
8-Bit Wonderland

Executing custom code on the Nintendo Game Boy

Version: 14.06.2010

Written by Belial
belial@apocalypsys.net

8-Bit Wonderland - Executing custom code on the Nintendo Game Boy

Contents

1 License 3

2 Introduction 3

3 Game Boy Basics 3
3.1 Features and Memory layout . 3
3.2 Digital Circuits . 4

3.2.1 Logic Level . 4
3.2.2 Circuit Level . 5

3.3 Data- and Addressbus . 7
3.4 Bankswitching . 8

4 Game Boy Cartridge 9
4.1 Components . 9
4.2 Pins . 10
4.3 Development of a Homebrew Cartridge . 10

4.3.1 EPROM . 11
4.3.2 Layout . 14
4.3.3 Assembling the Cartridge . 14

5 Game Boy Software 15
5.1 ROM Layout . 15
5.2 Boot Sequence . 17
5.3 Video . 17

5.3.1 Synchronisation . 17
5.3.2 Tiles . 18

5.4 Gameboy Developers Kit . 20
5.4.1 Coding Guidelines . 20
5.4.2 APIs . 21

5.5 Case Study: Development of a Pong Clone . 22

6 Conclusion and further Work 23

7 Acknowledgement 24

List of Figures 25

References 26

2

8-Bit Wonderland - Executing custom code on the Nintendo Game Boy

1 License

8-Bit Wonderland - Executing Custom Code on the Nintendo Gameboy by Belial is distributed under
a Creative Commons Attribution 3.0 Unported License. See http://creativecommons.org/
licenses/by/3.0/ for details.

2 Introduction

The Nintendo Game Boy was presented in 1989 for the first time and has sold more than 118
million times. Now it is still possible to buy the original Game Boy which is a cheap 8-bit
mobile device. Because it has no real protection mechanism like modern consoles against the
injection of homebrew code it is possible to customize this mobile device and use it for different
tasks. The circuit board layout, CPU, etc. are well documented[1] but it is difficult to collect all
the distributed informations on the internet and there is a lack of tutorials too. The aim of this
paper is to close this gap and it can be divided into two major sections:

• Developing a homebrew Game Boy cartridge

• Developing software for the Game Boy

It starts presenting an introduction to digital circuits and describes how the Game Boy works
internally. After that it presents two ways to connect an EPROM to the Game Boy and describes
how to build a custom cartridge[2].
When a custom cartridge has been build the Game Boy Developers Kit[3][4][5][6] makes it
possible to write software for the Game Boy in ansi C and program the EPROM with it. As a
first example a Pong game will be presented and used to illustrate the different coding aspects
(video signals, avoiding expensive operations like multiplication, etc.)
The aim of this document is to describe the process of creating software for the Game Boy and
a cartridge to execute it. Electrotechnical details are explained but a minimum knowledge of
programming skills and how a computer works are still needed.

3 Game Boy Basics

Before we start developing a homebrew cartridge which can be connected to the Game Boy, the
knowledge of some important basics is necessary. This section starts with a brief description
of the Game Boy and its memory layout. It is followed by some basics about digital hardware
which cover topics like bused and bank switching.

3.1 Features and Memory layout

Nintendo released the Game Boy Classic in 1989 as a mobile gaming device. Since then, it was
followed by some successors like Game Boy Pocket, Game Boy Advanced, etc. This paper deals
with the Game Boy Classic from 1989 which has the following features:

• CPU: 8-bit (similar to the Z80 processor)

• Main RAM: 8K Byte

• Video RAM: 8K Byte

3

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

8-Bit Wonderland - Executing custom code on the Nintendo Game Boy

Figure 1: Logical abstraction Level

• Clock Speed: 4.194304 MHz

• Games come on special cartridges containig a ROM which holds program code and data.

The 16 Kilobytes of RAM (Video RAM + Main RAM) are mapped in a 64 Kilobyte address
space which has the following layout:

• 0x0000 - 0x3FFF: external 16KB ROM

• 0x4000 - 0x7FFF: external switchable 16KB ROM bank

• 0x8000 - 0x9FFF: internal 8KB Video RAM

• 0xA000 - 0xBFFF: external switchable 8KB RAM bank

• 0xC000 - 0xDFFF: internal 8KB Main RAM

• 0xE000 - 0xFFFF: I/O ports, Interrupt Enable Register, Sprite Attributes, etc...

This means a game is stored on a 32KB external ROM and can access 16KB of internal RAM.
To extend this, Nintendo has implemented two features: 1) external RAM can be installed on a
cartridge and 2) bank switching (see section 3.4 for details).

3.2 Digital Circuits

This section describes how digitals circuits work. It covers how 1 and 0 are mapped to physical
hardware and how they can be used to implement e.g. addition, substraction, etc. We use two
abstraction layers, which help understanding the structure of a digital circuit. Logic Level and
Circuit Level.

3.2.1 Logic Level

On this level, every component of a digital circuit consists of a network of boolean logic oper-
ators (AND, OR, XOR, INVERT, ...). Components are connected with each other. Each compo-
nent or boolean logic operator has input and output connections. This is shown in figure 1. A
component sends/receives either 1 or 0 on/with its output/input pins. In figure 1 the input

4

8-Bit Wonderland - Executing custom code on the Nintendo Game Boy

Input B Input C Output
0 0 0
0 1 0
1 0 0
1 1 1

Figure 2: Logic table for digital AND Gate

source

gate

drain

Figure 3: field effect transistor

pins B and C are connected with an AND gate. Its output is connected with the input of an OR
gate. An AND gate works like the AND in boolean algebra. Its behavior can be described with
a table showed in figure 2. This means, when both input pins receive a 1, it writes a 1 on the
output. For a detailed description to boolean algebra and other operators like OR, XOR, etc.
we refer to [7][8].
With a few AND and OR components a simple 1-bit adder can be made which is an important
part in every CPU. To be able to add two 8-bit numbers, 8 1-bit adders can be concatenated to
an 8-bit adder. Of course its also possible to create substractors, multiplier, etc...
This means, each CPU, Microcontroller or the components on your mainboard are just a com-
plex network of millions of AND, NOR,... gates and FlipFlops. FlipFlops are also part of a
digital circuit, can store 1 bit of data and acts as a kind of memory[9].

3.2.2 Circuit Level

This section describes how the logical abstraction layer is implemented physically on a chip.
To understand this we take a look at the circuit level. Every AND, OR, NAND, inverter, etc.
component is a network of field effect transistors shown in figure 3. The important physical
unit to control them is Volt. The 1 and 0 send through the connections of the different compo-
nents are represented by a special voltage on circuit level. E.g. a voltage between 0 and 0,5 is
interpreted as a logical 0 and a voltage between 4 and 5 Volt is interpreted as a logical 1. A field
effect transistor can be understood as a simple switch or a resistor. There are two versions of
field effect transistors.

5

8-Bit Wonderland - Executing custom code on the Nintendo Game Boy

Figure 4: Digital Inverter on circuit level

• pnp-transistor works like an adjustable resistor or a switch between drain and source.
If there is a low voltage between gate and source (logical 0), the resistor has a very high
value (the switch is opened). If theres high voltage between gate and source (logical 1),
the resistor has a low value (the switch is closed).

• npn-transistor works like an inverted pnp-transistor. A low voltage between gate and
source (logical 0) leads to a low resistor value between drain and source (the switch is
closed), a high voltage (logical 1) leads to a high resistor value (the switch is open).

In general you can understand a field effect transistor as a switch which state is controled by
input voltage between gate and source. Now we will take a look how these transistors can be
combined to a component on the logical abstraction level. Our example is the inverter. As you
may imagine, an inverter simply inverts its entry signal (as shown in figure 6). The schemetics
of such an inverter on circuit level are shown in figure 4 and on logic level in figure 5.
VCC and ground can be interpreted as + and - from a power supply (like a battery e.g.). If
the inverter has a high voltage (logical 1) on its input, the pnp-transistor (marked in figure
4 with an N) would pull its output to ground (because it has a very low resist between gate
and source). This means, you will have a very low voltage on the output (logical 1). If the
inverter has a low voltage on its input (logical 0), the npn-transistor (marked in figure 4 with
a P) has very low resist between drain and source. This leads to a high voltage (nearly Vcc)
between output and ground (logical 1). Vcc and Ground are often not shown on logic level for
simplification.

6

8-Bit Wonderland - Executing custom code on the Nintendo Game Boy

InverterInput Output

Vcc

Ground

Figure 5: Digital Inverter on logic level

Input Output
0 1
1 0

Figure 6: Logic table for a digital Inverter

3.3 Data- and Addressbus

Before we create a homebrew cartridge which contains our code, it is important to know how
the Game Boy communicates with a cartridge. In the last sections we have seen that compo-
nents send 1 and 0 over the wires, but for complexer components we use a higher abstraction
level. This is done with a data- and an addressbus. A bus is a communication channel between
two components. This does not need to be a Game Boy and its cartridge but can also be a CPU
and RAM or two PCI-Cards e.g. There exist several different buses but their basics are always
the same: There are wires for data, wires for addressing and some control signals (some buses
like I2C use for address-, data- and control signals the same wire(s) but thats not important in
this paper).
The main unit on a Game Boy cardridge is an EPROM. Code and data are stored on an EPROM.
It is a small chip which has a certain size like 32 kilobytes. An EPROM is a Read Only Memory
and only read operations are performed on it. Because cartridges can contain RAM too, the
Game Boy has also the possibility to write data with its databus to the cartridge. This means,
the Game Boy needs two control signals, to tell the cartridge that either a read or a write opera-
tion is performed.
As written above, a cartridge can contain additional RAM. This means RAM and EPROM share
the same data- and addressbus. To to tell the cartridge whether RAM or EPROM are accessed,
another signal is necessary: chip select. When operations on RAM are performed, chip select is
set.
To read a byte from the EPROM, the Game Boy writes its address on the addressbus, e.g.
0x003F. Because this is a read operation, the read control signal is set to 1, write and chip se-
lect signal to 0. The EPROM on the cartridges receives these signals and writes the data, which
is stored at address 0x003F, on the databus. On circuit level, these buses are simply electric
connections from the cartridge to the Game Boy. A single wire transfers one bit: 1 or 0. This
means, if a databus consists if 8 signals, the Game Boy can read values between 00000000 and
1111111 from the cartridge (0x00 - 0xFF) and is called an 8-bit databus.

7

8-Bit Wonderland - Executing custom code on the Nintendo Game Boy

EPROM

Bankswitch-
Controler

Gameboy

Data
Bus

16-Bit
Adressbus

19-Bit
Adressbus

Control
Signals

Cartridge

Data
Bus

Control
Signals

Figure 7: Game Boy connected to an EPROM with a Bankswitch Controller

3.4 Bankswitching

We have seen in section 3.1 that the Game Boy can address 64KB of memory. We will see in
section 4.1 that the Game Boy is connected with a 16-bit addressbus to a cartridge.
The memory layout in section 3.1 shows, that only 32KB of external ROM are mapped into
Game Boys memory (0x0000 - 0x3FFF and 0x4000 - 0x7FFF). Games need often more space on
a ROM. This is where Bank Switching becomes interesting.
Each EPROM has a maximum size. Imagine an EPROM in which fit exactly 512KB of data. This
means we need a 19 bit address bus to access all data. But what to do if our hardware can only
map 32KB in its memory and has only a 16-bit address bus? In this case, a special component
called Bank Switch Controller (BSC) is connected between the Game Boy and the EPROM.
This is shown in figure 7. It works like a state machine. 512KB of the EPROM space are divided
into 16KB large section called Banks. (Bank 0 : 0x0000 - 0x3FFF, Bank 1 : 0x4000 - 0x7FFF, etc.)
The Bank Switch Controller decides in dependence of its state which banks of the EPROM are
accessed by the Game Boy. When the Game Boy is turned on, the BSC is in state s0. Figure 8
shows the output of the BSC in dependence of

1. its state

2. its input

We see, input addresses between 0x000 and 3FFF are just forwarded to the EPROM. When the
Game Boy writes addresses between 0x4000 and 0x7FFF on the address bus, the Bank Switch
Controller changes them in dependence of its state. This means: Game Boys memory between
0x0000 and 0x3FFF is static and contains always Bank 0 of the EPROM. Region 0x4000-0x7FFF
is dynamic. It contains in s0 Bank 0, in s1 Bank 1, in s2 Bank 2, etc.
To control the BSC’s state, it contains registers. A register is a small memory region (e.g. 8-bit),

8

8-Bit Wonderland - Executing custom code on the Nintendo Game Boy

BSC State GB→ BSC BSC→ EPROM
s0 0x0000 - 0x3FFF 0x00000 - 0x03FFF
s0 0x4000 - 0x7FFF 0x00000 - 0x03FFF
s1 0x0000 - 0x3FFF 0x00000 - 0x03FFF
s1 0x4000 - 0x7FFF 0x04000 - 0x07FFF
s2 0x0000 - 0x3FFF 0x00000 - 0x03FFF
s2 0x4000 - 0x7FFF 0x08000 - 0x0AFFF
s3 0x0000 - 0x3FFF 0x00000 - 0x03FFF
s3 0x4000 - 0x7FFF 0x0B000 - 0x0EFFF
...

Figure 8: BSC Input and BSC Output in dependence of BSC State

Figure 9: Game Boy Cartridge Circuit Board

which can be implemented with FlipFlops. When the Game Boy accesses a special memory
region, the controller won’t access the EPROM but its internal register instead. This means,
when a program writes at address 0x3000, it will write in the BSC’s state register. The value in
the register sets the state of the BSC. When writing a 0x01 to it, it will switch from state s0 to s1

and so on.
Game Boy has not only the possibility to extend ROM space via bank switching but also to
extend on-cartridge RAM with bank switching. The only difference is that RAM banks have a
size of 8KB and are mapped in memory region 0xA000 - 0xBFFF and 0xC000 - 0xDFFF.

4 Game Boy Cartridge

4.1 Components

We know now the necessary basics and will take a look at a real cartridge. Every cartridge
consists of a circuit board and a plastic case surrounding the circuit board. Figure 9 shows the
circuit board of an opened Game Boy cartridge. It has the following components:

9

8-Bit Wonderland - Executing custom code on the Nintendo Game Boy

A0-A15 D0-D7

CS

RD
WR
???
5V

GND
???

Reset

1 32

Figure 10: Bottom of a Game Boy Cartridge and its Pin

• EPROM: As explained above, the game itself is stored on the EPROM.

• RAM: The Game Boy contains 16 Kilobytes of RAM, but this is not enough for some
games. Because of this, cartridges can contain extra memory. Games use this extra mem-
ory for storing gamestates, etc...

• Battery: RAM is not persistent memory like a HD. When it loses contact with power
supply, all data is erased. This happens e.g. when the Game Boy is turned off. To store
gamestates, RAM needs an extra powersupply.

• Bankswitch- and memory controller: As explained above, for bankswitching an extra
controller unit named BSC is necessary.

4.2 Pins

You can see a schematic in figure 10 which shows the bottom of a cartridge and its connection
pins. Stroked pins are inverted and called active low, which means they are active when 0 is
set instead of 1. The semantics of cartridge pins can be seen in figure 4.2. Besides the address-
and databus (A0-A15 and D0-D7), a cartridge has the pins Vcc, Ground (see section 3.2.2),
the control signals WR, RD, CS, Reset and two undocumented pins. The reset pin was not
mentioned before. It can be used to reset components on the cartridge like the BSC (bringing
it back to state s0). Documentation from other researchers says about the unknown pins that
one is a clock signal, the other deals with audio. Both are not relevant for this work, so i won’t
discuss them here.

4.3 Development of a Homebrew Cartridge

We start now with the the creation of our own Game Boy cartridge. There exist two ways to do
so.

• Modify an existing cartridge

• Create your own cartridge from scratch

When we speak about creating a cartridge, the internal cartridge circuit board is meant. For a
very simple cartridge we don’t need RAM and BSC. All we need is a 32KB EPROM (2 Banks
can be completely mapped into Game Boys memory without a BSC).

10

8-Bit Wonderland - Executing custom code on the Nintendo Game Boy

Pin number Name Description
01 +5V Vcc
02 ? –
03 WR If a cartridge contains extra RAM, this signal is

set to 0 (its active low) if a write operation is performed
04 RD This Read signal is set to 0 (its active low) if the

Game Boy performs a read operation on RAM or ROM
05 CS This signal is called “Chip Enable”. It can be

used to turn possible RAM on cartridge on or off if a Read/Write
operation is performed on it. Its like RD and WR active low.

06 - 21 A0 - A15 16-bit addressbus
22 - 29 D0 - D7 8-bit databus

30 Reset Reset components on the cartridge like BSC state
31 ? –
32 GND Ground

Figure 11: Game Boy Cartridge Pins Description

4.3.1 EPROM

We have chosen to use an EPROM named 27C256 which is shown in figure 12. The 27C257 has
a size of 32KB and operates in two modes:

• Normal Mode: When assembled on a cartridge it operates in normal mode. Only read
operations are possible

• Programming Mode: Data can be written on the 27C256.

You can write on it in programming mode with a special “writing device”. There exist profes-
sional writing devices which are very expensive. But you can also buy cheap ones which can’t
write on every EPROM and are more for “hobby usage”. I bought mine for 30 euros on a well
known internet marketplace.
It is possible to delete the content of a 27C256 too. This is done with ultra violet lightrays (thats
why the EPROM in figure 12 has this small glass window). Bright sunlight can erase the con-
tent of a 27C256 but this would take several years. This is very slow and because of this exist
special devices which create ultra violet lightrays and erase a 27C256 within minutes.
The 27C256 pin layout is shown in figure 13. VPP is needed to set the EPROM in writing mode
(which is done by the EPROM writing device talked about above). In normal mode, it is set to
+5 Volt and be connected together with VCC to the power supply. CE can be interpreted as an
on/off switch for the device. If set to 1 (remember its inverted), the 27C256 goes into standby
mode. In standby mode, the EPROM consumes less energy (from 20 milli-ampere down to
100 micro-ampere). OE is used to turn on/off the output on the databus. Its importent when
several components share the same databus for output (like EPROM and RAM) that only one
components output is enabled. This won’t happen on our homebrew cartridge because we
have only one 27C256 on it.

11

8-Bit Wonderland - Executing custom code on the Nintendo Game Boy

Figure 12: 27C256 EPROM

Pin Name Description
01 OE Inverted Output Enable
07 VCC +5V Power Supply
08 VPP Needed for programming the EPROM
21 VSS Ground
27 CE Inverted Chip Enable
2-6, 9-17, 28 Address Bus –
18-20, 22-26 Data Bus –

Figure 13: 27C256 Pins Description

12

8-Bit Wonderland - Executing custom code on the Nintendo Game Boy

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

Vcc
Vpp

A0 O0
A1 O1
A2 O2
A3 O3
A4 O4
A5 O5
A6 O6
A7 O7
A8
A9
A10
A11
A12
A13
A14
 Vss
CE
OE
Vpp Vcc

Vss

Figure 14: Homebrew Cartridge Layout

13

8-Bit Wonderland - Executing custom code on the Nintendo Game Boy

Figure 15: Modified custom Game Boy Cartridge connected to a 27C256

4.3.2 Layout

We know now enough about our hardware to specify a layout for the cartridge. You can see
the complete layout for a simple homebrew cartridge in figure 14. It shows the Game Boy pins
connected with a 27C256.
The Game Boys powersupply on pin 1 is connected with VCC and VPP of the 27C256. Game
Boys ground (pin 32) gets a connection with the EPROMs VSS pin. The Game Boy read signal
at pin 4 is connected with the CE input of the EPROM. Through this design, the 27C256 is only
turned on when the Game Boy wants to read from it, the rest of the time it remains in standby
mode to save power. The databus of the Game Boy is directly connected with the EPROMs
data output. The same is done with the Game Boy and EPROM address bus pins, with one
little difference:
The Game Boy has a larger address bus (16 bit) than the EPROM (15 bit). We know that the
highest Game Boy adressbus bit will always be 0 (if set to 1 we would try to access memory
>32KB). Because of this, it is connected with the OE signal of the 27C256.

4.3.3 Assembling the Cartridge

Our first attempt to create a homebrew cartridge is modifying an existing cartridge (paperboy,
may it rest in peace;). Figure 15 shows a photo. The cartridge pins are connected with an
EPROM which contains a homebrew Pong clone. This Pong Clone is described in section 5.5.
We destroyed with a small saw all connections from the cartridge pins to to the original car-
tridge content and assembled at each pin a wire (fixed with liquid glue). During the next step,
a socket for the 27C256 is assembled on a circuit board and connected with the wires. We use
the connection layout which was described in section 4.3.2. This first prototype is a very cheap
way to create a simple cartridge.
A second way creating a homebrew cartridge is to design and create a circuit board instead of

14

8-Bit Wonderland - Executing custom code on the Nintendo Game Boy

Figure 16: Back of homebrew cartridge

modifying an existing cartridge. It is important that the connection pins of this circuit board
have the same size like on a original cartridge to fit in the Game Boy cartridge slot. We have
created a layout for such a cartridge with the Eagle CAD tool[10] and you are allowed to use
and modify it. Photographs are shown in figures 16, 17 and 18.

5 Game Boy Software

We have described in the last chapter, how to develope a homebrew Game Boy cartridge. This
chapter describes how to write software, which can be written on the EPROM and executed by
the Game Boy. It is structured the following way:

• Subsections 5.1 - 5.4 describe the necessary basics: ROM layout, accessing a video device
and the development kit

• Section 5.5 is our first example application: a Pong clone

5.1 ROM Layout

Like a windows portable executable, the data on a Game Boy cartridge consists of two sections:

• a header, which contains information about the ROM: supported Game Boy model, whether
it contains a bankswitch controller, etc.

• the code itself

[1] describes the layout of the header mentioned above in detail. We will give in this section
just a brief overview. The header begins with a sequence of pointers (interrupts, etc.). Adress
0x0100 is the execution entry point of a Game Boy cartridge. It has a size of 4 bytes and is in

15

8-Bit Wonderland - Executing custom code on the Nintendo Game Boy

Figure 17: Front of a homebrew cartridge 1

Figure 18: Front of a homebrew cartridge 2

16

8-Bit Wonderland - Executing custom code on the Nintendo Game Boy

most cases a jump instruction to the real entry adress. The execution entry point is followed
by the data of the scrolling Nintendo logo which is shown after the device has been turned on.
The logo is follwed by informations about the cartridge type (ROM size, cartridge RAM size,
bankswitch controller type, etc.). A complement check and a checksum are stored at the end
of the header (checksum is ignored by Game Boy Classic and only important for newer Game
Boy revisions).

5.2 Boot Sequence

Again, this chapter is just a summary of [1]. When the Game Boy is turned on, two things
happen:

1. Boot program from an internal boot ROM is executed.

2. Control is passed to ROM on the Game Boy cartridge.

The internal boot ROM starts reading the Nintendo logo from the cartridge and displays it on
screen (its scrolled down). The two musical notes are played and the Nintendo logo from the
cartridge is read again. It is compared with a copy of the logo data on the internal boot ROM.
Execution stops if the logo data on the cartridge differs from the logo data on the internal boot
ROM, otherwise it continues. All bytes from the adresses 0x0134 to 0x014d and 25 are added
(remember, 0x0104d was the complement check value). The internal boot ROM is disabled if
the last significant byte of this addition is 0 and adress 0x0100 on the cartridge is executed, oth-
erwise execution stops. It is important to remember this when modifying an existing cartridge
or create a cartridge header from scratch.

5.3 Video

This chapter covers video timings and video data. For a bedder understanding of video timing,
we will introduce NTSC. After introducing NTSC and applying it to the Game Boy, we will
explain how to write data on the Game Boy display.

5.3.1 Synchronisation

NTSC is an analog televion system used in north america (european countries use PAL which
differs in video frame height, width and color encoding). It contains:

• Video frames

• Video synchronisation signals

• Audio data

NTSC uses a certain color space to encode pixel data in an (interlaced) video frame. Video
and audio data can be transmitted on carrier frequency. NTSC TV signals use a resolution of
720x486 and 30 video frames are transmitted per second (which means NTSC has frequency of
30 Hz).
But that is not important for accessing the Game Boy display and not discussed in detail. We
refer instead to the NTSC specification [11]. This chapter focusses on video synchronisation
signals because knowledge about them helps understanding how to access the display on a
gaming device (not only Game Boy, but also Atari 2600 e.g.).
NTSC was developed in 1941 when no modern LCD display existed. TV’s created a video

17

8-Bit Wonderland - Executing custom code on the Nintendo Game Boy

frame with a cathode ray tube. A single electron beam scans a phosphor screen from left to
right and then returns to the top. The synchronisation signals of the NTSC signal are necessary
to control the TV’s electron beam. There exist two synchronisation signals:

• HSYNC

• VSYNC

HSYNC signals a TV that the end of a scanline is reached (a video frame consists of several
lines, so called scanlines). The TV needs some time to position the electron beam from the end
of the old scanline to the beginning of the new scanline. This time window is called horizontal
synchronisation phase.
VSYNC signals a TV, that the end of a video frame is reached and the electron beam has to be
adjusted from the lower-right of the display to the upper-left to create the next video frame.
This re-adjustment takes some time and is called vertical synchronisation phase.
The Game Boy does not contain a cathode ray tube, but it exits also a vertical synchronisation
phase. This is important for Game Boy software development, because the developer has to take
care about not accessing the video RAM while the Game Boy is reading from it and writing the
next video frame on the display. Instead, Game Boy software should use the following scheme:

1. Game logic

2. Wait for vertical synchronisation phase

3. Update Video RAM

4. Goto 1

5.3.2 Tiles

We described in the last section the timings of video signals. We will describe in this section
how video data on the Game Boy is structured. The Game Boy displays two different kind of
graphics:

• Sprites

• Background

Both consist of several so called tiles. A Tile is a 8x8 image and has a size of 16 bytes. Figure
19 shows an example tile. Every line consists of 8 pixels and each pixel has one of four differ-
ent greyscale values. Every line is mapped with two bytes into memory. Figure 19 shows an
example tile. Figure 20 shows line 1 of this tile and its bit-encoding in memory (presuming it
is mapped into memory at adress 0x00). The four greyscale values are represented by the bit
encodings 00, 01, 10 and 11. All bit tuples in figure 20, which are used for pixel encoding, are
marked with a red square. Arrows are pointing to the corresponding pixels of tile line 1.
A single tile can be implemented by hand in C with a 16 byte character array. This is very time
consuming and not advisable for larger projects with many tiles. Therefore there exists tools
which allow you to paint tiles in a pixel raster and export them as C character arrays. We have
used for this project the Game Boy Tile Designer (GBTD) which can be found at
http://www.devrs.com/gb/hmgd/gbtd.html (send us a mail if the link does not work
for you).
We have seperated at the beginning of this section Game Boy graphic elements into background

18

http://www.devrs.com/gb/hmgd/gbtd.html

8-Bit Wonderland - Executing custom code on the Nintendo Game Boy

Line 1

Line 2

Line 3

Line 4

Line 5

Line 6

Line 7

Line 8

Figure 19: 8x8 Game Boy Tile

0x00: 00000000
0x01: 01000100

Figure 20: Tile Encoding

19

8-Bit Wonderland - Executing custom code on the Nintendo Game Boy

and sprites. Both are just tiles, written into the video RAM and displayed on the screen at
certain coordinates. The background (actually there is more than one memory region for the
background but this is not important in this work, we refer instead again to [1] for detailled in-
formation) has one peculiarity: The video RAM has a 256x256 pixel buffer for the background.
The Game Boy can display only 160x144 pixels at once but contains scrolling registers. Those
registers control which pixels in the background buffer become visible and which are shifted
out.

5.4 Gameboy Developers Kit

We have described in the last sections the software and hardware aspects of Game Boy devel-
opment. We have not described yet how to access them as a programmer: E.g. how to wait
for vertical synchronisation, how to access the video RAM or how to generate the header of a
ROM (see section 5.1).
One possibility to do so is to use an assembler. An assembler gives us a high optimisation
potential and creates (in most cases) faster and smaller code than a high level language (HLL)
compiler (e.g. some games on the Atari 2600 console can only be implemented with an as-
sembler because of the limited hardware). On the other hand it has also some disadvantages
compared with a HLL:

• Assembler code is harder to maintain and to extend.

• Assembler code leads to an higher amount of programming errors.

• It takes more time to create assembler source code because of its complexity.

• Knowledge of the target CPU architecture is necessary (Opcodes, Interrupts, Registers,
Memory Layout, etc.).

Assembler is the bedder choice for complexer and larger games. Our case study in section 5.5
is less complex and for demonstration purpose only. Therefore, we will use a HLL in this work.
The GameBoy Developers Kit (GBDK) [3] provides a C compiler, linker, preprocessor, etc. for the
generation of Game Boy ROM files. We will present in section 5.5 an example application [12]
which contains a Makefile. This Makefile can also be taken as an example for the GBDK workflow
and the compiler flags. A description of the compiler flags, Makefiles, etc. is also found in [5].

5.4.1 Coding Guidelines

While writing C code with the GBDK for the Game Boy, you have to remember some important
guidelines (desribed in detail at [3]):

• Initialized global variables are located on the ROM and therefore read-only. Uninitialized
global variables are located in RAM and writable.

• The CPU in the Game Boy is an 8-bit CPU and optimized for 8-bit arithmetrics. You
should use 8-bit unsigned variables whenever possible. The compiler can of course han-
dle larger datatypes too, but arithmetrics with larger datatypes will take much more time.

• Avoid multiplication, division, modulo and floating point variables. The Game Boys CPU
has no native support for them. Instead, the compiler will emulate these operations with
software which is very costly and inefficient.

20

8-Bit Wonderland - Executing custom code on the Nintendo Game Boy

• The operators ! = and == are more efficient than <=, <, etc.

These guidelines are restrictive. Nevertheless, it may be sometimes necessary to use floating
point arithmetrics or complexer mathematical functions (e.g. sin(x), tan(x), etc.). A possible
solution to implement e.g. sin(x) is the approximation with a taylor polynom which will in-
clude several multiplications and a division with floating point variables. This is not advisable,
because we have already seen that these operations are very costly on the Game Boy.
A faster (but more inaccurate) solution is the creation of a lookup table.

Listing 1: Example for Sinus Lookup Table Generation
1 import j ava . lang . Math ;
2 c l a s s Lookup{
3 s t a t i c f l o a t prec = 0 . 1 f ;
4 s t a t i c f l o a t t r e s h o l d = 2 f ∗ (f l o a t) Math . PI ;
5 s t a t i c i n t l i n e b r e a k = 5 ;
6

7 public s t a t i c void main (S t r i n g [] argz){
8 System . out . p r i n t l n (” f l o a t lookup [] = {”) ;
9 i n t l in ec o un t =0;

10 for (f l o a t i =0 ; i<=t r e s h o l d ; i +=prec){
11 / / p r i n t nex t s i n (i) and add ” ,” i f n e c e s s a r y
12 System . out . p r i n t (Math . s i n (i)) ;
13 i f (i +prec<=t r e s h o l d) System . out . p r i n t (” , ”) ;
14 / / add n e w l i n e i f n e c e s s a r y
15 l in ec o un t ++;
16 i f (l in e co un t%l i n e b r e a k ==0) System . out . p r i n t l n (””) ;
17 }
18 System . out . p r i n t l n (” } ; ”) ;
19 }
20 }

Listing 1 is a small Java example which creates a C float array of sinus values. It is controlled
with three static variables which determine the resolution of the lookup table, its range and the
total amount of elements per line in the source code (for bedder readability).
Multiplication can also be implemented with lookup tables. To do so, we make use of the
logarithm function [13] and its computation rule:
loga(x ∗ y) = loga(x) + loga(y)
which leads to:
x ∗ y = log−1

a (loga(x) + loga(y))
A multiplication is transformed into an addition, which leads to a speedup in execution time.
The computation of loga(x) and log−1

a (x) can be realized with lookup tables discussed above.
These lookup tables are not limited to the computation of a multiplication. A division e.g. can
be expressed with x

y = log−1
a (loga(x) − loga(y)) and so on. See [13] for more details about the

logarithm function.

5.4.2 APIs

The GBDK APIs are described in detail in [5]. We will give in this section just a brief overview,
to give you an idea how the GBDK APIs work. Before we take a look at the APIs themself, we
have to introduce some regions in the VRAM:

21

8-Bit Wonderland - Executing custom code on the Nintendo Game Boy

• Tile Data Table (TDT): Contains the tile data (16 bytes per tile, see 5.3.2). Background and
sprites have their own TDT.

• Background Tile Map (BTM): Contains the tile numbers which are displayed on the Game
Boy screen. The tile numbers refer to the background TDT.

• Object Attribute Table (OAT): Contains information about the sprites which are displayed
on the Game Boy screen. It is organized in so called blocks. Each blocks has a size of 4
bytes and consists of a tile number (refers to the sprite TDT), X and Y coordinate on screen
and one byte for its attributes.

We will now present the most important GBDK APIs which are used in our Pong application
in section 5.5:

1 void e n a b l e i n t e r r u p t s () ;

There exist functions to add, enable and disable interrupts. It is basically a good idea to disable
all interrupts before adding a new one. One should also disable all interrupts and the display
(with the DISPLAY OFF macro) at the beginning of a game when loading tile data into VRAM.

1 void s e t b k g d a t a (UBYTE f i r s t t i l e ,
2 UBYTE n b t i l e s ,
3 unsigned char ∗data) ;

Copies tile data (nb tiles is the amount of tiles to be copied) from the memory location data into
the background TDT (first tile is the destination index in TDT).

1 void s e t b k g t i l e s (UBYTE x , UBYTE y ,
2 UBYTE w, UBYTE h ,
3 unsigned char ∗ t i l e s) ;

Copies a rectangular area (w and h are width and height) of tile index numbers (which are refer-
ring to the corresponing tiles in the background TDT) from tiles into the BTM to the coordinates
x*y.

1 void s e t s p r i t e d a t a (UBYTE f i r s t t i l e ,
2 UBYTE n b t i l e s ,
3 unsigned char ∗data) ;

Copies tile data to the tile TDT analog to set bkg tiles().

1 s e t s p r i t e t i l e (UBYTE nb ,
2 UBYTE t i l e) ;

Sets the tile number of a specific sprite in the OAT.

5.5 Case Study: Development of a Pong Clone

We have written a Pong clone with the GBDK for learning and demonstration purpose[12]. The
file archive contains two C source code files which can be compiled with the GBDK and run on
a Game Boy:

• thumby.c is a little demonstration program, which loads a background pattern and a black
rectangular sprite. The sprite can be moved with the directional pad.

• thumby2.c is the Pong clone itself. A screenshot of it, running on a homebrew cartridge,
can be seen in figure 17.

22

8-Bit Wonderland - Executing custom code on the Nintendo Game Boy

The Pong field is divided into two sections. One contains the two paddles and the ball, the
other displays the score. The left paddle is controlled by the human player with the directional
pad, the right one is controlled by the CPU. A player wins the game when his score reaches 10
points. When the game begins or a player scores, the game is set to a suspended state. This
means, its possible to move the paddle but the ball is frozen in the middle of the field. The
game will continue when the START button is pressed
The Pong source code has the following structure:

1. Disable display and interrupts.

2. Load sprites from ROM into VRAM TDT.

3. Enable display and interrupts.

4. Sleep until vertical synchronisation phase.

5. If directional pad was pressed: Change left paddle coordinates.

6. If the game is not suspended: Change ball coordinates.

7. If the game is not suspended: CPU moves the right paddle.

8. If the game is not suspended: Collision detection with ball, paddles and the field board-
ers. Suspend the game if a player has scored.

9. Update sprite positions on the display.

10. Goto 4.

The collision detection works without trigonometric functions (we have seen in the last sections
that it is a good idea to avoid floating point arithmetrics). This is possible because ball and
paddle are rectangulars. Therefore its possible to check wether the ball and paddles overlap
(collide) with substractions and some if-else blocks.

6 Conclusion and further Work

We have given in this work an overview about the Game Boys technical details. Furthermore
we have introduced the basics of digital circuits and used them to develope a layout for a
homebrew cartridge. We have presented two ways to implement a real homebrew cartridge:
modifying an existing cartridge and creating a new one from scratch. The GBDK was used to
develope a Pong clone as a proof of concept for a homebrew cartridge.
Nevertheless, some topics were not mentioned and challenging for further work:

• The presented homebrew cartridge did not contain external RAM, a bankswitch con-
troller, etc.

• For more complex projects, it would be necessary to make use of Game Boy assembler
programming.

• Modification of existing ROMs to e.g. hide encrypted data in it.

• Place a programmable logic on the homebrew cartridge (e.g. a GAL) and check wether
its possible to replace the scrolling Nintendo logo when the Game Boy boots.

23

8-Bit Wonderland - Executing custom code on the Nintendo Game Boy

7 Acknowledgement

I would like to express my gratitude (in alphabetical order) to Blarz, Kroko, Rembrandt and
Xaxes for supporting this work.

24

8-Bit Wonderland - Executing custom code on the Nintendo Game Boy

List of Figures

1 Logical abstraction Level . 4
2 Logic table for digital AND Gate . 5
3 field effect transistor . 5
4 Digital Inverter on circuit level . 6
5 Digital Inverter on logic level . 7
6 Logic table for a digital Inverter . 7
7 Game Boy connected to an EPROM with a Bankswitch Controller 8
8 BSC Input and BSC Output in dependence of BSC State 9
9 Game Boy Cartridge Circuit Board . 9
10 Bottom of a Game Boy Cartridge and its Pin . 10
11 Game Boy Cartridge Pins Description . 11
12 27C256 EPROM . 12
13 27C256 Pins Description . 12
14 Homebrew Cartridge Layout . 13
15 Modified custom Game Boy Cartridge connected to a 27C256 14
16 Back of homebrew cartridge . 15
17 Front of a homebrew cartridge 1 . 16
18 Front of a homebrew cartridge 2 . 16
19 8x8 Game Boy Tile . 19
20 Tile Encoding . 19

25

8-Bit Wonderland - Executing custom code on the Nintendo Game Boy

References

[1] Pan, GABY, Marat Fayzullin, Pascal Felber, Paul Robson, Martin Korth, kOOPa, and
Bowser. Game boy cpu manual, 1999.
http://belial.blarzwurst.de/gb/GBCPUman.pdf.

[2] Reiner zieglers page - home made cartridges.
http://www.reinerziegler.de/readplus.htm.

[3] Michael Hope. Game boy developers kit.
http://gbdk.sourceforge.net.

[4] Jason. CGBdk - how to use cgb features with gbdk, 1999.
http://belial.blarzwurst.de/gb/cgbdk.txt.

[5] Michael Hope and Pascal Felber. GBDK libraries documentation, 1998.
http://belial.blarzwurst.de/gb/gbdk-doc.pdf.

[6] Manfred Linzner and Jason. Gbdok v1.0, 1999.
http://belial.blarzwurst.de/gb/gbdok.txt.

[7] Stephen D. Brown. Fundamentals of Digital Logic with VHDL Design (McGraw-Hill Series in
Electrical and Computer Engineering). McGraw-Hill, Inc., New York, NY, USA, 2005.

[8] Paul Halmos. Lectures on Boolean Algebras. D. Van Nostrand, Princeton, 1963.

[9] Manfred Seifart and Helmut Beikirch. Digitale Schaltungen. Verlag Technik, 1997. in ger-
man.

[10] Game boy homebrew cartridge eagle layout.
http://belial.blarzwurst.de/gbpaper/gb-cartridge-layout.zip.

[11] International Telecommunication Union. Rec. ITU-R BT.601-4 - encoding parameters of
digital television for studios. Technical report, 1994.

[12] Belial. Game boy pong clone.
http://belial.blarzwurst.de/gbpaper/gb-pong.zip.

[13] I.N. Bronstein and K.A. Semendjajew. Taschenbuch der Mathematik, 25. 1991.

26

http://belial.blarzwurst.de/gb/GBCPUman.pdf
http://www.reinerziegler.de/readplus.htm
http://gbdk.sourceforge.net
http://belial.blarzwurst.de/gb/cgbdk.txt
http://belial.blarzwurst.de/gb/gbdk-doc.pdf
http://belial.blarzwurst.de/gb/gbdok.txt
http://belial.blarzwurst.de/gbpaper/gb-cartridge-layout.zip
http://belial.blarzwurst.de/gbpaper/gb-pong.zip

	License
	Introduction
	Game Boy Basics
	Features and Memory layout
	Digital Circuits
	Logic Level
	Circuit Level

	Data- and Addressbus
	Bankswitching

	Game Boy Cartridge
	Components
	Pins
	Development of a Homebrew Cartridge
	EPROM
	Layout
	Assembling the Cartridge

	Game Boy Software
	ROM Layout
	Boot Sequence
	Video
	Synchronisation
	Tiles

	Gameboy Developers Kit
	Coding Guidelines
	APIs

	Case Study: Development of a Pong Clone

	Conclusion and further Work
	Acknowledgement
	List of Figures
	References

