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1. Heuristic computation of first order deformations of an affine curve.

Throughout, k£ will denote an algebraically closed field of characteristic zero. An affine
algebraic curve Cp is the locus of zeros of a polynomial

(L1) Fory) = 3 aa'yl.

b

It corresponds naturally to the ring A = k[z,y]/(f). If a;;(t) are differentiable functions
of t and if a;; = @;;(0), then we obtain a family of plane curves, defined by the family of
polynomials ¢(z,y) = S a;;ziy?. The derivative Ba_t = %'Lm"yj, evaluated at ¢t = 0,
defines the first order deformation of f. :

To study deformations formally, we work with coeflicients in the ring R = E[t]/(2). A
polynomial in Rl[z,y] can be written in the form ¢(z,y) = f(z,y) + g(z, )t = X (ai; +
bijt)ziy’, where f = S aizty! and g = S biziy’ are in k[z,y]. The derivative % at
t = 0 is defined to be the polynomial g. -

We think of the equation ¢(z,y) = 0 as defining an infinitesimal deformation C; of the
curve Cy. The geometry implicit in this intuitive idea needs to be worked out, but on the
level of rings there is no problem: The ring corresponding to Co is Ag = klz,y]/(f), and
we can view the ring A; = R[z,y]/(¢) as its “deformation”. S

There are two computations we want to make:

(1.2a) Classify the quotients of R[z,y] which are first order deformations of Ay. These
are called the embedded deformations, because they correspond to infinitesimal families of
curves embedded in a plane with fixed coordinates ,y. '

(1.2b) Classify the deformations Ay as algebra, when the generators z,y are not fixed.

It has turned out that deformation theory works best if one fixes all data at “time” £ =0
completely. We will do this, for the time being heuristically.

(a) The polynomial f(z,y) is a generator for the ideal ag = ker(k[z,y] — Ag). Going
on the principle that we fix data at ¢ = 0, we choose as generator for the ideal a; such
that R[z,y]/a1 = A; a perturbation of the polynomial f, of the form ¢ = f + gt. (Why
a; should be a principal ideal will be discussed later.) A second perturbation ¢ =f—+g't
generates the same ideal a; if and only if ¢’ = ¢u, where u is a unit in R[z,y]. The units
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in this ring are the elements ¢+ ht, where ¢ € k is a nonzero constant and % is an arbitrary
polynomial in k[z,y]. Setting u = ¢+ ht, we find f + ¢'t = fc+ (gc+ fh)t. Therefore
c=1, and ¢' = ¢ + fh. Note that since h can be arbitrary, fh can be any element of the
ideal ap. What matters for the deformation is the residue of ¢, modulo ag. Answer:

(1.3)  {1st order embedded deformations} ~ {elements of Ag}.

(b) To classify deformations as algebra, i.e., without chosen coordinates, we must study
the effect of a change of coordinates on the defining polynomial ¢. Again, because we fix
everything at time ¢ = 0, we will allow only infinitesimal changes of coordinates, of the
form z — z + ut, y — y + vt, where u,v € k[z, y] are arbitrary. Then

(1.4)  fl@+ut,y+vt) +g(z + ut,y + vi)t = f(z,y) + (%u F g—;v)t +g(z, y)t.

Thus g can be changed by adding any element of the ideal in k[z, y| generated by the three
elements f, %, g—g-. Let S = k[z,y]/(f, %, 2—5). Then '

(1.5) {1lst order deformations} ~ {elements of 57}.

Example 1.6. An algebraic cufve Co: f =0is called smooth if the partials —g—%, % don’t

vanish at any point of Cy, i.e., if 7, %f, 53-5 have no common zeros. Then the Nullstellensatz
tells us that these elements generate the unit ideal in k[z,y], so S = 0.

Corollary 1.7. Every first order deformation of a smooth plane curve is equivalent, via
a change of coordinates, to the trivial deformation.

This may seem strange, because most curves are smooth, and there are families of smooth
curves whose intrinsic structure varies. To capture this variatiogl infinitesimally, one has
to use projective geometry.

Example 1.8. Let Cj be the curve zy = 0, the union of the two axes. So flay) = wy.
Then % =5 gy =z, and § ~ k. We represent the basis 1 for k by 1 € k[z,y]. Every first
order deformation A; is isomorphic to one defined by a polynomial of the form zy + ct,
where c € k, and ¢ is uniquely determined by the deformation.

Example 1.9. f = 4? — 23 and Oy is a curve with a cusp at the origin. Then S =
klz,y]/(2%,y). So every first order deformation is defined by a unique polynomial of the
form y? — 2 4 (a + be)t, with a,b € k.

2. Interlude: Algebras A finite dimensional over an algebraically closed field k.

Let A be a finite dimensional k-algebra. The radical JofAisa nilpotent a ideal, and
A/J is semisimple. By Wedderburn’s theorem, 4/J is is a sum of matrix algebras.

Case 1: dim A = 1. Then 4 = k.

Case 2: dimA = 2. If J = 0, then A is semisimple, and its dimension is too small to have
an r X r matrix algebra, with r > 1, as summand. So A = k¥ & k. Otherwise dim J = 1.
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If so, then because J is nilpotent, J? = 0. Taking for z a basis of J, one finds that
A = E[z]/(22).

Case 3: dmA =3. f J=0,then A~ k@t Dk IfdimJ =1,then A/J =k D k. Let
e;, 1 = 1,2, denote the idempotent which projects onto the i-th factor of this sum. We use
the Pelrce decomposition A >_;,; eide;, or in matrix form

(21) A= (61A€1 6144.62) o

es ey epAes

Since dime;Ae; > 1, at least one of the off-diagonal terms is zero. If dim e1Ade; =

dimes Aes =1, then

(2.2) | > _Az(g :)

The énring of lower triangular matrices is isomorphic. Otherwise, if say dime; Ae; = 2, and
dim ey AF; = 1, then both off-diagonal terms are zero, and A ~ k[z]/(z*) ® k.

~ The final case is that dimJ = 2 and A/J =~ k. Then dimJ? < 1. If dimJ? = 1, we
may choose z € J, = € J?. Then A =~ k[z]/(z®). Otherwise, if J? = 0, then we choose a
basis {z,y} for J, and find that 4 = k[z,y]/(z?, 2y, y?).

(2.3) k-algebras of dimension 3.

One noncommufative algebra: upper triangular 2 x 2 matrices.

Four commutative algebras: k @ k @ k, k[z]/(z*) @ k, k[z]/(z®), k[z,y]/(z?,zy,v?).
Reference: Benjamin Peirce, Linear Associative Algebras, circa 1870.

Ezercises: 1. Determine whether or not the rmg of upper tr1angu1ar matrices has a non-
trivial first order deformation. — ) I s T

2. Classify algebras of dimension 4 over k.
3. A second heuristic computation of first order deformations.

We start with the commutative ring Ay = k[z, y]/(z?, 2y, y?), and we look for commutative
deformations. Let gy denote the ideal (z?,zy,y?) of k[z,y], and let R = k[t]/(t?). As
before, we try a perturbation of the defining equations, of the form

(3.1)
.fl = m2 + let,
f2= $y+ﬂf

fs = y? _{_71% Whefe a,B,v € klz, y].

These elements generate an ideal a; in R[z,y| with the property that setting ¢t = 0 (which
is the tensor product @grk) gives back the defining ideal ay of the ring Ay = k[z,y]/ao.
Our hypothetical first order deformation of Ag is 4; = Rz, y]/a;.
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First note fit = ¢%¢, and that adding a multiple of fi¢ to any f; does not change the
ideal a;. Similarly for the other generators. This means that we can add to «, 3, v arbitrary
elements of ay without changing ay: It is the residues of @, 8,7 in 4y which determme the

deformation. We can represent these residues canonically by linear polynomials. Doing so
reduces us to the case that

o =ag + a1 + asy,
B =by + bz + by, ‘ _
Y=co+ci+ey, with ai,bici €k

However, these coefficients can not be chosen arbitrarily. To see why, note that the
kernel V of the map A; — Ay = A; ®g k is the principal ideal A1¢, and because 2 = 0,
multiplication by ¢ annihilates N. So IV is the image of the A;-linear map A, 5 Ai. The
ideal IV is what we think of as the “infinitesimal component” of the deformation, and we
do not want it to be smaller than the ring Ay that we start with (The extreme example
of a bad choice would be N = 0 and A; = 4 = R[z,y]/(2*, 2y,y%,1).) So we must require

the map Ay — N to be injective. In concrete terms this means the following;
(3.2) Ifze€ Ap andif £ =0 in A;, then z = 0.

This is equivalent with saying that A; is a flat R-module. (See Section 6.) Flatness is a
requirement we will always put on deformations.

Now the three generators (3.1) for the ideal are not independent, so the ﬂatness require-
ment imposes a compatibility condition on them. Spemﬁcally, the monomial z%y can be
simpified in two ways using the relations f; = 0:

(3.8) .
(2%)y = —aty = —(aoy + a17y + a2y®)t = —agyt, and
( ) = "Iﬁt —$b0f

Thus agyt = bgazt in Ay, and the ﬂatness condltlon requlres that aoy = bpz in Ag (The
expression “u = v in A” means that the images of u,v in A are equal.) Since no linear
polynomial is zero in Ag, this forces ag = by = 0. Similarly, ¢y must be zero.

We are left with 6 parameters for a first order embedded deformatwn (a deformation
with given generators z,y for the algebra):

(3.5) :
fi =2+ a1z + agy,
f2 =2y + bz + boy,
fa=vy*+ oz +cy, withag, b;,ci € k.

Note that an embedding of the “generic” algebra k@ k@ k of dimension three is given by
a surjective homomorphism k[z,y] — k*, which is determined by a set of three maximal
ideals, or three points in the affine plane. The deformations also depend on 6 parameters,
which correspond to deforming the 6 coordinates of the three points. So it isn't likely that
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the number of parameters for deformations of our ring can be reduced any more. In fact
it can’t be. ' ' '

Ezercise: Work out the embedded deformations of k2 carefully.

To classify deformations of Ay as k-algebra, i.e., allowing for change of coordinates,
we have to study the effect of an infinitesimal change of coordinates, a substitution of
the form ¢ = ¢ + ut, y = y + vt, with u,v € k[z,y] on the defining relations. Say that
u=1ug+urx + usy +-+-. Then '

(3.6) filz + ut,y + vt) = fi(z,y) + (%u - %U)t = (z® + at) + 2uqzt.

The defining equation changes by adding 2u¢zt. Choosing up appropriately, we can use it
to eliminate the term a;z from 3.5. Similarly, the substitution y = y + vot can be used to
eliminate byy. We are left with four essential parameters. A first-order deformation can
be described by a unique set of relations of the form

(3.7)
fi= i + szt:
fo = zy + byxt + boyt,
f3 = y2 + Clxtv

with coefficients a;, b;,¢; in k.
4. Moduli:

We consider the general problem of classifying some particular type of algebraic struc-
ture. As a simple example, the structure might be that of an algebra with a given pre- -
sentation as quotient A = k[z]/a of a polynomial ring in one variable, and such that A 1s
isomorphic as algebra to a sum of n copies of k. Geometrically, this data corresponds to
an unordered n-tuple of pointsin the-affine line A = Spec k[z].

In the weakest possible sense, a moduli space for such a problem is a scheme M whose
points correspond bijectively to the isomorphism classes of structures A of the type under
consideration.

In our example, there is a natural candidate for the moduli space. The ideal a will
be principal, generated by a unique monic polynomial f(z) of degree n. We can try the
n-dimensional space which parametrizes the coefficients of f. Let the variable polynomial
be ¢® —s;2® 1 +...+5,. A point in s-space A" = Spec k[s1, ..., $5] is given by evaluating
the variable coefficients in k, say s; = a;, to obtain a particular polynomial f(z) = z™ —
a1z™ ! 4+ -+ £ a,. This evaluation gives us an algebra A = k[z]/(f). The requirement
that A be isomorphic to the sum of n copies of k means that the polynomial f must have
n distinct roots. Thus the moduli space M is obtained from s-space by deleting the locus
{A = 0} at which the discriminant A(s) vanishes: Deleting this locus can also be done by
inverting A in the ring: '

(4.1) M = Spec k[sl,...,sn] — {A =0} = Spec k[s1,...,5n, A71].




By the way, the space of ordered n-tuples of points in A! is parametrized in the obvious'
way by the n-dimensional affine space Spec k[u, ..., u,], u; being the coordinate of the
t-th point. If we want distinct points, we must omit from this space the various diagonals
{ui = u;}, which we can do if desired by adjoining the inverses of u; — u; to k[u] for
all 2 # j. Let U denote the resulting scheme. Then M is the quotient of U by the
action of the symmetric group G, which operates by permuting the variables u;. This is in
agreement with the main theorem on symmetric functions: k[u]® = k[s;(u), ..., sn(u)]. The.
inverse image of the discriminant locus {A = 0} in Spec kls] is the union of the diagonals

{ur=r5) -

Now a condition on the points of M is not enough to determine its scheme structure.
In order to determine the structure of scheme, we need a concept of family of structures
parametrized by a scheme S, and of isomorphism between families of structures. It is
enough to have a definition of family for affine schemes § = Spec R, where R is a finitely
generated k-algebra. If these concepts are available, then a strong moduli space for our
classification problem is a scheme M such that there is a bijective correspondence

(4.2) {maps § — M} & {iso. classes of families, param. by g}

This correspondence should be compatible with pull backs of maps and of families. In
particular, a point of M can be identified with a map from the point := Spec k to M, so
points correspond to isomorphism classes of structures as before. -

Going back to our example, if the scheme 4.1 is to be a strong moduli space for unordered
n-tuples, then we have no choice in the definition of a family. A family must be given by
a map S — M, or on rings, a map in the other direction ¢ : k[s1,...,8n) — R such
that #(A) is a unit in R. Such a map is determined by the images &(si) = a; € R, the
only condition on the {a;} being that the discriminant A(a;) must be a unit in R. Having
made this substitution, we may interpret the a; as coefficients of a polynomial f in R[z]. _
So a family corresponds to a monic polynomial with coefficients in R whose discriminant is
invertible (i.e., is nowhere zero on Spec R), or to the associated R-algebra A = R[z]/(f).

The geometric description of a family of n-tuples of points in Al is more complicated:
If 5 = Spec R, then a family is a closed subscheme Z of § x Al which is an unramified
n-sheeted covering space of S.

Ezercise: Consider, by analogy with the above discussion, these three classification prob-
lems of classical geometry: '

(a) embedded triangles in the plane,

(b) congruence classes of triangles,

(c) similarity classes of triangles.

Let a “family” of triangles mean a continuous family, parametrized by an open set in R™,
in which side lengths vary differentiably. Determine spaces M which parametrize these

three problems explicitly, and discuss the extend to which they are strong moduli spaces.

5. First order deformations as tangents to the moduli space:



Let R = k[t]/(t*). The scheme V = Spec R plays the role of a point with an at-
tached vector. To see this, note that a map V — A™ is given by a homomorphism
é: k[zy,...,tm] — k[t]/(t?), and such a homomorphism can be defined by assigning the
images ¢(z;) = a; + v;t arbitrarily. Then for any polynomial g(z) € k[z],

(1) #o(@) = g(@) + 3 gzt = g(a) + (Vg - v)t.

—Writing ¢(g) = ¢o(¢)+dgt, the constant term-¢y-is-evaluation at-the point: ¢olg)=gla);— — -

and the linear term d defined by dg = Vg - v) is the directional derivative of ¢ in the

 direction v, which is a ¢q-derivation. This means that it is linear, and that

(5.2) ~ d(fg) = f(a)dg + df g(a)-

Next, if X = Spec S, where § = k[z1,...,zm]/(f1,..., fn), then a map V — X is de-
termined by a ring homomorphism k[z1,...,2m] ~— k[t]/(¢?) such that ¢(f,) = 0 for
v =1,...,n. Expanding ¢(f,) = fu(a) + (Vf, - v)t, we see that this means f,(a) =0, and
(Vf, -v) = 0. Translating,

(5.4)(a) the point z = a lies on the locus X, and
(b) the vector v is tangent to X at the point z = a.

In fact, the condition (V £, -v) = 0 is the definition of tangent vector to the locus {f, = 0}.
Thus a map V — X corresponds to a point of X together with a tangent vector to X at
that point.

‘Now if M is a moduli space, then a map V' — M also corresponds to a family of
structures, say Ag, parametrized by R = k[t]/(t?). Given such a family, setting t = 0
vields a structure A over k, and Apg is a first order deformatmn of Ak Thus first order
deformations correspond to tangent vectors to M.

The best way to understand deformations intuitively is to imagine that one has a moduli
space M, and that one is studying its infinitesimal structure. Unfortunately, it is pretty rare
that a strong moduli space exists, and it is fortunate that a good deformation theory exists
more frequently. For instance, we have seen that there are exactly 4 isomorphism classes of
schemes Z = Spec A, where A is a commutative ring of dimension 3 over k. The only way
‘to make this set into a scheme is as a set of four points. On the other hand, there are also
families Ap parametrized by the affine line Spec k[t], such that A« ~ k[z,y]/(z?, zy, v*)
and Ai=1 = k@ k @ k. So the four points should really be connected, in some sense.

Ezercise: Write down such a family explicitly.

Even if a strong moduli space M does exist, we may not know how it looks. Indeed,
studying the infinitesimal structure is a good way of getting information about M. The
typical problem which we want to address is to find a way to compute the deformations
of a given structure directly. This requires choosing the right definition for a family of
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structures. And to complicate our intuition, the definition must work when the parameter
space is the spectrum of a finite k-algebra R such as k[t]/(¢*), whose nilradical is not zero.
This requires having faith that the algebra can be made to carry over to such situations,
where geometric intuition becomes obscured.

6. Flatness.

Proposition 6.1. (“Nilpotent Nakayama Lemma”) Let I be a nilpotent ideal of a ring
R, and let R' = R/I. Let M be a right R-module, and denote M @ R' = M/MI by M'.

————44 ) Bk -be—aﬂsubset"'offMﬂvhos'eimage S™in-M"—rgenerates M'—Then S generates M. — — —

(i) FM' =0, then M = 0. ‘ }
(iii) If ¢ : M — N is a homomorphism of R-modules such that ¢' : M' — N’ is

surjective, then ¢ is surjective.

Proof. (i) We may suppose that 12 = 0. Let N denote the submodule of M generated by
S. Let m € M, and write m' = i=q SiTh, with s} € 5" and r; € R'. Representing r} by
r; € R, we obtain an element n — > 8ir; € N such that m—n € MI. Set t = m—n. Then
T = ) ;mja;, with m; € M and aj € I. Substituting m; for m in the above reasoning
shows that m; = n; + z; where nj € N and ¢; € MI. Then mja; = nja; + zja; and
zja; € MI? = 0. This shows that m = n +>_nja; € N, as required.

Proposition 6.2. Let I be an ideal of a ring R such that I* = 0, and let R' = R/I. Let
M be a right R-module and set M' = M ®r R'. Suppose that M' is flat over R'. Then
M is R-flat if and only if the multiplication map M Qg [ — M is injective, i.e., if and
only if the sequence :

00— MRrI — M — M —0
is exact. |

Proof. We tensor the sequence
(6.3) | 0—I—R—R —0

on the left with M. Since R is a flat left R—rﬁodule, Torf (M, R) = 0. So the exact sequence
for Tor gives us

(6.4) 0 — Tor}(M,R") — M @pI — M — M' — 0.
Thus Tori*(M, R')=01if and only if M @ g I — MT is injective,
Now ME is flat if and only if Torf(M, N) = 0 for every left R-module V. So if Mg is
flat, then Torf(M, R') = 0 and that the sequence 6.2 1s exact. To prove the converse, we
__must show that if Tor{'(M, R') = 0, then Torf‘(M,N) = 0 for every N. Since I? = 0, the
left and right terms of the exact sequence :

(6.5) 0—IN—N-—RQN—0
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are R'-modules. The exact sequence for Tor shows that it suffices to verify Tor (M, V") = 0
for every left R'-module V'. For such a module, we have M Qg V' = (M ®r R') @r' V".

There is a spectral sequence for composed functors of the form
(6.6) E,= Torf(Torf(M, RN, V") — Torf(M, v,

and since M @ g R' = M’ is flat, Torf’l(M’, V") = 0for p > 0. The spectral sequence shows
that TorF(M, V") = Torf(M,R') @ V' = 0.

— — —Proposition 6.7. Let T -be-anilpotent-ideal of a ring R; and-assumethat-M' =M-&rR"—

is flat over R'. Let F — M be a surjective map from a flat module F' to M, and let
Rel(M) C F denote the kernel of this map. Let Rel(M') denote the kernel of the induced
“map F' — M'. Then M is R-flat if and only if the map Rel(M) ®gr R' — Rel(M') is
injective. If so, then that map is bijective, and Rel(M) is R-flat.

Proof. Again, we may suppose that I2 = 0. The first assertion results from Proposition 6.2
and from an inspection of the 3 x 3 diagram obtained by tensoring the two exact sequences

0 — RellM) — F — M — 0, and
0—I—R— R —0.
Tensoring the exact sequence
(6.8) 0 — Rel(lM) — F — M —0

with R’ and using right exactness of tensor product shows that the map Rel(M)®g R' —
Rel(M") is surjective in all cases, hence that Rel(M)®gr R' =~ Rel(M") if M is flat. Finally,
if M is flat, then the exact Tor sequence for the sequence 6.8 shows that Rel(M) is flat
too. '

Proposition 6.9. Let I be a nilpotent ideal of a ring R, let Mg be a right R-module,
and set M' = M ®@gr R'.

(1) Let

F=iio—F —F —F—M-—0

be a free resolution of M as R-module. If M is flat over R, then F @ g R' is a free resolution
of M' =M @ R' as R'-module. '

(ii) Assume that M is flat over R. Then any free resolution F' of M' lifts step by step
to a free resolution of M. Moreover, any lifting of F' to a complez of free modules whose

right hand term is M is a resolution of M.
(iii) Let C = F — Fy — Fy — M — 0 be a complex of free R-modules such that

F, — Fy — M — 0 is exact. Let ' denote ® gR' as usual. Assume that C' is exact

and that M' is flat over R'. Then M is flat over R and C is exact.

Proof. Assertions (i) and (ii) follow by induction from the prevous proposition without
difficulty. Let us verify (iii). Let Rel(M) be defined as before. We have a complex

(6.10) . Fp— Py 5 Rel(M) — 0,
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in which ¢ is surjective. Tensoring with R’, we obtain a comple};
(6.11) | F) — F! 25 Rel(M) ®r R' — 0,
and qb} is surjective too. This compléx maps to

(6.12) Fy — F| —s Rel(M') — 0,

~whichis an exact sequence by hypothesis. Therefore the map Rel(M)®g R' — Rel(M")

is bijective, and by the previous proposition, M is flat.

Since M is flat, so is N = Rel(M). Let Rel(N) = ker(Fy — N). This is a flat module
too, and so Rel(N) ®r R’ ~ Rel(N'). We have a map Fy —» Rel(N), and when tensored
with R' this map becomes surjective. So it is surjective by Nakayama.

Scholium 6.13. Part (iii) of the previous proposition says this: Let M’ be a flat R'-
module, with a partial resolution

d! d!
sz —2>F1' —1)-F6 — M — 0.

In order to obtain a flat R-module M such that M ®r R' = M', we may proceed as
follows: We represent the map dy as multiplication by a matrix with entries in R' (a

presentation matrix for M"). We lift the matrix entries to R, obtaining an R-matrix and a

map F} S, 5, and we let M = coker(dy) be the module presented by this matrix. Then
M @r R ~ M', and M is flat if and only if the map ker(d;) — ker(d}) is surjective.

7. The general set-up for studying infinitesimal deformations.

We will want to study higher order deformations, for example those parametrized by -

Spec k[t]/(t3)-as well as first -order ones, and-even truncated polynomial rings are not
general enough. So we will allow as parameter the spectrum of an arbitrary finite local
k-algebra R. We will use induction to help with the study of structures parametrized by
R.

Lemma 7.1. A finite local k-algebra R which is not k itself contains an ideal I of dimen-
sion 1, and I? = (.

'Proof. The maximal ideal m of R is nonzero and nilpotent. Let m” be the highest power
- of m which is not zero. Then R acts on m” through the residue field ¥ = R/m, and so

every subspace I of m” is an ideal of R. If I has dimension 1, then because R# &k, I C m.
So I is nilpotent, which implies that I2 < I and that I? — 0.

~~._ We choose an ideal I of dimension 1, with basis €, and set R' = R/I. Thus we have an

exact sequence

(7.2) 0—kSR— R —s0.
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This will be our standard notation. We often suppose that we are given a structure Agr
parametrized by Spec R', and we study the structures Ar over Spec R which extend it.
This allows us in principle to work our way up inductively from k.

By definition, family of algebras parametrized by R is a flat R-algebra Ar. If we are -
given an algebra Ag, a-deformation of A, parametrized by R, or a flat extension of Ay to
R is a flat R-algebra Ag together with an isomorphism Agr ®g k =~ Ag. Similarly; a flat
extension of a flat R'-algebra Ap to R is aflat R-algebra Ar together with an isomorphism
Ar @r R' =~ Apg:. — '

is why we require that a deformation be given with a fixed isomorphism Ar Qg k =~ Ay.

The flatness condition for deformations is fundamental. It’s heuristic explanation is the
same as for the case that R = k[t]/(¢?): Ag is flat if and only if the sequence

(7.3) 0 — Ar = Ap — Ap — 0

obtained by tensoring Ar with (7.2), which is always right exact, is actually exact (6.2).
The image eAy of Ar in Ag represents the infinitesimal part of the extension, and we want
it to be the same “size” as the algebra A which we are deforming.

The results of the previous section can be applied to this situation. To do so we let Pr
denote either the ring R[zi,...,T,] of commutative polynomials or the ring R(z1,...,Zn)
of noncommutative polynomials. We note that Pg is a free R-algebra in either case. The
following are corollaries of (6.9).

Corollary 7.4. Let M be a finite right Pr-module which is a flat R-module. Let
R =ves — PT? —>P3¥——+P§" — M —0
be .a free resolution of M as Pg-module.. Then R @g R' is a free resolution of M' as

Pgr-module.

Corollary 7.5. Let M be a Pgr-module such that M' = M ®gr R' is a flat R’—mbdule,
with a resolution
' - —+ Pp? — Ppl — Pp? — M — 0.

Then M is R-flat if and only if the first steps of the resolution lift to an exact sequence

Pt — Pp° — M — 0

and a complex .
ni

Pp* — Pp' — Pp* — M — 0.

If so, then the whole resolution can be lifted step by step, and any lifting as a complex is
a resolution of M.

8. First order deformations of a commutative algebra.

As we noted in the beginning, it isiiﬁlpéftant to fix the structure A completely. That
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Here R = k[t]/(t*). We classify the flat extensions of a commutative k-algebra Ay to
R. Say that Ay = Py/ax, where Py, is the polynomial ring k[z1, ..., Tm]. Let

(8.1) prfopm dop A By
be a partial resolution of Ay as P-module. So f = (fi,..., fny) is a set of generators for

the ideal ay in Py, and r = (r;;) is a complete set of relations among the generators.
Suppose that a flat R-algebra Ag extending Ay is given. Then we have seen (7.5) that

"7 (8.1) lifts to @ partial resolution of AR as Pr-module, where Pr = R[z1,...,Tm]. Let us

write the liftings of f and r in the form f + gt, r + st respectively. So Ag is presented as
Pr/ag, where ag is the ideal generated by {f; + g;t}. The lifting r + st of r is not needed
to determine Ag. It is needed only to insure that Ag is flat, and for A to be flat, it suffices
that the lifting be a complex, i.e., that

(We write operators on the left.) Thus a first order deformation of A is determined by
a Py-vector g = (g1,...,9n,) such that there exists a Pi-matrix s = (s:;) satisfying 8.2.
Expanding, we find (f + gt)(r + st) = fr + (gr + fs)t = (gr + fs)t. So the condition on g

can be written as
(8.3) gr=—fs

for some s = (s4). Since s;; can be arbitrary elements of Py, fs can be any vector whose
entries are in ax. This means that the condition on our vector g can also be expressed as

(8.4) gr=0 (modﬁlo ag).

We suppress the subscripts & in what follows, writing P = P,a = ar, A = Ap. The
horizontal exact sequences in the diagram

pm T, pm - { » 0

(8.5) [ |
: -

Pnl —f_; P kil

0

are determined by 8.1. If g is a map satisfying (8.4), then wgr = 0, from which we deduce
that a map v exists which makes (8.5) into a commutative diagram. So g defines a map
v € Homp(a, A).

"~ Since A is an A-module and since a ®p A ~ a/a?,

(8.6) Homp(a, A) =~ Homu(a/a?, A).

L
L|
|
|
4
I
| ©2) | (F +gt)(r . st) = 0
]
i
|
]
i
|
|
|
l
|
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Proposition 8.7. First order embedded deformations of Ar = Py /ag, i.e., deformations
together with chosen generators 1, ..., Tm, are classified by Hom 4, (az /03, Ax)-

To prove this proposition, we must show three things:

(a) Every element v € Hom 4(a/a?, A) is obtained as above from a pernnsslble map ¢,

(b) If g and ¢' are two permissible maps P™ — P such that v = 7/, then the ideals ar

and af generated by f + gt and f + ¢'t are equal.

(e) If g and ¢’ are two permissible maps and if the 1deals ar and ol in Pg are equal then_
v=7.

The only one of these verifications which is not routine is (c). S.uppose. g and ¢’ are given
and that ag = a%s. We have two partial resolutions of Ar = A’s, and in order to keep the
two copies of PE* which appear in these resolutions apart, let us denote them by Fg and
f+g't

Fp respectively. So Fr S, Pg and F, —— Ppg. Setting t = 0 yields the same map f,

so there is no harm in 1dent1fy1ng Fy and FJ.

We look for a map Fr . 4 Fp such that the d1agram
Fh f+g t (i’

_ R
(88) . - lqﬁ Jrid
) FR _H_gt.) aR

commutes, and in which ¢ has the form 1 + ht, i.e., for which ¢ ®r k = identity. If such
a map can be found, then we will have

(8.9) FH+g't=(f+gt)(1+ht)=f+(g+ fh).

So ¢’ = g + fh, hence g' = g (modulo ag) and 7' = 7.

fU — Z and V — Z are maps of sets, their fibred product X = U xzV is the set
of pairs (u,v) € U x V such that the images of u and v in Z are equal.

Consider the commutative diagram

t
Fp I, ap

(8.10) | J' J

Fy L, ax |
of Pr-modules, in which the vertical arrows are given by - ® g k. This diagram defines a
map from Fg to the fibred product X = Fj xq, agr. Since F} = F} and a’y = ag, it follows

that X' = X. A map F, & Fp will have the form 1 + At if and only if the diagram

Fp — X'

7(8.11) - qSJ' l

Fp— X
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commutes. And since F}, is a projective Pr-module, such a I1ft1ng will exist provided that
the map Fr — X is surjective.

Lemma 8.12. Let

o=

O — | —

S — Wy —

O — Q+—— QO
)

be an exact commutative dlagrm of groups. Then the mduced map B — B Xz C is
surjectwe

We omit the proof of the lemma. To apply it, note that the bottom row of 8.10 is obtained
from the top one by tensoring with k. This implies that the map on kernels is surjective.

It remains to consider the deformations of Ay as algebra, without fixed coordinates. Now
we are still free to choose a resolution 8.1 of A;. Then if Ag is a flat extension of A to
R, we can lift the surjection Py — A to pPp &, Ar, there'by obtaining a lifting of the
generators. Having done so, the resolution 8.1 also lifts, and in particular, the defining ideal
ag is generated by elements of the form f + gt as before. The diﬁ'erence 1s in the notion of

isomorphism of extensions. An isomorphism of extensmns Ay 2 A R 15 any isomorphism
of algebras which is compatible with the given 1somorphlsms AL @prk~ A ~ AR ®Rr k
We have a diagram

Pr —"= , Ap

(8.13) | l l :

pk_’f_k_;Ak

of R-algebras, and Lemma 8.12 shows that the induced map Pr — X = P x4, Ar
1s surjective. Using the fact that Pg is a free object in the category of commutative R-
algebras, and proceeding as above, one finds that the isomorphism 1 can be lifted to obtain
a commutative diagram of algebra.s

-\(\8.14) ' : lq, “
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in which ¥ ®@g k& = identity. Then ¥ is a change of variable of the form z; — z; + u;t for
some u; € Pr. The commutativity of the diagram means that ¥ carries the defining 1deal

ag to d’p, 1.e., that

(8.15) ' , f(a:' + ut) + g(z + ut)t

generates the ideal a,. The effect of this change of variable is to change g to

So f + ¢'t and f + gt generate the same ideal. We conclude that if ag is generated by
f+gt and if o' is another ideal defining an isomorphic deformation, then there are elements
u € Py such that a; can be generated by f + ¢'t, where ¢’ = ¢+ (Vf - u). Moreover, for
any u; € Py, the ideal generated by this f + ¢'t defines an isomorphic deformation.

The results of this computation can be written canonically in terms of differentials. Let
P, A, a denote Py, Ak, o as before. We denote the module of differentials of the k-algebra A

by £.4. This module comes with a k-derivation A Ao A which is universal for derivations
of A into modules. Here are its most important properties:

(8.17)(a) Let P = k[z1,...,zm]. Then Qp is a free P-module of rank m, generatéd by

elements dzy, ... d:cm' The map P 4, Qp sends z; — dz;, and if f is an arbitrary
polynomial, df = Zl oo 21 dz;.

(b) If A= B/a, then Q4 is a quotient of Qp, and there is an exact sequence of A-modules
(8.18) a/a® % Q5 @5 A — Q4 — 0.
Taking B = P in (8.18) and dualizing, we obtain

(8.19) Hom a(Rp ®p 4, 4) 2> Homa(a/a?, 4) — T} — 0,

where “Schlessinger’s T'}” is the cokernel of d*, the module defined so as to make this se-
quence exact. Its deﬁmtlon depends on the chosen presentation, but its universal property
shows that it is defined canonically.

Proposition 8.20. There is a natural bijective correspondence between first order defor-
mations of an algebra Ay and elements of T}.

Proof. We compute the image of d*. An A-linear map Qp @p A — A corresponds to a
P-linear map ¢ : lp — A. Since {p is freely generated by the dr;, such a map ¢ is
described by assigning arbitrary values ¢(dz;) = u;. The image of ¢ in HomA(a/a2 A) is
god. If f = (f1,..., fn,) generates a, then ¢d(f) = ¢(3; 2L dz:) = L 2L é(dei) = (Vf-u).
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Changing v € Hom(a/a?, A) by a map of this form corresponds to a change of coordinates,
which agrees with our previous computation (8.16).

9. First order deformations of noncommutative algebras..

We wish to copy the considerations of the previous section over for a noncommutative
algebra k. So we replace the polynomial ring k[z1,...,.s] by the free ring, the ring of
noncommutative polynomials k(z1,...,Zm). In this section, P, will denote the free ring,

and similarly, Pp = R(z3,...,Tx) will denote the free R-algebra of noncommutative poly-

nomials with coefficients in the commutative ring R. The “scalars”, the elements of H;
commute with the variables, but the variables don’t commute with each other.

For the moment, we consider k-algebras, so we drop the subscript k. Let a k-algebra be
given with a presentation

(9.1) ' 0—a—P—A—0,

~ where a is a two-sided ideal of P. rTypica.lly, a may be generated by a finite set of elements

fiy.sy fm of P. However, by generators we mean that a is the smallest two-sided ideal
containing these elements It 1s rarely the case that a two-sided ideal in the free ring is
finitely generated as a left or as a right module. This complicates our discussion, but only
a little bit. We are helped by the fact that the sequence 9.1 is both left and r1ght linear,
l.e., it is an exact sequence of homomorphisms of two-sided P-modules, or of P-bimodules.

If A, B are k-algebras, an A, B-bimodule M = sMp is a k-vector space with the
structure of left A-module and of right B module, and such that the actions on left and
right commute:

(02) |  (am)b=a(mb).

Such a bimodule has a canonical structure of right module over the ring A° ®; B, where
A® is the opposite ring of A, in which multiplication is reversed. The categories of 4, B-
bimodules and of right A° ® B-modules are equivalent. To be spec1ﬁc if a bimodule 4 Mp
1s given, then A° ®; B operates by

(9.3) - m-a® b= amb.

Thus a ® 1 = ), represents left multiplication by @, and 1 ® b = p; represents right
multiplication by b. The formula mAs. = aa’'m = (mA. )\, shows that multiplication is
reversed. '

The ring E(A) = A° @ A is called the enveloping algebra of the k- algebra A. Right
modules over the envelopmg algebra correspond ca.nomcally to A, A-bimodules.

Given elements a,b € A, we will usually write a® = a®1, b = 1® b, and we will suppress
the tensor product symbol, writing a°b for a ® b. When this ambiguity causes problems,.
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it may be advisable to write A4pp instead. Note that by definition of the tensor product
algebra, (1®b0)(a®@1)=a®b=(a®1)(1 ®b), or ppAs = Aeps, OT

(9.4) | ba® = a°b
for all a,b € A. This corresponds to the fact that the operations of left and right multi-

plcation on a bimodule are required to commute.
If A = k[z] is a commutative polynomial ring, then E(A) = k[z° 3:] is also commutative,

with twice the mumber of variables. Om the other hand, if P = k{z1, ..., Tm) Is thefree —— —

ring, then E(P) is obtained from the free ring k(a:l, y BL JT 5 oy B by introducing the
relations ‘
(9.5) _ : ' Ty = goay, forall L4,

Every element of E(P) has a unique expression as a linear combination of monomials in
which the variables z? are to the left of the variables ;.

Let P = k(z,...,2m) denote the free ring, and let E = E(P). Let S = {f1,..., fa, } be a
set of elements of P, and let a be the two-sided ideal of P generated by 5. Then a can also
be described as the right F-submodule of P generated by S. The ring A = P/a = k(z)/(f)
has a resolution, as right E-module, of the form

(9.6) ELEmLlp 40,

where f denotes left multiplication by the row vector (fi, ..., fn,) Whose entries are in P,
‘and r represents left multiplication by some matrix with entries in E. In general, n; and
ny might be infinite. G ;

Following the proof in the commutative case, one finds that the presentation 9.6 of A =
Ay can be lifted to a presentation of a first order deformation Ag, where R = k[t]/(?). To
give such a lifting, one must choose elements g; € P so that there exist s;; € Ey = E(Py)
with (f + gt)(r + st) = 0, or that gr = 0 (modulo ak) :

Lemma 9.7. There are canomcal 1somorphlsms
a/a’ xa@p A~ ARQpamaQgp) E(A)

With this in mind, one finds

Proposition 9.8. The first order embedded deformations of the algebra Ay presented by
9.6 are in bijective correspondence with elements of Hompg4)(a/a®, A).

To carry over the description of deformations as algebra, we use the module Q(A) of
noncommutative differentials. For any k-algebra A, multiplication defines a surjective map
of bimodules E(A) — A, which sends a ® b — ab. (It is not a ring homomorphism unless
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A is commutative.) The kernel of the multiplication map is éanonically isomorphic to the
bimodule Q(A) of noncommutative differentials of A:

(9.9) 0 — Q(A) — E(4A) — A — 0.
A dem’udtion from A to an A-bimodule M is a k-linea’r map d such that

(9.10) | d(ab) = adb + dab.

There is a canonical derivation d : A — QA) defined by |

da = a° — a,

~and this derivation is universal. In other words, derivations from A to a bimodule M are

in bijective correspondence with bimodule homomorphisms, or with homomorphisms of
right E(A)-modules, (A) — M.
The most important properties of the module of noncommutative differentials are:

(9.11) (a) If P = k(z1,...,2m) is a free ring, then Q(P) is a free E(P)-module generated
by dz1,...,dzm. ‘

(b) If A= B/a, then Q4 is a quotient of Qp, and there is an exact sequence of A-modules

a/a2 —d} Qg ®E(B) E(A) — Q4 — 0.

Interlude: Noncommutative differentiation.

Let P = k(z,y) be the ring of noncommutative polynomials in the variables # and
Y = Y1, ¥r. The partial derivative f; of a polynomial f(z,y) € k(zx,y) is defined to be

the element of E = E(P) such that for a central variable ¢ and a noncommuting variable
Uy

(9.12) fz +ut,y) = fle,y) + ufet + O(t?).
For example, let h be the monémial zyz?, then

h(z 4+ ut,y) = zyz® + (uyz? + zyuz + a:y:c‘ujt + #t?, and

(9.13) he = yz? + (zy)°z + (2yz)° = ya® + y°2°z + a:°y°a:°..

Taylor 9.14: Let x;,u; be noncommuting variables, and let ¢ be a central infinitesimal

- with ## = 0. Let f(2) € (21, ..., Zm). Then

flz +ut) = f(w) - Zuifz‘.t.
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Differential 9.15: If f = f(21,...,2m) then df = dz1 fo, ++* + dTum far,-

Similarly, let f(z,y),g(z,y) be polynomials in two variables. Then
(df,dg) = (dz,dy)J,

where J is the jacobian matrix

M) (g
2161 a(w,y)‘(fy gJ‘

Product Rule 9.17: (f¢)z = fog + gof°

For example, let f = zy, ¢ = z?, so that fg = h is the monomial considered above. Then
fr=1y, gz = 2°+ z, and

fzg+gz = ()(z%) + (2° + z)(zy)° = ya? + 2°y°2° +y°2°z,

which agrees with 9.13.
Chain Rule 9.18: Suppose that z = z(u,v), y = y(u,v). Then

Jo =zufe +yuly.

Ezercises: 1. Verify the above formulas.

2. Verify the Commutator Formula for polynomials in two variables:

(£, = [2,4]6, where &= “det J" = fogy — g fy.

Now going back to the deformation problem, if f + gt generates the defining ideal of a
first order deformation Apg, then an infinitesimal change of variable z +— = + ut results in

(9.19) flz + ut) + g(z +ut)t = f(z) + (Z uifz: + g(2))t,

which leads as in the previous section to the following. Let T* (A) be the left E(A)-module
which makes the following sequence exact:

(9.20) Hom g 4)(QUP) ®ppy E(A), A) - Hom g 4(a/a?, A) — TH(A) — 0,
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Proposition 9.21. Isomorphism classes of first order deformations of the algebra Ay
presented by 9.6 are in bijective correspondence with elements of T A). '

Example 9.22: Let A; be the commutative ring klz,y]/(z?,y?), which has the non-
commutative presentation k(z,y)/a, where a = (z?,y?, yz — zy). The elements 1,z,y, zy
represent a basis of A. There are two things which simplify the computation of T!. First,
the generators for the ideal are homogeneous, both in z and in y. So A and M = a/a®
are bigraded, with respect to the degrees in z and y. Second, since A is commuta-
tive, the multipication map E(4) = E — Aisa k-algebra homomorphism. Therefore

Homp(M, A) ~ Homa(M ®pg A, A). The tensor product M = M ®E A is the quotient of
M obtained by forcing left and right multiplications to be equal: am = ma. The bigrading
carries over to M.

The module M is generated by three elements: ‘my,mgy, ms, the residues of the elements
z*,y?,yz — zy, and direct computation shows that zm3 + m3x = ymy; — myy in the free
ring, hence in M. Since left and right multiplications are equal in M, it follows that
m3z = 0 and similarly msy = 0. On the other hand, using the bigrading one sees that the
generﬁtors my and mg are independent and that M ~ A@ A@k. Soif ¢ is a homomorphism
M — A, then ¢(m;) and ¢(my) can be artibtrary, and ¢(m3) is required to be a multiple
of the socle zy.

- Bringing this computation back to earth, its implications are that every embedded first
order deformation of A can be presented in exactly one way as R(z,y}/ar, where ap is
the two sided ideal generated by

fi= o + (ag + a1z + agy + azzy)t,
f2=vy*+ (bo + b1z + by + byxy)t,
fzs = yz — vy + czyt, with a;, b;,c € k.

A change of variable z,y — z + ut,y + vt, with v = ug + w1z + usy + uszy, and v =
vo + v1T + v2y + vazy adds (2upz + 2uszy)t to f; and (2voy + 2v1zy)t to fa, leaving fs
unchanged. Thus isomorphism classes of algebra deformations depend on 5 parameters,
and can be presented uniquely in the form ‘

fi = 2%+ (ag + ay2)t,
f2=y* + (bo + boy)t,
fs = ly,z] + czyt, with a;, b;,c € k.

Ezercise: Compute the first order commutative deformations of A and compare.
Reference: |
H. Cartan and S. Filenberg, Homological algebra, Princeton 1956.

10. Interlude: Grobner Bases.

Grébner Bases are tools for computing in an algebra with a given presentation. The

method is also often called Bergman’s Diamond Lemma.

We order monomials lexicographically. This means that if m, m' are monomials, then
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(1'{].1) m < m’ if either

(i) deg(m) < deg(m'), or
(ii) deg(m) = deg(m') and m comes before m’ in the dictionary.

~ Given a nonzero polynomial f € P = k{zy,...,zm), we may write

(10.2) | f=om—4,

where m is the largest monomial appearing in f and ¢ € k is not zero. Thus every monomial
appearing in ¢ is smaller than m. For instance, if fi = y* — z? + y, then m; = y? and
¢1 =2z’ —y.

~ Let S ={fi} be a set of elements of P = k(z1,...,Zm), let a be the ideal they generate,
and let A = P/a. We normalize f; so that its leading coefficient is 1, writing

(10-3) fi=m; — ¢

Then m; = ¢; in A. A monomial z is called reduced with respect to the set S if none of
the monomials m; appear as a submonomial of z. Similarly, a polynomial g is reduced if
no m; is a submonomial of any monomial which appears in g. We can obtain a reduced
polynomial from any polynomial in a finite number of steps, each of which consists in
replacing a submonomial m; by the polynomial ¢; and expanding. In other words, if u,v
are monomials, we replace an occurence of um;v by ug;v. Since all terms of ¢; are Smaller
than m;, this process terminates.

Example 10 4: The set S consists of the single polynormal fi =y* —2* +y. We may
reduce g = y* as follows:

(10.5) Y=y — (= —y)y“'wy—yz — Py—z’ +y.
The polynomlal on the right is reduced

Lemma 10.6. Let g’ be polynomzal obtained from ¢ by a - sequence of replacements, as
above. Theng—g¢' € a,ie,g=y¢' in A

This being so, it is natural to ask whether computation in the quotient ring A can be done
by working with reduced polynomials. This is not always the case. The reason is that the
process of reducing a polynomial g can often be done in several ways, and the reduced
polynomial " ¢r.4'"" which appears at the end need not be uniquely determined by g¢.

Example- 10.7: There is a second way to proceed with the reduction of y®, namely

2

(10.8) v =yy’) — ye® —y)=y2® -y — y2? -2 4y

The term on the right is a different reduced polynomial from the one obtained before. On
the other hand, Lemma 10.6 tells us that the two reduced polynomials are equal in A. The
same element of A may be represented by several reduced polynomials.
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An overlap of monomials m,m’ is an equality in P of the form um = m'v, where
u,v are monomials. For example, the monomials m = yz?y and m' = zyz overlap:
z(yz*y) = (zyz)zy. The monomial m = y? overlaps itself: ym = my. Whenever an overlap
um; = fnjv appears as a submonomial in a polynomial g, the replacements um; — ug;
and mjv — ¢jv provide two ways to proceed with the reduction process. The overlap
um; = m;v is called consistent if these two procedures lead to the same end result. More
precisely, consitency means that there ezisis a sequence of reduction steps starting with
h = (u¢; — ¢;v), which ends with the zero polynomial. We might write this in shorthand

Py
[=D=]

(109) | ”(U@l’i = ¢jv)red = 0”1

though, since there may be several ways to reduce the polynomial i, not all of which need
give the same end result, the terminology is ambiguous.
Once it has been stated, the main result is not difficult to prove:

Proposition 10.10. The following are equivalent:
(i) The reduced monomials form a k-basis for A.
(ii) The polynomial gr.q obtained by reducing a polynomial ¢ is independent of the
sequence of reduction steps used.

(iii) Every overlap of the monomials {m;} is consistent.
(iv) Definition: {f;} is a Grobner basis of the ideal a.

If we have a Grobner basis for a, then weé can compute in the ring A by identifying
elements of A with reduced polynomials. Addition is polynomial addition, and the product
of two reduced polynomials g, h is obtained by reducing the polynomial product: ¢ - h =

(9h)red-

- Besides verifying whether or not one has a Grébner basis, the process of checking con-
sistency of the overlaps provides a potential method of obtaining a Grobner basis from any
finite set of generators S = {f;} for an ideal a. The method need not terminate, but it
does so in many cases.

The method is as follows:
(10.11) . -
Step 1: (Reducing the Replacements) We order the S = {fi,..., fr} so that m; are in
lexicographic order. Then we simplify f; if possible, by reducing with respect to the set
{f1ye, fic1}. We throw out any zero polynomials. This Step is repeated until no further
simplification can be made. Then we proceed to Step 2.

Step 2: (Checking Consistency of the Overlaps) We choose an overlap um; = m;v, and we
reduce u¢; — ¢;v in an arbitrary way. If (u¢; — ¢;v)req = h is is not zero, we normalize A,

, __Hrand add it to our set S as fr11 = Mypt1 — Pry1. We go back to Step 1 and start over. If &

is zero, we choose another overlap. We stop when all overlaps are consistent.

It is most efficient to work with reduced Grobner bases, ones for which this process has
been completed.




24

The reason that this method makes progress is that the new replacement m 41 — ¢rt1
introduced in Step 2 changes the overlap um; — mjv into a consistent one. For, fr+1 =
Myy1 — bry1 reduces to ¢ry1 — ¢re1 = 0. By construction, ug; — ¢ jv reduces to a constant
multiple of fr41, hence to zero.

Unfortunately, adding mr41 to our list of monomials which are to be replaced is likely
to introduce some new overlaps to check. That is why the process may not terminate.

Example 10. 12 We begin as before with the set consisting of the single polynomla,l

—fr =1y 22+ y. There is one-overlap—ym—=—rrry; and— yor —dry-=yrl — iy isa
reduced polynomial. So the overlap is not consistent. Our method requlres us to add a
new polynomial fo = yz? — 2y to our set. Here my = yz? and ¢2 = z?y. This introduces

one new overlap ymg = myz?. We reduce yé; — hr1z2:
(10.13) y(z?y) — (2% —y)z? — P -t +aly — (e’ —y) - -2y =0.

This overlap 1s consistent, and {f1, f2} is a reduced Grébner basis.

The case that the polynomials f; are homogeneous is particularly nice. In that case the
reduction process preserves the degree of a homogeneous polynomial. And because an
overlap um; = mjv will be a monomial of higher degree than either m; or m;, the new
replacement, if required, has higher degree than either f; or f;.

Remark 10.14. An ideal a which is generated by homogeneous elements has a Grobner
basis {f;} in which there are finitely many polynomials of each degree.

Example 10.15: We start with the smgle polynomial f; = y? — zy, so that m; = y ,
¢1 = zy. There is one overlap ymy = may, so we reduce yé1 — ¢1y = yry — - zy?,
obtaining fo = yzy—z?y. This introduces three new overlaps yrmi = may, ymg = mlmy,
and yrms = mozy. Reducing yzd, — doy = yz?y — z2y?, we obtain f3 = yz’y — z3y.
The Grébner basis obtained by continuing this process contains one polynomial fr, =

yz*~2y — "1y in every degree n > 2.
Yy dacg

Ezercise: Analyze fi = y? — 2y + z°.

It is natural to ask whether Grobner bases can be used when the ground field & is
replaced by an arbitrary ring R. So let us consider an ideal ar C Pr = R(%1y.eyTm)
which is generated by some polynomials f; € Pr. A difficulty arises immediately: If we
write f = cm — ¢ where m is the leading coefficient, then its coefficient ¢ € R need not
be a unit. And if ¢ isn’t a unit, we can’t normal.lze f to eliminate it. This problem is
fundamental, because the reducmon process Would require replacing an occurence of m by

¢~1¢. It can not be carried out.

On the other hand, it may happen that we are given a set of generators for an 1deal aRr
and that the leading coefﬁc1ents are all equal to 1, say {f; = m; — ¢;}. In this special case
replacing m; by ¢; is permissible, and Proposition 10.10 carries over without change.
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Proposition 10.16. Let R be a commutative ring and let S = {f; = m; — $i} be a set of
elements of Pp each of W_hose leading monomials m; has coefficient 1. The following are
equivalent:
(i) The reduced monomials form an R-basis for Ap = Pr/ag.
(ii) The polynomial gr.q obtained by reducing a polynomial ¢ is independent of the
sequence of reduction steps used.

(iii) Every overlap of the monomials {m;} is consistent.
(iv) Definition: {f;} is a Grobner basis of the ideal a.

Notice that according to this proposition, a Grébner basis will not exist unless A r has a
basis of monomials. In particular, if Ap is not flat over R, then there is no Grébner basis
for the ideal ar. Also, note that Step 2 of the process 10.11 can’t always be carried out,
because the polynomial (u¢; — ¢;v)red = h may have a leading coefficient which is not a
unit.

Reference:

G. Krause and T.H. Lenagan, Growth of mlgebms and Gelfand- Kirillov dimension, Pitman,
London 1985.

11. First order deformations via Grobner bases.

To apply the discussion of Grébner bases to deformations, we need to modify the dis-
cussion a bit. We suppose that R is a finite local k-algebra with maximal ideal m, and
that Pr = R(z1,...,Zm) as before. We may write a polynomial f € Pp in the form
[ =u(f) —n(f) where u(f) is the sum of terms having unit coefficient, and n(f) is the
sum of the remaining terms. Thus u(f) # 0 if and only if the residue of f in Pj is not
zero. Suppose this is the case, and let m be the largest monomial appearing in u(f). Then
f can be written uniquely in the form

(11.1) : f=cm—¢—n,

where ¢ is a unit of R, ¢ = ¥(f) is a polynomial with unit coefficients, all of whose
monomials are smaller than m, n = n(f) has coefficients in m, and where no monomial
appears more than once in this expression. We will refer to m as the leading monomial of
. '
Let S = {f;} be a set of polynomials none of whose residues in Pj is zero, let ar be the
ideal they generate in Pg, and let Ag = Pg/ar. We normalize so that fi=mi—v;—n; as
above, and we consider the process of replacing m; by v; +n; in a given polynomial g. The
monomials appearing in n; may be larger than m;. Nevertheless this process terminates in
a finite number of steps, because the coefficients of 7; are in m and m is a nilpotent ideal.

~—Specifically, progress is being made when measured using the following partial order on

multiples of monomials:
Let v(r) denote the largest power m” of the maximal ideal which contains an element
r € R. We define a partial order on muliples rm of monomials by the rule
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(11.2) rm < r'm’ if either

(1) v(r) > v(r"), or eise

(i1) v(r) = v(r') and m < m' in lexicographic order.

Lemma 11.3. (i) The above partial order has the descending chain condition.

(ii) Let u,v be monomials, and r € R. With the above notation, all terms in the expansion
of ru{v; + n; )v are smaller than rum;v. '

" This lemma allows us to speak of reduced polynomials and consistent overlaps as before.

Proposition 11.4. Let R be a finite local k-algebra, and let S = {f;} be a set of elements
of Pr none of whose reductions in Py is zero. Then the conditions (i)-(iv) of 10.16 are
equivalent.

This proposition applies directly to deformations. We suppose given a Grobner basis
{fi = m; — ¢;} for the defining ideal ay of Ay = Py/ax, and that R = k[t]/(t?). We lift the
elements {f;} to R, say as f; + ¢it, where g; € Px. Let ag be the ideal they generate in
Pgr, and let Ag = Pr/ar. We write f; + ¢g;t = m; — ¥; — n; as above. Then n; is the sum
of the terms in ¢;¢ which involve monomials that are not present in f;, and ¥ = ¢, modulo
m. The leading monomial m; is the same as for the polynomial f;. Since the ideal ag

depends only on the residues of g; in A, we may assume that ¢; are reduced polynomials.

Proposition 11.5. The algebra Agr is flat over R if and only if {fi + git} is a Grobner
basis for ag.

Proof. Agr is flat over R if and only if an arbitrary lifting of a k-basis of A to Ag is an

R-basis for that ring. Since {f;} is a Grobner basis for the ideal ag, the reduced monomials

form a k-basis for Ay. And, the overlaps for {f; + g;t} are consistent if and only if the
same reduced monomials for:m an R-basis for Ag.

Example 11.6 We start with the ideal with Grébner basis {fi = y* —2* + vy, fo =
ye? — wzy} considered in the last section We try a perturbation of the replacements, of
the form y? = 2% — y + ¢t, and yz? = 22y + ht, and we check the two overlaps ym; = myy
and ymg = myz:

y(z? —y+9t) — (2® —y +gt)y — ya® — 2’y + (yg — gy)t
— (2%y + ht) — 2’y + (yg — gy}t = (h +yg — gy)t.
y(sc'zy + ht_) — (:c2 —y+ ‘gt)scz = yzly + yht — 2* + yx? — gzt
NS —> (z%g — gz% + h + hy + yh)t.

In order to have a flat deformation, we must have h + yg — gy = 0 and z%g — gz + h +
hy +yh =0 in A;. Now since yz? = z2y in Ay, z? represents a central element of Ax. So
the second relation reduces to h + hy + yh = 0. We solve the first relation for h = gy — yg
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and substitute into the second one, obtaining gy — yg = 0 in A;. Thus deformations are
classified by elements g € Ay such that gy = yg.

12. Commutative Grobner bases and commutative deformations.

Grébner bases can also be used in the commutative setting. One simply takes the
commutative polynomial ring Py = k[z1, ..., 2] and works with lexicographically ordered
monomials. Proposition 10.10 carries over without change. There is an important addi-
tional fact in the commutative situation, which does not hold for noncommutative rings. -

Theorem 12.1. The procedure 10.11 leads to a finite Grobner basis in finitely many
steps.

This theorem is mainly of theoretical interest. If the ideal is sufficiently nasty, checking
overlaps will cause your computer to crash.

Example 12.2. Take S = {f1, f2}, where f; _my —1,and f; = e y—l So my = zY°,

- mg = z°y. There is one overlap z®my = maoy?. Then z? (c,‘bl) (d)y? = z? —y? 1s reduced,

so we must add f; = y* — z? to our list. Then f; can be simplified: fl =z -1 —

2%y — 1 = f,. So this replacement is redundant, and we throw it out, after which we are
left with {f3, f2}, in lexicographic order of the leading monomial. There is one overlap:
zms = may, and 23(22) — (1)y = 2° —y. We set f, = z° — y. The relations are now
{f3, f2, fa}, and one additional overlap has been introduced: msy = z%ms. It is consistent,
so we have a Grobner basis. :

This algebra has finite dimension over k. To determine its dimension, it suffices to count
the number of reduced monomials, which are the monomials not divisible by 2, 3y, or
z°. The reduced monomials are: {1,z,z?, 2%, 2, y, zy, 22y}. So dim Az = 8.

Ezercise: 1. The relation 28 = 1 holds in Ag. Show that the Grébner basis determined '
from the generators {z® — 1,z° — y} for the ideal is the same as the one just computed.

2. Prove that the reduced Grobner basis for an ideal is unique.

As in the noncommutative case, first order deformations are classified by perturbations
fi+git, i = 3,2,4, where g; are reduced polynomials in P, and such that the overlaps are
consistent. In our example, the ring Ay is abstractly isomorphicto k@ --- @k, the sum of
8 copies of the ground field, and the presentation corresponds to embedding eight points
in the plane A? as the locus 2® = 1,y = 2% Embedded deformations ought to consist in
infinitesimal motions of these points in the plane. An infinitesimal motion of a pomt 1s
given by a vector having two components.

Ezercise: Compute the first order deformations in this case, and show that they depend
on 16 parameters, as predicted.
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13. Hochschild Cohomology:

Let R be a commutative ring, A an R-algebra which is pro jective (eg. free)as R-module,
and M an A-bimodule. Suppose that the ring of “scalars” R acts centrally on M. Then
M is a right module over the enveloping algebra £ = E(A)=A°®rA.

The Hochschild cohomology of A, M is defined to be

(13.1) HY(A, M) =ExtL(A4, M),

in the category of right E-modules. .
In principle, Hochschild cohomology can be computed in terms of a free resolution of 4

as right E-module:
(13:2) Re=... 2o gr2 22, gm 4, g, 40,

where dy is the multiplication map a® ® b — ab. (The exponents n; might be infinite.)
Dropping the augmentation A and taking Homg(R., M) yields a complex of the form

(13.3) Oy By B0

whose cohomology is Extr( A, M).

Since the maps d; of 13.2 are right linear, they can be identified as left multiplication
by a suitable matrix P; with entries in E. Then §; is right multiplication by P;, which
sends M™i-1 — Mm™i. Of course, right multiplication by FP; may not commute with
right multiplication by elements of E, so é; is only R-linear. The Hochschild cohomology
" H'(A, M) is an R-module, not an A-module or an E-module.

The next proposition describes Hochschild cohomology in low dimensions. To read it,
we need to review a few definitions. Let M be an A-bimodule. The center Z(M) is the
set of elements which commute with all elements of A:

(13.4) Z(M) = {m € M|am = ma forall a € A}.
An R-derivation d : A — M is an R-linear map such that
d(ab) = adb+ dab

for all a,b € A. The set of R-derivations is an R-module Derg(A,M). f m € M is
a fixed element, the map d : A — M defined by da = am — ma is an R-derivation,
and the derivations of this form are called inner derivations. They form a submodule
InnDerg(A4, M) of Derr(A, M) isomorphic to M/Z(M).

Let M be a (two-sided) ideal of an R-algebra B such that M? =0, and let A= B/M.
Then the left and right actions of B on M make M into a A-bimodule. This leads us to
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define an algebra e:ﬁtensz’on A by an A-bimodule M as an R-algebra B which fits into an
exact sequence

(13.5) 0— M5B A0,

where 7 is an algebra .homomorphism whose kernel M is an ideal such that M?% = 0.

The trivial extension is B = A x M , with multiplication law'

(13.6) . (a,m)(b,n) = (ab,an -|— mb).

Two algebra extensions B, B’ are considered isomorphic only in the obvious case, that
there is a map of the exact sequence 13.5 to the corresponding one for B' which is the
identity on M and on 4. The set of algebra extensions will be denoted by AlgExt z(A, M).
As Proposition 13.8 shows, this set has the structure of an R~module Here is the reason
that algebra extensions arise in deformation theory:

Proposition 13.7. Let A be a k-algebra. Then AlgExt, (A, A) classifies first order defor—
mations of A. :

Proof. We must show that the classifications of deformations and of k—algebi‘a extensions
of A by A are equivalent. Let Ar be a deformation of A over R = k[t]/(¢?). Then since
Ag is R-flat, the sequence '

0— AL A R— A—0

is exact, and this sequence makes Ap into an algebra extension of A by A.

Conversely, let ‘

0—AS5BS5A4A—0
be a k-algebra extension, and set ¢t = 7(1). Then #2 = 0, and so t generates a subring
R = k[t]/(t?) of B. Because 1 is central in A, it follows that ¢ is central in B, hence. that
B is an R-algebra. This realizes B as a flat deformation of A. Moreover, any isomorphism
o : B — B' between k-algebra extensions fixes the element ¢, hence it is an isomorphism
of deformations.

Proposition 13.8. HY(A, M) = Z(M), H'(A, M) = Derg(A, M)/ InnDerg(A, M), and
H*(A, M) = AlgExt (A4, M).

We will verify the assertions for H? and H!, defering H? for a while. By definition,
H°(A,M) = Homg(A,M). A map ¢ € Homg(4, M) is an A-bimodule homomorphism,
i.e., it is both left and right A-linear. Let m = ¢(1). Then

am = a¢(1l) = ¢(a) = ¢(1)a = ma.

This shows that m determines ¢ and that m € Z(M). Conversely, if m € Z(M), then the
map defined by ¢(m) = am is both left and right linear.
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Next, an element of H'(A, M) = Ext(A, M) can be described as an isomorphism class
of extensions of right E-modules

0—oMS5NTHA—0.

Such an extension can also be thought of as an extension of A-bimodules: 1t is both left
A-linear and right A-linear. And since 4 is a projective left A-module, the sequence of

left A-modules splits (forgetting the right module structure). Let s : A — N be such a

__ splitting. So s is left linear, and 7s = identity. But s need not be right linear. So s(a)b

may not equal s(ab). However, s(a)b — s(ab) € M because, since 7 is right linear,
7(s(a)b) = (ws(a))b = ab = ws(ab).
Let = = s(1), and define d : A — M by d(a) = ax — za. Then d is an R-derivation:
| adb+ dab = a(be — ob) + (a — va)b = abe — zab = d(ab).

The derivation d depends on the left splitting, and two splittings s, s' differ by a homo-
morphism of left modules f : A — M. Let m = f(1). Then d'(a) = az' —z'a =
a(z +m) — (z + m)a = d(a)a + am — ma. Thus d' and d differ by an inner derivation.
Conversely, we can use an R-derivationd: A — M to define an extension of bimodules.
To do this, we take the trivial extension of left modules 4V =4 (A x M), and we define a -
right A-module structure on N by the rule: : ' :

(13.9) ' (e,m)a = (ca,cd(a) + ma).

The associative law is verified as follows:

(13.10)  ((c,m)a)b = (ca,cd(a) + ma)b = (cab, ca d(b) + cd(a)b + mab) = (¢, m)(abd).
Hochschild cohomology can also be described by explicit cochains coming from a standard
resolution, and we will use this description to show that H 2 (lassifies algebra extensions. A

Hochschild n-cochain is an R-multilinear map f: A" — M, and the coboundary operator
delta is defined by '

(13.11) §f(a1,-..,ant1) = a1 f(az, ...,an+1) — flaraz, as, , Qn+1)
(a1, 823, ey @ngr) =+ £ F(@1500ny Gnnt1) F F(a1, 00 Gn) B0t
Thus a Hochschild 2-cocycle is an R-bilinear map f:Ax A— M such that
(13.12) af(b,c) — f(ab,c) + f(a,be) — F(a,b)c =0,
and a 2-coboundary is a map ¢g of the form I
69(a, b) = ag(b) — g(ab) + g(a)b

where g : A — M is R-linear, i.e., a homomorphism of R-modules. We will show below
that HZ2(A, M) is isomorphic to the quotient group (2 — cocycles)/(2 — coboundaries).
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Proposition 13.13. Let B be an algebra extension 13.5, and denote m(d) by b. Let
* : B x B — B be an R-bilinear map which defines a second algebra structure on B, such
that 7 is an algebra homomorphism for this structure, a.nd that M * M = 0. Then * has
the form

T*yYy =zY+ ‘;ﬁ(Eag)a
where ¢ : A x A — M is an R-bilinear map satisfying the cocycle condition 13.11.

Proof. For z,y € B, set ®(z,y) = z+y — zy. This symbol is R-bilinear because both z *y

.*7* —and zy are—Since 7is a-homomorphism for the-new algebralaw, 7z x ¢} = 7(z)w(3) =
m(zy). Therefore ®(z,y) € M. Next, because M * M = 0, t *m = Tm = zm and
m* z = mZ = mz for all z € B and m € M. Hence &(z,m) = ®(m,z) = 0. This shows
l that ®(z,y) depends only on the residues 7,7 in A, and that there is an R-bilinear map
¢ : A x A — M such that &(z,y) = &(Z, 7).
Besides being R-bilinear, an algebra law must be associative and have an identity.
l Actually, the existence of an identity will follow automatically from the fact that A has
one, by lifting of idempotents. We omit the verification of this fact, and examine the
' implications of the associative law on ¢: '

2x(y*2) =z (2 + (3,7)) = o(u2) + (7, 7%) + T6(7, ),
(z+y)x2z=(2y + 6(Z,9)) * 2 = (zy)z + 4(T7, %) + ¢(T,7)z.

Collecting terms and using the fact that the original multiplication on B is associative, we
see that ¢ is a 2-cocycle.

To complete the classification of isomorphism classes of algebra, we must decide when
there is an isomorphism of algebra extensions ¢ carrying one of these structures to another.
Equivalently, we can study the effect on the multiplication law of an R-linear map o : B —
B compatible with the identity maps on M and A. Such a map can be written in the form

(13.14) | o(z) = o+ u(@),

where 11 : A — M is R-linear. Which multiplication law in B we take makes no difference
for this computation, so let us take the original multiplication “zy”. To compute the new
law, call it = * y, we must conjugate by o:

zxy =0 o()o(y)) = 0 (zy + zu(T) + u(T)y) = zy — p(EY) + o4(T) + 1(Z)y).

Multiplication has been changed by the Hochschild coboundary 6.

We must now explain why the explicit cocycle computation is correct, and there are
two steps in this explanation. . :
. First, A has an augmented simplicial resolution as an A bimodule, which ; in dnnens:on
n is S, = A®(+2),

(13.15) | S AQRAQRATI A®rA— A.
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The term augmented refers to the last term A, which is not a part of the simplicial complex.
Thus S = AQrA, 51 = AQrA®RA, etc... There are E-linear face maps J; and degeneracy
maps s; as follows:

The face maps
(13.16) ' 518, = A, gentl) — g
are defined for 7 = 0,...,n by
0ilag®a1 @ - Qapi1) =00 R - R aiGi41 ® -+ & Gpa]. __ S—

The degenemdes will not be important for us, but they are part of the simplicial structure.
They are maps '

(13.17) 5i: 8y = AB(HD) _, pqO(nt8) — g
defined for : = 0,...,n by
si{a®  Qant1) =0 ® - Q®a; ®L®ait1 Q- @ ant1.

These maps satisfy certain identities, the defining relations for a simplicial set. They are

(13.18) ‘ 6.—8,— =01 0
_S,'aj = 63-4.13,-
Gisj = s;—10;

Si85—-1 = 5554
for all i < j. No one can remember them more than a day, but they are trivial. For us

the important thing is to note that the alternating sum of the face maps makes S into a
complex. In other words, if dn = 8y — 61 + -+ & Gn, then dn_1d, = 0.

Pfoposition 13.19. The sequence
e By Py B <2 B 55 A —si0
defined by do = 0y, dl =0y —01,d; =8 — 01 + 8,, etc., is a resolution of A.

Proof. We must show that the sequence is exact. Let S = @ S,, and let d : § — S
denote the graded map of degree —1 which in degree n is dy. To show that the sequence
is exact, we must show that im d = ker d. It suffices to find a “homotopy” h, a graded

R-linear map 8§ — S of degree +1 such that hd + dh = identity. For, if h has been

found and if if z € ker d, then = = hdz + dhz = dhz € im d. The required homotopy is
h(a'() ®"'®an+1) =1®GO ®“'®Gn+1i

(1320) hd(ﬂlg Ra & - ®an+1) = 1® [(agal & da ®) --(CLQ ® ayag ®) + ...],

a.nd

dh(ao ® -+ ® an+1) =d(1®a ®a1 @)
= (ao ®a1®---)—(1®a0a1@---)—%—(l@ag@alag@---) o)

i | aessE LS. - T
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Lemma 13.21. (i) If P, Q are projective R-modu]es then P ®g @ is a projective R-

module.
(ii) If A — B is a ring homomorphism and if P is a prcuectwe right A-module, then

P ®4 B is a projective right B-module.

Proof. To say that a module M is projective means that Homg(M, ) is an exact functor.
Assertion (i) follows from the canonical isomorphism

Hompg(P @r @, ") = Homp(P, Homg(Q, ")),

and (ii) from the isomorphism Homp(P ®4 B,-) ~ Homa(P,-). .

Corollary 13.22. Let S. be the complex 13.19. The Hochschild cohomology H (A, M)
cohomology of the complex Hompg(S., M). .

Proof. We must show that 8. is a projective resolution of the right E-module A. We use
the isomorphism of right F-modules

(13.23) . AT @p Em AS(HD = 5,

which is defined by (a1 ® -+ - ® an) @ (0° ®¢c) = b®a; @ --- ® a, ® c. Since A is assumed
to be R-prOJectlve so is A®” Hence S, is E- projectwe as reqmred

An n cocycle F' € HomE(S M) is an E-linear map F : A®("+2) = §,, — M whose
coboundary §F := F odpt1 : Spe1 — M is zero. Explicitly, the coboundary is -

(13.24) Flag ® ... @ any2)

= F(apa1 ®az ®as ® -+ ) —F(ao Qajaz ® )+ Flao ® a1 @ azaz @ -+ )—, =+,
This is not the form that we want. To reduce it to a usable form, we set Cn = A®" and
we use the isomorphism 13.23 to conclude that

(13.25) Homp(Cr, M) =~ Homg(S,, M)

We make Hompg(C., M) into a complex using this isomorphism.

The E-linear map F : S, — M which corresponds to an R-linear map f : C, — M is
the map

(13.26) Flag®a1 @+ ®an ® ant1) = apf(a1 ® -+ ® an)an+1,

and conversely,
(CL1® ®an)_F(1®al® ®an®]—)

Then the cocycle cond1t10n on 13.23 on F translates on f to

(13.27) 5f(a1®---®an+1):5F(1®a1®---®an+1®1)
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= a1f(az®" - *®ant1)—F(a102®" - -®ant1 )+ (01 @203+ “Bnt1)—; + - fla1®- - an)ani1.

References:
Michel André, Homologie des algébres commutatives, Springer 1974.
C. We'ibel, Homological Algebra, Cambridge University Press 1994.

14. An example of an obstructed de_forination.

" The general setup for studying higher order deformations is as i Section 7. We consider —

an extension of finite local k-algebras
(14.1) 0—k5>RSR —0,

where ke is an ideal of dimension 1, and we suppose given a flat R'-algebra A'. Thus A’
is a deformation of its “fibre” Ax = A’ @ k, parametrized by R’. We want to study the
extensions of A' to R. Recall that such an extension is a flat R-algebra A together with a
chosen isomorphism A ® g R’ — A’. The problem of classifying these extensions can be

split into two parts:

(14.2) .
Problem 1: Decide whether or not any extensions of A’ to R exist, and identify an ob-

struction, which vanishes if and only if an extension exists.
Problem 2: If extensions of A’ to R exist, classify them up to isomorphism.

Only the second of these problems arises when studying first order deformations, because
one always has available the trivial deformation Ar = Ax @ R of an k-algebra Ag. So if
R = k[t]/(#?), the extension of A to R is unobstructed. But if A’ is a nontrivial extension
of Ay to some ring R’, then it may happen that the further extension to R is impossible.

The problem of deforming maps of a point into a singular scheme X provides an analogue
which is easy to visualize. Let's take for X the union of the two coordinate axes in A%, ie.,
X = Spec B where B = k[z,y]/(zy). A map Spec B — X corresponds, by definition, to
a homomorphism B —+ R. Take the point ¢o : B — k to be the origin: z =y = 0. A
first order deformation of this point is a tangent vector, a homomorphism ¢; : B — R,
where R' = k[t]/(#?). It will have the form ¢1(z) = 0+axt, #1(y) = 0+b1t, with a1, b1 € k.
In order to be defined on B, the relation ¢;(zy) = 0 must hold. But since t?2 = 0, this
is true for all a;, b1 every vector is tangent to X at the origin. On the other hand, the
extension of ¢; to a map ¢ : B — R, where R = k[t]/(t*), is not always possible: If we
try to define ¢o by é2(z) = a1t + azt?, ¢2(y) = bt + byt?, then ¢o(zy) = a1 b;t?. In order
to extend to second order, either a; or by must be zero, i.e., the tangent vector must be

either vertical or horizontal.

A similar thing happens with embedded deformations of the commutative ring A =

‘k{z,y]/(z?, 2y, y?) that we looked at before. Recall from Section 2 that there are exactly
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five algebras of dimension 3 over k, of which four are commutative and one is the noncom-
mutative algebra Ay of upper trianglar matrices. All of these algebras can be obtained
by deformation from A; (though not by infinitesimal deformations). On the other hand,
one can show that Ap and the “generic” commutative ring k @ k @ k are rigid, i.e., they
have no nontrivial deformations. In particular, neither one can be deformed into the other.
So heuristically, the commutative deformations and the noncommutative ones must lie on
different loci in the space of all deformations, and this space should present a picture quite
like that of the two lines. We will see later that this is actually the case.

We present Aj as a noncommutative ring:
(14.3) Ar = k(z,y)/(2?, 2y, yz, y*).
The ring of triangular matrices has the preéentaﬁon
(14.4) Ap = k(z,y)/(z® — v, 2y —y,yz,y?),
where z = ej1,y = eiz. In both cases, the given relations form Grobner bases for the

defining ideal.

A first order deformation of A; will have relations of the form
z? = a1t, zy = Bit, yr = mt, y° = &;t.

They are subject to the requirement that the overlaps remain consistent. As we know, the
deformed algebra depends only on the residues of a4, ..., §; in Ag, so we may assume that
they are linear polynomials in z,y, say a; = a1 + @112 + aj2v, ete..

There are several overlaps, such as y(z?) = (yz)z, to check. Reducing this overlap
we obtain (ajoy — c10z)t. Flatness of the deformation requires that ajo = ¢19 = 0, and
similarly byo = d1p = 0. The eight remaining coefficients can be arbitrary.

It is clear which deformations are commutative: they are the ones in which ;1 = 7.
The infinitesimal deformation defined by
‘=0,zy=yt,yz=0,y" =0
is a plausible candidate for an obstructed deformation. It is not commutative, and it seems
not to head towards the ring of triangular matrices.

We try to extend this deformation to second order, i.e., to the ring R = k[t]/(¢?), by
adding a second order term:

T 72 = 0—{-a2t2, Ty = yt+ﬁ2t2, Y= O+72t2, y2 = 0 + §,22%.

Again, the perturbation terms can be taken linear in T,y, say ag = agg + a21% + azzy, etc.
Checking the overlap y(z?) = (yz)z shows that the constant term agq must vanish.
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We compute the overlap z(zy) = (z2)y:
z(zy) — zyt + w212 — yt? + (bao + b1z + byoy)zt? — (y + baow)t?,

(z?)y — agyt? — (a217y + azey®)t? — 0.
For this overlap to be consistent, we must have y + bggz‘_= 0. This is impossible.

15. The obstruction in Hochschild cohomology.

With notation as in the beginning of Section 14, we suppose given a fiat 1t -algebra A%
and ask to extend it to a flat algebra A over R. To analyze the obstruction, we choose a
basis for A’ as R'-module, and take for A the free R-module with the same basis. This
gives us an exact sequence of R-modules

0— Ay S A— 4" — 0.

Since A is a free module, so is A ®g A. This enables us to lift the multiplication law on
A’ to an R-linear map p: A®g A — A. Let us denote the corresponding R-bilinear map
Ax A— Aby u(z,y) = z-y. The only axiom for an algebra law which is not taken care
of by the bilinear property is the asociative law. We set

(15.1) f(z,4,2) = (z-9) -z =z (y-2)

Let m denote the maximal ideal of R. Since mA ~ m®@pr A ~ m@p' A', the multiplication
law - is determined on mA. It is given by the structure of A'-module on m @p A': If
memandz,y € A, then mz-y=m@z-y=m@z'y. Similarly, z-ym = z'y’ @ m.
Since multiplication in A4’ is associative, it follows that f(z,y,2) = 0 if any one of the three
entries is in mA. So we may view f as an R-trilinear map A X A X Ay — Ap, and we
may write f(z,y,2) = f(F,¥, %), where T is the residue of z in A, etc. We now check that
f(Z,9,%) is a 3-cocycle. The coboundary formula is ' '

§£(@,b,5,d) = af(,c,d) — f(@h,5, d) + f(@be,d) — f(a,b,ed) + f(a,b,E)d.

 We note that @b is the residue of @ - b and that af(b,¢,d) = a- f(b,c,d). Lifting éf back

to A gives ;

§f(a,bye,d)=a-[(b-c)-d—b-(c-d)]—[((a-b) -c)-d—(a-b) (cd)]

Hla-(b-c)-d—a- () D) - [(a-B)-(c: da-(b-(c-d))]

+[(a-b)-c—a-(b-¢)]-d=0. .

We may change the chosen map u to pu + h, where h is an R-bilinear map A x A — €eA;.

Computation shows that the cocycle f changes to f +dh, i.e., by a Hochschild coboundary.

Thus the obstruction to the existence of an associative multiplication on A which extends
~ the law on A' is the class in the Hochschild cohomology H 3(A, A) which is represented by

f ' '
The existence for an identity element on A is automatic, provided only that Az has an
identity element. This is proved by the familiar “lifting of idempotents” argument:
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Lemma 15.2. Let 0 — M — A5 A" — 0
be an extension of associative algebras, possibly without unit element, such that M? = 0.

(i) If ¢ € A’ is an idempotent element, there is a unique idempotent e € A such that

7 m(e) = ¢€'.

(ii) If A' has a unit element, so does A.

Proof. () We start with an arbitrary lifting eg € A of ¢/. Then e = eg (modulo M).
Set mg = e — ey, and 7 = eg — mo. Then my = e1? — e3 = 2mg — Mmoeg — eoMo.

We try ey instead of €. There is some progress, because e;mie; = 0. Them e —ef =
(el + e%)(e% —e1)(e? +e1) = (ef + e?)my(e? +e1) = 0. So e = e} is an idempotent
lifting of . Ife,f = e+ z are two idempotent liftings of &', so that z € M, then
e+er+ze=(e+z)’ =e+r, 50 ez +ze=rz. Multlplymg on the left by e yields ze = U
and similarly ez = 0. Soz =0 and e = f.

(ii) Let e be the idempotent lifting of 1 € A’. Let a € A. Then z = ea — a € M, hence
e operates on z through A as the identity. Therefore z = ez = e®’a — ea = 0 and ea = a.

16. The abstract approach, and why first order deformations are linear.

In this section we consider deformations abstractly, as a functor on the category R of

* finite local k-algebras, morphisms being homomorphisms of k-algebras. The category R

has a nice structure which helps to describe sufficiently well behaved functors. We denote
by R, the full subcategory whose objects are finite local k-algebras R with the property
that that mjt! = 0.

Since we have made an overall assumption that the ground field k is algebraically closed,
k-will also be the residue field of any element R € R. The discussion of this section carries
over to arbitrary ground fields if we add as requirement for an object R of R that R/m = k.

In what follows, we set

V = k[t)/(t?).

We omit the proof of the following simple lemma:
Lemma 16.1. (i) k is a final object of the category R.

(ii) Let f; : R — S, i = 1,2, be homomorphisms in R,,. The ﬁbred product R1 Xg Ry =
{(a,b)la = b in S} is also in ’R,n, and the projection maps m; : Ry Xs Ry — R; are
homomorphisms.

(iii) The categorical product of two objects R, S of R, is represented by the fibred product
R xy S = {(r,s)|r = s in k}. It is an object of Ry, and for any object P € R,

Homz (P, R x& 5) ~ Homg(P, R) x Homz(P, S).

(V) Vxp Sm S@kt,and V x; V & klt1, t2]/(t1,12)*.

Given a k-algebra Ay, we obtain the deformation functor

(16.2) 7 Def(Ag; - ) : R — (Sets),
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where (Sets) denotes the category of sets; by defining Def(Ag; R) be the set of isomorphism
classes of deformations of Ay, parametrized by R. As before, a flat deformation of A is an
R-algebra Ag together with a chosen isomorphism Ar ®g k — Ak, and an isomorphism
of deformations must be compatible with this chosen isomorphism. IfR— R isa
homomorphism in R, the associated map Def(Ax; R) — Def(Ay; R') is defined by tensor
product: Ap — Ar®R R'. Note that Def(Ax; k) is a set of one element, the class of {Ax}.
If Ap is a commutative algebra, then we can of course study either commutative defor-
mations, or noncommutative ones. Therefore there are really at least two different defor-

— Ta;tiwfﬁnmsﬁutﬁnstead—ofombadirrg—theﬁo%at-ionfwe%eﬂd%—&ﬂoﬁhe- ambiguity ———

and denote them both by Def.
More generally, we may consider an arbitrary functor

(16.3) : ' F : R — (Sets)

such that F(k) is a set of one element. We call such a functor a local functor. There are
two general classes of local functors to keep in mind:

(16.4)(i) Deformations of an algebra: F' = Def(Ag; -) as above, and
(ii) Deformations of a point p of a scheme X. '

The second type is described as follows: A point of X = Spec B corresponds to a homo-
morphism ¢ : B — k. f R€R, then we define F(R) as the set of maps Spec R — X
such that p is the image of the underlying point Spec k C Spec R: :

F(R)={¢r:B — R|¢r ®r k = ¢ }.

This is made into a functor by composition of functions: Given a map ¢ : R — R/, the
map F(g) : F(R) — F(R') sends $r+— go PR '

 The tangent vectors to a local functor F' are defined to be the elements of F(V), which,
in case F' = Def(Ag; - ), correspond to frst order deformations. In the second example,
they correspond to tangent vectors to X' at p, as was described in Section 5. In all of these
examples, the tangent vectors form a k-vector space, and the reason for this is inherent in
the structure of the ring V. '

Let C be a category with products and with a final object p. A k-vector space object in
C is an object V together with morphisms ) : V xV — V,(:ip— V,and A : V—V
for ¢ € k which satisfy the axioms for a vector space if 3 represents the addition law, ¢
represents zero, and A, represents scalar multiplication by c.

The associative law, for example asserts that the composed map 3 o(¢d x Y_), which sends
V><(VXV)-ﬂPVXV-ZaVisequaltOZo(ind).

The identity property of ¢ reads as follows: Let g denote the unique map from V to the
final object p, and let id = idy. Then (Co g,id) maps V — V x V, and the zero property

is " o(C o g,1d) = id. ‘
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Proposition 16.5. The ring V has the structure of a vector space object in the category
R. Identifying V x; V as the ring k[t1,12]/(t3,t1t2,1}), the addition law 3 : V X3V — V
is defined by Y (t1) = Y.(t2) =t, or 3 (a + bity + bata) = a + (b1 + bg)t. The zero map

¢ : k — V is the algebra structure map, and scalar multiplication . by ¢ € k is defined

to be Ac(a + bt) = a + bet.
The proof is routine. .

Now if F': R — (Sets) is any functor, and if R; — S, ¢ = 1,2 are maps in R, then
functorality gives us a canonical map of sets

(166) F(Rl Xsg Rg) —+F(R1) XF(S) F(Rz),
and a canonical map
(167) o F(Rl Xk Rg) —*F(Rl) X F(Rg)

Corollary 16.8. Suppose that a local functor F': R — (Sets) has the property that the
canonical maps 16.7 are bijective for all Ry, Ry € R1. Then F(V) inherits the structure of
a k-vector space from the structure of vector space object on V.

F(s)

Proof. We define the addition on F(V) to be the map F(V) x F(V) ~ F(V xj V) —2

F(V), where 3 is as in 16.5. The zero element in F(V) is the image of F(k) via the amp
F(¢), and scalar multiplication by ¢ € k is defined to be F((A;). The axioms for a vector
space object show that we obtain a vector space.

One more item of structure on the category R will be important. It is that a length
one extension
(16.9) 0— kSRS R —0
‘defines a categorical operation of the additive group object (V,37) on R. Since V x; R =
R @ kt, we can define the operation op : V xy R — R by
(16.10) op(z + at) = = + ae. ,
~ This map has the associative property which defines a group operation, that two resﬂting
maps V X V x R — R are equal: opo (id x op) = opo (s X td), and the identity ¢ of V
operates trivially: [opo ( o g](z + at) = z.

We review some elementary facts about group operations. Suppose given a map of
sets X — X' and an operation of a group G on X, and consider the induced map
GxX Aowi®), X x X, where pr is the second projection G x X — X. Then
(16.11)(i) The operation is free if and only if the map (op, pr) is injective.

(ii) G operates on the fibres of X/X' if and only if the map (op, pr) factors through the
fibred product X x x+ X.

. (iii) G operates transitively (resp. simply and transitively) on the fibres if and only if (ii)

holds and the map G x X — X x x+ X is surjective (resp. bijective).

Part (i) of the next lemma shows that all of these properties hold for the categorical
operation defined above. '




40

Lemma 16.12. Suppose given an extension 16.9.

(i) The homomorphismV xR Lemrn), B x kR induces a bijective map V Xy R — RXps R.

(ii) The extension is split if and only if R =~ V x; R/

Scholium 16.13. Here is the interpretation of (i) for maps into R: Suppose given a
homomorphism ¢ : S — R, and denote the composed map 7¢ by ¢'. If we are also given
a derivation d : § — k (which corresponds to a homomorphism § — V), then we can

__ define a new homomorphism % : S — R by ¥(s) = &(s) + d(s)e. The maps 1) obtained

in this way are precisely those such that ¢' = ',
Corollary 16.14. (i) Let F' be a local functor with the following properties:
(i) For every pair of elements R; € R, the map 16.7 is bijective,

(i) For every length one extension 16.9, the map 16.6: F(R xp R) — F(R) X p(rr) F(R)
is surjective (resp. bijective).

Then the tangent space F(V) is a vector space whose underlying additive group operates
transitively (resp. simply and transitively) on the fibres of the map F(R) — F(R').

The proof is similar to the proof of Corollary 16.8. The operation of F(V) on F(R)
is defined by F(V) x F(R) ~ F(V x R) —<22%, F(R), and the axioms for an operation
follow. - ' ' T
17. Universal and versal objects.

Suppose given a functor F : C — (Sets) and an object S € C. Thenif ¢ : § — Ris

any map, the functor sends F(5) S, F(R). The image of an element s € F(S) via this

map could be written as [F(¢)](s), which is a element of F(R). However, this notation is
cumbersome, so we will usually say that ¢ sends s to r in this situation, or that r is the
image of s in F(R), via ¢. '

Let us also fix an element s € F(S). Then for every ¢ : S — R we obtain an element
r € F(R), the image of s, which varies naturally with the map ¢. In other words, an
element s € F(S) defines a morphism of functors ;

(1717 .. Hom(S, ) — F(+).

The notation Hom(S, -) can also get a bit cumbersome when dealing with morphisms of
functors, so we introduce the shorthand notation

(17.2) S(-) =Hom(S, -).

Then to an element s € F(.S), we have associated a morphism of functors, which yields a
map

(17.3) F(S) — Hom un(S(-), F(-)).

The Yoneda lemma asserts that this correspondence is bijective.
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Yoneda Lemma 17.4. Let F' : C — (Sets) be a functor. For every object § € C,
there is a natural bijective correspondence between elements of F(S) and morphisms of
functors S(-) — F(-), where S(-) = Home(S, ). The bijective correspondence is
defined as follows: Given a map of functors f : S§(+) — F(-), the corresponding element
is f(ids) € F(S). In the other direction, given s € F(S5) we must describe a rule associating
to every map ¢ € Home(S, R) an element of F(R). That element is [F(¢)](s)

An element u € F(U) is called universal if the induced map u(:-) — F( - ) is bijective.
In down to earth terms, u is universal if and only if it has the following property:

(17.5) For every R € C and every element r € F(R), there is a unique map U — R which
sends u — r. .

Let F be a local functor on the category R,. Then we can also express the universal prop-

erty in this way: u € F(U) is universal if F' is isomorphic to the functor of deformations

of the point p = Spec k € X = Spec U, as was described above. _
If C is a category with fibred products, a functor F' : C — (Sets) is called left ezaci if
it commutes with fibred products, i.e., if the induced map

F(A XB C)—>F(A) XF(B)F(C)

1s bijective.
Corollary 17.6. If a functor F has a universal element, then it is left exact.

This is true because the mapping property of the ﬁbred product shows that the functor
U(-) = Hom(U, -) is left exact. ‘

We propose to investigate the question of whether or not a universal object exists for
a local functor on R,. As a preliminary step, we consider functors on the category V of
finite-dimensional k-vector spaces. The relevance of this step to our situation is explained
by the next lemma.

Lemma 17.7. The category V of finite-dimensional k-vector spaces is equivalent with R
via the functor W— k@ W.

Let V denote the vector space k. We note that V is made into a k-vector space object
in the category V in the obvious way, by using the actual laws of composition. Therefore,
as with the object V € R, if F: V — (Sets) is any sufﬁc1ently well-behaved functor, then
X := F(V) will be a vector space too.

Proposition 17.8. Let F : V — (sets) be a functor_ such that F(0) is a set of one

T element.

- (i) Suppose that the canonical map F(W; x W;) — F(W) x F(W,) is bijective for all

W; € V. Then X is a k-vector space.
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(i) If in addition X is a fnite-dimensional vector space, then there is an isomorphism of
functors Homp(X*, ) — F(-). '

Proof. The proof of (i) is routine. For (ii), we note that by the Yoneda lemma, an element
X € X = F(V) determines a map W = Hom(V, W) — F(W). This rule gives us a
bilinear map X x W — F(W), hence a functorial map map Hom(X*, W) = X ® W —
F(W). This is the morphism of functors Hom(X™, .} — F(-). To show that this
morphism is an isomorphism, it suffices to check for the case that W = V', because every
W is isomorphic to k™ for some 7, and the functor is compatible with products. Setting

W = V, we obtain the identity map X = Hom(X*, k) — F(k) =X.

Under the hypotheses of this proposition,-the identity map on X~ corresponds to a
universal element of F(V).

On the category Rn, thereisa weaker property than universality of an element which is
more likely to exist. An element u € F(U) is called versal if it has the following property.

Suppose given a diagram

U

(17.9) F

R —T 4+ R
Let r € F(R) be an element with image r' € F(R'). Suppose that u — ¢! via #'. Then
there is a map U 2. B such that ¢' = ¢ o 7, and such that ¢ sends u — T.

Corollary 17.10. Ifu € F(U) is a versal element, then the induced map U(R) — F(R)
is surjective for all R. '

This follows from Lemma 7.1 by induction. However, the versal property is much stronger

than surjectivity.
Theorem 17.11. (Schlessinger’s Theorem)
(a) Let F be a local functor on R, which satisfies the following condition:

(i) For all R, S € Rn, the map
F(ka S)—-+F(R) XF(S)
is bijective. , :
Then F has a versal element if and only if it also satisfies the following:
(ii) For every extension R — R' of length 1 and every map S' — R', the map

F(R X R Sr) — F(R) X F(R') F(S')

is surjective.
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(iii) F(V) is a finite dimensional vector space.

(b) A local functor F' on R, has a universal element if and only if (1),(iii) hold the map
(ii) is always bijective.

Proof. The “only if” direction 1s easy So assume that (1)-(iii) hold. Since ‘R, is equivalent
to the category of finite-dimensional vector spaces, Proposition 17.8 implies that this is-
true when n = 1. Suppose that n > 1. Then there is an'object U; of R; and an element
u; € F(Uy) which is universal on the restriction Fy : Ry — (Sets) of F' to R;.

Thus U; is a local k-algebra and the square_of its maximal ideal is zero. Choosing a

basis for the maximal ideal, we write Uy = k[zy,...,2m]/(z1, ... ,Tm)?. Let P denote the
truncated polynomial ring k[:sl, vy Erm) [ (21, ...,..'cm)“+1, which is a free object of R,. We
have a surjective map P — Uj, and we try to construct U as a quotient of P. We
consider quotients U = P/I, such that I C (zy,...,zm )%, and such that there is an element
u € F(U) whose image in F(Uj) is uy, i.e., such that the element u; lifts to F(U). Since .
P is finite-dimensional, we may choose an U such that u; lifts to u € F(U), and which
has magzimal dimension as k-vector space. We will prove that u is versal.

;From the data (ii), we obtain a row-exact commutative diagram .

0 b B — \RkR:U 5 0
(17.12) l . l | ¢l
0 — - R 23 F . — 350

Condition (ii) of Schlessinger’s theorem implies that there is an element z € F(R x g U)
mapping to the pair (r,u) € F(R) X p(gy F(U). Since P is free, the map P — U lifts to
amap f : P — R xg U. Since U was chosen maximal with the property that u lifts to
U, the map f can not be surjective. Because the kernel of R x g U — U has dimension
1 and P — U is surjective, the image of f must be isomorphic to U. This gives us a
splitting of the top row of 17.12, and we obtain a map ¢ : U — R such that 7o ¢ = ¢'.

Let s € F(R) be the image of the element u via ¢. If s = 7, then we are done. But
this need not be the case, so we still have an adjustment to make. But since m¢ = ¢,
the image of s in F(R') is r'. So (s,r) € F(R) xpr) F(R), and condition (ii) of the
theorem allows us to represent this pair by an element z € F(R X g R). By Lemma 16.12,
and condition (ii), F(V) x F(R) & F(V xj R)' = F(R xg' R). The pair in F(V) x F(R)
which corresponds to = has the form (v,r). Since V € Ry, Hom(U,V) = F(V). Let
d € Hom(U, V) be the corresponding element, and let ¢ : U — R be the homomorphism
defined by ¥(z) = ¢(z) + d(z)e. We replace ¢ by v, which reduces us to the case that
z = (0,r). The image of thls element in F(R) XF(Rr) F(R) is the pair (r,r). So % sends
u — 7, as required. .

It is qu1te ‘unusual that a functor on the category R of all finite local k-algebras has

a vandersal or universal element, because there is no limit on the order of nilpotence of
the maximal ideals mg. Instead, the versal element should be parametrized by a complete
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local ring, which is not in the category R, and to which infinitesimal methods do not
necessarily apply.

Let F be a functor on R, and let U be a complete local k-algebra with residue field k,
and let U, = U/m"*t1. A formal element @i parametrized by U is a sequence of elements
u, € F(U,) such that the projection maps U, — U,_; send u, — u,—; for all n.
A formal element 1 is versal, or universal if for every n, u, is versal or universal on
the restriction of the functor to the category R,. The previous theorem extends without
difficulty to show

Corollary 17.13. A functor F' : R — (Sets) has a versal, or universal formal element if
and only if the conditions of (i)-(iii) of 17.11 hold.

Proposition 17.14. (Uniqueness of versal elements) Let F' be a local functor on R sat-
isfying the conditions of Schlessinger’s theorem. Let u € F (U), v € F(V) be versal
elements, and assume that the image of u; in F(U1) is universal. Then

(i) For some r, there is an isomorphism V = Ul[z1, ..., )] such that the inclusion U oy
U[[z]] sends u — v.

(i) If the image v of v in V1 is also universal, then there is an isomorphism o : U — V

which sends u +— V.
The analogous-assertions hold for versal elements and functors on Ry.

Proof. Using the versal property of u and lifting step by step, one obtains amap ¢ : U —
V which sends u + v. Similarly, the versal property of v produces amap ¢ : V — U
sending v — u. The composition 1)¢ need not be the identity, but it sends u +— u. it
follows that the induced map U; — Uj sends u; — u;, hence since u; is universal, this
map is the identity. The next lemma, which follows from Nakayama, shows that ¢ is an

automorphism.

Lemma 17.15. Lét o be a map from a complete local ring A to itself, which reduces to
the identity modulo m?%. Then ¢ is an automorphism.

If v, is also universal, then ¢¢ is also an automorphism of V. In that case ¢ and ¢ are
bijective.

In general, we know only that ¢ is injective. We can write V as a quotient of a power
series ring P = U][z1, .., ]| for some r. Choosing r to be minimal, we will have P, = V.
Let p € F(P) denote the formal element which is the image of u via the inclusion map
U — P. Then the versal property of v yields a map 7 : V — P sending v — p,
and which is the identity on Vy. By Nakayama, 7 is surjective, and by the lemma, the
composition of 7 with the projection P — V 1s an automorphism of V. It follows that 7
is an isomorphism. :

18. A sample computation of a versal deformation.

The weak point of Schlessinger’s theorem is that it does not describe the structure of the
ring U which parametrizes a versal element. We propose to compute it in a simple case,
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that F' is the deformation functor F(-) = Def(As; - ), where A = k[z,y]/(z?, zy,v?), the
example we have studied before. It is easier to compute the commutative deformations, so
we will do that, using the Grobner basis method.

The first step is to compute the universal first order embedded deformation, and we
have done that already. Every first order embedded deformation, parametrized by V, can
be described by a unique set of defining equations of the form

(18.1) 2? = (arz + agy)t , oy = (bhiz + bay)t , ¥* = (a1 + cay)t.

\

There is a slight conflict of termmology, because up to now we have used the term “first
order deformation” to mean a deformation parametrized by V. We now want to use the
same term to indicate a deformation parametrized by any ring R = k 69 W in R;. The
simplest thing will be to allow this ambiguity of termmology

The universal first order embedded deformation is parametrized by the ring U; = P m?,
where P = k[[a;, bi, ci]], and m is the maximal ideal at the origin in (a,b,c)-space. The
universal element u; € F(U;) is the Uj-algebra whose defining relations are obtained from
18.1 by dropping the symbol ¢:

(18.2) 2% = a1z + azy,
Ty = bz + bay,
y? =17 + c2y.

A homomorphism U; — V is described by sending the indeterminates a, b, ¢ to specific
multiples of ¢, thereby yielding defining equations of the form 18.1.

We refer back to the proof of Schlessinger’s theorem. To obtain the versal element in
higher order n, we look for a minimal ideal I, C P, = P/m"*! such that u lifts to
U, = P La- The lifting can be arbitrary. This is an important point: We don’t ask that
the first order equations 18.2 define a (flat) deformation modulo I,, but that if we add
some undetermined terms of higher order in @, b, ¢ to these relations, then the algebra they
define is flat. So we add indeterminate terms to the equation of the general embedded

deformation, say

(18.3) 2’ = a1z + agy + o,
gy = bz + by + 4,

y? =z + ey +7,

where o', 8',+' are in P[z,y], and terms have degree at least 2 in a, b, c.

As before, all terms of degree > 2 in ,y can be eliminated step by step, using these
equations. So we may assume that o' = ap + a1z + a2y, etc... :

Next, we make a change of variable in the ring P, replacing a; by a;+cai. This eliminates
the terms a;z and aqy, leaving us with &' = oy, and whose that we may as well assume

dl,B,9' € P

We ask for the conditions on these elements which imply that the equations 18.3 define
a flat algebra. The algebra will be flat if and only if the overlaps are consistent, i.e., if and
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only if 18.3 is a Grobner basis. There are two commutative overlaps: (z%)y = z(zy) and
z(y?) = (zy)y. We reduce the first one:

(&) — arzy +ay® +a'y — ai(biz + by + F) + ar(c1z + ey +7) 'y,

z(zy) — biz? + bozy + f'z — bi(arz + aey + &) + ba(b1z + boy —|— B + f'z.

The two reduced polynomials must be equal. Extracting coefficients of 1,z,y, we obtain

three relations

(18.4) o' = agzb; — a1bz + b2 — ases,
' = aze1 — bybg,
alﬂ' + 012’7’ = bla-’ + bgﬁ’.

The second overlap yields three more equations, two of which we can solve for Bl Tt
turns out that the two solutions for 3’ agree. Substituting back into the third equation of
18.4 yields a relation f(a,b,c) =0 in a;, bi, ¢;. This relation must hold if the algebra is to
be flat. The second overlap computation provides another relation, say g(a, b, e) =0. So
the maximal quotient of P to which u; lifts is U = P/I, where I = (f,9).

Actually, it happens that f and g are identically zero, so that U = P. The deformation
is “unobstructed”. The final equations for a versal embedded deformation are:

(18.5) z* = a1z + asy + (azby — ayby + b3 — agez),
TY = bir + bgy + (CLZC} = ble)) :
y? =1z + cay + (bacy — breg + b — ascr).

Using change of coordinates ¢ +— z +u , y + y + v wtih u,v € P one can eliminate the
terms ai, c;. The versal unembedded deformation has the form ;

(18.6) 2% = ayy + (azb1 + baba),
zy = bz + bay + (ager — biby),
iy = en + (bae1 + biby).

19. Application to deformations.

Proposition 19.1. The functor Def(Ay; -) satisfies conditions (i),(ii) of Schlessinger’s
theorem. '

Proof. the verification is quite simple. We will verify condition (ii). We set F(-) =
Def(Ag; - ), and we suppose given a length one extension R — R', an arbitrary map
§' — R, and a pair (r,s') € F(R) X p(rry F(S"). Set S =R xp S'. Thenris represented
by a deformation Ap of Ay, parametrized by R, and similarly, s’ is represented by a
deformation Ag. Let Ar denote the R'-deformation Az ®r R' induced by Ar. The
hypothesis that the pair is in the fibred product means that Ag ®s R' =~ Apg/ too. So
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we have maps Ag — Apr and Agy — Ap/, and we form the fibred produét As =
AR X4y As, obtaining a diagram

.0——)Ak-——-—PAs 'AS' — 0

 (192) R l l o l

0——*.‘4.;:--—-——*‘.(43 >AR: — 0

which is compatible with the diagram

0 E—t s —— & . 0
a3y | |
0 B oe—ts B R 0

The fibred product represents the element of F(S) mapping to the pair (r,s'). To verify
this, it suffices to show ' '

(19.4) (1) As®s S ~ Ag,
(i) As is a flat S-algebra, and
(iii) As ®s R ~ Ar.

The fact that As ®g k =~ Ay follows. PFirst, As Qs S' ~ As/eAs = Ag/eAr = Agr. Next,
this being the case, Proposition 6.2 shows that Ag is flat over S. Finally, to show (ii), we
tensor As with the bottom row of 19.3, obtaining an exact sequence

(195) 0-—?Ak—f+A5®5R—+As®SR’———>U.

This sequence maps to the bottom row of 19.2. We identify the right hand term as follows:
As®s R ~ As®s S' ®s R =~ Ag @5 R' = Ag.. Thus the end terms of the sequence
19.5 and the bottom row of 19.2 agree, hence the middle terms agree too.

It is not always true that the third condition of 17.11, that F(V) be finite-dimensional,
holds for deformations. The most useful conditions under which condition (iii) does hold
are that

19.6 (i) Ay is finite-dimensional over k, or that
(ii) one is studying commutative deformations, and A has isolated singularities.

The fact that this is true for finite dimensional algebras follows immediately from the

Hdescription of first order deformations in terms of Hochschild cohomology. For isolated

singularities, one uses the description of T'(Ag) given in 8.19. An algebra Ay is said
to have isolated singularities if is is smooth except at finitely many points of Spec Ag.
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Smoothness will be discussed below. For a smooth algebra, the sequence 8.18 obtained
from a presentation A = P/a, where P = k[z1, ..., Zm], is actually a split exact sequence:

(19.7) 0—aja’ % Qp@pA— Q4 — 0.

This implies that {24 is projective, and that T%(A) = 0 (see 8.19). Now suppose that A4 is
smooth except at a finite set A of points. Suppose for simplicity that A does not have a
zero-dimensional embedded component. The sequence 19.7 is exact. except on A and it is

___right exact in any case. So the kernel of the left hand map is finite-dimensional, and can

be ignored. Then T!(A) ~ Ext}(Q4, A), which is a finite module supported on A, hence
it is finite-dimensional. :

I don’t know a useful analogue of 19.6(ii) in the noncommutative case.
Interlude: Smooth maps in commutative algebra.

Let S be a noetherian commutative ring and 4 = P/a an S-algebra, where P =
S[z1y..e,@m]). Then A is called smooth over S if the following condition holds locally at ev-
ery point p € Spec A: There are elements g3, ..., gm—d4 € @ such that a, = (g1y-ees Gm—d)Ap,
andg% has rank m —d at p. The integers d is the relative dimension of A over S. Smooth-
ness is the analogue of a smooth map f : X — Y in analysis. The maximal rank of the
jacobian matrix allows one to eliminate m — d variables from the embedding of X, and
realize X locally as a product ¥ x Z where Z is smooth. But the implicit function theorem
is not available in algebra, so solving equations has to remain “implicit”.

Theorem 19.8. (Grothendieck’s characterization of smooth algebras) An S-algebra Ais

smooth if and only if it has the following extension property: Let N be a nilpotent ideal
of a commutative S-algebra R, and let = denote the map R — R' = R/N. Then every
map of S-algebras ¢' : A — R’ lifts to an S-algebra map ¢ : A — R such that ¢' = ¢.
Proof. Assume that A is smooth over S. Let (f1..., fr) be generators for the defining ideal a
of A. To give an algebra map ¢ : A — R, we have to assign the images a; of the variables
z; € P, subject to the requirement that fi(a) = 0. In other words we have to solve the
system of equations fi(z) = --- = fr(z) = 0 in R. The coefficients of the polynomials are
in S, so the algebra structure defines their images in R. To lift the given homomorphism
¢' from R' to R, we have to lift the solution @' of f = 0 to a solution a € R. We may
assume that IZ = 0. -

We begin by lifting the solution a' arbitrarily to a € R. Then f(a) =0 (modulo I),
and we try to adjust a; by adding elements hj € I so as to obtain a solution. By Taylor’s
formula, ' A

(19.9) ~ f(a+h) = f(a) + Jh + higher order terms in h,
where f = (f1,..., fr)}, J = gL and h = (hy,..., hm)'. Since h; € I and I? = 0, the higher

order terms vanish. In order to obtain a solution we must solve

(19.10) | Th= —Fa).
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Suppose first that R is a local ring. Then R' is also local, and we may factor ¢' through
a suitable localization A,. Having done this, we solve the system g1, ..., gn—d given in the
definition of smoothness instead. Since the jacobian has maximal rank, this can be done.
In general, we choose a presentation for the ideal a, of the form

(19.11) pr L pr i, pm
where f = (f1,..., fr)! as above, and where K is an n x r matrix, operating by left

multiplication. So, fK = 0. Then by the product rule for differentiatiorr,
(19.12) JK =0 (modulo a).

Hence, passing to the ring A, we obtain a complex

4™,

(19.13) LNy
The next lemma, togefher with the definition of smoothness, shows that this complex 1s
split exact, i.e., that ker K = im J is a projective direct summand of A”. Then to solve

19.10, we note that fK = 0, hence —f(a) € ker K =im J.

Lemma 19.14. Let A be a commutative ring, and let
B, =% F %5 Fo

be a complex of free A-modules. Let D; denote the matrix representing the maps d; by
left multiplication. Let M C A be the ideal generated by all products mymsg, where my is
an k rowed minor of Dy and my is a n — k-rowed minor of D,, k being arbitrary. Then M
is the unit ideal in A if and only if im d; = ker d,, and F, /im d; is projective. If so, then
F, = B® C, where B = im d; = ker d,.

Proof. Both statements can be verified locally. So if M is the unit ideal, we may assume
that we have minors mq, m; of complementary dimensions which are invertible in A. The
minor m; identifies k basis elements in Fy which generate a submodule C of rank & on
which d; is injective. The minor m; identifies n — k elements of Fj which generate a
free summand B C F; which is in the image of dy. Then C C im d; C ker di, and
ker d; N C = 0. It follows that F; = B @ C and that B = im d; = ker d;. The converse
is proved in a similar way. In fact, it follows that the unit ideal is generated by products
of minors mymo where the columns of m, and the rows of m; have complementary sets of
indices. '

"7--20. Parametrizing finite dimensional algebras.

Let R be a commutative algebra, and let {a;,...,a,} denote the standard basis of the
free module R". An algebra law on R™ is a bilinear map A x A £, A, which is determined
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when we know its effect on the basis elements. We may ass1gn the products a;a; as elements
of A, say

(20.1) aja; = ZCijkak,
) k=1

with ¢;jx € R, and extend bilinearly to A x A. The axioms for an algebra, the associative
law, existence of identity, and, if we wish, the commutative law, impose polynomial rela-

tions on the structure constants c;;p. For examole to obtain the relations imposed by the
_associative law, we write

(aia;)ar = (Z Cisala )0k = Zcijacakﬁafs
o

a,d
a"l(aja'k "‘at(E Cgkaa‘a =E CikaCiafdf-
a,f

We equate these two expressions and extract coefficients of ag, obtaining the associativity
relations |

(20.2) , z CijaCakt = Z CikaCiat,
: a E o
which must hold for all ¢, 3, k, £.

The existence of an identity element asserts that there is a linear combination e =
>, €ia; such that ea; = a;e = a;. A priori, this introduces n new constants e; which must
be included with the structure constants c;;x. Howevgr, because the identity element is
unique, these constants can be eliminated. An alternate approach is to require that a; be
the identity. This requirement leads to the relations
(203) ‘ ' Cljk:5k and Cilk-—(sk
The commutative law, if des1red imposes the relations
(20.4) ' , Cijk = Cjik-

Other axioms could be introduced.

Ezercise: What is the general form of such an axiom?

Example 20.5 Algebras of rank 2. To reduce the dimension a bit, let’s take the basis
for an algebra of dimension 2 of the form {ai1,a2} = {1,a}. Then the only product which

we must assign is ae = c1a + ¢3. There are two structure constants, and associativity is -

automatic.
In dimension greater than 2, the explicit form of the relations 20.2,3,4 is not very useful

because there are too many of them So let us write them neutrally as f,(u: Jk) =0, where

uijr are commuting indeterminates. 'The most important thing to notice is that the f,
are polynomials with integer coefficients. Let U = k[u;;x|/I, where I denotes the ideal
generated by the polynomials f,. '
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Corollary 20.6. Let R be a commutative k-algebra. There are bijective correspondences
between the sets

(i) Hom, (U, R),

(ii) solutions {cijx} in R of the system of equatmns fv(u) =0, and

(iii) algebra structures on the free R-module with basis {a1, ..., an}.

More precisely, let let F : (Alg) — (Sets) be the functor which sends R to the set of
algebra structures on the free R-module with basis {ay, ...,an}. Then

(20.7) Hom(U, -) = F(-).

The Yoneda Lemma tells us that this isomorphism is given by an element of F(U) -
algebra structure on the free U-module. This algebra Ay is the one whose structure
constants are the residues of the variables u; ik in U. It is universal in the sense that any
R-algebra Ag with chosen basis {ai,...,an} is obtained as Agp = Ay @u R via a unique
homomorphism ¢ : U — R. That 1s what 20.7 says. e

In the case of algebras of rank 2 considered above, U = k[uy,u3], and the universal
algebra is Ay = Ula}/(a® —u1a — u2).

Note that we have left the category of finite local k-algebras here. Our functor F' is
defined on all algebras R, and Spec U solves the strong moduli problem (see Section 4).

Let X = Spec U. By definition, homomorphisms U — R correspond to maps of
schemes Spec R — X. In algebraic geometry we would say that Ag = Ay @u R is the
algebra obtained by “pullback” from the map Spec R — X.

Proposition 20.8. Let tp € X be a point and let k(p) denote the residue field at p (Wh]ch
isisomorphicto k). Let U denote the completion of U at the point p, and let A = AU®UU
Ar = Ay ®u k(p). Then Ay is a versal deformation of the algebra Ag.

Actually, to be a versal deformation requires only that one has a formal element, which
in this case would consist of a deformation A, parametrized by U, = U/m%} for every n
(see 17.13). But since we are dealing here with a finite algebras, any such sequence defines

an algebra over U namely Ay = projlim A,. This can be a rather subtle point in other
situations. A formal element {un € F(U,)} need not be induced by an element w € F(U)

Proof of the proposition. If R is a finite local k-algebra, then maps U —R correspond
bijectively to maps U — R such that the composed map U — R — k is the residue

field map at the point p. So the completion is relevant only to pin down the underlying

point, and we need not involve it further in this proof.
We verify versality: Suppose given a length 1 extension R — R’ of finite local k-
algebras, a deformation Ag of A, and a map ¢' : U — R’ such that Ay Qu R ~ Ap.

~._This determines a basis of Aps, the image of the given basis of Ay, and we can Lift this

basis of Az to a basis of Ag. Having chosen such a lifting, the universal property of Ay
tells us that there is a unique map ¢ : U — R such that Ay @u R = Ag compatibly with
the chosen bases. This map is the lifting of ¢' required by the definition of versality.
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We now ask to eliminate the choice of basis, i.e., to classify algebras without choice of
basis. To do this, we considér the operation on X of the general linear group G = GL,
which corresponds to changes of basis in the free module. A change of basis will change
the structure constants c;jx in a way that can be computed from the diagram below.
The explicit formula is not important. In it, the algebra law g4 on A is defined by the
structure constants c;jx, up is defined by some structure constants d;jz, and the matrix
P € G defines an isomorphism from A — B. This information is summed up in the

diagram

AR A 4 A
(20.9) P@Pl | lp
| BgB -2,y
Thus the change of basis carries u4 to ug = Popa o (P71 @ P7'). Note that dijx are
expressed here as polynomials in c;jz,pij, and ¢ = det P~1. These polynomials define

a map of schemes G x X — X sending (¢,p) — d, or a map in the other direction:
U — Og ® U, where Og = k[pij, q] is the coordinate ring of G.

. If we wish to work with bases such that the first element a; is the identity of A, the
group GL; is replaced by the subgroup G consisting of the invertible matrices having a;
as fixed vector, i.e., with first column equal to (1,0, ..., 0)".

Corollary 20.10. The operation defined above has the property that G-orbits in X cor-
respond bijectively to isomorphism classes of n-dimensional k-algebras Ag.

The stabilizer of a point p € X also has an interpretation: It is the group of automor-

phisms of the corresponding algebra. For, the stabilizer is the group of matrices P such
that the operation defined by 20.9 sends the structure constants cjjix to themselves, i.e.,
such that 4 = B. These are the automorphisms. If H is the stabilizer of p, then the orbit
is in bijective correspondence with the set G/H of of left cosets of H in G.
Example 20.11. We return to the example 20.5 of algebras of rank 2. There are two
isomorphism classes of algebras of dimension 2 over the field &, namely 4o = k[a]/ (a?) and
Ay = k[a]/(a® — 1) = k @ k. Taking the basis {1,a} locates them at the points (0,0) and
(1,0) of the (uj,us)-plane X. Because we have chosen to take the identity element as our
first basis element, G is the group of invertible matrices of the form

(2012) P = (é ;—’))

Since there are two isomorphism classes of algebfas, there are two orbits Og, O for the
action of G on X. The group of automorphisms of the algebra Ag is the subgroup Ho of
matrices P in which ¢ = 0. Every left coset of Hy in G has a unique representative of the
form '

(20.13) - P= (é g)




| |
|
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So the coset space G/Hp is the g-line. It is embedded into the u-plane X as the orbit
Oop, the discriminant locus u? + 4us = 0 of the polynomial a? — uja — us. The group Hy
of automorphisms of A; is the cyclic group of order 2 acting by permuting the factors of
k @ k, and G/H; is mapped bijectively to the complement O; of the discriminant locus in
X. '

The general properties of subgroups and coset spaces in algebraic geometry are reviewed

‘in the next theorem. We omit the proof.

heorem 20.14. (1) The group Aut- Arof—aﬁ#omplnsmwﬁaﬁa}gebfa—.léref dimensieon———————

n is a closed algebraic subgroup of G = GL,,.
(ii) An algebraic group over a field of characteristic zero is a smooth variety.
" (iii} Let H be a subgroup of a smooth algebraic group G. The coset space G/H has a
natural structure of smooth algebraic variety.
(iv) Under the hypotheses of (iii), dim G = dim H + dnn G/H where dim denotes the

dimension of the variety.

The above description, which identifies isomorphism classes of k-algebras with orbits

for a group action, is very satisfactory. However, it is not compatible with families of

algebras, R-algebras with R # k. For example, let R = k[t], and let Agr = R[z]/(z* —t).
Taking the basis {1,z} this algebra is obtained from the universal algebra of 20.6 via the
map kfu;,us] — k[t] sending uy — ¢ and uy; — 0. The map Speck[t] =T — X =
Spec k[u;,u;] passes through the orbit Og at t = 0, and all other points of T map to the
orbit O;. Decomposing X into orbits is not compatible with this family.

Taking orbits for a group action solves the covariant problem of finding cokernel for two
maps (op,pr) : G x X== X, amap X — Y which is universal for equalizing the pair. On
rings, the two maps go in the opposite direction: U= 0g®U. The closest approximation
on the level of rings is to take the kernel of this pair of homomorphisms, which is the ring
of functions on X which are invariant with respect to the group operation. The invariant
ring UY does equalize the two maps, so we do obtain a map X — Y = Spec US which
collapses the orbits to points. And if G is a finite group, then the points of ¥ correspond
bijectively to orbits. But if G' has positive dimension there is usually too much collapsing.
Indeed, whenever one orbit has another orbit in its closure, as in the above example, the
continuity of the map X — Y forces the images of the two orbits to be equal. Thus
in our example of algebras of dimension 2, the invariant ring is just k itself, and the two
orbits are collapsed.

Ezercise: Write down the action of the group G of 20.12 exphmtly, and ver1fy that the
constants are the only invariant functions.

Example 20.15 Algebras of rank 3. As we know (see 2.3), there are five isomorphism

classes of algebras of dimension 3 over k.

Ap = k[:c,y]/(a:,y)z,
Ar = k[z]/(2%),
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Ay = k[z]/(z*) ® &,
A=k kB Ek,
Ay, the algebra of upper triangular matrices.

In order to cut down the number of variables a bit, let’s choose bases of the form
{1,a1,a2}. Even so, there are four products a;a;, 1,5 = 1,2 to determine, each of which
is a linear combination of the three basis elements, hence 12 structure constants c;jx. The
associativity relations are too cumbersome to be of much use. So the ring U -and its
spectrum X are not so easy to compute directly.

The group which operates on X is the group G of dimension 6 of 3 x 3 matrices whose
first column is (1,0,0)*. The group of automorphisms H; of A; are as follows:

Hy = GLas,

Hj is the group of substitutions z — az + bz?, a commutative group,
H, is the multiplicative group z — az,

H; = S,

H, operates as ey > e11 + beia, ez — aeqs.

The dimensions are 4,2, 1,0, 2 respectively. So X is the union of five G-orbits O;, and

their dimensions are 2,4, 5 6 4 respectively. According to 17.4 and 20.8, one obtains a
minimal versal deformation of the algebra 4y by taking a slice of dlmensmn 4 across the
orbit Op. This decreases dimensions by 2. Let ¥ denote this slice, and let Y 0;NnY.
‘Working locally, ¥5 is reduced to a point, and Y has dimension 4.

We saw in Section 18 that the versal commutative deformation of the algebra Aq de-
pends on 4 independent variables. So the union of the local schemes Y, ..., Y5 is smooth
and of dimension 4. It is analyically equivalent to the scheme whose coordinates are the
parameters as, by, by, ¢c; which appear in the equations 18.6. The closure of the scheme Y,
is the union Yy U Vs, which has dimension 2. It turns out that this scheme is also smooth.
To show this, it suffices to find a flat deformation of Ay whose first order terms are not
commutative, and which depends on two independent parameters. The versal property of
Y will define a formal map to ¥ which, since dim (¥p U Y;) = 2, must be bijective. The
family is the following one, in which u, v are the parameters. A Grébner basis computatlon
shows that it is a flat family.

(20.16)
i == vz) :
TY = uv + uxr — vy,
YT = uv — ux + vy,

y? = ul,

Thus X is a union VUW, where V,W are smooth schemes of dimensions 6 and 4 repectively.

__ The intersection of these two schemes is the orbit Oy, which has dimension 2, and the

intersection is transversal.
On the other hand, the union ¥y U Y7, which also has dimension 2 is not smooth. It is
a cone over a twisted cubic curve.

e —
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21. Groupoids.

A general classification problem can be described this way: We are given a collection

of objects, and a notion of isomorphism between two objects. The standard problem

asks to describe the set of isomorphism classes of objects. But as the example of finite

algebras shows, this becomes problematic when want the classification to apply also to

families of objects, parametrized by a commutative k-algebra R, or when we want to put
an algebraic structure o1 the set of isomorphism classes. The most serious obstruction to
doing this arises when two objects which can be put into a connected family have groups

of automorphisms of different dimensions. When this happens, it is better to ask for an
algebraic structure which encodes the objects and the isomorphisms between them at the
same time. The fact that two isomorphisms z — y and y — z can be composed if the
range of the first one is the domain of the second gives us the structure of a groupozd on
the pair {tsomorphisms, objects}.

We have the model for such a structure in the case of finite algebras: We may take the
scheme X which parametrizes algebras of rank n with given basis. Then the isomorphisms
between them are described as change of bas1s by the operation of the general linear group
G = GL,,. '

One definition of a groupoid is as a category in which all the maps are isomorphisms.
As an algebraic structure, a groupoid consists of the following data:

(i) a pair of sets X, Y, the “objects”, and the “isomorphisms”,
(ii) a pair of arrows mp, 7y : ¥ — X, the “domain” and “range”, and

(iil) a map “composition” P =+ Y, where P = Y ;x Y denotes the ﬁbred product which

completes the diagram below:
B ooy
(21.1) _ - P i ”"l'
Yy —— - X

Thus P is the set of pairs (o, 8) € ¥ x Y such that m1(a) = me(B). This data is required
to sa,tlsfy the following axioms, in which @ = ¥ 1x0Y 1x0Y denotes the set of triples

(o, B,7) such that m(a) = Trg(ﬂ) and 71 () = mo(a).

(21.2)
(i) (associative Ia,w) The two maps

co(exidy) and co (idy X c),

<. which send Q — P — Y, are equal.

- (i1) (identity) There is a map e: X — Y such that moe = mpe = idy, and such that
the two maps
co (em,tdy) and co (idy,em ),
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which send ¥ — P — Y, are equal to idy. _
(iii) (4nverses) There is a map ¢ : ¥ — ¥ such that mg¢ = ¢m1 and m1¢ = ¢m, and

co(t,idy) =em, and co (idy,t) = emg.

Examples 21.3. (i) (groups) Let ¥ = G be a group and let X = {-} be the set of one
element. Then P = G x G, and the multiplication law in G makes this pair into a groupoid.

(ii) (eqmmlence 'relatzons) Let X be aset and let ¥ C X x X be an equwalence relation..

An element of Y is a pair (u,v) € X x X such that u = v. The associative law. identity,
and inverses translate to the transitive, reflexive, and symmetric axioms for an equivalence
relation. This is the case that the objects of the groupoid have no automorphisms except
the identity.

(iil) (group actions) If a group G operates on X, then setting ¥ = G x X, mo = pra, and
T = op yields an operation. Here P is the set of pairs of pairs ((g,u),(h,v)) such that
gu =v, and the composition sends this pair to (g,v).

As we go along, it will be notationally simpler for us to relabel the sets which arise in
the definition of a groupoid as follows: We label the sets X,Y, P which appear there as
Xy, X1, X, respectively. They form a truncated simplicial set

(21.4) XK= i3 Xe.

The maps d; : X1 — Xo, ¢ = 0,1 which are required in the definition of a simplicial set
are d; = m;+1, and the maps d; : Xo — X1, i = 0,1,2 are f,c, g respectively (see 21.1).
The identity element e : X — X, is the degeneracy operator sg, and the degeneracies
80,91 : X1 — Xy are sg = e x 1d and s; = id X e. They satisfy the requirements of a
simplicial set, up to dimension 1, which are, if operators are written on the right,

(21.5) dodo = didy, dady = dody, didi = dads,

3080 = 8081, s1do = doSo, sodz = diSo,
Sgdg = Sgdl = S1d1 = Sldg = zdentzty

This truncated simplicial set can be extended to a simplicial set by a canonical “coskeleton”
construction. When this is done, then the triple product @ which appears in 20.1 becomes
the set of simplices X3.

22. The groupoid associated to a family of algebras

There are several closely related schemes which parametrize isomorphisms of algebras
which are free modules of finite rank, and we will begm by describing four of them. The
last is the one we are really after
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(22.1) Isomorphisms between two S-algebras.

Let S be a commutative k-algebra and let Ag, Bs be two free S-algebras. We define a
functor Isom( )(AS,BS, -). If R is another commutative k-algebra and if ¢ : § — R is
a homomorphism, we set Ag = Ag ®5- R, it being understood that R i 18 made into an

~S-algebra via the map ¢.

We let Isom)(Ag, Bs; R) denote the set of pairs (¢,0), where ¢ : S — R is a k-
algebra homomorphism, and ¢ : Ag — Bpg is an isomorphism of R-algebras. This is
made into a functor as follows: If f : R — R', then the map Isom( ) (AS,BS,R)

Isom" )(AS,BS, R') sends (¢,0) — (f¢,0 ®r R').

A point of this functor, which by definition is an element of Isom(l)(As, Bg: k), is given
by choosing a point p of X = Spec S (a map S — k = k(p)), and an isomorphism between
the two “fibres” Ag(p) & Bi(p)-

There is a universal element for this functor, which is constructed as follow: We choose
bases a = {a;}, b = {b;} for A5, Bs. Then an isomorphism A — B is determined
by an invertible matrix P = (p;;): the matrix such that bP = a. This matrix must
be compatible with the laws of composition on A and B, i.e., the diagram 20.9 must
be commutative. When written out explicitly, the commutativity condition imposes some
polynomial relations among the variables which represent the structure constants c; iy Bk
for A and B, the matrix entries p;;, and g = detP —1, say Gul(cijr; dijis Dij;¢) = 0. The

- polynomials G have integer coefficients.

In our situation, the structure constants ¢; jk, dijk are given elements of §. We substitute
these elements into the polynomials G, obtaining polynomial relations g, (p;; j»q) = 0 with
gv € S[pij, q], which hold among the variables p; ; if and only if P defines an isomorphism.
To obtain the universal isomorphism, we set T' = S[p;;,q]/(g,). The map ¢7: 5 — T is
the canonical one, and or is the isomorphism defined by the matrix Pr whose entries are
the residues of the p;;. Any element (¢,0) € M(l)(As, Bs; R) is obtained from a unique
map ' — R.

(22.2) Automorphisms of an S-algebra.
The case that Ag = By in the above construction yields the functor Aut(As; +) of auto-

- morphisms of the algebra As. A point of this functor consists of a point of X = Spec S and

an automorphism of the corresponding algebra, Ap(p). Here the fact that automorphisms
form a group puts a group structure on the functor. However, because there are many
points, it is not a single group, but a family of groups, parametrized by . Spec1ﬁca11y,
two elements (¢,0) and (1, 7) of Aut(As; R) can be composed only if ¢ = .

Let T be the universal automorphism, constructed as above, and let G = Spec T'. The
universal element (¢7, or) provides a map G — Y, and it can be shown that composition
of op with itself defines the group structure G xx G — G.

(22.3) Isomorphisms between algebras over different rings.

If Ag, and Bg, are algebras over two commutative k-algebras Sy, Sy, we can modify the con-
struction 22.1 as follows: We define Is<:un:1(2)(Ag1 ,Bs,; R) to be the set of triples (¢1, ¢o,7),
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where ¢; : S; — R are k-algebra homomorphisms, and 0 : Ag — Bpg is an isomorphism
between the induced algebras over R (i.e., Ar = As, ®s, R and Bgr = Bg, ®s, R).

Let X; = Spec S;. A point of this functor, an element of Isom'®(As,, Bs,; k), consists |

of two points p; € X; and an isomorphism between the fibres Ag(p,) — Br(p,)-

Again, there is a universal object for this functor. In fact, this case can be reduced
to 22.1 by the following method. We set P = S1 ®k S, which is the coproduct of Sy, 52
in the category of commutative k-algebras. Then a pair of maps ¢; : 5; — R corre-

sponds to a map ¢ : P — R. We set Ap = Ag, ®; S2 and Bp = 51 ®x Bs,. Then
—Isom(g](ASliBSﬁ ’ ) = _ISOI'ﬂkl)(AP’ Bp; - ) o —

(22.4) The isomorphism functor when a single a.lgeb'mris gqiven.

We set §; = S = 5 and As = Bgs in 22. 3, obtaining a functor Isorn(AS, -). Thus an
element of Isom(Asg; /) is a triple (¢1, P2, 0), where ¢; : S — R are k-algebra homomor-
phisms, and o : A(l) — A( ) is an 1som0rphlsm Here A( ) denotes the push out As®s R
using the homomorph1sm qﬁ,

A point of this functor consists in a pair of points p1,ps of X = Spec § and an isomor-
phism o & Ag(p;) — Ak(pa)- o

Because it is a special case of the previous functor, this one has a univeral element too.
Here if T is the universal ring, the universal element gives us two maps S—ZT, hence two
maps Spec T = Y= X, and composition makes this pair into a groupoid. The structure
map for a groupoid is an algebraic map. This groupoid encodes at the same time the
algebras which can be obtained from Ag by extension of scalars, and the isomorphisms
between the resulting algebras.

When X is the universal algebra with chosen basis considered in Section 20, then the
groupoid is the one obtained from the group operation 20.9, i.e., Y = G x X. But this will
not be the case for most algebras Ag. '

23. The Amitsur complex.

The Amitsur complez A(S/R) is a cosimplicial complex associated to an arbitrary ring
homomorphism 6 : R — S. The word “cosimplicial” means that the arrows go in the
opposite direction from those in a simplicial complex. Roughly speaking, the Amitsur
complex is obtained from the simplicial complex 13.15 which defines Hochschild cohomol-
ogy by switching the roles of boundary and degeneracy operations. The degeneracy and
face operations of S become, respectively, the coface and codegeneracy operations in A.

Since the word “coface” is ugly and “codegeneracy” is long, we will refer to them as the
face and degeneracy maps of the cosimplicial complex. =

The unadorned tensor product stands for ® g here and in what follows. In dimension n,
A =5S® - ®5=5%""". The face maps d* : Ay — Any1, i =0,...,n + 1, are defined

by

(23.1) By (G v s RzTp = T0® - BZiR®LATit1 Q- Q T,
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and the degeneracies s*, i = 0,...,n — 1, by
(232) To @ ®Tn — T0Q B TiTit1 ® -+ © Tn.

These maps satisfy certain standard :dentities which are obtained from the simplicial iden-
tities by reversing the arrows. The standard identities tell us when compositions of two
face or degeneracy operators are equal, and when such a composition is the identity.
Exactly how they come out depends on whether the operations are written on the left

‘or on the right. In order.to put composition of functions in the natural order, we will

write operators on the right. So, for example, we write (zo ® z1)d> = %o ® ¢1 ® 1, and
(zo ® 71 ® 22)s° = 2921 ® zo2. Three of the standard identities are:

s = 2% | dd? = d'dt | &S0 =i

Here and in what follows, 7 denotes the appropriate identity map.

~ In the most general situation, the A,, are S-bimodules. The face and degeneracy maps
are S-bimodule homomorphisms, except for d° and d" : A, — A,11. On the left, d° is
only R-linear, and similarly, d® is only R-linear on the right. In more special situations,
for instance if R,.S are commutative rings, one can make 4, into rings in such a way that
the face maps are ring homomorphisms. _

The map § : R — S is called an augmentation of the Amitsur complex because the

composed maps are equal: '

(23.3) 8d" = 6d-.

We will often use the shorthand notation S® 5 =55 and S® S®S = S5S. Similarly,
if M is a left R-module, we may write S ® M = SM, etc...With this notation, the face
operators in the augmented Amitsur complex look like this:

(23.4) . R— §=355—= 555,

This cosimplicial complex yields a complez of R-modules

(235) Ct— RS 8 Y g9 T gnn
where 6" = d°® —d' 4 .- £d"™.

Definition 23.6. A homomorphism § : R — § is called left flat if: for every exact
sequence oo

237) M — M — M"

of left R-modules, the sequence

(23.8) SM — SM' —s SM"

is exact. The map € is faithfully flat if: a sequence 23.7 is exact if and only if 23.8 is exact.
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Lemma 23.9. A map R — S is faithfully flat if and only if it is flat and the map
Spec S — Spec R is surjective. ‘

Egercise: Assume that R — § is left faithfully flat. Show that if M is and R-module
such that S @ M = 0, then M = 0. Show that if ¢ : M — M’ is a homomorphism of
R-modules such that S ® M — S ® M' is an isomorphism, then ¢ is an isomorphism.

Theorem 23.10. Let 8§ : R — S be a left faithfully flat ring homomorphism. Then the

Amitsur complex is a resolution of R, i.e., 23.5 is exact. Moreover, this comp]ex remains

exact when tensored om the right by‘&n—arbxﬁrary left R-module M:

M — SM—SSM— -

 Proof. Grothendieck’s trick is to note that 23.5 is a sequence of left R-modules. To prové

it exact, it suffices to show that the sequence obtained by tensoring on the left with S is
exact. When we tensor 23.5 on the left with S, we obtain the Amitsur complex, except
that the face d° and degeneracy s° are missing, 1 ® § = d*, and all indices in the remaining
face maps are increased by 1. So §:=i @6 =d' —d*> +---

This new complex is homotopically trivial, the homotopy being given by the missing
degeneracy: h = s°. In other words, hé + 6h = identity. This is checked directly:

(y@wo®---‘®wn)503=(y:cg®:c'1®~'-®3;n)_(d1_d2+...)

=yroR1Qz1 Q- — yYyro @1 Q@1 Q22 @+ + ---, -
while . _
(YRzr® Qz,)0" =y R1Q20 Q21 ® -+ — YR 1Rz Q- + ---)s°
=yYRzo®z1 @+ — Yo @®1Qz1 @ -+ +

This shows that 23.5 is exact (see 13. 20) and if we tensor on the right by an arb1trary left
R-module M, the same proof shows that the resulting sequence is exact.

Corollary 23.11. (Descent for elements of a module) Let M be a left R-module, and Iet
N = S@M, where R — S is left faithfully flat. An element z € N has theformz = 1Q®y
for some unique y € M if and only if zd° = zd*.

This corollary follows immediately from the exactness of the augmented Amitsur complex.
It is usually stated this way: An element x € N lies in M if and only if vd® = zd'. In
terms of tensors, suppose that we write z = 5 a, ® m, € SM. Then 2d® = zd" reads

‘Zl@a,,@m,,:Za,,@l@m,,.
v

v
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Proposition 23.12. (Descent for maps of modules) Let § : R — S be a faithfully flat
ring homomorphism, let M, M' be R-modules, and let ¢ : SM — SM' be an S-linear
map. Then g has the form ¢ ® v for a unique R-linear map v : M — M’ if and only if
the following diagram commutes: ,

'_SMd—1>SSM

| e

SM —L . SSi

Proof. The diagram obtained by replacing d' by d° commutes in all cases, i.e., gd° —
d’(i ® g). Suppose that gd' = d'(i ® g) as Well Let © € M. We identify M with
ker (d° — dl), so that zd° = zd'. Then '

(zg)d® = 2d°(i® g) = 2d* (i ® g) = (zg)d".

Therefore zg € ker(d° — d') = M'. This shows that g defines a map v : M — M’ by

restriction to M. Since g is S-linear, its restriction to the R-module M is R-linear. Then

g and ¢ @ 7 are S-linear maps SM — SM' which agree on M, so they are equal.
Conversely, if g = i®7, then i®g = i®i®-~. It is true that gd' = (i®7)d' = d*(:Qi®7).

This proposition can be stated by saying that the sequence
(23.13) Homp(M,M') — Homg(SM,SM')— Hom(SM, SSM"

1s exact, where the double arrow stands for the pair of maps sending g~ gd! and ¢ +—
&8 g) |

24, Descent via a faithfully flat ring homomorpﬁiérﬂ. |

- The descent problem for modules is the following: Given a left faithfully flat ring ho-
momorphism 8 : R — S, what information on a left S-module N is needed to present
N as tensor product S @ M from some R-module M? The point, of course, is to solve
this problem without mentioning R explicitly, and the necessary information will be called
descent data for the module. -

We use the Amitsur complex. If M is a left R-module, Theorem 23.10 provides us with
a cosimplicial resolution of M. We set N = .§ ® M, obtaining a cosimplicial complex

(24.1) N=—S®N— SS®N.

This cosimplicial complex has the information necessary to recover M, because Theorem

23.10 tells us that M = ker ($—3.5® N). Thus the cosimplicial complex prov:ldes descent
data for the module M. .
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(

There are several problems which need to be addressed: First, how do we describe this
descent data when M is not present? Second, the cosimplicial module is terribly redundant,
and we must remove this redundancy. Third, and this is very important, we must provide
a useful interpretation of the descent data. We will treat the first two problems in this
section, and we will discuss the third one in special cases in the following sections.

The first step in removing redundancy is to truncate the complex at dimension 2, i.e.,
to keep only the part shown in 24.1, together with the appropriate degeneracies on this

truncation.
omplex. For instance,

T am S=module IV is givenyw paz
we have the face map d® : N — SQN and the degeneracy s
maps are d : N — S@ N and d>: S@ N — SS®N.

0. N «— S®N. The missing

S-module. Descent data

Our first definition of descent data is as follows: Let N be a left
dt = ¢ and

for the module N consists of a map ¢ : N — S@N such that, if we set
d% = i ® ¢, we obtain a truncated cosimplicial complex 24.1.

N — S@N is given. To check that one obtains a truncated

Suppose that a map ¢ :
cosimplicial complex, one must check the standard identities. The ones which don’t involve

¢ or 1 @ ¢ hold automatically. The important new ones are

(24.2) |
() d@=dd, or Ki®6)= s,
(b) d%s® = s?dl . or (1®¢)s® =59,

(c) d*s® =i, -or ¢s®=1

There are two other new identities: d°d? = d°d* and d®s* = i. However, the first of
these always holds, and the second is a consequence of (c). Note also that the identity
d's® =i appears twice, once at N and once at S ® N. Only the one at N is new.

Lemma 24.3. (i) The identity (b) is equivalent with the S-linearity of ¢.
(ii) If (a) and (b) hold, then (c) is equivalent with injectivity of the map P.

Proof. (i) (e®@z)(i ® qS)SO = (a ® (z¢))s° =‘a($¢5), and (a ® z)s°¢ = (az)¢.

(ii) That ¢s° = ¢ implies ¢ injective is clear. Suppose that ¢ = d' is injective: Then
to prove that d's® = ¢, it suffices to show d'sdt = d'. Using the available simplicial
identities, we find ' ‘

B Pdt = i ds® = d*d*s® = d'i.

Note that the identity d*s® = ¢ we used here ison S®N. This isn’t the one we are proving.

We can sum up our conclusions as follows:
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Definition 24.4. Descent data for a left S-module N is given by an injective S-linear |

map ¢ : N — SN which satisfies the cocycle condition
$(i® ¢) = ¢d".

Ezercise: Write the cocycle condition out explicitly in terms of bases in the case that S is
a free R-module and that NV is a free S-module of rank 1. (It is not easy to give a useful
formula for the cocycle conchtmn in terms of elements in the general case )

y : 4 ) »

We can construct an R-module from descent data, as M = ker (NT-——? S ®7"ﬁ—H
¢ is S-linear, but d° is only R-linear. So the kernel is an R-module. ‘

Theorem 24.4. Let 8 : R —+ S be a left faithfully flat ring homomorph1sm and let |
¢: N — 5®N be descent data. Let

a°—¢
M =ker(N —> SQ N).

Then M is an R-module, and the canonical map S®@M — N is an isomorphism. More-
over, the cosimplicial complex 24.1 is canonically isomorphic to the truncation of A ® M,
where A is the Amitsur complex for S/R.

Proof. We use Grothendieck’s trick again. To show that S® M 1s isomorphic to N, we set

¢ = d' and we tensor the exact sequence

| u | d®—d!
(24.5) _ 00— M—-N—5@N
on the left with 5, obtaining an exact sequence

(24.6) 0— SM % 5@ N L, SS®N.

It suffices to show that this sequence is isomorphic to

(24.7) | 0——>N—>S®N . SS®N,

i.e., that N is the kernel of the map d* —d?. The mjectlwty of the map d! is a hypothesis.
We verify that A = 5% is a homotopy, i.e., that hd' + (d' — d?)h = ¢, from which it will
follow that the sequence 24.7 1s exact at S ® N. This is a simplicial identity:

Ot + (d! — d?)s® = d?s° +i—dPs® =i,

___ as required. We omit the verification of the last assertion.

Scholium 24.8. Let M be an R-module. The descent data on SM which produces the
module M is, of course, obtained by the canonical map d*: SM — SSM. If N is an
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S-module which is isomorphic to SM by an S-isomorphism g : N — SM, this canonical
descent data carries over, and it gives descent data on N, as is exhibited in the diagram
below:

N —F SN = SSN

i ’ -¥
(24.9) lg J'z‘@g lz‘@z‘@g
. M — SM = SSM = SS5M

The descent data on N is ¢ = gd*(: @ g) 1. _
Ezercise: Work out the fact that this does give descent data by verifying the equalities

pd' =gd'(i®g)7'd' = gd'd'(i®i®g) ™ = gd'd(i®i®g) = (i ®¢).

Critique 24.10. The problem with the description 24.4 of descent data is that it is
difficult to interpret in a useful way. However, Nuss has given an interpretation in terms
of connections. '

‘ Refe'rence.s

M.A. Knus and M. Ojanguren, Théorie de la descente et algebres d’Azumaya Lecture
Notes in Math. 389, Springer, 1974.

Philippe Nuss, Noncommutative desceﬁt, preprint.
25. Descent when the tensor products S® ---® S are rings.

Let § : R — S be a left faithfully flat ring homomorphism. In this section we suppose
that S® S and S ® S ® S have ring structures with these properties:
(25.1)

(i) The face maps d' which appear in the truncated Amitsur complex are ring homomor-
phisms, :

(ii) forall b,c € S, (b®1)(1Qc)=b@cin S S.

This includes, for example, the case that R is commutative and that S is an R-algebra.
We do not assume given a formula for evaluating the product (1 ® ¢)(b ® 1), nor that the
degeneracies s* are ring homomorphisms.

The main case in which the hypotheses 25.1 hold is that § : R — S is generated by
centralizing elements. The centralizer of an & bimodule M is

(25.2) | Zr(M) ={m € M |am = mafor alla € R}.

A ring homomeorphism § : R — S is called an eztension if S is generated by Zg(S5). If S is
finitely generated over R, this amounts to saying that S is a quotient of a noncommutative
polynomial ring R(z1, ..., ), in which the elements of R commute with the variables z;.

el . et —
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Proposition 25.3. If 6, : R — S, v = 0,1 are extensions, then the tensor product
S1 @r So has a unique structure of ring with these properties:

(i) The maps d” : S, — Sp ® Sy are ring homomorphisms.

(i) (z®1)(1®@w)=2Qw for all z € Sy and w € §.

Proof. Note that if Sp = R(z1,...,2m) and S; = k(y1,...,Yn), then the tensor product
module 51 ®g Sp is isomorphic to the bimodule of the noncommutative polynomial ring
R(y1,..yYn; T1,.-., Tn), where the variables commute with elements of R, and where z;
commutes with y;. We take the standard ring structure in that case. In general, we write

S; as quotients, say So = R(z)/I and S = R(y)/J. ‘Then as bimodule, Sy ®g 51 ~
R(y;z)/(J @r So + S1 @r I). We note that (J ®r Sy + 51 ®r I) is a two-sided ideal.
So the tensor product inherits a ring structure. This ring structure has the property that
(2@1)(1®w) =zQuwiorall z € 57 and w € Sp, and that (1Qw)(z ®1) = z @ w if either
w € Zg(S1) or z € Zr(So), but not otherwise. We omit the rest of the proof.

The only difficulty in what follows 1s keeping track of the way scalars move past the
tensor product symbol. So all tensor products which are not over the ring R must be
labeled clearly.

We will need to use the face maps and also of the three compositions of face maps
d¥,d% 1% : § — 5SS, defined by

(25.4)
zd01=1®1®z,
2d2 =10 281,
zd?2 =21 1.

The relations between them:

(25.5)
dOl — dodl — dodo,
@2 = d°d? = d1d°
di? = dlq? = dldlf

In general we use subscripts on the tensor symbol to indicate that a tensor product is

via one of these maps. So if NV is an S-module, then §5 @y NN and SS ®; N will denote-

the extension of scalars via d° and d* respectively. Then for b,c € S and z € N,
(25.6) b@c® z=bQ1Qcz.

We don’t have an analogous formula for the element b ® ¢ ®; z, but we do have

(1) c®1Qz=1018; cz.

Similarly, we use the notation SS.§ Rapg N ‘to denote extension of scalars by the map
d®P of 25.4. '
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We may also write N” =SS ®, N and N*f = S§5 ®,4 N. Then 25.5 shows that we
have canonical isomorphisms

(25.8)
N x5 S55®; N° ~ §55®¢ NO,
N2 »y SSS ®, N° ~ SSS ® Nt,
N12 5 555 ®, N1 =~ 555 ®; N1

Let f: N — N° be an S$5-linear map, and denote by f* the map obta.lned from f
——— by extension of scalars via d” 55— 555 —Aeecordingto-25:5the-demains-and range

of the maps f” are as follows:
(25 9) fﬂ Noz NOl f - N1z NOI f - N12 _, o2, '
So the comp051t10n 2 g deﬁned and it has the same domain and range as f'.

Definition 25.10. Descent data for a module N consists of an isomorphism of SS-
modules f : N — N° which satisfies the cocycle condition f? f° = f2

Proposition 25.11. Descent data 24.4 for a module N is equivalent to descent data
25.10, and hence descent data 25.10 for N is equivalent with a presentation of N as tensor
- product SM.

The descent property for hdmomorphjsms 23.11 can also be restated in this situation:

Corollary 25.12. With hypotheses as at the begmmng of this sectwp let M,M' be
R-modules. There is an exact sequence

Homp(M,M') — Homs(SM,SM')—— Homss(SSM,SSM').

- If available, the form 25.10 of descent data may be preferable to 24.4 because it is exhibited
as an isomorphism between modules obtained from N by extension of scalars.

Scholium 25.13. Suppose that N = SM. The two maps Sdo and 6d', which send
R — 55, are equal. So the functors S5 ®, S ® - are canonically 1somorph1c for v =0,1.
| The isc')morphism N! — N° which provides descent data for N is the canonical one.

Proof of the proposition. Define

(25.14) | j:N—N' by zj=191@; 2, and

(25.15) e:SN— N, by (b®2z)e=0®1®z.

. These maps are d'-linear, j is injective, and ¢ is buectwe For example, the d*- linearity of
. e is verified as follows:

(25.16) | (abRz)e=ab®1Qez=(a®1)(b®1® ) = (adl)((b ® :c)e)
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Lemma 25.17. Tbere is a bijective correspondence Homgg(N*?, NO) —+ Homg(N, S®N)
defined by f + jfe™! ‘

Proof. The isomorphism e identifies Homg(N, S ® N) with Homg(N, NO) where NO is
given the structure of S-module via d®. Then the assertion becomes the adjointness of
restriction and extension of scalars via d?. ‘

This lemma provides the correspondence between the two types of descent data. Note
that if f is bijective, then jfe™! is injective, as required by 24.4.
————The main-peint-is- —to—verify -theequivalence of the two coeycle conditions. Since the

maps f* are 55S5-linear, the cocycle condition f2f° = #! holds if and only if the two sides
take the same values on elements of the form z = 1 ®1®1®3z. On such elements,
zf'!=(1®1@1z)fd' and zf2 = (101 ®; z)fd?. We write mq5 > ;¢ ®vyi. Then

sz:Zc,-@)l@l@glyi , and sz:Zc,;@l@l@ozyi-

Next, we write y;¢ = ZJ- bij; ® z;;. Since
(ci®1@1®0y)f* =(ci®181)((121® 1R 1:)f°), and

(1®1®1®02y1)f0 (1®1®; y;)fd° —Z]-@bu@l@ﬂlzzj-

J

We have
(25.18) (1910102 ' =) a®b; @10 ;.
L7
The cocycle condition f2f° = f reads
(25.19) D ci®l®1@uyi=) @b ®1 G0 2ij.
i ' : 4,J
On the other hand, with the same notation, we have
(z)d(i @ ¢) = (Z i ®@Yi)(1® @) = Z ¢ ® by; ® 244
; 7 ij ;
~ S0 the cocycle condition ¢d* = ¢(1 ® ¢) reads
(25.20) | _Zci®1®yi = ZC;‘@IJ:’J‘ @ zij.

i ij

l
li
I}
L
-
I}
' - (1®1®1$)f=zci®1®oyia
i
I
I
I
I
|
|

I

[

I
|

I
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There is a bijective map €' : SSN — SS55 Qo1 N defined by a@ 0@ — a®@ b 1 Qo1 =,
from which it follows that the two cocycle conditions are equivalent. ‘

This lemma completes the proof of the proposition, except for the verification that if f
is obtained from descent data ¢, then f is an isomorphism. This last fact follows from the
description of the map f in the case that N = SM for some R-module M. In that case,
# is the canonical map d' : SM — SSM, and f is the canonical isomorphism

SS5@ SM ~ SSM ~ S5 ®y SM.

Since the descent data N provides us with the module M, this proves that f is an isomor-
phism. I'm too confused to figure out whether or not the fact that f is an isomorphism
follows from the simplicial relations alone, i.e., if it is true without the assumption that
[+ R — 5 is faithfully flat.

26. Interpretation of descent for extensions of commutative rings.

In the next three sections we assume that § : R — S is a faithfully flat map of
commutative rings. Then all of the maps apprearing in the Amitsur complex A(S/R) are
ring homomorphisms, and one can rewrite the descent data in a slightly simpler form. We
interpret a left S-module N as a bimodule on which the actions on left and right are the
same. Then in addition to the canonical isomorphism 25.5 S Q@ N ~ N° = S5 ®¢ N, we
also have a natural isomorphism N ® S &~ N' =55 ®1 N, defined by 2 @ b — 1 @ b ®; .

Corollary 26.1. Let R — S be a faithfully flat map of commutative rings. Descent -
data for an S-module N is given by an isomorphism of S-modules f : N@ S — SQ N
satisfying the following cocycle condition: The composition

2 pens =
NeSesi=® senegs =%, sa50N

is equal to themap f1 : N® S® S — S® S ® N obtained from f by tensoring with S
in the middle.

The most importanf benefit of working with commutative rings is that many construc-
tions on modules are compatible with extension of scalars. Let M, M' be R-modules, and
set N=S®M, and N' =5 ® M'. Then there are canonical isomorphisms

(26.2)

() NeN =S@(Me M),

(i) N @s N' ~ S @ (M @ M),

(iii) Homg(N,N') = S @ Homp(M, M").

Here (i) is true for any homomorphism of rings, commutative or not, and any left modules

. M, M'. (ii) is true whenever R, S are commutative, and (iii) requires that R, S are commu- .

tative, M is a finitely presented module and that € is a flat map. Since this is slightly less
trivial, we provide a proof. Both (ii) and (iii) become problematic when the ground rings
~aren’t commutative, because they require moving scalars past elements of the module.
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Lemma 26.3. Let 0 : R — S be a flat map of commutative rings. Let M,M' be R-
modules, and assume that M is finitely presented. Let N = S ® M and N' = § @ M'.
Then S @ Homg(M,M') ~ Homg(N, N').

Proof. We choose a presentation for M, say

(26.4) R™ — R™ — M — 0.

We note that Homg(R", M') ~ M'". Because Hom is left exact and contravariant in the

(26.5) | 0 — Homp(M,M') — M'™ — M'™2.

~ Tensoring 26.4 on the left with S yields a resolution

§" —s S™M — N — 0,
hence an exact sequence
(26.6) 0 — Homp(N,N') — N'™ — N'™2,

The assertion follows by comparing this sequence Wlth the one obtamed by tensormg 26.5
on the left with S.

Because algebraic structures are usually compatible with extension of scalars, descent
can be applied to them when 6 : R — S is a faithfully flat map of commutative rings.
Let’s take the example of descent of an algebra: The starting point is to note that if A
is an R-algebra, then B = S ® A has a natural structure of S- algebra. This is the point
which becomes problematic when the “coefficient rings” R, S are not commutatWe To be
specific, the structure-of R-algebra on A is given by a linear map A ® A 5 A satisfying
some axioms such as associativity. The strucure of S-algebra on B = S ® A is obtained by
tensor product, using the canonical isomorphism

(26.7) BRsB=(S@A4)®s(S®A)~SQAQA.

Via this isomorphism, we obtain the algebra law on B by tensor product:

(26.8) BRsBrS®A®A 24 5g A,

Scholium 26.9. There is an important principle which states roughly If @ module M
-18 unique, then it exists. Similarly, if an element of a module is unique, then it ezists.
Taken literally, these assertions are of course either trivial or false. What is meant is that
if a module N is sufficiently well described, one may be able to deduce a priori that the
two modules N°, N' obtained by extension of scalars are naturally isomorphic. In that
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case, the natural isomorphism provides descent data. Or, if an element of SM is descnbed
canonically, then the descent of the element may be automatlc

For example, let A be an R-algebra, possibly W1thout unit element. Suppose that
R — S is a faithfully flat map such that the algebra SA has a unit element. Then
because the unit element is unique, A has a unit element as well. More precisely, the unit
element ¢ of SA lies in A. To make this clear, we first note that if A is an algebra with
unit element e and if B — S is a homomorphism, then 1 ® e is a unit element of S ® A,
because (1 @e)(s ®a) = s ® ea = s @ a. We apply this to the two maps d°,d* : § — §85.

—.95-modules. Therefore it gives us descent data for the underlying module of B. We use

If e is a unit element of SA, we obtain two unit elements e’ e! of SS5A. Because unit
elements are unique, ¢’ = e!, and 23.11 shows that e € A.

A more trivial example of this principle is with the canonical constructions. I we
are given the modules M, M’ then the module N ®s N' is canonically isomorphic to
S®M ® M'. So there is natural descent data for the module N ® s N' such that the
R-module obtained from this data is isomorphic to M ® M'. We don’t need to carry the
canonical isomorphisms along to verify this. :

Ezercise: Let A be an R-algebra and let R — S be faithfully flat. Prove:

(i) If S® A is a field, then A is a field. '

(i1) If SA is left noetherian, then A is left noetherian.

(i) If SA is a finitely generated S algebra, then 4 is a finitely generated R-algebra.
(iv) Let M be an R-module, and let R — S be faithfully flat. Prove that if SM is a
finitely generated (or finitely presented) S-module, then so is M.

- Suppose that an S- algebra. B is given, which we wish to present as S ® A, for some
R-algebra A.

Proposition 26.11. Descent data for an S-algebra B consists of an S ® S-algebra iso-
morphism f : B! — B° which satisfies the cocycle condition f%f° = f!. In other words,
this data corresponds bijectively to isomorphism classes of R-algebras A together with an
isomorphism S ® A — B.

Proof. Here B” denotes the module obtained from B by the extension of scalars d” : § —
S5 =8®S. So B” inherits the structure of 55-algebra from the algebra structure on B,
as above. The hypothesis that f is an algebra isomorphism makes sense.

Next, if A is an R-algebra and if B = S® A, then B! and B? are canonically isomorphic
as modules, and also as algebras, to S5 ® A, and the descent data for the underlying
S-module B is the canonical isomorphism. :

Now suppose that descent data f : B! — B is given. We have to comstruct the
R-algebra A. Since it is an isomorphism of algebras, f is in particular an isomorphism of

that descent data to determine an R-module A and an isomorphism S ® A — B. We
replace B by the isomorphic module SA. Then the desent data f becomes the canonical
isomorphism S5 ®; SA ~ SSA ~ 55 R0 S’A
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We must show that the algebra structure on SA descends to A. Let us write P = A® A.
Then SP is canonically isomorphic to SA ®5 SA. We carry the algebra law over to an
S-linear map g : SP — SA. The crltenon 25.12 tells us when such a map descends: It

does so if and only if the two maps ¢*, ¢° obtained from g by extension of scalars to SS.

are equal. Now when we identify B with SA via the canonical isomorphism, the descent
data f carries over to the identity map on SSA. Similarly, when B ®g B is identified with
the canonically isomorphic module SP, the descent data f ® f for B ®g B carries over
to the identity map on SSP. The statement that f is an isomorphism of algebras carries

§SP —' ., s5P
(26.12) . o gll , lgu
| SSA —1 |, 554

This diagram implies that g! = ¢°, as required.

Finally, we must verify the axioms for an algebra. The associative law asserts that two
maps A ® A® A — A are equal, or that their difference is zero. Assume that B = SA
is an associative algebra. Then the two corresponding maps SA ® SA ® SA —s SA are
equal. Since A C SA, the associativity for A follows. We have already seen that the unit
element descends.

27. Forms of a structiire.

A problem which is closely related to descent is that of classifying structures over a
commutative ring R which become isomorphic after a faithfully flat commutative ing
extension R — S. Let’s take the case of algebras as our example. Suppose given two
algebras A, A’ over R such that SA and SA' are isomorphic S-algebras. We choose an
isomorphism g : S4A — SA4'. Extendmg scalars to S\S via the two maps d¥ : § — S5,
we obtain two isomorphisms g',¢° : SSA — SSA'. They are equal if and only if g has
the form ¢ ® v for some isomorphism «: A — A’ but this need not be the case.

We define an automorphism of SSA by

(27.1) O F=e")

(The parentheses are only for clarity.) The foﬁnulas 25.5 show that f2 = (g'%)(g%%)~1,
2 =(g"%)(¢°")%, and ' = (¢*?)(¢")~". Thus the cocycle condition

(27.2) =

" holds. This means that f provides descent data for the algebra SA. Workmg out the

~definitions, one finds that the descended algebra is isomorphic to A'.
The cocycle f depends on the choice of the isomorphism g. If b : SA — § 4 s another
isomorphism, then h = ag, where o 1s an automorphism of SA. The cocycle obtained from

ag is (1) f(a®)!
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Proposition 27.3. Let R — S be a faithfully flat ring homomorphism and let A be an R-
algebra. The algebras A' such that SA' is isomorphic to S A are in bijective correspondence
with equivalence classes of cocycles: automorphisms f of SS A such that f2f% = f1, where
two such cocycles f, f are equivalent if there is an automorphism « of SA such that

F = () (@) | |
Qiven an R-algebra A, the R-algebras A’ such that SA' is isomorphic to SA for some

faithfully flat ring homomorphism R — § are called forms of the algebra A. A trivial
form is one isomorphic to A. One says that a form A' splits over S if SA"'~ SA.

Analogous results hold for any type of structure to which the descent formalism carries
over. For example, let M be an R-module. Then the isomorphism classes of R-modules
M' such that SM ~ M' are in bijective correspondence with automorphisms f of the
SS-module SSM which satisfy the cocycle condition, modulo equivalence.

28. Sheaves and cohomology.

Let R be a commutative ring and denote by R the category of commutative R-algebras.
Tt is convenient to introduce the functor of automorphisms of an R-algebra ‘ ‘

Aut(4) : R — (groups)

defined as follows: Given R — S, we let Aut(4;S) denote the group of automorphisms
of the S-algebra SA. ‘ '
A functor F : R — (sets) is called a sheaf (for the flat topology) if it has the following

two properties:

(28.1)
(ii) for every pair of rings R1, Rz € R,

F(Rl o) Rg) ~ F(Rl) X F(Rg)
(i) For every faithfully flat map R' — S "in R, the sequence
(28.2) F(R) — F(SY3ZF(S'®r 5")

is exact, meaning that the map F(R') — F(5') is injective, and its image is the set of
elements of F(S') whose images in F(S' ®@g S') under the two maps F(d),F(d') are
equal. :

A sheaf of groups is a functor G : R — (groups) which satisfies the sheaf axiom.
Proposition 28.3. Let Y be a scheme over X = Spec R, for example, Y = Spec A, where

- C is a commutative R-algebra. The functor Y (:) defined by Y (S) = Mapsx(Spec 5,Y) is

a sheaf.

Proof. We will give a proof in the case that ¥ = Spec C is affine. Say that C =
Rl[z1, .o, a)/(fiyos fr). If S is an R-algebra, then an element of Mapsy(Spec 5,Y) is
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a map Spec S — Y which is compatible with the maps of the two schemes to X. Such
maps correspond bijectively to solutions of the system of polynomial equations flz) =10
in the algebra S. The sheaf axiom reads as follows: Let R’ —» S’ be faithfully flat. Then
solutions a € R’ of the system of equations f = 0 correspond bijectively to solutions in
5" such that the two solutions obtained by extension of scalars to S’ @p ' via d’,d* are
equal. This follows from descent of elements 23.11. ' |

Examples 28.4 The proposition tells us that algebraic groups over R define sheaves

of groups.  Three of the most important omes arer the additive group G, defined—
Ga(S5) = S, the maultiplicative group G,, over R, defined by Gy (S) is the group of units
in 5, and the general linear group GL, defined by GL,(S) = the group of invertible
matrices with values in S. If we wish, we can think of G,, as the group GL.

| Proposition 28.5. Let A be an R—a]geb.ra._ The functor of automorphisms Aut(A; Yisa

sheaf.

Proof. This is descent of homomorphisms.

Let G be a sheaf of groups, and let B — S be a faithfully flat homomorphism of
commutative rings. A 1-cocycle with values in G is an element f € G(S ® S ) such that
F27% = 1, where f* denotes the image of f via the map G(d"). Two cocycles f, f are
cohomologous if there exists an element g € G(S) such that f = (g8)f(g®>)™. The set
of cohomology classes of 1-cocycles is called the 1-cohomology of G' and is denoted by
H'(S/R,G). This is a set with a distinguished element 0" called the trivial class, the

class of the cocycle 1 € G(S ® S). The statement H'(S/R,G) = 0 means that the trivial

element is the only element of the set. The union of the cohomology groups H'(S/R, G)
over all faithfully flat maps R — S is denoted by H!(R, G).
- One also defines the 0-cohomology to be H*(R,G) = G(R).

Corollary 28.6. The forms of an algebra A are classified by HY(R,Aut(A)). Those which

become trivial over a faithfully flat extension S of R are classified by HY(S/R, Aut(A4)). .

The trivial class corresponds to the trivial form.

Notice that the cohomology is defined in terms of the diagram of groups obtained by
applying the functor F' to the Amitsur complex:

(28.7) F(R) — F(S)=3F(S5)=3 F(S55S) - .

If the sheaf I takes its values in the category of abelian groups, say written additively,

~then one obtains a complex by applying F' to the alternating sums § = d® — d* + .-+ of

the face maps. The cohomology of the resulting complex is called the Cech cohomology
HY(S/R,F). This is an abelian group in all dimensions, and it agrees with the previously
defined groups in dimensions 0, 1.
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Corollary 28.8. (i) HY(S/R,G,) =0 for all ¢ > 0.

(ii) H'(S/R,GL,) classifies R-modules M such that S @ M is isomorphic to the free

module 5™,

(iii) If R is a local ring, then HY(S/R, GL,) = 0 and H'(S/R,Gm)=0.

Proof. (i) Since G,(5) = ST, this follows from the exact-ness of the Amitsur complex 23.10.
(ii) This follows from the descent formalism because the group of automorphisms of

the free S-modules of rank n is GLn(S), so GLy, is the sheaf of automorphims of the free

module. ' ‘

is exact for every R-algebra S, and

~ (ii1) Let M be an R-module such that S ® M is free. The next lemma shows that M
is projective. If R is a local ring, then every projective R-module is free. Therefore every
form of the free module is free, and this shows that H'(S/R,GLy), which classifies such

forms, is zero.

Lemma 28.9. Lét R — S be a faithfully flat map of noetherian rings. If M is a finitely
generated R-module and if SM is a projective S-module, then M is a pro, jective R-module.

Proof. Let R™ 2 Mbea surjective map. If SM is projective, then i®¢ : S = s@ R" —
SM splits. Then the map Homg(SM, S™) — Homgs(SM, SM) is surjective. This map is
obtained from the map Homg(M, R*) — Hompg(M, M) by tensoring with 5 26.2. Hence
¢ splits too. ‘ '

There is one point which should be mentioned, and that is the definition of a surjective
map of sheaves. The kernel K of a map F — G of sheaves of groups is defined to be the
functorial kernel:

K(S) = ker (F(S) — G(S))

for every S. This does give a sheaf. ‘

On the other hand, suppose that F — G is a map of sheaves of abelian groups. The
functor C(S) = coker(F(S) — G(S)) is usually not a sheaf. So the sheaf cokernel must be
defined as the solution to the universal problem of constructing a cokernel in the category
of sheaves. This is called the associated sheaf to the functorial cokernel C.

This leads to the following characterization of short exact sequences of sheaves: A
sequence of sheaves ' ‘ : '

(28.10) 0—ELFLG—0

of sheaves of groups is ezact if

(28.11) (i) | |
0 —s E(S) — F(S) — G(S)

(ii) for everjr R-algebra R' and every elements ¢ € G(R'), there is a -faithfully flat map
R' — §' and an element f € F(S') such that the images of f and g in G(S') are equal.
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The second condition is usually expressed by saying that the element ¢ lifts to F' over §',
or that g lifts to F locally. This definition is forced by sheaf axiom.

Suppose given an exact sequence 28.10. Substituting R for R' into (ii) and using the
definition of H?, we obtain a left exact sequence

(28.12) 0 — H(R,E) — H°(R,F)— H°(R,G)

IfTR—Sisa fa.ithfully.ﬂé.t extension such that an element g € H°(R, G) lifts to F over
——ﬁs‘,—themhep%i&anﬂelementr-ef—HiQSi/ﬂRTR)Avhiehi&zemﬁif_aﬂud_onlyif_g_liﬁs_tn F over R

We say that the obstruction to lifting over R is an element of H '(S/R, E). To obtain this
element, we take a lifting f € F(S). Via the two maps F(S) — F(SS), we obtain two
elements f1, f° of F(SS). By the sheaf axiom, these two elements are equal if and only if
f € F(R). Since g € G(R), the two images of f* in G(SS) are equal. So e = (f1)(f0)~?
is an element of E(S5S). This element is a cocycle whose cohomology class represents the
obstruction in H'(S/R, E). :

The exact sequence 28.10 also provides sequences of 1-cohomology

(28.13) H'(S/R,E) — H\(S/R, F) — H'(S/R, Q).

- The properties of this sequence of pointed sets are discussed in the following works:
References:

Cohomology of sheaves of abelian groups:
J. Milne, Etale cohomology, Princeton University Press 1980.

nonabelian cohomology:
J.-P. Serre, Cohomologie galoisienne, Springer Lecture Notes No. 5, 1973.

J.-P. Serre, Local Fields, Hermann, Paris 1979.
29. Azumaya algebras.

- In this section we apply descent to study forms of two algebras: the _polynorhia.l ring
K[z] when K is a field, and the algebra Mn(R) of n x n matrices.

Lemma 29.1. Let K be a field, and let A = K[z] be the polynomial algebra in one
variable over K. An automorphism of A is given by a substitution of the form z — az + b,

where a,b € K and a # 0. The group of automorphisms is isomorphic to the subgroup
G(K) of GLy(K) of matrices of the form -

< wen=(3 1)

Proof. Let ¢ : A —+ A be an automorphism. The image of z is a polynomial, say
¢(z) = p(z) = amz™ + --- + ap. Similarly, the image of = via the inverse function is a
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polynomial, say ¢(z) = bpz™+-- -+ bo. Then & = p(g(z)) = am(b™z™)™ . Clearly, we
must have m = n = 1, and this shows that p(z) = a1z + ao, as required. '

For any ring S, the group of S-automorphisms of the polynomial ring S[z] contains the
group G(S) of matrices m(a,b) with a,b € S and a invertible. But if 5 contains nilpotent
elements, there will be other automorphisms. For example, suppose that s € § and that

2 = 0. Then the map defined by z + p(z) = z + tz? is an automorphism. Its inverse
function sends z — z — tx2. '

Anyway, the group G(S) fits into an exact sequence of groups

(29.3) | 0— St —g(s)— 5*—0

defined by b — m(1,b) and m(a,b) — a, and we have a corresponding exact sequence of
sheaves

(29.4) 7 ' 0 — G, — G — G, — 0.

Denoting by Aut(A) the sheaf of automorphisms of the algebra A, we know that G C
Aut(A), and that G(K) = Aut(4; K) if K is a field.

Propositlon 29.5. If K is a perfect field, then every form of the polynomial algebra
= K|[z] is trivial. In other words, if B is a K-algebra and if S @ B = S[z] for some
fa:thfuﬂy ﬂat map K — S, then B ~ K|z]. '

Proof. We are helped by the fact that, since K is a field, every homomorphism K — § is
faithfully flat, provided only that S # 0. Let B be a form of A which becomes isomorphic
to A after a faithfully flat extension K — S§. We may assume that S is a finitely generated
ring extension of K. (This is not an interesting point, so we omit the verification.) Then
we replace S by one of its residue fields, to reduce to the case that S = L is a finite field
extension of K. Extending L further as necessary, we may assume that L/K is a Galois
extension. ‘ _

The form B corresponds to a 1-cohomology class in H'(L/K, Aut(A)), say the class of
the cocycle 3, and such a cohomology class is an automorphism of L ® L @ A = LL[z].
Because L/K is Galois, L ® L is isomorphic to a sum of copies of L. Then because
Aut(L[z]) ~ G(L), we also have Aut(LL[z]) = G(LL). So our form is represented by a class
in H'(L/K,G). The exact sequence 28.13, together with the facts that H*(L/K,G,) =0
and HY(L/K,G,) = 0 28.8, show that H'(L/K,G) = 0. Specifically, let 3 denote the
cocycle with values in G,, which is the image of 3. This cocycle represents the trivial class.
~ So there is an element @ € Gy, (L) such that (a)8(@’)™! = 1. We lift @ to « € G(L), and
replace 3 by (a!)B(a®)™!, thereby reducing ourselves to the case that B = 1. When this
is s0, 3 is a cocycle in the kernel G,, and so it represents the trivial class in H(L/K,G,)

andin HY(L/K,G). Note that the above argument on cohomology classes does not depend

on the particular sheaves, but only on the existence of the exact sequence.

We turn next to Azumaya algebras:
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Proposition 29.6. The following are equivalent conditions on an R-algebra A: _
(1) There is a faithfully flat extension R — S such that S® A is isomorphic to the matrix
algebra M,(S). ; ' .

(ii) The canonical map A°?P @ A — Endg(A), which sends a ® b — A, 0 py is bijective.
(iii) Definition: A is an Azumaya algebra over R.

Proposit'ion 29.7. (Skolem-Noether Theorem) If R is a local ring, then every automor-
phism of the matrix algebra A = M,(R) is an inner automorphism.

i —7'—%ﬁéﬁr—tmﬁyﬁﬁﬁf‘ﬂmempmﬁbIEfAm&ng%ﬁmmaﬁdgehﬁi ———
over Ris aform of the matrix algebra A = M,(R). f R — S is a faithfully flat map which
splits this form, i.e., so that SB ~ SA4 = Mn(S), then B is represented by a cohomology

’ class in H'(S/R, Aut(A)). The Skolem-Noether theorem allows us to analyze the functor
Aut(A).

Corollary 29.8. There is an exact sequence of sheaves.
0 — G 2> GL, = PGL, — 0,

where j(u) = oF s e PGL, = Aut(4) .

Proof. The units in the matrix algebra M,(R) are the invertible matrices, i.e., they are
the elements of GL,(R). The map c sends an invertible matrix P to the automorphism ¢
of conjugation by P: ¢(X) = PXP~'. The kernel of this map consists of the invertible
matrices in the center of the matrix algebra. These are the matrices of the form ul , where
u € R* = G (R). This explains the sequence except for the surjectivity of the map c.
Surjectivity of the map is defined in 28.11. If ¢ € PGL,(R"), the Skolem-Noether Theorem
tells us that ¢ becomes inner in every local ring of R'. Taking for S’ the sum of a suitable
bunch of localizations, ¢ becomes inner over S’. This shows that ¢ is a surjective map of
sheaves. ' "

"The projective general linear group can be represented as an algebraic subgroup of GL,,:.
But this representation of the group is not very nice because n? is so large in relation to
n. The representation abstractly as quotient of GL,, is usually more convenient.

Ezercise: Let A be an R-algebra which is a free module of rank m over R. Show that
"Aut(A) is a closed algebraic subgroup of GLyn,.

Corollary 29.9. Let B be an Azumaya algebra over R, which becomes isomorphic to the
matrix algebra over the faithfully flat extension R — S. Say that g: Mp(S) — SB
is an isomorphism, and say that o ~— f by this isomorphism. The coeffcients of the
characteristic polynomial of a are independent of § and of g, and they lie in R.

This corollary allows us to define the characteristic polynomial of P as the characteristic
polynomial of «. In particular, trace 8 and det § are defined. These elements are often
referred to as the “reduced trace” and the “reduced norm” respectively.
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Proof. This proof follows the principle that if an element is unique then it exists. We
know that the characteristic polynomial of any matrix o and of a conjugate matrix PaP ™!
are equal. Skolem-Noether implies that for any automorphism ¢ of My(S), @ and ¢(«)
have the same characteristic polynomial, provided that S is a local ring. But since the
characteristic polynomial is compatible with localization, this is true whether S is local or
not: two elements which become equal in every local ring are equal.

We note without proof that the exact sequence 29.8 yields an interesting exact coho-
mology sequence

©(29.10) 0 — R* L5 GLa(R) <5 PGLAL(R) L

HY(R,Gp) = HY(R,GL,) <+ HY(R,PGLy,) 2o H*(R,Gum).
Interpreting the terms;, we have '
(29.11) 0 — (units) — (tnv. mat.) — (autos.) —
(inv. modules) — (loc. free modules) — (Azumaya alg.) — H?.

Reading this sequence at PGL,(R): Let ¢ be an automorphism of the matrix algebra.
Then ¢&° is the class of an invertible B-module. This module is the free module of rank 1
if and only if ¢ is an inner automorphism.

At HY(R, PGL,): Given a locally free R-module V of rank n-(a form of the free module),
the algebra Endg(V) is an Azumaya algebra. The map ¢! sends the class [V] of V' to the
class [Endgr(V)]. If we are given an Azumaya algebra A, the coboundary of its class [A]&"
is a class in H?(R, Gy, ) which is zero if and only if A ~ Endg(V') for some V.

The behavior at H!(R,G,,) is a bit more complicated. It can be shown that, because
G, is in the center of GL,, the group HY(R,G,,) operates on H*(R,GL,). Let L be

an invertible R-module and V a locally free R-module. Then L ® V is also a locally free

module, and the operation is [L][V] = [L ® V]. The fibres of the map c' are the orbits for

" this action.

Proof of the Skolem Noether Theorem. Let ¢ be an autdmorphism of the matrix algebra

A over the local ring R, and let V' denote the space R™ of column vectors. To find a
matrix such that ¢ is conjugation by that matrix is equivalent with finding an invertible
map p: V — V which is equivariant with repsect to ¢, i.e., such that ¢(a)p(v) = p(av)
or that the diagram

A ® P mult 1%
2012 sor| s
A® ot mult v

commutes. If so, then p~'¢(a)p = a, so ¢ is conjugation by the matrix representing P
The converse also holds. '

- — mmeeam:  [E—
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Let €;; denote the matrix units in A, and let u; be the standard basis of V. Set
€ij = ¢(ei;). Then €; are orthogonal idempotents. So V = Pe;V, and V; = €i;V, being
a summand of V, is a projective R-module, hence is free. It is easily seen that Vi must be
free of rank 1. Let {v;} be a basis of V1, and set v; = €;;v1. Then defining p(u;) = v;, we
have ¢(eij)p(ur) = eijur = p(eijur), and p is invertible.

Proof of Proposition 29.6. Let A be an R-algebra. First of all, the conditions that A be
flat and that the isomorphism m : A°P? ®@r A — Endg(A) are compatible with change of

| scalars, i.e., if they hold for.4 and if R — § is any map, then they hold for SA. Moveover,

if R — S is faithfully flat and if these conditions hold for SA, then they hold for 4 too.
Since the conditions do hold for the matrix algebra, it follows that 29.6(i) implies (ii). To
prove the converse, we suppose that A satisfies (ii). In this case we will find a faithful and
smooth map R — S such that SA4 is a matrix algebra over A. (Let’s omit the verification
of the technical point that smooth maps are flat.) :

Suppose first that R = K , where K is an algebraically closed field. Then End A is a
matrix algebra over K, which is a simple ring. The fact that A°?? ® A is simple shows that
A is simple too. By Wedderburn'’s theorem, A is a matrix algebra over K.

Next, suppose that A contains an idempotent element e, and let ¢’ = 1 —e. We use the

Peirce decomposition

' ede eAe
(29.13) | A—(B,AE e,Aeﬁ)-

The terms, being summands of A, are projective R-modules.

Suppose that ede has rank 1. Then the map R — eAe is an isomorphism. (Why
1s this so?) Consider the decomposition A4 = eA @ e'A into projective right A-modules.
The isomorphism End A a2 A°PP @ A shows that Ended ~ (ede)”? Q A~ R®@ A = A.
This shows that 4 ~ EndeA. Since eA is projective, it is locally frée. Then A4 is locally
isomorphic to the ring of endomorphisms of a free module, hence it is locally a matrix
algebra. _ :

Now to split the Azumaya algebra A, it suffices to find a fatihfully flat map R — §
and an idempotent ¢ ‘€ SA such that e(SA)e is an S-module of rank 1. We look for
the universal solution to finding such an idempotent. We may assume that A is a free
R-algebra. We choose a basis {ay} for A, and write a hypothetical idempotent as a linear
combination e = 3" z,a,. The condition e? = e can be expressed in terms of the structure
constants ¢;;; for the algebra (20.1)

(29.14) 7 E Trar —e = ¢e? = Z;t:,‘xja,'aj = E ZTiT;CijkAE.
k 4, Lk

Collecting coefficients, the requirement on the indeterminates z,.is

(29.15) Tk = ) mizjci

¥}
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for all k. These relations define an algebra U, a quotient of the polynomial ring R[z,], such

that idempotent elements of SB correspond bijectively to maps of R-algebras U — 5,

or to solutions of the system of equations 29.15 in S. In particular, we have the universal
solution by the residues of the variables in U. Roughly speaking, we plan to set S = U.
Three things remain to be done: First, we must show that the map R — U is smooth.
To do this, we verify the infinitesimal criterion for smoothness: Let S — S’ be a length
one extension of finite local R-algebras, and suppose given a map of algebras f’ : U — S".
We have to lift this map to a map f : U — §. We interpret f' as giving an idempotent

¢ in S'A. Then the problem becomes that of lifting that idempotent to € € SA. This can
be done 15.2.

Second, there is the questlon of the rank of eAe, when an idempotent is found. Now
because of the Peirce decomposition, eAe will be a projective module in any case. In
particular, if € is the universal idempotent in U4 = A then £A4¢ is a projective U-module.
As such, its rank is a locally constant function on Spec /. This means that Spec U is a
disjoint unibn of closed subsets, and that the rank is constant on each piece. Correspond-
ingly, U splits into a direct sum according to this rank. We replace U by the summand on
which £4¢ has rank 1. The summand is also smooth.

Finally, we must show that £ — U is faithfully flat, so we must show that the map
Spec U — Spec R is surjective. We choose a residue field K of R. Let K be the algebraic
closure of K. We have already shown that K A is a matrix algebra. So this ring contains an
idempotent e;; with the required property on rank. The idempotent corresponds to a map
- of R-algebras U — K, hence to a point of Spec U. This point lies over Spec K € Spec R.

30. Noncommutative deformations of commutative algebras.

The general notation for the remaining sections will be similar to that introduced in Section
7: R denotes a finite local k-algebra with nilpotent maximal ideal N. Let r be such that
N™1 =0 but N" #0. We set R = R/N" and R! = R/N"1,

All rings considered will be R-algebras. If A is an R-algebra, then A' = A ®r R', etc...
The notation I'; (A4) will stand for the ideal of A generated by N and by the commutators
(4, 4] = {zy — yz|z,y € A}, and T'2(A) for the ideal of A generated by I'? and by the
double commutators [[4, A], A].

Let Ag denote the category of R—algébras A such that Ax = A ®p k is commutative. The

kernel of the map A — Ay is the nilpotent ideal NA. So Aj is commutative if and only
if [A,A] C NA. Thus an R-algebra A is in Ap if and only if T; (A) = NA. If so, then
T2(A) = N2 A too.

Note that for A € Ag, Spec A =~ Spec Ag.

“~_ Let R; be a quotient of R.' As before, if A; € Apr,, we call an R-algebra A together with

an isomorphism A®g Ry — A; an eztension of Ay to R. Similarly, suppose that A € Ap is
given, that A; = A ®g Ry, and that we are given a homomorphism ¢; : A7 — By in Ag,.
An extension of ¢1 to IR is an R-homomorphism ¢ : A — B together with an isomorphism
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¢ ®r R1 ~ ¢1. Unless flatness is stated explicitly, an extension needn’t be. flat over R,
though as always, deformations of algebras are required to be flat.

We leave the proof of the following propositions as exercises.

Proposition 30.1. Let A € Ap.

(i) A is noetherian if and only if Ay is noetherian.

(ii) Every idempotent e € A is central. ,

(iii} Suppose that N'™*! = 0. For any z,y € A, there is an element z € A such that

bl i
£ Y &

(iv) Ifa,b € A and ifab=1, then ba = 1.

(v) Let s € A, and let S = {s™}. Then S is an Ore set in A. Moreover, S714 = A5
depends only on the residue of s in Ay. ,

(vi) With the notation of (v), let t € A be another element, and let T = {t"}, and
U = {(st)”}. There are canonical isomorphisms

(STTA) @4 (TT'A) ~TY(ST14) » U A

(vii) Let A — B be a homomorphism in Ag, and let S = {s"™} be as before. There is a
canonical bijective map ¢ : (S7'A) @4 B — S~!B. .

Proposition 30.2. (i) A map ¢: A — B in Ap is left flat if and only if it is right flat.
(ii) A flat map ¢ : A — B in Ag is faithfully flat if and only if ¢y : Ap — By, is faithfully
flat, and this is the case if and only if the map Spec B —s Spec A is surjective.

Let A € Ag be a noetherian ring. The support of a finite right A-module M is the set
of p € Spec A = Spec Aj such that M ® k(p) # 0, where k(p) denotes the (commutative)
residue field at the prime ideal p. Thus the supports of M and of M @ r k are equal, and
in particular, the support is a closed subset of Spec A.

Proposition 30.3. Let A € Ag and let M be a finite right A-module supported on a
closed set Z C X = Spec A. S ,

(i) Let I denote the annihilator of M. Then Spe¢ A/I = Z.

(i) If Z is the union of two disjoint closed subsets Cj, Cs, then there is a unique splitting
M = M, ® M,, where M, is supported on C;. ' ;

(iii) Let A — B be a map in Ag, and let M be a finite right B-module. Let Z CY =
Spec B denote the support of M. If the map 7 — X = Spec A is a finite morphism,
then M is a finite A-module. , '

31. Interlude: solving polynomial equations.

A polynomial with coeficients in an R-algebra A will mean a left linear combination of
monomials: f(y) = >, a;y*. Its derivative is defined by the usual formula:

f.r(y) - Z z-aiyi--l.

i
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If f(y) and g(y) = >_; bjy’ are two polynomials, f * g will denote the polynomial which
represents the product in the polynomial ring Aly|, in which scalars commute with the
variable: f#g =3, ;a;b;y"™’. In the free R-algebra extension A(y),

(31.1) | .fg = Z aiyibjyj = f *g + O([ya-A]):

LJ

slona the saraien O(S) stands for an element in the ideal generated by 5. In A(z,y),

)] BN

(312) [y = 2 v el =y e, + O([[z, ], v)-

Also,

z, fly)] = [z Zaz 1= leaify' + Y aile, v,

and using 31.2, this gives

(31.3) [z, f)] = Yo, aily’ + £ (9)[z,v] + O((lz, vl v

i

Let (z) denote the two-sided ideal generated by z in Aly, ), and let f(y) = 3; aiy* as
before. Then

(31.4) fly+2) = fly) + f'(¥)z + 0((2)* + [y, 2]).

Lemma 31.5. Let I be an ideal of a ring A. The following cond:r,zons are equlvalent
(i) A/I is commutative, and I/I* is a central A/I- bzmodule

(ii) [A,A] C T and [A,I] C I*.

If these conditions hold, then [A,I"] C I™*1.

The next proposition is a noncommutative version of the implicit function theorem.

Proposition 31.6. Let I C A be a nilpotent ideal satisfying the conditions of 31.5, and

let Ag = A/I. Let f(y),9(y),u(y),v(y) be polynomials with coefficients in A such that

uf +vf' = ¢ in Agly]. Let ag € Ao be an element such that f(apg) = 0 and g(ao) is
invertible. There exists a unique representative a of ag in A such that f (a) =0,

Proof. From the equation uf + vf’ = g in Ag[y] we conclude that in A(y),
u*f—l—‘v*f’ =g—|—a,
;i}here a € TA(y). Then 31.1 shows that

(31.7) uf +of' =g+a+o,

= E EEEEEEEEEEEEEEE
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where o = O([y, A]).

We solve the equation f(y) = 0 by Newton’s method Say that we have found a € A such
that f(a) = 0 (modulo I"), and that r > 1. We look for an element k = 0 (modulo I™) so
that f(a + h) = 0 (module I"t1). We may suppose that I”*! = 0. We substitute y = a
into 31.7, finding that : :

v(a)f'(a) = g(a) — e,

where € = 0 (modulo I). Since g(ao) is invertible, so are g(a), g(a — €) and f'(a). We can

solve the equation

f@yFF(ar=0

uniquely for h=0 (modulo I"). We substitute y = a and z = h, where h is as above into
31.4. Then (h)? =0 and [a,2] = 0. So in A4,

fla+h) = f(a) + (a)h =0.

This shows that a solution exists. Moreover, since h 1s uniquely determined, the uniqueness
also follows.

32. Rigidity of etale maps.

A map A — B of commutative R-algebras is called etale if it is smooth and of relative
dimension zero (see Section 19). Thus, if P = Alz1,...,Zm] is a polynomial ring and
if B = P/b, then B is etale over A4 if for every point p € Spee B, there are elements
g1,--gm € b which generate the ideal b, in the local ring By, and such that g_,% is
invertible at p.

.Proposition 32.1. Let ¢ : A — B be a flat map of finitely generated R-algebras in Ap.
The following two assertions are equivalent. If they hold, then ¢ will be called eta.]e and
B will be called etale over A.

(i) ¢x : Ax — By is etale,
(ii) The multiplication map B®4 B — B has a two-sided splitting. In other words, there
is.an element s = Su; @ v; € B®4 B with Tu;v; = 1, such that bs = sb for all b € B.

Proof. Note that (B ®g B)®r k =~ B ®; By and that (B ®4 B) ®r k=~ By @4, Br. In
particular, F(B) = B° Qg B € Ag, and if m splits, then m ® k does too. It is a standard
fact of commutative algebra that (i) and (ii) are equivalent for a map of commutative rings.
This proves that (ii) implies (i).

Conversely, suppose that ¢r : Ay — By is etale. Let X = Spec A = Spec A and
Y = Spec B = Spec B;. The splitting of my corresponds to a decomposition of ¥ x x ¥
into disjoint closed sets A,T', A being the diagonal. The E(B)-bimodule B ®4 B is
supported on AUT, and so it splits accordingly, say B4 B~ M @ N, Where M is the
part supported on A Then M is a finite right B-module.

Comnsider the map of bimodules @ : M — B induced by m. The induced map ¢ ® k :
M ®k — B ®k is bijective, hence by the Nakayama Lemma, « is surjective. Since gB is
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projective, the map splits as a map of left modules, and it follows, again from Nakayama,
that M =~ B. Therefore m splits, as required.

It seems plausible that (ii) gives a gdod definition of etale maps in a more general
context. Here is an example of such a map, which also shows that B € Ag is not a
consequence of A € Ag and (ii).

Example 32.2. A flat map which satisfles (ii), where A = Ay is commutative, but
B = By isn’t. Let u,v,y be indeterminates, let 4 = k[u,u™%,v], and let B = k{y,y ™', v),

Where yv _—WTheﬁ—embeds—a:s—a‘scrbrmgﬁof—Eby u—:—yﬁrﬂhe—e}ementv—e— -
2(1 ®1+ y"! ®y) € B ®x B centralizes B, hence sending 1 — e defines a splitting of

B®aB = B.

For A € Ag, let Et(A) denote the category of etale maps A — B. Grothendieck showed
that when A is commutative, the functor - @g k induces an equivalence of categories
Et(A) — Et(Ag), and the object of this section is to prove the same result for the
category Ag. This is done in Theorem 32.4.

A standard etale algebra over a commutative k-algebra Ay is a commutative Ax-algebra
By, such that there exist polynomials f,g,u,v € Ag[y] with ¢ = uf + vf’, and an isomor-
phism By = Agly, z]/(f,zg — 1). We omit the proof of the next lemma.

Lemma 32.3. (i) Let Ay — By be an etale map of commutative k-algebras, and let ¢ €
Spec By. There is an element t € By, such that g € Spec Bi[t™!] and that Ay — Bgft™]
is a standard etale map.

(ii) If Ax — By is a standard etale map and if s € Ay, t € By, then Ag[s™] — Bk[(st) 11
is also a standard etale map.

Theorem 32.4. Let A be a finitely generated algebra in Ag. For every etale map ¢p :
Ay — By, there exists an etale extension ¢ : A — B of ¢y to R such that .

(32.4.1) Hom4(B,C) = HDmAk (Bk,Ck)

for all C € Ag. In particular, the functor ® r k defines an equivalence of categories
Et(A) — Et(Ak).

Proposition 32.5. Let A be an object of Ag, and let ¢ : A — By be a standard etale
homomorphism. There is an extension ¢ : A — B of ¢ to R which has the universal
property 32.4.1.

This propos1t1on is a ﬁrst step in the proof of the theorem. The remainder of the proof,
including the flatness of the universal extension, will be given in Section 38

Proof. Let f,q,u,v be polynomials with coefficients in A whose residues in Ag[y] yield the
“presentation of the standard etale algebra By so that, as above, Bx = Ay, z]/(f,z9 — 1),
“and let by denote the residue of y in By. Let ¥ : A — C be a map such that i factors
through By, say ¥ = £rdr. Let cog = £x(bp). Proposition 31.6 shows that ¢y can be lifted
uniquely to a solution ¢ of f(y) = 0 in C. This lifting provides a map A(y, z) — C sending




85

yrcand 2+ g(c)™t. Let Q = Ay, 2)/(f, 29 — 1,92 — 1). The map Aly,z) — C factoré
through the quotient @, and the uniqueness of ¢ shows that Hom 4(Q,C) = Homy, (Bg, C)
if C € Ag. But @ € Ag. The universal extension we seek is a quotient of Q).

Lemma 32.6. Let v: A — NQ be an arbitrary function, and let J denote the ideal of @
generated by the elements [a,y] — v(a), a € A. Then ()/J € Ar and A — Q/J extends ¢y
to R. -

Proof. We have A(y,z)®@pk ~ Ar(y,z), hence Q@Rpk = Q; ~ Ak(y,é)/(f, zg—1,9z2—1).

—_Let J; denote the image of J in Q. Because v(a) € NQ, Ji is generated by the elements

la,y], a € Ap. Thus [a,y] = 0 in Qk/Jk = (Q/J) ®r k. Then since z inverts ¢ in Q,
it follows that [y,2] = 0 and that [a,2] = 0 in Qr/Jr for all @ € Ap. So Qp/Jp ~
Aly.2)/(frrg 1) =By |

The kernel of the map Q — By is I'1(Q). Let ¢ € T1(Q). If there is an element 3 € NQ,
such that ¢ = B in C for every homomorphism ¢ : Q@ — C with C € Ag, we call #'a natural
reduction of q. : '

Lemma 32.7. (i) If a universal extension ¢ : A — B of ¢ exists, then every element
g € T'1(Q) has a natural reduction. 2. '

(ii) Conversely, to prove the proposition, it suffices to show that for every a & A, the
commutator [a,y] has a natural reduction.

(iii) Let ¢ : A — B be a universal extension of ¢, and define v : A — NQ so that v(a)
1s a natural reduction of [a,y]. Then with the notation of Lemma 326, B=Q/J.

Proof. (i) Assume that ¢ exists, and let p € I'1(Q) have image b € I'1(B) = NB. The
canonical map @ — B is surjective because Q — By is surjective, so we can represent b
by an element # € NQ. The universal property of ¢ shows that 3 is a natural reduction
of p. (ii),(iii) follow from the previous lemma. ' '

Now to prove the proposition, we use induction on the nilradical. With the standard

notation, we may assume that a universal extension ¢' : A' — B’ of ¢r to R' = R/NT-

exists. Note that Q' =~ A'(y,z)/(f, 29 — 1,92 —1). Hence B' is a quotient of Q'.

Lemma 32.8. Under the inductive hypothesis, every element ¢ € I's(Q) has a natural
reduction p € N2Q).

Proof. Let ¢ € I'1(Q). Because B’ is universal, the image ¢' of ¢ in I'1(Q") has a natural
reduction 8’ € NQ', which has the property that :

(32.9) | ¢ =p4"in C'

for every map ¢' : Q' — C' such that ¢! € Ap. We can represent 3’ by an el-
ement § € NQ. Then if ¥ : Q — Cis a map, with C € Ag, 32.9 implies that
{q) = ¥(B) (modulo NT). Hence we may write ¥(q) = ¢¥(B) + ¢, with e e N7C.

Now if g1 g2 is a product of elements of I'y and if B1, f; are elements of NQ described
as above, then ¥(g1¢2) = (¥(B1) + &1 )(¥(5s) + €2) = ¥(B182). This shows that 813, is a

natural reduction for ¢;¢2. Thus every element of I'? has a natural reduction in N2Q. -
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Finally, suppose that p = [[u,v],w] is a double commutator. Set ¢ = [u,v], and define
as above. We may write 8 = ) n;vi, with ny € N and v; € Q. Then [, w] = > ny[yi,w] €
I'2. By what has been shown, [3, w] has a natural reduction n € N*Q. This is the required
natural reduction of p. ' '

To show that [z,y] has a natural reduction for every element z € A, we use the fact that
in @, [z, f(y)] = 0. Substituting into 31.3, we find 0 = }_ a;[z,y*] + f'(y)[z,y] + O(T2).

Since a;,7 € 4, ¢ 1= — S lz,a;]y" is a well-determined element of N@Q. Thus
(32.10) R flz,yl=q+n,
where n € I's.

We use the expansion 31.7 to conclude that in Q, vf' = g — ¢, or zvf' = 1 — z¢, with
€ € T';. Multiplying 32.10 by zv, we obtain [z,y] = zvq + zvn + z¢[z,y]. By Lemma 32.8,
zvm + z€[z, y] has a natural reduction in N2Q, call it 8. Then zvg+ f is a natural reduction
of [z,y]. This completes the proof of Proposition 32.5.

Example 32.11. Going back to Example 32.2, it is not difficult to find deformations
of the commutative algebra Ay = k[u,u™?,v] which do not extend to the algebra By =
k{y,y~,v) defined by yv = —vy and y? = u. Let R = k{t]/(t?). We consider a deformation
Agr = R(u,u™',v) with vu = uv +~t, where v € Ay, and we look for a deformation Br of
the form k(u,u™!, v), with yv = —vy + 8¢t, 8 € By. The map Agr — Bp will be given by
a substitution of the form u = y? 4+ 6t, § € Bx. Then (y?)v = uv — vt, while reduction of
y(yv) yields uv + vt + vét + [y, f]t. Thus we must have

v+ [v, 6]+ [y, 8l =0

in By. Now since y and v skew commute in By, [y, 3] is an odd polynomial in v. So the
above equation implies that v divides . If we start with « not divisible by v, for instance
with the deformation Ag defined by the relation vu = uv + ¢, then there is no compatible
extension Bg. '

On the other hand, Theorem 32.4 tells us that if, in the above computation, we replace
By by the commutative ring kly,y~1,v], then every deformation of Ay extends to Bj.
Needless to say, this can be checked directly. '

33. Noncommutative deformations of commutative polynomial rings.

The most direct way to compute the deformations of a polynomial ring Ax = k[z1, ..., Tm)
uses Grobner bases. Let Pg denote the free ring R(z1,...,z,). The defining relations for

Ay in Py are z;7; = z;7j, 1 < j, so to obtain a flat deformation we add a perturbation
. term «;; € NPg to those relations:

(33.1) TjTi = TiTj + Q4.
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In order for the ring A = P/a defined by these relations to be R-flat, it is necessary and
sufficient that the overlaps be consistent. The overlaps are (zxz;)z; = zr(z;z:),1 < j < k.
The monomial (zxz;)z; reduces as follows:

TRT;Ti — T3TRT; + QjkTi — T;TiTh + TjQk + QT; —

TiTjTE + Qi + T 0k + QjET;,

and zx(z;z;) reduces similarly to

TiTjTh + ThOj + QL) + TiQjk.

The end results here need not be reduced, but we can’t continue the reduction process
without knowing the terms o;; explicitly. In any case, consistency of the overlap requires.
that

(@ijor + Tk + QjrTi)red = (Thj + @ik Ts + Tijk )red-

This equation can be rewritten in the form
(33:2) - (@i, k] red — fﬂﬂj, Aik)red + [Tk, Cijlred = 0.

Recapitulating, the relations 33.1 hold in A, and they hold in P if and only if A is flat over
R. Note that the defining relations 33.1 show that a;; = [z;,z;] in A. So 33.2 becomes the
Jacobi identity when carried over to the ring A. For this reason, we call 33.2 the Jacobi
condition.

As an example, we consider the case of three variables: 4y = k[z,y,z]. Changing a sign,
we write a deformation in the form '

(33.2) y=yzrta, zx=zz—fF , yzr=xy+.

The Jacobi condition is that

(33.3) [, 0] + [y, 8] + [2,7]
must reduce to zero.

Note that if @ € At, then [z,a] € At%. So there is no requirement on a,f,~v for a
deformation over k(t]/(#2). The Jacobi condition is a second order condition, an obstruction
to extending such a deformation to k[t]/(¢%).

We may apply the commutator formula (see Section 9) for noncommutatwe d1fferent1at10n
in the free ring to write
{xa'a] = [:B, y]ay e [.’E, z]as,

etc;;‘.‘ ‘Then 33.3 becomes

(2, ulay — 82) + (2,2} (e — ) + 3,218 — ),
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or

(33.4) oy = 73) + Blvs — as) + (g = Ba).

Say that we work in R = k[t]/(t?). Write (o, 8,7) = (at, bt, ct), with a,b,¢ € k[z,y, 2].
We view F = (a,b, c) as a vector field on Spec k[z,y, z]. The Jacobi condition is that 33.4
must reduce to zero modulo the relations 33.2, and since each term of 33.4 is divisible by
t2, the relations 33.2 act on 33.4 as the commutative relations in z, y, 2. Cancellmg t? and

'ma,mug 33.4 commutative, we obtain; “ID.‘CE:I‘C‘I:I’hIS‘fIOtEuuu,
(33.5) | _ F-(VxF):O.

This condition has a geometric interpretation. Wherever F £ 0, it is equivalent to saying
that F' is orthogonal to an analytic foliation, or that there are local analytic functions g, h
such that F' = hVy.

34. Deforming smooth algebras.

An algebra A € Apg is called smooth if it is flat over R and if Ay, is smooth. Thus a smooth
algebra A over R is the same thing as deformation of the smooth commutative k- algebra
Ag. The symbol ® denotes tensor product over R in this section.

Let A' = AQR', where R' = R/ N7 and N™! = (0. An R-automorphism of A which reduces
to the identity on A’ has the form ¢ = id + d, where d is an R-derivation A — NTA.
Now because A is flat over R, N"A ~ N" ®g A, and because N™! = 0, the action of A on
- N7 is through A;. So N"® A~ N™ ® Ag. It follows that an R-derivation d: A — NTA
annihilates N A, and defines a k-derivation Ay — N"™ ® Ap:

641 Aut(A; A') ~ Derp(Ap, N" @ Ag).

This group is the same, whether or not A is commutative.

Grothendieck’s characterization of smoothness shows that every commutative deformation
of a smooth algebra Ay is trivial, i.e., isomorphic to A®y R. For, let A, 4; be two smooth
R-algebras and let ¢' : A — A} be an isomorphism. Substituting A;, A;, R for A, R, S '
into (19.8) shows that ¢' lifts to an R-homomorphism ¢ : A; — A,, which is surjective
by the Nakayama lemma. Because A, is flat, the Nakayama lemma applied to ker ¢ shows
that ¢ is an isomorphism.

The object of this section is to generalize this fact to noncommutative deformations, by
showing that a smooth algebra A € Ap is determined by its commutator, the map AxA —

A sending z,y — [z,y] = 2y — yz. The commutator is the zero map if and only if A is

commutative, in which case the deformation is trivial.

To state a precise theorem, we must remove direct reference to A from the definition of
the commutator map.
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Lemma 34.2. Let A € Ap.
(1) There are natural A'-bimodule isomorphisms -

NAxNQ@A=N®A.
(ii) There is a canonical exact sequence exact sequence

0N QAL -NA S5 NA SO.

The commutator on A is a map A X A — NA. Since N1 = 0, every element of N"4 is
- central, so the value of the commutator [u,v] depends only on the residues of u,v in A'.
Taking into account 34.2i, we can view the commutator as a map

(34.3) : A'x A S N AL
This is a good way to write the commutator, because the algebra A has been eliminated
from the notation.

The map « has the following properties:
Lemma 34.4. (i) a is an R-bilinear map A' x A' — N @ A’.
(ii) The diagram
' Alx Al —2 5 N A
4]
axa b, yg

commutes, where [ , | denotes the commutator of A'.
(iii) o is skew-symmetric, and a derivation in each variable.

A map « satisfying these conditions will be called a bracket on A’.

For z,y,z € A, the Jacobi identity
(34.5) B ) P8 O R P B
holds. Carrying this identity over to A’ via a, we find

2, 0(y, 2)] + [y,0(z, )] + [z, a(z, )] =

Proposition 34.6. Let A’ be a flat R'-algebra in Ap:. :
(i) There exists an R-bilinear map « : A' x A" = N ® A’ which extends the commutator

~-on A', i.e., which satisfies 34.41,1i.

1) Let a be suc a-map.Te unction y: A" X A x A — N® efined by
i) L b h he fi Al x A" x A N ® A' defined b

(34.6.1) 1(z,y,2) = [z,a(y, 2)] + [y,a(z 2)]+ [z (2, y)]
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. takes values in N™ @ Ay, and it vanishes when any one of the variables is in NA', So it
induces a map .
Ap % Ap x A —}NT®Ak,
Whlch we will also denote by ~ and which we call the Jacobs functwn of A'.
(i11) The Jacobi function is independent of the choice of . It is an alternatmg functlon
and is a derivation in each variable.

We say that the Jacob: identity holds in A' if # is identically zero. Since the identity 34.5

for A’ is a tautology, this should not. canuse confusion.

Lemma 34.7. Given R, let A' be a smooth R'-algebra and let o satisfy 34.4i,11.
(5} For sty @, 6y 10 € 4, 00z, i, 7100) = [, 21, |
(ii) For any z,y,z,w € A', [z,y]a(z,w) = a(z,y)[z,w].

Proof. (i) Write a(y,2) = 3.7 ® ai, so that [y, 2] = 3 nia;, and also, for each 7, write
a(z,a;) =Y, mi; ® bi;. Then

[z, a(y, z)w] = Z'f% ® [z,a;] = Zﬂi ® mijbi; = anmz] ® bij,
a(:z, [y,z]) = a(w, Z n.,'ai) — Znia(cﬂaai) = Z”imij_ & bz'j-

(ii) Write a(z,y) = ) m; ® a; and a(z,w) = ) n; ®b;, where m;,n; € N and a;,b; € A
Then [z,yla(z,w) = 3 mi a,)(z n; ®b;) = E .m;n; ® a;b;, and a(z,y)[z, w] has the

same expansion.

while

Proof of P'roposztwn 84.6. (1) The commutator can be viewed as an R'-linear map A' ®
A" — N A" which we must lift to N ® A’. Since A' is R'-flat, so is A’ ® A". Since R' isa -
finite local k-algebra, a flat R'-module is free, hence projective. So the map does lift.

(ii) This follows from the Jacobi identity in A" and from 34.2ii.

(iii) The first assertion follows because a extends the commutator on A’ and N annihilates
7. Since « extends the commutator, it is congruent to a derivation modulo N™ ® A, and
so it behaves like a skew derivation inside the bracket [z, a(y, z)]. In other words, we have
[z, a(uv, 2)] = [z,ua(v,z) + a(u,z)v] and [z,a(z,y)] = [z, —a(y,z)]: It follows that v is
alternating. To show that 7 is a derivation in the first variable, we set z = uv in 34.6.1:
7(uv,y,2) = [uv, a(y, 2)] + [y, &z, wv)] + [z, (v, y)].
Obviously, [z, a(y,z)] is a derivation in z. We expand [y, @(z, uv)], obtaining
[y, wa(z,v)] + [y, e(z,u)v] = [y, ule(z,v) + uly, a(z, )] + [y, a(z, u)lv + a(z,u)]y, v].

The sum of the second and third terms is a derivation, and we are left with

ly, ula(z,v) + a(z,u)ly; v].
“the same computation for [z, «(uv,y)] leads to a derivation plus the unwanted terms

2, u]e(v, y) + a(u, y)[z,v],

and 35.711 shows that the sum of these four terms is zero.
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Theorem 34.8. (i) Let A' be a flat algebra in Ap:. If there exists a flat extension A of
A’ to R, then the Jacobi identity holds.

(ii) Let A’ € Ap be smooth, and assume that the Jacobi identity holds. There exists a
bracket a on A, and for any «, there is a smooth extension A of A' to R, unique up to
isomorphism, Whose commutator s a.

The first assertion was derived above. The second will be proved in Section 38.

- 35. Interlude: flatness of the completion.

——Cl}heeferrkErE—l—LeM—b%aﬂeethenanﬁanebﬁa in Ap, and let m be a maximal ideal of A.

map A®s M — Mis bijective.

Corollary 35.2. (i) If A € Ag is noetherian, then the completion A at a maximal ideal
m is also a noetherian algebra in Ag. _
(ii) An algebra A € Ap is a complete, noetherian, local ring if and only if Ay is.

Proof of the Corollary. It follows from the theorem that 4 @ k is the completion of Ag.
So A € Ag, and (i) follows from Proposition 30.1i. It also follows from the theorem that
Ay is complete if A is. Conversely, suppose that Ag is a complete local ring. Then A is
local. Its completion A has the property that A® k ~ A ® k. The fact that 4 ~ A follows
by induction on the nilradical N.

Proof of the Theorem. For a finite module M, denote by M, the module M/m™M. If
0=V-W-U-=0

‘ is an exact sequence of finite modules, then the sequences

I ‘ Va—=Wn—=Un—0

| — are exact, and since W, etc. have finite length, the inverse limit sequence

I ' - : : VW00
is also exact. To prove the proposition it suffices to show the following;:

l Lemma 35.3. If V C W are finite left A-modules, then for any r, m™V > (m*W) NV, if
n > 0. ;

This will show ‘both that completion of a module is an exact functor, and then that it is
isomorphic to A ® 4 -

Lemma 35.4. Let V C W be given. To prove 35.3 for the modules m*V C m*W for all
s 2 0, it is enough to prove it for all s and for r = 1.

Proof. Induction on r. Say that 35.3 has been proved for m*V C m*W for all s and for r =
k—1,k>1. Settingr =1 and s = k — 1, we obtain m(m*~1V) > m™ (mF-1W) N mk-1V.
Setting r = k —1 and s = 0, we obtam m*~1V 5> m™W N V. Combining, we obtain
m*V D m™* W NV, which is the desired assertion in the case s = 0 and r = k. The other
values of s are obtamed by substitution.

The complet;on A. of A at m is ﬂat over A, and for any finite A-module M, the canonical
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Lemma 35.5. To prove 35.3 for V. C W and for given r, it is enough to prove 35.3 for
V=V/mVCW= W/m"V. In this case, we must show that m"W NV =0 for n > 0.

Proof. Suppose that 35.3 holds for V c W, a.nd letn > 0. Iz € m"WnNV, then
ZeEmM"WNV =0, hence z e m"V. : :

Lemma 35.6. If n > 0, then m"V+NW D m”WﬂV where as a,lways N is the maximal
ideal of R.

—MTheﬁMenﬁﬁﬁﬁrueﬁrﬂ}ﬁo&u}esﬁmuw%ﬁﬁeeﬁm&%iMﬁ—r—-

W ®gr k,let 7 : W — Wy denote the canonical map, and and let V5 denote the image of
V in Wy. Then m"Vo D m"Wy NV if n > 0, and 77} (m"V,) = m"V + NW. Moreover,
7~ (m™Wo N Vy) D m*W N V. The assertion follows.

Lemma 35.7. The assertmn 35.8 is true when V = NW, ie., m"NW D m"W N NW if
n > 0.

Proof. We first treat the case r = 1. By Lemma 35.5, we may assume that mNW = 0.
Then mW is an Ag-module, and since N C m, NW is an A;-submodule of mWW. Therefore
35.3 is true for the modules NW C mW, and mNW D> m*(mW) N NW for large n.

Now proceeding by induction, we suppose the lemma has been proved for . We have

M NW = Nm"W Cm"W. By thecase r = 1, mN(m" W) D m™m"W N Nm"W. Hence
mHINW O o™ tTW nm NW D> m™m W N (mmW N NW) D m™W N NW,

which is 35.3 for the case V = NW.

We now prove 35.3 in the general case V' C W. We use induction on the integer k£ such
that N*W = 0. Hence we may assume that 35.3 is true for N#W NV =V, c Wy = NW.
Moreover, Lemma 35.4 shows that we need only prove the assertion in the case r =1, i.e,
to prove that mV D> m"W NV if n >> 0. By Lemma 35.5, we may assume that mV = 0.

Then mV; =0too,so 0 =m™ Wi NV = mmMNWNANNWNV,ie, mmNWNV =0.
Also, by Lemma 35.7, the assertion is true for the inclusion NW C W, hence m™ NW >
m™2W N NW. By Lemma 35.6, NW =mV + NW D m™W NV. Hence 0 = m™mNW D
m™W N (m**WNV),or 0 =m™W NV, as required.

36. Deformations of a commutative power series ring.

To work with the ring P = R{{z1, ... ,Zn)) of formal noncommutative power series, we
use the power series ordering on monomials: m < m' if either deg(m) > deg(m’), or if
deg(m) = deg(m ') and m is earlier in lexicographic order.

. Let f ¢ P bea power series whose residue in Pk = k(({z1,...,n)) is not zero. Then

as in Section 11, f can be written uniquely in the form f = em — % — 7, where m is the .
highest monomial with invertible coefficient ¢, n is the negative sum of the terms in f
whose coefficients are in N, and 1 is the negative sum of the remaining terms of f.
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Proposition 36.1. Let {f;} be a set of elements of P none of whose residues in Py is
zero. Let I denote the closure of the ideal generated by this set in the (z)-adic topology
on P. Sei A= P/I.

(i) Let p € P. If done in dec¢reasing power series order, the substitutions m; = ¢~ (1; +n;)
provide -a sequence which converges to a reduced power series p', in which no monomial
containing any m; as submonomial appears.

(ii) The reduced monomials form a topological R-basis of A if and only if all overlaps are
cons;stent. If the overlaps are consistent, then A is R-flat.

A smooth complete R-algebra is defined to be a deformation of the commutative power
series ring Ay = k[[z1, ..., Tx]], a flat extension A of A to R.

Let ((S)) denote the closure of the ideal of P = R((:c)) generated by a subset S.

Proposxtmn 36.2. (i) Let &;; be elements of NP fori < j, and let A= P/(([.Z‘J, ;] —
a@ij)). Then A® k =~ k[[z]].

(ii) Let A be an R-algebra such that Ay ~ k[[z]]. Then A is flat over R if and only if the
ordered monomials form a topological basis. This is true if and only if the series obtained
by reducing

(36.2.1) [zi, &) — [z, @ik] + [Tk, Qij]

are zero, for 1 < j < k.

Proof. (i) is elementary. .

(ii) To show this, we use induction as usual. We assume that A is flat and that the ordered
monomials form a topological R'-basis for A'. Then every element f € A is congruent to
an ordered power series g, modulo N", andso f —g € N"A = N" ® Ar. The elements of
N7 @ A can be identified with ordered series with coefficients in N”. So f is an ordered
series with coefficients in R. The same reasoning shows uniqueness of the representation.

Conversely, if the ordered monomials form a topological basis, then every element of N rA
" has a unique expression as a polynomial with coefﬁments in N". So the map N"® A —
NTA is b1_1ect1ve which shows by induction that A is flat.

The last assertion follows from 36.1ii because 36.2.1 is obtained by substltutlng into the
overlap (ziz;)zr — zi(z;2x).

Suppose given a smooth complete R'-algebra A'. The Jacobi function is defined as in
34.10:

EkXEk ngl)Nr@)Ek.

Proposition 36.3. Let A" be a smooth complete R'-algebra, and as_sumé that the Jacobi
identity v = 0 holds.
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(i) Let A" be a flat extension of Ay, = k[[z]] to R'. Fori < j, let a;; € N ® A' be elements
which represent the commutators [z;, J] € NA'. There is a unique continuous bracket o
on A’ such that a(zi,z;) = aij.

(11) For any continuous bracket a, there is a flat extension A of A’ to R whose commutator
is o, and this extension is unique up to isomorphism. If the Jacobi 1dent1ty does not hold,
then A' has no flat extension to R.

Proof. (i) Suppose that elements aij E N ® A’ for 1 < j <i < n are given. We extend to

— all pairs of indices by setting a;; = —a;; and a;; = 0, and we use these elements to define
a skew derivation as follows: Let y = z;,...z; and z = zj,...z;, be two lexicographically
ordered monomials. We can use the fact that the commutator is a derivation in each
varialbe to expand [y, z] = [z, ...2i,, Zj, ...x;,], beginning with y. The result is

E By i By 55, o By 185, 105 00 oo B3, Bt iy v
So we set
(.36.4) aly,z) = E By Wy g B Bl el Bk o ey
v

and we extend bilinearly and continuously to A" x A'. This definition does extend the
commutator on A, i.e., 34.41,ii hold. We must verify 34.4iii.

Note that the formula 36.4 has the property that if ¥y = uv is an ordered product, then
(36.5) ‘ a(uv,z) = ua(v, z) + alu, z)v.

So to show that « is a derivation in the first variable, it suffices to show that 36.5 holds also
when u,v are monomials which are not in lexicographic order. We use induction. Since
the permutations (1...n) and (12) generate the symmetric group, it suffices to show the
following: - ' :

Lemma 36.6. Let o be an R'-bilinear extension of the commutator o' of A', and let
u,v,w,z & A, ,

(i) If a(uv,z) = ua(v, z) + a(u, z)v, then a(vy, z) = va(u, z) + a(v, 2)u.

(i) If a(uvw, z) = wwa(w, z) + a(uv, 2)w, then alvuw, z) = vuc(w, z) + a(vu, 2)w.

Proof. (i) Taking into account 34.7i, the Jacobi identity can be written as
[ua O‘(Ua Z)] - [Ua Ct{(u, z)] = CE([’LL, 'U], Z)' .

~The assertion follows by expanding the two sides.
(ii) By 34.7i,i we have

a[u, v]w, ) = [a(u, v)w, 2] = alu,v)[w, 2] + [a(u,v), z]w = [u, v]e(w, z) + a([u, v], z)w
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Again, the assertion fdllows‘by expansion.

To show that « is alternating, we show that the order in which 36.4 has been expanded-
can be reversed, beginning with expansion with respect to the first variable. Then a will
be a derivation in the second variable, and the alternating property will follow from the
* choice of a;;j ;. Proceeding by mductmn we break up the two monomials in some fashion,
say y = uv and z = pq. Then with our deﬁmtlon 36.4,

a(uv, PQ) = upa(v,q) + ua(v, p)g + pa(u, ¢)v + a(u, p)gv,

while with the opposite order of expansion, we would have

a(uv,pg) = puc(v, q) + ua(v, p)g + pa(u, g)v + a(u, pJvg.

In order to show that these two expansions are equal, we must show that

[u, ple(v, ¢) = o, p)[v, g].
' This follows from Lemma 34.7ii. '

(ii) By 36.1ii, every element of A’ can be written uniquely as a lexicographically orderedi
series. Similarly, every element of N ® A’ can be expressed uniquely as a series ) . n; ® z°,
wheren; € N. For1 <j<i<nm,let a;; e N® P be the 1ex1cograph1caﬂy ordered series
a(zi,z;) e NQ A", Set A = ﬁ/(([ml,wj] —&:)). By (i), A € Ag. Also, let & a@;; denote the
residue of @;; in N ® P'. Then the i image of @;; in NA'is [z;,z;], and it follows that A’
is a quotient of P [(([zi,2;] — @};)). Because A’ is flat, these two rings are isomorphic. So
A extends A’ to R.

According to 36.1ii, A is flat over R if and only if the lexicographically ordered series
obtained by reducmg 36.2.11in P is zero, for all j < 4. Let 7, denote the unordered series
36.2.1, which we view as lying in N ® R'((z)). Its image ¥;;; € N ® Al is unchanged by
the reduction process, because because [z;, z;] — cj; is true in A , and on the other hand,
the image is the Jacobi function F(z;, z;,zx). Hence it is zero, and A is flat.

By comstruction, a;; = a(z;, ;). Since these values determine the commutator, it follows

that the commutator of A is a, etc...
37. Deforming smooth schemes.

We now consider the problem of deforming a smooth scheme X. Since localization poses
no difficulty in the category Ag, we can define a scheme Xp in Ag to be a commutative
scheme X}, together with an extension of its structure sheaf O, to a sheaf of rings Ox,
—in Ag, compatibly with localization. This sheaf will then be called the structure sheaf of
Xpg. As in the affine case, Xp will be called smooth if it is flat, and if X} is smooth. Let
us write O for Ox,, Q' for Q% , and T for the tangent sheaf Q%" , the sheaf of derivations
on Xj. Also, let TY denote the exterior power A?T}. :
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Proposition 37.1. (i) Let A € Agr be a flat R-algebra with X = Spec Ax. The group -
of R-automorphisms of A which reduce to the identity on A’ is Homx, (Q', N™ @ Of) =~
NT@T.

(ii) The skew derivations Ay X Ay — Ay are in bijective correspondence with elements of
Hoka(T.Q Ok) ~ N™® T2

- (iii) Let A" € Aps be flat. The difference oo — B of two brackets is a skew derivation, an
element of N* @ T?. \

(iv) The Jacobi function v is an element of Hom, (2%, N™ ® Or) = N™ ® T3.

Proof. The first two. assertions are elementary. (iii) follows from 34.2ii and the commuta-
 tivity of 34.4ii. (iv) follows from 34.8.

The constructions considered in the last section are compatible with localization, so
they globalize without difficulty. A bracket on a scheme Xg/ over R' is a skew derivation
a: @ x O — N ® Q' which extends the commutator, as in 34.4iii, and so on. Standard
descent arguments yield the following proposition.

Proposition 37.2. Let Xp be a smooth scheme over R'.

(i) The Jacobi function is an element v € H%( X, T%) ® N'. If v # 0, then no bracket
exists. _

(ii) If ¥ = 0, then a bracket exists locally on Xr. The obstruction to existence of a global
bracket & on Xp: is an element k € H' (X, T?)® NT. If k = 0, then the set of brackets
on X is a principal homogeneous space under H%(Xy,T?) @ N™.

(i) Let « be a global bracket. Then a smooth extension of Xp' to R with commutator
« exists locally. The obstruction to global existence is an element n € H*(Xy,T') ® N".
If n = 0, then the set of isomorphism classes of extensions Xp with commutator o Is a
prmapai homogeneous space under H* (X, T*) @ N".

(iv) Let X r be a smooth extension of X g to R. The group Aut(O; O') of R- automorphmms
of O which reduce to the identity on (' is isomorphic to H*( Xy, T') @ N".

Corollary 37.3. (i) Every deformation of a smooth algebraic curve is ‘Commutative.
(ii) Deformations of smooth affine algebraic surfaces are unobstructed.

Proof. The sheaf T is locally free of rank d on a smooth commutative scheme X} of
‘dimension d. Hence TY = 0 if ¢ > d. If X} is a curve, then v = 0, and a is uniquely
determined by X /. By induction, the commutator on X g is zero, and so the zero bracket
is the unique extension of this commutator. This shows that Xz is commutative.

(i1) This is true because when the dimension is two, 7% = 0. Hence the Jacobi identity
holds automatlcally, and Theorem 34.8 implies that an extension of Xpg: to Xpg 1s always
possible.

For projective algebraic surfaces, considerations are simplified by the classification of

surfaces. The reason is that one can list the surfaces for which H°(X,T?) # 0. Such a

surface 1s rational, ruled, abelian, or a K3 surface. (Not all rational or ruled surfaces have
H®(X,T?) # 0 either.) If X} is not one of these surfaces, then induction as in the proof
of 37.31 shows that every deformation Xz is commutative.
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As an example, consider the case that X; = P? is the projective plane. In that case,
T? ~ O(3) is the invertible sheaf of homogeneous functions of degree 3. The cohomology
of the tangent sheaf 7" can be computed using a canonical exact sequence

0 — O — Op(1)) — T —0.

Using these facts, one finds

dm H (X, T =8 , dimH(Xz,T?) =10,

and that the higher cohomology vanishes. Consequently the obstructions to the existence
of a global bracket and to the construction of a global extension of X To R vanish,
and moreover X g is uniquely determined by the choice of a bracket. The bracket a,
being a section of Ok(3), corresponds to a homogeneous cubic form on P?, which, if not
identically zero, vanishes on a cubic divisor Y C P2, Thus the noncommutative first order
deformations of X} are determined up to scalar factor by a cubic divisor, and they depend
on 10 parameters. However, because the group PGL operates on X, it also operates on
the first order deformations, and the essentially distinct deformations correspond to orbits
for this operation. '

38. Proofs.
We now proceed with the proof of Theorem 32.4.

Lemma 38.1. Suppose that ¢ : A — B is a flat extension of the etale map ¢ : Ar — By
to R, and that ¢ : A — B is an extension of ¢y which has the universal property 32.4.1.
Then the map 7 : B — B defined by 32.4.1 is an isomorphism.

Proof. By induction on the nilradical, we may assume that B’ ~ B . Tensoring with the
exact sequence

0—-NA—-A4-5 4" 50,

we obtain a commutative diagram

B®aNTA » B B v 0
N P
0 —— BQuNTA— B , B . 0

in-which the rows are exact. The zero at the left in the bottom row results from the fact
that B is flat. By induction, 7' is bijective. Also, By N"A ~ By R4, NTA~ B®4NTA,
so T 18 bijective. It follows that = is bijective too.
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Lemma 38.2. The theorem is true for a standard etale map ¢y, : Ap — B.

Proof. Proposition 32.6 shows that there exists a universal extension ¢ : A — B. So by
Lemma 38.1, it suffices to show that this universal extension is also A-flat.

We proceed by induction on the nilradical as usual, and we suppose that B’ has been
shown to be A'-flat. We will show thatlthe canonical surjective map 7 : N"TA®4 B — N'B
is an isomorphism. It will follow that Tor{!(4', B) = 0, hence that B is A-flat (see 6.2).

Let p € Max B have image ¢ € Max A. It suffices to show that ker(m) = 0 locally at ¢.

We claim that the completions B and A at the points in question are isomorphic. This is

true for the completions Ax and By. By induction on the nilradical, we may assume that
A" ~ B'. Consider the diagram

0 —— N74 ‘ ., A B 0
o Lok
0 —— N'B ., B B , 0.

By induction, q’i;’ 18 bijectlve Also, NTAisan A’ ~ B'-module generated by N7, and the-
same is true of NTB. Therefore v is surjective, and it follows that qS 1s sur_}ectnre We
apply 32.4.1 to extend the map By — Ay toa map B — A hence to a map B — A. This

map inverts qS
Now since A is A-flat and B-flat,

NTA®A§MNTA®AExNT2mNr§,

from which it follows that the completion of ker(r) is zero. Since the completion is - ® B ,
ker(m) is zero locally at p. ‘

Lemma 38.4. Let ¢ : A — B be a universal extension to R of an etale map ¢k : Ax — By,
and let t € B. Then ¢' : A — B(t™!) is a universal extension of the etale map qS’ Ap —
Bi[t™1].

Proof. This follows directly from the mapping property of fings of fractions.
Lemma 38.5. If ¢ : A — B is etale, then ¢ is a universal extension of ¢} to R.

Proof. By Lemma 32.3, there are localizations B(s™!) of B such that ¢x(s™!) : Ax —
Bylsg'] is standard etale. Then by Lemma 38.4, ¢(s~1) is universal. Thus ¢ is locally
universal. Suppose given a map v : A — C and a factorization v = {xéi through Bi.
We must extend &; to a unique map £ : B — C.

If the element s has invertible image in some localization C’ of C, then we obtain a map

- Lg[sg '] Bilsy'] = C’. This map extends uniquely to £(s71) : B{ ~1) — C', which, by

composition, prov1des the unique extension &' : B — (C'.
Now the sheaf axiom for Hom A(B - ) shows that the problern of extending £ is local
on Spec C. So these local extensions found above glue to give a unique extension globally.




|

—to-givea cosimplicial complex—

- s o s o e

99

Now to complete the proof of 32.4, let ¢ : Ax — By be an arbitrary etale map. By
Lemma 32.3, there are localizations By; of By, i = 1, .., 7, such that the induced maps
Pk; + Ay — By, are standard etale maps, and that B, — I1; Bg; is faithfully flat. Let
Ck = Hi -.Bkz': and

O;E.n) = Ok ®Bk v ®Bk Ck

Each of these rings is a product of standard etale Ag-algebras, hence i_t has a universal
extension 4 — C("), Except for its augmentation, the Amitsur complex By — C} extends

(38.6) o CO=CcO= ¢®... |

Define B to be the kernel of the pair of maps C(V—= ().
We use induction on the nilradical. With the usual notation, tensoring with the exact
sequence '

OANrA—>'A—>A'—>O

yields a three term exact sequence of cosimplicial complexes whose term in degree n is
0= N"@aC™ o™ o o™ g,

This sequence is exact because C(*) is 4-flat. By induction, the third term is a resolution
of the universal extension B'. Also, the first term is a sequence of B'-algebras, and it is a
resolution of N"A ® 4 B' 30.2. Therefore the middle sequence 1s a resolution of B, and we
have an exact sequence

0—-N"®4B - B—B' -0,

which shows that B is A-flat (6.2). Moreover, B ®4 A’ ~ B', hence ¢ : A — B extends
¢k. By Lemma 38.5, ¢ is a universal extension. This completes the proof of the Theorem
32.4. '

We now pass to the proof of Theorem 34.12. A rsmooth commutative k-algebra can be

realized locally as an etale algebra over a polynomial ring klz] = k[z1,...,zn]). Hence it

has a local standard etale presentation, as in Section 32. We call a smooth commutative
k-algebra By standard if there is a standard etale extension k[z] — By, i.e., if there are
polynomials f,g,u,v € k[z,y], such that uf + vf = g and that By is isemorphic to
k[ﬂ:,y,Z]/(f,Zg—l,gZ—l). £ :

We replace A by B in the statement of the theorem. Our first step is to prove the
existence of a universal extension of a standard smooth algebra By to R. This is the

“-.analogue of Proposition 32.6.

The minimal data necessary to describe an extension of a standard smooth algebra to R
are elements a;;, 1 < j < ¢ < n in the free R-algebra P = R(z;y, z), which are congruent
0, (modulo V). Given such elements, we set [2;,x;] = @;ij.




100

Proposition 38.7. Let P = R{z,y,z), let f,g,u,v be polynomials in y with coefficients
- in R(z), whose residues in k[z, y] define a standard smooth algebra By = k[z,y, z]/(f, 29—
1,92—1),and let a;; € NP for1 < j <i<n. Let Q = P/(f, 29 —1,92—1,[zi, z;] — asj).
There is a universal quotlent B of @ in AR, such that HomR(Q, C) ~ Hompg(B, C) for all
C € Ag. '

Proof. The polynomial ring klz,y,z] is the quotient of the free ring k(z,y, z) by the rela-
tions [z, z;] = [zj,y] = [z, 2] = [y,2] = 0. So in order to define a quotient B of ¢ which

extends B, we must introduce relations of the form [z;,y] = 85, [z;,2] = v;, [¥,2] =6,

Wlth ,83:7]16 € NQ

The kernel of the map Q — By is T'; = I'1(Q). Let-¢ € 1. A natural reduction of ¢
is an element 8 € NQ such that ¢ = 8 in C for every map Q@ — C with C € Ag. Asin
Lemma 32.8, we have ‘

Lemma 38.8. (i) If a universal quotient B of P extending By, exists, then every element
g € I'1 has a natural reduction. : '
(ii) To show that a universal quotient exists, it suffices to show that the commutators
[z,y], [z},2], [y, 2] have natural reductions. _
(iii) If B;,v;,8 are natural reductions of [¢;,y], [zj,2], [y,2] respectively, and if J is the
ideal generated by [z;,y] — B}, [z}, 2] — 75, ¥, 2] — 6, then Q/J is the universal quotient B.
We proceed by induction. With the usual notation, we may assume that a universal
quotient B' of @' exists. We copy the proof of Proposition 32.6.

Lemma 38.9. Under the inductive hypothesis, every element g € T'2(Q) has a natural
. reduction v € N2Q.

Proof. If g € T'y, then its image ¢’ € Q' has a natural reduction 8’ € NQ'. We represent
B' by f € NQ. Ifv: Q — C is a map with C € Ag, then ¥(q) = ¥(8) (modulo N"C),
hence we may. write 1(q) = ¥(8) + ¢, with e € N7C. The remainder of the proof can be
carried over verbatim. .

" As in the proof of Theorem 32. 4 we write f(y) = ¥, a;y', where a; € R{z). We use

31.3:
0= [z, f(y)] = Z[%a: y' +f( )z5,yl + Ol[=5, ], ).

Since a; € R{z), the brackets [z;,a;] are well determined elements of NQ. So é,s_ before,

0= g+ f'(y)lej, yl + 1, where ¢ = 3[zj, aily’ € NQ, and 5 € Ts.
By 32.11, we have vf' = g — ¢, or zvf' =1 — z¢, where € € I';. Thus

[zj,y] = zvq + z€[zj,y] + 1 € Ia.
Here zvg € NQ, and ze[z;,y] + n has a natural reduction §; by the previous lemma. It

. follows that zvq + §; is a natural reduction of [z5,y]-

“Since gz = 1 in @, we have, 0 = [y, zg|z = [y, 2] + 2|y, gz, so [y, z] = —z[y, g]z. Since g
is a polynomial in y with coefficients in R(z), [y,g] has a natural reduction, and so does
[y, 2]. The same is true of [z, z]. This completes the proof of 38.7
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Lemma 38.10. Let B' be a smooth extension of the standard smooth algebra By to R/,

" and suppose that the Jacobi identity holds in B'. Write B' P'/J', where where P' =

R'{z,y,2) and J' = (f,29—1,92—1,[z;, 2] — s, |25, 4] =B B85, (25, 2] =7 ly, 2] —¢") for some
elements oz”,ﬁ;,'yj,é € NR'(z,y,z). Further, for1 < j < i<n,leta; € NP~NQ®P
represent a . Then the umversal quotient B of Proposition 38.7 is a smooth extension of
B' to R.

Proof. The image of a;; in N ® B" is the commutator &'(z;,z;). Therefore B maps to
B', and since B' is flat, B' .~ B®g R', i.c., B extends B’ to R. So it suffices to show that

B is flat over R. To show this, it suffices to ‘show that the completion B at p is flat, for
every point p € Spec By. By a change of coordinates, we may assume that the point lies
over the origin £ = y = 0 in affine space Spec klz, y].

By Proposition 31.6, we can solve the equation f(y) = 0 uniquely for ¥ € R((:r,)),
extending the solution y = 0 at p. Let 7 = g(¥) ™!, and let @;; be the power series obtained
by substituting y = 7, z = Z into «;;. The flatness of the completion will follow from
Proposition 36.1 and from the next lemma, in which ((S)) denotes the closure of the ideal
generated by S, as before.

Lemma 38.11. With the above notation, the completlon B of B at p is 1somorph1c to
C = R((2))/(([e1, 5] — @)

Proof. Note that C € Ag. The map R(z,y,2)/(f,2g — 1,92 — 1) — C defined by U, 2 .
factors through P byhdeﬁnition of @;;, hence through B. This f&ictoriiation defines a
homomorphism B — C, so that we have canonical maps R((z)) — B — C.

Lemma 38.12. Let ¢ be the value of z at p, and set w = z — c. The maps R{{z)) —
Rz, 5)/((F)) — B{(z,y,0))/(f29 — 1,g7 — 1)) are isomorphisrms.

Proof. Since g(y) = ¢! at p, it is an invertible element of R((z,y)). The fact that the
second map is bijective follows easily. We use the solution 7 of f(y) = 0 to define a splitting
of the first map, which shows that the first map is injective. Let i also denote the image of
that element in R({z,y))/(()). It suffices to show that y = ¥ in this ring. This follows by
induction on the maximal ideal m = ((z,y)). Write y = ¥+2, and suppose that z = O(m").

Then _
fly) = 1@+ '@z + 0(((2))* + (7 =D));
and f'(7) is invertible. Hence z = O(m™1).
This lemma shows that a;; = @; in R{{z,y))/((f)), which completes the proof of
Lemma 38.11.
Now if a bracket o on B’ is given, then for 1 < j < i < n, we represent afz;,z;) € N@B'
by elements a;; € NF ~ N @ F', where F' = R'(z,y, z), and we construct the universal

~_quotient B as in Proposition 38.7, which is smooth by Lemma 38.10. By construction, ;;

represents the value a(z;, ;) of the bracket, and it also represents the commutator of B.
Hence the commutator agrees with @ on these evaluations. The next lemma shows that
these two brackets are the same.
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extension of the standard smooth algebra By, pre-
sented as in 38.10. Assume that the Jacobi identity holds in B'.

a(z;,z;) € N@ B' representing the c
uniquely to a bracket on B'.

[}
Lemma 38.13. Let B’ be 5 smooth
Then every choice of °
ommutator [z;,z;] in B', 1 < J < i < n, extends l
Proof. The existence of the brack

et follows from the existence of the smooth extension 5.
The uniqueness follows from & di

rect computation similar to the proof of 38.9. I

It remains to show that the smooth extension B whose commutator is @ is unique up

- 10 isomorphist. Let C be another ‘smooth extension—of B to B whose commutator i.S—&‘-.—*—ﬁ**‘I
Writing C as a quotient of F', the equation [meyan] = a;; holds in C. Hence B maps to C,

and since C is flat, this map 18 bijective.

The last step in the proof of 34.12 is to prove the existence of a universal extension I
for any smooth algebra B'. Lemma 38.10 shows that a smooth extension B of B’ to
R can be constructed locally on Spec By, and that it is locally unique up to isomor- .
~ phism. Proposition 34.13; shows that the obstruction to globalizing B is an element of
H?*(Spec By, T%, ®%NT), and that the obstruction to existence of an 1somorphism between
two globalizations lies in &1 (Spec By, Tg, @N7). Both of these cohomology groups vanish .
because Spec By is affine and because the sheaves are coherent. The fact that a globaliza-




