Fun with Semirings
 A functional pearl on the abuse of linear algebra

Stephen Dolan

Computer Laboratory
University of Cambridge
stephen.dolan@cl.cam.ac.uk

September 25, 2013

Linear algebra is magic

If your problem can be expressed as vectors and matrices, it is essentially already solved.

Linear algebra works with fields, like the real or complex numbers: sets with a notion of addition, multiplication, subtraction and division.

We don't have fields

CS has many structures with "multiplication" and "addition":

- conjunction and disjunction
- intersection and union
- sequencing and choice
- product type and sum type

But very few with a sensible "division" or "subtraction".

What we have are semirings, not fields.

Semirings

A closed semiring is a set with some notion of addition and multiplication as well as a unary operation *, where:

$$
\begin{array}{rlrl}
a+b & =b+a & & (+, 0) \text { is a commutative monoid } \\
a+(b+c) & =(a+b)+c & & \\
a+0 & =a & & \\
a \cdot(b \cdot c) & =(a \cdot b) \cdot c & & (\cdot, 1) \text { is a monoid, with zero } \\
a \cdot 1 & =1 \cdot a=a & & \\
a \cdot 0 & =0 \cdot a=0 & & \\
a \cdot(b+c) & =a \cdot b+a \cdot c & & \text { distributes over }+ \\
(a+b) \cdot c & =a \cdot c+b \cdot c & & \\
a^{*} & =1+a \cdot a^{*} \quad & \text { closure operation }
\end{array}
$$

Daniel J. Lehmann, Algebraic Structures for Transitive Closure, 1977.

Closed semirings

A closed semiring has a closure operation *, where

$$
a^{*}=1+a \cdot a^{*}=1+a^{*} \cdot a
$$

Intuitively, we can often think of closure as:

$$
a^{*}=1+a+a^{2}+a^{3}+\ldots
$$

Closed semirings as a Haskell typeclass

```
infixl 9 @.
infixl 8 @+
class Semiring r where
    zero, one :: r
    closure :: r >> r
    (@+), (@.) :: r > r m r
```

instance Semiring Bool where
zero = False
one $=$ True
closure $x=$ True
$(@+)=(| |)$
$(@)=(\& \&)$

Adjacency matrices

Directed graphs are represented as matrices of Booleans. G^{2} gives the two-hop paths through G.

$$
\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right) \quad \cdot\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right) \quad=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

$$
(A B)_{i j}=\sum_{k} A_{i k} \cdot B_{k j}
$$

$$
=\exists k \text { such that } A_{i k} \wedge B_{k j}
$$

Closure of an adjacency matrix

The closure of an adjacency matrix gives us the reflexive transitive closure of the graph.

$\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right)^{*} \quad=\left(\begin{array}{lll}1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right)$

$$
\begin{aligned}
A^{*} & =1+A \cdot A^{*} \\
& =1+A+A^{2}+A^{3}+\ldots
\end{aligned}
$$

A semiring of matrices

A matrix is represented by a list of lists of elements.

```
data Matrix a = Matrix [[a]]
instance Semiring a = Semiring (Matrix a) where
```

Matrix addition and multiplication is as normal, and Lehmann gives an imperative algorithm for calculating the closure of a matrix.

Closure of a matrix

The correctness proof of the closure algorithm states:

$$
\begin{aligned}
\text { If } M & =\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right) \\
\text { then } M^{*} & =\left(\begin{array}{cc}
A^{*}+B^{\prime} \cdot \Delta^{*} \cdot C^{\prime} & B^{\prime} \cdot \Delta^{*} \\
\Delta^{*} \cdot C^{\prime} & \Delta^{*}
\end{array}\right)
\end{aligned}
$$

where $B^{\prime}=A^{*} \cdot B, C^{\prime}=C \cdot A^{*}$ and $\Delta=D+C \cdot A^{*} \cdot B$.

Block matrices

We can split a matrix into blocks, and join them back together.

```
type BlockMatrix \(a=(\) Matrix \(a\), Matrix \(a\),
    Matrix a, Matrix a)
msplit :: Matrix a \(\rightarrow\) BlockMatrix a
mjoin :: BlockMatrix a \(\rightarrow\) Matrix a
```


Closure of a matrix

The algorithm is imperative, but the correctness proof gives a recursive functional implementation:

```
closure (Matrix [[x]]) = Matrix [[closure x]]
closure m= mjoin
    (first' @+ top' @. rest' @. left', top' @. rest',
    rest' @. left', rest')
    where
    (first, top, left, rest) = msplit m
    first' = closure first
    top' = first' @. top
    left' = left @. first'
    rest' = closure (rest @+ left' @. top)
```


Shortest distances in a graph

Distances form a semiring, with • as addition and + as choosing the shorter. The closure algorithm then finds shortest distances.

```
data ShortestDistance \(=\) Distance Int | Unreachable
instance Semiring ShortestDistance where
    zero \(=\) Unreachable
    one \(=\) Distance 0
    closure \(x=\) one
    \(x\) @+ Unreachable \(=x\)
    Unreachable @+ \(x=x\)
    Distance a @+ Distance \(b=\) Distance (min ab)
    x ©. Unreachable \(=\) Unreachable
    Unreachable ©. \(x=\) Unreachable
    Distance a @. Distance \(b=\) Distance \((a+b)\)
```


Shortest paths in a graph

We can also recover the actual path:

```
data ShortestPath n = Path Int [(n,n)] | NoPath
instance Ord n => Semiring (ShortestPath n) where
    zero = NoPath
    one = Path 0 []
    closure x = one
    x @+ NoPath = x
    NoPath @+ x = x
    Path a p @+ Path a' p'
    a<a' = Path a p
    a= a'&&p< p' = Path a p
    otherwise = Path a' p'
    x @. NoPath = NoPath
    NoPath @. x = NoPath
    Path a p @. Path a' p' = Path (a + a') (p + p')
```


Solving linear equations

If we have a linear equation like:

$$
x=a \cdot x+b
$$

then $a^{*} \cdot b$ is a solution:

$$
\begin{aligned}
a^{*} \cdot b & =\left(a \cdot a^{*}+1\right) \cdot b \\
& =a \cdot\left(a^{*} \cdot b\right)+b
\end{aligned}
$$

If we have a system of linear equations like:

$$
\begin{aligned}
x_{1} & =A_{11} x_{1}+A_{12} x_{2}+\ldots A_{1 n} x_{n}+B_{1} \\
& \vdots \\
x_{n} & =A_{n 1} x_{1}+A_{n 2} x_{2}+\ldots A_{n n} x_{n}+B_{n}
\end{aligned}
$$

then $A^{*} \cdot B$ is a solution (for a matrix A and vector B of coefficients) which can be found using closure.

Regular expressions and state machines

A state machine can be described by a regular grammar:

$$
\begin{aligned}
& A \rightarrow x B \\
& B \rightarrow y A+z C \\
& C \rightarrow 1
\end{aligned}
$$

The regular grammar is a system of linear equations, and the regular expression describing it can be found by closure.

Solving linear equations

Reconstructing regular expressions

Solving equations in the "free" semiring rebuilds regular expressions from a state machine.

Dataflow analysis

Solving equations in the semiring of sets of variables does live variables analysis (among others).

Linear recurrences and power series

Suppose the next value in a sequence is a linear combination of previous values:

$$
\begin{aligned}
& F(0)=0 \\
& F(1)=1 \\
& F(n)=F(n-2)+F(n-1)
\end{aligned}
$$

We represent these as formal power series:

$$
F=x+x^{2}+2 x^{3}+3 x^{4}+5 x^{5}+8 x^{6} \ldots
$$

Multiplying by x shifts the sequence one place, so:

$$
F=1+\left(x^{2}+x\right) \cdot F
$$

Power series are a semiring

We represent power series as lists: $\mathrm{a}:: \mathrm{p}$ is $a+p x$.

```
instance Semiring \(r \Rightarrow\) Semiring \([r]\) where
zero = []
one \(=\) [one]
```

Addition is pointwise:

```
[] @+ \(y=y\)
\(x\) @+ [] \(=x\)
\((x: x s)\) @+ \((y: y s)=(x\) @ \(y):(x s\) @ \(+y s)\)
```


Multiplying power series

Multiplying power series works like this:

$$
(a+p x)(b+q x)=a b+(a q+p b+p q x) x
$$

In Haskell:

$$
\begin{aligned}
& \text { [] @. }=\text { [] } \\
& \text { - ©. [] = [] } \\
& \text { (a:p) @. (b:q) = (a @. b):(map (a @.) q @+ } \\
& \operatorname{map}(@ . b) p \text { @+ } \\
& \text { (zero:(p @. q))) }
\end{aligned}
$$

This is convolution, without needing indices.
M. Douglas Mcllroy. Power series, power serious. Journal of Functional Programming, 1999.

Closure of a power series

The closure of $a+p x$ must satisfy:

$$
(a+p x)^{*}=1+(a+p x)^{*} \cdot(a+p x)
$$

This has a solution satisfying:

$$
(a+p x)^{*}=a^{*} \cdot\left(1+p x \cdot(a+p x)^{*}\right)
$$

which translates neatly into (lazy!) Haskell:

$$
\begin{aligned}
& \text { closure }[]=\text { one } \\
& \text { closure }(a: p)=r \\
& \text { where } r=[\text { closure a] @. (one:(p @. } r))
\end{aligned}
$$

Fibonacci, again

$$
\begin{aligned}
F & =1+\left(x+x^{2}\right) F \\
& =\left(x+x^{2}\right)^{*}
\end{aligned}
$$

$$
\text { fib }=\text { closure }[0,1,1]
$$

Any linear recurrence can be solved with closure.

Knapsacks

Suppose we are trying to fill our baggage allowance with:
Knuth books: weight 10, value 100
Haskell books: weight 7, value 80
Java books: weight 9, value 3
The best value we can have with weight n is:

$$
\text { best }_{n}=\max \left(100+\text { best }_{n-10}, 80+\text { best }_{n-7}, 3+\text { best }_{n-9}\right)
$$

In the (max, +)-semiring, that reads:

$$
\text { best }_{n}=100 \cdot \text { best }_{n-10}+80 \cdot \text { best }_{n-7}+3 \cdot \text { best }_{n-9}
$$

which is a linear recurrence.

Thank you!

Questions?

Many problems are linear, for a suitable notion of "linear".

stephen.dolan@cl.cam.ac.uk

Live variables analysis

Many dataflow analyses are just linear equations in a semiring. This live variables analysis uses the semiring of sets of variables.

A $\mathrm{x}:=1$
B while $\mathrm{x}<\mathrm{y}$:
C $\quad \mathrm{x}:=\mathrm{x} * 2$
D return x

$$
\mathrm{IN}_{A}=\mathrm{OUT}_{A} \cap \overline{\{\mathrm{x}\}}
$$

$$
\mathrm{IN}_{B}=\mathrm{OUT}_{B} \cup\{\mathrm{x}, \mathrm{y}\}
$$

$$
\mathrm{IN}_{C}=\mathrm{OUT}_{C} \cup\{\mathrm{x}\}
$$

$$
\mathrm{IN}_{D}=\mathrm{OUT}_{D} \cup\{\mathrm{x}\}
$$

$\mathrm{OUT}_{A}=\mathrm{IN}_{B}$
$\mathrm{OUT}_{B}=\mathrm{IN}_{C} \cup \mathrm{IN}_{D}$
$\mathrm{OUT}_{C}=\mathrm{IN}_{B}$
$\mathrm{OUT}_{D}=\emptyset$

Petri nets

Timed event graphs (a form of Petri net with a notion of time) can be viewed as "linear" systems, in the (max, +)-semiring

This transition fires for the nth time after all of its inputs have fired for the nth time.

The nth token is available from this place 5 time units after then $(n-3)$ th token is available from its input.
G. Cohen, P. Moller, J.P. Quadrat, M. Viot, Linear system theory for discrete event systems, 1984.

