-Server-New with two top servers in the field, that is, Zhang-
server and BAKER-ROBETTA, both of which participated in CASP8. As shown in Figure 10,
Zhang-Sever achieved an average GDT-TS score of 51.42 on the 50 targets used in Figure 9
and BAKER-ROBETTA obtained 48.12, whereas MUFOLD-Server-New got 46.44. It is clear
that MUFOLD has not reached the performance of these two servers. Nevertheless, MUFOLD-
Server-New outperform them in some cases; in particular, 10 of 50 are better than Zhang-
Server and 23 of 50 are better than BAKER-ROBETTA, which shows some proof of principles
of our new approach.

An important advantage of MUFOLD is its short computing time. We measured the CPU times
per models that MUFOLD-Server-New took on these 50 targets, as shown in Figure 11. In
addition, we fit the computing time y with the length of target x using a polynomial curve of
y = 5.60 * 10−8 * x3 + 5.04 * 10−5 * x2 − 0.01 * x + 0.8. The nice fitting demonstrates that the
computational complexity is up to the cube of target length, as expected for CMDS. For targets
with less than 100 amino acids, MUFOLD-Server just needs a few minutes on a single CPU
to generate thousands of models, whereas for targets with 200–300 amino acids, it takes a few
hours to finish the prediction. From our experience of running Rosetta, MUFOLD-Server is
typically more than 10 times faster than Rosetta given the same number of models generated.
In particular, MUFOLD works better than Rosetta for large proteins (>200 amino acids), where
the latter often fails to generate models. This is probably because Rosetta uses a Monte Carlo
scheme for searching conformations, which does not work well for large proteins as the number
of possible conformations grows exponentially with the protein size.

As protein structure prediction is a highly complex problem, MUFOLD needs a number of
functionalities to be developed. For example, lack of important modules such as domain parsing
and disorder region recognition in the MUFOLD system can lead to some poor predictions.
For target T0405_D1 (residue 2–73 of the 282 residues), our model was poor in terms of
GDT_TS score (29.30), GDT_TS ranking (#50), and RMSD = 2.82 Å. A comparison between
the target and our best-predicted model is shown in Figure 12. In contrast, the best model from
group (489) has GDT_TS score = 39.14 and GDT_TS rated = #1, with RMSD = 2.01 Å. Our
poor performance was partially due to the prediction without any domain parsing.

DISCUSSION
We have developed MUFOLD, a hybrid methodology of using whole and partial templates
information and along with new computational techniques for protein tertiary structure
prediction. MUFOLD covers both template-based and ab initio predictions using the same
framework and aims to achieve high accuracy and fast computing for automated prediction.
Two major novel contributions of MUFOLD are graph-based model generation and MDR. By
formulating the structure prediction problem as a graph realization problem, we can apply an
efficient optimization approach of MDS to speed up the prediction dramatically. In addition,
under this graph-based frame, we can iteratively improve the distance restraints by using the
information from the models and thus improve the predictions consistently. MDS’
computational efficiency allows MUFOLD to explore different folds and alignments, which
can be evaluated in 3D models by energy functions instead of optimizing structures using these
energy functions. This bypasses the computationally expensive process of optimization in
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typical model constructions by other methods. MDR, in contrast to widely used static scoring
functions, exploits dynamics properties of structures to evaluate their qualities, which can
identify best structures from a handful of structures selected by static energy functions more
effectively. This is a rare success in applications of MD simulation for general protein structure
predictions.

We have kept improving MUFOLD and used the same 200 target proteins and the same
template database of 2248 proteins to benchmark various methods. We have implemented the
MUFOLD methodology into a releasable software package, which is available upon request.
The executable programs will be available for general download by the end of 2009 after the
system is further debugged and documented. MUFOLD demonstrated some success in CASP8,
showing some unique advantages in comparison with other systems that have been developed
for many more years. In particular, MUFOLD demonstrated some success in CASP8.

As a completely new framework for protein structure prediction, there are various limitations
to address and new functionalities to implement for MUFOLD. MUFOLD currently can only
handle protein monomers but not protein oligomers or complexes. Like other tools, it is
important to combine predicted structural models and wet-lab experiments to take advantage
of the power of protein structure prediction. We are improving the system in many aspects.
For example, the current MDS method for model generation enforces partial template
information and structural quality but does not use any energy function to do so. We are
applying energy functions into the system to refine the predicted models. Another issue is that
models generated by MUFOLD have unique features compared with general decoys, where
general knowledge-based scoring functions were tested. We are exploring ways of training
new scoring functions52 specifically targeting our own structural models. Furthermore, the lack
of solvent in the MD simulations may lead to further errors of ranking, especially for structures
that show comparable change in cRMSD during heating. Therefore, the MDR ranking method
can be improved by considering a longer heating interval, using the GDT-TS or TM score
instead of cRMSD, and including implicit solvent in the simulation, although adding implicit
solvent may not be feasible in general protein structure prediction due to long computational
time. Finally, we will add more modules, such as multiple sequence alignment, disorder region
recognition and removal, domain parsing, and local quality assessment/refinement into the
automated predictions to achieve higher prediction accuracy. Our vision is to deliver MUFOLD
to the desktop machines of experimental biologists. An experimentalist using the Windows or
Mac operating system should easily make predictions and analyze the prediction results
through a graphical user interface to be developed. The computing time would be much faster
than the widely used tools like Modeller and Rosetta. This will bring substantial new impact
of protein structure prediction on biomedical studies.
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Figure 1.
Flowchart of the MUFOLD structure prediction method.
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Figure 2.
An example of iterative coarse-grain model generation.
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Figure 3.
Changes in cRMSD during the heating in MD simulations for three proteins. The colored curves
correspond to five models with various RMSD values to the native structures as labeled. The
bold fonts indicate top models ranked by MDR.

Zhang et al. Page 18

Proteins. Author manuscript; available in PMC 2010 June 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 4.
Performance of MUFOLD-Server models on target T0444. A comparison of top 20 models by
various CASP8 prediction groups for T0444 in terms of the percentage of residues in agreement
with the structure alignment is shown on the left (picture generated at the CASP8 assessment
website http://www.predictioncenter.org/casp8/results.cgi). The right side shows the structural
superimposition between the model of T0444_TS462_1 and the native structure of T0444.
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Figure 5.
Performance of five selected MUFOLD-MD models for target T0510_D3 (residues 236–279)
in CASP8. The RMSD and GDT_TS scores were calculated by the TM-score package.50 [Color
figure can be viewed in the online issue, which is available at www.interscience.wiley.com.]
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Figure 6.
Performance of five selected MUFOLD-MD models for target T0416_D2 in CASP8. The
RMSD and GDT_TS scores were calculated by TM-score package.50 [Color figure can be
viewed in the online issue, which is available at www.interscience.wiley.com.]
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Figure 7.
Comparison of GDT-TS scores for structures, corresponding to 13 target proteins from the
Free Modeling section in CASP8, obtained as follows: Best 10k = best of the 10,000 structures
(i.e., the one closest to the native structure) generated by Rosetta used in the MUFOLD-MD
server; Best 64 = best of the top 64 structures selected by the RSR method; Top5 RSR = best
of the top 5 structures selected with RSR; Top5 MDR = best of the top 5 structures selected
with MDR among “Best 64”; and Top5 Robetta = best of the five structures produced by the
BAKER-ROBETTA server.

Zhang et al. Page 22

Proteins. Author manuscript; available in PMC 2010 June 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 8.
Top: Comparison of the GDT-TS scores of the best of top 5 structures, corresponding to 41
target proteins from the Human and Server section of CASP8, selected by the MUFOLD-MD
server using the MDR (“Top5 MDR”) and RSR (“Top5 RSR”) methods, respectively. Bottom:
Difference between the GDT-TS scores obtained with the MDR and RSR methods for the same
structures as in the top panel. The green (or red) bars indicate that the GDT-TS score of the
structure picked by the MDR (or RSR) method was at least five points bigger than the other
one. For the blue bars, the difference between the GDT-TS scores (in absolute value) was less
than five points.
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Figure 9.
(a) Comparison between the MUFOLD-Server-New and the MUFOLD-Server-Old that was
used in CASP8; (b) comparison between the best-generated model (against the native structure)
and the top-1 model picked by MUFOLD-Server-New. The GDT_TS scores were calculated
by the TM-score package.50
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Figure 10.
Comparison between the MUFOLD-Server-New and Zhang-Server (a) or BAKER-
ROBETTA (b) in CASP8. The GDT_TS scores were calculated by the TM-score package.50
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Figure 11.
Single CPU time (Xeon E5440 Processor, 2.83GHz) per model that MUFOLD-Server-New
took for model generation on the 50 prediction targets in the CASP8 Human and Server section.
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Figure 12.
MUFOLD prediction for target T0405_D1.
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