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Abstract

This thesis employs experimental mathematics to examine a multidimensional pack-
ing problem proposed by Dean G. Hoffman and based on the AM-GM-inequality.
We formalize the problem and generalize several of Hoffman’s results from the three-
dimensional case to higher dimensions. We explain why it is complicated to count
the number of unique packings and introduce the notion of a universal packing to
remedy this. In the end, this enables us to provide the first rigorous proof that the
three-dimensional case can always be solved.

We reproduce most of the results presented in the sparse literature on the subject,
provide a rectified count of the number of unique squares in the four-dimensional
case and give an estimate of the computations needed to determine the number of
cubes in the four-dimensional case. We also construct a four-dimensional universal
packing, formulate several hypotheses closely related to Maclaurin’s inequality and
prove one of these to be a necessary condition for being a universal packing. In
addition, we use this universal packing as a stepping stone to give a lower bound
on the number of unique four-dimensional universal packings.

Finally, we discuss how to approach the five-dimensional case. This includes
ways of exploiting the hypotheses formulated during the investigation of the four-
dimensional case and an assessment of the viability of the methods utilized to
compute packings in lower dimensions.
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1. Introduction

In [Hof81] Dean G. Hoffman proposes a packing problem based on the inequality of
the arithmetic mean and geometric mean. The following introduction is immensely
inspired by his presentation of it.

Is it possible to pack four 7-by-8 rectangles inside a square whose sides have a
length of 15? Notice that each rectangle has an area of 7 · 8 = 56, while the area of
the square is 152 = 225. Thus, the leftover area is just 225− 4 · 56 = 1, so there is
a very limited room for maneuver. Nevertheless, it is in fact possible to pack the
rectangles inside the square by organizing them like in Figure 1.

7
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Figure 1. Packing of four 7-by-8 rectangles inside a 15-by-15 square.

We can generalize this problem. Let x and y be two positive real numbers. Is it
possible to pack four x-by-y rectangles inside a square whose sides have a length of
x+y? The area of each rectangle is xy, while the area of the square is (x+y)2. We
will certainly not be able to fit the rectangles if their combined area exceeds the area
of the square. Thus, we do not stand a chance unless 4xy ≤ (x+ y)2. Fortunately,
there is still a chance of finding a packing, since 0 ≤ (x − y)2 = (x + y)2 − 4xy.
Inspired by Figure 1, we can solve this generalized problem as well. Figure 2 shows
how to pack the four rectangles inside the square, depending of the relative sizes of
x and y.

x1

x2

(a) x1 < x2

x1

x2

(b) x1 = x2

x1

x2

(c) x1 > x2

Figure 2. Solution to the two-dimensional packing problem.

There is an elegant way to generalize this packing problem to higher dimensions.
It is based on the AM-GM inequality, which states that for any n non-negative real
numbers x1, x2, . . . , xn, then

(1) n
√
x1 · x2 · · ·xn ≤

x1 + x2 + · · ·+ xn
n
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with equality if and only if x1 = x2 = · · · = xn. The left-hand side is called the
geometric mean while the right-hand side is the familiar arithmetic mean. We can
turn this inequality into a packing problem by multiplying both sides by n, and
then raising both sides to the power of n. This yields

nn (x1 · x2 · · ·xn) ≤ (x1 + x2 + · · ·+ xn)
n
.

Observe that x1 · x2 · · ·xn is the hypervolume of an n-dimensional hyperrectangle
with dimensions x1 × x2 × · · · × xn and that (x1 + x2 + · · ·+ xn)

n is the hypervol-
ume of an n-dimensional hypercube whose sides have length x1 +x2 + · · ·+xn. So,
is it always possible to pack nn such hyperrectangles inside the n-dimensional hy-
percube? We say that a dimension is good if the answer to this question is yes. The
above inequality does not guarantee that the hyperrectangles will fit, but only that
their combined hypervolume will not exceed the hypervolume of the hypercube.

We have just seen that 2 is a good dimension and in fact so is 3. In the three-
dimensional case there are 33 = 27 bricks and Figure 3 gives a general recipe for
constructing a packing. There are in fact 21 such recipes if we ignore reflections
and/or rotations.

(a) Bottom square. (b) Middle square. (c) Top square.

Figure 3. Solution to the three-dimensional packing problem.
Let (x1, x2, x3) be a dimension tuple with x1 ≤ x2 ≤ x3. Then
the x1-by-x2, x1-by-x3 and x2-by-x3 faces are colored red, green
and blue, respectively.

What about higher dimensions? This packing problem has the extraordinary
property that if m and n are good dimensions, then mn is good as well. Hence, 4
is a good dimension. It is unknown whether 5 is a good dimension.

The aim of this thesis is to cast light on some of the most interesting unanswered
questions of Hoffman’s multidimensional packing problem, namely how many pack-
ings there are in the four-dimensional case and whether 5 is a good dimension. With
the ambition of increasing our knowledge of this problem, we will use experimental
mathematics to investigate it.

Experimental mathematics as described in [EJ17, p. 5-6] is inspired by the
methodology of the fields of science where experiments play an essential role in
obtaining knowledge. While no amount of experimental data can prove a hypothesis
as a mathematical truth (unless it has finitely many cases which can be checked
one at a time), it can still play a significant role in guiding the research process.

An experimental approach might provide valuable insights into a mathematical
problem—insights which can help us put forward conjectures, find counterexamples
and gain an understanding, which may ultimately help us formulate a proof. There
is a close interplay with theoretical investigations since, in this way, we can examine
the implications of our findings, refine our hypotheses and subsequently conduct
more experiments. These experiments could, in theory, be carried out by hand.
However, the rapidly growing capabilities of modern computers enable us to per-
form much more complicated and computationally demanding experiments, which
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might not previously have been practically feasible to carry out. This continuous
expansion of the practical possibilities of experimental mathematics only makes the
approach more appealing and promising.

Thanks to Dean G. Hoffman for providing important insights into the inner
workings of this packing problem and thanks to Trine K. Boomsma for helping
approach the problem using mixed-integer programming and constraint satisfaction.

The repository containing most of the code developed during this project is
available at https://github.com/nikolajholck/hoffman.

https://github.com/nikolajholck/hoffman
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2. Problem formulation and analysis

We would like to formalize the formulation of Hoffman’s multidimensional packing
problem. Let n be a positive integer denoting the dimension of the problem. We
will refer to an element d of (0,∞)n as an n-dimensional dimension tuple and we
refer to the sum of its coordinates as the sum of the dimension tuple. Note that we
will typically omit the “n-dimensional” part of notions, whenever it is clear from
the context and for instance simply write “dimension tuple”.

Definition 2.1 (Hyperrectangle). A subset R of Rn is an n-dimensional hyper-
rectangle, if it can be written as a Cartesian product of n non-empty, open and
bounded intervals I1, I2, . . . , In of R, that is R = I1 × I2 × · · · × In.

In addition, for each i = 1, 2, . . . , n let ai and bi denote the left and right end-
points of the interval Ii = (ai, bi), let xi = bi − ai denote the interval width and
let mi = (ai + bi)/2 denote the interval midpoint. We will refer to the point
(a1, a2, . . . , an) as the anchor point and the point (m1,m2, . . . ,mn) as the centre of
the hyperrectangle R. We will refer to the tuple (x1, x2, . . . , xn) as the dimension
tuple of the hyperrectangle R and refer to its i’th element as the extent of the
hyperrectangle along the i’th dimension. Lastly, the n-dimensional hypervolume of
the hyperrectangle R is the product x1x2 · · ·xn.

Notice that the hyperrectangle R is uniquely identified by its anchor point and
dimension tuple, since this information determines the endpoints of Ii for each
i = 1, 2, . . . , n. When we are not interested in the “position” of a hyperrectangle in
Rn, we will typically just refer to it by its dimension tuple.

Definition 2.2 (Hypercube). An n-dimensional hypercube is an n-dimensional hy-
perrectangle with the same extent along all dimensions, i.e. x1 = x2 = · · · = xn.

Definition 2.3 (General hyperrectangle). A subset of Rn is an n-dimensional
general hyperrectangle if it can be rotated into an n-dimensional hyperrectangle.

Two general hyperrectangles are said to be overlapping if they intersect one another
and non-overlapping if they are disjoint.

Definition 2.4 (Packing). Let d be an n-dimensional dimension tuple and let
s denote its sum. Suppose C is an n-dimensional hypercube with extent s, and
suppose B is a set of n-dimensional general hyperrectangles of Rn, all of which
can be rotated into an n-dimensional hyperrectangle with dimension tuple d. Then
(B,C) is a packing of d, if
(i) The general hyperrectangles in B are pairwise non-overlapping.
(ii) Each general hyperrectangle in B is contained in C.

We will refer to C as the surrounding hypercube. Note that we can always translate
the general hyperrectangles in B and the surrounding hypercube C of a packing
(B,C), so that the surrounding hypercube has its centre at the origin of the coor-
dinate system. From now on we will assume that such a translation has been per-
formed, unless otherwise stated. We are now ready to formulate the n-dimensional
packing problem.

Definition 2.5 (Good dimension). A positive integer n is a good dimension, if for
any choice of n-dimensional dimension tuple d there exists a packing of d.

Hoffman asks the following question in [Hof81, p. 222], which according to [BCG04,
p. 914] and recent correspondences with Dean G. Hoffman [Hof17] does not appear
to have been answered for all dimensions.

Question 2.6. For which positive integers n, is n a good dimension?
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Figure 2 demonstrates that 2 is a good dimension by showing how to construct
a packing of any two-dimensional dimension tuple. According to [Hof81, p. 215]
3 is good, but Hoffman does not provide a thorough proof. We provide the first
thorough proof of this in Corollary 4.7. Theorem 2.7 below shows that this packing
problem exhibits an extraordinary property, which in particular implies that the
number of good dimensions is unbounded. The first appearance of this result is
unclear, but Hoffman attributes it to Raphael Robinson in [Hof81, p. 223], while
Elwyn R. Berlekamp et al. [BCG04, p. 914] attribute it to David Seal as well. The
proof is based on the one presented by Hoffman in [Hof81, p. 223–225].

Theorem 2.7. Suppose m and n are positive integers. If both m and n are good
dimensions, then mn is a good dimension as well.

Proof. Suppose m and n are good dimensions and let

(x1,1, x1,2, . . . , x1,n, x2,1, x2,2, . . . , x2,n, . . . , xm,1, xm,2, . . . , xm,n)

be an mn-dimensional dimension tuple and let t denote its sum. We would like to
show that there exists a packing of this dimension tuple. Suppose we have (mn)mn

mn-dimensional hyperrectangles with the above dimension tuple. We would like
to rotate and translate them to fit inside an mn-dimensional hypercube with an
extent of t. For the sake of readability we will write out the dimension tuple in an
m× n matrix

A =


x1,1 x1,2 · · · x1,n
x2,1 x2,2 · · · x2,n
...

...
. . .

...
xm,1 xm,2 · · · xm,n

 .

Let si be the sum of the i’th column of A for i = 1, 2, . . . , n. First, divide the
(mn)mn mn-dimensional hyperrectangles into groups, each consisting of mm hy-
perrectangles. There must be (mn)mn/mm = mm(n−1)nmn of these groups. Con-
sider the dimension tuple (x1,1, x2,1, . . . , xm,1) consisting of the first column of A
and recall that its sum is s1. Since m is a good dimension, there exists a packing
of mm m-dimensional general hyperrectangles (which can be rotated to have this
dimension tuple) inside an m-dimensional hypercube with an extent of s1. Then
we see that the mm mn-dimensional hyperrectangles in each group will fit inside
an mn-dimensional hyperrectangle with dimension tuple (as a matrix)

s1 x1,2 · · · x1,n
s1 x2,2 · · · x2,n
...

...
. . .

...
s1 xm,2 · · · xm,n

 .

By “fit” we mean that the mm hyperrectangles are pairwise non-overlapping and
rotated and translated such that they are subsets of the surrounding hyperrectangle
like in Definition 2.4. Doing this for each group results in mm(n−1)nmn such mn-
dimensional hyperrectangles—each containing mm of the original mn-dimensional
hyperrectangles, rotated and translated appropriately. We repeat this procedure for
every column, each time dividing the mn-dimensional hyperrectangles constructed
at the previous iteration into groups with a size of mm and then fitting the hyper-
rectangles of each group into a surrounding mn-dimensional hyperrectangle. After
doing this a total number of n times, we end up with nmn groups ofmn-dimensional
hyperrectangles each of which fits inside an mn-dimensional hyperrectangle with
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dimension tuple (as a matrix)

B =


s1 s2 · · · sn
s1 s2 · · · sn
...

...
. . .

...
s1 s2 · · · sn

 .

Each of these mn-dimensional hyperrectangles contains mmn of the original mn-
dimensional hyperrectangles, rotated and translated appropriately. Next, we per-
form a similar procedure for each row. We divide the nmn mn-dimensional hyper-
rectangles into groups of nn hyperrectangles. There are nmn/nn = n(m−1)n of these
groups. Consider the dimension tuple (s1, s2, . . . , sn) consisting of the first row of
B and notice that the sum along this row is t. Since n is a good dimension, there
exists a packing of nn n-dimensional general hyperrectangles (which can be rotated
to have this dimension tuple) inside an n-dimensional hypercube with an extent
of t. Then the nn mn-dimensional hyperrectangles in each group will fit inside an
mn-dimensional hyperrectangle with dimension tuple (as a matrix)

t t · · · t
s1 s2 · · · sn
...

...
. . .

...
s1 s2 · · · sn

 .

Doing so for each group, we obtain n(m−1)n suchmn-dimensional hyperrectangles—
each containing mmnnn of the original mn-dimensional hyperrectangles, rotated
and translated appropriately. Repeating this procedure for each row, m times in
total, we end up with n(m−m)n = 1 group of nn mn-dimensional hyperrectangles
fitting inside an mn-dimensional hyperrectangle with dimension tuple (as a matrix)

t t · · · t
t t · · · t
...

...
. . .

...
t t · · · t

 .

This is in fact an mn-dimensional hypercube with an extent of t and the desired
packing is obtained by repeatedly unwrapping the groups of rotated and translated
mn-dimensional hyperrectangles, until we reach the now appropriately rotated and
translated (mn)mn mn-dimensional hyperrectangles. �

It follows from this result that in order to prove that all dimensions are good, one
would only have to prove so for all prime numbers. Hence, 4 is a good dimension,
and in the light of Corollary 4.7 the smallest unsettled dimension is 5 [Hof81, p.
223][BCG04, p. 914].

If n is a good dimension, it is natural to ask how many different packings there are
in that particular dimension. Before we can even attempt to answer this question,
we need to make sure that the number of different packings is independent of the
choice of dimension tuple. This will ultimately lead to the definition of a universal
packing and a refinement of the question. In preparation for this, we will first need
a notion of two packings being notably different.

2.1. Equivalence of packings. Depending on the choice of dimension tuple d
there might be enough unoccupied “room” inside the surrounding hypercube to
rearrange the general hyperrectangles without intersecting one another and without
leaving the surrounding hypercube.
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Definition 2.8 (Rearrangement). Suppose (B1, C1) and (B2, C2) are packings of
the dimension tuples d1 and d2, respectively. The first packing is a rearrangement
of the second if C1 coincides with C2 and if it is possible to continuously move
(using only translations and rotations) the general hyperrectangles in B1, so that
each moved general hyperrectangle coincides with a general hyperrectangle in B2

without breaking any of the criteria in Definition 2.4 while moving.

x1

x2

(a) Packing with three rectangles
side by side.

x1

x2

(b) Rearrangement of the pack-
ing in Figure 4a.

Figure 4. Example of equivalent two-dimensional packings of the
dimension tuple (x1, x2) where x2 = 2x1.

It is also natural to take reflections and rotations of the packing as a whole into
account. We can view such a transformation as a linear map represented by an
orthogonal n×nmatrix. There are an infinite number of these, but by Definition 2.4
we only have to consider those mapping the surrounding hypercube to itself. This
corresponds to the linear maps sending the standard basis vectors e1, e2, . . . , en to
some permutation of themselves while possibly changing the sign of some of them.
Thus, there are n! · 2n reflections and/or rotations of an n-dimensional hypercube.
We will refer to reflections and/or rotations as symmetries. With this in mind, we
will define what it means for two packings to be equivalent.

Definition 2.9 (Equivalent packings). Suppose there are two packings of the di-
mension tuples d1 and d2, respectively. These packings are equivalent if there exists
a rearrangement of the first packing coinciding with a symmetry of the second.

This is an equivalence relation and we will refer to the equivalence classes as unique
packings. Notice that it is possible to permute the elements in a dimension tuple
without influencing the number of unique packings, since such a permutation cor-
responds to rotating all packings and thus does not affect the equivalence classes.
We can therefore without loss of generality restrict ourselves to increasing dimen-
sion tuples. We say that a dimension tuple d = (x1, x2, . . . , xn) is increasing if
x1 ≤ x2 ≤ · · · ≤ xn.

The notion of rearrangements of a packing also gives rise to defining a rigid
packing, that is a packing where all the general hyperrectangles are “locked into
place” by the surrounding general hyperrectangles or hypercube.

Definition 2.10 (Rigid packing). We say that a packing is rigid if all of its rear-
rangements are identical to itself.

Figure 2 is an example of a rigid packing. Note that the equivalence class of a rigid
packing only contains its symmetries, so it contains at most n! · 2n packings. It
might contain fewer if some symmetries are identical to one another.

Next, we will examine packings of dimension tuples satisfying a certain inequality,
which forces any packing consisting of hyperrectangles to be rigid and ultimately
leads to the definition of a universal packing.
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2.2. Universal packings. Before defining a universal packing, it is helpful to get
some intuition by looking a bit closer at the two-dimensional packing problem.
Consider some increasing dimension tuple (x1, x2). There are ways of organizing
the four rectangles, which are only possible when the relative difference between
x1 and x2 is sufficiently large. Suppose x2 is twice as large as x1, i.e. x2 = 2x1 or
equivalently x1 + x2 = 3x1. Then the packing in Figure 4a becomes possible. This
packing is only feasible because we can fit three rectangles side by side. It turns
out that restricting the search to packings of increasing dimension tuples satisfying
the inequality

(2) x1 + x2 < 3x1

prevents this and restricts the problem in an interesting way. Later, we will argue
that any packing of an increasing dimension tuple satisfying (2) consisting of hy-
perrectangles will be rigid and discuss whether it gives a “recipe” for constructing
a packing of any dimension tuple as seen in Figure 2. Thus, it is possible to reuse
the same “universal packing” even for dimension tuples not satisfying (2). This is
the inspiration behind our future definition of a “universal packing”.

Notice that the packing in Figure 4a—which relied on (2) not being satisfied—is
not rigid. Intuitively, (2) ensures that the four rectangles resemble a square to such
a degree that any packing must necessarily resemble the packing Figure 2b, where
four squares are neatly organized in a grid inside the surrounding square. We will
return to this concept of a grid shortly. The inequality (2) is inspired by Hoffman
who proposed a three-dimensional version of it in [Hof81, p. 215], namely

(3) x1 + x2 + x3 < 4x1.

Therefore we will name it after Hoffman when we generalize it to n dimensions.

Definition 2.11 (Hoffman’s inequality). A dimension tuple (x1, x2, . . . , xn) satis-
fies Hoffman’s inequality if it is increasing and

x1 + x2 + · · ·+ xn < (n+ 1)x1.

Choosing x1 = x2 = · · · = xn for some positive real number shows that a dimension
tuple with this property exists in all dimensions. Notice that (2) and (3) are really
Hoffman’s inequality for n = 2 and n = 3, respectively. Intuitively, Hoffman’s
inequality ensures that no packing can contain n+ 1 or more hyperrectangles side
by side. Shortly, we will justify that packings (consisting solely of hyperrectangles)
of a dimension tuple satisfying Hoffman’s inequality must be rigid and prove that
the hyperrectangles must be arranged in a “grid”.

Hoffman restricts his search for three-dimensional packings in [Hof81, p. 215]
to dimension tuples satisfying Hoffman’s inequality for n = 3, that is (3). George
Miller [Mil06] credits Donald Knuth for searching for three-dimensional packings
of the dimension tuple (3, 4, 5) and discovering solutions where one could squeeze
an additional 28th 3-dimensional hyperrectangle (brick) into the surrounding cube
(which has an extent of 3 + 4 + 5 = 12). Knuth’s solutions [Knu04] are presented
in Figure 5. Notice that in each of them it is possible to remove one of the 28
bricks such that the resulting packing of (3, 4, 5) is not rigid and such that the
remaining bricks do not seem to be organized in a “grid”. The attentive reader
might have noticed that this particular dimension tuple satisfies x1 + x2 + x3 =
4x1, so it barely breaks with (3), that is Hoffman’s inequality. Thus, Hoffman’s
inequality might intuitively be interpreted is a boundary separating us from a whole
different class of packings, including those with n+ 1 or more hyperrectangles side
by side. For instance all of the solutions in [Knu04] have four bricks side by side
somewhere. As seen in Figure 4a for n = 2, this class of packings can not serve
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(a) Layers of first solution.

(b) Layers of second solution.

(c) Layers of third solution.

Figure 5. The three solutions of the dimension tuple (3, 4, 5) con-
sisting of 28 bricks found by Donald Knuth [Knu04].

as a “recipe” for constructing packings of dimension tuples satisfying Hoffman’s
inequality. Therefore we will disregard them in our search for a “universal packing”.

Let us clarify what we mean by a grid. Let s > 0 and consider the n-dimensional
hypercube S = (0, s)n which has an extent of s. Let ci = is/(n+1) for i = 1, 2, . . . , n
and observe that 0 < ci < s and also that ci+1 − ci = s/(n + 1) for all suitable i.
Define s/(n+ 1) as the cut distance and define a cut at position k along dimension
i to be Ci,k = {v ∈ Rn | vi = ck} for i, k = 1, 2, . . . , n. Intersecting n cuts Ci,ki ,
one along each dimension i = 1, 2, . . . , n, yields a subset of Rn containing a single
point, namely

n⋂
i=1

Ci,ki = {v ∈ Rn | v1 = ck1 , v2 = ck2 , . . . , vn = ckn} = {(ck1 , ck2 , . . . , ckn)} ,

and this point is inside the hypercube S. Any such intersection corresponds to
precisely one point in the subset {c1, c2, . . . , cn}n of the hypercube S and we will
refer to this subset as the grid of the hypercube S and to each of its nn elements
as a grid point . Figure 6 illustrates this construction in the three-dimensional case.
Using translations, it is always possible to construct the grid of a hypercube. This
enables us to formulate and prove the next result. The proof is a formalization
and generalization of Hoffman’s proof of the three-dimensional case in [Hof81, p.
218–219] and it is therefore only appropriate to name it after him.
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(a) Cuts. (b) Grid lines. (c) Grid points.

Figure 6. Example of cuts and the grid of a cube in three dimensions.

Theorem 2.12 (Hoffman’s grid theorem). Suppose d is a dimension tuple satisfy-
ing Hoffman’s inequality and suppose (B,C) is a packing of d such that B contains
solely hyperrectangles. Then each hyperrectangle in B contains exactly one grid
point of the grid of C.

Proof. Let d = (x1, x2, . . . , xn) and s = x1 + x2 + · · · + xn. Assume without loss
of generality that the packing has been translated, so that the anchor point of the
surrounding hypercube is at the origin of the coordinate system, i.e. C = (0, s)n,
whereby we can reuse the grid construction described above.

We first show that every hyperrectangle in B contains a grid point. Take some
hyperrectangle R in B and write it as a Cartesian product R = I1 × I2 × · · · × In
where each Ii is a non-empty, open and bounded interval of R. Next, pick some
dimension k in {1, 2, . . . , n}. We would like to show that there exists a cut along
the dimension k which intersects the hyperrectangle R. Let rk denote the extent
of the hyperrectangle R along the k’th dimension, i.e. the width of the interval Ik.
Since (B,C) is a packing of d the hyperrectangle R is a subset of the hypercube C,
whereby Ik must be a subset of (0, s). Notice that each ci from the grid construction
is evenly distributed inside (0, s) and cuts it up into n+1 intervals of width equal to
the cut distance s/(n+1). It then follows from Hoffman’s inequality that s/(n+1) <
x1 ≤ rk, so there must exist some jk in {1, 2, . . . , n} such that cjk is in Ik. Then
the cut Ck,jk at position jk along dimension k must intersect the hyperrectangle R,
since all Ii are non-empty. Repeating this procedure for all dimensions k gives n
cuts Ck,jk intersecting the hyperrectangle, one along each dimension. Intersecting
these cuts results in a set with a single grid point, in this case (cj1 , cj2 , . . . , cjn).
This point is inside the hyperrectangle R, since each cjk is insideIk. Hence, there
is a least one grid point inside each hyperrectangle in B.

Lastly, since (B,C) is a packing of d, then the hyperrectangles in B are pairwise
non-overlapping. Then there can not be more than one grid point inside any of the
nn hyperrectangles in B, since there are only nn grid points in total. �

Let us introduce a convenient way of working with this grid. Define the n-dimen-
sional grid point coordinates Gn to be the set {1, 2, . . . , n}n and note that for any
n-dimensional hypercube, it is possible to identify each of its grid points through
the bijective map from Gn to the grid given by (p1, p2, . . . , pn) 7→ (cp1 , cp2 , . . . , cpn).
We will typically refer to a grid point by its coordinates assigned via this bijection.

We say that two grid point coordinates are on the same grid line if all but
one of their entries match, and we say that this grid line runs along the dimension
numbered by the index where the coordinates differ. Note that there are precisely n
grid point coordinates on any grid line. For each grid point coordinate p in Gn and
each dimension k = 1, 2, . . . , n we define L(p, k, i) as the i’th grid point coordinate
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on the line passing through p along dimension k for i = 1, 2, . . . , n, that is

L(p, k, i)j =

{
i, if j = k

pj , if j 6= k

for j = 1, 2, . . . , n and note that L(p, k, pk) = p for all k = 1, 2, . . . , n.
Suppose d = (x1, x2, . . . , xn) is a dimension tuple satisfying Hoffman’s inequality

and suppose (B,C) is a packing of d such that B contains solely hyperrectangles.
Let p be a grid point coordinate in Gn and for i = 1, 2, . . . , n define w(p)i as the
extent along the i’th dimension of the hyperrectangle in B containing this particular
grid point. This is well-defined by Hoffman’s grid theorem 2.12. We measure the
stuffing on a grid line L(p, k, i) as the sum of the extents along the k’th dimension
of the hyperrectangles associated with the grid points on the grid line, that is

n∑
i=1

w(L(p, k, i))k.

A grid line is said to be completely stuffed if the stuffing on it equals the extent
of the surrounding hypercube. With these notions we are ready to prove the next
result, which is a generalization of Hoffman’s proof of the three-dimensional case
in [Hof81, p. 220] and therefore named after him.

Theorem 2.13 (Hoffman’s line theorem). Suppose d is a dimension tuple satisfy-
ing Hoffman’s inequality and suppose (B,C) is a packing of d consisting solely of
hyperrectangles. Then all grid lines are completely stuffed.

Proof. Notice that there are nn grid lines in total. We wish to measure the stuffing
on each of these grid lines. Let S denote the sum of stuffing on all of the nn grid
lines.

By Hoffman’s grid theorem 2.12 each of the nn hyperrectangles contains precisely
one grid point. Pick some grid point p, let Rp be the hyperrectangle in B containing
p and consider its dimension tuple r = (r1, r2, . . . , rn). Let s denote the sum of
d and observe that this dimension tuple must have the same sum as r. The grid
point p lies on exactly n grid lines, one along each different dimension. Thus, the
hyperrectangle Rp will contribute with ri worth of stuffing to the grid line through
p along dimension i for all i = 1, 2, . . . , n. Hence, Rp contributes with a total of s
worth of stuffing to S. So does all of the nn hyperrectangle, whereby nns ≤ S.

Furthermore, none of the nn grid lines can hold more than s worth of stuffing
without breaking some requirement of being a packing as specified in Definition 2.4.
Thus, S ≤ nns, so S = nns, whereby each grid line must have exactly s worth of
stuffing. Hence, all grid lines are completely stuffed. �

This result provides enough information to determine each of the hyperrectangles
simply by knowing the dimension tuple of each hyperrectangle, since the only way
to fit them inside the surrounding hypercube is by stacking them right next to each
other. We can encode all of the information necessary to construct such a packing
in a mapping assigning a permutation of {1, 2, . . . , n} to each grid point coordinate
in Gn specifying the dimension tuple (intuitively “orientation”) of the hyperrect-
angle containing that particular grid point. Let Sn be the set of permutations of
{1, 2, . . . , n}, that is bijections from the set to itself.
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Definition 2.14 (Hoffman packing). The map P : Gn → Sn is a Hoffman packing
of a dimension tuple d = (x1, x2, . . . , xn) if the following procedure results in a
packing (B,C) of d. Let s denote the sum of d and let the surrounding hypercube
C = (0, s)n. For every grid point coordinate p in Gn place a hyperrectangle in
B with dimension tuple w(p) =

(
xσ(1), xσ(2), . . . , xσ(n)

)
where σ = P (p) and with

anchor point a(p) determined recursively for i = 1, 2, . . . , n by

a(p)i =

{
0 if pi = 1

a(L(p, i, pi − 1))i + w(L(p, i, pi − 1))i otherwise.

Intuitively, L(p, i, pi − 1) is the grid point coordinate preceding p on the grid line
through p along dimension i. This grid point coordinate exists as long as 1 < pi ≤ n.
The anchor point can also be stated explicitly for i = 1, 2, . . . , n as

a(p)i =

pi−1∑
k=1

w(L(p, i, k))i.

We say that P produces the packing (B,C). It is possible to perform the above
procedure for any map P : Gn → Sn and we will refer to the result as a pseudo-
packing , since it does not necessarily satisfy the criteria in Definition 2.4 of being a
packing of d. For any grid point coordinate p we will refer to the hyperrectangle Rp
with anchor-point a(p) and dimension tuple w(p) as the hyperrectangle associated
with p. Note that if the dimension tuple does not satisfy Hoffman’s inequality, then
the grid point p need not be inside Rp. We will also refer to the right interval
endpoints of Rp as b(p), i.e. b(p) = a(p) + w(p).

Define two Hoffman packings of d as equivalent if they produce equivalent pack-
ings. We will refer to their equivalence class as a unique Hoffman packing. At long
last, it is possible to give meaning to a packing which is independent of the choice
of dimension tuple.

Definition 2.15 (Universal packing). The map P : Gn → Sn is a universal packing
if it is a Hoffman packing of any dimension tuple satisfying Hoffman’s inequality.

This above definition restricts itself to dimension tuples satisfying Hoffman’s in-
equality, but in Section 4.5 we will discuss the possibility of using a universal pack-
ing to produce a packing of any increasing dimension tuple.

Remark 2.16. When defining a Hoffman packing in Definition 2.14 we have re-
stricted ourselves to packings consisting solely of hyperrectangles (i.e. general hy-
perrectangles which are in fact hyperrectangles). The primary reason for this re-
striction is that it turns the packing problem into a combinatorial problem. How-
ever, as the focus shifts from Hoffman packings to universal packings we can better
justify this choice. A universal packing should in particular produce a packing of a
dimension tuple of a hypercube, i.e. a dimension tuple d = (x1, x2, . . . , xn) where
x1 = x2 = · · · = xn. In this case the AM-GM inequality is in fact an equality,
so there can not be any unoccupied “room” in a packing of d. Intuitively, we can
convince ourselves that this forces all of the hypercubes to be stacked snugly as
Figure 2b illustrates in the two-dimensional case.

We define two universal packings to be equivalent if they produce equivalent pack-
ings for any dimension tuple satisfying Hoffman’s inequality. We will refer to their
equivalence class as a unique universal packing. Finally, we are able to refine our
question of how many different packings there are in a given dimension.

Question 2.17. How many unique universal packings are there in n dimensions?
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3. Properties of universal packings

Let us examine the properties of Hoffman packings and universal packings. In
[Spi03, p. 1] Spiridonov stipulates that the structure of a three-dimensional packing
of a dimension tuple satisfying Hoffman’s inequality must be rigid and notes that
“this is probably not necessary; however, it seems tricky to show that no loose
packings exist”. We will not attempt to prove this, but we will provide an intuitive
argument as to why it is well-founded to claim that a packing of a dimension tuple
satisfying Hoffman’s inequality and consisting solely of hyperrectangles is rigid.

Suppose P is a Hoffman packing of a dimension tuple d satisfying Hoffman’s
inequality and let (B,C) be the packing of d produced by P . We would like to
argue that any rearrangements of this packing is identical to itself. We do so by
eliminating the possibility of moving any of the hyperrectangles in B. By Hoffman’s
grid theorem 2.12 each of the nn hyperrectangles contains precisely one grid point.
Pick some grid point c with coordinates p and let Rp be the hyperrectangle in
B associated with p, i.e. containing c. We begin by ruling out any translations.
Consider some dimension k in {1, 2, . . . , n} and observe that the hyperrectangles
associated with the grid points on the line through p along the k’th dimension all
intersect the line

Lk = V1 × V2 × · · · × Vn,
where Vk = R and Vi = {ci} for all i 6= k. Thus, along all dimensions Rp is wedged
between two hyperrectangles (or the surrounding hypercube) due to Hoffman’s line
theorem 2.13, see Figure 7b. Intuitively, this is enough to eliminate any continuous
translation of the hyperrectangle, since the slightest translation along any dimension
will result in the hyperrectangle overlapping with some adjacent hyperrectangle.
What about rotations? In Figure 7a it is illustrated how being wedged between two
hyperrectangles along all dimensions is not enough to prevent rotations. However,
if along all dimensions there is a line running through the hyperrectangle and the
adjacent hyperrectangles along that dimension, then the hyperrectangle can not
be continuously rotated without overlapping with an adjacent hyperrectangle, see
Figure 7b.

(a) Rectangle which can not be trans-
lated, since it is wedged between two
rectangles along each dimension. Ob-
serve however, that it can be rotated.

Rp

c

(b) Rectangle which can not be trans-
lated or rotated, since along each dimen-
sion there is a line passing through it and
the adjacent rectangles.

Figure 7. Examples illustrating what is necessary to ensure that
a hyperrectangle can not be moved.

Lastly, we consider the feasibility of moving multiple hyperrectangles simultane-
ously. Then in particular we move some specific hyperrectangle R. But moving R
forces us to also move some adjacent hyperrectangle to prevent overlap and this
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causes a chain reaction resulting in one of the hyperrectangles pricking a hole in
the surrounding hypercube C and thus no longer constituting a packing. Hence,
without further ado we will state the following proposition.

Proposition 3.1. Suppose d is a dimension tuple satisfying Hoffman’s inequality
and suppose (B,C) is a packing of d consisting solely of hyperrectangles. Then
(B,C) is a rigid packing.

The following result limits the number of universal packings being equivalent.

Lemma 3.2. There exists a strictly increasing sequence of n positive real numbers
x1 < x2 < · · · < xn such that (x1, x2, . . . , xn) satisfies Hoffman’s inequality and
such that the only way to add an arbitrary number of these sequence elements up
to x1 + x2 + · · ·+ xn is to add precisely one of each.

Proof. The case n = 1 is trivial, so suppose n ≥ 2. Define a sequence of n positive
real numbers by xi = 1 + n−(n−i+1) for i = 1, 2, . . . , n. Note that this sequence is
strictly increasing since

xi+1 − xi = n−(n−i) − n−(n−i+1) = n−(n−i)(1− 1/n) > 0

for all suitable i. We now represent each sequence element in base-n. Then the
fractional part of xi consists of n− i zeros followed by a one for all i = 1, 2, . . . , n,
i.e. xn = 1.1n, xn−1 = 1.01n and so on. We denote the sum consisting of precisely
one of each sequence element by s and we see that

s = x1 + x2 + · · ·+ xn = 10.

n ones︷ ︸︸ ︷
11 . . . 1n.

Notice that any sum of sequence elements with more than n terms will be strictly
greater than s, since the integer part of the sum would be at least 11n. In particular,
the sequence satisfies Hoffman’s inequality.

Suppose there exists a sum of sequence elements with n or fewer terms such that
they add up to s. Consider the base-n representation of this sum. Precisely one of
the terms must be x1, since this is the only way to obtain a one at the n’th position
of the fractional part of the sum. Similarly, we can now conclude that precisely one
term must be x2 and using induction the sum must have n terms with precisely
one xi term for each i = 1, 2, . . . , n. �

Lemma 3.3. Suppose d is a dimension tuple with distinct elements. If P1 and P2

are Hoffman packings of d producing the same packing, then P1 = P2.

Proof. Let (B,C) be the packing produced by P1 and P2. Suppose p is a grid
point coordinate in Gn. We would like to show that P1(p) = P2(p). Consider
the dimension tuple r of the hyperrectangle Rp in B associated with p. Since
the elements of d are distinct there is only one permutation σ in Sn such that
(dσ(1), dσ(2), . . . , dσ(n)) = r, whereby P1(p) = σ = P2(p). �

Proposition 3.4. A unique universal packing contains at most n! · 2n universal
packings.

Proof. Suppose Ω is a unique universal packing. Let d be the dimension tuple
consisting of the sequence given by Lemma 3.2. Then all of the Hoffman packings
in Ω produce packings of d, which are equivalent. However, none of them are
identical due to Lemma 3.3. By Proposition 3.1 these packings are rigid, so there
are at most n! ·2n of them, namely their symmetries. Thus, there are at most n! ·2n
Hoffman packings in Ω. �
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3.1. Verifying a Hoffman packing. When assessing whether a map P : Gn → Sn
is in fact a universal packing we need to show that it is a Hoffman packing of any
dimension tuple d satisfying Hoffman’s inequality. Therefore we seek a clever way
of ensuring that the pseudo-packing (B,C) produced by P is in fact a packing of d.
Hence, we need to make sure that all of the hyperrectangles in B are contained in
the surrounding hypercube C and that the hyperrectangles in B are pairwise non-
overlapping. Let us begin with a criterion which ensures that the hyperrectangles
are contained in the surrounding hypercube.

Criterion 3.5 (Line criterion). Suppose P : Gn → Sn. Let d = (x1, x2, . . . , xn) be
a dimension tuple with distinct elements and consider the pseudo-packing (B,C)
of d produced by P . A grid line along some dimension k ∈ {1, 2, . . . , n} is a unique
line if for all i = 1, 2, . . . , n there is precisely one grid point p on the grid line where
the associated hyperrectangle has an extent of xi along the k’th dimension, i.e.
P (p)(k) = i. If all grid lines are unique lines, then P satisfies the Line criterion.

Remark 3.6. The Line criterion 3.5 is inspired by Hoffman, who introduced it in
the three-dimensional case [Hof81, p. 220]. However, Hoffman’s way of justifying
it does not scale easily to higher dimensions. However, as we will see below, the
notion of a universal packing does in fact allow us to require it in higher dimensions.

It follows from the next result that the Line criterion 3.5 will guarantee the hyper-
rectangles to be contained in the surrounding hypercube.

Proposition 3.7. Suppose P : Gn → Sn. Let d be a dimension tuple and let s be
its sum. Let (B,C) be the pseudo-packing of d produced by P . If the stuffing on
each grid line is no bigger than s, then all of the hyperrectangles in B are contained
in the surrounding hypercube C.

Proof. Recall that C = (0, s)n. Suppose p is a grid point coordinate in Gn and
let Rp denote the associated hyperrectangle in B. Using the notation from Defini-
tion 2.14, we can write Rp as the Cartesian product

Rp =

n∏
i=1

(a(p)i, b(p)i) = (a(p)1, b(p)1)× (a(p)2, b(p)2)× · · · × (a(p)n, b(p)n).

Let v be an element in Rp and note that a(p)i < vi < b(p)i for all i = 1, 2, . . . , n. In
order to show that v lies in C, we need to show that 0 < vi < s for all i = 1, 2, . . . , n.

Take some i in {1, 2, . . . , n}. By examining the definition of the i’th element of
the anchor-point a(p) in Definition 2.14, we observe that a(p)i is a sum of non-
negative real numbers. Hence, a(p)i is non-negative itself, whereby 0 ≤ a(p)i < v.
Next, consider b(p)i = a(p)i + w(p)i, which can be recursively unwrapped into

b(p)i =

pi∑
k=1

w(L(p, i, k))i ≤
n∑
k=1

w(L(p, i, k))i ≤ s,

since the stuffing on the grid line running through p along dimension i is no bigger
than s. Then vi < b(p)i ≤ s, so v is in C. Thus, Rp is contained in C as desired. �

Next, we show that restricting the search for universal packings to maps P : Gn →
Sn satisfying the Line criterion 3.5 does not overlook any universal packings.

Proposition 3.8. Suppose P is a universal packing. Then P satisfies the Line
criterion 3.5.

Proof. Let d = (x1, x2, . . . , xn) be the dimension tuple consisting of the sequence
given by Lemma 3.2 and let s denote its sum. Observe that the elements of d are
distinct, since it is strictly increasing. Let (B,C) be the packing of d produced by
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P . Take some grid line along some dimension k ∈ {1, 2, . . . , n}. We would like to
show that this is a unique line. Since d satisfies Hoffman’s inequality this grid line
is completely stuffed by Hoffman’s line theorem 2.13. Recall that by Lemma 3.2
the only way to add the elements of d up to s is to use precisely one of each. There
are n grid points on the grid line, so for each i = 1, 2, . . . , n there must be precisely
one grid point pi on the grid line for which the associated hyperrectangle has an
extent of xi along the k’th dimension, i.e. P (pi)(k) = i. Hence, the grid line is a
unique line, whereby P satisfies the Line criterion 3.5. �

It remains to ensure that the hyperrectangles are pairwise non-overlapping. The
naive approach would be to check every pair of hyperrectangles one by one. The
next result indicates how such a check could be performed.

Lemma 3.9. Suppose R1 = I1× I2× · · · × In and R2 = J1× J2× · · · × Jn are two
n-dimensional hyperrectangles. These two hyperrectangles are overlapping if and
only if Ik intersects Jk for all k = 1, 2, . . . , n.

Proof. Suppose R1 and R2 are overlapping, i.e. they intersect one another. Then
there exists a point p in their intersection R1 ∩ R2. Take any k in {1, 2, . . . , n}.
Since p is in R1, then pk is in Ik. Similarly pk is in Jk. Hence, Ik intersects Jk.

Suppose Ik intersects Jk for all k = 1, 2, . . . , n. Then there exists a real number
pk in Ik ∩Jk for all k = 1, 2, . . . , n. The point p = (p1, p2, . . . , pn) is in both R1 and
R2, so they intersect one another. Hence, R1 and R2 are overlapping. �

Thus, these two hyperrectangles are non-overlapping if and only if there is a k in
{1, 2, . . . , n} such that Ik and Jk are disjoint. It turns out that it is not necessary
to check whether every pair of hyperrectangles are overlapping.

Definition 3.10 (Neighbouring grid points). Two grid points are neighbours if
their respective coordinates p and q satisfy

n
max
i=1
|pi − qi| = 1.

It turns out that it is only necessary to ensure that hyperrectangles associated with
neighbouring grid points are non-overlapping.

Criterion 3.11 (No neighbour overlap criterion). Suppose P : Gn → Sn. Let d be
a dimension tuple and let (B,C) be the pseudo-packing of d produced by P . Then
P satisfies the No neighbour overlap criterion for d if for any pair of neighbouring
grid point coordinates p and q in Gn there exists a k in {1, 2, . . . , n} with pk 6= qk
such that

b(p)k ≤ a(q)k if pk < qk

b(q)k ≤ a(p)k if pk > qk,

where a(p) and a(q) are the anchor points, whereas b(p) and b(q) are the right
interval endpoints (as defined in Definition 2.14) of the hyperrectangles Rp and Rq
associated with p and q, respectively.

The above criterion ensures that the k’th interval in the Cartesian product of Rp
does not intersect the corresponding interval ofRq, whereby the two hyperrectangles
are non-overlapping by Lemma 3.9.

Remark 3.12. The No neighbour overlap criterion 3.11 is inspired by Hoffman’s
observation that a “sharp corner” such as the one in Figure 8a may not occur [Hof81,
p. 221]. However, we have found that this concept of a sharp corner extends to
higher dimensions, such as the one in Figure 8b. The above criterion encodes the
necessary information to detect any type of sharp corner as soon as it emerges.
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(a) Sharp corner in two dimensions. (b) Sharp corner in three dimensions.

Figure 8. Examples of sharp corners. Observe that the three-
dimensional sharp corner can not be detected by looking at the
squares. Thus, while sharp corners of higher dimensions are theo-
retically possible, they are not easily visualized.

The next result shows that the No neighbour overlap criterion 3.11 is satisfied by
any Hoffman packing of a dimension tuple satisfying Hoffman’s inequality.

Proposition 3.13. Suppose P : Gn → Sn is a Hoffman packing of a dimension
tuple d satisfying Hoffman’s inequality. Then P satisfies the No neighbour overlap
criterion 3.11 for d.

Proof. Let (B,C) be the packing of d produced by P . Suppose p and q are two
neighbouring grid point coordinates in Gn and let

Rp = I1 × I2 × · · · × In and Rq = J1 × J2 × · · · × Jn

be their associated hyperrectangles in B. Let α and β be the actual grid points
corresponding to the coordinates p and q, respectively. By Hoffman’s grid theorem
2.12 each grid point lies inside its respective hyperrectangle, i.e. α ∈ Rp and β ∈ Rq.
Since (B,C) is a packing Rp and Rq are non-overlapping, so by Lemma 3.9 there
exists some k in {1, 2, . . . , n} such that Ik does not intersect Jk. We must have that
|pk−qk| = 1, because otherwise pk = qk, whereby αk = βk and Ik would intersect Jk.
In the notation of the No neighbour overlap criterion 3.11 Ik = (a(p)k, b(p)k) and
Jk = (a(q)k, b(q)k). If pk < qk, then αk < βk. Then b(p)k ≤ a(q)k to avoid Ik and
Jk intersecting one another. Similarly we conclude for pk > qk that b(q)k ≤ a(p)k.
Hence, P satisfies the No neighbour overlap criterion 3.11 for d. �

Next, we show that the No neighbour overlap criterion 3.11 and the Line criterion
3.5 are enough to ensure that a pseudo-packing is in fact a packing. We will need
the following result.

Lemma 3.14. Suppose d = (x1, x2, . . . , xn) is a dimension tuple satisfying Hoff-
man’s inequality and suppose A and B are two subsets of D = {1, 2, . . . , n}. If
|A| < |B|, then ∑

i∈A
xi <

∑
i∈B

xi.
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Proof. Suppose not. Let C = D \ A. Recall that d is increasing by Hoffman’s
inequality and note that |C| = n− |A|, so |B|+ |C| = |B|+ n− |A| ≥ n+ 1. Then

x1 + x2 + · · ·+ xn =
∑
i∈D

xi =
∑
i∈A

xi +
∑
i∈C

xi

≥
∑
i∈B

xi +
∑
i∈C

xi ≥ (|B|+ |C|)x1 ≥ (n+ 1)x1,

which contradicts d satisfying Hoffman’s inequality. �

Intuitively, the sums consisting of distinct terms from d are ordered by the number
of terms in each sum. The situation gets significantly more complicated when two
sums consist of the same number of terms, and we will return to this scenario in a
moment.

Theorem 3.15. Suppose P : Gn → Sn and suppose d is a dimension tuple satisfy-
ing Hoffman’s inequality. If P satisfies the Line criterion 3.5 and if P satisfies the
No neighbour overlap criterion 3.11 for d, then P is a Hoffman packing of d.

Proof. Let (B,C) be the pseudo-packing of d produced by P . We need to show
that (B,C) is a packing of d. Let s be the sum of d. Since P satisfies the Line
criterion 3.5 the stuffing on each grid line is equal to s, i.e. all grid lines are com-
pletely stuffed. By Proposition 3.7, all hyperrectangles in B are contained in the
surrounding hypercube C. It only remains to show that the hyperrectangles in B
are pairwise non-overlapping.

Let p and q be two grid point coordinates in Gn and let Rp and Rq denote their
associated hyperrectangles. Next, consider the value of

δ =
n

max
i=1
|pi − qi|.

If δ = 0, then p = q and there is nothing to check. If δ = 1, then p and q
are neighbours and it follows by the No neighbour overlap criterion 3.11 that Rp
and Rq are non-overlapping. Lastly, suppose δ > 1. Then there exists some k in
{1, 2, . . . , n} such that |pk − qk| > 1. Assume without loss of generality that pk <
qk. Consider the k’th intervals (a(p)k, b(p)k) and (a(q)k, b(q)k) in the Cartesian
products of Rp and Rq, respectively. We would like to show that these do not
intersect one another, which can be done by showing that b(p)k ≤ a(q)k. By the
construction of (B,C) as described in Definition 2.14 the right endpoint b(p)k is
a sum of pk terms from d, while the left endpoint a(q)k is a sum of qk − 1 terms,
namely

b(p)k =

pk∑
i=1

w(L(p, k, i))k and a(q)k =

qk−1∑
i=1

w(L(q, k, i))k.

Since P satisfies the Line criterion 3.5, each term in the sum for b(p)k can be
identified by a distinct index in {1, 2, . . . , n}. Denote this index set by A and notice
that |A| = pk. Similarly we get an index set for B from the sum for a(q)k and |B| =
qk − 1. Note that |A| = pk < qk − 1 = |B|, so by Lemma 3.14 b(p)k < a(q)k. Then
Rp and Rq are non-overlapping by Lemma 3.9. Thus, every pair of hyperrectangles
are non-overlapping, so (B,C) is a packing of d and P is a Hoffman packing of
d. �

The above proof relies heavily on the dimension tuple d satisfying Hoffman’s in-
equality, where the technicalities have been buried in Lemma 3.14. However, ex-
perimental results suggest that we do not need to restrict ourselves to dimension
tuples satisfying Hoffman’s inequality and we will propose a conjecture in relation
to this in Section 4.5.
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Remark 3.16. Loosely speaking, Hoffman’s inequality forces sums consisting of
distinct terms from the increasing dimension tuple (x1, x2, . . . , xn) to be ordered
by the number of terms in each sum (Lemma 3.14). For n = 3 this property is
actually guarded by the inequality

(4) x3 < x1 + x2,

which Dean G. Hoffman drew our attention to in recent correspondences [Hof17].
Observe that any dimension tuple (x1, x2, x3) satisfying Hoffman’s inequality will
also satisfy (4). However, d′ = (2, 3, 4) satisfies (4), but not Hoffman’s inequality.
Hence, the conclusion of Lemma 3.14 and Theorem 3.15 should also hold for d′.
We suspect the generalization of (4) to higher dimensions to be

n∑
i=dn/2e+1

xi <

dn/2e∑
i=1

xi,

and we mention this generalized inequality for future studies, because we suspect
it to be a more precise requirement for a packing produced by a Hoffman packing
to be rigid, i.e. without any “loose bricks”.

3.2. Promoting a Hoffman packing to a universal packing. By Theorem 3.15
we can guarantee that a map P : Gn → Sn is a universal packing by making sure
that it satisfies the Line criterion 3.5 and that it satisfies the No neighbour overlap
criterion 3.11 for any choice of dimension tuple satisfying Hoffman’s inequality. This
is a lot of dimension tuples to examine and gives rise to the following definition.

Definition 3.17 (Representative dimension tuple set). Suppose T is a set of in-
creasing dimension tuples. Then T is a representative dimension tuple set (RDTS)
if it has the following property: Suppose P : Gn → Sn satisfies the Line criterion
3.5 and satisfies the No neighbour overlap criterion 3.11 for all dimension tuples
in T , then P satisfies the No neighbour overlap criterion 3.11 for any increasing
dimension tuple.

We can restrict ourselves to maps satisfying the Line criterion 3.5, since it is a
requirement for being a universal packing by Proposition 3.8. Observe that the set
of all increasing dimension tuples constitute a RDTS. However, it turns out that far
fewer dimension tuples are required to constitute a RDTS. This greatly simplifies
the practical search for universal packings, since it enables us to search for universal
packings using just a few specific dimension tuples.

Suppose P : Gn → Sn is a map satisfying the Line criterion 3.5. If P satisfies the
No neighbour overlap criterion 3.11 for all dimension tuples in a RDTS, then it will
in fact be a universal packing by Theorem 3.15. When constructing a RDTS T the
strategy will be to include just enough dimension tuples to force P to satisfy the
No neighbour overlap criterion 3.11 for any choice of increasing dimension tuple as
long as P satisfies this criterion for the dimension tuples in T .

Suppose d = (x1, x2, . . . , xn) is an increasing dimension tuple and let us examine
the No neighbour overlap criterion 3.11 in more depth. For each pair of neighbor-
ing grid point coordinates p and q in Gn the No neighbour overlap criterion 3.11
considers a number of inequalities, namely one for each entry where p and q differ.
We will refer to such a composition of inequalities as an overlap comparison and
to each of the inequalities as an overlap inequality. Consider an overlap inequality
from the overlap comparisons of p and q. Notice that it has the same number of
terms t from d on each side of the inequality sign and that 0 < t < n. We will
refer to the positive integer t as the arity of the overlap inequality. Consider the
terms on one side. Since P satisfies the Line criterion 3.5, then each term xi on this
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side is identified by a unique i in {1, 2, . . . , n}. Hence, we can identify an overlap
inequality in the following way.

Definition 3.18 (Overlap inequality). Suppose A and B are two non-empty proper
subsets of {1, 2, . . . , n} with the same cardinality |A| = |B| = t. Then (A,B) is an
n-dimensional overlap inequality with arity t.

We say that the dimension tuple d satisfies the overlap inequality if∑
i∈A

xi ≤
∑
i∈B

xi.

Be aware that for the sake of readability, we might sometimes write an overlap
inequality as above, even if each xi have not been defined.

Some overlap inequalities are satisfied for any choice of increasing dimension
tuple. Suppose (A,B) is an n-dimensional overlap inequality with arity t. Let
(αi)

t
i=1 and (βi)

t
i=1 be the strictly increasing sequences of element in A and B,

respectively. If αi ≤ βi for all i = 1, 2, . . . , t, then the overlap inequality is satisfied
by any increasing dimension tuple. We will refer to such an overlap inequality as
trivial . It is convenient to introduce the following equivalence relation between
n-dimensional increasing dimension tuples. Suppose d1 = (x1, x2, . . . , xn) and d2 =
(y1, y2, . . . , yn) are two increasing dimension tuples. We define these dimension
tuples to be equivalent if they satisfy the same overlap inequalities, that is for any
non-empty proper subsets A and B of {1, 2, . . . , n} with |A| = |B|, then∑

i∈A
xi ≤

∑
i∈B

xi ⇔
∑
i∈A

yi ≤
∑
i∈B

yi.

We denote the equivalence class of d1 by [d1]. Then we can establish a well-defined
partial ordering on the equivalence classes, where [d1] ≤ [d2] if any overlap inequal-
ity satisfied by d1 is also satisfied by d2, that is∑

i∈A
xi ≤

∑
i∈B

xi ⇒
∑
i∈A

yi ≤
∑
i∈B

yi.

Notice that the equivalence class [(x1, x2, . . . , xn)] where x1 = x2 = · · · = xn
containing the dimension tuple of any hypercube is the greatest element with respect
to this ordering, since it satisfies all overlap inequalities. The next result shows how
this partial ordering enables us to propagate information about the No neighbour
overlap criterion 3.11.

Proposition 3.19. Suppose d1 and d2 are two increasing dimension tuples with
[d1] ≤ [d2]. If P : Gn → Sn satisfies the Line criterion 3.5 and satisfies the No
neighbour overlap criterion 3.11 for d1, then it does so for d2 as well.

Proof. Since P satisfies the Line criterion 3.5 all overlap comparisons consist of
inequalities which can be identified as in Definition 3.18. Since [d1] ≤ [d2] the
overlap inequalities satisfied by d1 are satisfied by d2 as well. Then P satisfies the
No neighbour overlap criterion 3.11 for d2. �

The construction of these equivalence classes enables us to show the following result.

Proposition 3.20. The number of equivalence classes of increasing dimension
tuples is finite.

Proof. Let us begin by establishing an upper bound on the number of different
overlap inequalities. First, we count the number of overlap inequalities with a
certain arity. Pick some arity t and note that 0 < t < n. The number of subsets of
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{1, 2, . . . , n} with t elements is
(
n
t

)
, so the number of overlap inequalities with arity

t is
(
n
t

)2. Hence the total number of overlap inequalities is

k =

n−1∑
i=1

(
n

i

)n
.

When determining which equivalence class an increasing dimension tuple belongs
to it depends on which overlap inequalities are satisfied and which are not. Hence,
the number of equivalence classes is no greater than 2k. �

This information implies that there exists a finite RDTS in any dimension n, since
we can construct such a set by picking a representative from each of the finitely
many equivalence classes. We can actually show that any equivalence class has a
representative satisfying Hoffman’s inequality. Having a RDTS consisting of dimen-
sion tuples all satisfying Hoffman’s inequality simplifies the search for a universal
packing due to Proposition 3.13.

Proposition 3.21. Suppose d is an increasing dimension tuple. Then there exists
a dimension tuple d′ satisfying Hoffman’s inequality and such that [d] = [d′].

Proof. Let d = (x1, x2, . . . , xn) and let c =
∑n
i=1 (xi − x1) and note that c ≥ 0.

Let d′ = (y1, y2, . . . , yn) where yi = xi + c for all i = 1, 2, . . . , n. Note that for any
overlap inequality (A,B)∑

i∈A
xi ≤

∑
i∈B

xi ⇔
∑
i∈A

(xi + c) ≤
∑
i∈B

(xi + c)⇔
∑
i∈A

yi ≤
∑
i∈B

yi,

since |A| = |B|, whereby [d] = [d′]. Next, we see that
n∑
i=1

(yi − y1) =

n∑
i=1

(xi − x1) = c < x1 + c = y1,

and it follows that d′ satisfies Hoffman’s inequality as desired. �

In addition, we can do better in order to reduce the number of dimension tuples
necessary to constitute a RDTS.

Proposition 3.22. Suppose T is a set of increasing dimension tuples such that T
contains a representative from each minimal equivalence class. Then T is a RDTS.

Proof. Suppose P : Gn → Sn satisfies the Line criterion 3.5 and satisfies the No
neighbour overlap criterion 3.11 for all dimension tuples in T . Suppose d is an
increasing dimension tuple. By the construction of T there must be some dimension
tuple d′ in T such that [d′] ≤ [d]. Since P satisfies the No neighbour overlap criterion
3.11 for d′, then by Proposition 3.19 it does so for d as well. Hence, T is a RDTS. �

Thus, if we can show that some equivalence class is in fact the least element, then
the set consisting of just one of the dimension tuples from this equivalence class will
constitute a RDTS. Next, we show a result which simplifies determining a small
RDTS, and give an example of using it in the two-dimensional case.

Proposition 3.23. Suppose d is an increasing dimension tuple with distinct ele-
ments. Then any overlap inequality with arity 1 satisfied by d is trivial.

Proof. Let d = (x1, x2, . . . , xn) and observe that it must be strictly increasing.
Suppose (A,B) is an overlap inequality with arity 1, i.e. A and B are non-empty
proper subsets of {1, 2, . . . , n} with |A| = |B| = 1. Then we can write A = {i} and
B = {j} for some i and j in {1, 2, . . . , n}. If i ≤ j, then the overlap inequality is
trivial. Suppose not, i.e. i > j. Then xi ≤ xj , which contradicts d being strictly
increasing. �
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Example 3.24 (RDTS for n = 2). In this case all overlap inequalities have arity
1. For an increasing dimension tuple (x1, x2) there are four overlap inequalities,

x1 ≤ x1, x1 ≤ x2, x2 ≤ x1 and x2 ≤ x2.
Three of these are trivial, while x2 ≤ x1—strictly speaking identified by the tu-
ple ({2} , {1})—is the only non-trivial overlap inequality. Observe that d = (2, 3)
satisfies Hoffman’s inequality and contains distinct elements. Then d satisfies only
trivial overlap inequalities by Proposition 3.23. Hence [d] is the least element, so
by Proposition 3.22

T = {(2, 3)}
is a RDTS for n = 2.

Before considering the three-dimensional case, we will show that an overlap inequal-
ity with sufficiently high arity is actually an overlap inequality with a lower arity in
disguise. Intuitively, it has so many terms on each side of the inequality sign that
some identical terms must occur on both sides. Subtracting these terms from both
sides yields an overlap inequality with lower arity, which is satisfied precisely when
the original overlap inequality is satisfied.

Lemma 3.25. Suppose (A,B) is a non-trivial n-dimensional overlap inequality
with arity s. Then there exists an overlap inequality (A′, B′) with arity s− |A∩B|
which is satisfied precisely when (A,B) is satisfied.

Proof. Note that A 6= B, since the overlap inequality is non-trivial. Let C = A∩B,
A′ = A \ C and B′ = B \ C. Then∑

i∈A
xi ≤

∑
i∈B

xi ⇔
∑
i∈A′

xi +
∑
i∈C

xi ≤
∑
i∈B′

xi +
∑
i∈C

xi ⇔
∑
i∈A′

xi ≤
∑
i∈B′

xi

for any increasing dimension tuple d = (x1, x2, . . . , xn). Finally, note that (A′, B′)
has arity t = s− |A ∩B| and that 0 < t, since |A ∩B| < s. �

Proposition 3.26. Suppose (A,B) is an n-dimensional overlap inequality. Then
there exists an overlap inequality (A′, B′) with arity t such that 0 < t ≤ n/2 and
which is satisfied precisely when (A,B) is satisfied.

Proof. If n = 1 there are no overlap inequalities, so suppose n ≥ 2. Let s be the
arity of (A,B), that is s = |A| = |B|. If s ≤ n/2 we are done by choosing (A′, B′)
to be (A,B). Suppose s > n/2. If A = B, then the overlap inequality is trivial and
we can simply choose (A′, B′) = ({1} , {1}). Otherwise by Lemma 3.25 there exists
an overlap inequality (A′, B′) with arity t = s− |A∩B| which is satisfied precisely
when (A,B) is satisfied. We claim that t ≤ n/2. Otherwise n/2 < t and

n < 2t = 2s− 2|A ∩B| = |A|+ |B| − 2|A ∩B| = |A ∪B| − |A ∩B| ≤ |A ∪B|,
which is impossible as A and B are subsets of {1, 2, . . . , n} with only n elements. �

Example 3.27 (RDTS for n = 3). In this case all overlap inequalities have arity 1
or 2. Observe that d = (4, 5, 6) satisfies Hoffman’s inequality and contains distinct
elements. Of the overlap inequalities with arity 1, then d satisfies only the trivial
ones by Proposition 3.23. We will show that the same is the case for overlap
inequalities with arity 2. Suppose (A,B) is an overlap inequality with arity 2
which is satisfied by d. Then by Proposition 3.26 there exists an overlap inequality
(A′, B′) with arity 1 which is also satisfied by d. But then (A,B) is trivial itself.
Hence d satisfies only trivial overlap inequalities, so [d] is the least element and by
Proposition 3.22

T = {(4, 5, 6)}
is a RDTS for n = 3. Hence, we can use this specific dimension tuple when searching
for three-dimensional universal packings.
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4. Experiments in the three-dimensional case

Let us attempt to find all of the three-dimensional universal packings using a com-
puter program. We seek an algorithm which outputs the maps from G3 to S3 which
are universal packings. We will refer to such a map as a solution. However, in order
to count the number of unique universal packings we will not count a solution if we
have already counted an equivalent solution. In the three-dimensional case we will
refer to the hyperrectangles as bricks. We will approach this task using two different
approaches, namely dynamic programming/memoization and backtracking.

4.1. Dynamic programming. The idea behind dynamic programming [CLRS09,
p. 359] is to solve a problem by combining the solutions of a number of simpler
subproblems. We solve each of these subproblems once and store their solutions.
Whenever one of these subproblems occurs again, then instead of recomputing its
solution, we will simply look it up. Thus, dynamic programming uses additional
memory to save computation time. The idea of storing solutions to the subproblems
instead of recomputing them is called “memoization” [CLRS09, p. 365].

In order to apply this method to our problem, we need to specify what our
subproblems are. This leads to the definition of a subgrid.

Definition 4.1 (Subgrid). Suppose U is a subset of Gn = {1, 2, . . . , n}n obtained
by fixing k entries of the elements in Gn and let m = n − k. We say that U is an
m-dimensional subgrid of Gn.

Observe that a one-dimensional subgrid corresponds to a grid line. Suppose U is an
m-dimensional subgrid of Gn and suppose P : U → Sn. Given some n-dimensional
dimension tuple, we can—without going into details—extend the procedure from
the definition of a Hoffman packing to produce what we will refer to as a subpacking
consisting of m-dimensional hyperrectangles. It is also straight forward to extend
the notion of equivalent subpackings. We will refer to a subpacking as a line, square
and cube if m = 1, 2 and 3, respectively.

The first idea that springs to mind for applying dynamic programming to this
problem is to first figure out every possible line and store these. Then use these lines
to construct every possible square and store them. Finally, we use these squares to
construct all possible cubes, that is all solutions to our problem.

Observation 4.2. Using a computer program we have produced all lines, squares
and cubes of the dimension tuple (4, 5, 6). The results are presented in Table 1.
There is one subtlety in relation to combining solutions of the subproblems. When
we have constructed a line there are two options left for the width of each line
segment when combining lines to construct a square. We will refer to this as
specialization. There are three line segments on a line, and hence there are really
6 · 23 = 48 specialized lines. Given a square there is only one option left for which
height to assign each rectangle. Thus, in the three-dimensional case we can think
of a square as already specialized.

Table 1. Number of lines, squares (satisfying the Subgrid crite-
rion 5.10) and cubes of the dimension tuple (4, 5, 6). Numbers in
parentheses state the counts ignoring symmetries.

Lines Squares Cubes
6 (3) 624 (78) 1 008 (21)
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4.2. Backtracking. Backtracking is a method for solving a problem by incremen-
tally constructing a candidate solution, but “backtracking” when we can predict
that this candidate can not possibly be completed to a solution. The usefulness of
this technique relies on being able to predict failure early on and that such a test
is relatively quick to perform. This enables us to efficiently traverse the search tree
and prune the branches along the way.

The immediate way to apply backtracking to this problem is by placing one brick
at a time and every time testing whether it might still be possible to complete the
partial candidate to a solution. If there is still hope, we carry on and place another
brick. If not, we remove the latest brick and register this rejection. If all orientations
of a brick have been rejected, we backtrack, that is we remove the second latest
brick and register this rejection. If all 33 = 27 bricks have been successfully placed
we save the solution. In order to continue searching for more solutions we can
remove the last brick and artificially register this as a rejection.

In practise we represent a brick by its anchor point and dimension tuple. Plac-
ing a brick corresponds to inserting this information into a three-dimensional array
structure where each array index represents a grid point coordinate. In order to
determine and assign an anchor point to the brick, we need the bricks “before” it
to be assigned beforehand. We can ensure this by considering the lexicographical
ordering of the grid point coordinates and placing the bricks according to this or-
dering. During the course of this project, it has been possible to gradually improve
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Figure 9. Plot of the number of bricks placed after a certain
number of iterations in the three-dimensional case depending on
the different test procedures. Here, we terminate as soon as a
solution is found, i.e. 27 bricks have been successfully placed.

the predictive power of the procedure which tests whether a partial candidate can
not possibly be completed into a solution. The four procedures tried out are de-
scribed in Table 2. Procedure D is a notable improvement over the naive procedure
A requiring 53% fewer iterations to find a single solution and 42% fewer iterations
to traverse the entire search tree and find all solutions. The details can be found
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Table 2. Description of the four procedures used to predict
whether a partial candidate can not possibly be completed.

Procedure Description
A Checks whether the Line criterion 3.5 is violated or

whether two neighbouring bricks are overlapping.
B Checks all from procedure A and also whether there are

sharp corners like in Figure 8.
C Checks all from procedure A and also whether the Subgrid

criterion 5.10 is violated.
D Checks all of the above.

in Table 3. This improvement and the significance of the different criteria is il-
lustrated in Figure 9. While the running times of the procedures are different, we
choose to compare number of iterations, since this gives a better indication of the
branch pruning capabilities.

Table 3. Number of iterations needed to find a single solution and
all solutions, respectively, in the three-dimensional case depending
on the different test procedures.

Procedure A B C D
One solution 327 313 166 152

All solutions 646 009 500 185 471 569 371 560

4.3. Results and analysis of solutions. By Example 3.27 the set {(4, 5, 6)} is a
RDTS for n = 3, so it follows by Theorem 3.15 that any unique Hoffman packing
of (4, 5, 6) satisfying the Line criterion 3.5 is in fact a unique universal packing.

Observation 4.3. Using the dynamic programming and backtracking approaches
both yielded the same number of unique Hoffman packings of the dimension tuple
(4, 5, 6), namely 21. These are presented in Appendix A. Thus, the answer to
Question 2.17 is 21 for n = 3. In fact, this enables us to give the first proof that 3
is a good dimension in Corollary 4.7.

We can define the distance between two universal packings P1 and P2 as the small-
est number of function values of P1 which we need to alter (intuitively, the smallest
number of hyperrectangles we need to modify) such that the resulting map is equiv-
alent to P2 for any dimension tuple satisfying Hoffman’s inequality. This defines a
metric l on the unique universal packings.

Observation 4.4. We have computed the distances between representatives from
each of the 21 unique universal packings in the three-dimensional case. It turns
out that the distance between any two non-equivalent universal packings P1 and
P2 satisfies 6 ≤ l(P1, P2) ≤ 17. In fact for any universal packing P , there exists
a non-equivalent universal packing P ′ such that l(P, P ′) = 6. Intuitively, we can
always remove up to 5 arbitrary bricks from a universal packing and still have only
one way to complete this partial solution.

The importance of the above observation is unclear. However, we mention it as we
speculate that a future and more thorough examination might reveal more knowl-
edge of the problem. It might also be rewarding to compare it to the analysis of
the 21 unique universal packings in [BCG04, p. 913–915].
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Suppose σ is a permutation in Sn. We say that a universal packing P is stable
under the permutation σ if P ′ : Gn → Sn defined by

P ′(p) = P (p) ◦ σ

for all p in Gn is a universal packing. Note that we can determine whether a unique
universal packing exhibits such a property by examining a representative.

Observation 4.5. We have examined whether the 21 unique universal packings
in the three-dimensional case are stable under any permutation from S3. Trivially,
all 21 universal packings are stable under the identity permutation. In addition, 17
(numbered 1–17 in Appendix A) of the unique universal packings are stable under
the reversing permutation, i.e.

σ =

(
1 2 3
3 2 1

)
.

Note that performing this operation twice, will undo it, since σ2 is the identity.
This operation associates 16 of the unique universal packings in pairs, while one
of the unique universal packings exhibits the remarkable property that performing
this operation on a representative yields a universal packing, which is equivalent to
the representative. This particular packing can be seen in Figure 3. These results
are consistent with [Spi03, p. 5] and [BCG04, p. 914] where the phenomenon
is described as “duality” of packings. Interestingly, by looking at the packings in
Appendix A we have also noticed that all of these packings contain the square seen
in Figure 3a and we have checked that the remaining packings 18–21 do not. Also,
we found that no universal packing is stable under any other permutation from S3.

The above observation shows that “duality” is not a necessary condition for being
a universal packing, but we speculate that it might be possible to exploit this
phenomenon to improve the branch pruning when searching for a solution in higher
dimensions. Requiring this property and using procedure D, we found the 17 unique
universal packings in 349 027 iterations, which is a reduction by 6%. However, it
did not reduce the number of iterations needed to find the first solution.

4.4. Comparison of the two approaches. Both implementations take a split
second to complete their search. Let us consider the advantages of the backtracking
approach as opposed to dynamic programming. First of all, backtracking is well
suited for showing the existence of a solution, since it performs only the work needed
to obtain it. This is certainly not the case for the gradual solving in the bottom-
up dynamic programming approach, where all lines are produced, then all squares
and so on. Also, the backtracking approach has a tiny memory footprint, since it
does not store solutions to subproblems. This will also let the implementation take
better advantage of the caching capabilities in modern computer processors.

Secondly, with backtracking it is possible to discard symmetries, i.e. different
equivalent packings, early on. If n is odd then any universal packing will have
a hyperrectangle in its “middle” and we can discard all rotations by fixing this
hyperrectangle. If n is even then we can still somewhat reduce the number of
symmetries by fixing a group of hyperrectangles around the “middle”, but—as we
will see in the four-dimensional case—we need to be careful to get this right. It is not
clear how one should go about doing something similar using dynamic programming,
since we do not know which symmetries of a subproblem might be needed to solve
the more complex problem beforehand. Hence, we can not discard these until the
end.
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However, the backtracking approach has one major drawback, namely that it is
very difficult to say something meaningful about its progress. Using dynamic pro-
gramming it is possible to provide a somewhat reasonable estimate on the amount
of work left as we will provide in the four-dimensional case later.

Another advantage of the dynamic programming approach is that it is well suited
for parallelization, since subproblems of the same size can be solved independently.
For instance multiple threads can work together to construct all squares. However,
as we will see shortly in the four-dimensional case, attempting to reduce the number
of symmetries naturally divides the problems into independent problems, which the
backtracking approach might be best suited for.

4.5. Producing a packing of any dimension tuple using universal packing.
The motive behind introducing the notion of a universal packing was twofold. First,
we wanted the number of packings to be independent of the choice of dimension
tuple; and secondly, because for n ≤ 3 such a packing actually provides a “recipe”
for constructing a packing of any increasing dimension tuple, thereby proving these
dimensions to be good. We put forward the following conjecture.

Conjecture 4.6. Suppose P : Gn → Sn is a universal packing. Then P produces
a packing of any increasing dimension tuple. In particular n is a good dimension.

The truth of this conjecture is not too important for n = 4, since we know 4 to
be a good dimension by Theorem 2.7. However, it would enable us to relax the
definition of a universal packing to better suit its name and also further justify our
formulation of Question 2.17. But most importantly, for n = 5 and larger primes,
this would help pave the way of showing such a dimension to be good. First, one
would determine a RDTS of dimension tuples satisfying Hoffman’s inequality, then
find a Hoffman packing of all these (and satisfying the Line criterion 3.5). Finally,
one would promote it to be a universal packing by Theorem 3.15 and the dimension
of interest would be good by the conjecture above.

Proving the above conjecture loosely speaking comes down to showing that any
pair of hyperrectangles in a pseudo-packing are non-overlapping under the assump-
tion of the Line criterion 3.5 and that any pair of hyperrectangles associated with
neighbouring grid points are non-overlapping. Intuitively, this seems obvious. How-
ever, when producing a pseudo-packing of a dimension tuple not satisfying Hoff-
man’s inequality, then the hyperrectangle associated with a grid point does not
necessarily contain this grid point. Hence, the intuition of “neighbouring hyper-
rectangles” might be deceiving. Apart from this intuition, the basis for proposing
this conjecture is that we prove it for n ≤ 3 below and the failed attempt to disprove
it in the four-dimensional case which is documented in Observation 5.4.

The following proof works for n ≤ 3, but it does not seem very straightforward
to generalize it to higher dimensions, since even the case n = 3 is quite tedious.

Proof of Conjecture 4.6 for n ≤ 3. The case n = 1 is trivial. If n = 2 the only uni-
versal packing (up to equivalence) is the one illustrated in Figure 2, which clearly
produces a packing of any increasing dimension tuple. Suppose n = 3 and suppose
d = (x1, x2, x3) is an increasing dimension tuple and let (B,C) be the pseudo-
packing of d produced by P . Note that P satisfies the Line criterion 3.5 by Propo-
sition 3.8. Note that by Proposition 3.21 there exists a RDTS for consisting of
dimension tuples satisfying Hoffman’s inequality (for instance the one presented in
Example 3.27). Hence, P satisfies the No neighbour overlap criterion 3.11 for each
of these dimension tuples by Proposition 3.13. Since they constitute a RDTS, then
P must also satisfy this criterion for d.

Notice that the Line criterion 3.5 guarantees that the hyperrectangles in B will
be contained in the surrounding hypercube C by Proposition 3.7. Next, we show
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that the hyperrectangles are pairwise non-overlapping. Take two distinct grid point
coordinates p and q in G3 and let Rp and Rq denote their associated bricks in B.
Let

δ =
n

max
i=1
|pi − qi|,

and note that δ is either 1 or 2. If δ = 1, then p and q are neighbours and we are
done due to the No neighbour overlap criterion 3.11 being satisfied for d. Suppose
δ = 2. Now, we assume that pi < qi for all suitable i and consider only the following
case of ∆ = q − p, namely

(2, 0, 0) , (2, 1, 0) , (2, 1, 1) , (2, 2, 0) , (2, 2, 1) and (2, 2, 2) .

Observe that we can do so without loss of generality, since we can always reflect
and/or rotate the packing such that we end up in one of the above cases.

In the following we use the same notation as in the construction of a Hoffman
packing, i.e. for a grid point g in G3, then a(g) and b(g) are the left and right
interval endpoints of the associated hyperrectangle Rg and w(g) = b(g) − a(g) is
the dimension tuple of the hyperrectangle Rg.

First, observe that for Rp and Rq to be overlapping along a dimension k ∈
{1, 2, 3} where |pk − qk| = 2, then w(p)k = x3 = w(q)k. Otherwise if for instance
w(q)k is either x1 or x2 then

b(p)k = w(p)k ≤ x3 ≤ x1 + x2 + x3 − w(q)k = a(q)k.

Hence, if we are in one of the three last case there can not be any overlap, since
p and q differ by 2 along two dimensions. Also, the first case ∆ = (2, 0, 0) is
straightforward, since b(p)1 ≤ a(q)1 by construction of the pseudo-packing.

Next consider ∆ = (2, 1, 0) and suppose for contradiction that Rp and Rq are
overlapping. Then in particular

a(q)1 < b(p)1 and a(q)2 < b(p)2.

It is helpful to glance at Figure 10 for this next bit. Consider the grid point
coordinate r = p+ (1, 1, 0) = q + (−1, 0, 0). By the No neighbour overlap criterion
3.11

b(p)1 ≤ a(r)1 or b(p)2 ≤ a(r)2,

but b(p)1 ≤ a(r)1 can not be the case, since a(r)1 ≤ b(r)1 = a(q)1 < b(p)1.
Then b(p)2 ≤ a(r)2 must be the case. Next, consider the grid point coordinate
s = p+ (1, 0, 0) = q + (−1,−1, 0) and note that b(s)2 = a(r)2. Now, notice that

a(q)1 < b(p)1 = a(s)1 ≤ b(s)1 and a(q)2 < b(p)2 ≤ a(r)2 = b(s)2,

which contradicts P satisfying the No neighbour overlap criterion for s and q.
Finally, consider the case ∆ = (2, 1, 1) and suppose for contradiction that Rp and
Rq are overlapping. Note that Rp and Rq must be positioned in one of the two
ways illustrated in Figure 11. First, consider the case illustrated in Figure 11a
where Rp is in a corner and Rq is in the middle of the opposite side. Note that
w(p)1 = w(q)1 = x3 for these bricks to overlap along the x-axis. Then for the bricks
to overlap along the y-axis w(p)2 = x2 and a(q)2 = x1. But then w(p)3 = x1 and
Rp can not be overlapping with Rq, since there is a brick below Rq with a height
of at least x1.

Next, consider the case illustrated in Figure 11b where Rp and Rq are each
positioned in the middle of an edge. Again, along the x-axis w(p)1 = w(q)1 = x3 for
these bricks to overlap. Then for the bricks to overlap along the y-axis w(q)2 = x2
and the brick in front of Rp must have an extent of x1 along the y-axis. But then
w(p)2 = x2, so w(p)3 = x1 and again Rp can not be overlapping with Rq, since
there is a brick below Rq with a height of at least x1. Hence, the bricks are pairwise
non-overlapping, whereby (B,C) is a packing of d as desired. �
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Figure 10. Abstract relations between the interval endpoints of
the bricks in the case ∆ = (2, 1, 0). This figure is highly distorted,
since Rp and Rq are assumed to be overlapping in the proof.
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(a) Rp is in a corner and Rq is in the mid-
dle of the opposite side.
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(b) Rp and Rq are each in the middle of
an edge.

Figure 11. The two possible constellations of the bricks Rp and
Rq in the case ∆ = (2, 1, 1). The figures are highly distorted, since
Rp and Rq are assumed to be overlapping in the proof.

Corollary 4.7. 3 is a good dimension.

Proof. Take some representative P of the 21 unique universal packings found in
Observation 4.3. Then by the proof above, P produces a packing of any increasing
dimension tuple. Hence, P serves as a “recipe” for constructing a packing of any
dimension tuple, whereby 3 is a good dimension. �
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5. Experiments in the four-dimensional case

Let us examine the four-dimensional case. While the generalization of the problem
to four dimensions is quite straightforward, the treatment of it is noticeably more
difficult than that of lower dimensions. This is not only due to the greatly increased
search space and subtle challenges in discarding symmetries. The real challenge
arises from the fact that a RDTS must contain more than one dimension tuple.
However, it took a long time to realize this and in order to get started, it was
necessary to make a number of decisions, where the most appropriate choice was
not obvious, simply because of the sparse knowledge of this problem.

Initially it seemed natural that examining any dimension tuple satisfying Hoff-
man’s inequality and with distinct elements would represent the “most difficult”
case. This is the line of thought presented by Spiridonov in [Spi03, p. 6] and, after
all, the immediate generalization of Hoffman’s focus in [Hof81, p. 215]. However,
when attempting to count the number of four-dimensional squares it became clear
that the number depended on the concrete choice of dimension tuple (satisfying
Hoffman’s inequality and with distinct elements). Figure 12 gives an example of
a square without overlap for one of these dimension tuples, but with overlap for
a different one. This sudden overlap is due to a reliance on a non-trivial overlap

(a) Square of (8, 9, 10, 12) without overlap. (b) Square of (10, 12, 13, 14) with overlap.

Figure 12. Example of the same square produced using two dif-
ferent dimension tuples. Using the second dimension tuple pro-
duces an overlap.

inequality. Hence, it seemed appropriate to choose to completely exclude a partial
solution if there is a pair of hyperrectangles where it relies solely on non-trivial
overlap inequality to prevent overlap. This posed a problem, since—as we will see
shortly—a four-dimensional dimension tuple will always satisfy at least one non-
trivial overlap inequality. Hence, it was no longer possible to search for universal
packings using a concrete dimension tuple, and this complicated the search consid-
erably. However, this choice was later challenged by the discovery of a universal
packing relying solely on non-trivial overlap inequalities for some of its overlap
comparisons. It turns out that some non-trivial inequalities must be satisfied when
others are not. Figure 13 illustrates an effect of this phenomenon. Here there are
no overlaps in either of the two squares, but for some pairs of hyperrectangle this
is due to a gap along one dimension in the first square and a different dimension
in the second square. This discovery is the true motivation behind introducing the
notion of a RDTS and the elaborate machinery surrounding it.

Example 5.1 (RDTS for n = 4). In this case all overlap inequalities have arity 1,
2 or 3. By Proposition 3.26 we only have to consider the overlap inequalities with
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(a) Square of (8, 9, 10, 12). (b) Square of (10, 12, 13, 14).

Figure 13. Example of square without overlap produced using
two dimension tuples which satisfy different non-trivial overlap in-
equalities. This is surprising since the square relies on non-trivial
overlap inequalities to prevent overlap.

arity 1 or 2. We would like to choose a dimension tuple (x1, x2, x3, x4) satisfying
Hoffman’s inequality and containing distinct elements. Of the overlap inequalities
with arity 1, such a dimension tuple will only satisfy the trivial ones. If this is
possible, then we only need to consider the overlap inequalities with arity 2. Sup-
pose (A,B) is a non-trivial overlap inequality with arity 2. If A ∩ B 6= ∅, then
the inequality is really a non-trivial overlap inequality of arity 1 in disguise by
Lemma 3.25. If A ∩B = ∅, then the only possibilities are

x1 +x4 ≤ x2 +x3 x2 +x3 ≤ x1 +x4 x2 +x4 ≤ x1 +x3 and x3 +x4 ≤ x1 +x2.

However, if we choose dimension tuples with distinct elements, then the last two
will not be satisfied. Thus, we are left with

x1 + x4 ≤ x2 + x3 and x2 + x3 ≤ x1 + x4.

Observe that if one is not satisfied, then the other must be satisfied. However,
it depends on the concrete choice of dimension tuple, whether only the first, only
the second or both of them are satisfied. Observe that d1 = (8, 9, 10, 12) and d2 =
(10, 12, 13, 14) both satisfy Hoffman’s inequality and both contain distinct elements.
Notice that d1 does not satisfy the first overlap inequality, since 8 + 12 > 9 + 10,
while d2 does not satisfy the second, since 12 + 13 > 10 + 14. Hence [d1] and [d2]
are the minimal elements and by Proposition 3.22

T = {(8, 9, 10, 12) , (10, 12, 13, 14)}
is a RDTS for n = 4. Intuitively, we have covered every possible way that we can
linearly order the sums of two distinct terms (without any two sums with different
terms being equal). This is illustrated in Figure 14a.

Remark 5.2. Spiridonov considers the dimension tuple d = (99, 100, 101, 102), be-
cause “the sizes differ by a very small amount” [Spi03, p. 6]. Notice that d satisfies
both of the non-trivial overlap inequalities above as 99+102 = 100+101. Hence, if
Spiridonov were to find a Hoffman packing of d, it might not produce a packing of
neither d1 nor d2 in the example above. In particular, it might not be a universal
packing.

5.1. Utilizing approaches from the three-dimensional case. Let us begin by
considering the dynamic programming approach.
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{1, 2}

{1, 3}

{2, 3}{1, 4}

{2, 4}

{3, 4}

(a) The four-dimensional case.

{1, 2}

{1, 3}

{2, 3}{1, 4}

{2, 4}{1, 5}

{3, 4}{2, 5}

{3, 5}

{4, 5}

(b) The five-dimensional case.

Figure 14. Hasse diagrams of the partial ordering of sums with
two distinct terms. Dotted lines represent relations which can not
be determined in general. Each set {i, j} can by thought of as the
sum xi + xj .

5.1.1. Dynamic programming. We have used the dynamic programming approach
to construct all squares in the four-dimensional case using the same strategy as in
the three-dimensional case, that is by first constructing all lines and then combining
them into squares. Note that this time a square is not automatically specialized as
it was in the three-dimensional case.

Observation 5.3. There are 4! = 24 possible lines and if we specify one more
dimension there are 24 · 34 = 1 944. Using dynamic programming we have deter-
mined that there are S = 51 247 458 squares of the RDTS from Example 5.1 without
overlaps and satisfying the Line criterion 3.5. Observe that our count is different
from—and quite a bit lower—than the 77 436 138 squares counted by Spiridonov
[Spi03, p. 6] using the dimension tuple, which we questioned the choice of in Re-
mark 5.2. We have reproduced his results for that choice of dimension tuple, but
we still maintain that S is the appropriate number due to its independence of the
choice of dimension tuple.

It takes a few minutes to generate all of the squares in the four-dimensional case
and as we will see below, constructing all cubes does not seem to be practically
possible for now. Let us attempt to estimate the number of cubes in the four-
dimensional case and the computations needed to determine the exact number, if
we construct them by stacking four squares. We only consider the consequences of
the Line criterion 3.5, since it is difficult to predict overlap.

First, let us consider how many ways we can specialize the 42 = 16 rectangles in a
single square. There are two choices for each one, giving 216 possible specializations.
Hence, letting S be defined as in Observation 5.3 there are 216S ways to choose
the first square. Next, we would like to stack a second specialized square on top
of it. For simplicity and due to the inclusion of symmetries we suppose that there
is a 3/4 probability that the heights of two bricks on top of each other will be
different, so we estimate around (3/4)16216S specialized squares to be compatible
with the first choice. Hence, we estimate there to be around (3/4)16232S2 = 316S2
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half-cubes. At his point, the half-cubes are presumably so constrained by the Line
criterion 3.5 that we consider an estimate of the number of compatible squares for
the third square as too much guesswork. However, we can classify the half-cubes
into 616 groups depending on the

(
4
2

)
= 6 different ways to choose the brick heights

in each of the 16 stacks of two bricks. Under the assumption that the half-cubes
distribute evenly into these groups, we estimate that one can exhaust the search
space by checking (

316S2
)2

6−16 ≈ 4.5 · 1033

different combinations of four squares. It is difficult to predict how many of these
will have overlapping bricks. We have found U = 1 119 514 176 different squares
satisfying the Line criterion 3.5, if we do not check for overlaps while only S/U ≈
4.58% are in fact without overlapping bricks. Since there are more possibilities
for overlaps in a cube, we suspect the actual number of cubes without overlapping
bricks to be several orders of magnitude lower, but still quite large.

Next, let us consider the backtracking approach where we have been able to
relatively quickly find a cube in the four-dimensional case.

5.1.2. Backtracking. We have tried out the procedures described in Table 2, but it
has not been possible to find a solution within a reasonable time frame. However,
each of the procedures finds a cube satisfying the Subgrid criterion 5.10 in around
a minute. This gives us a basis for comparing the different procedures. Again, pro-
cedure D is a notable improvement over the naive procedure A requiring 84% fewer
iterations to find a cube. The details can be found in Table 3. This improvement
and the significance of the different criteria is illustrated in Figure 15. Notice that
the detection of sharp corners (procedure B) gives the most significant improvement
as opposed to checking the Subgrid criterion 5.10 (procedure C), while it was the
other way around in the three-dimensional case.

Table 4. Number of iterations needed to find a cube satisfying
the Subgrid criterion 5.10 in the four-dimensional case depending
on the different test procedures.

Procedure A B C D
First cube 209 073 771 44 589 896 169 640 571 33 419 146

Using backtracking with procedure D for several days does not increase our hope
of finding a solution. As shown in Figure 16 the approach appears to be stuck at
around 86 hyperrectangles placed. Hence, these two approaches does—at least
in their current form—not show much promise of finding a solution in the four-
dimensional case within a reasonable time frame. However, before proceeding any
further, we present the following observation, which we referred to earlier.

Observation 5.4. In the four-dimensional case using backtracking it is possible to
generate a large number of cubes within a few hours. After doing so we obtained
over 900 000 cubes and selected a sample of 900 of these. We have investigated
whether a cube in this sample produces a valid subpacking of increasing dimension
tuples not necessarily satisfying Hoffman’s inequality. It turns out that every cube
from the sample produces a valid subpacking of any increasing dimension tuple
(x1, x2, x3, x4) with integer values 1 ≤ x1 ≤ x2 ≤ x3 ≤ x4 ≤ 100.

5.2. Counting the number of unique squares. We can still determine the num-
ber of unique squares and as a by-product also provide some interesting insights
into exploiting the wish to ignore symmetries. Using either backtracking or dynamic
programming, one can obtain the number of squares including symmetries in a few
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Figure 15. Plot of the number of hyperrectangles placed after a
certain number of iterations in the four-dimensional case depending
on the different test procedures. Here, we terminate as soon as a
cube with 43 = 64 bricks satisfying the Subgrid criterion 5.10 is
found.

minutes. One would suspect this number—which we know to be S = 51 247 458
from Observation 5.3—to be divisible by 2! · 22 = 8, since each square has 8 sym-
metries. However, 8 does not divide S, so something does not add up. Let us
investigate this discrepancy.

It turns out that since four is an even dimension, we can in fact come across
squares where some symmetries coincide. A way to approach discarding symme-
tries is to try and mimic the concept of a “middle” brick, which we have in odd
dimensions. We do so by considering the hyperrectangles around the “middle”. We
will refer to this group as a kernel . A kernel consists of 4 rectangles in the case of a
square in the four-dimensional case. Observe that if two squares are a symmetry of
one another, then their kernels must be as well. Thus, suppose we compute all pos-
sible kernels and discard their symmetries. Then a square obtained by completing
one kernel can never be a symmetry of the completion of a different kernel. This
divides the search into smaller parts which can be solved independently. However,
we are not completely done with the trickiness of symmetries. If a kernel has 8
distinct symmetries, i.e. none of them coincide, then any two different completions
to a square can not be a symmetry of each other. However, for a kernel where some
of its symmetries coincide, then any two different completions of it could potentially
be a symmetry of one another. If this is the case we need to discard one of them.

Observation 5.5. We have found that there are 6 564 square kernels not violating
the Line criterion 3.5 in the four-dimensional case. Notice that this number is not
divisible by 8, so some of the kernels must have coinciding symmetries. There are 6
kernels, which have only 2 distinct symmetries and these can be seen in Figure 17.
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Figure 16. Plot of the number of hyperrectangles placed after a
certain number of iterations in the four-dimensional case using pro-
cedure D. The number of hyperrectangles have been sampled every
108 iterations, each time noting the current number of hyperrect-
angles placed as well as the fewest and the most hyperrectangles
having been placed since the previous sample was taken.

Figure 17. Square kernels in the four-dimensional case which
have only 2 distinct symmetries.

Such a kernel consists of 4 of the same type of rectangle and the only distinct
symmetry is obtained by a reflection. There are 18 kernels, which have only 4
distinct symmetries and these can be seen in Figure 18.

Such a kernel consists of two pairs of rectangles and the only distinct symmetries
are obtained by a reflection and/or a rotation by π/2. Finally, there are 810 kernels
with the ordinary 8 distinct symmetries. Hence, there are exactly 834 unique square
kernels and this corresponds to the number above since

810 · 8 + 18 · 4 + 6 · 2 = 6 564.

Notice that we will have to discard symmetries after determining all completions
of a kernel with coinciding symmetries. With this in mind, we have found that
there are 6 406 310 unique squares satisfying the Line criterion 3.5 and without
overlapping bricks for any dimension tuple found in Example 5.1.
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Figure 18. Square kernels in the four-dimensional case which
have only 4 distinct symmetries.

5.3. Combining two-dimensional packings. It would seem that better branch
pruning is needed to find universal packings in the four-dimensional case. One way
of obtaining this is to find more criteria. However, they are hard to come by, espe-
cially when we do not have a four-dimensional universal packing to examine. Such
a packing could help us to come up with conjectures and provide counterexamples.
This sparked the idea to follow the constructive proof of Theorem 2.7 in order to
obtain a four-dimensional packing.

Observation 5.6. We have combined two-dimensional packings into a four-dimen-
sional one by following the proof of Theorem 2.7. As the two-dimensional packing
we have used the one from Figure 2, which is the only unique universal packing
for n = 2. Using a computer program, we have repeatedly used this solution to
pack the groups of hyperrectangles in the proof of Theorem 2.7. This resulted in a
four-dimensional universal packing, which is visualized in Figure 19.

This technique enables us to obtain several universal packings, because at each
step of the proof, we have a choice of how we solve a group. Here we can use any
of the two symmetries of the packing in Figure 2.

Remark 5.7. Strictly speaking, we never prove that combining Hoffman packings
following the proof of Theorem 2.7 will actually result in a Hoffman packing. We
leave this for others to formalize and prove thoroughly. We speculate that they
might also be able to prove that such a combination preserves stability under per-
mutations to some extend.

These universal packings behave extremely nice.

Observation 5.8. Notice that the two-dimensional packing in Figure 2 is stable
under any permutation from S2. We have examined whether the universal packings
constructed in Observation 5.6 are stable under permutations from S4. It turns
out that they are stable under any permutation from S4. We speculate that this
property is inherited through the proof of Theorem 2.7. It is dubious whether
all four-dimensional universal packings exhibit this property. It is worth noting
that this investigation also resulted in the universal packing from which Figure 13
originates and thus sparked the investigation into a RDTS.

5.4. The subgrid criterion. The four-dimensional universal packings constructed
in Observation 5.6 provided the inspiration for how to generalize the last major piece
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x = 1. x = 2.

x = 3. x = 4.

Figure 19. Visualization of the four cubes of a four-dimensional
universal packing where the x-axis is fixed. The packing has been
produced using the dimension tuple (8, 9, 10, 12).

of knowledge provided by Hoffman in [Hof81, p. 221] about the three-dimensional
problem. Let (x1, x2, x3) be an increasing dimension tuple with distinct elements.
Consider a square of it produced by a three-dimensional universal packing. Such
a square contains 32 = 9 rectangles, and Hoffman notes that these 9 rectangles
must comprise exactly 3 x1-by-x2’s, x1-by-x3’s and x2-by-x3’s. This is illustrated
in Figure 3 where each type of rectangle has been given its own color. This ob-
servation has proven to be effective at pruning the search tree as seen in Figure 9
and Table 3. Hence, we have had a great interest in generalizing this observation
to higher dimensions in the hope that it will be similarly effective there.

Observation 5.9. The following is the case for any of the universal packings
constructed in Observation 5.6. Let (x1, x2, x3, x4) denote the dimension tuple with
distinct elements, which has been used. Consider some cube of G4 and note that it
produces a subpacking containing 43 = 64 bricks. These 64 bricks comprise exactly
16 x1-by-x2-by-x3’s, x1-by-x2-by-x4’s, x1-by-x3-by-x4’s and x2-by-x3-by-x4’s.

This provides enough information to put forward the following criterion.
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Criterion 5.10 (Subgrid criterion). Suppose n ≥ 2 and suppose P : Gn → Sn. We
say that P satisfies the Subgrid criterion if any (n− 1)-dimensional subgrid U of Gn
satisfies the following: Suppose d = (x1, x2, . . . , xn) is an increasing dimension tuple
with distinct elements and consider the subpacking produced by P restricted to U .
This subpacking (consisting of nn−1 (n− 1)-dimensional hyperrectangles) contains
precisely nn−2 hyperrectangles without an extent of xi for all i = 1, 2, . . . , n.

Even better, we have been able to prove that this is a necessary condition for being
a universal packing.

Proposition 5.11. Suppose n ≥ 2 and suppose P : Gn → Sn is a universal packing.
Then P satisfies the Subgrid criterion 5.10.

Proof. Note that P satisfies the Line criterion 3.5 by Proposition 3.8. Take some
(n− 1)-dimensional subgrid U of Gn and consider the subpacking produced by P
restricted to U . There are (n−1)nn−2 grid lines in U , since there are nn−2 grid lines
along each of the n− 1 different dimensions. Take some i in {1, 2, . . . , n}. For each
of these grid lines there must be precisely one hyperrectangle on it with an extent
of xi along the dimension of the grid line. Hence, there are at least (n − 1)nn−2

hyperrectangles in the subpacking with an extent of xi along some dimension. No-
tice that the subpacking consists of nn−1 (n− 1)-dimensional hyperrectangles with
a total number of (n − 1)nn−1 extends. Since i was chosen arbitrarily, it follows
that there must be precisely (n − 1)nn−2 hyperrectangles in the subpacking with
an extent of xi along some dimension. Then the subpacking consists of precisely

nn−1 − (n− 1)nn−2 = nn−2

(n− 1)-dimensional hyperrectangles without an extent of xi. Hence, P satisfies the
Subgrid criterion 5.10. �

Example 5.12. Suppose we have a packing produced by a universal packing. In
the three-dimensional case we can conclude that there will be 33−2 = 3 of each of
the 3 different types of rectangles in each square. In the four-dimensional case we
can conclude that there must be 44−2 = 16 of each of the 4 different types of bricks
in each cube.

In [Hof81] Hoffman puts great emphasis on the close relationship between inequal-
ities and packing problems and the Subgrid criterion does also have an interesting
interpretation as an inequality.

Corollary 5.13. Suppose n ≥ 2 and suppose there exists a universal packing
P : Gn → Sn. Then for any dimension tuple d = (x1, x2, . . . , xn) satisfying Hoff-
man’s inequality, we have that

nn−2

(
n∑
i=1

1

xi

)(
n∏
i=1

xi

)
≤

(
n∑
i=1

xi

)n−1
.

Proof. Take some (n− 1)-dimensional subgrid U of Gn and consider the subpacking
of d produced by P restricted to U . Pick some j in {1, 2, . . . , n} and let us determine
the combined hypervolume of the hyperrectangles without an extent of xj . By the
Subgrid criterion 5.10 there are nn−2 of these hyperrectangles yielding a combined
hypervolume of

nn−2

xj

n∏
i=1

xi.

Then the combined hypervolume of all of the hyperrectangles in the subpacking is

nn−2

(
n∑
i=1

1

xi

)(
n∏
i=1

xi

)
.
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Notice that the surrounding (n− 1)-dimensional hypercube has an extent of x1 +

x2+· · ·+xn and hence a hypervolume of (x1 + x2 + · · ·+ xn)
n−1. All of the (n− 1)-

dimensional hyperrectangles are pairwise non-overlapping and contained inside the
surrounding (n− 1)-dimensional hypercube. Hence, the inequality holds. �

This is interesting, since if the above inequality does not hold in general, then
it might be possible to rule out the existence of a Hoffman packing for certain
dimension tuples and perhaps even show that a dimension is not good. However,
it turns out that this inequality does in fact hold in general, since it follows quite
easily [R17] from Maclaurin’s inequality [Cve12, p. 188]. For n = 4, Maclaurin’s
inequality states that

x1 + x2 + x3 + x4
4

≥
√
x1x2 + x1x3 + x1x4 + x2x3 + x2x4 + x3x4

6
(5)

≥ 3

√
x1x2x3 + x1x2x4 + x1x3x4 + x2x3x4

4
(6)

≥ 4
√
x1x2x3x4.(7)

for any positive real numbers x1, x2, x3 and x4. The inequality given by the left-
hand side of (5) combined with (7) expresses the AM-GM inequality, while the
inequality given by the left-hand side of (5) combined with (6) expresses the in-
equality treated above for n = 4. Inspired by Hoffman’s focus on the close re-
lationship between inequalities and packing problems let us see if we can find a
connection between (5) and the four-dimensional problem. This inequality can be
rearranged to

(8) 16 (x1x2 + x1x3 + x1x4 + x2x3 + x2x4 + x3x4) ≤ 6 (x1 + x2 + x3 + x4)
2

or equivalently

(9) 8 (x1x2 + x1x3 + x1x4 + x2x3 + x2x4 + x3x4) ≤ 3 (x1 + x2 + x3 + x4)
2
,

and the power of two on the right-hand side motivates us to look for a connection
among the squares.

Observation 5.14. The following is the case for any of the universal packings
constructed in Observation 5.6. Let (x1, x2, x3, x4) denote the dimension tuple with
distinct elements, which has been used. Take any 3 pairwise “orthogonal” squares
and consider the 3 · 42 = 48 rectangles in them. These 48 rectangles comprise
exactly 8 x1-by-x2’s, x1-by-x3’s, x1-by-x4’s, x2-by-x3’s, x2-by-x4’s and x3-by-x4’s.
The phenomenon can be observed in Figure 19 and all the squares of this packing
can be found in Appendix B. Notice that this implies that “parallel” squares have
the same number of each type of rectangle.

This corresponds precisely to the inequality (9). It has not been possible to prove
that this is a necessary condition for being a universal packing. Neither has it been
possible to come up with a counterexample. Even if this is not the case, a weaker
claim might still hold, namely that there are 16 of each type of rectangle in any six
pairwise “orthogonal” squares. This corresponds to the inequality (8).

In order to come up with a counterexample or strengthen the above two hy-
potheses, we need another way of constructing a four-dimensional universal pack-
ing. Since the ordinary backtracking and dynamic programming approaches does
not show much promise, we have also tried an alternative approach.

Observation 5.15. Starting from one of the universal packings constructed in
Observation 5.6, we removed a number of hyperrectangles and then attempted to
use backtracking to complete this partial solution. We could remove up to 94 hy-
perrectangles without completely derailing the backtracking algorithm. Without
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terminating after two days it had found C = 435 122 478 universal packings. A
few random samples of these did not provide a counterexample to any of the two
hypotheses above. These solutions appear to have the same overall structure as
the universal packings from Observation 5.6, but with some of the hyperrectangles
swapped around. This is illustrated in Figure 20. Since any unique four-dimensional
universal packing has at most 4! · 24 = 384 non-coinciding symmetries by Propo-
sition 3.4 there must be at least bC/384c = 1 133 131 unique universal packings in
the four-dimensional case.

Figure 20. Example of how completing a partial solution in mul-
tiple ways might lead to a swapping of some of the hyperrectangles.

This observation indicates that some regions of the search space might have a par-
ticularly high density of solutions and also that there are a lot of four-dimensional
unique universal packings compared to the three-dimensional case.
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6. Approaching the five-dimensional case

Due to time constraints our research into the five-dimensional case has been rather
sparse. However, our formalization of the problem and the theoretical framework
introduced does enable us to provide a few insights. We begin with a RDTS.

Example 6.1 (RDTS for n = 5). In this case all overlap inequalities have arity 1,
2, 3 or 4. By Proposition 3.26 we only have to consider the overlap inequalities with
arity 1 or 2. We would like to choose a dimension tuple (x1, x2, x3, x4, x5) satisfying
Hoffman’s inequality and containing distinct elements, since by doing so we can
make sure that of the overlap inequalities with arity 1, such a dimension tuple will
only satisfy the trivial ones. Then we only need to consider the overlap inequalities
with arity 2. Next, we follow the same line of thought as in Example 5.1 where it
resulted in a pair of non-trivial overlap inequalities, where at most one could not
be satisfied. This resulted in an RDTS with two dimension tuples. Now, we end
up with 5 pairs, namely

(A,B) , (B,A) , (B,C) , (C,B) ,

(C,D) , (D,C) , (C,F ) , (C,F ) ,

(E,F ) , (F,E) ,

where A = {1, 4}, B = {2, 3}, C = {1, 5}, D = {2, 4}, E = {2, 5} and F = {3, 4}.
Hence, any dimension tuple must always satisfy at least five non-trivial overlap
inequalities. Intuitively, we are attempting to cover every possible way to linearly
order the sums of two distinct terms (without any two sums with different terms
being equal) and this is illustrated in Figure 14b. Then, one might suspect there to
be 25 = 32 minimal equivalence classes of dimension tuples, but this is not the case.
Some of these overlap inequalities are in fact mutually dependent on one another
in an intricate way as illustrated in Figure 21. By looking at this decision tree we

[d1] [d2] [d3] [d4] [d5] [d6] [d7] [d8] [d9] [d10] [d11][d12]

(E,F ) (E,F ) (E,F ) (E,F ) (E,F ) (E,F ) (E,F )

(C,F ) (C,F ) (C,F ) (C,F ) (C,F )

(C,D) (C,D) (C,D)

(B,C) (B,C)

(A,B)

< > < > > < > < > < > >

< < > < < < >

< > < < >

< > <

< >

Figure 21. Decision tree showing how not satisfying certain over-
lap inequalities affect other overlap inequalities. It is quite helpful
to compare this with Figure 14b.

.

observe that there are in reality only 12 minimal elements. For each of these we
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have found a representative satisfying Hoffman’s inequality, namely

d1 = (28, 31, 34, 36, 38) ,

d4 = (20, 22, 24, 25, 28) ,

d7 = (24, 28, 29, 30, 32) ,

d10 = (20, 21, 24, 26, 28) ,

d2 = (22, 25, 26, 28, 30) ,

d5 = (18, 20, 21, 22, 26) ,

d8 = (22, 24, 26, 29, 30) ,

d11 = (24, 26, 28, 31, 34) ,

d3 = (26, 28, 32, 33, 36) ,

d6 = (22, 25, 27, 28, 29) ,

d9 = (26, 29, 30, 34, 36) ,

d12 = (15, 16, 17, 19, 22) .

Hence, the set of these 12 dimension tuples constitutes a RDTS for n = 5.

In the four-dimensional case we immediately began counting the number of unique
universal packings, since 4 is a good dimension by Theorem 2.7. However, we do
not know whether 5 is a good dimension and whether a universal packing exists.
Until then we might be better off trying to find a Hoffman packing of each of these
12 dimension tuples individually. Intuitively, they represent the 12 most difficult
types of dimension tuples to solve.

Remark 6.2. What about the criteria found to be necessary properties of universal
packings? Interestingly, each of the 12 dimension tuples above has properties similar
to those of the dimension tuple in Lemma 3.2, whereby any Hoffman packing of
it must necessarily satisfy the Line criterion 3.5. Then the Subgrid criterion 5.10
must hold as well. In fact, we suspect that in higher dimensions minimal equivalence
classes of dimension tuples will always result in any Hoffman packing necessarily
satisfying the Line criterion 3.5.

Next, we highlight a few investigations which we deem particularly interesting.
They have not been pursued further due to time constraints.

6.1. Fundamentally different approaches. It would be interesting to explore
the possibilities of making “local changes” to a pseudo-packing and use this to
gradually reduce the number of overlapping hyperrectangles. One could begin by
further exploring the results obtained in Observation 4.4.

It would also be interesting to explore the possibility of reducing a higher dimen-
sional packing to a packing in lower dimensions. This would enable us to create
a five-dimensional packing via a reduction of a six-dimensional one obtained via
Theorem 2.7. We have made a few failed attempts at reducing a four-dimensional
packing to a three-dimensional one. However, others might have better luck.

6.2. Ties to Maclaurin’s inequality. There are a number of ways to further
explore the results obtained in Observation 5.14. First of all, it would be interesting
to see if imposing such a criterion significantly speeds up the search process in
the four-dimensional case. It is unclear whether this might be the case, since
the Subgrid criterion 5.10 has proven quite effective at pruning the search tree
in the three-dimensional case (as seen in Figure 9), but less effective in the four-
dimensional case (as seen in Figure 15).

Note that it is still relevant to look for four-dimensional universal packings
through other approaches in order to explore whether such a criterion is a nec-
essary condition for being a universal packing.

We suspect that it might also be possible to put forward similar criteria for the
five-dimensional case by looking at Maclaurin’s inequality for n = 5. A way to
better justify imposing such rather speculative constraints would be to construct
a six-dimensional universal packing by combining a two- and a three-dimensional
universal packing and then examining whether it exhibits similar criteria for n = 6.
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6.3. Formulation as a constraint satisfaction problem. During the course of
this project, it has become increasingly clear that it is most natural to formulate
Hoffman’s multidimensional packing problem as a constraint satisfaction problem
(CSP). This class of problems has been subject to intense research in both artificial
intelligence and operations research and one will thus be able to draw upon the
advances in these fields. A CSP as described in [BPS99] and [Bar98] consists of a
list of variables, a list of their respective value domains and a set of constraints over
the variables. Then a solution is a choice of a value for each variable such that all
constraints are satisfied. When solving a CSP we can look for one or all solutions
and this corresponds perfectly to the types of questions raised about our packing
problem.

The most common search algorithm for solving CSPs is backtracking, and here
there are several ways to tune it, including the order in which variables are assigned
values as well as the order in which compatible values are chosen.

For instance, one could employ a dynamic variable ordering in which the choice
of the next variable to be assigned a value depends on the current state of the
search. It is a common heuristic to select the variable with the fewest remaining
compatible values. If the current partial solution can be completed to a solution,
then every remaining variable must be assigned a value. The variable with the
smallest domain is likely to be the most difficult to find a value for, since assigning
values to other variables first may further reduce the number of compatible values.

Next, the order in which the values are tried out can also be adjusted. A different
value ordering will rearrange the branches springing from each node of the search
tree. This is an advantage if it results in searching a branch leading to a solution
earlier than branches leading to dead ends. For instance, if a CSP has a solution
and if a correct value is chosen for each variable, then a solution can be found
without any backtracking.

Hence, formulating the problem as a CSP might enable us to prune the search
tree thoroughly and let us experiment with finding the best variable ordering and
value ordering. In retrospect the approaches tried out in this project may actually
be thought of as immature variants of such a backtracking algorithm.

The backtracking approach presented earlier places one hyperrectangle at a time.
However, a CSP solver might only specify some of the extends of a hyperrectangle
and wait with the rest until later. It will also have more opportunities to experiment
with variable ordering, whereas we could only place hyperrectangles on top of those
already placed.

The dynamic programming approach can also be analyzed within this framework.
It is really a search for gradually larger groups of mutually compatible assignments
of values. Take for instance the case of constructing a cube by stacking squares.
Here the constraints only related to the assigned square will always be satisfied.
However, this analysis also reveals a weakness of the approach. Not only does it
need a large amount of memory to store the mutually comparable values (e.g. all
squares), it is also very questionable whether this variable ordering is the most
effective. In particular, this consideration shows why it might not be helpful to
combine for instance orthogonal squares. One would assign values to many variables
with untouched domains, while possibly ignoring variables with very few compatible
values left.

We speculate that a formulation as a CSP might be well-suited for searching for
a four-dimensional universal packing and perhaps even attempt to determine the
number of unique cubes in the four-dimensional case, where one should also be able
to parallelize the search by dividing the problem into smaller parts using kernels.
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With assistance from Trine K. Boomsma, we approached the packing problem
using mixed-integer programming. This approach turned out to be ill-suited, since
the search algorithms spent a lot of time looking for non-optimal solutions, while we
are really only interested in optimal integer solutions. However, exploring this field
made it more clear that approaching the problem using constraint satisfaction is well
worth a try. We suspect that existing general purpose CSP solvers (commercial as
well as free ones) are not flexible enough to take full advantage of the domain-specific
knowledge of this problem. In particular, we fear that solving simultaneously for
multiple dimension tuples (such as those in a RDTS) might not be possible. Also,
we fear that constraints imposed by results obtained by investigations into the
links to Maclaurin’s inequality might be difficult to express. Hence, a custom
implementation of a CSP solver might be worth looking into.
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Appendix A. Three-dimensional universal packings

Here we present all of the 21 three-dimensional unique universal packings. They
have been produced using the dimension tuple (4, 5, 6). The 4-by-5, 4-by-6 and
5-by-6 rectangles are colored red, green and blue, respectively.

1 2 3 4 5 6 7

8 9 10 11 12 13 14

15 16 17 18 19 20 21
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Appendix B. Four-dimensional universal packing

Here we present all of the squares of a four-dimensional universal packing. The
packing has been produced using the dimension tuple (8, 9, 10, 12). The 8-by-9,
8-by-10, 8-by-12, 9-by-10, 9-by-12 and 10-by-12 rectangles are colored red, green,
blue, orange, yellow and violet, respectively.

x = 1 and y = 1. x = 1 and y = 2. x = 1 and y = 3. x = 1 and y = 4.

x = 2 and y = 1. x = 2 and y = 2. x = 2 and y = 3. x = 2 and y = 4.

x = 3 and y = 1. x = 3 and y = 2. x = 3 and y = 3. x = 3 and y = 4.

x = 4 and y = 1. x = 4 and y = 2. x = 4 and y = 3. x = 4 and y = 4.

Squares where the x- and y-axes are fixed.
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x = 1 and z = 1. x = 1 and z = 2. x = 1 and z = 3. x = 1 and z = 4.

x = 2 and z = 1. x = 2 and z = 2. x = 2 and z = 3. x = 2 and z = 4.

x = 3 and z = 1. x = 3 and z = 2. x = 3 and z = 3. x = 3 and z = 4.

x = 4 and z = 1. x = 4 and z = 2. x = 4 and z = 3. x = 4 and z = 4.

Squares where the x- and z-axes are fixed.
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x = 1 and w = 1. x = 1 and w = 2. x = 1 and w = 3. x = 1 and w = 4.

x = 2 and w = 1. x = 2 and w = 2. x = 2 and w = 3. x = 2 and w = 4.

x = 3 and w = 1. x = 3 and w = 2. x = 3 and w = 3. x = 3 and w = 4.

x = 4 and w = 1. x = 4 and w = 2. x = 4 and w = 3. x = 4 and w = 4.

Squares where the x- and w-axes are fixed.
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y = 1 and z = 1. y = 1 and z = 2. y = 1 and z = 3. y = 1 and z = 4.

y = 2 and z = 1. y = 2 and z = 2. y = 2 and z = 3. y = 2 and z = 4.

y = 3 and z = 1. y = 3 and z = 2. y = 3 and z = 3. y = 3 and z = 4.

y = 4 and z = 1. y = 4 and z = 2. y = 4 and z = 3. y = 4 and z = 4.

Squares where the y- and z-axes are fixed.
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y = 1 and w = 1. y = 1 and w = 2. y = 1 and w = 3. y = 1 and w = 4.

y = 2 and w = 1. y = 2 and w = 2. y = 2 and w = 3. y = 2 and w = 4.

y = 3 and w = 1. y = 3 and w = 2. y = 3 and w = 3. y = 3 and w = 4.

y = 4 and w = 1. y = 4 and w = 2. y = 4 and w = 3. y = 4 and w = 4.

Squares where the y- and w-axes are fixed.
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z = 1 and w = 1. z = 1 and w = 2. z = 1 and w = 3. z = 1 and w = 4.

z = 2 and w = 1. z = 2 and w = 2. z = 2 and w = 3. z = 2 and w = 4.

z = 3 and w = 1. z = 3 and w = 2. z = 3 and w = 3. z = 3 and w = 4.

z = 4 and w = 1. z = 4 and w = 2. z = 4 and w = 3. z = 4 and w = 4.

Squares where the z- and w-axes are fixed.
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hypervolume of, 5
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Kernel, 35
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Overlap inequality, 21
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Packing, 5
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