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Abstract

Estimation with large amounts of data can be facilitated by stochastic gradient methods, in which 

model parameters are updated sequentially using small batches of data at each step. Here, we 

review early work and modern results that illustrate the statistical properties of these methods, 

including convergence rates, stability, and asymptotic bias and variance. We then overview 

modern applications where these methods are useful, ranging from an online version of the EM 

algorithm to deep learning. In light of these results, we argue that stochastic gradient methods are 

poised to become benchmark principled estimation procedures for large data sets, especially those 

in the family of stable proximal methods, such as implicit stochastic gradient descent.
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1 Introduction

Parameter estimation by optimization of an objective function, such as maximum likelihood 

and maximum a-posteriori, is a fundamental idea in statistics and machine learning [Fisher, 

1922, Lehmann and Casella, 2003, Hastie et al., 2011]. However, widely used optimization-

based estimation algorithms, such as Fisher scoring, the EM algorithm and iteratively 

reweighted least squares [Fisher, 1925a, Dempster et al., 1977, Green, 1984], are not 

scalable to modern data sets with hundreds of millions of data points and hundreds of 

thousands of covariates [National Research Council, 2013].

To illustrate, let us consider the problem of estimating the true vector of parameters θ★ ∈ ℝp 

from an i.i.d. sample Y = {yn}, for n = 1, 2… N, where a data point yn ∈ ℝd is distributed 

according to a density f(yn; θ★) with log-likelihood function . 

Traditional estimation methods are typically iterative and have a running-time complexity 
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that ranges between (Np3) and (Np), in worst cases and best cases respectively. Newton-

Raphson methods, for instance, update an estimate  of the parameters through the 

recursion

(1)

where  is the p × p Hessian matrix of the log-likelihood. The matrix 

inversion and the likelihood computation yield an algorithm with roughly (Np2+ε) 

complexity which makes it unsuitable for large data sets. Fisher scoring replaces the Hessian 

matrix with its expected value i.e., it uses the Fisher information matrix (θ) = − (∇∇ℓ(θ; 
yn)), where the expectation is over the random sample yn. The advantage of this method is 

that a steady increase in the likelihood is possible, as in the EM algorithm, since (θ) is 

positive-definite, and thus the difference

can be made positive for an appropriately small value ε > 0. However, Fisher scoring 

performs very similarly to Newton-Raphson in practice, and the two algorithms are actually 

identical in the exponential family [Lange, 2010]. Furthermore, Fisher scoring is 

computationally comparable to Newton-Raphson and thus unsuited for problems with large 

data sets.

Quasi-Newton (QN) methods are a powerful alternative and are widely used in practice. In 

QN methods, the Hessian is approximated by a low-rank matrix that is updated at each 

iteration as new values of the gradient become available, thus yielding algorithms with 

complexity (Np2) or (Np) in certain favorable cases [Hennig and Kiefel, 2013]. Other 

general estimation algorithms such as EM or iteratively reweighted least squares [Green, 

1984] involve computations (e.g. inversions or maximizations between iterations) that are 

significantly more expensive than QN methods.

However, estimation with massive data sets requires a running time complexity that is 

roughly (Np1–ε) i.e., that is linear in N but sublinear in the parameter dimension p. The first 

requirement on N seems hard to overcome since an iteration over all data points needs to be 

performed, at least when data are i.i.d.; thus, sublinearity in p is crucial [Bousquet and 

Bottou, 2008]. Such computational requirements have recently sparked interest in 

algorithms that utilize only first-order information i.e., methods that utilize only gradient 

computations.1 Such performance is achieved by the stochastic gradient descent (SGD) 

algorithm, which was initially proposed by Sakrison [1965] as a recursive estimation 

method, albeit not in first-order form. A typical first-order SGD is defined by the iteration

1Second-order methods typically use the Hessian matrix of second-order derivatives of the log-likelihood and are discussed in detail 
in Section 3.
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(2)

We will refer to Equation (2) as SGD with explicit updates, or explicit SGD for short, 

because the next iterate  can be computed immediately after the new data point yn is 

observed.2 The sequence an > 0 is a carefully chosen learning rate sequence which is 

typically defined such that nan → α > 0 as n → ∞. The parameter α > 0 is the learning rate 

parameter, and it is crucial for the convergence and stability of explicit SGD.

From a computational perspective, the SGD procedure (2) is appealing because the 

expensive inversion of p × p matrices, as in Newton-Raphson, is replaced by a single 

sequence an > 0. Furthermore, the log-likelihood is evaluated at a single observation yn, and 

not on the entire data set Y. Necessarily this incurs information loss which is important to 

quantify. From a theoretical perspective the explicit SGD updates are justified because, 

under typical regularity conditions, (∇ℓ(θ★; yn)) = 0 and thus θn → θ★ by the properties of 

the Robbins-Monro procedure [Robbins and Monro, 1951]. However, the explicit SGD 

procedure requires careful tuning of the learning rate parameter; small values of α will make 

the iteration (2) very slow to converge, whereas for large values of α explicit SGD will 

either have a large asymptotic variance, or even diverge numerically. As a recursive 

estimation method, explicit SGD was first proposed by Sakrison (1965) and has attracted 

attention in the machine learning community as a fast prediction method for large-scale 

problems [Le Cun and Bottou, 2004, Zhang, 2004].

In order to stabilize explicit SGD without sacrificing computational efficiency, Toulis et al. 

[2014] defined the implicit SGD procedure through the iteration

(3)

Note that Equation (3) is implicit because the next iterate  appears in both sides of the 

equation.3 This simple tweak of the explicit SGD procedure has quite remarkable statistical 

properties. In particular, assuming a common starting point , one can show 

through a simple Taylor approximation of (3) around θ, that the implicit update satisfies

(4)

where Δθn = θn − θn−1 for both methods, and (θ; yn) = −∇∇ℓ(θ; yn) is the observed Fisher 

information matrix. Thus, the implicit SGD procedure calculates updates that are a shrinked 

version of the explicit ones. In contrast to explicit SGD, implicit SGD is significantly more 

stable in small-samples, and it is also robust to misspecifications of the learning rate 

2Procedure (2) is actually an ascent algorithm because it aims to maximize the log-likelihood, and thus a more appropriate name 
would be stochastic gradient ascent. However, we will use the term “descent” in order to keep in line with the relevant optimization 
literature, which traditionally considers minimization problems through descent algorithms.
3The solution of the fixed-point equation (3) requires additional computations per iterations. However, Toulis et al. [2014] derive a 
computationally efficient implicit algorithm in the context of generalized linear models. Furthermore, approximate solutions of 
implicit updates are possible for any statistical model (see Equation (4)).
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parameter α. Furthermore, implicit SGD computes iterates that belong in the support of the 

parameter space, whereas explicit SGD would normally require an additional projection 

step. Arguably, the normalized least mean squares (NLMS) filter [Nagumo and Noda, 1967] 

was the first statistical model that used an implicit update as in Equation (3) and was shown 

to be consistent and robust to input noise [Slock, 1993]. Theoretical justification for implicit 

SGD comes either from implicit variations of the Robbins-Monro procedure [Toulis et al., 

2014], or through proximal methods in optimization [Parikh and Boyd, 2013], such as 

mirror-descent [Nemirovski, 1983, Beck and Teboulle, 2003]. Assuming differentiability of 

the log-likelihood, the implicit SGD update (3) can be expressed as a proximal method 

through the solution of

(5)

where the right-hand side is the proximal operator. The update in Equation (5) is the 

stochastic version of the deterministic proximal point algorithm by Rockafellar [1976], and 

has been analyzed recently, in various forms, for convergence and stability [Ryu and Boyd, 

Rosasco et al., 2014] Recent work has established the consistency of certain implicit 

methods similar to (3) [Kivinen and Warmuth, 1995, Kivinen et al., 2006, Kulis and Bartlett, 

2010] and their robustness has been useful in a range of modern machine learning problems 

[Nemirovski et al., 2009, Kulis and Bartlett, 2010, Schuurmans and Caelli, 2007].

The structure of this chapter is as follows. In Section 2 we give an overview of the Robbins-

Monro procedure and Sakrison’s recursive estimation method, which form the theoretical 

basis of SGD methods; we further provide a quick overview of early results on the statistical 

efficiency of the aforementioned methods. In Section 3, we formally introduce explicit and 

implicit SGD, and treat those procedures as statistical estimation methods that provide an 

estimator θn of the model parameters θ★ after n iterations. In Section 3.1 we give results on 

the frequentist statistical properties of SGD estimators i.e., their asymptotic bias and 

asymptotic variance across multiple realizations of the data set Y. We then leverage those 

results to study optimal learning rate sequences an (Section 3.4), the loss of statistical 

efficiency in SGD and ways to fix it through reparameterization (Section 3.3). We briefly 

discuss stability in Section 3.2. In Section 3.5, we present significant extensions to first-

order SGD, namely averaged SGD, variants of second-order SGD, and Monte-Carlo SGD. 

Finally, in Section 4, we review significant applications of SGD in various areas of statistics 

and machine learning, namely in online EM, MCMC posterior sampling, reinforcement 

learning and deep learning.

2 Stochastic approximations

2.1 Robbins and Monro’s procedure

Consider the one-dimensional setting where one data point is denoted by yn ∈ ℝ and it is 

controlled by a parameter θ with regression function M(θ) = (y| θ) that is non 

nondecreasing, and whose analytic form might be unknown. Robbins and Monro [1951] 

considered the problem of finding the unique point θ★ for which M(θ★) = 0. They devised a 
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procedure, known as the Robbins-Monro procedure, in which an estimate θn−1 of θ★ is 

utilized to sample one new data point yn such that (yn| θn−1) = M(θn−1); the estimate is then 

updated according to the following simple rule:

(6)

The scalar an > 0 is the learning rate and should decay to zero, but not too fast in order to 

guarantee convergence. Robbins and Monro [1951] proved that  ((θn − θ★)2) → 0 when

a. (x − θ★)M(x) > 0 for x in a neighborhood of θ★,

b.  for any θ, and

c.
 and .

The original proof is technical but the main idea is straightforward. Let bn ≜ ((θn − θ★)2) 

denote the squared error, then through iteration (6) one can obtain

(7)

In the neighborhood of θ★ we have M(θn−1) ≈ M′(θ★)(θn−1 − θ★), and thus

(8)

For a learning rate sequence of the form an = α/n typical proof techniques in stochastic 

approximation [Chung, 1954] can establish that bn → 0. Furthermore, it holds nbn → 

α2σ2(2αM′(θ★) − 1)−1 where  when this limit exists; this result was not given 

in the original paper by Robbins and Monro [1951] but it was soon derived by several other 

authors [Chung, 1954, Sacks, 1958, Fabian, 1968a]. Thus, the learning parameter α is 

critical for the performance of the Robbins-Monro procedure. Its optimal value is α★ = 1/M′

(θ★), which requires knowledge of the slope of M(·) at the true parameter values. In the 

multidimensional case the efficiency of stochastic approximations -including stochastic 

gradient descent- depend on the Jacobian of the mean value function of the statistic used in 

the iterations (see Section 3.1). This early result spawned an important line of research on 

adaptive stochastic approximation methods, such as the Venter process [Venter, 1967], in 

which quantities that are important for the convergence of the stochastic process (e.g., the 

quantity M′(θ★)) are also being estimated along the way.

2.2 Sakrison’s recursive estimation method

Although initially applied in sequential experiment design, the Robbins-Monro procedure 

was soon adapted for estimation. Sakrison [1965] was interested in estimating the 

parameters θ★ of a model that generated i.i.d. observations yn in a way that is 

computationally and statistically efficient, similar to our setup in the introduction. He 

recognized that the statistical identity (∇ℓ(θ★; yn)) = 0, where the expectation is over the 

observed data yn, provides the theoretical basis for a general estimation method using the 
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Robbins-Monro procedure. Sakrison’s recursive estimation method was essentially one of 

the first explicit SGD method proposed in the literature:

(9)

The SGD procedure (9) is second-order since it is using a matrix to condition the gradient of 

the log-likelihood. Under typical regularity conditions , and thus 

. Sakrison [1965] also proved that , 

and so the estimation of θ★ is asymptotically efficient under this norm objective. It is 

interesting to note that updates of the form (9) appeared very early in the statistical 

literature. For example, Fisher [1925b] suggested that an inefficient estimator θN using N 

data points can be made asymptotically efficient by considering a new estimator 

. The surprising result in Sakrison’s work was that 

asymptotically optimal estimation is also possible by using only gradients of the log-

likelihood on single data points yi in the iterated algorithm (9).

3 Estimation with stochastic gradient methods

For the rest of this chapter we will consider a simple generalization of explicit and implicit 

SGD that is similar to Sakrison’s method as follows:

(10)

(11)

In general all Cn are symmetric and positive-definite matrices, and serve to stabilize and 

optimize stochastic iterations as in (10) and (11). In the limit nCn → C where C is a 

symmetric and positive-definite matrix. If Cn is not trivial (e.g., scaled identity), we will 

refer to (10) and (11) as second-order explicit SGD and second-order implicit SGD, 

respectively. When Cn = anI i.e., it is the scaled identity matrix for some sequence an > 0 

satisfying the Robbins-Monro conditions, we will refer to (10) and (11) as first-order 

explicit SGD and first-order implicit SGD, respectively; in this case, definitions (10) and 

(11) are identical to definitions (2) and (3) in the introduction. In some cases, we will 

consider models in the exponential family under the natural parameterization with density

(12)

where s(yn) is the vector of p sufficient statistics, and A(·), B(·) are appropriate real-valued 

functions. The SGD procedures simplify to

(13)
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(14)

In what follows, we will consider a frequentist evaluation of SGD as a statistical estimation 

method i.e., we will consider  (or  ) to be an estimator of θ★, and we will focus on its 

bias and variance across multiple realizations of the data set Y = {y1, y2, …, yn}, under the 

same model and parameter θ★.4

3.1 Asymptotic bias and variance

Typically, online procedures such as SGD have two phases, namely the ex- ploration phase 

(or search phase) and the convergence phase [Amari, 1998, Benveniste et al., 2012]. In the 

exploration phase the iterates rapidly approach θ★, whereas in the convergence phase they 

jitter around θ★ within a ball of slowly decreasing radius. We will overview a typical 

analysis of SGD in the final convergence phase in which we assume that a Taylor 

approximation in the neighborhood of θ★ is accurate [Murata, 1998, Toulis et al., 2014]. In 

particular let μ(θ) = (∇ℓ(θ; yn)), and assume that

(15)

where Jμ is the Jacobian of the function μ(·), and o(an) denotes a vector sequence vn for 

which ||vn||/an → 0. Under typical regularity conditions μ(θ★) = 0 and Jμ(θ★) = − (θ★). 

Thus, if we denote the biases of the two SGD methods as  and 

, by taking expectations in Equations (10) and (11) we obtain

(16)

(17)

We observe that the convergence rate at which the two methods become unbiased in the 

limit differ in two significant ways. First, the explicit SGD method converges faster than the 

implicit one because ||(I − Cn (θ★))|| < ||(I+Cn (θ★))−1||, for sufficiently large n; the rates 

become equal in the limit as an → 0. However, the implicit method compensates by being 

more stable in the specification of the condition matrices Cn. For example, the explicit SGD 

requires that the sequence I − Cn (θ★) is comprised of matrices with eigenvalues less than 

one, in order to guarantee stability; this is a significant source of trouble when applying 

explicit SGD in practice. In contrast, for any specification of positive-definite Cn, the 

eigenvalues of (I + Cn (θ★))−1 are less than one, and thus implicit SGD is unconditionally 

stable; we will discuss more about stability in Section 3.4.

4This is an important distinction because, traditionally, the focus in optimization has been to obtain fast convergence to some point θ̂ 

that minimizes the empirical loss e.g., the maximum-likelihood estimator. From a statistical viewpoint, under variability of the data, 
there is a trade-off between convergence to an estimator and its asymptotic variance [Le Cun and Bottou, 2004].
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In regard to statistical efficiency, Taylor approximation can also be used to establish 

recursive equations for the asymptotic variance of  and . For example, Toulis et al. 

[2014] show that if C is a symmetric matrix that commutes with (θ★) such that (2C (θ★)

−I) is positive-definite and nCn → C, it holds

(18)

i.e., both SGD methods have the same asymptotic variance. Thus, for firstorder SGD 

procedures where Cn = anI with nan → α > 0 we obtain

(19)

The matrix term (2C (θ★) − I)−1 represents the information that is lost by SGD, and it 

needs to be identity for optimal statistical efficiency (see Section 3.4). In fact, in more 

generality, this term is equal to (2CJμ(θ★) − I)−1 where μ(θ) is mean value function of the 

statistic used in SGD (see also Equation (15)), and Jμ(θ★) is its Jacobian at the true 

parameter values. Therefore, the asymptotic efficiency of SGD methods depends crucially 

on the Jacobian of the mean value function of the statistic used in the SGD iterations.

Asymptotic variance results similar to (18) were first studied in the stochastic approximation 

literature by Chung [1954], Sacks [1958], and followed by Fabian [1968b] and several other 

authors [see also Ljung et al., 1992, Parts I, II], but not in a closed-form (18), as most 

analyses were not done under the context of recursive statistical estimation. Furthermore, 

Sakrison’s asymptotic efficiency result [Sakrison, 1965] can be recovered by setting Cn = 

(1/n) (θn−1)−1; in this case the asymptotic variance for both estimators is (1/n) (θ★)−1 i.e., 

it is the optimal asymptotic efficiency of the maximum likelihood estimator.

3.2 Stability issues

Stability has been a well-known issue for explicit SGD. The main problem in practice is that 

the learning rate sequence needs to agree with the eigenvalues of the Fisher information 

matrix. To see this, let us simplify (16) and (17) by dropping the remainder terms o(an). 

Then we obtain

(20)

(21)

where , and b0 denotes the initial bias 

of the two procedures from some common starting point θ0. Thus, the matrices  and 

describe how fast the initial bias decays for the explicit and implicit SGD respectively. 
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Assuming convergence,  and  , and thus we say that both methods are 

asymptotically stable. However, they have significant differences in small-to-moderate 

samples. For simplicity, let us compare the two SGD procedures in their first-order 

formulation where Cn = anI and an = α/n for some α > 0.

In explicit SGD, the eigenvalues of  can be calculated as , 

for 0 < αλi < 1, where λi are the eigenvalues of the Fisher information matrix (θ★). Thus, 

the magnitude of  will be dominated by λmax, the maximum eigenvalue of (θ★), and the 

rate of convergence to zero will be dominated by λmin, the minimum eigenvalue of (θ★). 

The condition αλmax ≤ 1 ⇒ α ≤ 1/λmax is required for stability, but for fast convergence we 

require αλmin ≈ 1. In high-dimensional settings, this could be the source of serious problems 

because λmax could be at the order of p i.e., the number of model parameters. Thus, in 

explicit SGD the requirements for stability and speed of convergence are in conflict. A 

conservative learning rate sequence can guarantee stability but this comes at a price in 

convergence which will be at the order of (n−αλmin), and vice versa. In stark contrast, the 

implicit procedure is unconditionally stable. The eigenvalues of  are 

, and thus are guaranteed to be less than one for any 

choice of the learning rate parameter α. The critical difference with explicit SGD is that it is 

no longer required to have a small α for stability because the eigenvalues of  will always 

be less than one.

Based on this analysis the magnitude of  can become arbitrarily large, and thus explicit 

SGD is likely to numerically diverge. In contrast,  is guaranteed to be bounded, and so 

under any misspecification of the learning rate parameter the implicit SGD procedure is 

guaranteed to remain stable. The instability of explicit SGD is well-known, and requires 

careful work to be avoided in practice. For example, a typical learning rate for explicit SGD 

is of the form an = α(αβ+n)−1, where β is chosen so that the explicit updates will not 

diverge; a reasonable choice is to set β = trace( (θ★)) and α to be set close to 1/λmin. Such 

explicit normalization of the learning rates is not necessary in implicit SGD because, as 

shown in Equation (4), the implicit update performs such normalization indirectly.

Finally, an important line of work in the stability of stochastic approximations has been 

inspired by Huber’s work in robust statistics [Huber et al., 1964, Huber, 2011]. In our 

notation, robust stochastic approximation considers iterations of the following form

(22)

where an appropriate function ψ is sought for robust estimation; in this problem we assume 

(s(yn)) = h(θ★) but the distribution of s(yn) − h(θ★) – denoted by f(·) – is unknown. In a 

typical setup, f(·) is considered to belong to a family of distributions , and ψ is selected as
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i.e., such that the maximum possible variance over the family  is minimized. Several 

important results have been achieved by Martin and Masreliez [1975] and Polyak and 

Tsypkin [1979]. For example, in linear models where μ(·) is linear in θ and s(yn) is one-

dimensional, consider the general family  = {f: f(0) ≥ ε} as the set of all symmetric 

densities that are positive at 0. Then the optimal choice is ψ★ = sign(·) i.e., the sign function, 

because it can be shown that the Laplace distribution is the member density of  that gives 

the least information about the parameters θ★.

3.3 Choice of parameterization and efficiency

First-order SGD methods are attractive for their computational performance, but the 

variance result (19) shows that they may suffer a significant loss in statistical efficiency. 

However, a reparameterization of the problem could yield a first-order SGD method that is 

optimal. The method can be described as follows. First, assume the exponential family (12) 

such that ∇ℓ(θ; yn) = s(yn) − h(θ), where h(θ) = ∇A(θ) = (s(yn)| θ★ = θ), and consider the 

reparameterization

(23)

which we assume it exists, it is 1-1 and easy to compute; these are critical assumptions that 

are hard, but not impossible to hold in practice. We will refer to (23) as the mean-value 

parameterization and ω as the mean-value parameters. Starting with an estimate ω0 of ω★ = 

h(θ★), we can define the SGD procedures on this new parameter space as

(24)

(25)

where we also set Cn = (1/n)I so that C = I. In this case, the explicit SGD simply calculates 

the running average of the complete sufficient statistic i.e., , and thus 

it is identical to the MLE estimator; similarly the implicit SGD satisfies 

 i.e., it is a slightly biased version of the MLE. It is thus 

straightforward to show (see for example Toulis and Airoldi [2014]) that the mean-value 

parameterization is optimal i.e.,

(26)

Intuitively, the mean-value parameterization transforms all parameters into location 

parameters. The Jacobian of the regression function of the statistic is Jμ(ω★) = ∇ω (s(yn)|

ω= ω★) = I, and thus the information loss described in Equation (18) is avoided since 

(2CJμ(ω★) − I)−1 = I. Transforming back to the original parameter space incurs no 

information loss as well, and so estimation of θ★ is efficient. This method is illustrated in the 

following example.
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Example. Consider the problem of estimating (μ, σ2) from normal observations yn ~ (μ, 

σ2), and let θ★ = (μ, σ2) which is not the natural parameterization. Consider sufficient 

statistics  such that (s(yn)) = (μ, μ2 + σ2) ≜(ω1, ω2). The parameter ω= (ω1, 

ω2) corresponds to the mean-value parameterization. The inverse transformation is μ = ω1 

and  , and thus its Jacobian is

The variance of s(yn) is given by

where  . Thus the variance of ( ) is (1/n)V(θ★) and the variance of (μ̂, 

σ2) is given by

which is exactly the asymptotic variance of the MLE estimate. In practice, however, the 

mean-value transformation is rarely possible. Still, the intuition of transforming the model 

parameters into location parameters can be very useful in many situations, even when such 

transformation is approximate.

3.4 Choice of learning rate sequence

An interesting observation on the asymptotic variance results (18) is that for any choice of 

the symmetric positive-definite matrix C,

(27)

where A ≥ B for two matrices A,B indicates that A − B is nonnegative-definite. Even in 

second-order form, both methods incur an efficiency loss when compared to the maximum-

likelihood estimator, which can be quantified exactly through (18). Thus, there are two ways 

to achieve asymptotic efficiency.

First, one can design the condition matrix such that nCn → (θ★)−1≜C★.5 However, this 

requires knowledge of the Fisher information matrix on the true parameters θ★, which is 

5Similarly, a sequence of matrices Cn can be designed such that Cn → (θ★)−1 [Sakrison, 1965].
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usually unknown. The Venter process [Venter, 1967] was the first method to follow an 

adaptive approach to estimate this matrix, and was later analyzed and extended by several 

other authors [Fabian, 1973, Lai and Robbins, 1979, Amari et al., 2000, Bottou and Le Cun, 

2005]. Adaptive methods that perform an approximation of the matrix C★ (e.g., through a 

Quasi-Newton scheme) have recently been applied with considerable success [Schraudolph 

et al., 2007, Bordes et al., 2009]; see Section 3.5.2 for more details.

In contrast, an efficiency loss is generally unavoidable in first-order SGD i.e., when Cn = anI 
with nan → α. Asymptotic efficiency can occur only when λi = 1/α i.e., when all 

eigenvalues λi of the Fisher information matrix ( θ★) are identical. When λi’s are distinct 

the eigenvalues of the asymptotic variance matrix  (or ) are α2λi/(2αλi 

− 1) which is at least 1/λi for any α. In this case, one reasonable way to set the parameter α 

would be to minimize the trace of the asymptotic variance matrix i.e., solve

(28)

under the constraint that α > 1/(2λmin), thus making an undesirable but necessary comprise 

for convergence in all parameter components. However, the eigenvalues {λi} are unknown 

in practice and need to be estimated from the data. This problem has received significant 

attention recently and several methods exist [see Karoui, 2008, and references within]. A 

powerful alternative is to reparametrize the problem, apply SGD on the new parameter 

space, and then perform the inverse transformation, as in Section 3.3.

3.4.1 Practical considerations—There is voluminous amount of research literature on 

learning rate sequences for stochastic approximation and SGD. However, we decided to 

discuss this issue at the end of this section because the choice of the learning rate sequence 

conflates multiple design goals that are usually conflicting in practice e.g., convergence (or 

bias), asymptotic variance, stability and so on.

In general, the theory presented so far indicates that the learning rate for first-order explicit 

SGD should be of the form an = α(αβ + n)−1. Note that limn→∞ nan = α, so α is indeed the 

learning rate parameter introduced in Section 1. Parameter α will control the asymptotic 

variance and a reasonable choice would be the solution of (28), which requires estimates of 

the eigenvalues of the Fisher information matrix (θ★). An easier method is to simply use α 

= 1/λmin, where λmin is the minimum eigenvalue of (θ★); the value 1/λmin is an 

approximate solution for (28), and also has good empirical performance [Xu, 2011, Toulis et 

al., 2014]. Parameter β can be used to stabilize explicit SGD.

In particular, one would want to control the variance of the stochastic gradient Var (∇ℓ(θn; 

yn)) = (θ★) + (an), for points near θ★; see also the stability analysis in Section 3.2. One 

reasonable value would thus be β = trace( (θ★)), which can be estimated easily by 

summing norms of the score function i.e,  , similar to [Amari et al., 

2000, Duchi et al., 2011] – see also Section (3.5.2).
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For implicit SGD, the situation is a bit easier because a learning rate sequence an = α(α

+n)−1 works well in practice [Toulis et al., 2014]. As before, α controls the efficiency of the 

method and so we can set α = 1/λmin as in explicit SGD. The additional stability term (β) in 

explicit SGD is unnecessary because the implicit method performs such normalization 

(shrinkage) indirectly – see Equation (4).

However, tuning the learning rate sequence eventually depends on problem-specific 

considerations, and there is a considerable variety of sequences that have been employed in 

practice [George and Powell, 2006]. Principled design of learning rates in SGD remains an 

important research topic [Schaul et al., 2012].

3.5 Some interesting extensions

3.5.1 Averaged stochastic gradient descent—Estimation with SGD can be 

optimized for statistical efficiency only with knowledge of the underlying model. For 

example, the optimal learning rate parameter α in first-order SGD requires knowledge of the 

eigenvalues of the Fisher information matrix (θ★). In second-order SGD, optimality is 

achieved when one uses a sequence of matrices Cn such that nCn → (θ★)−1. Methods that 

approximate (θ★) make up a significant class of methods in stochastic approximation. 

Another important class of stochastic approximation methods relies on averaging of the 

iterates. The corresponding SGD procedure is usually referred to as averaged SGD, or 

ASGD for short.6

Averaging of iterates in the Robbins-Monro procedures was studied independently by 

Ruppert [1988] and Bather [1989], and both proposed similar averaging schemes. If we use 

the notation of Section 2 (see also iteration (6)), Ruppert [1988] considered the following 

stochastic approximation procedure

(29)

where an = αn−c for 1/2 < c < 1 and θ̄n are the estimates of the zero of the regression 

function M(θ). Under certain conditions, Ruppert [1988] showed that nVar(θ̄
n) → σ2/M′

(θ★)2, where σ2 = Var (yn|θ★). Recall, that the typical Robbins-Monro procedure gives 

estimates with asymptotic variance α2σ2/(2αM′(θ★) − 1), which is at least equal to the 

variance of the averaged iterate. Ruppert [1988] provides a nice statistical intuition on why 

averaging gives such efficiency with larger learning rates. First, write yn = M(θn) − εn, where 

εn are zero-mean independent random variables with finite variance. The typical analysis in 

stochastic approximation starts by solving the recursion (6) to get an expression like the 

following

6The acronym ASGD is also used in machine learning to denote asynchronous SGD i.e., a variant of SGD that can be parallelized on 
multiple machines. We will not consider this variant here.
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(30)

where c(i, n) = exp{−A(n) + A(i)},  is the function of partial sums, and K 

is some constant. Ruppert [1988] shows that Equation (30) can be rewritten as

(31)

where b(n) = ⌊n − Rnclog n⌋ with R a positive constant, and ⌊ · ⌋ the positive integer floor 

function. Ruppert [1988] argues that when an = α/n then b(n) = (1), and θn − θ★ is the 

weighted average of all noise variables εn. When an = αn−c for 1/2 < c < 1, then θn − θ★ is a 

weighted average of only (nclog n) noise variables. Thus, in the former case there is 

significant autocorrelation in the series θn. In the latter case, for 0 < p1 < p2 < 1 the variables 

θ⌊p1n⌋ and θ⌊p2n⌋ are asymptotically uncorrelated, and thus averaging improves the 

estimation efficiency.

Polyak and Juditsky [1992] derive further significant results for averaged SGD, showing in 

particular that ASGD can be asymptotically efficient as second-order SGD under certain 

mild assumptions. In fact, due to the authors’ prior work in averaged stochastic 

approximation, ASGD is usually referred to as Polyak-Ruppert averaging scheme. Adoption 

of averaging schemes for statistical learning has been slow but steady over the years [Zhang, 

2004, Nemirovski et al., 2009, Bottou, 2010, Cappé, 2011]. One practical reason is that 

averaging only helps when when the underlying stochastic process is slow to converge, 

which is hard to know in practice; in fact, averaging can have an adverse effect when the 

underlying SGD process is converging well. Furthermore, the selection of the learning rate 

sequence is also important in ASGD, and a bad sequence can cause the algorithm to 

converge very slowly [Xu, 2011], or even diverge. Research on ASGD is still ongoing as 

several directions, such as the combination of stable methods with averaging schemes, 

remain unexplored (e.g., stochastic proximal methods, implicit SGD). Furthermore, in a 

similar line of work several methods have been developed that use averaging in order to 

reduce the variance of stochastic gradients [Johnson and Zhang, 2013, Wang et al., 2013].

3.5.2 Second-order stochastic gradient descent—Sakrison’s recursive estimation 

method (9) is the archetype of second-order SGD, but it requires an expensive matrix 

inversion at every iteration. Several methods have been developed that approximate such a 

matrix across iterations in stochastic approximation, and are generally termed adaptive. 

Early adaptive methods in stochastic approximation were given by Nevelson and 

Khasminskĭ [1973] and Wei [1987]; translated into a SGD procedure, such methods would 

recursively estimate (θ★) by computing finite-differences  sampled at θn + cnej 

and θn − cnej respectively, where ej is the jth unit basis vector and cn is an appropriate 

sequence of positive numbers. While such methods are very useful in sequential experiment 

Airoldi and Toulis Page 14

Stat Comput. Author manuscript; available in PMC 2016 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



design where one has control over the data generation process, they are impractical for 

modern online learning problems.

A simple and effective approach was proposed by Amari et al. [2000]. The idea is to keep an 

estimate  of (θ★) and use an explicit SGD scheme as follows:

(32)

Inversion of the estimate  is (relatively) cheap by using the Sherman-Morrison formula. 

This scheme, however, introduces the additional problem of determining the sequence cn in 

(32). In their work, Amari et al. [2000] advocated for a small costant cn = c > 0 that can be 

determined through computer simulations.

Another notable approach based on Quasi-Newton methods (see Section 1) was developed 

by Bordes et al. [2009]. Their method, termed SGD-QN, approximates the Fisher 

information matrix through a secant condition as in the original BFGS algorithm [Broyden, 

1965]. The secant condition in SGD-QN is

(33)

where  is kept diagonal. If we let Dn denote the diagonal matrix with ith diagonal element 

dii = (θn,i −θn−1,i)/δn,i, then the update of the approximation matrix in SGD-QN is given by

(34)

and the update of θn is similar to (32). The parameter r is controlled internally in the 

algorithm, and counts the number of times the update (34) has been performed.

A notable second-order method is also AdaGrad [Duchi et al., 2011], which adapts multiple 

learning rates using gradient information. In one popular variant of the method, AdaGrad 

keeps a diagonal (p × p) matrix An of learning rates that is updated at every iteration. Upon 

observing data yn, AdaGrad updates An as follows:

(35)

where diag(A) is the diagonal matrix with the same diagonal as its matrix argument A. 

Learning in AdaGrad proceeds through the iteration

(36)

where α > 0 is a learning rate parameter that is shared among all parameter components, and 

the symbol ◦ denotes element wise multiplication. The original motivation for AdaGrad 

stems from proximal methods in optimization, but there is a statistical intuition why the 
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update (36) is reasonable. In general, from an information perspective, a learning rate 

sequence an discounts an observation yn according to the reciprocal of the statistical 

information that has been gathered so far for the parameter of interest θ★. The intuition 

behind a rate of the form an = α/n is that the information after n iterations is proportional to 

n, under the i.i.d. data assumption. In many dimensions where some parameter component 

affects outcomes less frequently than others, AdaGrad replaces the term n with an estimate 

of the information that has actually been received for that component. A (biased) estimate of 

this information is provided by the elements of An in (36), and is justified since (∇ℓ(θ; yn)

∇ℓ(θ; yn)⊤) = (θ). Interestingly, implicit SGD and AdaGrad share the common property of 

shrinking explicit SGD estimates according to the Fisher information matrix. Second-order 

implicit SGD methods are yet to be explored, but further connections are possible.

3.5.3 Monte-Carlo stochastic gradient descent—A key requirement for the 

application of SGD procedures is that the likelihood is easy to evaluate. However, in many 

situations that are important in practice, this is not possible, for example when the likelihood 

is only known up to a normalizing constant. In such cases, definitions (10) and (11) cannot 

be applied directly since ∇ℓ(θ; yn) cannot be computed. However, if unbiased samples of 

the log-likelihood gradients are available, then explicit SGD can be readily applied. This is 

possible if sampling from the model is relatively easy.

In particular, assume an exponential family model (12) that is easy to sample from e.g., 

through Metropolis-Hastings. A variant of explicit SGD, termed Monte-Carlo SGD [Toulis 

and Airoldi, 2014], can be constructed as follows. Starting from some estimate  , iterate 

the following steps for each nth data point yn, where n = 1, 2, … N:

1. Get m samples from the model , i = 1, 2, … m.

2.
Compute average sufficient statistic .

3. Update the estimate through

(37)

The main idea of a Monte-Carlo SGD algorithm (37) is to use the current parameter estimate 

in order to impute the expected value of the sufficient statistic that would otherwise be 

available if the likelihood was easy to evaluate. Furthermore, assuming nCn → C, the 

asymptotic variance of the estimate satisfies

(38)

which exceeds the variance of the typical explicit SGD estimator by a factor of (1 + 1/m). 

However, in its current form the Monte-Carlo SGD (37) is only explicit; an implicit version 

would require to sample data from the next iterate, which is technically challenging but an 

interesting open problem. Still, an approximate implicit implementation of Monte-Carlo 

SGD is possible using the intuition in Equation (4). For example, one could simply run an 

explicit update as in (37), but then shrink according to , or more efficiently 
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using a one-dimensional shrinkage factor  , for some decreasing 

sequence an > 0.

Theoretically Monte-Carlo SGD is based on sampling-controlled stochastic approximation 

methods in which the usual regression function of the Robbins-Monro procedure (6) is only 

accessible through sampling [Dupuis and Simha, 1991] e.g., through MCMC. Convergence 

in such settings is subtle because it also depends on the ergodicity of the underlying Markov 

chain [Younes, 1999]. In practice, approximate variants of the aforementioned Monte-Carlo 

SGD procedure have been applied with considerable success to fit large models of neural 

networks, notably through the contrastive divergence algorithm, as we briefly discuss in 

Section 4.4.

4 Selected applications

SGD has found several important applications over the years. In this section we will review 

some of them, giving a preference to breadth over depth.

4.1 Online EM algorithm

The Expectation-Maximization algorithm [Dempster et al., 1977] is a numerically stable 

procedure to compute the maximum likelihood estimator in latent variable models. 

Extending our notation, let xn denote a latent variable at observed data point yn, and let 

fcom(xn, yn; θ) and fobs(yn; θ) denote the complete-data and observed-data density, 

respectively; similarly, ℓcom and ℓobs will denote the respective log-likelihoods. For 

simplicity, we will assume that fcom is an exponential family model in the natural 

parameterization, as in (12), such that

(39)

We will denote the corresponding Fisher information matrices as (θ) = − (∇∇ℓcom(xn, 

yn; θ)) and (θ) = (∇∇ℓobs(yn; θ)), where the expectations are considered with model 

parameters fixed at θ. Furthermore, let Y = (y1, …, yN) denote the entire observed data set as 

in Section 1, and X = (x1, …, xN) be the corresponding latent variables. The traditional EM 

algorithm proceeds by iterating the following steps.

(40)

(41)

Dempster et al. [1977] showed that the EM algorithm converges to the maximum-likelihood 

estimator θ̂ = argmaxθ ℓobs(Y; θ); furthermore, they showed that EM is an ascent algorithm 

i.e., the likelihood is strictly increasing at each iteration, and thus EM has a desirable 

numerical stability. However, the EM algorithm is impractical for the analysis of large data 

sets because it involves expensive operations, both in the expectation and maximization 
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steps, that need to be performed on the entire data set. Therefore, online schemes are 

necessary for analysis of large models with latent variables.

Titterington [1984] considered a procedure defined through the iteration

(42)

This procedure differs only marginally from Sakrison’s recursive estimation method (see 

Section 2.2) by using the complete-data information matrix. In the univariate case where the 

true model parameter is θ★, Titterington [1984] applied Fabian’s theorem [Fabian, 1968a] to 

show that the estimate in (42) satisfies 

. Thus, as in the 

traditional full-data EM algorithm, the efficiency of the online method (42) depends on the 

amount of missing information. Notably, Lange [1995] considered Newton-Raphson 

iterations for the M-step of the EM algorithm, and derived an online procedure that is 

similar to (42).

However, procedure (42) is essentially an explicit stochastic gradient method, and thus it 

may have serious stability and convergence problems, contrary to the desirable numerical 

stability of EM. In the exponential family model (39), Nowlan [1991] considered one of the 

first “true” online EM algorithms as follows:

(43)

where α ∊ (0, 1). In words, the algorithm starts from some initial sufficient statistic s0 and 

then updates it through a stochastic approximation scheme with a constant step size α. The 

maximization step is identical to that of traditional EM. Online EM with decreasing step 

sizes was later developed by Sato and Ishii [2000] as follows:

(44)

By the theory of stochastic approximation, procedure (44) will converge to the observed-

data maximum likelihood estimate θ̂. In contrast, procedure (43) will not converge with a 

constant α, but it will reach a point in the vicinity of θ̂ more rapidly than (44). Further 

extensions of the aforementioned online EM algorithms have been developed by several 

authors [Neal and Hinton, 1998, Cappé and Moulines, 2009]. Examples of a growing body 

of applications of such methods can be found in [Neal and Hinton, 1998, Sato and Ishii, 

2000, Liu et al., 2006, Cappé, 2011].

4.2 MCMC sampling

Let θ be the model parameters of observations Y = (y1, ···yN), with an assumed prior 

distribution denoted by π(θ). A common task in Bayesian statistics it to sample from the 

posterior distribution f(θ|Y) ∝ π(θ)f(Y|θ). The Hamiltonian Monte-Carlo (HMC) [Neal, 
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2011] is a method in which auxiliary variables p are introduced to the original variables θ to 

improve sampling from f(θ|Y). In the augmented parameter space, we consider a function 

H(θ, p) = U(θ) + K(p) ∈ ℝ+, where U(θ) = −log f(θ|Y) and K(p) = (1/2)p⊤Mp with a 

symmetric positive-definite matrix M. Next, we consider the density

In this parameterization, the variables p are independent of θ. Assuming some initial state 

(θ0, p0), HMC sampling proceeds in iterations indexed by n = 1, ···, as follows:

1. Sample p*~ (0,M−1).

2. Using Hamiltonian dynamics, compute (θn, pn) = ODE(θn−1, p*).

3. Perform a typical Metropolis-Hastings step for the proposed transition (θn−1, p*) → 

(θn, pn) with acceptance probability that is equal to min[1, exp(−H(θn, pn) + 

H(θn−1, p*)].

Step 2. is the key idea in HMC. The variables (θ, p) can be mapped to a physical system 

where θ is the position of the system, and p is the momentum. The Hamiltonian dynamics 

refer to a set of ordinary differential equations (ODE) that govern the movement of the 

system, and thus calculate the future values of (θ, p) given a pair of current values. Being a 

closed physical system, the Hamiltonian of the system is constant. Thus, in Step 3. of HMC 

it holds −H(θn, pn) + H(θn−1, p*) = 0, and thus the acceptance probability is one.

A special case of HMC, called Langevin dynamics, defines the sampling iterations as 

follows [Girolami and Calderhead, 2011]:

(45)

The sampling procedure (45) follows from HMC by a numerical solution of the ODE 

method in Step 2. of the algorithm using the leapfrog method. Parameter ε > 0 determines 

the size of the leapfrog in the numerical solution of Hamiltonian differential equations.

Welling and Teh [2011] studied a simple modification of Langevin dynamics (45) using a 

stochastic gradient as follows:

(46)

The step-sizes εn satisfy the typical requirements in stochastic approximation i.e., Σεi = ∞ 

and . Procedure (46) is using stochastic gradients averaged over a mini-batch of b 

samples that is usually employed in SGD to reduce noise in the stochastic gradients. 

Notably, Sato and Nakagawa [2014] proved that procedure (46) converges to the true 
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posterior f(θ|Y) with an elegant use of stochastic calculus. Sampling through stochastic 

gradient Langevin dynamics has since generated a lot of significant work in MCMC 

sampling for very large data sets, and it is still a rapidly expanding research area with 

contributions from various disciplines [Hoffman et al., 2013, Pillai and Smith, 2014, 

Korattikara et al., 2014].

4.3 Reinforcement learning

Reinforcement learning is the multidisciplinary study of how autonomous agents perceive, 

learn and interact with their environment [Bertsekas and Tsitsiklis, 1995]. Typically, it is 

assumed that time t proceeds in discrete steps and at every step an agent is at state xt ∈ , 

where  is some state-space. Upon entering a state xt two things happen. First, an agent 

receives a probabilistic reward R(xt) ∈ ℝ, and then takes an action a ∈ , where  denotes 

the action-space. This action is determined by the agent’s policy, which is a function π:  → 

, thus mapping a state to an action. Nature then decides a transition to state xt+1 through a 

density p(xt+1|xt) that is unknown to the agent.

One important task in reinforcement learning is to estimate the value function Vπ(x) which 

quantifies the expected value of a specific state x ∈  for an agent. This is defined as

(47)

where xt denotes the state that will be reached starting at x after t transitions, and γ ∈ (0, 1) 

is a parameter that discounts future rewards. Note that the variation of R(xt) includes the 

uncertainty of the state xt because of the stochasticity in transitions, and the uncertainty from 

the reward distribution. Thus, Vπ(x) admits a recursive definition as follows:

(48)

When the state is a high-dimensional vector, one popular approach is to use the linear value 

approximation V(x) = θ★
⊤ϕ(x), where ϕ(x) maps a state to features in a space with fewer 

dimensions, and θ★ is a vector of fixed parameters. If an agent is at state xt, then the 

recursive equation (48) can be rewritten as

(49)

where we set ϕt = ϕ(xt) for notational convenience. Similar to SGD, this suggests a 

stochastic approximation method to estimate θ★ through the following iteration:

(50)

where at is a learning rate sequence that satisfies the Robbins-Monro conditions (see Section 

2.1). Equation (50) is known as the temporal differences (TD) learning algorithm [Sutton, 

1988]. Implicit versions of this algorithm have recently emerged in order to solve some of 

the known stability issues of the classical TD algorithm [Schapire and Warmuth, 1996, Li, 
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2008, Wang and Bertsekas, 2013, Tamar et al., 2014]. For example, Tamar et al. [2014] 

consider computing the term  at the future iterate, and thus the resulting implicit TD 

algorithm is

(51)

Similar to implicit SGD, iteration (51) stabilizes the TD iterations. With the advent of online 

multiagent markets, methods and applications in reinforcement learning have been receiving 

a renewed stream of research effort [Gosavi, 2009].

4.4 Deep learning

Deep learning is the task of estimating parameters of statistical models that can be 

represented by multiple layers of non-linear operations, such as neural networks [Bengio, 

2009]. Such models, also referred to as deep architectures, consist of units that can perform 

a basic prediction task, and are grouped in layers such that the output of one layer forms the 

input of another layer that sits directly on top. Furthermore, in most situations the models are 

augmented with latent units that are defined to represent structured quantities of interest, 

such as edges or shapes in an image.

One basic building block of deep architectures is the Restricted Boltzmann Machine (RBM). 

The complete-data density for an observation (x, y) of the states of hidden and observed 

input units respectively, is given by

(52)

where θ = (b, c, W) are the model parameters, and the normalizing constant is Z(θ) = Σx,y 

exp{−b′y − c′x − x′Wy} (also known as the partition function). Furthermore, the sample 

spaces for x and y are discrete (e.g., binary) and finite. The observed-data density is thus 

P(y; θ) = Σx P(x, y; θ). Let H(x, y; θ) = b′y + c′x + x′Wy, such that . 

Through simple algebra one can obtain the log-likelihood of an observed sample yobs in the 

following convenient form:

(53)

In practical situations the data x, y are binary. Therefore the conditional distribution of the 

missing data x|y is readily available through the usual logistic regression GLM model, and 

thus the second term of (53) is easy to sample from. Similarly, y|x is easy to sample from. 

However, the first term in (53) requires sampling from the joint distribution of the complete 

data (x, y), which conceptually is easy to sample from using the aforementioned conditionals 

and a Gibbs sampling scheme [Geman and Geman, 1984]. However, the state space for both 

x and y is usually very large e.g., comprised of thousands or millions of units, and thus a full 

Gibbs on the joint distribution is usually impossible.
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The method of contrastive divergence [Hinton, 2002, Carreira-Perpinan and Hinton, 2005] 

has been applied for training such models with considerable success. The algorithm 

proceeds as follows for steps i = 1, 2, …:

1. Sample one state y(i) from the empirical distribution of observed states.

2. Sample x(i)|y(i) i.e., the hidden state.

3. Sample y(i,new)|x(i).

4. Sample x(i,new)|y(i,new).

5. Evaluate the gradient (53) using (x(i), y(i)) for the second term, and the sample 

(x(i,new), y(i,new)) for the first term.

6. Update the parameters in θ using constant-step size SGD and the estimated gradient 

from Step 4.

In other words, contrastive divergence estimates both terms of (53). This estimation is 

biased because (x(i,new), y(i,new)) is assumed to be from the full joint distribution of (x, y). In 

fact, contrastive divergence might operate in k steps in which the Steps 3–4 are repeated k 

times, in an effort to approximate the joint distribution better by letting the chain run longer. 

Although in theory larger k should approximate the full joint better, it has been observed that 

k = 1 is enough for good performance in many learning tasks [Hinton, 2002, Taylor et al., 

2006, Salakhutdinov et al., 2007, Bengio, 2009, Bengio and Delalleau, 2009].
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