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ABSTRACT
Researchers have shown that, in recent years, unwanted web
tracking is on the rise, with browser-based fingerprinting be-
ing adopted by more and more websites as a viable alterna-
tive to third-party cookies.

In this paper we propose PriVaricator, a solution to the
problem of browser-based fingerprinting. A key insight is
that when it comes to web tracking, the real problem with
fingerprinting is not uniqueness of a fingerprint, it is linka-
bility, i.e., the ability to connect the same fingerprint across
multiple visits. Thus, making fingerprints non-deterministic
also makes them hard to link across browsing sessions. In
PriVaricator we use the power of randomization to “break”
linkability by exploring a space of parameterized random-
ization policies. We evaluate our techniques in terms of be-
ing able to prevent fingerprinting and not breaking existing
(benign) sites. The best of our randomization policies ren-
ders all the fingerprinters we tested ineffective, while causing
minimal damage on a set of 1,000 Alexa sites on which we
tested, with no noticeable performance overhead.

Categories and Subject Descriptors
K.6.5 [Security and Protection (D.4.6, K.4.2)]: Inva-
sive software
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tracking; fingerprinting; randomization

1. INTRODUCTION
Browser-based fingerprinting, proposed as a theoretical

threat to online privacy several years ago, has emerged as
a full-fledged alternative to traditional cookie-based track-
ing. Recent work has demonstrated the growing prolifer-
ation of JavaScript-based fingerprinting on the web [2, 20].
Today, companies such as BlueCava [7], ThreatMetrix [23]
and iovation [15] routinely fingerprint millions of web users.
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However, despite several attempts, mostly involving privacy-
enhancing browser extensions, there has been a dearth of
comprehensive privacy-enhancing technologies addressing in-
browser fingerprinting. In this paper, we propose a compre-
hensive approach to prevent reliable fingerprinting in the
browser, called PriVaricator.

Key insight: Much has been made of the fact that it is
possible to derive a unique fingerprint of a user, primarily
via JavaScript as shown by the Panopticlick project [12].
The main insight behind PriVaricator is the realization that
the culprit behind fingerprinting is not the fact that a user’s
fingerprint is unique, but that it is linkable, i.e., it can be
reliably associated with the same user over multiple vis-
its. While popular prevention techniques have attempted
to make the fingerprints of large groups of users look the
same [24], the key insight our paper explores involves doing
the opposite. PriVaricator modifies the browser to make every
visit appear different to a fingerprinting site, resulting in a
different fingerprint that cannot be easily linked to a finger-
print from another visit, thus frustrating tracking attempts.

Randomization policies: In this paper we explore a space
of randomization policies designed to produce unique fin-
gerprints. The basis of our approach is to change the way
the browser represents certain important properties, such as
offsetHeight (used to measure the presence of fonts) and
plugins, to the JavaScript environment. We observe that
creatively misrepresenting — or lying — about these values
introduces an element of non-determinism, which generally
makes fingerprints unlinkable over visits.

Note that the randomization is not as easy as it might
sound: as discussed by Nikiforakis et al. [20], producing
practically impossible combinations of, say, browser headers
and the navigator object, can actually reduce user privacy.
Intuitively, blatant lying is not such a good idea, since it can
significantly degrade the user experience by, for instance,
presenting Firefox-optimized sites to users of IE, leading to
visual discrepancies or calls into missing APIs. However,
subtly misrepresenting key properties of the browser envi-
ronment goes a long way towards combating fingerprinters.
In summary, a randomization policy should 1) produce un-
linkable fingerprints and 2) not break existing sites.

Practical focus: In this paper we concentrate our atten-
tion on randomizing plugins and fonts, as these dominate
in the current generation of fingerprinters (Table 1). We,
however, consider the approach presented here to be fully
extendable to other fingerprinting vectors if that becomes
necessary. Since today’s browsers update themselves as fre-
quently as once a week, the list of randomization policies can



be expanded over time if needed. The issue of extensibility
over time is discussed in Section 6.

Deployment: We have implemented PriVaricator on top of
the Chromium web browser. We position PriVaricator as an
enhancement to the private browsing mode already present
in the majority of browsers. Existing private modes help
prevent stateful tracking via cookies; PriVaricator focuses on
preventing stateless tracking. We believe that it is better
to integrate PriVaricator into the browser itself as opposed to
providing it via an extension. One of the reasons for this,
is the fact that most privacy extensions so far have only
enjoyed a small deployment base, which in fact often makes
it easier for the fingerprinter to identify the user [20].

Evaluation: We discovered that a number of our policies
are able to render the fingerprinters we tested ineffective,
while creating minimal damage to benign sites. In partic-
ular, the best of our policies renders all the fingerprinters
we tested on ineffective, while only altering the visual ap-
pearance of, on average, 0.7% of the content offered by the
top 1,000 Alexa sites. Using three JavaScript benchmark
suites, we show that the modifications needed to implement
PriVaricator on top of the Chromium browser cause a negli-
gible performance overhead.

The reader may improve their intuition by watching two
short “before/after” demo videos that show how PriVaricator

helps against BlueCava, one of the most widely used fin-
gerprinting services. In the first video BlueCava finger-
prints a “vanilla” browser (https://vimeo.com/95340734).
In the second video, BlueCava is failing to fingerprint against
PriVaricator (https://vimeo.com/95366100).

2. BACKGROUND
Recent studies have discovered that fingerprinting is emerg-

ing as a real alternative to traditional cookie-based track-
ing [1, 2, 20]. A device fingerprint is a set of system at-
tributes that are usually combined in the form of a string.
This combination of attributes is generally designed to be
unique with a high likelihood and, as such, can function as
a device identifier. Attributes that range over a broader set
of values (e.g., the list of fonts and plugins) are more iden-
tifying than values shared by many devices (e.g., version of
the operating system). Stability is a desirable property in a
fingerprinting strategy; choosing attributes with values that
are more stable over time (i.e., that change only infrequently
or very gradually) facilitate reliable identification, compared
to those that change frequently and unpredictably.

Web-based device fingerprinting is the process of collect-
ing sufficient information through the browser to perform
stateless device identification. The collected information is
generally obtained via JavaScript and includes the device’s
screen size, the versions of installed browser plugins, and
the list of installed fonts. Figure 1 shows how modern fin-
gerprinters can use the differences in the sizes of strings ren-
dered with different fonts to collect a user’s list of fonts,
bypassing the need of explicit font-providing APIs. Due to
space limitations, we refer the interested reader to some of
our previous work [20] for a more thorough explanation of
the font-detecting capabilities of modern fingerprinters.

2.1 Why Fingerprint?
When it comes to the motivation behind web-based device

fingerprinting, two reasons have emerged as most common.

function getFonts (){
/* Long list of fonts */
var fonts = ["cursive","monospace","serif","sans -

serif","fantasy","Arial","Arial Black","Arial
Narrow" ,...]

/* Measuring ground truth */
var ground_truth = getFontMeasurement("sans");
var discovered_fonts = []

/* Testing for each font family */
for(var i=0; i < fonts.length; i++){

c_measurement = getFontMeasurement(fonts[i]);
if (c_measurement [0] != ground_truth [0] ||

c_measurement [1] != ground_truth [1]){
discovered_fonts.push(fonts[i]);

}
}
return discovered_fonts;

}

Figure 1: Font detection through JavaScript

Third-party tracking: Probably the most common use
of fingerprinting involves tracking the user across multiple,
possibly unrelated, web sites to construct an interest profile
for the user; this profile can then be employed to deliver
targeted ads. As has been argued before, fingerprinting
is an effective and stealthy alternative to stateful cookie-
based user tracking. In a sense, the better fingerprinting
works, the more information is learned about the user with
a higher degree of reliability, leading to better ad target-
ing and thus to higher conversion rates for the advertisers.
This creates a direct incentive for ad delivery networks to in-
vest in better fingerprinting strategies, especially given that
fingerprinters might not necessarily obey browser-provided
Do-Not-Track (DNT) headers [2].

Fraud prevention: Third-party tracking, an activity that
has provoked much outrage on the part of both privacy ad-
vocates and some users, is not the only motivation behind
fingerprinting. It is sometimes argued that fingerprints can
be used for fraud prevention. We refer the interested reader
to some of the literature from the fingerprinting companies
themselves [15, 22, 23] for further details. We should note
that it is not obvious that collected fingerprints cannot be
also sold to third parties or abused for tracking purposes by
the companies that collect them.

In connection to fraud prevention, advocates of finger-
printing claim that a device fingerprint is a powerful tool for
finding related transactions either as an identifier in itself or
as a means of finding transactions with related characteris-
tics. Fingerprints also can be used to find out when accounts
are being illegally shared by more than one persons. The
gathered fingerprints can be augmented with device reputa-
tion information and be used to blacklist fraudulent users
and their activities.

Opt-out: While some of the aforementioned fingerprinting
companies offer opt-out pages for the user, it is highly non-
obvious what a successful opt-out really means. Ironically,
to know that a user has opted-out of tracking, the finger-
printers still first need to compute the fingerprint (assuming
cookies are disabled) and then, if they are honest, proceed
to disregard information from that session.

Compared to stopping stateful tracking that can be achieved
at the client-side, via disabling or clearing cookies, and the
help of many extensions, this server-side approach to opt-



Fingerprinting Script Plugin Screen Uses Access to
provider name enumeration properties canvas offsetWidth offsetHeight

BlueCava BCAC5.js X X 7 63 63
Perferencement tagv22.pkmin.js X X 7 155 155
CoinBase application-9a3a[...].js X X 7 592 197
MaxMind device.js X X 7 261 27
Inside graphs ig.js X X 7 1,050 48

Table 1: Techniques used by various fingerprinters in the wild.

ing out is not satisfying because, ultimately, the user needs
to trust the fingerprinting server. With PriVaricator, reliable
fingerprinting is rendered impossible in the first place.

3. OVERVIEW
At the heart of PriVaricator is a strategy for misrepresent-

ing the way parts of the browser environment are presented
to the JavaScript language runtime. Previous studies of fin-
gerprinters in the wild [2] have identified certain parts of the
browser environment reflected into JavaScript as key to pro-
ducing a reliable fingerprint. These properties range from
common ones such as navigator.userAgent to ones that are
significantly more obscure such as getBoundingClientRect

which may be used to test for the presence of particular
fonts on a user’s machine, instead of the offsetHeight and
offsetWidth attributes of DOM elements. Of course, our
wish is to misrepresent environment properties of features
that would be most damaging to fingerprinters without break-
ing existing code. As such, lying about navigator.userAgent
is generally not a good idea: this may very well cause the
server to send HTML code designed for a different browser.
However, subtly changing the results of offset measurements
turns out to be a better option.

Table 1 lists some of the representative fingerprinters found
in the wild, showing which fingerprinting features they use [2].
While none of these fingerprinting companies employ canvas-
based fingerprinting, as described in [18], concurrent work
by Acar et al. [1] showed that other tracking companies have
started making use of it. Even though our current prototype
of PriVaricator does not address canvas-based fingerprinting,
it is straightforward to add support for it, as further elabo-
rated in Section 6.

Based on this information, combined with statistics about
which features provide the highest number of bits of identi-
fying information, in this paper, we primarily focus on ran-
domizing 1) plugins and 2) fonts. Each of these provide
more than 21 bits of identifying information, according to
Panopticlick [12].

3.1 Randomization Policies
Our strategy in PriVaricator is to intercept each of the ac-

cesses to DOM properties of interest and augment the val-
ues returned to the JavaScript environment using a set of
randomization policies. A wide range of randomization poli-
cies may apply in principle; for example, for integer values
of properties such as offsetWidth, a slight change to the
returned value is enough. For a property that is more struc-
tural and complex, such as the toDataURL function used in
canvas-based fingerprinting that returns the current state of
the canvas as an image [18], a different randomization policy
may be used; an example policy for images may add slight
visual noise to the returned image.

Policies for offset measurements: For the values of
offsetHeight, offsetWidth, and getBoundingClientRect

in PriVaricator, we propose the following randomization poli-
cies: a) Zero; b) Random(0..100); and c) ± 5% Noise. When
these policies are active, instead of returning the original
offset value, they return zero, a random number between 0
and 100, and the original number ±5% noise, respectively.
What these policies have in common is that they perform
arithmetic operations on numbers with deterministic and
non-deterministic results. While one can probably envision
many more randomization policies, we focused on those that
generate plausible offset values (e.g. no generation of nega-
tive numbers) as well as those that will create enough noise
to confuse fingerprinting efforts. For instance, for the third
policy, if the percentage of noise added to an offset is too
little, then, for small offset values, it may be rounded off to
the same original integer value and become ineffective.

These policies are controlled by a lying threshold (denoted
as θ) and a lying probability (denoted as P (lie)). θ controls
how fast PriVaricator starts lying, i.e., after how many ac-
cesses to offsetWidth or offsetHeight values, will the pol-
icy kick in. P (lie) specifies the probability of lying, after
the θ threshold has been surpassed.

Policies for plugins: For the randomization of plugins,
we define a probability P (plug hide) as the probability of
hiding each individual entry in the plugin list of a browser,
whenever the navigator.plugins list is populated.

Example: As an example, a configuration of

Rand Policy = Zero,
θ = 50,

P (lie) = 20%,
P (plug hide) = 30%

instructs PriVaricator to start lying after 50 offset accesses,
to only lie in 20% of the cases, to respond with the value 0
when lying, and to hide approximately 30% of the browser’s
plugins. In Section 5 we investigate which combinations of
values provide the best tradeoff between the production of
unlinkable fingerprints and the breakage of benign websites.

3.2 Breakage Concerns
Building an effective fingerprinting prevention tool involves

balancing the effectiveness of preventing fingerprinters and
breaking real sites. To better understand the latter, we
crawled the top 10,000 Alexa sites to determine which ones
use properties that are of interest to fingerprinters.

Access to property offsetHeight tends to be pretty telling.
Overall, 82.3% of scripts have 0 accesses to offsetHeight.
However, 1.87% of scripts have more than 50 accesses when
visited at runtime. We summarize the results of our crawl
in Table 2, sorted by the number of runtime accesses to
offsetHeight. Fortunately, the majority of sites seem to
be ranked not very high. However, some of the sites listed,
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6,444 bunte.de 0 1 0 1 0 0 2 8 0 0 0 0 1 2 205,115 202,909
8,039 nzz.ch 3 34 1 34 4 4 4 176 5 0 0 5 4 248 187,881 187,349

191 spiegel.de 2 4 0 4 0 0 0 15 3 0 0 1 4 7 154,265 149,293
4,037 wistia.com 1 2 0 2 0 0 3 81 0 0 0 0 0 0 109,347 109,299
1,369 zeit.de 0 4 1 4 0 0 2 8 3 2 0 0 5 1,318 70,025 72,268
8,894 menards.com 0 0 0 0 0 0 0 3,783 0 0 0 0 0 37 43,847 38,715
4,754 groupon.fr 0 0 0 0 0 0 0 1 0 0 0 0 0 15 150,717 36,627
7,488 xinmin.cn 0 0 0 1 0 0 0 70,380 0 0 0 3 0 4,426 34,229 31,996
2,320 celebuzz.com 2 55 0 55 4 2 0 23 0 0 0 0 4 326 27,831 27,779
1,370 wetter.com 4 30 0 30 6 1 8 18 5 0 0 1 7 212 22,578 21,764

Table 2: How widely are various fingerprintable browser properties used in the wild.

such as spiegel.de, are clearly important and we should
take care not to break them in PriVaricator.

4. IMPLEMENTATION
In Section 3 we discussed the possible randomization poli-

cies that can be applied on the browser interfaces that are
commonly abused for fingerprinting purposes. Since web-
based device fingerprinting happens on the client side, the
aforementioned policies could, in theory, be applied via an
HTTP proxy, a browser extension, or built into the browser
itself. We ultimately chose to instrument the browser itself,
although we first examined the other approaches.

Strawman approach: JavaScript-level interception:
During preliminary experimentation, we attempted to de-
tect accesses to fingerprintable properties by using getters,
as defined in ECMAScript5, on the objects and attributes
of choice, e.g., navigator.plugins. At first glance, given
the amount of obfuscation routinely found in JavaScript
code, this seems a better strategy than attempting to in-
strument JavaScript code at the source level (e.g. via an
HTTP proxy). The JavaScript code that defined these get-
ters was injected in a page using a browser extension.

During that time, however, we encountered many browser-
specific issues that eventually steered us towards modifying
the browser itself. For instance, in order to be able to lie
about the offsetWidth and offsetHeight of any given ele-
ment, we need to intercept the requests of these attributes
on all elements on a page, since we cannot a priori know
which element(s) are going to be used for font detection.
Unlike the navigator and screen objects which are created
by the browser and thus always available, HTML elements
are created initially when parsing a page’s HTML code, as
well as on-demand, whenever a programmer wishes to do so
through JavaScript. As such, we need to intercept the cre-
ation of all HTML elements and define getters upon their
creation.

The natural way to do this, is to “poison” the correct ob-
ject prototype, so that all future JavaScript objects that
inherit from that prototype will also inherit the getters.
We discovered that although our prototype poisoning was
working in Mozilla Firefox, it failed to work as expected
in Google Chrome. By investigating the issue, we discov-
ered that in Chrome, the offsetWidth and offsetHeight

properties are not part of the HTMLElement prototype, but
rather they are defined and initialized upon the creation of

Browser JSBench SunSpider Kraken

Chromium 72.31 ±0.40 139.20 ±1.00 1,146 ±20.48
PriVaricator 72.10 ±0.31 138.70 ±0.49 1,142 ±20.09

Table 3: Performance comparison of “vanilla” Chromium and
Chromium equipped with PriVaricator. All measurements are in
ms.

new elements. Interestingly, this is not the case for the the
getBoundingClientRect method which also returns an ele-
ment’s offsetWidth and offsetHeight, and yet is defined
in the expected prototype.

In addition to this browser-specific behavior, the use of
getters also suffers from transparency issues. That is, a
(malicious) script can check for the existence of getters us-
ing, among others, the Object.getOwnPropertyDescriptor
method. Achieving transparency at the language level is
fundamentally difficult [14].

Our implementation: For the reasons of better compat-
ibility and transparency, we ultimately chose to implement
our randomization policies within the browser, by chang-
ing the appropriate C++ code in the classes responsible for
creating the navigator object, and the ones measuring the
dimensions of elements. These changes are, by nature, very
local; our full prototype involves modifications to a total of
seven files in the WebKit implementation of the Chromium
browser, version 34.0.1768.0 (242762).

5. EVALUATION
The goal of PriVaricator’s evaluation is three-fold. In ad-

dition to ensuring that the overhead of PriVaricator is min-
imal (Section 5.1), we want to maximize the effectiveness
of fingerprinting prevention (Section 5.2), while minimizing
the overall damage to the way users perceive the web (Sec-
tion 5.3). When it comes to privacy-enhancing technologies,
this tradeoff is not entirely new. For example, Mozilla Fire-
fox decided to misreport (to JavaScript programs) the com-
puted styles for links in order to prevent history leaks [5],
after they had been demonstrated on a large scale.

5.1 Performance Overhead
In order to assess the performance overhead of PriVaricator,

we used three independently-developed JavaScript bench-
mark suites: SunSpider version 1.0.2, Kraken version 1.1,



and JSBench version 2013.1. Even though these bench-
mark suites already take repeated measurements, we also
executed each suite five times, clearing the browser’s cache
in between runs. The experiments were run on a desktop
machine, running a recent Ubuntu Linux distribution, with
an Intel Core i5-3570 CPU @ 3.40 GHz processor, and 8 GB
of RAM.

Table 3 shows the average benchmark execution times (in
ms) and standard deviations for an unmodified version of the
Chromium browser, and for the same Chromium browser
with our modifications present and enabled. To calculate
the upper bound of PriVaricator’s overhead, we used the lying
policy with the most computations (± 5% Noise) configured
with the worst (from a performance point of view) parameter
settings, i.e., θ equal to zero and P (lie) equal to 100%. All
three benchmarks reported that our runs with PriVaricator

executed, on average, slightly faster than the ones of the
unmodified browser. Given the standard deviation of our
measurements, our instrumentation is not, in reality, speed-
ing up the browser; instead, these measurements show that
the added overhead of PriVaricator is so negligible that it does
not exceed the inherent noise in the reported execution time
of browser benchmarks.

5.2 Preventing Fingerprinting
While one can fully analyze the client-side JavaScript code

of fingerprinters, the way in which a user’s fingerprintable
attributes are combined and mapped to a fingerprint (also
known as a device identifier) is not necessarily a client-side
operation. In order to assess how our randomization poli-
cies affect a fingerprinter’s ability of identifying us, we chose
four services that can be used as black-box oracles. Some
of these revealed the device identifier as part of the opt-out
process, while with others more investigation was required.
Unfortunately, finding fingerprinters that are willing to dis-
close information about their internal workings is a major
challenge and it took us some time to understand how to
test these four fingerprinters. For this evaluation, we mea-
sured how PriVaricator stands against BlueCava, Coinbase,
PetPortal, and fingerprintjs, as explained below.

BlueCava: Similar to other third-party trackers, BlueCava
provides an opt-out page (http://bluecava.com/opt-out)
for users who wish to opt-out of tracking by BlueCava. On
this page, users are fingerprinted and their fingerprintable
attributes are sent to BlueCava’s server. The server then re-
sponds with a device identifier, e.g., 18B1-EBFC-A3F0-6D81-
6DE8-D8DA-CA56-A22B, and whether this device identifier
has already opted-out in the past. The details of how a
user’s fingerprintable attributes are combined into a device
identifier are proprietary and are unknown to us.

PetPortal: Boda et al. have created a cross-browser finger-
printing suite as part of their research in browser fingerprint-
ing [9], available at http://fingerprint.pet-portal.eu/.
As in the case of BlueCava, the user’s fingerprintable at-
tributes are delivered to the server, which then sends back
a device identifier and whether the device identifier belongs
to a new, or returning, user.

Coinbase: Even though Coinbase does not provide an opt-
out page, the algorithm for deriving a device identifier from
a user’s fingerprintable attributes is part of their client-side
JavaScript code. More specifically, when a site includes re-
mote JavaScript code for obtaining Coinbase’s “Pay with
Bitcoin”button, the remote code creates an iframe, in which

the fingerprinting code runs [10]. Once the fingerprint is
computed, it is MD5-ed and then set as a cookie on the
user’s machine. When the user clicks on the payment but-
ton, her fingerprint will be automatically submitted to the
Coinbase server via the user’s cookies.

fingerprintjs: Finally, fingerprintjs is an open-source fin-
gerprinting library which, like Coinbase, runs fully on the
client-side. fingerprintjs is inspired by Panopticlick [12] and
contains most of its features. Interestingly, fingerprintjs is
also the only library, that we encountered, that fingerprints
a user’s machine using the HTML5 canvas as proposed by
Mowery et al. [18]. It should be noted that it is not yet
entirely clear how effective canvas-based fingerprinting is, in
practice [4]. Lastly, note that fingerprintjs does not support
JavaScript-based font detection.

5.2.1 Experimental Setup
In all four cases, the individual fingerprinting providers

gave us a way of assessing the efficacy of PriVaricator, simply
by visiting each provider multiple times using different ran-
domization settings, and recording the fingerprint provided
by each oracle. To explore the space of possible policies in
detail, we performed an automated experiment where we
visited each fingerprinting provider 1,331 times, to account
for 113 parameter combinations, where each parameter of
our randomized policy (lying threshold, lying probability,
and plugin-hiding probability) ranged from 0 to 100 in in-
crements of 10.

Before we present the results of this experiment we would
like to elaborate on two of our decisions.

Panopticlick: We chose against the use of Panopticlick [11]
since the feedback that it provides to users is of a semi-
qualitative nature, e.g., “You are unique among 4 million
users”. This type of statement does not allow us to compare
the fingerprints received from multiple visits, and thus does
not allow us to reason about the effect that our parame-
terized randomization policies have against it. In addition,
since all the sets of attributes collected by the studied finger-
printers are supersets of Panopticlick, we have no reason to
expect that our results would have been dramatically differ-
ent, had we been able to include Panopticlick in our study.

Focusing on the ± 5% Noise policy: Even though we
propose multiple lying policies about offsets, in this sec-
tion, we only show the effect of PriVaricator’s ± 5% Noise
policy, on the four aforementioned fingerprinters. This de-
cision is made in favor of more compact presentation of our
results, and in light of the fact that, as described in detail in
Section 5.3, the ± 5% Noise policy incurs the least amount
of breakage on legitimate websites thus is the policy that
strikes the desired balance between thwarting fingerprinting
and maintaining the usability of benign web pages. Do note,
however, that all policies have similar results due to the ef-
fect of randomization on the way fingerprinters detect the
installed fonts.

This is because, as shown in the font-detecting JavaScript
snippet (Figure 1), fingerprinting providers first establish
ground truth using a font-family that they expect to be
present on all devices (e.g. sans), and then compare the
offsetWidth and offsetHeight of text using other font-
families against that ground truth. PriVaricator will cause
deviations from that ground truth and may even poison
the fingerprinters’ ground truth itself, if the ground truth
is acquired after the lying threshold (θ) of our policies is



(a) BlueCava (b) fingerprintjs (c) PetPortal

Figure 2: Distribution of device identifiers across three different fingerprinters. For graphs (a) and (b), we show the points where
the fingerprinters recognized us as the same user, i.e., PriVaricator failed. For graph (c) we show the points where PetPortal did not
recognize us as the same user, i.e., PriVaricator succeeded.

surpassed. As such, all of our lying policies will cause the
fingerprinter to believe that our machine has fonts that it
actually does not have (false positives).

5.2.2 Results
The results of this set of experiments are shown in Fig-

ure 2. In all three scatter-plots, the x-axis represents the
probability of lying, the y-axis represents the lying thresh-
old, while the z-axis represents the probability of hiding each
individual plugin in our browser’s list of plugins. For the first
two graphs, colors and symbols represent clusters of finger-
prints, e.g., all green plus signs denote the same fingerprint,
within a given service.

BlueCava: For BlueCava, in Figure 2a one can see that
their fingerprinting algorithm can only track us mostly along
the edges of the graph. For example, when our plugin-hiding
probability is 0, i.e., we always show all plugins, and the
lying probability is also 0, i.e., we never lie, we get the same
fingerprints (green plus-signs at the “bottom” of the graph).

What is also interesting is how fingerprints change when
the lying threshold is less than 60, or greater than 60. One
reasonable explanation for this effect is that when our thresh-
old is lower than 60, we then poison the ground truth of the
JavaScript-based font detection algorithm, which leads to
having an increased number of fonts marked as “present.”
This change of fingerprint is visible both when the plugin
probability is 0% (bottom-left of the graph), as well as when
the plugin-hiding probability is 100% (top-left of the graph).

At the same time, it is also evident that most of the cube is
empty, that is, in all points other than the ones present, ev-
ery fingerprint was unique, yielding 96.32% of all fingerprints
being unique. This shows how fragile BlueCava’s identifica-
tion is against our randomization policies.

fingerprintjs and Coinbase: For fingerprintjs, Figure 2b,
the arrangement of points is visibly different from Blue-
Cava’s. Since this library does not support for JavaScript-
based font detection, our choices of lying probability and
lying threshold have no effect. What has the most influence
is the value of the plugin-hiding probability. It is evident
that fingerprintjs can only track us either when we have no

plugins showing, i.e., hiding probability equals 100%, or all
plugins showing, i.e., hiding probability is 0%.

In nearly all intermediate points (78.36% of the total set
of collected fingerprints), randomness works in our favor by
returning different sets of plugins, which, in turn, result in
different fingerprints. These results show how important it is
to combine randomization approaches in order to deter fin-
gerprinters who do not utilize all fingerprintable attributes
of a user’s browsing environment. In Section 6 we briefly
discuss why, given the current state of the art in fingerprint-
ing, a fingerprinter cannot avoid extracting both fonts and
plugins, while maintaining meaningful results. Coinbase’s
results were very similar to fingerprintjs’s; we briefly discuss
them in the Appendix.

PetPortal: Lastly, Figure 2c, shows the results of our ex-
periment against PetPortal. Note that for this figure, be-
cause of the large number of clusters, to make the results
more readable, we show all the configurations that resulted
in unique fingerprints, instead of showing clusters of same
fingerprints. It is evident that PetPortal succeeds more in
tracking us than BlueCava, Coinbase, and fingerprintjs.

In contrast with the other three services, we were able to
get unique fingerprints in “only” 37.83% of the 1,331 param-
eter combinations. One can notice from this graph that we
defeat tracking when the lying probability is in the range
of 10% to 60%. When the lying probability exceeds 60%
we begin lying too often, which likely results in having most
fonts marked as “present.” There, we also see a lack of effect
from the plugin-hiding probability which cannot recover us
from being accurately fingerprinted. This likely means that
PetPortal places more weight on the discovered fonts, and
less on the claimed plugins.

Summary: Overall, our experiments showed that, while
the specific choices of each fingerprinter affect the unique-
ness of our fingerprints, PriVaricator was able to deceive all of
them for a large fraction of the tested combination settings.
Moreover, the presence of clusters of identical fingerprints
demonstrates that most fingerprinting providers derive a fin-
gerprint by following a more complicated approach than just
hashing all fingerprintable attributes together. Compara-
tively speaking, PetPortal was most resistant to PriVaricator.



5.3 Assessing the Breakage
In the previous section, we demonstrated that PriVaricator

was able to withstand fingerprinting by measuring the num-
ber of unique fingerprints received, for a total of 1,331 set-
tings combinations. By computing the intersection of the
points resulting in unique fingerprints across all four finger-
printing providers, (essentially identical to PetPortal’s re-
sults), we obtain a range of settings, all of which provide
prevention from reliable fingerprinting. In this section, we
assess the level of breakage of benign sites for each of those
parameter combinations.

Experimental setup: An element’s offset properties (ac-
cessible through offsetWidth and offsetHeight) provide
information to a JavaScript program about the size of that
element, as is currently rendered on a user’s screen. When
PriVaricator lies about these values, it creates a potential for
visual breakage. For example, by reporting that an element
is smaller than it actually is, PriVaricator could cause the page
to place it in a smaller container, hiding part of its content
from the user. Numerically, we define breakage as the frac-
tion of pixels that are different when a site is loaded with a
vanilla browser (PriVaricator turned off) and with PriVaricator.

To assess the breakage, we instrumented Chromium to
visit the main pages of the top 1,000 Alexa sites, for 48
different combinations of lying probability and lying thresh-
old; these were the parameter combinations that resulted in
unique fingerprints, as described in the previous section. To
contain the dimensionality of this experiment, we statically
assigned the plugin-hide probability to zero (showing all plu-
gins) since we reasoned that the main pages of the most pop-
ular sites of the web likely behave the same for users with
different plugins. At every site visit, the browser waited
for 25 seconds and then captured a screenshot (1,050x850
pixels) of the rendered content.

In order to separate between visual differences caused by
PriVaricator, and visual differences caused by the inherent
variation of a site, e.g., ads, image carousels, and newly
posted content, we collected a new vanilla-browser screen-
shot every ten visits of a page, resulting in a total of five
extra screenshots. Since any visual variation detected on
these five screenshots can be attributed to a website’s dy-
namic content, we computed a visual mask of differences ap-
pearing on them, and used it when comparing a screenshot
captured using a specific policy parameter combination, to
the vanilla one. This mask can be applied to all PriVaricator

screenshots to exclude the naturally varying parts of a page
from subsequent breakage comparisons. For illustration,
Figure 3 shows three different vanilla-browser screenshots
of tumblr.com and the computed mask.

Finally, while in the previous section the choice of ran-
domization policy was not as important, in this section, dif-
ferent policies are likely to produce different visual results,
e.g., receiving a value that is 5% off the expected one, versus
receiving a value that is completely random. Thus, the en-
tire experiment had to be repeated for every randomization
policy: (a) Random(0..100); b) Zero; and c) ± 5% Noise).
Overall, we collected a total of approximately 159,000 im-
ages, occupying 54 GB of disk space, which we compared in
order to quantify the breakage caused by PriVaricator.

Results: The results of our breakage experiments are first
detailed in Figure 4 and then summarized in Table 4. Ta-
ble 4a presents the minimum, average, and maximum break-

Policy Min Mean Max %

Random(0..100) 0.8% 1.4% 2.1%
Zero 0.4% 0.8% 1.3%
± 5% Noise 0.4% 0.6% 0.9%

(a) Summary of breakage results.

Policy Min Mean Max %

Random(0..100) 0.8% 1.5% 2.3%
Zero 0.4% 0.9% 1.4%
± 5% Noise 0.4% 0.7% 1.0%

(b) Breakage when ignoring pages with masked content greater
than 30% (approx. 84% of pages remaining).

Table 4: Breakage summary with and without including sites
with large masks.

age for all three policies when considering the fractions of
different pixels across all sites. Since we noticed that, in
some cases, the computed masks were too large, we also cal-
culated the breakage of sites when ignoring sites that had
masks with size larger than 30% of the total image; this is
shown in Table 4b. This way, we ignore sites that would
give PriVaricator an unfair advantage by hiding real break-
age under a site’s natural variation. While the latter set of
numbers is slightly larger than the former, it is evident, not
only that the ± 5% Noise policy incurs the least breakage
but that the breakage itself is, on average, less than 1%.

Every point in Figure 4 is the average breakage of all 1,000
Alexa sites visited with PriVaricator using a specific 〈P (lie), θ〉
configuration, and one of our three lying policies. For in-
stance, in Figure 4b, the average breakage of sites when vis-
ited by PriVaricator configured with a lying probability equal
to 10% and a lying threshold of 30 accesses is 0.004, under
the Zero policy. That is, the sites visited by PriVaricator with
that specific combination of settings had, on average, 0.4%
different pixels when compared to the vanilla screenshots.

For the breakage caused by the Random(0..100) policy
(Figure 4a) and Zero policy (Figure 4b), one can discern
a positive relationship between the lying probability and
the resulting breakage. This relationship makes intuitive
sense. The more often PriVaricator lies using these policies,
the more often a website receives an unexpected value of 0,
or a random number between 0 and 100. On the other hand,
this relationship is significantly weaker in ± 5% Noise pol-
icy results (Figure 4c). We argue that this is because the
modified offset value is relatively close to the value that a
script would otherwise expect, thus minimizing the number
of sites breaking because of such small modifications.

Inspecting breakage: To understand how a user would ex-
perience potential breakage, we manually reviewed the 100
screenshots (under the ± 5% Noise policy) with the largest
reported breakage. In this analysis, we discovered that in
only 8 cases, the differences could be attributed to PriVaricator.
The rest of the screenshots (92/100) were very different from
the vanilla screenshots due to a site’s inherent variations and
errors, not captured in any of the five vanilla screenshots. In
many cases, the sites would show an “in-page” pop-up ask-
ing the user to participate in a survey. Usually, this pop-up
would add a semi-transparent gray overlay over the page,



Figure 3: The first three screenshots show tumblr.com and its ever-changing backgrounds. The last image is an automatically-generated
mask for assessing the true breakage caused by PriVaricator. Black areas denote masked-out content.

(a) Random(0..100) policy (b) Zero policy (c) ± 5% Noise policy

Figure 4: Breakage caused by PriVaricator, given a series of possible configurations and a randomization policy

causing our automatic comparison algorithms to report a
very large visual difference.

Next to surveys, the reported breakage was due to miss-
ing or not-fully loaded ads, error-pages and image carousels.
In one case, PriVaricator had caused a slight stretch of a
site’s background image. While this led to a large com-
puted breakage, users would not notice the change if they
could not compare the page with the original non-stretched
version. Finally, we manually inspected the sites making
the most use of offset accesses (listed in Table 2) by visit-
ing them with PriVaricator and clicking on a few links on each
site. All sites were operational and usable, with the only dif-
ference being the location and movement of some objects,
e.g., moving ads, whose motion and placement was slightly
affected by the randomization policies of PriVaricator.

Summary: Overall, the results of our breakage experi-
ments show that the negative effect that PriVaricator has on a
user’s browsing experience is negligible. Moreover, our man-
ual analysis revealed that we have likely overestimated the
breakage since most of the pages with the highest reported
breakage turned out to be false positives.

Our low breakage results also allow us to avoid the temp-
tation of cherry-picking configurations for the ± 5% Noise
policy, something which could lead to issues related to over-
fitting. Instead, any of the many parameter configurations
could be picked for deployment, e.g., picking one at random
when a user starts a private mode session. We opine that an
average breakage of 0.7% (likely an upper bound with the
actual damage as much as 10x less) provides an acceptable
trade-off for the extra privacy that the user gains in return.

6. DISCUSSION
Explicit fingerprinting: Note that we do not claim to
solve the entire problem of web-based device fingerprinting
with PriVaricator. The focus of our work is on explicit at-
tempts to fingerprint users via capturing the details of the
browser environment. We do not attempt to provide protec-
tion against sophisticated side-channels such as browser per-
formance [17] which may be used as part of fingerprinting.
Our focus is on explicit fingerprinting, i.e., JavaScript-based
fingerprinting which operates by computing a function of
environment variables exposed within the browser, as these
are exclusively used in by the popular fingerprinters.

6.1 Comparing to Existing Approaches
Most existing attempts to combat fingerprinting rely on

making multiple users look identical. In terms of sophistica-
tion, browser extensions that spoof a browser’s user agent,
such as UserAgent Switcher and UserAgent RG, can be
viewed as the most straightforward fingerprinting counter-
measure. These extensions attempt to hide the true na-
ture of a browser and show another, possibly more main-
stream and less identifying, version. Unfortunately, how-
ever, these extensions are trivially bypassable as explained
by Nikiforakis et al. [20], since an attacker can deduce the
original version of the browser by searching for vendor- and
version-specific functionality.

On the other side of the spectrum, the Tor browser makes
cross-cutting changes to present the same browser attributes
for all Tor users so that a probing website may not be able
to differentiate between different users of the Tor network.



While Tor happily sacrifices usability for anonymity by dis-
abling all plugins, reporting false screen dimensions, and
limiting the number of fonts that any given page can use,
we reason that this may not be the goal for most online
users. We argue that PriVaricator is the middle-of-the-road
option that will allow benign web pages to be rendered with
minimum breakage (e.g., no limits in font loading, no un-
necessary changes in screen dimensions), while defeating the
fingerprinting efforts, as demonstrated in Section 5.2.

6.2 Deployment challenges
The key advantages of PriVaricator are its negligible over-

head and the relative ease of porting. It is easy to underesti-
mate the importance of low overhead, but given the current
emphasis on browser performance, it is unlikely that a pri-
vacy solution that suffers a large performance hit will be de-
ployed. Our design of PriVaricator has emphasized minimal
modifications to existing technology, which leads to small
overhead and negligible porting costs; overall, the automat-
ically generated patch of our modifications to Chromium
(including comments) is only 947 lines long.

Transparency: As with any defense strategy there is a
question of transparency. We do not claim to preserve trans-
parency in PriVaricator; indeed, this is a tough property to
maintain for just about any runtime protection mechanism.

Specifically, since PriVaricator is using randomness to re-
port different values for popular fingerprintable attributes,
a motivated fingerprinter could test for the presence of unex-
pected randomness, e.g., by inquiring about the dimensions
of an element 100 times, and then checking for differences in
responses. Similarly, a statistical attack may collect multiple
readings and average them over a large number of samples,
in an effort to approximate the real measurement.

Lie cache: One possible solution that alleviates this trans-
parency issue and thwart some of the statistical attacks is
setting up a “lie cache”, a mechanism where the browser
would report the same false value for multiple inquires about
the same, unmodified element. To break linkability, the lie
cache should be reset at the beginning of every new private
mode session, i.e., when a user is opening a private mode tab
or window of her browser. This would enhance the trans-
parency at the cost of linkability within the same private
mode session. We leave the exploration of this solution and
its tradeoffs for future work.

6.3 Making PriVaricator Extensible and
Future-Proof

Withstanding small changes: In Section 5.2 we showed
that PriVaricator’s randomization policies can thwart all mod-
ern commercial and open-source fingerprinting projects we
have access to. In this paper, we primarily cover two fin-
gerprinting vectors: plugins and fonts. Given that these two
vectors contain the highest discriminating power, it is to the
advantage of the fingerprinter to use both.

One, however, could argue that fingerprinters will adapt to
PriVaricator and change their strategy. If, for instance, a fin-
gerprinting library were to stop using plugin information and
would only rely on fonts, PriVaricator still offers a large set of
combinations for the Lying Probability and Lying threshold
parameters resulting in different fonts detected, and thus
different fingerprints for the same user.

In a similar fashion, PriVaricator can adapt to a finger-
printer that does not use font information, as was demon-
strated in Figure 2b, since the fingerprintjs library does not
use fonts. It is also important to stress that every time that
a fingerprinter consciously forsakes a fingerprinting vector,
he is increasing the probability of collisions of fingerprints of
different people. For example, two users may have the same
browser plugins but may have installed applications that
included different fonts and thus will have different fonts
detected by the fingerprinting scripts.

Lastly, if a fingerprinter decides to use neither fonts nor
plugins, he will be abandoning the two most powerful iden-
tifying attributes of modern browsers. Thus, in this case,
while the fingerprint that PriVaricator will provide may be sta-
ble, it will have little discriminating power, rendering such
an approach useless as a tracking mechanism.

Future fingerprinting vectors: Just like with most de-
fense mechanisms, more sophisticated attacks often are de-
veloped in response to them. Security literature is full of
such examples, with major attacks, such as buffer overflows
and cross-site scripting, evolving significantly over the years,
with attacks and defenses adapting to each other. We, un-
fortunately, cannot foresee new fingerprintable vectors that
might appear in the coming years — in the same way that
Eckersley could not foresee the use of timing attacks against
JavaScript engines [17]. Note, however, that as long as ei-
ther plugins or fonts are included as part of a user’s finger-
print and relied upon to provide meaningful information to
the fingerprinting party, the current version of PriVaricator is
likely to provide adequate randomization.

Extensibility of PriVaricator: Next to protecting against
the current generation of fingerprinting attacks, one of the
goals of PriVaricator is to provide a platform for support-
ing evolving defenses as new fingerprinting vectors emerge.
For example, canvas-based fingerprinting, can be thwarted
by adding small amounts of noise to the image returned via
getImageData. Based on our experience in implementing the
existing randomization policies, we believe that adding can-
vas support to PriVaricator will not differ in any substantial
way, in terms of the extent of the changes (topical changes
in a small number of canvas-specific functions to proba-
bilistically modify pixel values) and performance overhead.
Moreover, the effect of adding, say, 5% random noise to a
handful of pixels in the canvas, will break the linkability of
canvas-fingerprints while being imperceptible to users. Thus
we consider it unlikely that the implementation of canvas-
support in PriVaricator would significantly change our current
performance and usability results.

Fluid browser updates enable changing PriVaricator

policies: Given that today’s browsers have migrated to an
almost weekly update cadence (at least in the case of Fire-
fox and Chrome), shipping updated randomization policies
is an easy task. Note that similar updates are shipped to
other browser-hosted security mechanisms such as XSS fil-
ters, malware filters, and tracking protection lists (TPLs).
Extensions such as ad blockers [3] also update their black-
lists on a regular basis. As such, we feel that PriVaricator pro-
vides an extensible platform for stateless fingerprinting de-
fenses. All of the above examples constitute much more siz-
able changes compared to small PriVaricator policy updates.



7. RELATED WORK
In this section, we provide an overview of literature focus-

ing on browser fingerprinting.

History of fingerprinting: The work of Mayer [16] and
Eckersley [12] presents large-scale studies that show the pos-
sibility of effective stateless web tracking via only the at-
tributes of a user’s browsing environment. These studies
prompted some follow-up efforts [13, 25] to build better fin-
gerprinting libraries. Yen et al. [27] performed a fingerprint-
ing study by analyzing month-long logs of Bing and Hotmail
and showed that the combination of the User-agent HTTP
header with a client’s IP address were enough to track ap-
proximately 80% of the hosts in their dataset.

While the majority of fingerprinting efforts have focused
on fonts and plugins, Mowery and Shacham proposed finger-
printing through the rendering of text and WebGL scenes to
a <canvas> element [18]. Different browsers will display text
and graphics in a different way which, however small, can
be used to differentiate and track users. The downsides to
this method are that these technologies are only available in
the latest versions of modern browsers and that the canvas-
generated entropy is not sufficient for it to be used as the
only fingerprinted attribute. This is, in practice, exemplified
by the statement of AddThis, the company responsible for
95% of the canvas-based fingerprinting that Acar et al. [1]
discovered in a recent study. In a follow-up interview, Ad-
dThis claimed about canvas-based fingerprinting that “It’s
not uniquely identifying enough.” [4]

Extensions: As analyzed by Nikiforakis et al. [20] and dis-
cussed in Section 6, browser extensions that spoof a browser’s
User Agent, may actually be counter-productive, since they
considerably narrow down the population of possible users
to fingerprint, in addition to frequently reporting impossi-
ble combinations of environment variables. PriVaricator goes
deeper than these extensions, focusing on portions of the en-
vironment that can be spoofed to break fingerprinters, while
not significantly affecting other sites.

FireGloves, proposed by Boda et al. [8, 9] but no longer
supported, was a browser extension that attempted to frus-
trate fingerprinting attempts by faking the screen resolu-
tion and timezone, presenting an empty navigator.plugins
list, limiting the number of font families allowed to load per
tab, and randomizing the return value of offsetWidth and
offsetHeight of elements. As we showed in Section 5.2,
presenting an empty list of plugins is as bad as presenting a
full list of plugins, since the majority of browsers support at
least one plugin. In contrast, PriVaricator chooses to random-
ize the existing list of plugins which results in a large num-
ber of different plugin combinations. The randomized offset
value of FireGloves is a random value between 0 and 1,000.
As shown in our evaluation of site breakage, Section 5.3, this
randomization approach produces the most breakage. More-
over, our randomized values were constrained to a range of 0
to 100, meaning that if one assumes a positive correlation
between the size of the set of possible offset values and break-
age, FireGloves has the potential to cause considerably more
breakage. Contrastingly, in PriVaricator, we sought to find
the best balance between defeating fingerprinters and min-
imizing breakage, by systematically testing our randomiza-
tion policies against both, and arriving at a range of suitable
parameters. Lastly, since FireGloves performs its operations

through getters and setters, it suffers from the transparency
and compatibility problems we mentioned in Section 4.

In recent work, Besson et al. [6] modeled the problem of
privacy protection against fingerprinting and provided upper
bounds for the identifiability of each user under different
randomization algorithms and usability constraints.

Side channels: Researchers have proposed a variety of side
channels for browser fingerprinting which have not yet been
discovered to be used in practice. Mowery et al. [17] pro-
posed the use of benchmark execution time as a way of fin-
gerprinting JavaScript implementations, under the assump-
tion that specific versions of JavaScript engines will perform
in a consistent way. Closely related is the work of Mulaz-
zani et al. who used the errors produced by JavaScript en-
gines when executing standard test suites to differentiate
between browsers [19]. Olejnik et al. [21] show that web his-
tory can also be used as a way of fingerprinting for tracking
purposes. The authors make this observation by analyzing
a corpus of data from when the CSS-visited history bug was
still present in browsers. Today, however, all browsers have
corrected this issue, so extraction of user history is not as
straightforward, especially without user interaction [26]. We
are not aware of wide-scale fingerprinting on the web using
any of these side channels. This is part of the reason why
chose to focus on explicit fingerprint in PriVaricator.

8. CONCLUSION
This paper proposes PriVaricator, an addition to privacy

modes present in modern browsers. The goal of PriVaricator

is to combat stateless tracking, which is being done primarily
using device-fingerprinting JavaScript code. We use careful
randomization as a way to make subsequent visits to the
same fingerprinter difficult to link together. We evaluate
several families of randomization functions to find those that
result in the best balance between fingerprinting prevention
and breaking existing sites. While our implementation has
focused on randomizing font- and plugin-related properties,
we demonstrate how our approach can be made general with
pluggable randomization policies.

Our best randomization policies reliably prevent all fin-
gerprinting when tested with several well-known device fin-
gerprinting providers, while incurring minimal damage on
the content of the Alexa top 1,000 sites. Furthermore, we
found the runtime overhead of PriVaricator to be negligi-
ble and discussed how PriVaricator can be used as a plat-
form where randomization-based countermeasures can be
straightforwardly incorporated as new fingerprinting vectors
emerge.

Acknowledgments: We thank the anonymous review-
ers for their valuable comments, and Linode for providing
us with virtual machines that made our large-scale experi-
ments possible. For KU Leuven, this research was performed
with the financial support of the Prevention against Crime
Programme of the European Union (B-CCENTRE), the Re-
search Fund KU Leuven, the IWT project SPION and the
EU FP7 project NESSoS.

9. REFERENCES
[1] G. Acar, C. Eubank, S. Englehardt, M. Juarez,

A. Narayanan, and C. Diaz. In Proceedings of the 21st
ACM Conference on Computer and Communications
Security (CCS), 2014.



[2] G. Acar, M. Juarez, N. Nikiforakis, C. Diaz,
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APPENDIX
Coinbase
Figure 5 shows the distribution of non-unique device iden-
tifiers when testing PriVaricator (with the ± 5% Noise pol-
icy active) against Coinbase. Colors and symbols repre-
sent clusters of identical values, e.g., all green plus-signs
denote the same device identifier as generated and reported
by Coinbase. As was the case with fingerprintjs (discussed
in Section 5.2), PriVaricator deceives Coinbase in the major-
ity of cases (78.81% of the extracted device identifiers were
unique).

Figure 5: Distribution of non-unique device identifiers of
PriVaricator against the Coinbase service.


