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Abstract Nowadays, the huge volume of medical images
represents an enormous challenge towards health-care orga-
nizations, as it is often hard for clinicians and researchers
to manage, access, and share the image database easily.
Content-based medical image retrieval (CBMIR) techniques
are employed to facilitate the above process. It is known that
a few concrete factors, including visual attributes extracted
from images, measures encoding the similarity between
images, user interaction, etc. play important roles in deter-
mining the retrieval performance. This paper concentrates
on the similarity learning problem of CBMIR. A novel
similarity learning paradigm is proposed via relative com-
parison, and a large database composed of 5,000 images
is utilized to evaluate the retrieval performance. Extensive
experimental results and comprehensive statistical analysis
demonstrate the superiority of adopting the newly intro-
duced learning paradigm, compared with several conven-
tional supervised and semi-supervised similarity learning
methods, in the presented CBMIR application.
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Introduction

Medical images are often of great importance in diverse
clinical operations, including diagnosis, treatment planning,
physicians education, etc. According to Frost and Sullivan’s
report, the number of medical images increases by 20–40 %
each year worldwide, and it is estimated that there are no
less than one billion medical images produced and stored
in the USA alone by the year 2012 [1]. Although millions
of medical images are available, these images represent
an enormous challenge towards health-care organizations
(such as hospitals, research institutes, medical colleges,
etc.), as they struggle to manage, access, and share the
extremely large scale of data in their daily affairs. In order
to facilitate the above process, medical image retrieval
techniques have been proposed and adopted in various
applications for the past 20 years [2–19].

Based on different attributes of medical images
employed in the retrieval procedure, most conventional
medical image retrieval techniques can be categorized into
two kinds: text-based medical image retrieval (TBMIR)
and content-based medical image retrieval (CBMIR). For
TBMIR, it aims to search similar or clinically relevant ref-
erence images from a large database based on annotated
textual information of each image. For instance, in digital
imaging and communication in medicine (DICOM), which
is a popular standard for handling, storing, and transmitting
information regarding medical images, such textual infor-
mation (about patient data, imaging sequences, etc.) often
exists in headers of image files. It is generally acknowledged
that the retrieval performance of TBMIR systems highly
depends on these textual information, in which high precise-
ness and accuracy is necessary. Although TBMIR is popular
in several practical utilizations (e.g., Goldminer from ARRS
[2], BioText from Berkeley [3], iMedline from NIH [4],
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etc.), it has its own drawbacks. In the review paper of Müller
et al. [5], it is mentioned that DICOM headers have proven
to contain a fairly high error rate, which can be as high as
16 %. The performance of TBMIR based on such inaccu-
rate textural information will certainly be badly influenced.
Therefore, in order to improve the performance of medical
image retrieval systems, much research effect nowadays has
been put into CBMIR, which is often considered to be a
good complement to the traditional TBMIR [5–19].

CBMIR incorporates visual attributes extracted from
medical images, rather than textual information solely uti-
lized Din TBMIR, for the retrieval purpose [5–8]. There are
already many CBMIR studies proposed for a wide spec-
trum of clinical applications in recent years. For instance,
CBMIR are vastly employed in digital mammography
[6–16]. In [9], a computer-aided expert system named
MAMMO/ICON is introduced for automated mammo-
graphic image retrieval, which is one of the earliest CBMIR
studies in mammography. In [10], the authors concentrate
on the relevance feedback issue in CBMIR and propose a
new strategy to improve the performance of mammographic
image retrieval via incremental learning and support vector
machine (SVM) regression. In [11], the similarity problem
is tackled in CBMIR and a hierarchal learning structure, in
which neural networks (NN) and SVM are utilized as clas-
sifiers, is introduced. In [12], a variety of visual attributes
extracted from breast regions on mammogram (including
structural characteristics such as shape, size, etc., as well
as texture information such as moment-based feature and
Haralick’s texture feature, etc.) are incorporated, and self-
organizing map neural networks is employed to perform
the retrieval operation. In [13], eight information-theoretic
similarity measures (including various forms of entropy,
mutual information, and divergence) are incorporated into
the retrieval process, and the influence of adopting different
information-theoretic similarity measures on the retrieval
performance is analyzed. In [14], research effort has been
put on the user interaction issue in CBMIR, and a k-nearest
neighbor-based method is designed to improve the retrieval
performance with prior knowledge received from user feed-
backs. In [15], a genetic algorithm is introduced for finding
the optimized importance weight of each mammography
image through a pseudo natural evolution process. Besides
the above-mentioned utilizations in mammography, CBMIR
is also favored in other imaging modalities and clinical uti-
lizations, such as lung images [16], CT images [17, 18], eye
images [19], etc.

Although CBMIR systems are developed in a variety
of ways, a few concrete factors that can influence the
retrieval performance are common. It is summarized in [5,
6] that visual features extracted from medical images, mea-
sures encoding the similarity between the query image and
retrieved images, retrieval algorithms, user interaction, etc.

are often of great importance in a CBMIR system. Fol-
lowing the above understanding, much research effort has
been emphasized on individuals of them. For instance, [12]
focuses on different types of feature extracted from images;
[11] and [13] tackle the similarity measure problem; while
[10] and [14] concentrate more on the user interaction (rel-
evance feedback) problem. In this study, the similarity mea-
sure problem in CBMIR is concentrated, and a novel simi-
larity learning method via relative comparison is presented.

In order to automatically “find” a proper similarity mea-
sure from existing data, various similarity learning tech-
niques have been proposed, and many of them fall into the
category of machine learning studies. In machine learning,
“similarity” is closely connected towards “distance,” and a
similarity learning problem is often addressed as a distance
learning problem therein [20]. Depending on the availability
of training data, most similarity (distance) learning methods
can be mainly classified as supervised learning methods and
unsupervised learning methods. For supervised learning,
labels of training data are usually available. A paramet-
ric form of the similarity is usually predefined, and the
unknown parameters within the similarity measure are auto-
matically learned with the aid of available label information
[21–25]. For unsupervised learning (a.k.a. manifold learn-
ing), such labels are unknown. The main idea is to learn
an underlying low-dimensional manifold, where geometric
relationship (e.g., distance) between data is preserved [20].
Recently, a new trend known as semi-supervised learning,
which is in between supervised and unsupervised learn-
ing paradigms, begins to receive much attention [26, 27].
Supervisory information in semi-supervised learning can
be constructed via either limited labeled data or specific
constraints, in which side-information is popular [28]. Side-
information is defined on data pairs, and it often contains
a pairwise similarity constraint (e.g., data pair (A, B) are
from the same but unknown group) and a pairwise dis-
similarity constraint (e.g., data pair (A, B) are from differ-
ent and unknown groups). Since these constraints can be
derived from labeled data in supervised learning but not vice
versa, supervisory information in semi-supervised learning
is not as strong as that in supervised learning [26, 27].

Relative comparison is another kind of constraints
in semi-supervised learning [29]. The main difference
between it and side-information is that relative comparison
can reflect the relationship between listwise data, instead of
pairwise data in side-information, making it more suitable
for image-retrieval applications. In this study, the idea of
relative comparison is incorporated in similarity learning
for CBMIR. The motivation of this study is as follows.
For many existing CBMIR studies in which conventional
supervised or semi-supervised similarity learning methods
are adopted, problems of similarity learning and image
retrieval are often tackled as classification tasks, and
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established classifiers (e.g., SVM, NN, etc.) are vastly
employed. However, in many up-to-date general image
retrieval studies, there is a trend to consider the retrieval
as a “ranking” process, which is believed to comply with
the nature of image retrieval better (i.e., retrieval is in
fact a ranking procedure) [30, 33]. Therefore, we follow
this new trend and adopt the idea of relative comparison
which belongs to the scope of ranking, into CBMIR for
the first time in this study. It is also interesting to observe
whether taking CBMIR as a ranking procedure can benefit
its retrieval performance, compared with other conventional
supervised or semi-supervised CBMIR studies.

The organization of the paper is as follows. In Section
“Methodology,” the technical part of this paper is elab-
orated. Section “Kendall’s Tau Coefficient” introduces
Kendall’s Tau coefficient (KT) [34], which is a conventional
rank correlation measure and the basis of this study. KT can
reveal relative comparison between listwise images. How-
ever, the original KT definition cannot suit distance-based
similarity learning well, as its way to represent relative
comparison is discrete, making the whole KT infeasible to
be optimized directly for similarity learning. Hence, a new
rank correlation measure based on the original definition
of KT, named surrogate Kendall’s Tau coefficient (SKT), is
presented in Section “A New Rank Correlation Measure.”
A corresponding distance-based similarity learning algo-
rithm is introduced in Section “Distance-based Similarity
Learning via Direct Optimization on SKT” for the new
measure. In Section “Experiments and Discussion,” the
newly proposed similarity learning paradigm via relative
comparison has been evaluated using a large database
composed of 5,000 images for evaluating the retrieval
performance. Five popular supervised and semi-supervised
similarity learning methods are implemented for retrieval
performance comparison. A statistical analysis is conducted
based on retrieval results obtained by all methods. Exten-
sive experimental and comprehensive statistical analysis
reveal the superiority of incorporating the newly intro-
duced similarity learning paradigm in CBMIR. In Section
“Conclusion,” the conclusion of this study is drawn.

Methodology

Kendall’s Tau Coefficient

Kendall’s Tau coefficient (a.k.a. Kendall tau rank correla-
tion coefficient) is a traditional rank correlation measure
named after the British statistician Sir Maurice Kendall. Its
definition is as follows [34].

KT = N

Nn

= P − Q

Nn

= P − Q

1
2n(n − 1)

, (1)

where P and Q represent relative comparison; P and Q are
numbers of concordant pairs and discordant pairs, respec-
tively; Nn is a normalization term denoted by the number
of image pairs in a retrieved list consisting of n images

(
Nn

is equivalent to the number of two combinations from n
images: C2

n = n!
(n−2)!·2! = 1

2n(n − 1)
)
. The idea of concor-

dant/discordant pairs can be illustrated in Fig. 1. Provided
two retrieved images (x, y), x is more relevant than y towards
a given query, and both x and y are in a retrieved image
list (normally in a descending relevance order in practice).
If x is retrieved before y in a list of descending relevance
order, which matches the relevance relationship between the
two images, (x, y) forms a concordant pair. Otherwise, they
forms a discordant pair. Generally speaking, the range of
KT is within [−1, +1], and higher KT values imply bet-
ter retrieval performance within obtained retrieved lists. In
this study, we intend to conduct similarity learning based on
KT following the idea of relative comparison and ranking.
However, optimization operations cannot be applied on KT
directly for learning, as KT is neither continuous nor differ-
entiable in terms of discrete pair-counting terms P and Q.
Hence, a new continuous and differentiable rank correlation
measure is necessary.

A New Rank Correlation Measure

We first represent terms P and Q in Eq. 1 mathematically.
Given a query image q = (�q, �q) and two of its retrieved
images x = (�x, �x) and y = (�y, �y), where �(x) and
�(x) denote extracted low-level features from image x and
annotated information by clinicians to image x, respectively.
P and Q in Eq. 1 can be represented via the following
mathematical way:

concordant pair (P): sgn(s(q,x) − s(q,y))

× sgn(�(q,y) − �(q,x)) = 1 (2)

discordant pair (Q): sgn(s(q,x) − s(q,y))

× sgn(�(q,y) − �(q,x)) = −1, (3)

where sgn(·) is a signum function, whose outcome is +1
when its variable is nonnegative and −1 otherwise; s(q,x)

is a distance-based similarity between q and x, which is of

Fig. 1 An illustration of concordant and discordant pairs in KT
measure (Eq. 1) for image retrieval
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an exponential form based on a weighted L1 distance in
this study: s(q,x) = exp(− < a, |�q − �x | >), where <, >

denotes an inner product between vector a and the absolute
feature vector difference between images q and x; �(q,x)

is the absolute difference of annotated information (in this
study, this annotated information to each image is an integer
grade) between q and x: �(q,x) = |�q − �x |. Hence, the vec-
tor a performs a scaling on the feature space, and elements
within the vector a are parameters to learn in this study
(i.e., a multivariable learning problem). Given retrieved
image x is more relevant than retrieved image y towards
query image q, the similarity between x and q should be
larger than that between y and q (i.e., s(q,x) > s(q,y)), the
difference of annotated information (integer grades differ-
ence in this study) between q and x should be smaller than
that between q and y (i.e., �(q,x) < �(q,y)). If the above
conditions holds, (x, y) is a concordant pair, P increases by
1 as indicated by Eq. 2. Otherwise, (x, y) is a discordant
pair, Eq. 3 holds, and Q increases by 1. After substituting
terms P and Q into the original KT definition in Eq. 1, it
becomes:

KT = N

Nn

= 1

Nn

∑

x,y∈D,x �=y

(
sgn
(
s(q,x) − s(q,y)

)

× sgn
(
�(q,y) − �(q,x)

))
, (4)

where, D denotes all images to retrieve regarding query q.
We further overcome the step transition characteristics of
signum functions in Eq. 4 by approximating them via con-

tinuous hyperbolic tangent functions. An illustration of this
approximation is shown in Fig. 2. The approximation is
depicted as follows:

sgn(ξ) � tanh(ξ) = sinh(ξ)

cosh(ξ)

=
eξ −e−ξ

2
eξ +e−ξ

2

= eξ − e−ξ

eξ + e−ξ
= e2ξ − 1

e2ξ + 1
(5)

After incorporating Eq. 5 into Eq. 4, a new continuous and
differentiable rank correlation measure, named SKT, can be
written as:

SKT = 1

Nn

·
∑

x,y∈D,x �=y

(
exp

(
2(s(q,x) − s(q,y))

)− 1

exp
(
2(s(q,x) − s(q,y))

)+ 1

× exp
(
2(�(q,y) −�(q,x))

)−1

exp
(
2(�(q,y) − �(q,x))

)+1

)

(6)

Distance-Based Similarity Learning via Direct
Optimization on SKT

A distance-based similarity learning algorithm via direct
optimization on SKT based on a gradient method is elabo-
rated in Table 1. The most critical part here is to calculate
the gradient of SKT with respect to the parameter to learn a(
i.e., �SKT(a)

)
in Steps T4 and T5. The detailed derivation

is demonstrated in the Appendix section at the end of this
paper. After derivation, the gradient of SKT is as follows:

�SKT(a) = 1

Nn

·

⎛

⎜⎜⎜
⎝

∑

x,y∈D,x �=y

4 ·
(

∂s(q,x)

∂a
− ∂s(q,y)

∂a

)
· exp

(
2(�(q,y)−�(q,x))

)
−1

exp
(

2(�(q,y)−�(q,x))
)
+1

exp
(
2(s(q,x) − s(q,y))

)+ exp
(
2(s(q,y) − s(q,x))

)+ 2

⎞

⎟⎟⎟
⎠

(7)
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Fig. 2 An illustration of approximating a discrete signum function (in
blue) via a continuous hyperbolic tangent function (in red)

For the utilized similarity (i.e., s(q,x) = exp(− < a,

|�q − �x | >)), a is the parameter to learn and there are
several elements within it (i.e., the extracted feature vector
is 21-dimensional according to Table 2 in this study, hence
there are also 21 elements within a to learn). Therefore,
learning a in this study is actually solving a multidimen-
sional optimization problem. It is commonly acknowledged
that high-dimensional problems can be really tricky, and it
is often hard to find the global optimum. In many studies,
researchers look for a local minimum that is good enough
for the specific application, instead. In Table 1, T iterations
are executed in the training step and there are T learned
parameters a obtained (Steps T2 to T7 in Table 1). After
that, one optimal a with the highest KT value evaluated on
the validation data is sorted out (Steps V1 to V5 in Table 1).
The similarity measure with this optimal a will be utilized
in the testing step for retrieval performance evaluation.
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Table 1 A distance-based similarity learning algorithm via direct
optimization on SKT

Inputs 1. Images for training: (q, x ∈ D)

2. Images for validation: (qv, xv ∈ Dv)

3. Iteration times: T

4. Learning rate: η

Training

T1. Initialize parameter a of the similarity s(q,x) as a0

T2. For t = 1 to T

T3. Set a = at−1

T4. Feed (q, x ∈ D) to Eq. 7 to calculate �SKT(a)

T5. Update a via a gradient approach : a = a + η·
�SKT(a)

T6. Set at = a

T7. End for T2

Training T learned similarities s(q,x) with their corresponding

Results learned parameters a

Validation

V1. For j = 1 to T

V2. Feed j th learned similarity to (qv, xv ∈ Dv) to

retrieve images

V3. Calculate its corresponding KT value using

Eq. 1

V4. End for V1

V5. Determine s
opt
(q,x) as the one with the highest KT

value

Outputs Optimal learned similarity: s
opt
(q,x)

Table 2 Detailed descriptions of the extracted 21-dimensional local
feature vector from each slit-lamp image

Dimension Description

1 Mean intensity inside the detected lens contour

2–4 Color components (HSI) inside the detected lens contour

5 Entropy inside the detected lens contour

6 Neighborhood standard deviation inside the detected

lens contour

7 Mean intensity inside the detected nucleus contour

8–10 Color components (HSI) inside the detected nucleus

contour

11 Entropy inside the detected nucleus contour

12 Neighborhood standard deviation inside the detected

nucleus contour

13 Intensity ratio between nucleus and lens

14 Intensity ratio between sulcus and nucleus

15 Intensity ratio between anterior lentil and posterior lentil

16 Intensity of sulcus

17–18 Strength of nucleus edge

19–21 Color components (HSI) on posterior reflex

Experiments and Discussion

Experimental Data and Feature Extraction

Our experimental evaluation was conducted using a large
database composed of 5,000 slit-lamp images obtained
from 5,000 different cases with nuclear cataract disease.
Informed consent was obtained for all cases. A slit-lamp
image focuses on the human lens in the eyeball, and it is
the primary means to diagnose nuclear cataract. Nuclear
cataract is observed as the clouding or opacity developed
in the nucleus of the human lens, and it is the most com-
mon type of age-related cataract, which affects more than
20 million people worldwide and is reported as the leading
cause of blindness [35]. For all images, they were captured
by a Topcon DC-1 digital slit-lamp camera with FD-21
flash attachment. Each image was saved as a 24-bit color
image of the size 2,048×1,536 pixels. For each image, a
clinical grade was provided by senior ophthalmologists by
consensus, indicating its severity of nuclear cataract disease,
following the Wisconsin Cataract Grading System [36].
Figure 3 shows a set of four standard slit-lamp images
used in the very grading system. These images together
represent an increasing severity of cataract indicated by
increasing integer grades (i.e., from 1 to 4), which
construct annotated information � introduced in Section
“Methodology.” In this database, the number of images
with different grades is equivalent, which is 1,250 for each
of the four grades. Hence, the utilized database is well
balanced.

In each image, the lens and nucleus regions, which
are believed to be more discriminative in identifying and
diagnosing nuclear cataract disease in its conventional clin-
ical diagnosis, were detected by a contour evolution method
[37]. A 21-dimensional local feature vector was extracted
from detected regions of each slit-lamp image as its visual
attribute. The intensity, color, and texture within the nucleus
region are calculated. The color of posterior subcapsu-
lar reflex (Fig. 4) is selected as it is the best location
to judge the quality of opacity color. Detailed descrip-
tion of each local feature vector dimension is listed in
Table 2.

Experiments Strategy and Implementation of Our Method

In this study, a 5-fold cross-validation [38] strategy is incor-
porated to evaluate the retrieval performance. For k-fold
cross-validation, normally the original database is randomly
partitioned into k equal-size subsets. Of the k subsets, a
single subset is retained for testing the performance of the
investigated model, while the remaining (k − 1) subsets are
used for training (as well as validation in our study). The
cross-validation process is then repeated k times (folds),
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Fig. 3 Standard images with
grades indicating the severity of
nuclear cataract disease within
slit-lamp images according to
Wisconsin Cataract Grading
System

with each of the k subsets used exactly once for testing.
In this study, since a 5-fold cross-validation strategy is
adopted, all 5,000 slit-lamp images are randomly partitioned
into five equal-size subsets (i.e., 1,000 images per subset).
One thing to emphasize here is that in each subset, the num-
ber of images with different grades is equivalent as well (in
other words, there are 250 images per grade per subset).
For onefold experiment, there are three subsets (including
3,000 images) used for training, one subset (including 1,000
images) used for validation, and one subset (including 1,000
images) used for testing. The subset used for testing in each
fold is different, while the summation of them constructs
the whole database (following the theory of k-fold cross-
validation). In the testing subset of every fold, we utilize
each one of the 1,000 testing images as a query image,
and conduct retrieval on all other images in the testing
subset.

For our method, we empirically set T = 100 and η =
0.01 as inputs in Table 1. Values of parameters T and η in
this study are determined based on a trial-and-error scheme.
When determining the learning rate η, we fixed the value
of T, and switched the value of η within a range, in order
to short-list values of η that can provide us the highest
SKT based on multiple queries and their retrieved results.
Figure 5a depicts a curve of SKT (averaged on multiple
retrieval results) when selecting different η values. It can be

Fig. 4 An illustration of lens structure

observed that η = 0.01 can provide the highest SKT, and
it is chosen as the predefined value of η in the implementa-
tion of our method. When determining the iteration times T,
it is similar towards the above operation. From 5b, it can be
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Fig. 5 a The influence of different values of learning rate η. b The
influence of different values of iteration times T
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concluded that T = 100 can provide good balance between
effectiveness (high SKT) and efficiency (low iteration
times, low computational cost in training therein).

Methods to Compare

Besides our method, there are five other popular distance
learning methods implemented for performance compar-
ison in this CBMIR application, including four super-
vised learning methods: large margin nearest neighbor
(LMNN) [25], SVM+evidence maximization (SVM+EV)

[39], SVM+leave-one-out error minimization (SVM+LOO)
[40], SVM+radius/margin bound minimization (SVM+RM)
[41], and a popular semi-supervised learning method with
side-information (Side+Semi) [28]. Their basic ideas as
well as implementation strategies in our experiments are
explained below:

Large Margin Nearest Neighbor

LMNN aims to learn a Mahalanobis distance to reflect the
pairwise similarity for a kNN classification by semi-definite

Fig. 6 Examples of retrieving
slit-lamp images based on
queries with diverse grades via
different methods
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programming [25]. Let {(xi, yi)} denote a training set of
labeled examples xi with discrete class labels yi . The cost
function to optimize in LMNN is as follows.

ε(L) =
∑

i,j

ηi,j

∥∥L(xi − xj )
∥∥2

+c
∑

i,j,l

ηi,j

(
1 − yi,l

) [
1 + ∥∥L(xi − xj )

∥∥2

− ∥∥L
(
xi − xl

)∥∥2
]

+ , (8)

where L denotes the parameter to learn. The distance
between xi and xj : ‖L(xi − xj )‖2 is rewritten using M =
LT L from a Mahalanobis distance (xi − xj )

T M(xi − xj ).
ηi,j is an indicator with binary outputs {0, 1} to suggest
whether xi is in the nearest neighborhood of xj or not. yi,l

is a matrix with binary elements to indicate whether the
label yi of data xi matches the label yl of data xl or not.
[·]+ = max(·, 0) is a hinge loss and c represents a pos-
itive constant. For the implementation of this method, we
incorporate the code provided by the authors [42] and test

Fig. 6 (continued)
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its performance in our CBMIR application. c is set as 0.05
in implementation.

Support Vector Machine

Kernel methods, which make SVM classifiers fit maximum-
margin hyperplane in high-dimensional transformed feature
space, are usually incorporated to separate data which may
not be differentiated in their original low-dimensional fea-
ture space. A kernel function K(xi, xj ) =< h(xi), h(xj ) >

is usually computed as the inner product between trans-
formed feature vectors h(xi) and h(xj ), in which h(·) may
not be explicitly known. Hence, the similarity between
transformed feature vectors h(xi) and h(xj ) is determined
by their mapping function h(·), which is also directly influ-
enced by the adopted kernel function K(·). Therefore,
similarity learning in SVM can be realized via kernel learn-
ing, instead. There are various methods proposed for kernel
learning in SVM in literature. In this study, we implemented
three popular learning methods among them. The first one

Fig. 6 (continued)
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follows the leave-one-out (LOO) strategy [40]. The main
idea of LOO is to remove one element from the whole
training database, construct a decision rule based on the
remaining training data, and test the rule on the removed
element. Parameters which can provide the smallest error
will be chosen. The second one is the radius–margin bound
method (RM) [41], in which an upper bound based on
the number of errors of a leave-one-out procedure is min-
imized for learning parameters. The third one is through
evidence maximization [39]. In this study, we incorporate
the code in [43] for implementing kernel learning in SVM.

The adopted kernel function here is the popular Gaussian
radius basis function. For implementations of SVM meth-
ods in this study, the tolerance of termination criterion in
optimization is set as 0.001.

Semi-Supervised Learning with Side-Information

Xing et al. proposed one popular semi-supervised learn-
ing study to conduct Mahalanobis distance learning with
the help of side-information [28]. The pairwise similar-
ity constraint in side-information is applied on a convex

Fig. 6 (continued)
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optimization function and the Mahalanobis distance is
learned via an iterative gradient descent method [28]. The
termination tolerance is set as 0.001 in implementation of
this method.

Experimental Evaluation and Statistical Analysis

For the above five compared methods, 4,000 images except
for the 1,000 testing images in each fold were used for train-
ing as there were no validations required in these methods.
In this study, four integers, i.e., 1–4, are annotated grades for
all images, and higher grades indicate more severe nuclear
cataract disease. For one query image with a specific grade,
retrieved images with the same grade are considered as
“relevant images,” while others are “irrelevant images.” In
order to quantify the retrieval performance, we incorporate
two well-known criteria commonly used in general image

retrieval studies: precision and recall. Their definitions are
as follows:

precision = number of retrieved relevant image

number of retrieved images
(9)

recall = number of retrieved relevant image

number of all relevant images
. (10)

Figure 6 illustrated four example query images with dif-
ferent grades (i.e., from 1 to 4) and their top 10 retrieved
results provided by our method as well as all other compared
methods. The number below each retrieved image depicts
its annotated grade provided by ophthalmologists (utilized
as ground truth when evaluating the retrieval performance).
Images with grades highlighted in red within brackets indi-
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Fig. 7 Precision–recall curves of methods retrieving medical images depicting various degrees of severity of the nuclear cataract disease (from
left to right, up to down: with grades 1, 2, 3, and 4)
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cate retrieval errors. It can be observed that our method has
the least retrieval errors when retrieving slit-lamp images
with grades from 1 to 3 (in Fig. 6, the retrieval errors of our
method are 1/ 0/ 0 for grade 1/ 2/ 3, respectively). When
retrieving slit-lamp images of grade 4, the retrieval error of
our method is larger than SVMs.

Figure 7 illustrates precision–recall curves of all meth-
ods when retrieving medical images with different degrees
of disease severity. Precision and recall results depicted on
each curve are averaged values based on retrieved results of
all queries with the particular grade from five folds. It can be
observed that when retrieving slit-lamp images with grades
ranging from 1 to 3, the curves of our method are always
above those of others, indicating that the mean average pre-
cision (MAP) of our method (represented by the geometrical
area under the precision–recall curve) is the highest among
all methods. When retrieving slit-lamp images with grade 4,
our precision–recall curve is lower than those of SVMs. The
reason for this is because that images with grade 1 are more
or less like ordinary eye images; images with grades 2 and
3 are with medium nuclear cataract severity; images with
grade 4 are with the highest severity, and they can be even
identified via obvious color within the lens region since pro-
teins for patients of the highest severity are prone to bind in
the lens. It can be observed from example images in Fig. 3
that images with grade 4 look quite different from those with
other grades. In this study, since such color information is
also incorporated as components of extracted visual feature
vectors (e.g., hue, saturation, intensity (HSI) inside the lens
and nucleus regions in Table 2) and SVM is a discriminant-
based method, it is expected to achieve better performance
than the proposed relative comparison method, which is
based on ranking and not discriminant.

Averaged precision–recall curves based on all retrieved
results in this study are illustrated in Fig. 8a. It can be
noticed that the averaged precision–recall curve of our
method is above ones of other compared methods, indicat-
ing that the MAP of our method is higher than ones of
others when taking all experimental results into considera-
tion. Hence, the superiority of adopting the idea of ranking
in similarity learning in this study is demonstrated. A box-
and-whisker plot depicting all precision results based on all
retrieved results is demonstrated in Fig. 8b. In each box, a
red horizontal line is drawn across each box representing the
median of precision of each method, while the upper and
lower quartiles of precision in each box are depicted by blue
lines above and below the median. A vertical dashed line
is drawn up from the upper and down from the lower quar-
tiles to their most extreme data points, which are within a
1.5 interquartile range (IQR) [38]. In each box, every data
point beyond ends of a 1.5 IQR is marked by a red plus
symbol. It can be observed that the box of our method is
located higher than those of others, which suggests that our
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Fig. 8 a Averaged precision–recall curves on all experimental results.
b Box plot of precision of all experimental results

method is superior to other compared methods for retriev-
ing slit-lamp images in terms of precision. Also, the box
range of our method is less than those of others, which
suggests that our method is more stable and robust when
handling medical images with various degrees of disease
severity.

A statistical analysis is further conducted to substanti-
ate the superiority of our method based on precision results
from statistical point of view. After performing one-way
analysis of variance [38], the p value is 0, which suggests
that our method cannot share the same overall precision
mean with others. Thus, a series of post hoc multiple com-
parison tests [38] are further incorporated to discern which
method is superior. Results of multiple comparison tests
between paired methods are listed in Table 3. It can be
observed from entries in the third column that the preci-
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Table 3 Multiple comparison
test of all compared methods
on precision

Method I Method II Precision Mean A 95 % Confidence

Difference (I-II) Interval

Our method LMNN 0.0316 [0.0199, 0.0433]

Our method Side + Semi 0.0337 [0.0220, 0.0454]

Our method SVM + EV 0.0542 [0.0424, 0.0659]

Our method SVM + LOO 0.0464 [0.0347, 0.0581]

Our method SVM + RM 0.0562 [0.0445, 0.0679]

LMNN Side + Semi 0.0021 [−0.0096, 0.0138]

LMNN SVM + EV 0.0225 [0.0108, 0.0343]

LMNN SVM + LOO 0.0148 [0.0031, 0.0265]

LMNN SVM + RM 0.0246 [0.0129, 0.0363]

Side + Semi SVM + EV 0.0204 [0.0087, 0.0321]

Side + Semi SVM + LOO 0.0127 [0.0010, 0.0244]

Side + Semi SVM + RM 0.0225 [0.0108, 0.0342]

SVM + EV SVM + LOO −0.0077 [−0.0195, 0.0040]

SVM + EV SVM + RM 0.0021 [−0.0097, 0.0138]

SVM + LOO SVM + RM 0.0098 [−0.0019, 0.0215]

sion mean difference of our method against others (i.e., our
method minus others) are always positive, which indicates
the superiority of our method from single-value estimation
perspective. Another interval estimation of the precision
mean difference is given by a 95 % confidence interval,
which estimates a range that the mean difference between
two compared methods is likely to be included. Entries in
the fourth column of Table 3 show that the lower and upper
bounds of each interval in comparisons between our method
and other methods are positive as well. It gives a strong
indication that our method is superior to others in terms
of precision from both statistical single-value and interval
estimation perspectives.

Discussion

For the utilized similarity s(q,x) = exp(− < a, |fq −fx | >)

in this study, a is the parameter to be learned and it is a 21-
dimensional vector with 21 unknown elements correspond-
ing to the 21-dimensional feature vector extracted from slit-
lamp images according to Table 2. Therefore, the learned
result a in this study can actually indicate weights (i.e.,
degree of importance) of different dimensions in the feature
space, and the learned result a can help ophthalmologists
concentrate more on those dimensions with higher weights
(high relevance regarding the diagnosis of nuclear cataract
disease severity). Figure 9 summarizes the distribution of all

Fig. 9 Summary of learned
weights on different dimensions
of the constructed feature space
according to Table 2
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21 elements in the learned parameter a based on all retrieved
results in our experiments. The box style in Fig. 9 is the
same as the one in Fig. 8b. It can be noticed that the 9th,
17th, 19th, 20th, and 21st elements have more prominent
weights compared with others. According to Table 2, the 9th
element corresponds to the saturation (one of the HSI color
components) inside the nucleus; the 17th element corre-
sponds to the edge of nucleus; the 19th to 21st elements cor-
respond to the HSI color components on the posterior reflex.
It can be concluded that during the diagnosis of nuclear
cataract, the color information is often of great importance
and regions of nucleus as well as posterior reflex are of more
relevance towards nuclear cataract disease. This learned
result also complies well with literature in classic clinical
ophthalmology books, in which nucleus, reflex, as well as
their color information are highlighted in differentiating and
diagnosing nuclear cataract disease [44, 45].

Conclusion

Extremely large number of medical images which are pro-
duced daily and commonly seen in hospitals, research
institutes, medical colleges, etc. represent an enormous
challenge towards these health-care organizations, as it is
often hard to manage, access, and share the large scale of
data efficiently. CBMIR is a popular way to facilitate the
above process. In this paper, the similarity learning problem
in CBMIR is mainly addressed. Inspired by recent stud-
ies to tackle information retrieval as a ranking procedure, a
novel relative comparison-based similarity learning strategy
is presented and its performance is evaluated using a large
database composed of 5,000 images. Experimental results
reveal that this newly presented learning paradigm via rela-

tive comparison is superior to other compared conventional
supervised and semi-supervised similarity learning methods
in the introduced CBMIR application. The effectiveness of
incorporating the idea of ranking and relative comparison
into CBMIR is also demonstrated.

Main contributions of this study can be summarized as
follows: (1) Compared with conventional learning meth-
ods normally conducting the similarity learning task in
CBMIR as a supervised classification problem, this study
presents a novel semi-supervised learning paradigm via rel-
ative comparison. It is also the first attempt to incorporate
the idea of relative comparison in CBMIR. (2) Technically,
a new rank correlation measure is proposed and used for
similarity learning via direct optimization. In the future
studies, we will continue with the idea of ranking in simi-
larity learning in CBMIR applications, try to propose more
sophisticated learning methods and use other database made
up of diverse medical imaging modalities for evaluation
purpose.

Appendix

In Eq. 6, the second term
exp
(

2(�(q,y)−�(q,x))
)
−1

exp
(

2(�(q,y)−�(q,x))
)
+1

of the right-

hand side (RHS) of SKT can be viewed as a coefficient
in the derivation, since it is not related to parameters a

to learn in this study. Thus, the following derivation only

focuses on the first term
exp
(

2(s(q,x)−s(q,y))
)
−1

exp
(

2(s(q,x)−s(q,y))
)
+1

of RHS in

SKT. For the ease of writing, let us denote the second term
exp
(

2(�(q,y)−�(q,x))
)
−1

exp
(

2(�(q,y)−�(q,x))
)
+1

as term coeff . After differentiation,

Eq. 6 becomes:
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Then, after replacing the term coeff with its original
mathematical form, the gradient can be rewritten as:

�SKT(a) = 1

Nn

·

⎛

⎜⎜⎜
⎝

∑

x,y∈D,x �=y

4 ·
(

∂s(q,x)

∂a
− ∂s(q,y)

∂a

)
· exp

(
2(�(q,y)−�(q,x))

)
−1

exp
(

2(�(q,y)−�(q,x))
)
+1

exp
(
2(s(q,x) − s(q,y))

)+ exp
(
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)+ 2

⎞

⎟⎟⎟
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(12)

which is the same as Eq. 7.
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