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Update Topics
• Compilers 
• Objects & Images 
• Early Boot Path 
• Virtual Machines 
• Dump Kernel 
• Paravirtualization 
• Condition Handling



Compilers
One measure of the GEM-to-LLVM converter (G2L) work is the 
conversion of GEM tuples to LLVM’s internal language constructs. 
109 have been completed and 37 remain – 12 for C and 25 for 
BLISS; those numbers have been determined after months of 
testing. The tuple conversion continues at a steady pace. This is by 
no means the total G2L implementation story but it is a good, general 
indicator of progress.  

Implementation is in progress of the compiler builtins GEM handles 
internally that will be done in G2L. Other builtins call system routines 
which will be ported when we work on those functional areas of the 
system. LLVM intrinsics are used when they can assist in a builtin’s 
implementation. 

GEM and LLVM both have extensive debugging capabilities. GEM 
and LLVM debugging output mechanisms are being unified so that 
GEM, G2L, and LLVM have common output notation.



Compilers, continued
While continuing to use standard C language test suites we moved on 
to compiling individual VMS system source modules, then to the entire 
CRTL, and finally a full VMS system build up through the compile 
phase using the LLVM-based C compiler. We now have a 
comprehensive to-do list for what is required to build VMS itself. 

BLISS will benefit from some features in newer versions of LLVM than 
the one we are currently using, for example implementing BLISS’s 
explicit mapping of variables into PSECTs. We will update our LLVM, or 
back port the things we need, soon. We will also be moving to a wider 
scope of testing for BLISS once a little more G2L infrastructure is in 
place. A complete system build with the LLVM-based BLISS compiler is 
in the very near future. 

The overall MACRO compiler structure is taking shape and 
experimental VAX-to-x86 instruction substitution is underway to 
evaluate use of registers, the stack, and memory. This will help solidify 
the register mapping needed for x86.



Object & Images
The Calling Standard document is now in review, pulling together everything 
learned to date and specifying the details needed for VMS. The starting point is 
the AMD64 ABI and there are a number of challenges; for example register usage, 
PC-relative addressing, procedure values, and the memory model, to name a few 
that require some design work after evaluating multiple options. This work affects 
the LINKER, the image activator, INSTALL, debuggers, the compilers, and any 
analysis tools that know the internal structure of an object, an image, or a running 
process. 

ELF extensions will soon be added to this review. 

Once the basics are finalized we can finish the remainder of the Calling Standard 
in parallel with continuing work on the compilers, LINKER, and tools.  

We are not defining any details of the binary translator at this time but we do need 
a few “place holders” in the Calling Standard which can be expanded when the 
time comes.



The early boot path continues to be streamlined and modernized to be more suitable for the UEFI/
ACPI environment. The functions of the former primary bootstrap (VMB/APB/IPB) have been 
merged into the Boot Manager and SYSBOOT. 

We recently downloaded a new version of the industry-standard ACPI Component Architecture; 
this is about a nine-year update in one shot so there is verification testing of our current usage to 
do before moving forward. Making more comprehensive use of what ACPI provides is a major part 
of improving VMS device discovery and management. For example, VMS device probing is no 
longer needed since the ACPI tables contain the complete path to every device on the system. 

The Boot Manager now recognizes just about any PCI or USB device and this allows us to 
interact with devices using VMS device names rather than their UEFI ‘fsx:’ equivalents. Also, 
using UEFI’s BlockIO drivers allows us to support a much larger number of boot devices. 

Now that x86 VMS always boots from memory disk this new code gets plenty of testing from 
everyday development work and the details are always being fine tuned. We will soon start testing 
booting 1) over the network and 2) from DVD. The memory disk file itself is what gets download 
rather than individually loading the 100+ individual files as is the current case. The initial memory 
disk file is created by the VMS build/kitting process. 

After a few GPT “realizations” about Windows operation we can create bootable, GPT-type USB 
sticks from VMS which are compatible with both VMS and Windows file systems. This eases the 
task of testing software that is currently developed under Windows and moved to VMS. 
 

Early Boot Path



All of the current SYSBOOT work is in Microsoft C and built with Windows Visual Studio (as is 
VMS_BOOTMGR.EFI).  We will continue in this mode until we run into more MACRO-32 or BLISS 
than is worth rewriting. Still a ways into the future but EXEC_INIT will clearly be a brick wall until we 
have the VMS compilers. 

By skipping a few things (to return to later) and by converting BLISS into C, SYSBOOT continues to 
move rapidly.  Physical and virtual memory have been analyzed and sized, and boot-time memory 
allocation routines are available.  Exec slicing is set up, with the huge pages available for allocation. 
SYS$PUBLIC_VECTORS, SYS$BASE_IMAGE, and SYS$PLATFORM_SUPPORT have been 
loaded and sliced, and their relocations fixed up.  As built by Visual Studio, SYSBOOT itself is a 
PE32 image not an ELF image, so it cannot be fixed up as yet.  The following additional system data 
structures have been allocated: balance-set slots, working-set slots, system process header, paged 
and nonpaged pools, the error-log buffers, the SCB, and the CPU database. Allocation from 
nonpaged pool is enabled. The HWRPB and SWRPB have been relocated to system space. 

Next up is initialization of the CPU database. The Boot Manager already starts the secondary CPUs 
and leaves them in the rendezvous state so once the CPU database is established it will be a simple 
matter to transition the CPUs to executing some code. 

 

Early Boot Path, continued



Virtual Machines
This has been, and will almost certainly continue to be, an adventure. 
Initial work is done on HP Pro3500 Intel i3 systems. When stable up to a 
known point, VMS_BOOTMGR.EFI, SYSBOOT.EXE, and SYS$MD.DSK 
are moved to kvm, VirtualBox, and Fusion (VMware on the MAC). In 
most cases all three behave differently form one another and from the 
HP system. The most noticeable differences are the VMs' emulation of 
UEFI differ in 1) device identification, 2) the creating, saving, and 
restoring of environment variables (EVs), and 3) console I/O. 
The device discovery work done in the Boot Manager is paying off on the 
virtual machines. The keyboard I/O issue is now understood and we are 
looking at alternative implementations. A little more experimenting and 
use of EVs should fall into place. 



Dump Kernel
Big Picture Review: During normal system boot a second, minimalist OS instance is loaded 
into memory but not started. When the system goes down the crashing kernel gathers and 
stores information and BUGCHECK notifies the Boot Manager to boot the Dump Kernel 
which writes the crash dump using the runtime driver and finally initiates a shutdown. 

Currently the Dump Kernel boots and retrieves the initial state and displays the 
BUGCHECK code and message. It was determined early in development that the dump 
code needs to run in a full-blown user process so it is a user-mode program that runs in the 
Dump Kernel’s equivalent of the STARTUP process in the primary kernel. 
We are currently completing the console output of the crash data. Soon to follow are 
MOUNT/NOWRITE the target dump disk and locating the dump file’s LBNs. Then 
DISMOUNT and MOUNT/FOREIGN to write the crash dump file. 

This new Dump Kernel mechanism requires that the crash dump file not be on the system 
disk, that is dump off system disk (DOSD) only. 

All of the Dump Kernel testing is being done on Itanium but we do not intend to release the 
Dump Kernel in the Itanium VMS product. 



Paravirtualization
We are writing a Paravirtualization Strategy document to describe the overall plan for 
paravirtualized drivers in virtual machine environments. We need to decide which paravirtual 
drivers to pursue, some are obvious but others are not. 

We are using the VIRTIO API for the storage driver. VIRTIO is implemented by many 
hypervisors. Development continues implementing the VIRTIO API in the new paravirtualized 
storage driver VSPDRIVER, using the existing VMS AVIO driver as a template. 

The SCSI (fibre channel) IOGEN configuration code is complete. 

The SCSI Port Interface (SPI) routines called by the class driver to perform SCSI functions are 
complete. 

In progress is work on the controller and unit initialization routines to implement the VIRTIO 
API. 

Paravirtualized drivers are not mandatory for a running guest system but the improved 
performance they bring is a must for the future so we are trying to get a head start in this area. 



Condition Handling
The design document for the VMS Conditioning Handling Facility (CHF) 
on x86 is in progress. There are three main topics: the basics of the 
Itanium implementation, how x86 architecture differs, and how key 
areas of the code will change. The x86 handler will be much simpler 
than the Itanium handler due to a number of architectural differences.  
The CHF also contains the routines for unwinding the call stack which 
are used by a number of system components. Unwinding is also very 
different on x86 than Itanium. 
Most of the Itanium code is written in assembler and resides in 
EXCEPTION.EXE. For x86 we will rewrite as much as we can in C while 
retaining the overall structural flow whenever possible. There should be 
very few, if any, differences for callers of this code.  
Software Interrupt Services (SWIS) and the CHF are closely connected 
and that interface is part of this investigation and design.
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