
Fun with Semirings
A functional pearl on the abuse of linear algebra

Stephen Dolan

Computer Laboratory
University of Cambridge

stephen.dolan@cl.cam.ac.uk

September 25, 2013

Linear algebra is magic

If your problem can be expressed as vectors and matrices, it is
essentially already solved.

Linear algebra works with fields, like the real or complex numbers:
sets with a notion of addition, multiplication, subtraction and
division.

Stephen Dolan Fun with Semirings

We don’t have fields

CS has many structures with “multiplication” and “addition”:

conjunction and disjunction

sequencing and choice

intersection and union

product type and sum type

But very few with a sensible “division” or “subtraction”.

What we have are semirings, not fields.

Stephen Dolan Fun with Semirings

Semirings

A closed semiring is a set with some notion of addition and
multiplication as well as a unary operation ∗, where:

a + b = b + a (+, 0) is a commutative monoid

a + (b + c) = (a + b) + c

a + 0 = a

a · (b · c) = (a · b) · c (·, 1) is a monoid, with zero

a · 1 = 1 · a = a

a · 0 = 0 · a = 0

a · (b + c) = a · b + a · c · distributes over +

(a + b) · c = a · c + b · c
a∗ = 1 + a · a∗ closure operation

Stephen Dolan Fun with Semirings

Daniel J. Lehmann, Algebraic Structures for Transitive Closure, 1977.

Closed semirings

A closed semiring has a closure operation ∗, where

a∗ = 1 + a · a∗ = 1 + a∗ · a

Intuitively, we can often think of closure as:

a∗ = 1 + a + a2 + a3 + . . .

Stephen Dolan Fun with Semirings

Closed semirings as a Haskell typeclass

i n f i x l 9 @.
i n f i x l 8 @+
class Semiring r where

zero , one : : r
closure : : r −> r
(@+), (@.) : : r −> r −> r

instance Semiring Bool where
zero = False
one = True
closure x = True
(@+) = (| |)
(@.) = (&&)

Stephen Dolan Fun with Semirings

Adjacency matrices

Directed graphs are represented as matrices of Booleans.
G 2 gives the two-hop paths through G .

1

2 3

·

1

2 3

=

1

2 3

0 1 0
0 0 1
0 0 0

 ·

0 1 0
0 0 1
0 0 0

 =

0 0 1
0 0 0
0 0 0


(AB)ij =

∑
k

Aik · Bkj

= ∃k such that Aik ∧ Bkj

Stephen Dolan Fun with Semirings

Closure of an adjacency matrix

The closure of an adjacency matrix gives us the reflexive transitive
closure of the graph.

1

2 3



∗

=

1

2 3

0 1 0
0 0 1
0 0 0

∗ =

1 1 1
0 1 1
0 0 1


A∗ = 1 + A · A∗

= 1 + A + A2 + A3 + . . .

Stephen Dolan Fun with Semirings

A semiring of matrices

A matrix is represented by a list of lists of elements.

data Matrix a = Matrix [[a]]
instance Semiring a => Semiring (Matrix a) where

. . .

Matrix addition and multiplication is as normal, and Lehmann gives
an imperative algorithm for calculating the closure of a matrix.

Stephen Dolan Fun with Semirings

Closure of a matrix

The correctness proof of the closure algorithm states:

If M =

(
A B
C D

)
then M∗ =

(
A∗ + B ′ ·∆∗ · C ′ B ′ ·∆∗

∆∗ · C ′ ∆∗

)
where B ′ = A∗ · B, C ′ = C · A∗ and ∆ = D + C · A∗ · B.

Stephen Dolan Fun with Semirings

Block matrices

We can split a matrix into blocks, and join them back together.

type BlockMatrix a = (Matrix a , Matrix a ,
Matrix a , Matrix a)

msplit : : Matrix a −> BlockMatrix a
mjoin : : BlockMatrix a −> Matrix a

Stephen Dolan Fun with Semirings

Closure of a matrix

The algorithm is imperative, but the correctness proof gives a
recursive functional implementation:

closure (Matrix [[x]]) = Matrix [[closure x]]
closure m = mjoin

(f i r s t ’ @+ top ’ @. rest ’ @. le f t ’ , top ’ @. rest ’ ,
rest ’ @. le f t ’ , rest ’)

where
(f i r s t , top , le f t , rest) = msplit m
f i r s t ’ = closure f i r s t
top ’ = f i r s t ’ @. top
le f t ’ = l e f t @. f i r s t ’
rest ’ = closure (rest @+ left ’ @. top)

Stephen Dolan Fun with Semirings

Shortest distances in a graph

Distances form a semiring, with · as addition and + as choosing
the shorter. The closure algorithm then finds shortest distances.

data ShortestDistance = Distance Int | Unreachable
instance Semiring ShortestDistance where

zero = Unreachable
one = Distance 0
closure x = one

x @+ Unreachable = x
Unreachable @+ x = x
Distance a @+ Distance b = Distance (min a b)

x @. Unreachable = Unreachable
Unreachable @. x = Unreachable
Distance a @. Distance b = Distance (a + b)

Stephen Dolan Fun with Semirings

Shortest paths in a graph

We can also recover the actual path:

data ShortestPath n = Path Int [(n,n)] | NoPath
instance Ord n => Semiring (ShortestPath n) where

zero = NoPath
one = Path 0 []
closure x = one

x @+ NoPath = x
NoPath @+ x = x
Path a p @+ Path a ’ p’
| a < a ’ = Path a p
| a == a ’ && p < p’ = Path a p
| otherwise = Path a ’ p’

x @. NoPath = NoPath
NoPath @. x = NoPath
Path a p @. Path a ’ p’ = Path (a + a ’) (p ++ p’)

Stephen Dolan Fun with Semirings

Solving linear equations

If we have a linear equation like:

x = a · x + b

then a∗ · b is a solution:

a∗ · b = (a · a∗ + 1) · b
= a · (a∗ · b) + b

If we have a system of linear equations like:

x1 = A11x1 + A12x2 + . . .A1nxn + B1

...

xn = An1x1 + An2x2 + . . .Annxn + Bn

then A∗ · B is a solution (for a matrix A and vector B of
coefficients) which can be found using closure.

Stephen Dolan Fun with Semirings

Regular expressions and state machines

A state machine can be described by a regular grammar:

qB

qA

qC

x

z

y
A→ xB

B → yA + zC

C → 1

The regular grammar is a system of linear equations, and the
regular expression describing it can be found by closure.

Stephen Dolan Fun with Semirings

Solving linear equations

Reconstructing regular expressions
Solving equations in the “free” semiring rebuilds regular
expressions from a state machine.

Dataflow analysis
Solving equations in the semiring of sets of variables does live
variables analysis (among others).

Stephen Dolan Fun with Semirings

Linear recurrences and power series

Suppose the next value in a sequence is a linear combination of
previous values:

F (0) = 0

F (1) = 1

F (n) = F (n − 2) + F (n − 1)

We represent these as formal power series:

F = x + x2 + 2x3 + 3x4 + 5x5 + 8x6 . . .

Multiplying by x shifts the sequence one place, so:

F = 1 + (x2 + x) · F

Stephen Dolan Fun with Semirings

Power series are a semiring

We represent power series as lists: a::p is a + px .

instance Semiring r => Semiring [r] where
zero = []
one = [one]

Addition is pointwise:

[] @+ y = y
x @+ [] = x
(x : xs) @+ (y : ys) = (x @+ y):(xs @+ ys)

Stephen Dolan Fun with Semirings

Multiplying power series

Multiplying power series works like this:

(a + px)(b + qx) = ab + (aq + pb + pqx)x

In Haskell:

[] @. = []
@. [] = []

(a :p) @. (b:q) = (a @. b) :(map (a @.) q @+
map (@. b) p @+
(zero :(p @. q)))

This is convolution, without needing indices.

Stephen Dolan Fun with Semirings

M. Douglas McIlroy. Power series, power serious. Journal of Functional
Programming, 1999.

Closure of a power series

The closure of a + px must satisfy:

(a + px)∗ = 1 + (a + px)∗ · (a + px)

This has a solution satisfying:

(a + px)∗ = a∗ · (1 + px · (a + px)∗)

which translates neatly into (lazy!) Haskell:

closure [] = one
closure (a :p) = r

where r = [closure a] @. (one :(p @. r))

Stephen Dolan Fun with Semirings

Fibonacci, again

F = 1 + (x + x2)F

= (x + x2)∗

f ib = closure [0 ,1 ,1]

Any linear recurrence can be solved with closure.

Stephen Dolan Fun with Semirings

Knapsacks

Suppose we are trying to fill our baggage allowance with:

Knuth books: weight 10, value 100
Haskell books: weight 7, value 80

Java books: weight 9, value 3

The best value we can have with weight n is:

bestn = max(100 + bestn−10, 80 + bestn−7, 3 + bestn−9)

In the (max,+)-semiring, that reads:

bestn = 100 · bestn−10 + 80 · bestn−7 + 3 · bestn−9

which is a linear recurrence.

Stephen Dolan Fun with Semirings

Thank you!

Questions?

Many problems are linear, for a suitable notion of “linear”.

stephen.dolan@cl.cam.ac.uk

Stephen Dolan Fun with Semirings

Live variables analysis

Many dataflow analyses are just linear equations in a semiring.
This live variables analysis uses the semiring of sets of variables.

x := 1A

while x < y:B

x := x * 2C

return xD

INA = OUTA ∩ {x}
INB = OUTB ∪ {x, y}
INC = OUTC ∪ {x}
IND = OUTD ∪ {x}

OUTA = INB

OUTB = INC ∪ IND

OUTC = INB

OUTD = ∅

Stephen Dolan Fun with Semirings

Petri nets

Timed event graphs (a form of Petri net with a notion of time) can
be viewed as “linear” systems, in the (max,+)-semiring

This transition fires for the
nth time after all of its
inputs have fired for the
nth time.

5

The nth token is available
from this place 5 time
units after then (n − 3)th
token is available from its
input.

Stephen Dolan Fun with Semirings

G. Cohen, P. Moller, J.P. Quadrat, M. Viot, Linear system theory for discrete
event systems, 1984.

