
The One Weird Trick
SecureROM Hates

#POC2019, Seoul, South Korea

~qwertyoruiop

whoami

• Luca Todesco aka qwertyoruiop

• Often idling in irc.cracksby.kim #chat

• @qwertyoruiopz on Twitter

• Independent security researcher with an iOS focus

• Grew up around the iOS hacking scene

whoami

• Luca Todesco aka qwertyoruiop

• Often idling in irc.cracksby.kim #chat

• @qwertyoruiopz on Twitter

• Independent security researcher with an iOS focus

• Grew up around the iOS hacking scene

• This talk and the work I will present would have not been
possible without the contributions of several people

• axi0mX, littlelailo and Siguza for the underlying bug and
exploitation strategies

• the checkra1n team for the work put into building the
infrastructure and the software required to turn this into
a jailbreak

whoareus

• checkra1n team

• argp, axi0mx, danyl931, jaywalker, kirb, littlelailo,
nitoTV, nullpixel, pimskeks, qwertyoruiop, sbingner,
siguza, haifisch, jndok, jonseals, xerub, lilstevie,
psychotea, sferrini, Cellebrite (ih8sn0w, cjori, ronyrus
et al.), et al.

whoareus
• checkra1n team

• A broad group of iOS hackers from all around the iOS
hacking/jailbreaking scene, both public and private,
focusing on both hardware and software aspects

• Possibly the best team of people I have had the
pleasure of working with in my entire “career”

• I am very grateful for the opportunity to work in
such a manner with people so skilled and
passionate about what they do.

whatis SecureROM
• SecureROM is the very first code to run on the Application Processor

upon cold boot

• Stripped-down and simplified version of iBoot

• Patterned in silicon as mask ROM, thus immutable

• Most trusted code to run on the Application Processor

• Main goal is to load a first-stage bootloader image from non-volatile
memory and boot it

• But it also provides an emergency recovery mechanism called DFU,
which allows you to upload an image over USB

• Can enter via a special key combo held during reset

whatis Secure Boot
• iOS pioneered the concept of Secure Boot, and SecureROM is a

key part of the trusted boot sequence

• On all devices SecureROM implements secure boot
mechanisms when uploading an image over DFU

• These also apply for images in non-volatile storage on all
devices except S5L8900 (original iPhone)

• Secure boot mechanisms are jailbreaking enemy number one

• Jailbreaks rely on bypassing this mechanism, either by
compromising a node in the chain-of-trust, or simply
compromising an already fully booted system

DFU Protocol
• DFU is a fairly simple protocol implemented over USB control

transfers

• Goal is to just allow the device to get data from host in a
simplified way

• Data chunks are uploaded via request 0x21, 1

• Once the transfer is done, three status requests followed by a
USB reset will exit DFU and attempt to boot the uploaded
image

• But DFU can be exited in other ways too, for instance via
request 0x21, 4 (DFU abort)

USB Control Transfer
• Used to issue commands, send data from host to

device or request data from device to host

• Successful USB enumeration requires a few of these
to be handled by the device

• It starts with a setup packet, an 8 byte structure
containing information on the transfer about to
happen

bmRequest
Type bRequest wValue wIndex wLength

USB Control Transfer
bmRequest

Type bRequest wValue wIndex wLength

If wLength is non-zero, the setup
packet is followed by a “data phase”,

which e.g. in DFU mode is how the
data is transferred from host to

device, although this can also be done
device-to-host depending on the

bmRequestType

USB Control Transfer
bmRequest

Type bRequest wValue wIndex wLength

If wLength is non-zero, the setup
packet is followed by a “data phase”,

which e.g. in DFU mode is how the
data is transferred from host to

device, although this can also be done
device-to-host depending on the

bmRequestType

The “data phase” will chunk the data
in packets of sizes ranging from 8

bytes to 64 bytes (depending on USB
speed) and send it sequentially

USB Control Transfer
bmRequest

Type bRequest wValue wIndex wLength

If wLength is non-zero, the setup
packet is followed by a “data phase”,

which e.g. in DFU mode is how the
data is transferred from host to

device, although this can also be done
device-to-host depending on the

bmRequestType

The “data phase” will chunk the data
in packets of sizes ranging from 8

bytes to 64 bytes (depending on USB
speed) and send it sequentially

Once the transfer is done, a “status
phase” follows, which marks the end
of the control transfer by sending a

zero-length packet

USB Control Transfer
bmRequest

Type bRequest wValue wIndex wLength

If wLength is non-zero, the setup
packet is followed by a “data phase”,

which e.g. in DFU mode is how the
data is transferred from host to

device, although this can also be done
device-to-host depending on the

bmRequestType

The “data phase” will chunk the data
in packets of sizes ranging from 8

bytes to 64 bytes (depending on USB
speed) and send it sequentially

Once the transfer is done, a “status
phase” follows, which marks the end
of the control transfer by sending a

zero-length packet

In iBoot’s USB stack, a temporary buffer
is allocated during USB initialisation,

and data phase packets get memcpy’d
into it once received by the device

USB and DFU
• The USB stack is turned on when entering DFU

• Triggering the allocation of the buffer used for holding
data temporarily during a control transfer’s data phase

• Once a control transfer is issued, a pointer to this buffer is
copied into a global variable which the USB stack will use
as destination for the data coming in via data phase

• … but upon DFU exit, the USB stack is turned off again

• Triggering a free of the said buffer

The bug
• The USB stack is turned on when entering DFU

• Triggering the allocation of the buffer used for holding
data temporarily during a control transfer’s data phase

• Once a control transfer is issued, a pointer to this buffer
is copied into a global variable which the USB stack will
use as destination for the data coming in via data phase

• … but upon DFU exit, the USB stack is turned off again

• Triggering a free of the said buffer

The bug
• The USB stack is turned on when entering DFU

• Triggering the allocation of the buffer used for holding
data temporarily during a control transfer’s data phase

• Once a control transfer is issued, a pointer to this buffer
is copied into a global variable which the USB stack will
use as destination for the data coming in via data phase

• … but upon DFU exit, the USB stack is turned off again

• Triggering a free of the said buffer The global variable
is never NULL’d out

The bug
• The USB stack is turned on when entering DFU

• Triggering the allocation of the buffer used for holding
data temporarily during a control transfer’s data phase

• Once a control transfer is issued, a pointer to this buffer
is copied into a global variable which the USB stack will
use as destination for the data coming in via data phase

• … but upon DFU exit, the USB stack is turned off again

• Triggering a free of the said buffer The global variable
is never NULL’d out

Use-After-Free

Trigger
• Start an USB control request transfer with a data phase

• Interrupt transfer mid-way

• Issue a DFU abort (0x21, 4), causing the temporary buffer
to be free’d

• DFU is re-entered, reallocating the buffer

• Try to complete the previously-interrupted transfer by
sending data phase packets once DFU is re-entered

• The data will be memcpy’d on top of a free’d pointer

Practical Trigger
• Littlelailo and Siguza’s approach was to take an Arduino with a USB

host shield in order to get full control over the host-side USB stack

• Full control on the host-side USB stack is needed in order to be
able to do partial control transfers, as most USB stacks won’t
really let you do this without abusing tricks

• Axi0mX’s approach was to abuse the USB stack on macOS in order
to have a transfer be aborted mid-way

• Not deterministic, but multiple attempts can be made, and many
USB stacks (eg. IOUSB, usbfs and WinUSB) provide feedback on
how much data has been transferred in case of failed transfers,
thus allowing a practically-deterministic implementation without
custom hardware or drivers

Practical Trigger

From Siguza and littlelailo

SecureROM Exploitation

• If you attempted to follow these steps, nothing would
happen on most devices

• An exception is A8 and A9, due to a bug in the DFU
abort functionality

• Siguza and littlelailo analysed these two devices in
particular, and noted that a task structure is leaked
in the heap every time a DFU abort is done

SecureROM Exploitation
(A8, A9)

• We are corrupting a task structure

• Upon task yield, registers are saved to this structure, and upon
scheduling they are restored off of it

• UaF write happens on the currently-scheduled task, thus can’t just
overwrite registers, as those won’t be used and will be overwritten

• Tasks however have a linked list off of which the next task to
schedule is chosen

• Create a fake task structure and on next yield we get full control
over the register state

• No ROP/JOP needed: we achieve direct code execution

SecureROM Exploitation
• 32-bit ROMs (except S1 SoC), A7, A10, A10X, A11 and

A11X can’t use this strategy

• There is no task structure leak to abuse

• No crash is triggered whatsoever as the ROM is
deterministic enough that the buffer is reallocated in
the same place every time upon USB stack
initialisation

• Need a way to break this determinism in order to
get a proper UaF scenario

SecureROM Exploitation
• Need a way to break this determinism in order to get an

usable UaF scenario

• The heap allocator in SecureROM returns the smallest
possible hole available for a given allocation size

• Heap feng shui

• Axi0mX uses this in order to create an exploitable
UaF condition

• First of all, for this, we need controlled allocation
primitives

SecureROM Exploitation
• In-flight USB transfers will have an associated structure

allocated on the heap

• Multiple USB transfers may be in-flight at the same time

• For example, for requests that have data going
device-to-host if the IN endpoint is stalled, the device
is not going to be able to send data until the stall is
cleared

• Every setup packet for device-to-host requests
sent in such a condition will end up staying around
for a while

SecureROM Exploitation

• We have the ability to repeatedly malloc and delay the
free temporarily, until stall conditions are cleared or the
USB stack is shut down

• The issue is that we need some allocations to persist
across a DFU abort in order for our heap shaping to
influence the next allocation of our buffer

SecureROM Exploitation
• A state machine bug in the USB stack is abused in order to have

allocations that persist across USB stack destruction and creation

• The standard device-to-host USB request destructor will send
a zero-length packet once a request is fulfilled or the USB stack
shuts down

• The issue is that when the USB stack is shutting down, the
zero-length packet is never sent and ends up being leaked

• This leak can be triggered conditionally as only packets
that match specific conditions will trigger this leak - for
instance, requests that are not a multiple of 64 bytes
won’t trigger the leak

SecureROM Exploitation
• We can use this heap leak in order to carefully craft the

state of the heap and end up with an exactly sized hole,
which will be the preferred place for malloc to put the
buffer on the next allocation

• Each USB request structure contains a function pointer
to a callback, so we can now reallocate a few in place
and perform the use-after-free write in order to get a
controlled indirect branch upon stall clear or DFU exit

• This strategy can be successfully used on A9X, A10,
A10X and A11

SecureROM Exploitation

• On older devices such as A7 this technique is not
workable since the leak is always triggered for all in-
flight USB requests

• Can however have the heap almost run out, minus
exactly the size of the buffer, thus creating a hole
that is going to be preferred by malloc

Checkmate.
However, all we have now is code execution, we
need to develop a bootkit of sorts to continue.

Bootkit ELI5
• We have code execution in SecureROM’s DFU mode

• Our goal is then to boot the device normally and compromise each stage
in the boot sequence

• Eventually the bootloader will have the kernel loaded in memory and
attempt to branch into it’s entry point

• Our goal is to patch the kernel at that point in time, as it’s still fully
read/write

• Turns out to be a bit tricky, especially when wanting to support multiple
devices and versions without having to hardcode offsets

• Resilient patchfinding strategies are required in order to keep such a
project reasonably maintainable

Bootkit Development
• iBoot makes use of a “boot trampoline” which gets the CPU state back

to an almost-reset one

• Previous image is wiped (in case of ROM, access is disabled)

• MMU is disabled

• All registers set to zero

• Including registers such as X18, which due to ABI constraints is
never really used normally

• Very easy to find the trampoline by looking for a mov x18, #0
instruction

• Can write shellcode to dynamically locate this

Bootkit Development
• There is a chicken-and-egg issue with the trampoline

• It will wipe the current-stage boot loader

• So it has to be relocated off of the boot loader into
some memory which is not wiped

• A reserved region is used for this, however on some
versions the trampoline is relocated just before trying
to use it

• This is problematic on SecureROM as it’s read only
and we may get code execution before this happens

Bootkit Development
• We can relocate the SecureROM into SRAM and alter

TTBR0_ELn in order to remap the ROM range

• On some devices, a 512KB area can be used for this purpose

• Whole ROM can be relocated there

• On other devices, there is not much free SRAM we can abuse

• Could use exotic strategies such as resizing the heap,
reserving more L2 cache as addressable SRAM

• But all we really need is to remap one single page in order
to alter the trampoline

Bootkit Development
• We also need to find some area where to stash our

shellcode

• However we’re still restricted to the available free SRAM

• And we also need to do a normal boot, which itself
makes use of some SRAM

• Maybe we can use DRAM?

• Not initialised while SecureROM is running; the first-
level boot loader is in charge of DRAM initialisation

Bootkit Development
• We also need to find some area where to stash our shellcode

• Maybe we can use DRAM?

• Not initialised while SecureROM is running; the first-level
boot loader is in charge of DRAM initialisation

• The first level boot loader has a feature called SoftDFU
that simulates DFU mode but has DRAM available at that
point in time, allowing a larger image to be uploaded

• We can abuse this to load a practically arbitrary
amount of data in DRAM without having to bother
initialising it ourselves

Bootkit Development

• Large portions of DRAM can be cleared by iBoot

• Dirty workaround: hook bzero and detect wether the
range overlaps with our shell code

• If so, bzero is considered to be a NOP

• Not the nicest way to pull it off, but it does work
pretty well

Bootkit Development

• Once the trampoline hook and bzero hook are in place
we are able to reach the next trampoline invocation

• Re-execute these hooks in the next-stage boot
loader if necessary

• Devices before A10 use two stages, A10 and later
only really use one, so this is not strictly required
there

Bootkit Development
• Eventually the boot loader will have the kernel prepared

and the trampoline will be used in order to invoke the
entry point

• On devices where EL3 is present, the Secure Monitor
entry point is used instead, and the kernel arguments
and entry point are passed to it in order for them to be
loaded in EL1 by the SM

• The hook we perform on the trampoline means we
override the branch target into our own shellcode, and
pass the original value in a register we prevent from
being cleared

Bootkit Development
• We can now patch the kernel

• However due to having to support arbitrary device/version pairs
patchfinding is the only sane strategy to use here

• Due to the way we patched the trampoline we gain code
execution at a point in time with no MMU or caching enabled

• This becomes really slow really fast due to the sheer amount
of memory accesses we need to perform

• We turn MMU back on with a set of TTEs that map a view
of DRAM as cacheable for the patchfinder to work off of

Bootkit Development

• We apply a pretty old-school kernel patchset

• KPP and KTRR are non-issues since these patches
are performed before they get initialised at all

• iOS 8 all over again

• vm_map_protect, vm_fault_enter, AMFI trustcache
validation, sandbox MACF hooks, mount, TFP0,
apfs…

Bootkit Development

• Kernel patching alone is not enough

• Once the kernel boots we need to retain code
execution in usermode in order to prepare the
jailbroken state

• We can embed a tiny ramdisk in our shellcode in
order to hijack EL0 code execution and patch the
device tree and kernel boot arguments structure in
order to map it in and have it used as root device

Jailbreak Development
• We started from SecureROM code execution

• We now got all the way to EL0 user-mode code execution

• However our ramdisk has to be small due to
performance: DFU transfers are not that fast, and having
to wait several seconds on a data upload is not great

• Copyright concerns also mean we should avoid shipping
any Apple proprietary code with such a ramdisk

• Problematic since we need a dynamic linker and at
least a few user-mode libraries to link our code against

…. so we wrote our own Totally Legitimate dynamic linker

Jailbreak Development

• We use syscall(3) in order to mount the real root
filesystem on top of /, using union mounting as to not
destroy the vnode backing the code we’re running

• Immediately shadows /usr/lib/dyld, giving us a real
dynamic linker to work with, and provides a full dyld
shared cache to link against

• Can now run real code as PID 1, before launchd is
ever executed

Jailbreak Development
• The root filesystem at this point is still read-only, and

we’d like to keep it that way until the user explicitly
decides to change this

• But we also need to drop extra files in order to get a
shell and allow users to install a package manager if
they so wish

• So we need the /private/var partition to be available

• Data protection needs to be initialised for this, and
launchd is responsible for this

Jailbreak Development
• We need to hook execution of something early in the boot

process, but late enough as to have data protection enabled

• So we keep on union mounting, this time another tiny .dmg
on top of /usr/libexec/

• Can override any system daemon

• We picked sysstatuscheck as it runs at the right point
in time across multiple iOS versions

• execve our way back into a vnode off the original
ramdisk and forcefully umount the /usr/libexec dmg

Jailbreak Development
• We can now let launchd continue booting by simply

execve’ing the original daemon

• And we can fork(2) off before doing this as to run our code
as the system boots up

• Wait until usbmux turns on and wait for host to upload
a .dmg containing all the required utilities for a basic
shell to run, a ssh daemon and a fancy .app to let users
install a proper jailbreak bootstrap on their root
filesystem

• We mount this on /binpack and kickstart the ssh
daemon

and once SpringBoard runs…

Future Plans
• Ideally our aim for this project is to move from being a pure jailbreak

to providing something like an iOS version of Clover

• Custom on-boot kernel extension loading

• Jailbreak patch set can be moved here to simplify maintenance
and versioning

• Dual booting

• Very useful for research purposes

• Linux on iPhone

• :)

