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ABSTRACT

Crystallization in systems of hard polyhedra

by

Richmond S. Newman

Chair: Sharon C. Glotzer
Hard particle Monte Carlo computer simulations can be used to study both the

equilibrium crystal phases of polyhedra and the crystallization pathways in a sim-

plified model system. We present simulations of elongated LiYF4 square bipyra-

mids, explain the assembly behavior of gold rhombic dodecahedra, cubes, and

octahedra, and investigate in detail the thermodynamics and driving forces for

nucleation of a continuous family of polyhedra. In the work on bipyramids we

found that either truncation or particle interactions are required to form a novel

antiparallel phase. In the study of gold nanopolyhedra we found that the nucle-

ation behavior and structural quality for each polyhedra is strongly dependent on

novel properties arising from each shape. Following this, we delved into the nucle-

ation process studying the thermodynamics and free energy barriers to crystalliza-

tion in rhombic dodecahedra and spheres, and found that the polyhedral faceting

stabilized the nucleation pathway. We then demonstrated the importance of this

faceting by studying truncations of the rhombic dodecahedra and found that the

truncation undermined the local symmetry of the fluid and increased the driving

forces required for nucleation. This work demonstrates the role of simulation in

understanding experimental systems and how perturbations to shape can alter the

pathway to crystallization.
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CHAPTER 1

Introduction

1.1 Introduction

We are entering an era where more and more monodisperse colloidal building blocks can
be synthesized and used for self-assembly. This opens up the search space for creating
crystal structures at new length scales that were inaccessable to atomic systems. In addi-
tion, novel features arise when noble-metal building blocks are crystallized into ordered
superlattices, such as the unusually strong surface plasmon resonance[1, 2, 3, 4] and col-
lective oscillations of free electrons[5, 6, 7, 8, 9] that arise when these nanocrystal form
superlattices[5, 9, 10]. Many of these building blocks are shaped like nanoscale polyhedra
arising from crystalline faceting and minimization of surface free energies. The promise
of length-scale control of crystals beyond the atomic is the subject of intense research
interest[5, 11, 12, 13]. Furthermore, the size and shape of these nanopolyhedra can be
controlled by using the surface-ligand interactions and other synthesis conditions, allow-
ing for large numbers of different shapes to be synthesized, such as silver nanocubes to
nanooctahedra[5], which have been successfully used for self-assembly[14] into superlat-
tices, or the etching of vertices of gold rhombic dodecahedra into rhombicuboctahedra[15].

A first-order approximation of these polyhedral particles is the hard-particle model,
which models the polyhedral excluded volume as non-overlapping regions. Hard-particle
models have been in use in simulations since Rosenbluth and Metropolis in 1953[16] in
a study of disks, to show a first order phase transition in hard spheres in 1957[17, 18],
and continues to be used today. The hard particle model describes the excluded volume
interactions of particles and allows for the study of the entropic effects of packing. In
2012, Damasceno[19] studied the equilibrium self-assembled structures of 145 different
convex hard polyhedra and found that 101 crystallized given sufficient density, and the
remaining 44 jammed before reaching an ordered packing. While many of the building
blocks formed simple face- and body-centered cubic lattices, it was found that many shapes
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formed crystals of surprising complexity, such as β-Mn, A15, σ, as well as the previously
studied tetrahedron quasicrystal[20, 21] despite consisting of a single-component. Damas-
ceno also found that the coordination number in the fluid, the number of local neighbors to
each polyhedra, was a significant predictor of the crystalline solid, as was the isoperimetric
quotient, the ratio of the volume of a polyhedron divided by the volume of a sphere, con-
sidered at equal surface area of each(‘isoperimetric’). Further simulations of anisotropic
polyhedra found that facets have an entropic tendency to line up face-to-face to maximize
excluded volume[22, 23], but this does not explain all structures, such as the self-assembly
of octahedra into the Minkowski lattice[14], where particles in the crystal are not aligned
face-to-face. In these theoretical investigations of hard particles, the driving force to assem-
ble is free energy, which reduces to only entropy when there are no explicit interactions. In
the literature, hard models and simulations[14, 19, 24] have been used successfully to ex-
plain the equilibrium behavior of experimentally self-assembled structures, including those
of spheres, cubes, cuboctahedra, and octahedra[14, 6, 5, 25].

Simulations are continuing to guide the understanding of experimental self-assemblies
of new nanopolyhedra, which we discuss in detail in two case studies of nanopolyhedra
in chapters 3 and 4. Much is still unknown, however, about how crystals form in these
polyhedral systems. In experiments, it is difficult to probe the time-evolution of a sys-
tem. Zhang[25] used synchrotron-based in-situ grazing-incidence small-angle X-ray scat-
tering (GISAXS) to study nanooctahedra in droplets. Their GISAXS results suggested
a reversible phase transition as a function of solvent concentration, as well as reversible
changes of the lattice constant when growing or shrinking the droplets, showing that density
was a reversible and controllable parameter of their system. Unfortunately, the nucleation
event itself was not readily observable despite the reversibility.

In the early 1990s, Auer and Frenkel pioneered methods for studying crystallization
in hard spheres, developing methods that can calculate free energies of clusters in the
fluid[26, 27, 28]. One advantage that comes into play in simulation is that we can probe
directly the statistical mechanics of a model system. Unlike in experiments, exact measure-
ments can be made of density, volume, pressure, interaction potential, and other properties
of interest. Using umbrella sampling Auer managed to calculate free energy barriers to
nucleation as a function of nuclei size for hard spheres using Monte Carlo simulations, and
made comparisons to classical nucleation theory suggesting that this model held. Classi-
cal nucleation theory models the free energy for a crystalline nucleus where supersaturated
solutions are driven to crystallize by a favorable chemical potential ∆µ, and resisted by an
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interfacial energy term γ. For a spherical nucleus of radius R, the free energy is given by

∆G =
4

3
πR3ρ∆µ+ 4πR2γ. (1.1)

A critical nucleus is defined to be a nucleus with 50% probability to crystallize, which
occurs approximately when the free energy of a cluster of N particles βG(N) is maximal.
They also used estimates of cluster size fluctuations and attachment rates in conjunction
with these free energies and estimates of diffusion to try to compute nucleation rates. Their
results were found to have significant disparities between experimental and simulated re-
sults for nucleation rates: namely, at low supersaturations experimental systems appeared
to nucleate many orders of magnitude faster. Both hard spheres, and believed to be hard
sphere colloids (in the sense that the particles are as weakly interacting as possible) form
cubic-close packed structures with many hexagonally close-packed stacking faults. A great
difficulty in these comparisons lies in the fact that nucleation rates were shown by Auer[27]
to be heavily dependent on density, with fluids at a packing fraction of φ = 0.521 having
critical nuclei at βG = 42, and at φ = 0.534 barriers of only βG = 18. Potential other
sources of error are matching the dense phase diffusion coefficients to provide a timescale
for the Monte Carlo simulations, and the difficulty of measuring exact particle packing
fractions in experiments as well as the potential for particles to have a ’soft’ interaction
due to surface charging, particularly for particles on the size scale suitable for positional
tracking via confocal microscopy, of at least 1µm[29].

Further research on hard spheres investigated effects of polydispersity δ, or the Gaus-
sian length-scale distribution of particles, which was found to significantly reduce nucle-
ation for polydispersity δ > 5%[28]. They found that polydispersity causes the interfa-
cial energy to rise with supersaturation, so once polydispersity reached δ = 10% further
increases to the driving force ∆µ stopped reducing the nucleation barriers described by
nucleation theory in equation 1.1. This suggests that polydispersity was not the source of
discrepancy in nucleation rates between simulations and experiments as it further hinders
nucleation.

Recently, advances in computational resources have expanded sufficiently to allow for
similar studies of nucleation to be carried out on hard polyhedra, which are much more
expensive to simulate due to the computational costs of checking whether configurations
overlap.

Work on polyhedral polydispersity by Agarwal[30] found similar results to the hard
sphere literature, but for a select few polyhedra. They found that two space filling poly-
hedra, cubes and truncated octahedra, respectively, were more tolerant to polydispersity
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than cuboctahedra or octahedra before failing to self-assemble. Generally the ranges of
polydispersity in simulation are consistent with what is known to work in experiments.
Moreover, recently first investigations of the nucleation behavior of polyhedra have been
undertaken by Thapar[31], who suggests that local polyhedra orientations are important
for self-assembly, and that orientational order ‘fosters the growth of orientationally dis-
ordered nuclei’. I will elaborate on these ideas further in chapter 5, where I discuss the
crystallization (including free energy barriers) of rhombic dodecahedra and spheres into
face-centered cubic crystals in detail to better understand these two common shapes and
their self-assembly. Chapter 6 expands on this further, computing nucleation barriers and
driving forces for a continuous change from a rhombic dodecahedron to a rhombicuboc-
tahedron for a family of face-centered cubic forming polyhedra to isolate the impact of
faceting in a controlled manner instead of studying disparate shapes.
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CHAPTER 2

Methods

2.1 Hard Particle Models

When we discuss hard particles, we mean particles that cannot overlap in the slightest.
When used as a model of colloid systems, this can be thought of accounting for the ex-
cluded volume and helps us understand the role of entropy in the system as it possesses
no enthalpic contributions. For hard spheres of diameter σ this leads to pairwise potential
energies between particles i and j of the form

U(i, j) =

0 |rij| < σ

∞ |rij| ≥ σ
, (2.1)

where rij is the distance vector from i to j. For simulations of hard polyhedra, a similar
rule holds where the energy is either 0 or∞ based on whether or not the polyhedra overlap.
Overlap checks for hard particle simulations to evaluate this pair potential are based on the
Gilbert-Johnson-Keerthi distance algorithm [32, 33]. This algorithm searches for overlaps
between pairs of polyhedra A and B by considering the set difference of all points within
them

A−B = {a− b|a ∈ A, b ∈ B}. (2.2)

The algorithm defines a simplex consisting of vertices of the convex polyhedron A − B

and iteratively updates it, swapping vertices, in a search towards the origin. If the origin
is found, it means a − b = 0 existed for some a ∈ A and b ∈ B, so that the two polyhe-
dra overlap. If the algorithm converges without finding the origin, then the sets of space
defining A and B are disjoint.
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2.2 Statistical Mechanics and Thermodynamics

A brief primer on statistical mechanics is given here as it is necessary to understand the
Monto Carlo simulation method, as well as useful for understanding the umbrella sampling,
interfacial pinning, and thermodynamic integration methods.

2.2.1 Canonical Ensemble

A statistical mechanical ensemble for a given system is defined to be the set of all possible
states that the system can possess. Different ensembles can be defined for different ther-
modynamic systems, but as we wish to describe systems of colloidal particles, let us first
consider a system with a fixed number of particles N , volume V , in contact with a heat
bath of temperature T . This ensemble is called the canonical ensemble, and referred to as
the NV T ensemble. Particles are allowed to possess continuous positions r and momenta
p. The particles may have some interactions, which are included in the Hamiltonian of the
systemH.

These statistical mechanical ensembles are described by the partition function–also
known as the configurational integral–which as the later name suggests is the integral over
all possible microstates (configurations). For the ensemble described in d dimensions and
isotropic particles, the partition function is

ZNV T =
1

N !

1

hdN

∫ ∫
dpNdrN exp

[
−H(pN , rN)

kBT

]
. (2.3)

This is simplified by inserting the Hamiltonian and separating the integrals describing
kinetic and potential energy

ZNV T =
1

N !

1

hdN

∫
dpN exp

[
− |pi|2

2mkBT

] ∫
drN exp

[
−U(rN)

kBT

]
(2.4)

and continuing on, integrating over the particle momenta,

ZNV T =
1

N !ΛdN

∫
drN exp

[
−U(rN)

kBT

]
, (2.5)

where Λ =
√
h2/(2πmkbT ). The potential energy of the system U usually arises from a

pairwise potential energy U between particles

U =
N∑
i=1

N∑
j=1

U(i, j)(1− δij), (2.6)
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for all particles i and j. This integral for many-body systems is generally nontrivial to
compute analytically. The exception is the ideal gas, where the integral over each particle
position of U = 0 gives V N . The Monte Carlo method, described later, is an approach for
sampling this integral numerically. Full knowledge of the partition function gives enormous
information about the thermodynamics of the system. It can be shown that the log of the
partition function gives the Helmholtz free energy

F = −kbT lnZ (2.7)

or equivalently,
Z = e−F/(kbT ) (2.8)

Other thermodynamic properties can be derived from the Helmholtz energy using the fun-
damental relation

dF = −SdT + PdV − µdN. (2.9)

Rearranging yields expressions for entropy, pressure and chemical potential.

P = −
(
∂F

∂V

)
T,N

(2.10)

S = −
(
∂F

∂T

)
V,N

(2.11)

µ =

(
∂F

∂N

)
T,V

(2.12)

Needless to say, it is desirable to know the partition function because it describes the ther-
modynamics of the system, but, unfortunately it is challenging to compute the integrals
over rN .

Another important feature of the ensemble is that the probability of a given microstate
occuring follows the Boltzmann distribution, with the probablity Pr of a particular config-
uration depending only on the potential energy U associated with that microstate rNi , that
is

Pr(rNi ) =
1

Z
e−U(rNi )/(kbT ) (2.13)

An important consequence of this is that ensemble averages of a thermodynamic observable
A can be computed by a weighted integral via these probabilities,

〈A〉 =

1
N !ΛdN

∫
drNA(rN) exp

[
−U(rN )

kBT

]
ZNV T

. (2.14)
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〈A〉 =

∫
drNA(rN) exp

[
−U(rN )

kBT

]
∫
drN exp

[
−U(rN )

kBT

] (2.15)

Similar results for ensemble averaging can be written for other ensembles. For instance,
in the isothermal-isobaric (NPT ) ensemble, the volume is allowed to fluctuate. This leads
to an analogous result that integrates over the configuration of the particles within the sys-
tem as before, but with an additional integral over different possible system volumes and a
PV work term:

〈A〉NPT =

∫
dV
∫
drNA(rN) exp

[
−U(rN )

kBT

]
exp

[
− PV
kBT

]
∫
dV
∫
drN exp

[
−U(rN )

kBT

]
exp

[
− PV
kBT

] . (2.16)

In section 2.3 we will discuss how to approximate equations 2.15 and 2.16 using Monte
Carlo simulations. For more details on classical statistical mechanics in relation to simula-
tions we refer to the excellent books on molecular simulation by Frenkel and Smit[34] or
Sethna[35].

2.3 Monte Carlo Simulation Method

The Monte Carlo method is a technique that allows for simulations to effectively sample
statistical mechanical ensembles. In the discussion of statistical mechanics we saw that
solving the configurational integrals and for the partition function would yield almost all
information about the system. As it turns out, solving the configurational integrals are
beyond Herculean, so we must look for a new approach if we wish to study systems of
more than a few particles in the canonical or isothermal-isobaric enembles. Metropolis
and Rosenbluth[16] provided an approach to sample these integrals in their study of hard
disks. They proposed a numerical solution to the dN dimensional integrals by sampling
configurations with a probability of exp(−U/kbT ) and weighting them evenly, rather than
trying to sample random configurations within phase space rn, and weighting them by
exp(−U/kbT ) as dictated by equation 2.13. The difference allows avoiding excessive sam-
pling of high-energy states that contribute little to the partition function.

For the case of hard particles, any system possessing any overlaps has U = ∞ cor-
responding to probability 0. For moderately dense systems that crystallize in d = 3, we
usually need thousands of particles to avoid finite size effects at a packing fraction φ ≈ 0.5.
Random states at these densities almost surely overlap, such that importance sampling to-
wards low-energy states (for hard particles, those not overlapping) is required to efficiently
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or usefully sample configurational phase space.
This sampling of microstates weighted by exp(−U/kbT ), the same probability as those

in the canonical ensemble (equation 2.13), means that we can calculate statistical mechan-
ically correct ensemble averages of thermodynamic observables as simply

〈A〉 =
1

M

M∑
i=1

A(rNi ), (2.17)

where the sum carries over measurements i of the system, and A(rNi ) is the value of the ob-
servable A at a given configuration of the system rNi . This lets us properly sample observ-
ables once the simulations equilibrate, without analytically solving the partition functions
and integrals in equations 2.15 and 2.16.

The generation of new microstates in this importance sampling does require certain
conditions to be met to accurately represent statistical mechanical ensembles. This is done
by generating a particular Markovian random walk through configurational space. The
most common update moves to this random walk are a perturbation of the particle positions
(or orientations) through phase space, each of which is called a trial move. The acceptance
probability of each trial Praccept is based upon the change in energy

Praccept = min{1, e−(Unew−Uold)}. (2.18)

The simulations move forward by iteratively running trial moves. For a system of N parti-
cles, we considerN positional moves to constitute one Monte Carlo cycle, and also include
N orientational moves if anisotropic and one volumetric move if in the NPT ensemble. In
the Monte Carlo scheme for the simulations in this thesis, local positional moves on ran-
dom particles are chosen on a uniform random distribution within a small ball of fixed size,
and similarly, rotational moves on anisotropic particles are confined to a local perturbation
of the quaternion representing orientations of particles. Other Monte Carlo moves can be
defined as well to speed equilibration of systems, such as particle type exchanging moves
in binary systems[36], but are not used in this work.

The changes in each trial also are chosen to obey detailed balance, a sufficient but not
necessary constraint that the transition probabilities between given states be equal. Detailed
balance is simply that the probability flux between any pair of microstates i and j are equal;
that is, given the probability of being in a microstate πi, and transition probabilities of i to
j denoted as qij , detailed balance is given by

πiqij = πjqji. (2.19)
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In fact, the acceptance criterion described in 2.18 is chosen to satisfy this constraint given
that the microstate probabilities πi are distributed according to 2.13. Substituting both
equations yields detailed balance.

The sufficient and necessary condition for the simulation moves to converge to sampling
the canonical ensemble is that they are chosen so they follow global balance[37]. This
requirement constrains the net flux in and out of any given state,

πi
∑
j 6=i

qij =
∑
j 6=i

πjqji. (2.20)

The pairwise detailed balance assures global balance, as it implies that each pair of i and
j possible in the global balance summation are equal, such that the sums must be equal.
Satisfying the global balance constraint guarantees that the simulation should eventually
converge to equilibrium given sufficient time and allow for sampling of observables.

The description of a Monte Carlo simulation and its requirements here was given for
theNV T ensemble, but simulations in other ensembles are performed as well. Simulations
in the NPT ensemble require a box update move and acceptance criterion over volumes
that maintain detailed balance. Further discussion of implementations of such are available
elsewhere[33, 34], and when done correctly allow equilibrium measurements of a simula-
tion to calculate thermodynamic averages using equation 2.17.

In this work we used a Monte Carlo simulator implemented by Michael Engel, as
well as HPMC[33], a parallelized Monte Carlo simulation code written as an extension
to HOOMD[38], a high performance molecular dynamics simulation package.

2.4 Order Parameters

Order parameters are useful for quantifying the results from computer simulations. Datasets
can be generated for as many state-points as computational resources allow, and it is useful
to be able to characterize properties of the system using automated, analytic methods rather
than doing structural identification by hand. Moreover, events such as finding small nuclei
in a bath of fluid would be impossible without techniques to robustly identify them. For
such studies, each simulation state would represent a haystack that may not even contain a
needle. Discussed here are order parameters that have broad or common use. Specific order
parameters developed for use on specific papers are discussed in the appropriate chapters
describing the work.
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2.4.1 Local Bond Order Parameters

Characterizing particle local structures is often done by considering their local bond envi-
ronment, where the bonds are constructed between neighboring particles. Several choices
exist for defining neighbors. The most common is to define neighbors as those lying within
a sufficiently close, fixed distance, that is generally taken to be within the first peak of the
radial distribution function, oft called the pairwise correlation function g(r). We colloqui-
ally call this cutoff radius rcut. A second is to use a fixed number of nearest neighbors,
which is a good choice for crystals whose local structure is known. An example of this is
hard disks having six neighbors when placed on a triangular lattice. A third approach is
to weight neighbors by their contact area in a Voronoi tesselation[39]. The latter has the
useful property of continuity with respect to small perturbations in particle positions, mak-
ing the methods more numerically stable and continuous. The latter approaches are often
unnecessary, however, and are significantly more computationally expensive[40]. In this
work we generally used a fixed distance cutoff to classify neighbors rcut that is common in
the literature and which functions well for structures with at least 10 neighbors. For struc-
tures such as diamond with a coordination number of 4, the use of the latter two methods
should be considered.

These local environments are frequently characterized using spherical harmonics. Spher-
ical harmonics Ylm are a set of functions that arise as the angular solution to Laplace’s
equation, ∇2ϕ = 0, in spherical coordinates. This set of functions is a natural choice for
representing orientational information as they form a complete orthonormal basis of func-
tions on the unit sphere. This means that there exists a linear combination of spherical
harmonics equal to any square-integrable function f(θ, φ). This is analogous to the Fourier
series which uses sums of sines and cosines as a basis to represent square integrable func-
tions on finite intervals in R.

The spherical harmonics are defined as

Ylm(θ, φ) =

√
2l + 1

4π

(l −m)!

(l +m)!
Pm
l (cos θ)eimφ, (2.21)

where

Pm
l (x) =

(−1)m

2ll!
(1− x2)m/2

dl+m

dxl+m
(x2 − 1)l. (2.22)

Steinhardt defined locally invariant order parameters[41] based on these spherical har-
monics; these have been implemented in our group’s analysis package, Freud[42]. Rota-
tionally invariant order parameters are desirable as they yield the same value when analyz-
ing systems with different crystal orientations. I implemented his local Ql order parameter,
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defined for each particle i in a system as

Ql(i) =

(
4π

2l + 1

l∑
m=−l

|Qlm|2
) 1

2

, (2.23)

where

qlm(i) =

Nn(i)∑
j=1

Ylm(θij, φij). (2.24)

Nn(i) is the number of neighboring particles j of particle i and the spherical harmonic
Ylm is computed over orientations θ and φij from the interparticle distance vector rij =

rj−ri. These order parameters are useful for quantifying different fluids and crystals when
averaged over the system, and are also useful metrics of local ordering or fluctuations in
the system.

2.4.2 Solid-Liquid Order Parameters for Nuclei Detection

Robust order parameters exist for separating crystalline regions from disordered fluid for
a variety of crystal structures. The order parameter by ten Wolde[43] robustly solves this
task. I have written an implementation for this into our research group analysis code, Freud,
which is to be open sourced in the near future[42].

In the first step, we compute the local bond-orientational order, given above in equation
2.24. The bond orientational order measures the local environment of each particle. To
look for crystalline regions a scalar product between all pairs of local environments is used
as a measure of correlation given as

ql(i, j) =
l∑

m=−l
Re(qlm(i)q∗lm(j)). (2.25)

It can be expected that the local environments of particles in a crystal have more coher-
ent products than the disordered fluid because the crystal has long-range positional order.
This means that particles that are in the crystals should have larger real components after
the product in equation 2.25. In equation 2.25 we do not normalize the the sum as the
magnitude is a reflection of the quality of the match and indicative to some extent of the
number of neighbors. This matches the convention used by Auer[26, 27, 28]. Other au-
thors choose to normalize equation 2.25 with the magnitude of equation 2.24, which leads
to different cutoff values being required[44, 31, 45]. Overall the choice to normalize makes
little difference in the ability to detect crystalline clusters in systems.
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For each pair of particles that correlate sufficiently we define solid-like bonds if the
values of ql(i, j) exceed a certain threshold cutoff qc:

S(i) =
Nn∑
j=1

H(ql(i, j)− qc), (2.26)

where H is the unit step function. Particles that then possess sufficient numbers of solid-
like bonds S greater than or equal to another cutoff sc are considered to be in a crystalline
local environment and are eligible for particle clustering by joining neighbors within a local
distance cutoff to locate disjoint clusters.

While broadly tunable for a wide variety of structures, this metric of ordering requires
at least four parameters, l, rcut, qc, and sc. It also requires a choice of neighbor environment,
usually taken to be a fixed rcut. Our implementation also allows for selecting the k closest
neighbors, for instance k = 12 for FCC, and for only using a radial shell of neighbors
for computing equation 2.25. This large parameter search space often requires training on
known fluid and crystal frames to find desirable values for the cutoffs.

This order parameter is capable of identifying many common structures from disor-
dered fluids, such as face centered cubic, body centered cubic, diamond, single including
the common such as simple cubic, body-centered cubic, face-centered cubic, hexagonal
close packing, diamond, as well as more complex structures such as the dodecagonal qua-
sicrystal studied by Engel[46] created from a pair potential. A section of quasicrystal is
shown in Figure 2.1, illustrating the use of this order parameter in distinguishing fluid from
solid. This order parameter is used to analyze simulations of polyhedra in chapters 4, 5,
and 6.

2.5 Umbrella Sampling

The formation of clusters in the homogeneous nucleation regime is rare and without bi-
asing methods adequate statistics cannot be determined to sufficient precision to calculate
free energies. As direct sampling of simulations is inadequate we turn to the technique
of umbrella sampling to help sample adequate statistics of the cluster size distribution
[26, 27, 28, 44, 47]. In this approach, a harmonic bias potential (‘umbrella’, after the
shape) is added to the simulation to allow for sampling near a particular value of an order
parameter. Here we use N , the size of the largest cluster, in the simulation as the order pa-
rameter and bias towards a target size Nt by adding the harmonic biasing potential shown
in equation 2.27.
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Figure 2.1: Solid-Liquid order parameter identifying a quasicrystal. Quasicrystalline
particles are colored yellow. Fluid particles are displayed as small grey dots and only
a thin slice of the dense simulation box is shown to make it easier to see the structure.
Parameters were set to l = 10, qc = 5.2, sc = 20. For computing qlm (equation 2.24) and
solid particle clustering a radius of up to 2.1 was used to define neighboring particles. For
computing ql(i, j) in equation 2.25 particles within a shell between rmin and rmax = 3 were
used. These convoluted parameters were found by brute force training on files of known
disordered and ordered states. This image was produced by Michael Engel.

14



In practice, short Monte Carlo trajectories (say 25 MC cycles) are run on the system be-
fore evaluating the bias energy to amortize computational expenses of the order parameter.
Measurements of the cluster size are taken after each trajectory, and the energy is evaluated
as

UN = k(N −Nt)
2. (2.27)

Values of this potential energy are added to the total potential energy ∆U , which is used
as the energy in the Monte Carlo acceptance criterion. For hard particles, this is the only
relevant energy. We show the potential containing the order parameter we use, but it can be
any other that tracks desirable system properties.

The use of this bias potential is to move the simulation to sample values of the order
parameter that would normally be too rare to get statistics. The end goal, however, is to
compute free energies of different values of this order parameter, which requires a prob-
ability distribution consistent with the original ensemble. The count of largest clusters of
size N given a system containing NP particles is denoted CN(N). Using this observable,
sampled from many measurements over the system we can compute an ensemble average
similar to that in equations 2.17, but we must weight the states by the inverse of the applied
bias to the simulation:

〈CN〉 =

∑M
i CNe

βUN (N)∑M
i eβUN (N)

, (2.28)

and also normalize by the remaining correction to the partition function, which was previ-
ously only the number of samples. After sampling many microstates, we can construct a
probability distribution of having a cluster of size N within the system,

p(N)

Np

' CN(N)

Np

(2.29)

The equality holds if the probability of having a second cluster of size N is extremely
small[27]. For sections of p(N) where this is not true, direct sampling of the cluster size
distributions considering all clusters, instead of the largest is required. From this we can
compute free energy barriers using the probability distribution

βG(N) = − lnP (N) (2.30)

Free energy curves have an arbitrary shift for each sampled target Nt, and need to be
aligned to form a single contiguous curve. We align the free energy curves for different
Nt using the weighted histogram analysis method[48], and shift the overall curve such that
G(N = 0) = 0.
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In this work we use a spring constant k = 0.1. To detect face-centered cubic structures
we use the order parameter described in the prior section, with l = 6, Qc = 20, Sc = 6,
and an rcut = 1.7 about unit volume shapes. Once equilibrated, for each simulated state-
point as a function of Nt, pressure P and shape we perform at least 50,000 umbrella trials
on 10 independent replicates. Small clusters are sampled directly without this technique,
and for larger clusters we use values of Nt = 15 for the first target cluster size, and then
multiples of ten (starting a twenty) until we have sampled sizes large enough to exceed the
free energy maxima.

2.6 Thermodynamic Integration

The chemical potential µ between two phases at pressure P is calculated by integrating the
fluid and solid equations of state from the coexistence pressure to P . We can derive the
necessary integral starting with the thermodynamic potential for Gibbs free energy,

dG = −SdT + V dP + µdN. (2.31)

In a hard particle NPT ensemble, we have both fixed N and no relevant temperature
scale for dT so dG simplifies to

dG = V dP. (2.32)

As µ = G/N for a one component system, the chemical potential then follows the
relation

dµ

dP
=
V

N
. (2.33)

By definition, the chemical potential between the fluid and crystal is zero at the coexis-
tence pressure, so the driving force ∆µ between the two phases is given by

∆µ =

∫ P

Pcoex

Vcry
N
− Vflu

N
dP ′, (2.34)

where Vcry and Vflu are the simulation box volumes for a system ofN particles. This chem-
ical potential represents the Gibbs energy per particle to rearrange from fluid to crystalline
solid in the thermodynamic limit. The coexistence pressure Pcoex can be determined by
using the method of interfacial pinning [49, 50].
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2.7 Interfacial Pinning

Interfacial pinning is used to determine coexistence pressures that are in turn used to cal-
culate the chemical potential via thermodynamic integration[49, 50].

This method runs a two-phase simulation that holds a fluid and solid in an elongated
box. A harmonic potential is applied to the system that attempts to force the stability of
the phase coexistence to be half fluid and half solid in a manner similar to the umbrella
sampling described previously. A two-phase simulation is constructed such that the two
phases, fluid, and solid, coexist along the z axis, and such that the box dimensions in the
xy-plane are appropriate for an equilibrated crystal at the given pressure. In the NPT
simulation only box length Lz is allowed to vary. As the interfaces span the box with
constant Lx and Ly, changes in the amount of fluid and solid do not alter the interfacial
area or energy long as the system remains two-phase. For each shape, several simulations
are performed at different pressures. The coexistence pressure is determined by finding
the pressure at which the mean applied bias energy is zero. We accomplish this search by
simulating many systems at various pressures.

2.8 Potentials of Mean Force and Torque

We calculated the potential of mean force and torque (PMFT) to identify particle neighbor
bonds[22, 23]. Local particle bond environments are rotated with respect to the orienta-
tion of the single central particle, and binned in Cartesian space to construct a probability
distribution of particle neighbors in R3, integrating out orientational degrees of freedom of
the adjacent neighbors. The procedure is averaged over many simulation states and once
sufficient statistics are gathered, we then express and plot the distribution in units of free
energy by taking the negative logarithm of the probability distribution.
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CHAPTER 3

Self Assembly of Lithium Yttrium Fluoride
Bipyramids

In this study we look to explain the behavior of experimental self-assemblies of LiYF4

bipyramids that assemble into two unique morphologies. This work is taken from a paper
with our collaborators, and is described here to focus on the simulations that I contributed.
Full details about the self-assembly experiments and extensive synthesis procedures will
be available in our publication, which is currently in preparation for submission:

“Size and Shape-Controlled Synthesis of Doped LiYF4 Upconversion Nanophosphors
and their Shape Directed Self-Assembly.” Xingchen Ye, Joshua E. Collins, Richmond S.
Newman, Michael Engel, Jun Chen, Guozhong Xing, Cherie R. Kagon, Sharon C. Glotzer,
and Christopher B. Murray. Preprint[51].

Simulations were performed by Richmond S. Newman under the supervision of Michael
Engel and Sharon C. Glotzer. Experiments were conducted by the remaining coauthors.

The goal of the simulations produced was to understand the self-assembly mechanisms
for the parallel and antiparallel bipyramid assembly motifs shown in Figure 3.1(a) and (b).
Additionally simulation phase diagrams also explained a less common assembly 3.1(c),
and a bulk body-centered tetragonal structure 3.1(d).

3.1 Experimental Assemblies Synopsis

My collaborator Xingchen Ye synthesized and performed self-assembly experiments on
LiYF4 square bipyramids coated with oleic acid and suspended in hexane over a substrate
of diethylene glycol subphase, which is immiscible to hexane. The square bipyramids have
an elongated axis such that one tip-to-tip distance is nearly twice the other, with lengths
of about 100 − 200nm, depending on synthesis. The particles are found to self-assemble
after the hexane phase has evaporated, leaving monolayer films consisting of one of two

18



(a) (b)

(c) (d)

Figure 3.1: Selected SEM images of assemblies. Assemblies of LiYF4 nanobipyramids by
our collaborators. (a) Alternating motif, (b) parallel motif, (c) rare parallel motif (d) body-
centered tetragonal bulk structure from tip-truncated bipyramids. Scale bars are (a−c)
100nm, (d) 50nm. Reproduced from our work [51].
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different motifs above the diethylene glycol which are then removed for characterization.
Because the particles successfully self-assemble, we suspect the particles concentrate in
the hexane above the diethylene glycol, and are not embedded in the interface where they
would be subject to strong capillary forces that would likely cause irreversible aggregation.
The details of the particle synthesis conditions are in our paper[51], which also includes
discussion of building block tuning, such as altering the aspect ratio, size, and etching the
tips with Mn salts.

3.2 Bipyramid Simulation Methods

We model the bipyramids as hard particles, with the six vertex coordinates V given as:

V = (±1, 0, 0), (0,±1, 0), (0, 0,±A), (3.1)

for aspect ratio A. One of the important features of the system is that particles in the
resultant assemblies lie within a plane against the substrate. To model this behavior we
impose a confining harmonic potential on the system, that applies an energetic penalty for
particle vertices exiting a narrow region around the z = 0 plane. That is, we confine shapes
by summing over their vertices

U = kz

Nv∑
i=1

(|zi| − δz)2H(|zi| − δz) (3.2)

where kz = 100 is the spring constant, δz = 0.7 is the width, H is the unit step function,
and zi is the z-position of vertex i. This allows us to effectively simulate a quasi-2D system
where the particles are constricted along the z-axis, but free to move and rotate within
a region near the xy-plane. This potential energy is added to the system for all particle
vertices in the system. We also perform simulations using edge-truncated shapes, as well as
investigate the role of face-centered attractive patches. The truncated bipyramids truncation
are shown in Figure 3.2. As an approximation of face attractions, we use a triangular
potential with depth ε and length 0.4 across the face of the particles with the particles sizes
defined as above. The short range of this potential allows for patches on a given particle to
only interact with one other patch on another particle.

Two order parameters were used to describe the simulations. The first, the local ori-
entational order parameter, φl, discriminates between parallel and antiparallel bipyramid
ordering. It sums over all particles Np the dot products of local orientations v of each
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Figure 3.2: Truncated bipyramids. Images of bipyramids with aspect ratio A = 2, ranging
from untruncated t = 0.0 (left) to a truncation of t = 0.20 (right) in intervals of δt = 0.4.

particle i with neighbors j,

φl =
1

Np

Np∑
i=1

1

NN

NN∑
j=1

vivj, (3.3)

where NN is the number of local neighbors of particle i. Neighbors are defined as those
in the local region where there are only typically 4 neighbors, and the particle orientations
vi are chosen in the direction of the vertex on the elongated bipyramid axis with positive
z-component, projected into the xy-plane. The value of φl is 1 in ideal parallel arrange-
ments, and −1 for antiparallel arrangements. Intermediate values near zero, however, can
correspond to either a fluid, polycrystalline system, or a series of parallel and antiparallel
stacking faults.

To distinguish the other cases, we define the global orientational order parameter,φG,
as the variance of the histogram of all particle orientations in the system, given as

φG = Var(H(atan2(ei2θi))), (3.4)

where θi is the orientation angle of the vector vi. The complex exponential is converted
into x + iy format, and given to atan2, the two component inverse tangent that accounts
signs and can return angles in all four quadrants, i.e., outputs on a range of [−π, π), as
opposed to atan on range [−π/2, π/2). The complex exponential with 2θi reflects that we
are only looking at axial alignment, and not the direction (so the calculation is invariant
under rotations by π). This histogram is approximately uniform for liquid phases and has
low variance, and sharply peaked for axially aligned systems, and has high variance. In this
work the number of bins chosen was 50, and the order parameter was scaled linearly to lie
within 0 and 1 by normalizing by the largest values found in any system.

Simulations in this study looked atNp = 252 = 625 particles, and were equilibrated for
at least 15 million MC cycles. All phase diagrams are based on averaging the above order
parameters from five replicate runs.
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3.3 Bipyramid Simulation Results

To understand our collaborator’s parallel and antiparallel bipyramid motifs shown in Figure
3.1(a) and (b), we performed three main sets of simulations: 1) a study of different aspect
ratios, 2) a study of different truncations at A = 2.0, and 3) a study of face-centered
attractive patches.

In Figure 3.3 we show the results of our hard particle simulations confined to a narrow
interface. We studied aspect ratios between A = 1, an octahedron, to A = 3, a more
elongated bipyramid than observed in the experiments, and ranNV T simulations at several
number densities ρ. Each simulation statepoint is quantified using a local parallel order
parameter, which measures whether or not a particle is aligned with (parallel) or against
(antiparallel) its four neighbors. This order parameter maps out a phase diagram which
is shown in 3.3(a). This order parameter works well for characterizing the systems for
A ≥ 1.4, however there is no particular favored ‘tip’ for octahedra, as the particles can
easily adopt one of three equivalent orientations when forming the triangular tiling shown
in Figure 3.3(b). The colors shown are degenerate as there is no specific tip of the particles,
and the particles align into one of three equivalent orientations. For small deviations from
this aspect ratio, a preferred orientation does not appear until the bipyramids are sufficiently
elongated. In Figure 3.3(c) we show that near A = 1.6 we can form well-ordered parallel
motifs using this hard particle model suggesting that excluded volume alone is sufficient to
describe this phase given the constraints of the particles being located on the interface. We
also find that with much larger aspect ratios near A = 2.8 we are able to find systems with
an abundance of stacking faults between the parallel and antiparallel motifs which overall
are weakly antiparallel (see Figure 3.3(d)). This ordering, however, is highly defective
compared to that seen in the experimental assemblies.

To look for factors that might stabilize the antiparallel phase, we proposed two models:
one of edge truncation, and one of face attractions that we believe may alter the behavior
of the particles. The model of edge truncation was proposed to account for the excluded
volume of the particles being rounded from their oleic acid coating. The model of attraction
was introduced to capture the expected attraction between nanoparticles.

We simulated the truncated particles shown in Figure 3.2. NV T simulations were per-
formed for ten nontrivial truncations, over several number densities. The results of this
set of simulations are shown in Figure 3.4. The simulations were analyzed by comput-
ing phase diagrams of local orientational ordering (Figure 3.4(a)) and also by computing
global axial order (Figure 3.4(b)), which measure the degree of global axial ordering to dis-
tinguish aligned regions from disorder. The results of the local directional order parameter
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Figure 3.3: Bipyramid aspect ratios. (a) Local parallel order parameter for various aspect
ratio of bipyramids. Labeled locations correspond to (b), (c), and (d). (b) Octahedra at
ρ = 0.32 and A = 1.0 assembled into a triangular lattice. Particles are colored by their
orientation in the xy-plane, with orientation given by the ±A vertex with a positive z-
component. (c) Bipyramids at ρ = 0.32 and A = 1.6 form a parallel-aligned motif. (d)
Bipyramids at ρ = 0.32 and A = 2.8. Figure from our collaboration[51].
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display two distinct regions of strong parallel ordering, separated by a region of antipar-
allel ordering. The global axial order suggests the system possesses good axial alignment
along a narrow band of number densities between ρ = 0.29 and ρ = 0.32, which drifts
slightly lower with increased truncation. This helps show that the regions of neither par-
allel or antiparallel ordering in Figure 3.4(a) still are aligned, but with large numbers of
stacking faults, similar to the untruncated systems at higher aspect ratios shown in Figure
3.3(d). The low density regions with neither local directional nor global axial order remain
too fluid to crystallize, and the high density regions correspond to systems that are heavily
polycrystalline and are kinetically frustrated from fully assembling. Simulations are shown
at the local extrema of the local directional order parameter, in parallel motif Figure 3.4(c),
antiparallel motif in Figure 3.4(d), and a rolled parallel phase in Figure 3.4(c) where the
particles no longer lie with faces parallel to the xy-plane. This truncation model reproduces
the three monolayer phases shown in the experimental assemblies, Figure 3.1.

Further simulations were run onA = 2 bipyramids with short-ranged attractive patches.
The results of these simulations are shown in Figure 3.5. We show the local and global
order parameters in Figure 3.5(a) and (b), and found that this model stabilizes antiparallel
ordering as well. Interaction energies of ε = 3kbT , illustrated in Figure 3.5(d), were found
to stabilize antiparallel ordering as well as those found in the truncation t = 0.12 systems
Figure 3.4(d).

The addition of Mn salts causes the tips of the bipyramids to be lost and exposes new
facets. Such nanoparticles assemble into a 3-dimensional body-centered tetragonal struc-
ture, which can be assembled easily in a simulation with full periodic boundary conditions
(without the confining potential used for the monolayer simulations above). Images of ex-
perimental and simulation assemblies are shown in Figure 3.6. Entropy alone is sufficient
to stabilize these assemblies.
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Figure 3.4: Bipyramid Truncations. (a) Local directional order phase diagram for the
aspect ratio A = 2 edge truncated bipyramids illustrated in Figure 3.2. Locations la-
beled on this subfigure correspond to the statepoints shown in (c),(d), and (e). (b) Global
axial order parameter for the same system. (c) Parallel ordered phase assembly, (d) An-
tiparallel ordered phase assembly, (e) Rolled-parallel ordered phase assembly. From our
publication[51].
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Figure 3.5: Face-attractive bipyramids. (a) Local directional order phase diagram for
the aspect ratio A = 2 bipyramids, with face-centered attractive patches (Details in section
3.2). Locations marked on this subfigure correspond to the simulations shown in (c) and (d).
(b) Global axial order parameter for the same system. (c) Poor quality mixed parallel and
antiparallel phase occurs when the interactions are weak at ε/kbT = 1. (d) Stronger face
centered attractive patches at ε = 3/kbT lead to the formation of highly ordered antiparallel
phases. From our collaboration[51].
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Figure 3.6: Tip-truncated bipyramids. (a,b) SEM images of tip-truncated bipyramids
forming a body-centered tetragonal structure. (c,d) Simulations of similarly-shaped hard
particles readily crystallize into the same bulk structure. From our work[51].
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3.4 Concluding Remarks - Bipyramids

Xingchen Ye et al. self-assembled monolayers of tetragonal bipyramidal nanoparticles and
discovered two dominant competing arrangements. Monte Carlo simulations were used
to successfully explain the observed behaviors and discovered two potential mechanisms
to stabilize the more unusual antiparallel motif: truncations or face attractions. We also
found that ideal hard bipyramids do not readily form the antiparallel arrangements with
a high degree of correlation for similar aspect ratios to the experimental lithium yttrium
fluoride nanobipyramids. The antiparallel motifs could be stabilized by both truncation
and interaction, and all three monolayer phases were predicted in the models of the hard
particle truncation family. Hard particle simulations are also able to predict the assembly
of truncated-tip bipyramids into body-centered tetragonal phases. This study demonstrates
the value of simple simulation models in informing, predicting, and understanding experi-
mental colloidal systems.
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CHAPTER 4

Shape-Dependent Ordering of Gold
Nanocrystals into Large-Scale Superlattices

The self-assembly of individual building blocks into highly ordered structures, analogous
to the spontaneous growth of single crystals from atoms, is a promising approach to realize
the collective properties of nanocrystals. Yet the ability to reliably produce macroscopic
assemblies is not in hand, and key factors determining assembly quality and yield are not
understood. In this chapter, we study the formation of highly ordered superlattices (SLs)
with single-crystalline domains of up to half a millimeter from gold nanocrystals with sev-
eral tens of nanometers in diameter. We combine experimental and computational results
for gold nanocrystals in the shape of spheres, cubes, octahedra, and rhombic dodecahedra to
investigate the entire self-assembly process from disordered suspensions to large-scale or-
dered superlattices induced by nanocrystal sedimentation and eventual solvent evaporation.
Our findings reveal that the ultimate coherence length of superlattices strongly depends on
nanocrystal shape. Factors inhibiting the formation of high-quality large-scale superlattices
are explored in detail for each building block.

The results here are taken from our publication “Shape-Dependent Ordering of Gold
Nanocrystals into Large-Scale Superlattices”, Jianxiao Gong, Richmond S. Newman, Michael
Engel, Sharon C. Glotzer, Zhiyong Tang. Preprint[52].

Jianxiao Gong and Zhiyong Tang conceived and designed the experiments. Jianxiao
Gong performed the experiments. Richmond S. Newman, Michael Engel, and Sharon
C. Glotzer collaboratively designed the computer simulations performed by Richmond S.
Newman. All authors analyzed and discussed the results, and co-wrote the paper.

4.1 Synthesis and Assembly Experiments

Jianxiao Gong synthesized single crystalline gold nanocrystals (NCs) with four common
shapes using the seed-mediated growth method[53]. Spherical NCs of diameter σ = 40 nm

29



were obtained by etching nanorod precursors and then grown into polyhedra by varying the
Wulff shape (the shape with minimal surface free energy) of nanocrystalline gold by alter-
ing solvent chemistry. The solvent conditions effect the stability of different exposed facets
and allow for the formation of different polyhedral shapes. The naopolyhedra are charac-
terized by their type and edge length: octahedra (74 nm), cubes (69 nm) and three sizes
of rhombic dodecahedra: small (sRD, 33 nm), medium (mRD, 45 nm), and large (lRD,
74 nm). Each set of NCs is monodisperse with size dispersity equal to or less than 5%.
As-synthesized gold NCs with concentration of 10−9 mol/L were dispersed in a cetylpyri-
dinium chloride (CPC) solution of controlled concentration. CPC molecules attach to the
NC surface and offer short-range steric repulsion to counterbalance van der Waals attrac-
tion, preventing the NCs from undergoing uncontrollable aggregation. The gold NCs were
allowed to assemble in tilted glass cuvettes at room temperature in an undisturbed environ-
ment by densification via sedimentation. As the monodisperse gold NCs gradually settled
to the bottom of the cuvette over the course of one day for the largest NCs and up to a
few days for the smallest NCs, local NC concentrations and collisions increased, and self-
assembled SLs emerged slowly. In parallel with sedimentation, but on the slower time
scale of a week, evaporation of the water contributed to the densification by reducing the
volume available to the NCs. The ordered SLs dried during the final stage of the solvent
evaporation, and remained in the cuvette as a bulk film with a thickness ranging from a few
NC layers (at least 100 nm) to hundreds of NC layers (approximately 10 m). Films were
peeled off from the cuvette wall using conductive carbon adhesive tape. The final assembly
product is a free-standing film composed exclusively of a highly ordered arrangement of
CPC-stabilized gold NCs in macroscopic sizes.

Scanning electron microscopy (SEM) images of SLs assembled with each of the six sets
of NCs are shown in Figure 4.1. Except for spheres, all sets of NCs formed films that were
visibly ordered over a distance of a minimum of several tens of microns. As expected,
the geometric arrangements of the NCs inside the ordered SLs depend on the shapes of
the building block[19]. Additionally, SL orientations are influenced by the substrate. The
polyhedra prefer contacting the cuvette wall with one of their planar facets to achieve layers
of dense packing, with the exception of RDs, which achieve a higher in-plane packing
density by having a vertex in contact with the cuvette. It is evident from the SEM images
that the quality of the sphere SL is the lowest among the shapes studied here. As shown
in Figure 4.1(f), the spherical gold NC assembly exhibits no long-range ordering, and only
diffuse rings rather than sharp peaks are discernible in the fast Fourier transform (FFT)
image. The largest ordered areas in the sphere SLs are several microns in size and are
visible in Figure 4.1(f). These ordered domains are significantly smaller than the size of
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those in SLs assembled from RDs, octahedra, and cubes.

4.2 Superlattice Quality and Crystallographic Order

To analyze the size of the SL domains on larger scales, small-angle x-ray scattering (SAXS)
measurements were carried out using the Beijing Synchrotron Radiation Facility. We ob-
serve sets of clear diffraction spots in two-dimensional SAXS patterns of all the assemblies
from polyhedra (Figure 4.4(l-p), indicating three-dimensional long-range order throughout
the samples. Previously reported SLs are with few exceptions[54] not single-crystalline and
thus generate rings or multiple sets of diffraction spots. In contrast, there are no diffraction
spots discernible for gold sphere assemblies which indicates that the ordered domain size
for sphere SLs is significantly smaller than the sample dimension.

The crystallographic structures of the SLs can be determined along with analysis of
the long-range order achieved for each shape. SEM images confirm the expected close-
packing of RDs into the face-centered cubic lattice[22]. Each RD contacts with twelve
other RDs facet-to-facet (Figure 4.4(a-d)). Also, the diffraction peaks are well indexed to
the face-centered cubic lattice (Figure 4.4(q-s)). Although all sets of RDs with varying
size (sRD, mRD, and lRD) show clear diffraction peaks, the smallest particle (sRD) SLs
exhibit the sharpest and most intense single-crystalline diffraction spots, suggesting that,
despite their relatively smaller size, their ordered domain size is the largest among the
four shapes. The SL grain size may normally be obtained using the Scherrer formula
from measurements of the full width at half-maximum intensity of a diffraction peak[55,
56]. However, here we observe the peak widths comparable to the resolution limit of the
beamline, which corresponds to a maximally detectable domain size of 1.55 µm. As this
is much smaller than the ordered domain sizes directly observed by SEM in Figure 1, the
analysis of peak widths only provides a lower bound on the size of SLs. Instead, we rely
on visual inspection over macroscopic distances using SEM to analyze domain sizes. For
sRD, we find single-crystalline SL domains larger than 0.5 mm in extent, which are shown
in Figure 4.2 by comparing the crystal orientation along the sample. Order persists over
more than 100 layers for all the RD NCs regardless of their size. The observation that
smaller particles have ordered domains with larger absolute size is in good agreement with
our SAXS measurements.

The SAXS pattern of octahedron SLs has well-defined peaks that cannot be assigned
to a single lattice type shown in Figure 4.4(o) and (t), in contrast to SLs of RD. Indeed, as
the SEM analysis in real space reveals, octahedral NCs frequently assemble in two crystal-
lographically distinct stacking modes of close-packed hexagonal planes: a base-centered
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Figure 4.1: Large-scale SEM images of superlattices using gold nanocrystals. The
nanocrystal shapes are (a) large (lRD), (b) medium (mRD), (c) small (sRD) rhombic do-
decahedra, (d) octahedra, (e) cubes, and (f) spheres. The view is chosen perpendicular to
the bottom of the superlattice surface, which was in contact with the glass cuvette before
peeled off. The particle shape and a fast Fourier transform of the SEM image are shown
as insets. As confirmed by sharp spots in the diffraction images, all superlattice films with
the exception of that formed from spheres are single domains across SEM images. Figure
reproduced from publication[52].
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Figure 4.2: Large-scale SEM of rhombic dodecahedra. (a) Low-magnification SEM image
of a millimeter-scale sRD sample. (b-g) Six higher-magnified images taken at various
points along the sample. The fast Fourier transform patterns over different regions have
identical orientation suggesting the entire sample is single-crystalline. Figure reproduced
from publication[52].
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monoclinic SL with a two-particle unit cell (Figure 4.4(e) and (h)) and a simple hexagonal
SL (Figure 2e-g). The third structure, the densest packing of octahedra with density 18/19
known as the Minkowski lattice, appears occasionally in experiments. The Minkowski
lattice, Figure 4.7(g) and Figure 4.3, was previously reported to assemble from hard octa-
hedra in simulation[14, 57, 58]. The simple hexagonal and the Minkowski SLs have been
assembled previously from silver octahedra[14]. Inside both monoclinic and the hexago-
nal assemblies, six NCs surround each octahedron in partial facet-to-facet contact to form
dense packing layers (Figure 4.4(e)). The difference lies only in the NC orientation and the
relative translational offset of the particles between the adjacent dense packing layers. In
the monoclinic packing, all octahedra have the same orientation and the adjacent layers are
offset; a vertex touches the center of an edge which can be seen in Figure 4.4(h). In the
simple hexagonal arrangement, particles in adjacent layers have opposite orientation, but
are not offset, illustrated in Figure 4.4(f) and 4.4(g). Among the possible polymorphs for
the octahedron SLs, we observe the simple hexagonal arrangement most frequently. Visual
inspection and sampling diffraction shows that the size of ordered domain of octahedron
SL typically reaches only 100 microns, even smaller than lRD domains, indicating that
shape rather than particle size is the key to determine the quality of the assembly products.

It is evident from the SEM images that cube NCs arrange into a simple cubic lattice,
see Figure 4.4(i) and 4.4(j). SAXS data suggest that it is more challenging to achieve order
with cubes over large areas as compared to both RDs and octahedra, Figure 4.4(p) and
4.4(u). The largest domain size visible from large-area SEM images is about 30 microns.
Some amount of positional disorder can be seen in the SEMs of the cube SL assemblies that
manifests as a slight drifting in the orientation of rows, which is consistent with simulation
predictions[59].

4.3 Nucleation and Growth of Superlattices in Monte Carlo
Simulation

The experimental results represent the first clear evidence that NC shape has a strong effect
on SL quality. To understand how particle shape matters, I performed hard particle Monte
Carlo (HPMC) computer simulations of the self-assembly process. Since it is not possible
to reach experimental system sizes (> 107−10 NCs) or the time span of an assembly ex-
periment (> 105 seconds) with present or near-future computer resources, we extrapolate
from small systems and short simulation times compared to experimental conditions. In
solution, the NCs interact with each other via van der Waals attraction of the gold cores,
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Figure 4.3: Minkowski lattice. The Minkowski lattice is the densest known packing of
octahedra. (a) A 4 × 4 × 4 Minkowski crystal. (b-d) A single octahedron surrounded by
its first coordination shell of adjacent octahedra observed under three different projections.
Figure reproduced from publication[52].
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Figure 4.4: SEM analysis of gold superlattices. Analysis of nanocrystal superlattices in
(a-k) real space using SEM and (l-u) reciprocal space using SAXS. (a-d) Rhombic dodec-
ahedra form a face-centered cubic superlattice visible along different projection directions.
(e-h) Octahedra are found predominantly in two crystallographically distinct superlattices:
simple hexagonal (e-g) and monoclinic (e, h). Cubes, (i, j), assemble into a simple cubic
lattice. (k) A macroscopic view shows a complete superlattice film. (l-p) Two-dimensional
and (q-u) radially averaged SAXS images of assembly products exhibit clear diffraction
spots and peaks, respectively, highlighting long-range order in superlattices of sRD (l, q),
mRD (m, r), lRD (n, s), octahedra (o, t), and cubes (p, u). In (l-p), the indexed SAXS im-
ages are shown with low beam intensity on the left and with various higher beam intensities
on the right to resolve additional diffraction peaks. Peaks are not indexed for the octahe-
dron SL (o, t), because they correspond to the patterns of a superposition of two unique SL
structures. Figure reproduced from publication[52].
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depletion attraction caused by unabsorbed CPC molecules, and electrostatic repulsion of
CPC ligands[60]. These interactions balance to produce contact forces that act over short
distances of only a few nanometers. The hard particle model is frequently employed in the
literature[19, 31, 24], and it maintains the anisotropy and orientational dependence of the
effective pairwise entropic interaction. Hard polyhedra tend to align along their facets to
maximize entropy and minimize free energy[55, 61]. These directional entropic forces in-
crease in strength and range with increasing facet dominance[22], which suggests that cer-
tain polyhedral NCs should be superior candidate building blocks for forming high quality
SLs compared to spherical NCs, as borne out by our experiments.

We first studied the effect of NC shape on homogenous nucleation. Crystallization of
these polyhedra requires a sufficient density to be thermodynamically favorable, but needs
to remain low enough such that diffusion and rearrangement times are kinetically accessi-
ble. This means there is a time window during sedimentation in which the density is high
enough to form SLs, but low enough to anneal out defects. We estimate this time window
by the density range over which a given system of NCs exhibits dynamics. Figure 4.5(a)
summarizes, for each shape, the density window for SL formation in simulation. Notably,
each shape orders robustly and rapidly at packing densities near 56%. However, the density
ranges over which assembly and annealing of defects are observed vary significantly be-
tween shapes. Cubes and RDs order reliably over a wide range of densities, while octahedra
and spheres require fine-tuning for assembly to occur.

Differences in the assembly behavior of differently shaped NCs affects the quality of
as-formed SLs. Representative early, middle, and late time formation of SLs for each shape
is illustrated in Figure 4.5(b). We compare the time in units of Monte Carlo cycles to nucle-
ate. Time to nucleation, shown in Figure 4.5(c), is defined as the time for a system to reach
20% crystalline, and the growth duration, Figure 4.5(d), defined as the time to reach 80%
crystalline from the nucleation time. As discussed in Appendix 7.2, we estimate that one
second of the assembly experiment corresponds to on the order of 104 Monte Carlo cycles.
We learn from Figures 4.5(b-d) that RDs rapidly form multiple nuclei from the metastable
equilibrium fluid state at high enough density. Nuclei readily rearrange and anneal out
defects, resulting in high quality SLs. In contrast, octahedra only show isolated (rare) nu-
cleation events up to high densities. Nuclei grow quickly until crystallization is complete,
but arrest sets in early. Cubes adopt local positional and orientational order almost imme-
diately after reaching high enough density. There is neither an observable metastable fluid
state nor a well-defined nucleation event for cubes, suggesting the nucleation barrier is
negligible at almost all densities where the cubic SL is stable. Spheres have a comparably
narrow density window where nucleation occurs[26, 27, 28]. Multiple nuclei form rapidly
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Figure 4.5: Simulation results. Crystallization of nanocrystal superlattices in Monte Carlo
simulations of hard particles. (a) Density range where homogenous nucleation and growth
occurs for each particle shape using isochoric simulations starting from configurations
rapidly compressed to a selected packing density. Rectangles in a density vs. shape grid are
colored by the calculated system-average local order for rhombic dodecahedra, octahedra,
cubes, and spheres. Low values (blue) indicate disordered local structure (fluid), while high
values (red) indicate crystalline order. Empty cells demarcate the regions beyond random
close packing. Each data point represents the average of ten runs over 50 million Monte
Carlo cycles. (b) Early, middle and late stage growth of homogeneously nucleating super-
lattices for rhombic dodecahedra, octahedra, cubes, and spheres. Densities are selected to
represent a typical Monte Carlo trajectory for the particular shape and crystallization may
result from several nuclei. (c) Time to nucleate, as measured by the number of Monte Carlo
cycles for the system to reach 20% crystallinity. (d) Time to grow, as measured by the time
required to advance from 20% to 80% crystallinity. (e) Number of ordered layers equili-
brated near hard boundaries at densities lower than where homogeneous nucleation occurs.
Figure reproduced from publication[52].
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above the critical density. Growth is also initially rapid, but defects anneal out significantly
more slowly than for RDs. Kinetic arrest sets in at lower density for spheres and octahedra
than for RDs and cubes.

In experiment, large-scale SL assembly proceeds via a sedimentation process wherein
the density rises slowly near the cuvette wall. To investigate the entropic influence of the
cuvette wall, we employ Monte Carlo simulations with a hard wall along one coordinate
axis. We find multiple crystalline layers forming heterogeneously adjacent to the wall at
significantly lower densities than those required for homogenous nucleation (Figure 4.5(e)
and Figure 4.6). For example, in the case of spheres, multiple ordered layers are present
already at density 50%, while homogeneous nucleation starts at around 52%, consistent
with prior simulations[62]. The wall affects the dominant SL structure only in the case of,
octahedra and not for other shapes, in agreement with structure seen experiments.

4.4 Factors Affecting Superlattice Quality

Our results agree with earlier observations that sedimentation-driven assembly is more ro-
bust in yielding high-quality NC SLs than experiments where density is under evaporative
control[14]. Equilibrium order close to the wall could be reached within a few million
Monte Carlo cycles, or on the order of seconds to minutes in experiment. So, in all cases,
nucleation and growth is several orders of magnitude faster than the typical sedimentation
time, which suggests that the assembly process is quasistatic with respect to changes in
density. Neither homogenous nucleation nor heterogeneous nucleation is the rate-limiting
factor. The quality of the SLs for each polyhedron shape should be dominated by other
yet-unexplored factors, which are elucidated below.

The incomplete parallel orientation of RDs found in some of the SEM images seen in
Figure 4.7(b-c), and Figure 4.8 likely originates from either a quenched-in rotator phase,
which is stable at intermediate density in simulations, Figure 4.7(a), or a surface effect. At
higher density, NC facets align due to directional entropic forces[55, 22, 23] and ligand-
induced attractive interactions, neither of which are available in spheres. As a result, stack-
ing defects, which frequently occur with spheres[63], illustrated in Figure 4.7(n), are sup-
pressed in RDs. We note also that another factor that may affect the quality of SLs from
spheres in experiment. In contrast to micron-sized spherical colloids, the sphericity of NCs
is limited by their natural tendency for the development of crystalline facets promoting
shape anisotropy. Together, practical limitations of sphere NC synthesis and the more ef-
ficient packing of RDs in combination with localized orientational ordering[31] contribute
to the higher quality of SLs assembled from RDs than from spheres.
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Figure 4.6: Heterogeneous growth. Monte Carlo simulations with impenetrable hard
boundaries at the top and bottom (in the image) of the simulation box to study heteroge-
neous nucleation. The sides are connected via periodic boundary conditions. Simulations
are conducted for systems of (a) RDs, (b) octahedra, (c) cubes, and (d) spheres. The crystal
structure of the SLs observed near the wall is identical to the crystal structure observed
in nuclei forming via homogenous nucleation with the exception of octahedra, which pre-
fer the monoclinic SL near the wall. The packing fractions used in the simulations are
φ = 0.56 for RDs, φ = 0.56 for octahedra, φ = 0.55 for cubes, and φ = 0.54 for spheres.
Figure reproduced from publication[52].
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Figure 4.7: Structural details and factors affecting quality of nanocrystal superlattices.
(a-c) Analysis of rhombic dodecahedra superlattices. In simulation we find a rotator (plas-
tic) face-centered cubic phase at low density (a), and quenched in rotational disorder is also
observed in SEM images (b, c). (d-j) Analysis of octahedron superlattices. A simulation
that nucleated the Minkowski superlattice(d). In experiment we observe monoclinic super-
lattice (e, f), Minkowski superlattice (g), and simple hexagonal superlattice (s.h. parallel),
in rare occurrences (h), alternation of octahedron orientations in layers of simple hexago-
nal superlattice is violated, as visible in the first and second layers of (h). Single layer of
octahedron superlattice near walls in hexagonal packing in simulation (i) and experiment
(j). Packing density and contact fraction of different lattices are compared in (k). (l, m)
Analysis of cube superlattices. Simulation (l) and experiment (m) both show streaks in
the fast Fourier transform images. (n) Monte Carlo simulations of hard spheres, typically
resulting in stacking faults. Layers are colored by ABC stacking sequence (A = white; B =
light blue; C = blue).Figure reproduced from publication[52].
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Figure 4.8: Evidence for a rotator phase in rhombic dodecahedra. Additional SEM images
of mRD SLs from other directions aside from the bottom of glass cuvette, on which they
were grown. (a) and (b) lateral views, (c) surface exposed by breaking the SL, (d) evidence
for a rotator phase in mRD SLs. Typical example defects are highlighted in colors: 4-fold
vertex (blue), face (yellow), edge up (purple), and improper π

6
rotation of a 3-fold vertex

(green). Figure reproduced from publication[52].
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For octahedra, the presence of competing phases poses further complexity not present
in the other shapes. Homogenous nucleation simulations result in the Minkowski SL, Fig-
ure 4.7(d), or with similar probability, the monoclinic SL. Whichever SL nucleates first
grows and determines the final structure. The situation might be even more complicated
in experiment and depends subtly on the proximity to the cuvette walls. We compare the
packing density and contact fraction of four octahedron SL candidates in Figure 4.7(k). The
contact fraction is defined as the area of the octahedron surface in contact with the surface
of a neighbor. Furthermore, octahedron SLs can have easy sliding modes, where ‘easy slid-
ing’ means that a column or plane can shift freely without encountering obstruction. While
the Minkowski SL is mechanically rigid, Figure 4.7(g), the three other SLs are stackings of
dense hexagonal layers, shown in Figure 4.7(i) and (j). These layers constitute easy shear
planes. In addition, the monoclinic SL has easy sliding columns, visible as grooves in the
SEM images in Figure 4.7(e) and (f). Fracturing often occurs along these sliding planes
and columns. The dilemma of octahedra is apparent in the fact that three of the candidate
structures each possess a unique extremal property: (i) the Minkowski SL is the densest
packing. It is the preferred phase under high pressure. (ii) The simple hexagonal SL has
the highest contact fraction. It is the preferred phase if attraction dominates. (iii) The mon-
oclinic SL has the highest number of shear planes or sliding modes. It is an entropically
preferred phase. Only the parallel variant of the simple hexagonal SL does not have an
extremal property. This explains why it is never observed outside of isolated occurrences
such as Figure 4.7(h).

Cubes readily order over a wide packing density range, but tend to exhibit more po-
sitional disorder than the other shapes due to delocalized vacancies[59]. A high amount
of shearing and distortion of the cubic lattice is apparent in both simulation, Figure 4.7(l),
and SEM micrograph, Figure 4.7(m), and is also easily visible in the FFT (insets) as linear
streaking of the Bragg peaks. This disorder is caused by the inability of cubes to rigidly
lock together in the simple cubic lattice, allowing for columns and planes of cubes to collec-
tively fluctuate and shear. The presence of localized disorder explains why the correlation
length in the cube SL measured by the peak width in the SAXS data in Figure 4.4(p) and
(u) is shorter than that of the other polyhedral NCs.

4.5 Concluding Remarks

We reported gold nanocrystal superlattices with coherent order over macroscopic scales as
evidenced by the images of clear diffraction spots in SAXS patterns. Although both nu-
cleation and growth depends strongly on nanocrystal shape, they are not the rate-limiting
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step controlling the final quality of the assembly product. Spheres, the most widely stud-
ied nanocrystal shape, assembled the lowest quality superlattices. Octahedra superlattices
order robustly but are affected by competing polymorphic equilibrium structures each sta-
bilized by different factors, including entropy, packing, and surface attraction. The qual-
ity of cube superlattices is diminished by a high vacancy content, which cannot be over-
come even by the extremely rapid assembly propensity of cubes. Finally, both experiment
and simulation agree that rhombic dodecahedra are overall the best assemblers of the four
shapes and is an excellent candidate for producing superlattices with the highest quality
and largest single crystalline domain size. Our study reveals that nanocrystals with differ-
ent shapes undergo various ordering pathways while multiple shape-related factors strongly
influence the final domain size. This work not only gives new insight into the conventional
crystal growth theory, but also offers unprecedented opportunity to construct high quality
nanocrystal superlattices.
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CHAPTER 5

Nucleation Comparison of Rhombic
Dodecahedra and Spheres

In chapter 3 we discussed the equilibrium self-assembly of bipyramidally-shaped nanopar-
ticles and mapped out their phase diagrams and in chapter 4 we discussed a combina-
tion of homogeneous and heterogeneous nucleation, as well as nucleation rates in order
to study the self-assembly of different polyhedra into different structures. In this chapter,
we extend the study of hard particle assembly into the nucleation of colloidal crystals of
anisotropic particles and discuss how particle local environments affect the assembly pro-
cess. We present a comprehensive study comparing how the same entropically stabilized
crystal structure forms in two systems of monodisperse hard particle systems: spheres and
rhombic dodecahedra. We investigate these systems by reporting cluster size distributions
and crystallization probabilities across the range of pressures where nucleation is observed
in Monte Carlo simulations and free energy barriers for nucleation. In addition, we quan-
tify the local arrangements around the particles in both fluid and solid phases and discuss
the effects on nucleation. As a model to investigate the nucleation behavior of anisotropic
particles, we chose the rhombic dodecahedron as it is experimentally synthesizable from
metal nanocrystals[52, 15] and also corresponds to the Voronoi cell of the face-centered
cubic crystal. In a study of 145 different polyhedra, 51 different shapes were found to self-
assemble this structure[19]. Among these shapes, the least spherical shape, as ranked by
the isoperimetric quotient, defined as the ratio of the volume of the shape to the volume of
a sphere, at constant surface area, was the rhombic dodecahedron with IQ = 0.74. The
sphere is by definition the most spherical (IQ = 1).

These hard-particle systems crystallize via the nucleation-and-growth-type process[27,
28, 64, 31] that we have discussed previously: particles in disordered fluids need to over-
come an energetic barrier to crystallize, which arises from a balance of driving forces in
the pathway from fluid to solid: a favorable chemical potential ∆µ for forming the crystal
is opposed by a surface energy γ. Here we investigate in detail the conditions under which
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the formation of crystal nuclei is favored in fluids of spheres vs. rhombic dodecahedra,
highlighting the contribution of particle anisotropy to the process of nucleus formation.

The contents of this chapter are taken from our publication, “Nucleation of Hard Rhom-
bic Dodecahedra vs. Spheres”. Samanthule Nola, Richmond S. Newman, Julia Dshe-
muchadse and Sharon C. Glotzer. Preprint[65]. The simulations were performed in collab-
oration with coauthor Samanthule Nola, who directly sampled measurements of the crys-
tallization rates and likelihood of finding small nuclei in the metastable fluid. I provided
potentials of mean force and torque, chemical potential calculations, and free energy barri-
ers to nucleation. All authors contributed to the discussion of the results and the writing of
the manuscript.

5.1 Simulation Details

Hard particle Monte Carlo (MC) simulations were performed with the HPMC plugin[33]
to the HOOMD-blue package[38, 66]. Pressures are given in units of kbT/Vp, with the
particle volume Vp chosen to be unity.

Systems for fluid sampling contained N = 4096 identical particles, sufficient to ex-
clude box size effects in similar systems[67]. Independent NPT fluid simulations were
initialized as dilute cubic lattices and thermalized by running for a minimum of 80 000 MC
sweeps, or until the system had equilibrated to a stable density, i.e., a stable box volume.
The metastable fluids were then sampled for up to 40 million MC sweeps. Particles in
solid-like clusters were identified by applying ten Wolde’s clustering method[43].

The cluster size distribution in the equilibrated fluid – this time including all clusters
– was measured in 2 000–20 000 independent snapshots of the metastable fluid at each
pressure. Nucleation probabilities were determined by counting how many times the sys-
tem crystallized out of a metastable fluid. Measurements of cluster size distributions in the
fluid, equations of state, and direct nucleation probabilities were done by Samanthule Nola.

Free energy barriers to nucleation were computed from the probability distribution of
observing clusters of a given size using Umbrella Sampling. We used interfacial pinning[50,
49] to determine coexistence pressures that were in turn used to calculate the chemical po-
tential via thermodynamic integration[31]. We calculated the potential of mean force and
torque (PMFT) to visualize and understand local particle ordering. Detailed descriptions
of these methods appear in chapter 2.
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Figure 5.1: Equations of state. (a) Fluid and solid equations of state and (b), the chemical
potential plotted over pressure. Phase coexistence occurs where the curves intersect the
dotted black line. The intersection of the dashed horizontal line at |∆µ| = 0 with the data
for each shape illustrates the coexistence pressures of fluid and solid phases. The truncation
point of the curves at the high-pressure end corresponds approximately to the point at which
crystallization can occur spontaneously. From our publication[65].

5.2 Results

The equations of state for both rhombic dodecahedra and spheres are presented in Fig-
ure 5.1(a). The fluid of rhombic dodecahedra has a significantly lower packing fraction than
the fluid of spheres at any given pressure. This difference arises from shape anisotropy, as
rhombic dodecahedra have a greater circumradius than spheres of equal volume, allowing
for collisions at greater interparticle distances, which leads to increased pressure of the sys-
tem at similar densities. The face-centered cubic crystal of rhombic dodecahedra also has
a lower packing fraction than the face-centered cubic crystal of spheres over this pressure
range, despite the fact that rhombic dodecahedra are space-tessellating in the limit of infi-
nite pressure, while the spheres have a maximum packing fraction of approximately 0.74

in this structure[68, 69]. For both shapes the packing fraction difference between the fluid
and crystal increases with pressure. The slope of the equation of state is slightly steeper for
rhombic dodecahedra at high pressures, i.e., rhombic dodecahedra have a higher compress-
ibility. This means that rhombic dodecahedra require a smaller increase in pressure for the
same increase in packing fraction than spheres do at the same pressure.

In Figure 5.1(b) the chemical potential difference of the fluid and solid states is plotted
vs. the pressure for systems of spheres and rhombic dodecahedra. They mainly differ in
their coexistence pressures P (∆µ = 0). The chemical potential difference (∆µ) between
the fluid and solid is calculated by integrating the volume per particle between those phases.
The curves for each shape appear similar because the difference in density between the fluid
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and solid phases are similar. The density jump upon crystallizing does increase for rhombic
dodecahedra at higher pressures, see Figure 5.1(a).

The behavior of solid-like clusters in the fluid and during nucleation of the crystalline
phase in both systems is illustrated in Figure 5.2, where we plot the probability to find clus-
ters of different sizes at pressures where nucleation is still rare, as well as the crystallization
probability, the free energy barriers vs. cluster sizes, and the free energy maxima vs. both
the chemical potential and the pressure.

Probabilities Pi(X) for a particle i to be in a cluster of sizeX are shown in Figure 5.2(a)
for both spheres and rhombic dodecahedra. At low |∆µ|, small clusters are more common
in fluids of spheres than in fluids of rhombic dodecahedra, but trends change with increas-
ing |∆µ|. The apparent lack of small clusters in the fluid of rhombic dodecahedra is likely
a consequence of the aforementioned lower packing fraction at small values of |∆µ|. There
is a crossover point where larger clusters become more prevalent for rhombic dodecahedra
than for spheres, when |∆µ| > 0.25. A sharp increase in the formation of larger clus-
ters occurs for the fluid of rhombic dodecahedra near |∆µ| > 0.4, and slightly further
from coexistence rhombic dodecahedra start crystallizing at a measurable rate as seen in
Figure 5.2(e). This leads us to consider these larger clusters as pre-critical nuclei, which
in turn raises the question of what stabilizes them preferentially in the fluid of rhombic
dodecahedra.

Figure 5.2(e) shows a comparison of the crystallization probability in systems of spheres
and rhombic dodecahedra. Both shapes begin to crystallize at a measurable rate only after
large clusters are seen to form in the fluid. This happens at a significantly higher driving
force for spheres than for rhombic dodecahedra. The larger cluster sizes correspond to
a density where the emergent directional entropic bonding aligns particles more strongly
into local arrangements congruent with the face-centered cubic crystal, which is demon-
strated in Figure 5.3. This shows that the formation of larger clusters consistently precedes
nucleation.

The free energy barriers for the formation of nuclei of spheres and rhombic dodecahedra
are plotted in Figure 5.2(b) and 5.2(c). The difficulty to nucleate can be characterized
by the free energy required to form the critical nucleus from a fluid, i.e., the location at
which β∆G is maximal. For comparison, these maxima are shown in Figure 5.2(d) at
different driving forces–chemical potential ∆µ–for both particle shapes. These calculations
demonstrate that at given values of the driving force that rhombic dodecahedra nucleate far
more easily than spheres. The here-reported nucleation barriers differ from those found in
a previous study of polyhedra[31], which were reported to be as low as βG ' 5. At heights
this low we should suspect crystallization to almost immediately occur in simulations. In
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Figure 5.2: Cluster statistics and free energies. (a) Cluster size distributions, (b and c)
free energy barriers from umbrella sampling, and (d) free energy maxima plotted against
the chemical potential from interfacial pinning of hard rhombic dodecahedra and spheres,
(e) directly measured nucleation rates. For plots of the free energy barriers, graphs of
different colors represent free energy curves at different pressures (exact values are given
by horizontal lines and tick labels on the color bars). Adapted from our manuscript[65].
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their work[31] the barrier heights were significantly understated, possibly due to tracking
only the largest cluster size in the system when small clusters are common. Using the
largest cluster is only valid when large clusters are rare[27, 28] and doing so when clusters
are frequent leads to a false free energy minimum at the mean small-cluster size in the fluid,
and misses the initial steep rise in the free energy barriers. In the small-clusters regime the
full cluster probability distribution should be tracked instead.

To better understand why rhombic dodecahedra, when compared to spheres, self-assemble
with a significantly lower driving force (i.e., at a lower chemical potential), as well as hav-
ing larger local cluster size distributions in the fluid, we calculate the potential of mean
force and torque (PMFT) of particle-neighbor bonds. The PMFTs of the system of spheres,
as shown in Figure 5.3(a) and 5.3(b), are expectedly isotropic and correspond to the well-
known radial distribution functions for hard spheres. To illustrate the PMFT of the system
of rhombic dodecahedra, cross-sections are performed through the center of the particle
perpendicular to the 4-fold and the 3-fold symmetry axes (see Figure 5.3(c) and 5.3(d)).
The crystal PMFTs for both shapes exhibit regions of high free energy (shown in red in
Figure 5.3) corresponding to interstitial positions in the face-centered cubic structure. In
the fluid, the boundaries between the first and second coordination shell are poorly defined,
whereas in the crystal the interstitial positions are effectively ‘forbidden’.

The anisotropic shape of the rhombic dodecahedron causes face-centered cubic-like
pairwise local arrangements in the first coordination shell with respect to particle orienta-
tion, even in the disordered fluid phase. In both the fluid and solid, we observe that rotations
of a rhombic dodecahedron around a 3-fold axis are more entropically favorable than ro-
tations about the 4-fold. This corresponds to the previously reported fact that the 4-fold
vertices of rhombic dodecahedra are more restrictive to rotational motion than the 3-fold
ones and thus their truncation leads to an greater improvement of the assembly-behavior
into the face-centered cubic crystal structure[70].

In Figure 5.3(g) and 5.3(h), we show a three-dimensional representation of the PMFTs
in the fluid and crystalline systems of rhombic dodecahedra. The lower hemisphere in each
image illustrates the anisotropic PMFT around the polyhedron; additionally, isosurfaces at
a value of βF = 0.5 are superimposed. While the first coordination shells have a similar
appearance in both the fluid and the solid and therefore have similar local order, the most
entropically favorable positions are much more diffuse, i.e., the low energy basins of the
PMFT are broader for the fluid and narrower for the crystal of rhombic dodecahedra.

Directional entropic forces favoring face-to-face alignment of the rhombic dodecahe-
dra cause the local structure of the fluid to resemble that of the crystal. This makes fluid
and solid more similar and increases the likelihood of particles in the fluid to have locally
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face-centered-cubic motifs. This shape-anisotropy-driven ordering is what we believe sta-
bilizes clusters of rhombic dodecahedra, which more easily form from the fluid at lower
supersaturations, and which lead to lower nucleation barriers as compared to spheres.

5.3 Concluding Remarks

With increasing pressures the probability of finding rhombic dodecahedra in small clusters
increases more sharply than for spheres and eventually the two probabilities cross. This is
a direct consequence of entropic bonding – the preference of faceted particles to arrange
themselves with face-to-face contacts to maximize the free volume in the system[23].

Calculation of the potentials of mean force and torque showed that the local particle
environments in the dense fluids of rhombic dodecahedra are commensurate with the lo-
cal bond-orientational order of the face-centered cubic crystal, arising from the directional
entropic forces tending to position facets in a face-to-face alignment. We believe that this
pre-existing local order is what increasingly stabilizes the crystal nuclei of rhombic dodec-
ahedra as compared to spheres. These emergent local entropic interactions are stabilize
the pathway from a supersaturated fluid to an ordered crystal. By increasingly positioning
neighboring particles in motifs commensurate with the crystal structure, the need for re-
arrangement decreases, leading to the much lower free-energy pathways to crystallization
at given supersaturations shown in Figure 5.2(b) – 5.2(d) and the larger fluid-phase cluster
fluctuations given in Figure 5.2(a).

Previously, it had been shown that self-assembling fluids and crystals of polyhedra ex-
hibit almost identical coordination numbers[19]. The same study showed that measures
of shape anisotropy – in particular the isoperimetric quotient – and dense fluid coordina-
tion numbers could be used to predict the expected equilibrium crystal phases. Here we
demonstrated that anisotropic particles nucleate with lower driving forces than do isotropic
spheres. This local ordering was suggested by Thapar[31], but shown directly here in the
PMFTs. We agree that the polyhedral facets for this shape is integral to easing the nucle-
ation pathways as they lead particle coordination shells in the fluid to adopt motifs similar
to the crystal. This may also be the case for the truncated octahedra and cubes that Thapar
studied.

Further work will analyze the quantitative influence of specific facets by successively
altering polyhedral shapes to investigate the trend in nucleation behavior[71] which is
the subject of chapter 6. In order to explore another aspect of this phenomenon, further
studies will compare different symmetries and kinds of faceting, and therefore investigate
the differing tendencies of polyhedra to nucleate in the same face-centered cubic crystal
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Figure 5.3: Potentials of mean force and torque. For (a) – (b) spheres and (c) – (h) rhombic
dodecahedra, for fluid ((a), (c), (e), and (g)) and crystalline systems ((b), (d), (f), and (h)).
All maps use the same coloring scheme; energies are shifted so that the deepest minimum
corresponds to βF = 0. The top and middle figures represent cuts through the particle
centers (in the case of the rhombic dodecahedron: perpendicular to the 4-fold and 3-fold
symmetry axes, respectively). The bottom figures show the PMFTs for a fluid and crystal
of rhombic dodecahedra, intersecting with a thin hemisphere corresponding to the first
neighbor shell. Additionally, transparent isosurfaces are shown at an energy of βF = 0.5.
The insets depicting the particle illustrate the orientation of the respective set of PMFTs.
From our publication[65].
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structure[72]. We expect that building blocks chosen such that the entropic forces that
will be present in the fluid possess structural motifs similar to the solid will stabilize the
pathway to crystallization.
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CHAPTER 6

Investigating the Role of Polyhedral Faceting on
the Nucleation of Face-centered Cubic Crystals

from Fluids of Hard Polyhedra

Continuing the investigations in the prior chapter, we now turn to understand the role of
polyhedral faceting on a continuous family of polyhedra. Rather than disparate shapes, this
allows us to see how perturbations to a given shape alter the nucleation behavior. In this
study, adapted from our publication “Nucleation Free Energies of FCC-assembling Poly-
hedra”, Richmond S. Newman, Julia Dshemuchadse, and Sharon C. Glotzer, Preprint[71],
we compare several shapes that form rotator face-centered cubic crystals. Simulations and
calculations were performed by Richmond Newman, under the supervision of the other
authors.

Dense systems of hard polyhedra have previously been studied in silico and shown to
self-assemble into a wide variety of equilibrium structures[19, 59]. Moreover these simula-
tions have demonstrated that hard particle models can often accurately predict equilibrium
self-assembled structures from a diverse sets colloidal nanopolyhedra[14]. Recent work
on the nucleation of hard polyhedra[31] suggested localized orientational order allowed
polyhedra to self-assemble more easily into rotator crystals than hard spheres. The authors
studied rhombic dodecahedra, truncated octahedra, and cuboctahedra and suggested that
the local ordering provided by faceting was beneficial to nucleation. As these shapes are
unrelated it is difficult to isolate the effects of the polyhedral faceting. In contrast, here
we perform a detailed study on a family of polyhedra (Figure 6.1) ranging continuously
between a rhombic dodecahedron to a rhombicuboctahedron. This family of polyhedra
is chosen because all members assemble into the cubic close packing, and the changes
to the faceting preserve cubic symmetry. The rhombic dodecahedron is also the Voronoi
polyhedron for the cubic close packing, that is, it fills space in this arrangement. This par-
ticular family of shapes is also experimentally realizable as syntheses exist for crystalline
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Figure 6.1: Studied Polyhedra. Rhombic dodecahedron to rhombicuboctahedron shape
family. From our publication[71].

gold rhombic dodecahedra exposing twelve (110) facets, and these building blocks can be
additionally etched to form rhombicuboctahedra[15]. In particular, we are interested in
observing how changing the polyhedra faceting and undermining the tendencies toward
face-to-face alignment affects the crystallization process.

To compare different face-centered cubic-forming shapes, we define a continuous trun-
cation parameter t that converts from a rhombic dodecahedra (at t = 0) to a rhombicuboc-
tahedron (at t = 1). These polyhedra are shown in Figure 6.1. This truncation pathway
preserves the cubic symmetry of the polyhedra, but as the truncation increases, additional
facets incompatible with the the face-centered cubic crystal appear, and the particle loses
its space-filling characteristics. All of these shapes self-assemble into rotator face-centered
cubic crystals. These particles can also be viewed as a subset of the 432-family of shapes
whose densest packings were described by Chen et al.[73]. In their notation, our trunca-
tion between the rhombic dodecahedron and rhombicuboctahedron follows the parameters
a = 2 − (2 −

√
2)t, b = 2, c = 3 − (

√
2 − 1)t. These parameters describe the dis-

tance of sets of planes with different symmetry, with decreasing a corresponding to a set
of planes perpendicular to the 4-fold axes moving inwards (truncating the 4-fold vertices
of the rhombic dodecahedra), and decreasing c corresponds to planes perpendicular to the
3-fold axes moving inwards, (truncating the 3-fold vertices).
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6.1 Simulation Details

Simulations were performed with hard particle Monte Carlo using HOOMD-blue with the
HPMC (High Performance Monte Carlo) package[38, 33]. System sizes of N = 3375 (=
153) particles were used for the NPT umbrella sampling simulations, whereas N = 2744

were used for NPT interfacial pinning simulations to determine coexistence pressures.
Measurements of the equation of state were performed in the NPT ensemble using 3375
particles and integrated to obtain chemical potentials.

6.2 Results

We study how the crystallization behavior of polyhedra is affected by their faceting using
the polyhedra family shown in Figure 6.1. We wish to compare the free energy barriers to
nucleation as a function of supersaturation (driving force, |∆µ|), which first requires us to
compute the equations of state for each shape which we show in Figure 6.2. At given values
of pressure we see a tendency for the more spherical shapes to have higher density, but
none of the polyhedra in this family are sufficiently spherical to reach the higher densities
observed for spheres. It can also be seen that the crystal of rhombic dodecahedra is slightly
more compressible than the other shapes at higher pressures or packing fractions; this is
because this particular shape is able to fill space on a face-centered cubic crystal.

As discussed in equation 1.1, the thermodynamic driving force for nucleation in these
systems is the chemical potential difference between the solid and fluid. Chemical poten-
tials for a given shape and pressure can be calculated by integrating the equations of state
for the fluid and solid from the coexistence pressures,

∆µ =

∫ P

Pcoex

Vcry
N
− Vflu

N
dP ′. (6.1)

The coexistence pressures Pcoex are obtained using the interfacial pinning method de-
scribed in section 2.7. The results of these integrations are shown in Figure 6.3, where we
can see that at any given pressure, the more spherical shapes have notably larger driving
forces. The majority of the difference in driving force corresponds to a drift towards lower
coexistence pressures for larger truncations (less anisotropic polyhedra). Curiously, hard
spheres have an intermediate coexistence pressure as compared to the family of polyhedra.
The chemical potential curves for all particles have similar shapes, and indeed are mostly
‘linear’ because the integrated density difference between the fluid and solid in equation 6.1
remains fairly constant and similar for each shape over the modest pressure range where the
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Figure 6.2: Shape family equations of state. (a) Equations of state for the six polyhedra and
spheres. Particles and curves are colored correspondingly. The left set of curves correspond
to the less dense metastable fluids, and the right set of curves to the face-centered cubic
crystals. (b) Equations of state expressed as volume per particle available to the system.
From our publication[71].
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Figure 6.3: Chemical potentials. Computed chemical potentials ∆µ vs. pressure P re-
sulting from integrating the equations of state for each polyhedra. Figure reproduced from
publication[71].

fluid is metastable and measurable. The differences integrated are shown in Figure 6.2(b).
Using umbrella sampling (discussed in section 2.5), we are able to compute free energy

barriers for this family of vertex-truncated rhombic dodecahedra. These barriers are shown
in Figure 6.4. These results are computed from NPT simulations and barriers are shown
for various pressures. Each curve represents the average of ten replicate runs. At a given
pressure it would seem rhombic dodecahedra have the highest barriers, but this is because
the various shapes need to be compared at the same magnitude of driving force ∆µ. With
the chemical potentials from thermodynamic integration we can show the barrier heights as
a function of driving force (Figure 6.5) to compare the different building blocks at constant
quench depths. In doing so, it is here that we see the effect of the particle shape on the
difficulty of the nucleation process: truncations of the rhombic dodecahedra produce large
increases of the barrier heights at a given driving force. As the likelihood of nucleation
is proportional to the exponential of this free energy, this suggests that the building block
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Figure 6.4: Free energy barriers. Umbrella-sampled free energy barriers to nucleation for
the polyhedra family. From our publication[71].
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geometry is critical for homogeneous nucleation.
We also make estimates of the critical nucleus sizes for each shape, or the cluster size

which maximizes βG. While the measurements of cluster sizes are noisy because the sam-
pled free energy barriers are broad near the peak, the trends are still visible. These values
of N should be considered estimates: the exact cluster sizes are sensitive to the given cut-
off parameters to the order parameter distinguishing solid crystal from fluid; however, the
height of the barrier was shown to be robust, as the tendency for a given nucleus to grow or
shrink in simulation is not dependent precisely on the size identifed by our choice of order
parameter[44]. All systems presented here were analyzed using the same cutoff parameters
for the order parameter. We can see in Figure 6.6(b) that the rhombic dodecahedra have
slightly smaller critical nuclei at the same driving force, and that the polyhedra seem to
have more similar free energy maxima as a function of critical nucleus size.

In addition to studying the process of nucleation, we also characterized the local orien-
tational ordering in the fluid and solid phases. We computed the potentials of mean force
and torque between a given particle and neighboring particles[22, 23]. This procedure
quantifies the entropic forces between pairs of particles leading them to align more prefer-
entially in a face-to-face manner in both the disordered fluid, and particularly so in the solid
phases. In doing so we can see in Figure 6.7 how the truncation of the rhombic dodecahe-
dron to the rhombicuboctahedron takes away from the preferred arrangement. In the 4-fold
cross sections of the PMFT in the fluid phase we initially see isolated energy wells for the
rhombic dodecahedra, which become significantly more isotropic as we truncate toward
the rhombicuboctahedra. This suggests that the local environment becomes more free to
rotate around this axis, corresponding to less and less coupling of a particle with its first
coordination shell. The effects of truncation are also visible in the in the three-dimensional
isosurface plots, where the local symmetry in the fluid is initially commensurate with the
face-centered cubic structure due to the rhombic dodecahedra facets, but these minima are
undermined with increasing truncation as the original facets shrink and new entropic min-
ima are introduced for the additional facets that were formerly the three-fold and four-fold
vertices. These new entropic minima become quite prevalent at the highest truncations
(t = 0.8, t = 1.0). The PMFTs of the crystal phase show that there are significant geo-
metrically forbidden interstitial regions around the particles as the first and second crystal
neighbor shells exclude particles. The orientational penalities enforced by local crystalline
order diminish with increasing truncations. The PMFTs are much more isotropic for the
rhombicuboctahedra, which are almost free to rotate despite being a crystalline phase.

The penalties for particles being in the interstitial regions suggest the positional order
corresponding to a crystal, but the lack of deep minima in the first coordination shell sug-
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Figure 6.5: Free Energy Penalties to Nucleation. Free energy barrier maxima from the
umbrella-sampled NPT simulations plotted against the driving force (chemical potential)
for different polyhedra. From our publication[71].
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Figure 6.6: Critical nuclei. (a) Free energy maxima plotted against critical nucleus size.
(b) Critical nucleus size vs. crystallization driving force. From our publication[71].

gests that the orientation of the reference particle and its coordination shell are very weakly
bound: misorientations of rhombicuboctahedra and the face-centered cubic coordination
shell carry energetic penalties less than βF = 0.4 as seen by the broader isosurfaces in
Figure 6.7(e). Although the untruncated shape, the rhombic dodecahedron, already forms
a crystal with orientational disorder, the level of orientational disorder rises measurably
with increased truncation. The visible increase of the orientational entropy should further
stabilize crystal phase in the heavily truncated shapes; however, this is not sufficient to ease
the crystallization pathway from the fluid.

6.3 Concluding Remarks

We have conducted the first study of the nucleation barriers of a family of hard polyhedra
to directly show how shape affects the crystallization pathway. This builds upon the work
in the prior publication on rhombic dodecahedra and spheres[65], and on the early work
on hard polyhedra by Thapar[31]. In these studies, unrelated shapes were compared, but
here, by controlling for particle shape and symmetry we have shown directly how shape in-
fluences nucleation: that via truncations of rhombic dodecahedra, the face-centered cubic
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Figure 6.7: Potentials of mean force and torque. (a) Family of polyhedra. (b,c) Cross
sections through the four-fold axis are shown for the (b) fluid and (c) solid phases. (d,e)
Three-dimensional views of the PMFT intersecting a thin hemisphere in the first coordina-
tion shell, with isocontours drawn at βF = 0.4 from the deepest minima for the (d) fluid
and (e) solid phases. From our publication[71].
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Voronoi particle, increase the free energy barriers to crystallization at equivalent driving
forces. This confirms the ideas in prior work[31, 65] that crystallization in polyhedra are
stabilized by the directional entropic forces between particles that encourage face-to-face
alignment in the fluid. Here we have characterized these locally aligned motifs using poten-
tials of mean force and torque, and for the family of shapes studied that the least truncated
shapes arrange into local motifs in the fluid phase that are more likely commensurate with
the final crystal structure. The additional facets formed as we truncate towards the rhom-
bicuboctahedron add a level of competition that hinder nucleation until higher degrees of
supersaturation overcomes the lack of local ordering. Ideal building blocks for crystalliza-
tion like the rhombic dodecahedron stabilize the transition state to nucleation by having
fluid local structures similar to those of the crystal.
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CHAPTER 7

Conclusions and Future Outlook

7.1 Summary

In this work we studied the crystallization of systems of polyhedra. These studies demon-
strated the ability of simulation to help understand experimental systems as well as the
crucial role of building block geometry.

In chapter 3 we demonstrated the use of simulations in understanding the self-assembly
of lithium yttrium fluoride nanobipyramids. There we studied several aspect ratios of
bipyramids, as well as a model of different truncations and surface interactions. We were
able to predict three experimental bipyramid motifs using a model of truncation, and showed
that interacting particles form an interesting antiparallel striped motif.

In the second described study, in chapter 4, we studied the shape-dependent assembly
of rhombic dodecahedra, octahedra, cubes, and spheres. Computer simulations were used
to try to better understand how the experiments assembled, and enabled the investigation
of the behavior unique to each shape. Rhombic dodecahedra possess rotational disorder
visible in both simulations and experiments. Cubes possess positional disorder due to the
presence of shear planes. Octahedra have many potential candidate dense packings, each
with different maximal properties: densest packing, entropic shearing modes, or contact
area. Spheres suffer from many stacking faults, which may limit domain size annealing,
and difficulties arise from the challenge in synthesizing ideal hard spheres.

For the third study, described in chapter 5, we looked at the crystallization of rhombic
dodecahedra and spheres in detail. Measurements of cluster size fluctuations in the fluid,
crystallization probabilities, and free energy barriers demonstrated that rhombic dodeca-
hedra crystallize at much lower driving forces than those required to crystallize spheres.
Potentials of mean force and torque were used to understand how local ordering present in
the fluid makes these nucleation events more probable due to similar local ordering in the
fluid and solid arising from directional entropic forces.
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Finally, in chapter 6 we examined the nucleation free energy barriers and thermody-
namics in a system of face-centered-cubic forming polyhedra from a continuous family of
shapes from a rhombic dodecahedron to a rhombicuboctahedron. As predicted, the reduc-
tion of directional entropic forces favoring the face-centered cubic crystal as one truncates
the rhombic dodecahedra led to increased free energy barriers as a function of supersatura-
tion |∆µ|, illustrating how shape can influence crystallization of hard polyhedra.

7.2 Future Outlook

Future studies will be able to carry out larger and larger simulations, not only due to the
continuing rise in the performance of computers, but also increasingly due to shared soft-
ware development. As the level of complexity of simulations continues to rise, the reuse
and sharing of code will lead to more detailed studies to be undertaken. Many of the tech-
niques, methods, and code used in this work will be open-sourced in the near future[42],
making the methods readily available to scientists in the near future. Many months of time
were invested in reimplementing these methods so this work could be carried out. Having
implementations of these analysis methods and tools widely available should enable much
faster setup and analysis of simulations, and I hope will reduce the difficulty of studying
nucleation events in simulations by future researchers.

In the later chapters we took first steps towards understanding how polyhedral faceting
was instrumental for stabilizing free energy pathways to nucleation. In this we selected a
family of polyhedra that all formed face-centered cubic crystals, and all possessed cubic
symmetry. This allowed us to isolate the effects of the faceting and show that the commen-
surate local structures templated by the polyhedral geometry in the fluid eased the difficulty
of nucleating the crystal. However, in general, there are many polyhedra[19] that nucle-
ate and form face-centered cubic crystals, and many of these polyhedra do not have the
same symmetry. Entropic forces in the fluid tend to align polyhedra in a face-to-face man-
ner, which suggests that many of these polyhedra will have local ordering with different
symmetries, such as being locally icosahedral or hexagonally closed packed. Nucleation
in these systems must overcome their local fluid structure and particles have to rearrange
significantly to crystallize, which can be studied using the same tools described here.

The methods used in this dissertation may also be used to investigate the free energy
barriers of polyhedra to crystallize into different crystal structures. Future studies should be
able to use the techniques described here to study the formation of much more complicated
crystal structures in both hard polyhedra, and in molecular dynamics simulations. For
example, in Figure 2.1 the solid-liquid order parameter was able to identify the formation
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of crystalline order in a potential-based dodecagonal quasicrystal. The ability to track the
formation of these complex phases will allow for more in-depth study and characterization
of these systems, and answer questions about how particles are able to locally rearrange
and attach to much more complex crystal structures than the face-centered cubic crystals
studied here.

Advances in simulation methods also now make it possible to simulate ‘soft’ polyhedra
using molecular dynamics[74]. The discrete element method (DEM) allows for simulating
polyhedra with a repulsive Weeks-Chander-Anderson pair potential that is summed over
the faces, edges, and vertices. Studying nucleation with this model loses some of the ben-
efits of being hard, namely, having exact density, faceting, and edges. These behaviors are
lost in DEM, however, it gains a distinct advantage in that molecular dynamics simulations
innately have timescales arising from integrating Newton’s equations of motion. The use of
this method will allow future studies to study nucleation rates and growth rates directly, in-
stead of the thermodynamic approach taken here of quantifying the hard shape free energy
barrier heights.
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APPENDIX A

Mapping Monte Carlo Cycles onto Experimental
Time

The relationship between the simulation and experimental time scales was estimated by
comparing the mean square displacement measured from simulations in the fluid phase
to the Brownian diffusion constants of the nanocrystals in water. This comparison is not
exact, but sufficient to provide an order-of-magnitude estimation. From simulations we
could measure the mean squared displacement by calculating

〈
(
δr(t)2

)
〉 =

1

N

N∑
i=1

(r(t)− r(0))2 . (A.1)

The mean square displacement was used to estimate the diffusion coefficient from sim-
ulations as

D =
〈(δr(t)2)〉

6t
. (A.2)

In addition, the diffusion coefficient for a nanoparticle was estimated using Stokes law:

D =
kbT

6πησ
. (A.3)

Using the viscosity of water η = 8.92 · 10−4 Pa·s at temperature T = 298K, we could
calculate that a spherical particle with diameter σ = 40 nm had a free diffusion constant of
D ' 4 · 10−14m2/s , or expressed in terms of particle size, D ' 25σ2/s. Dense solutions
have considerable caging effects, which reduced NC diffusion by a factor of 100 compared
to the value predicted by Stokes law at densities near φ = 0.535[75]. We can measure the
diffusion rate of hard spheres in simulations at φ = 0.54 and get a diffusion coefficient
of Dsim ' 2.6 · 10−5σ2/t, where t denotes a Monte Carlo cycle. Using the factor of 100
correction for the diffusion of a dense system[75] as compared to the bulk, we can esti-
mate that one second of real time corresponds to approximately 104 Monte Carlo cycles.
The equilibrium density simulations in chapter 4 ran for 5 · 107 Monte Carlo cycles, which
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corresponds to about 90 minutes of experimental time. The simulations of heterogeneous
nucleation in that study involved about 3 million Monte Carlo cycles, which correspond
closer to five minutes, although order near the wall appeared sufficiently early on in the
simulations to correspond to a point in time well within the first minute. We expect that
the effect of anisotropy on this mapping is likely not going to alter by several orders of
magnitude, such that the early ordering near the wall should occur quickly once the par-
ticles sediment to sufficient density, so that the local increase in density is in quasistatic
equilibrium.
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