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Linear algebra is magic

If your problem can be expressed as vectors and matrices, it is
essentially already solved.

Linear algebra works with fields, like the real or complex numbers:
sets with a notion of addition, multiplication, subtraction and
division.
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We don’t have fields

CS has many structures with “multiplication” and “addition”:

conjunction and disjunction

sequencing and choice

intersection and union

product type and sum type

But very few with a sensible “division” or “subtraction”.

What we have are semirings, not fields.
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Semirings

A closed semiring is a set with some notion of addition and
multiplication as well as a unary operation ∗, where:

a + b = b + a (+, 0) is a commutative monoid

a + (b + c) = (a + b) + c

a + 0 = a

a · (b · c) = (a · b) · c (·, 1) is a monoid, with zero

a · 1 = 1 · a = a

a · 0 = 0 · a = 0

a · (b + c) = a · b + a · c · distributes over +

(a + b) · c = a · c + b · c
a∗ = 1 + a · a∗ closure operation

Stephen Dolan Fun with Semirings

Daniel J. Lehmann, Algebraic Structures for Transitive Closure, 1977.



Closed semirings

A closed semiring has a closure operation ∗, where

a∗ = 1 + a · a∗ = 1 + a∗ · a

Intuitively, we can often think of closure as:

a∗ = 1 + a + a2 + a3 + . . .
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Closed semirings as a Haskell typeclass

i n f i x l 9 @.
i n f i x l 8 @+
class Semiring r where

zero , one : : r
closure : : r −> r
(@+), (@.) : : r −> r −> r

instance Semiring Bool where
zero = False
one = True
closure x = True
(@+) = ( | | )
(@.) = (&&)
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Adjacency matrices

Directed graphs are represented as matrices of Booleans.
G 2 gives the two-hop paths through G .

1

2 3

·

1

2 3

=

1

2 3

0 1 0
0 0 1
0 0 0

 ·

0 1 0
0 0 1
0 0 0

 =

0 0 1
0 0 0
0 0 0


(AB)ij =

∑
k

Aik · Bkj

= ∃k such that Aik ∧ Bkj
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Closure of an adjacency matrix

The closure of an adjacency matrix gives us the reflexive transitive
closure of the graph.

1

2 3



∗

=

1

2 3

0 1 0
0 0 1
0 0 0

∗ =

1 1 1
0 1 1
0 0 1


A∗ = 1 + A · A∗

= 1 + A + A2 + A3 + . . .
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A semiring of matrices

A matrix is represented by a list of lists of elements.

data Matrix a = Matrix [ [ a ] ]
instance Semiring a => Semiring (Matrix a) where

. . .

Matrix addition and multiplication is as normal, and Lehmann gives
an imperative algorithm for calculating the closure of a matrix.
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Closure of a matrix

The correctness proof of the closure algorithm states:

If M =

(
A B
C D

)
then M∗ =

(
A∗ + B ′ ·∆∗ · C ′ B ′ ·∆∗

∆∗ · C ′ ∆∗

)
where B ′ = A∗ · B, C ′ = C · A∗ and ∆ = D + C · A∗ · B.
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Block matrices

We can split a matrix into blocks, and join them back together.

type BlockMatrix a = (Matrix a , Matrix a ,
Matrix a , Matrix a)

msplit : : Matrix a −> BlockMatrix a
mjoin : : BlockMatrix a −> Matrix a

Stephen Dolan Fun with Semirings



Closure of a matrix

The algorithm is imperative, but the correctness proof gives a
recursive functional implementation:

closure (Matrix [ [ x ] ] ) = Matrix [ [ closure x ] ]
closure m = mjoin

( f i r s t ’ @+ top ’ @. rest ’ @. le f t ’ , top ’ @. rest ’ ,
rest ’ @. le f t ’ , rest ’ )

where
( f i r s t , top , le f t , rest ) = msplit m
f i r s t ’ = closure f i r s t
top ’ = f i r s t ’ @. top
le f t ’ = l e f t @. f i r s t ’
rest ’ = closure ( rest @+ left ’ @. top)

Stephen Dolan Fun with Semirings



Shortest distances in a graph

Distances form a semiring, with · as addition and + as choosing
the shorter. The closure algorithm then finds shortest distances.

data ShortestDistance = Distance Int | Unreachable
instance Semiring ShortestDistance where

zero = Unreachable
one = Distance 0
closure x = one

x @+ Unreachable = x
Unreachable @+ x = x
Distance a @+ Distance b = Distance (min a b)

x @. Unreachable = Unreachable
Unreachable @. x = Unreachable
Distance a @. Distance b = Distance (a + b)
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Shortest paths in a graph

We can also recover the actual path:

data ShortestPath n = Path Int [(n,n) ] | NoPath
instance Ord n => Semiring (ShortestPath n) where

zero = NoPath
one = Path 0 [ ]
closure x = one

x @+ NoPath = x
NoPath @+ x = x
Path a p @+ Path a ’ p’
| a < a ’ = Path a p
| a == a ’ && p < p’ = Path a p
| otherwise = Path a ’ p’

x @. NoPath = NoPath
NoPath @. x = NoPath
Path a p @. Path a ’ p’ = Path (a + a ’) (p ++ p’)
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Solving linear equations

If we have a linear equation like:

x = a · x + b

then a∗ · b is a solution:

a∗ · b = (a · a∗ + 1) · b
= a · (a∗ · b) + b

If we have a system of linear equations like:

x1 = A11x1 + A12x2 + . . .A1nxn + B1

...

xn = An1x1 + An2x2 + . . .Annxn + Bn

then A∗ · B is a solution (for a matrix A and vector B of
coefficients) which can be found using closure.
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Regular expressions and state machines

A state machine can be described by a regular grammar:

qB

qA

qC

x

z

y
A→ xB

B → yA + zC

C → 1

The regular grammar is a system of linear equations, and the
regular expression describing it can be found by closure.
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Solving linear equations

Reconstructing regular expressions
Solving equations in the “free” semiring rebuilds regular
expressions from a state machine.

Dataflow analysis
Solving equations in the semiring of sets of variables does live
variables analysis (among others).
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Linear recurrences and power series

Suppose the next value in a sequence is a linear combination of
previous values:

F (0) = 0

F (1) = 1

F (n) = F (n − 2) + F (n − 1)

We represent these as formal power series:

F = x + x2 + 2x3 + 3x4 + 5x5 + 8x6 . . .

Multiplying by x shifts the sequence one place, so:

F = 1 + (x2 + x) · F
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Power series are a semiring

We represent power series as lists: a::p is a + px .

instance Semiring r => Semiring [ r ] where
zero = [ ]
one = [one ]

Addition is pointwise:

[ ] @+ y = y
x @+ [ ] = x
(x : xs) @+ (y : ys) = (x @+ y ):( xs @+ ys)
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Multiplying power series

Multiplying power series works like this:

(a + px)(b + qx) = ab + (aq + pb + pqx)x

In Haskell:

[ ] @. = [ ]
@. [ ] = [ ]

(a :p) @. (b:q) = (a @. b) :(map (a @.) q @+
map (@. b) p @+
(zero :(p @. q)))

This is convolution, without needing indices.
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Closure of a power series

The closure of a + px must satisfy:

(a + px)∗ = 1 + (a + px)∗ · (a + px)

This has a solution satisfying:

(a + px)∗ = a∗ · (1 + px · (a + px)∗)

which translates neatly into (lazy!) Haskell:

closure [ ] = one
closure (a :p) = r

where r = [ closure a ] @. (one :(p @. r ))
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Fibonacci, again

F = 1 + (x + x2)F

= (x + x2)∗

f ib = closure [0 ,1 ,1]

Any linear recurrence can be solved with closure.
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Knapsacks

Suppose we are trying to fill our baggage allowance with:

Knuth books: weight 10, value 100
Haskell books: weight 7, value 80

Java books: weight 9, value 3

The best value we can have with weight n is:

bestn = max(100 + bestn−10, 80 + bestn−7, 3 + bestn−9)

In the (max,+)-semiring, that reads:

bestn = 100 · bestn−10 + 80 · bestn−7 + 3 · bestn−9

which is a linear recurrence.
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Thank you!

Questions?

Many problems are linear, for a suitable notion of “linear”.
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Live variables analysis

Many dataflow analyses are just linear equations in a semiring.
This live variables analysis uses the semiring of sets of variables.

x := 1A

while x < y:B

x := x * 2C

return xD

INA = OUTA ∩ {x}
INB = OUTB ∪ {x, y}
INC = OUTC ∪ {x}
IND = OUTD ∪ {x}

OUTA = INB

OUTB = INC ∪ IND

OUTC = INB

OUTD = ∅
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Petri nets

Timed event graphs (a form of Petri net with a notion of time) can
be viewed as “linear” systems, in the (max,+)-semiring

This transition fires for the
nth time after all of its
inputs have fired for the
nth time.

5

The nth token is available
from this place 5 time
units after then (n − 3)th
token is available from its
input.
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