
Cache-Oblivious Algorithms
by

Harald Prokop

Submitted to the
Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Master of Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY.

June 1999

c
Massachusetts Institute of Technology 1999.
All rights reserved.

Author
Department of Electrical Engineering and Computer Science

May 21, 1999

Certified by
Charles E. Leiserson

Professor of Computer Science and Engineering
Thesis Supervisor

Accepted by
Arthur C. Smith

Chairman, Departmental Committee on Graduate Students

2

Cache-Oblivious Algorithms
by

Harald Prokop

Submitted to the
Department of Electrical Engineering and Computer Science

on May 21, 1999 in partial fulfillment of the
requirements for the degree of Master of Science.

Abstract

This thesis presents “cache-oblivious” algorithms that use asymptotically optimal
amounts of work, and move data asymptotically optimally among multiple levels
of cache. An algorithm is cache oblivious if no program variables dependent on
hardware configuration parameters, such as cache size and cache-line length need
to be tuned to minimize the number of cache misses.

We show that the ordinary algorithms for matrix transposition, matrix multi-
plication, sorting, and Jacobi-style multipass filtering are not cache optimal. We
present algorithms for rectangular matrix transposition, FFT, sorting, and multi-
pass filters, which are asymptotically optimal on computers with multiple levels
of caches. For a cache with size Z and cache-line length L, where Z = Ω(L2),
the number of cache misses for an m � n matrix transpose is Θ(1 + mn=L). The
number of cache misses for either an n-point FFT or the sorting of n numbers is
Θ(1 + (n=L)(1 + logZn)). The cache complexity of computing n time steps of a
Jacobi-style multipass filter on an array of size n is Θ(1 + n=L + n2=ZL). We also
give an Θ(mnp)-work algorithm to multiply an m� n matrix by an n � p matrix

that incurs Θ(m+ n+ p+ (mn+ np+mp)=L+mnp=LpZ) cache misses.
We introduce an “ideal-cache” model to analyze our algorithms, and we prove

that an optimal cache-oblivious algorithm designed for two levels of memory is
also optimal for multiple levels. We further prove that any optimal cache-oblivious
algorithm is also optimal in the previously studied HMM and SUMHmodels. Al-
gorithms developed for these earlier models are perforce cache-aware: their be-
havior varies as a function of hardware-dependent parameters which must be
tuned to attain optimality. Our cache-oblivious algorithms achieve the same as-
ymptotic optimality on all these models, but without any tuning.

Thesis Supervisor: Charles E. Leiserson
Title: Professor of Computer Science and Engineering

4

Acknowledgments

I am extremely grateful to my advisor Charles E. Leiserson. He has greatly helped

me both in technical and nontechnical matters. Without his insight, suggestions,

and excitement, this work would have never taken place. Charles also helpedwith

the write-up of the paper on which this thesis is based. It is amazing how patiently

Charles can rewrite a section until it has the quality he expects.

Most of the work presented in this thesis has been a team effort. I would like

to thank those with whom I collaborated: Matteo Frigo, Charles E. Leiserson, and

Sridhar Ramachandran. Special thanks to Sridhar who patiently listened to all my

(broken) attempts to prove that cache-oblivious sorting is impossible.

I am privileged to be part of the stimulating and friendly environment of the

Supercomputing Technologies research group of the MIT Laboratory of Computer

Science. I would like to thank all the members of the group, both past and present,

for making it a great place to work. Many thanks to Don Dailey, Phil Lisiecki,

Dimitris Mitsouras, Alberto Medina, Bin Song, and Volker Strumpen.

The research in this thesis was supported in part by the Defense Advanced

Research Projects Agency (DARPA) under Grant F30602-97-1-0270 and by a fel-

lowship from the Cusanuswerk, Bonn, Germany.

Finally, I want to thank my family for their love, encouragement, and help,

which kept me going during the more difficult times.

HARALD PROKOP

Cambridge, Massachusetts

May 21, 1999

5

6

Contents

1 Introduction 9

2 Matrix multiplication 13

3 Matrix transposition and FFT 19

4 Funnelsort 23

5 Distribution sort 29

6 Jacobi multipass filter 35

6.1 Iterative algorithm . 36

6.2 Recursive algorithm . 37

6.3 Lower bound . 41

6.4 Experimental results . 43

7 Cache complexity of ordinary algorithms 45

7.1 Matrix multiplication . 47

7.2 Matrix transposition . 48

7.3 Mergesort . 49

8 Other cache models 51

8.1 Two-level models . 51

8.2 Multilevel ideal caches . 52

8.3 The SUMHmodel . 53

8.4 The HMMmodel . 54

9 Related work 57

10 Conclusion 59

10.1 Engineering cache-oblivious algorithms . 60

10.2 Cache-oblivious data structures . 61

10.3 Complexity of cache obliviousness . 62

10.4 Compiler support for divide-and-conquer . 63

10.5 The future of divide-and-conquer . 64

A Bibliograpy 67

7

8

SECTION 1

Introduction

Resource-oblivious algorithms that nevertheless use resources efficiently offer ad-

vantages of simplicity and portability over resource-aware algorithms whose re-

source usage must be programmed explicitly. In this thesis, we study cache re-

sources, specifically, the hierarchy of memories in modern computers. We exhibit

several “cache-oblivious” algorithms that use cache as effectively as “cache-aware”

algorithms.

Before discussing the notion of cache obliviousness, we introduce the (Z, L)
ideal-cache model to study the cache complexity of algorithms. This model, which

is illustrated in Figure 1-1, consists of a computer with a two-level memory hier-

archy consisting of an ideal (data) cache of Z words and an arbitrarily large main

memory. Because the actual size of words in a computer is typically a small, fixed

size (4 bytes, 8 bytes, etc.), we shall assume that word size is constant; the par-

ticular constant does not affect our asymptotic analyses. The cache is partitioned

into cache lines, each consisting of L consecutive words that are always moved

together between cache and main memory. Cache designers typically use L > 1,

banking on spatial locality to amortize the overhead of moving the cache line. We

shall generally assume in this thesis that the cache is tall:

Z = Ω(L2) , (1.1)

which is usually true in practice.

The processor can only reference words that reside in the cache. If the refer-

enced word belongs to a line already in cache, a cache hit occurs, and the word is

9

cache misses Q

organized by
optimal replacement

strategy

Main
Memory

...

...

Cache

Z=L
Cache lines

Lines
of length L

CPU

workW

Figure 1-1: The ideal-cache model

delivered to the processor. Otherwise, a cache miss occurs, and the line is fetched

into the cache. The ideal cache is fully associative [24, Ch. 5]: Cache lines can be

stored anywhere in the cache. If the cache is full, a cache line must be evicted. The

ideal cache uses the optimal off-line strategy of replacing the cache line whose next

access is farthest in the future [7], and thus it exploits temporal locality perfectly.

An algorithm with an input of size n is measured in the ideal-cache model

in terms of its work complexity W(n)—its conventional running time in a RAM

model [4]—and its cache complexity Q(n;Z, L)—the number of cache misses it

incurs as a function of the size Z and line length L of the ideal cache. When Z and

L are clear from context, we denote the cache complexity as simply Q(n) to ease

notation.

We define an algorithm to be cache aware if it contains parameters (set at ei-

ther compile-time or runtime) that can be tuned to optimize the cache complexity

for the particular cache size and line length. Otherwise, the algorithm is cache

oblivious. Historically, good performance has been obtained using cache-aware

algorithms, but we shall exhibit several cache-oblivious algorithms for fundamen-

tal problems that are asymptotically as efficient as their cache-aware counterparts.

To illustrate the notion of cache awareness, consider the problem of multiply-

ing two n � n matrices A and B to produce their n � n product C. We assume

that the three matrices are stored in row-major order, as shown in Figure 2-1(a).

We further assume that n is “big,” i.e., n > L, in order to simplify the analysis.

The conventional way to multiply matrices on a computer with caches is to use

a blocked algorithm [22, p. 45]. The idea is to view each matrix M as consist-

10

ing of (n=s) � (n=s) submatrices Mi j (the blocks), each of which has size s � s,

where s is a tuning parameter. The following algorithm implements this strategy:

BLOCK-MULT(A, B,C, n)
1 for i 1 to n=s
2 do for j 1 to n=s
3 do for k 1 to n=s
4 do ORD-MULT(Aik, Bk j,Ci j, s)

where ORD-MULT(A, B,C, s) is a subroutine that computes C C+ AB on s� s

matrices using the ordinary O(s3) algorithm (see Section 7.1). (This algorithm as-

sumes for simplicity that s evenly divides n. In practice, s and n need have no

special relationship, which yields more complicated code in the same spirit.)

Depending on the cache size of the machine on which BLOCK-MULT is run,

the parameter s can be tuned to make the algorithm run fast, and thus BLOCK-

MULT is a cache-aware algorithm. To minimize the cache complexity, we choose

s as large as possible such that the three s � s submatrices simultaneously fit in

cache. An s � s submatrix is stored on Θ(s + s2=L) cache lines. From the tall-

cache assumption (1.1), we can see that s = Θ(pZ). Thus, each of the calls to

ORD-MULT runs with at most Z=L = Θ(s + s2=L) cache misses needed to bring

the three matrices into the cache. Consequently, the cache complexity of the entire

algorithm is Θ(n + n2=L + (n=pZ)3(Z=L)) = Θ(n + n2=L + n3=LpZ), since the

algorithm must read n2 elements, which reside on dn2=Le cache lines.
The same bound can be achieved using a simple cache-oblivious algorithm that

requires no tuning parameters such as the s in BLOCK-MULT. We present such an

algorithm, which works on general rectangular matrices, in Section 2. The prob-

lems of computing a matrix transpose and of performing an FFT also succumb to

remarkably simple algorithms, which are described in Section 3. Cache-oblivious

sorting poses a more formidable challenge. In Sections 4 and 5, we present two

sorting algorithms, one based onmergesort and the other on distribution sort, both

of which are optimal. Section 6 compares an optimal recursive algorithm with an

“ordinary” iterative algorithm, both of which compute a multipass filter over one-

dimensional data. It also provides some brief empirical results for this problem. In

Section 7, we show that the ordinary algorithms for matrix transposition, matrix

multiplication, and sorting are not cache optimal.

The ideal-cache model makes the perhaps-questionable assumption that mem-

ory is managed automatically by an optimal cache replacement strategy. Although

the current trend in architecture does favor automatic caching over programmer-

specified data movement, Section 8 addresses this concern theoretically. We show

11

that the assumptions of two hierarchical memorymodels in the literature, in which

memory movement is programmed explicitly, are actually no weaker than ours.

Specifically, we prove (with only minor assumptions) that optimal cache-oblivious

algorithms in the ideal-cache model are also optimal in the hierarchical memory

model (HMM) [1] and in the serial uniform memory hierarchy (SUMH) model

[5, 42]. Section 9 discusses related work, and Section 10 offers some concluding

remarks.

Many of the results in this thesis are based on a joint paper [21] coauthored by

Matteo Frigo, Charles E. Leiserson, and Sridhar Ramachandran.

12

SECTION 2

Matrix multiplication

This section describes and analyzes an algorithm for multiplying an m� n matrix

by an n � p matrix cache-obliviously using Θ(mnp) work and incurring Θ(m +
n + p + (mn + np + mp)=L + mnp=LpZ) cache misses. These results require the

tall-cache assumption (1.1) for matrices stored in row-major layout format, but the

assumption can be relaxed for certain other layouts. We also show that Strassen’s

algorithm [38] for multiplying n� n matrices, which uses Θ(nlog2 7) work, incurs

Θ(1+ n2=L+ nlog2 7=LpZ) cache misses.

The following algorithm extends the optimal divide-and-conquer algorithm for

square matrices described in [9] to rectangular matrices. To multiply an m� nma-

trix A by an n� pmatrix B, the algorithm halves the largest of the three dimensions

and recurs according to one of the following three cases:

AB = �
A1

A2

�
B = �

A1B

A2B

�
, (2.1)

AB = �
A1 A2

� �B1

B2

� = A1B1 + A2B2 , (2.2)

AB = A
�
B1 B2

� = �
AB1 AB2

�
. (2.3)

In case (2.1), we have m � maxfn, pg. Matrix A is split horizontally, and both

halves are multiplied by matrix B. In case (2.2), we have n � maxfm, pg. Both

matrices are split, and the two halves are multiplied. In case (2.3), we have p �
maxfm, ng. Matrix B is split vertically, and each half is multiplied by A. For square

matrices, these three cases together are equivalent to the recursive multiplication

13

6463626160595857
5655545352515049
4847464544434241
4039383736353433
3231302928272625
2423222120191817
161514131211109
87654321

64
63
62
61
60
59
58
57

56
55
54
53
52
51
50
49

48
47
46
45
44
43
42
41

40
39
38
37
36
35
34
33

32
31
30
29
28
27
26
25

24
23
22
21
20
19
18
17

16
15
14
13
12
11
10
9

8
7
6
5
4
3
2
1

64636261
60595857
56555453
52515049

48474645
44434241
40393837
36353433

32313029
28272625
24232221
20191817

16151413
1211109
8765
4321 1 2

3 4
5 6
7 8

9 10
11 12

13 14
15 16

17 18
19 20

21 22
23 24

25 26
27 28

29 30
31 32

33 34
35 36

37 38
39 40

41 42
43 44

45 46
47 48

49 50
51 52

53 54
55 56

57 58
59 60

61 62
63 64

(a) (b)

(c) (d)

Figure 2-1: Layout of a 16� 16 matrix in (a) rowmajor, (b) columnmajor, (c) 4� 4-blocked,

and (d) bit-interleaved layouts.

algorithm described in [9]. The base case occurs when m = n = p = 1, in which

case the two elements are multiplied and added into the result matrix.

Although this straightforward divide-and-conquer algorithm contains no tun-

ing parameters, it uses cache optimally. To analyze the algorithm, we assume that

the three matrices are stored in row-major order, as shown in Figure 2-1(a). In-

tuitively, the cache-oblivious divide-and-conquer algorithm uses the cache effec-

tively, because once a subproblem fits into the cache, its smaller subproblems can

be solved in cache with no further cache misses.

Theorem 1 The cache-oblivious matrix multiplication algorithm uses Θ(mnp) work and
incurs Θ(m+ n+ p+ (mn+ np+mp)=L+mnp=LpZ) cache misses when multiplying

an m� n by an n� p matrix.

Proof. It can be shown by induction that the work of this algorithm is Θ(mnp).
To analyze the cache misses, let α be a constant sufficiently small that three sub-

matrices of size m0 � n0, n0 � p0, and m0 � p0, where maxfm0, n0, p0g � α
p
Z, all fit

completely in the cache. We distinguish the following four cases cases depending

on the initial size of the matrices.

14

Case I: m, n, p > α
p
Z.

This case is the most intuitive. The matrices do not fit in cache, since all

dimensions are “big enough.” The cache complexity of matrix multiplication

can be described by the recurrence

Q(m, n, p) � 8>>><>>>: Θ((mn+ np+mp)=L) if (mn+ np+mp) � αZ ,

2Q(m=2, n, p) +O(1) otherwise and if m � n and m � p ,

2Q(m, n=2, p) +O(1) otherwise and if n > m and n � p ,

2Q(m, n, p=2) +O(1) otherwise .
(2.4)

The base case arises as soon as all three submatrices fit in cache. The total

number of lines used by the three submatrices is Θ((mn+ np+mp)=L). The
only cache misses that occur during the remainder of the recursion are the

Θ((mn+ np+mp)=L) cache misses required to bring the matrices into cache.

In the recursive cases, when the matrices do not fit in cache, we pay for the

cache misses of the recursive calls, which depend on the dimensions of the

matrices, plus O(1) cache misses for the overhead of manipulating submatri-

ces. The solution to this recurrence is Q(m, n, p) = Θ(mnp=LpZ).
Case II: (m � α

p
Z and n, p > α

p
Z) OR (m � α

p
Z and n, p > α

p
Z) OR (p �

α
p
Z and m, n > α

p
Z).

Here, we shall present the case wherem � α
p
Z and n, p > α

p
Z. The proofs

for the other cases are only small variations of this proof. The multiplication

algorithm always divides n or p by 2 according to cases (2.2) and (2.3). At

some point in the recursion, both are small enough that the whole problem

fits into cache. The number of cache misses can be described by the recur-

rence

Q(m, n, p) � 8><>: Θ(1+ n+ np=L+m) if n, p 2 [αpZ=2,αpZ] ,
2Q(m, n=2, p) +O(1) otherwise and if n � p ,

2Q(m, n, p=2) +O(1) otherwise .

The solution to this recurrence is Θ(np=L+mnp=LpZ).
Case III: (n, p � α

p
Z and m > α

p
Z) OR (m, p � α

p
Z and n > α

p
Z) OR

(m, n � α
p
Z and p > α

p
Z).

In each of these cases, one of the matrices fits into cache, and the others do

not. Here, we shall present the case where n, p � α
p
Z and m > α

p
Z. The

other cases can be proven similarly. The multiplication algorithm always

15

divides m by 2 according to case (2.1). At some point in the recursion, m is

in the range α
p
Z=2 � m � α

p
Z, and the whole problem fits in cache. The

number cache misses can be described by the recurrence

Q(m, n) � (Θ(1+m) if m 2 [αpZ=2,αpZ] ,
2Q(m=2, n, p) +O(1) otherwise ;

whose solution is Q(m, n, p) = Θ(m+mnp=LpZ).
Case IV: m, n, p � α

p
Z.

From the choice ofα, all three matrices fit into cache. The matrices are stored

on Θ(1+mn=L+ np=L+mp=L) cache lines. Therefore, we haveQ(m, n, p) =
Θ(1+ (mn+ np+mp)=L).

We require the tall-cache assumption (1.1) in these analyses, because the matri-

ces are stored in row-major order. Tall caches are also needed if matrices are stored

in column-major order (Figure 2-1(b)), but the assumption that Z = Ω(L2) can be

relaxed for certain other matrix layouts. The s� s-blocked layout (Figure 2-1(c)),

for some tuning parameter s, can be used to achieve the same bounds with the

weaker assumption that the cache holds at least some sufficiently large constant

number of lines. The cache-oblivious bit-interleaved layout (Figure 2-1(d)) has the

same advantage as the blocked layout, but no tuning parameter need be set, since

submatrices of size Θ(pL �pL) are cache-obliviously stored on one cache line.

The advantages of bit-interleaved and related layouts have been studied in [18]

and [12, 13]. One of the practical disadvantages of bit-interleaved layouts is that

index calculations on conventional microprocessors can be costly.

For square matrices, the cache complexity Q(n) = Θ(n+n2=L+n3=LpZ) of the
cache-oblivious matrix multiplication algorithm is the same as the cache complex-

ity of the cache-aware BLOCK-MULT algorithm and also matches the lower bound

by Hong and Kung [25]. This lower bound holds for all algorithms that execute

the Θ(n3) operations given by the definition of matrix multiplication

ci j = nX
k=1 aikbk j .

No tight lower bounds for the general problem of matrixmultiplication are known.

By using an asymptotically faster algorithm, such as Strassen’s algorithm [38]

or one of its variants [45], both the work and cache complexity can be reduced.

When multiplying n� n matrices, Strassen’s algorithm, which is cache oblivious,

16

requires only 7 recursive multiplications of n=2 � n=2 matrices and a constant

number of matrix additions, yielding the recurrence

Q(n) � � Θ(1+ n+ n2=L) if n2 � αZ ,

7Q(n=2) +O(n2=L) otherwise ; (2.5)

where α is a sufficiently small constant. The solution to this recurrence is Θ(n +
n2=L+ nlog2 7=LpZ).
Summary

In this section we have used the ideal-cache model to analyze two algorithms

for matrix multiplication. We have described an efficient cache-oblivious algo-

rithm for rectangular matrix multiplication and analyzed the cache complexity of

Strassen’s algorithm.

17

18

SECTION 3

Matrix transposition and FFT

This section describes an optimal cache-oblivious algorithm for transposing an

m � n matrix. The algorithm uses Θ(mn) work and incurs Θ(1 + mn=L) cache

misses. Using matrix transposition as a subroutine, we convert a variant [44] of

the “six-step” fast Fourier transform (FFT) algorithm [6] into an optimal cache-

oblivious algorithm. This FFT algorithm uses O(n lg n) work and incurs O
�
1 +(n=L)�1+ logZn

��
cache misses.

The problem of matrix transposition is defined as follows. Given an m� n ma-

trix stored in a row-major layout, compute and store AT into an n�mmatrix B also

stored in a row-major layout. The straightforward algorithm for transposition that

employs doubly nested loops incurs Θ(mn) cache misses on one of the matrices

when mn� Z, which is suboptimal.

Optimal work and cache complexities can be obtained with a divide-and-con-

quer strategy, however. If n � m, we partition

A = (A1 A2) , B = �
B1

B2

�
.

Then, we recursively execute TRANSPOSE(A1, B1) and TRANSPOSE(A2, B2). Alter-

natively, if m > n, we divide matrix A horizontally and matrix B vertically and

likewise perform two transpositions recursively. The next two theorems provide

upper and lower bounds on the performance of this algorithm.

Theorem 2 The cache-oblivious matrix-transpose algorithm involves Θ(mn) work and

incurs Θ(1+mn=L) cache misses for an m� n matrix.

19

Proof. That the algorithm uses Θ(mn) work can be shown by induction. For the

cache analysis, let Q(m, n) be the cache complexity of transposing anm� nmatrix.

We assume that the matrices are stored in row-major order, the column-major case

having a similar analysis.

Let α be a constant sufficiently small that two submatrices of size m0 � n0 and
n0 �m0, where maxfm0, n0g � αL, fit completely in the cache. We distinguish the

following three cases.
Case I: maxfm, ng � αL.

Both the matrices fit inO(1)+ 2mn=L lines. From the choice ofα, the number

of lines required is at most Z=L, which implies Q(m, n) = Θ(1+mn=L).
Case II: m � αL < n OR n � αL < m.

For this case, we assume without loss of generality that m � αL < n. The

case n � αL < m is analogous. The transposition algorithm divides the

greater dimension n by 2 and performs divide-and-conquer. At some point

in the recursion, n is in the rangeαL=2 � n � αL, and the whole problem fits

in cache. Because the layout is row-major, at this point the input array has

n rows, m columns, and it is laid out in contiguous locations, thus requiring

at most O(1 + nm=L) cache misses to be read. The output array consists of

nm elements in m rows, where in the worst case every row lies on a different

cache line. Consequently, we incur at most O(m + nm=L) for writing the

output array. Since n � αL=2, the total cache complexity for this base case is

O(1+m).
These observations yield the recurrence

Q(m, n) � � Θ(1+m) if n 2 [αL=2,αL] ,
2Q(m, n=2) +O(1) otherwise ;

whose solution is Q(m, n) = Θ(1+mn=L).
Case III: m, n > αL.

As in Case II, at some point in the recursion, both n and m fall in the interval[αL=2,αL]. The whole problem then fits into cache, and it can be solved with

at most O(m+ n+mn=L) cache misses.

The cache complexity thus satisfies the recurrence

Q(m, n) � 8<: Θ(m+ n+mn=L) if m, n 2 [αL=2,αL] ,
2Q(m=2, n) +O(1) if m � n ,

2Q(m, n=2) +O(1) otherwise ;
whose solution is Q(m, n) = Θ(1+mn=L).

20

Theorem 3 The cache-oblivious matrix-transpose algorithm is asymptotically optimal.

Proof. For an m� n matrix, the matrix-transposition algorithm must write to mn

distinct elements, which occupy at least dmn=Le = Ω(1+mn=L) cache lines.
As an example application of the cache-oblivious transposition algorithm, the

rest of this section describes and analyzes a cache-oblivious algorithm for comput-

ing the discrete Fourier transform of a complex array of n elements, where n is an

exact power of 2. The basic algorithm is thewell-known “six-step” variant [6, 44] of

the Cooley-Tukey FFT algorithm [15]. By using the cache-oblivious transposition

algorithm, however, we can make the FFT cache oblivious, and its performance

matches the lower bound by Hong and Kung [25].

Recall that the discrete Fourier transform (DFT) of an array X of n complex

numbers is the array Y given by

Y[i] = n-1X
j=0 X[j]ω-i j

n , (3.1)

where ωn = e2π
p-1=n is a primitive nth root of unity, and 0 � i < n.

Many known algorithms evaluate Equation (3.1) in time O(n lg n) for all inte-
gers n [17]. In this thesis, however, we assume that n is an exact power of 2, and

compute Equation (3.1) according to the Cooley-Tukey algorithm, which works re-

cursively as follows. In the base case where n = O(1), we compute Equation (3.1)

directly. Otherwise, for any factorization n = n1n2 of n, we have

Y[i1 + i2n1] = n2-1X
j2=0 240@n1-1X

j1=0 X[j1n2 + j2]ω-i1 j1
n1

1Aω
-i1 j2
n

35ω
-i2 j2
n2 . (3.2)

Observe that both the inner and outer summations in Equation (3.2) are DFT’s.

Operationally, the computation specified by Equation (3.2) can be performed by

computing n2 transforms of size n1 (the inner sum), multiplying the result by the

factorsω
-i1 j2
n (called the twiddle factors [17]), and finally computing n1 transforms

of size n2 (the outer sum).

We choose n1 to be 2d(lg n)=2e and n2 to be 2b(lg n)=2c. The recursive step then

operates as follows:

1. Pretend that the input is a row-major n1� n2 matrix A. Transpose A in place,

i.e., use the cache-oblivious algorithm to transpose A onto an auxiliary array

B, and copy B back onto A. (If n1 = 2n2, consider the matrix to be made up

of records containing two elements.)

21

2. At this stage, the inner sum corresponds to a DFT of the n2 rows of the trans-

posed matrix. Compute these n2 DFT’s of size n1 recursively. Observe that,

because of the previous transposition, we are transforming a contiguous ar-

ray of elements.

3. Multiply A by the twiddle factors, which can be computed on the fly with no

extra cache misses.

4. Transpose A in-place, so that the inputs to the next stage are arranged in

contiguous locations.

5. Compute n1 DFT’s of the rows of the matrix, recursively.

6. Transpose A in-place so as to produce the correct output order.

It can be proven by induction that the work complexity of this FFT algorithm

is O(n lg n). We now analyze its cache complexity. The algorithm always operates

on contiguous data, by construction. In order to simplify the analysis of the cache

complexity, we assume a tall cache, in which case each transposition operation and

the multiplication by the twiddle factors require at most O(1+ n=L) cache misses.

Thus, the cache complexity satisfies the recurrence

Q(n) � � O(1+ n=L), if n � αZ ,

n1Q(n2) + n2Q(n1) +O(1+ n=L) otherwise ; (3.3)

for a sufficiently small constant α chosen such that a subproblem of size αZ fits in

cache. This recurrence has solution

Q(n) = O
�
1+ (n=L)�1+ logZn

��
,

which is asymptotically optimal for a Cooley-Tukey algorithm, matching the lower

bound by Hong and Kung [25] when n is an exact power of 2. As with matrix mul-

tiplication, no tight lower bounds for cache complexity are known for the general

problem of computing the DFT.

Summary

In this section, we have described an optimal cache-oblivious algorithm for FFT.

The basic algorithm is the well-known “six-step” variant [6, 44] of the Cooley-

Tukey FFT algorithm [15]. By using an optimal cache-oblivious transposition al-

gorithm, however, we can make the FFT cache oblivious, and its performance

matches the lower bound by Hong and Kung [25].

22

SECTION 4

Funnelsort

Although it is cache oblivious, algorithms like familiar two-way merge sort (see

Section 7.3) are not asymptotically optimal with respect to cache misses. The Z-

way mergesort mentioned by Aggarwal and Vitter [3] is optimal in terms of cache

complexity, but it is cache aware. This section describes a cache-oblivious sorting

algorithm called “funnelsort.” This algorithm has an asymptotically optimal work

complexity Θ(n lg n), as well as an optimal cache complexity Θ
�
1 + (n=L)(1 +

logZn)� if the cache is tall. In Section 5, we shall present another cache-oblivious

sorting algorithm based on distribution sort.

Funnelsort is similar to mergesort. In order to sort a (contiguous) array of n

elements, funnelsort performs the following two steps:

1. Split the input into n1=3 contiguous arrays of size n2=3, and sort these arrays

recursively.

2. Merge the n1=3 sorted sequences using a n1=3-merger, which is described be-

low.

Funnelsort differs frommergesort in theway themerge operationworks. Merg-

ing is performed by a device called a k-merger, which inputs k sorted sequences

and merges them. A k-merger operates by recursively merging sorted sequences

that become progressively longer as the algorithm proceeds. Unlike mergesort,

however, a k-merger stops working on a merging subproblem when the merged

output sequence becomes “long enough,” and it resumes working on another

merging subproblem.

23

buffer

buffer

buffer

L1

Lpk

R
Figure 4-1: Illustration of a k-merger. A k-merger is built recursively out of

p
k left

p
k-

mergers L1,L2, . . . ,Lpk, a series of buffers, and one right
p
k-mergerR.

Since this complicated flow of control makes a k-merger a bit tricky to describe,

we explain the operation of the k-merger pictorially. Figure 4-1 shows a repre-

sentation of a k-merger, which has k sorted sequences as inputs. Throughout its

execution, the k-merger maintains the following invariant.

Invariant The invocation of a k-merger outputs the first k3 elements of the sorted sequence

obtained by merging the k input sequences.

A k-merger is built recursively out of
p
k-mergers in the following way. The k

inputs are partitioned into
p
k sets of

p
k elements, and these sets form the input

to the
p
k left

p
k-mergers L1,L2, . . . ,Lpk in the left part of the figure. The out-

puts of these mergers are connected to the inputs of
p
k buffers. Each buffer is a

FIFO queue that can hold 2k3=2 elements. Finally, the outputs of the buffers are

connected to the
p
k inputs of the right

p
k-mergerR in the right part of the figure.

The output of this final
p
k-merger becomes the output of the whole k-merger. The

reader should notice that the intermediate buffers are overdimensioned. In fact,

each buffer can hold 2k3=2 elements, which is twice the number k3=2 of elements

output by a
p
k-merger. This additional buffer space is necessary for the correct

behavior of the algorithm, as will be explained below. The base case of the recur-

sion is a k-merger with k = 2, which produces k3 = 8 elements whenever invoked.

A k-merger operates recursively in the following way. In order to output k3

elements, the k-merger invokesR k3=2 times. Before each invocation, however, the

k-merger fills all buffers that are less than half full, i.e., all buffers that contain less

than k3=2 elements. In order to fill buffer i, the algorithm invokes the corresponding

24

left merger Li once. Since Li outputs k
3=2 elements, the buffer contains at least k3=2

elements after Li finishes.

In order to prove this result, we need three auxiliary lemmata. The first lemma

bounds the space required by a k-merger.

Lemma 4 A k-merger can be laid out in O(k2) contiguous memory locations.

Proof. A k-merger requires O(k2)memory locations for the buffers, plus the space

required by the
p
k-mergers. The space S(k) thus satisfies the recurrence

S(k) � (pk+ 1)S(pk) +O(k2) ,
whose solution is S(k) = O(k2).

It follows from Lemma 4, that a problem of size α
p
Z can be solved in cache

with no further cache misses, whereα is a sufficiently small constant.

In order to achieve the bound on the number Q(n) of cache misses, it is im-

portant that the buffers in a k-merger be maintained as circular queues of size k.

This requirement guarantees that we can manage the queue cache-efficiently, in

the sense stated by the next lemma.

Lemma 5 Performing r insert and remove operations on a circular queue causes O(1 +
r=L) cache misses if four cache lines are available for the buffer.

Proof. Associate the two cache lines with the head and tail of the circular queue.

The head- and tail-pointers are kept on two seperate lines. Since the replacement

strategy is optimal, it will keep the frequently accessed pointers in cache. If a new

cache line is read during an insert (delete) operation, the next L- 1 insert (delete)

operations do not cause a cache miss. The result follows.

Define QM to be the number of cache misses incurred by a k-merger. The next

lemma bounds the number of cache misses incurred by a k-merger.

Lemma 6 On a tall cache, one invocation of a k-merger incurs

QM(k) = O
�
k+ k3=L+ k3logZk=L�

cache misses.

Proof. There are two cases: either k � α
p
Z or k > α

p
Z.

Assume first that k � α
p
Z. By Lemma 4, the data structure associated with

the k-merger requires at most O(k2) = O(Z) contiguous memory locations. By the

choice of α the k-merger fits into cache. The k-merger has k input queues, from

25

which it loads O(k3) elements. Let ri be the number of elements extracted from the

ith input queue. Since k � α
p
Z and L = O(pZ), there are at least Z=L = Ω(k)

cache lines available for the input buffers. Lemma 5 applies, whence the total

number of cache misses for accessing the input queues is

kX
i=1 O(1+ ri=L) = O(k+ k3=L) .

Similarly by Lemma 5, the cache complexity of writing the output queue is at most

O(1+ k3=L). Finally, for touching the O(k2) contiguous memory locations used by

the internal data structures, the algorithm incurs at most O(1+ k2=L) cache misses.

The total cache complexity is therefore

QM(k) = O
�
k+ k3=L�+O

�
1+ k2=L�+O

�
1+ k3=L�= O

�
k+ k3=L�

completing the proof of the first case.

Assume now that k > α
p
Z. In this second case, we prove by induction on k

that whenever k > α
p
Z, we have

QM(k) � (ck3logZk)=L- A(k) , (4.1)

for some constant c > 0, where A(k) = k(1 + (2clogZk)=L) = o(k3). The lower-

order term A(k) does not affect the asymptotic behavior, but it makes the induction

go through. This particular value of A(k) will be justified later in the analysis.

The base case of the induction consists of values of k such that
p

αZ1=4 < k �
α
p
Z. (It is not sufficient to just consider k = Θ(pZ), since k can become as small

as Θ(Z1=4) in the recursive calls.) The analysis of the first case applies, yielding

QM(k) = O
�
k+ k3=L�. Because k2 > α

p
Z = Ω(L) and k = Ω(1), the last term

dominates, and QM(k) = O
�
k3=L� holds. Consequently, a large enough value of c

can be found that satisfies Inequality (4.1).

For the inductive case, let k > α
p
Z. The k-merger invokes the

p
k-mergers

recursively. Since
p

αZ1=4 < pk < k, the inductive hypothesis can be used to

bound the number QM(pk) of cache misses incurred by the submergers. The right

merger R is invoked exactly k3=2 times. The total number l of invocations of left

mergers is bounded by l < k3=2 + 2
p
k. To see why, consider that every invocation

of a left merger puts k3=2 elements into some buffer. Since k3 elements are output

and the buffer space is 2k2, the bound l < k3=2 + 2
p
k follows.

Before invoking R, the algorithm must check every buffer to see whether it

is empty. One such check requires at most
p
k cache misses, since there are

p
k

26

buffers. This check is repeated exactly k3=2 times, leading to at most k2 cache misses

for all checks.

These considerations lead to the recurrence

QM(k) � �2k3=2 + 2
p
k
�
QM(pk) + k2 .

Application of the inductive hypothesis yields the desired bound Inequality (4.1),

as follows.

QM(k) � �
2k3=2 + 2

p
k
�
QM(pk) + k2� 2

�
k3=2 +pk

� "ck3=2logZk

2L
- A(pk)#+ k2� (ck3logZk)=L+ k2

�
1+ (clogZk)=L�-�2k3=2 + 2

p
k
�
A(pk) .

If A(k) = k(1+ (2clogZk)=L) (for example), we get

QM(k) � (ck3logZk)=L+ k2
�
1+ (clogZk)=L�-�2k3=2 + 2

p
k
�p

k
�
1+ �2clogZ

p
k
�=L�� (ck3logZk)=L+ k2

�
1+ (clogZk)=L�-�2k2 + 2k

��
1+ �clogZk

�=L�� (ck3logZk)=L- (k2 + 2k) �1+ (clogZk)=L�� (ck3logZk)=L- A(k)
and Inequality (4.1) follows.

It can be proven by induction that thework complexity of funnelsort isO(n lg n).
The next theorem gives the cache complexity of funnelsort.

Theorem 7 Funnelsort sorts n elements incurring at most Q(n) cache misses, where

Q(n) = O
�
1+ (n=L)�1+ logZn

��
.

Proof. If n � αZ for a small enough constantα, then the funnelsort data structures

fit into cache. To see why, observe that only one k-merger is active at any time.

The biggest k-merger is the top-level n1=3-merger, which requires O(n2=3) < O(n)
space. The algorithm thus can operate in O(1+ n=L) cache misses.

If n > αZ, we have the recurrence

Q(n) = n1=3Q(n2=3) +QM(n1=3) .
27

By Lemma 6, we have QM(n1=3) = O
�
n1=3 + n=L+ (nlogZn)=L�.

With the hypothesis Z = Ω(L2), we have n=L = Ω(n1=3). Moreover, we also

have n1=3 = Ω(1) and lg n = Ω(lg Z). Consequently, QM(n1=3) = O
�(nlogZn)=L�

holds, and the recurrence simplifies to

Q(n) = n1=3Q(n2=3) +O
�(nlogZn)=L� .

The result follows by induction on n.

This upper bound matches the lower bound stated by the next theorem, prov-

ing that funnelsort is cache-optimal.

Theorem 8 The cache complexity of any sorting algorithm is

Q(n) = Ω
�
1+ (n=L)�1+ logZn

��
.

Proof. Aggarwal and Vitter [3] show that there is an Ω
�(n=L)logZ=L(n=Z)� bound

on the number of cache misses made by any sorting algorithm on their “out-of-

core” memory model, a bound that extends to the ideal-cache model. By applying

the tall-cache assumption Z = Ω(L2), we have

Q(n) � a(n=L)logZ=L(n=Z)� a(n=L) lg(n=Z)=(lg Z- lg L)� a(n=L) lg(n=Z)= lg Z� a(n=L) lg n= lg Z- a(n=L) .
It follows that Q(n) = Ω((n=L)logZn). The theorem can be proven by combining

this result with the trivial lower bounds of Q(n) = Ω(1) and Q(n) = Ω(n=L).
Corollary 9 The cache-oblivious Funnelsort is asymptotically optimal.

Proof. Follows from Theorems 8 and 7.

Summary

In this section we have presented an optimal cache-oblivious algorithm based on

mergesort. Funnelsort uses a device called a k-merger, which inputs k sorted se-

quences and merges them in “chunks”. It stops when the merged output becomes

“long enough” to resume work on another subproblem. Further, we have shown

that any sorting algorithm incurs at least Ω
�
1+ (n=L)�1+ logZn

��
cache misses.

This lower bound is matched by both our algorithms.

28

SECTION 5

Distribution sort

In this section, we describe a cache-oblivious optimal sorting algorithm based on

distribution sort. Like the funnelsort algorithm from Section 4, the distribution-

sorting algorithm uses O(n lg n) work to sort n elements, and it incurs

Θ
�
1+ (n=L)�1+ logZn

��
cachemisses if the cache is tall. Unlike previous cache-efficient distribution-sorting

algorithms [1, 3, 30, 42, 44], which use sampling or other techniques to find the

partitioning elements before the distribution step, our algorithm uses a “bucket-

splitting” technique to select pivots incrementally during the distribution.

Given an array A (stored in contiguous locations) of length n, the cache-oblivi-

ous distribution sort sorts A as follows:

1. Partition A into
p
n contiguous subarrays of size

p
n. Recursively sort each

subarray.

2. Distribute the sorted subarrays into q � pn buckets B1, B2, . . . , Bq of size n1,

n2, . . . , nq, respectively, such that for i = 1, 2, . . . , q- 1, we have

1. maxfx j x 2 Big � minfx j x 2 Bi+1g ,

2. ni � 2
p
n .

(See below for details.)

3. Recursively sort each bucket.

4. Copy the sorted buckets back to array A.

29

A stack-based memory allocator is used to exploit spatial locality. A nice prop-

erty of stack based allocation is that memory is not fragmented for problems of

small size. So if the space complexity of a procedure is S, only O(1 + S=L) cache
misses are made when S � Z, provided the procedure accesses only its local vari-

ables.

Distribution step

The goal of Step 2 is to distribute the sorted subarrays of A into q buckets B1,

B2, . . . , Bq. The algorithm maintains two invariants. First, each bucket holds at

most 2
p
n elements at any time, and any element in bucket Bi is smaller than any

element in bucket Bi+1. Second, every bucket has an associated pivot, a value

which is greater than all elements in the bucket. Initially, only one empty bucket

exists with pivot 1. At the end of Step 2, all elements will be in the buckets and

the two conditions (a) and (b) stated in Step 2 will hold.

The idea is to copy all elements from the subarrays into the buckets cache effi-

ciently while maintaining the invariants. We keep state information for each sub-

array and for each bucket. The state of a subarray consists of an index next of the

next element to be read from the subarray and a bucket number bnum indicating

where this element should be copied. By convention, bnum = 1 if all elements in

a subarray have been copied. The state of a bucket consists of the bucket’s pivot

and the number of elements currently in the bucket.

We would like to copy the element at position next of a subarray to bucket

bnum. If this element is greater than the pivot of bucket bnum, we would incre-

ment bnum until we find a bucket for which the element is smaller than the pivot.

Unfortunately, this basic strategy has poor caching behavior, which calls for amore

complicated procedure.

The distribution step is accomplished by the recursive procedure DISTRIBUTE .

DISTRIBUTE(i, j,m) distributes elements from the ith through (i + m - 1)th sub-

arrays into buckets starting from B j. Given the precondition that each subarray

r = i, i + 1, . . . , i +m- 1 has its bnum[r] � j, the execution of DISTRIBUTE(i, j,m)
enforces the postcondition that bnum[r] � j+m. Step 2 of the distribution sort in-

vokes DISTRIBUTE(1, 1,pn). The following is a recursive implementation of DIS-

TRIBUTE:

30

DISTRIBUTE(i, j,m)
1 if m = 1

2 then COPYELEMS(i, j)
3 else DISTRIBUTE(i, j,m=2)
4 DISTRIBUTE(i+m=2, j,m=2)
5 DISTRIBUTE(i, j+m=2,m=2)
6 DISTRIBUTE(i+m=2, j+m=2,m=2)

In the base case (line 1), the subroutine COPYELEMS(i, j) copies all elements from

subarray i that belong to bucket j. If bucket j has more than 2
p
n elements after the

insertion, it can be split into two buckets of size at least
p
n. For the splitting oper-

ation, we use the deterministic median-finding algorithm [16, p. 189] followed by

a partition. The next lemma shows that the median-finding algorithm uses O(m)
work and incurs O(1+m=L) cache misses to find the median of an array of size m.

(In our case, we have m � 2
p
n + 1.) In addition, when a bucket splits, all sub-

arrays whose bnum is greater than the bnum of the split bucket must have their

bnum’s incremented. The analysis of DISTRIBUTE is given by the following two

lemmata.

Lemma 10 The median of m elements can be found cache-obliviously using O(m) work
and incurring O(1+m=L) cache misses.

Proof. See [16, p. 189] for the linear-time median finding algorithm and the work

analysis. The cache complexity is given by the same recurrence as the work com-

plexity with a different base case.

Q(m) = �
O(1+m=L) if m � αZ ,

Q(dm=5e) +Q(7m=10+ 6) +O(1+m=L) otherwise ,

whereα is a sufficiently small constant. The result follows.

Lemma 11 Step 2 uses O(n) work, incurs O(1+ n=L) cache misses, and uses O(n) stack
space to distribute n elements.

Proof. In order to simplify the analysis of the work used by DISTRIBUTE, assume

that COPYELEMS uses O(1) work. We account for the work due to copying ele-

ments and splitting of buckets separately. The work of DISTRIBUTE onm subarrays

is described by the recurrence

T(m) = 4T(m=2) +O(1) .
31

It follows that T(m) = O(m2), where m = pn initially.

We now analyze the work used for copying and bucket splitting. The number

of copied elements is O(n). Each element is copied exactly once and therefore the

work due to copying elements is also O(n). The total number of bucket splits is

at most
p
n. To see why, observe that there are at most

p
n buckets at the end of

the distribution step, since each bucket contains at least
p
n elements. Each split

operation involves O(pn) work and so the net contribution to the work is O(n).
Thus, the total work used by DISTRIBUTE is W(n) = O(T(pn)) +O(n) +O(n) =
O(n).

For the cache analysis, we distinguish two cases. Let α be a sufficiently small

constant such that the stack space used by sorting a problem of sizeαZ, including

the input array, fits completely into cache.

Case I: n � αZ.

The input and the auxiliary space of sizeO(n) fit into cache using O(1+ n=L)
cache lines. Consequently, the cache complexity is O(1+ n=L).

Case II: n > αZ.

Let R(m, d) denote the cache misses incurred by an invocation of the subrou-

tine DISTRIBUTE(i, j,m) that copies d elements from m subarrays to m buck-

ets. We again account for the splitting of buckets separately. We first prove

that R satisfies the following recurrence:

R(m, d) � � O(L+ d=L) if m � αL ,P
1�i�4 R(m=2, di) otherwise ,

(5.1)

where
P

1�i�4 di = d.

First, consider the base case m � αL. An invocation of DISTRIBUTE(i, j,m)
operates with m subarrays and m buckets. Since there are Ω(L) cache lines,

the cache can hold all the auxiliary storage involved and the currently ac-

cessed element in each subarray and bucket. In this case there are O(L +
d=L) cache misses. The initial access to each subarray and bucket causes

O(m) = O(L) cache misses. The cache complexity for copying the d elements

from one set of contiguous locations to another set of contiguous locations is

O(1+ d=L), which completes the proof of the base case. The recursive case,

when m > αL, follows immediately from the algorithm. The solution for

Recurrence 5.1 is R(m, d) = O(L+m2=L+ d=L).
We still need to account for the cache misses caused by the splitting of buck-

ets. Each split causes O(1 + pn=L) cache misses due to median finding

32

(Lemma 10) and partitioning of
p
n contiguous elements. An additional

O(1 +pn=L) misses are incurred by restoring the cache. As proven in the

work analysis, there are at most
p
n split operations.

By adding R(pn, n) to the complexity of splitting, we conclude that the total

cache complexity of the distribution step is O(L+ n=L +pn(1 +pn=L)) =
O(n=L).

Theorem 12 Distribution sort uses O(n lg n)work and incurs O�1+(n=L)�1+ logZn
��

cache misses to sort n elements.

Proof. The work done by the algorithm is given by

W(n) = pnW(pn) + qX
i=1 W(ni) +O(n) ,

where q � pn, each ni � 2
p
n, and

Pq
i=1 ni = n. The solution to this recurrence is

W(n) = O(n lg n).
The space complexity of the algorithm is given by

S(n) � S(2pn) +O(n) .
Each bucket has at most 2

p
n elements, thus the recursive call uses at S(2pn) space

and the O(n) term comes from Step 2. The solution to this recurrence is S(n) =
O(n).

The cache complexity of distribution sort is described by the recurrence

Q(n) � 8><>: O(1+ n=L) if n � αZ ,p
nQ(pn) + qX

i=1 Q(ni) +O(1+ n=L) otherwise ,

whereα is a sufficiently small constant such that the stack space used by a sorting

problem of size αZ, including the input array, fits completely in cache. The base

case n � αZ arises when both the input array A and the contiguous stack space

of size S(n) = O(n) fit in O(1 + n=L) cache lines of the cache. In this case, the

algorithm incurs O(1+ n=L) cache misses to touch all involved memory locations

once. In the case where n > αZ, the recursive calls in Steps 1 and 3 cause Q(pn) +Pq
i=1 Q(ni) cache misses and O(1+ n=L) is the cache complexity of Steps 2 and 4,

as shown by Lemma 11. The theorem now follows by solving the recurrence.

Corollary 13 The cache-oblivious distribution sort algorithm is asymptotically optimal.

Proof. Follows from Theorems 8 and 12.

33

Summary

In this section, we have presented another optimal cache-oblivious sorting algo-

rithm, which is based on distribution sort. All previous cache-efficient distribution

sort algorithms [1, 3, 30, 42, 44] are cache aware, since they are designed for caching

models where the data is moved explicitly. They usually use a sampling processes

to find the partitioning elements before the distribution step. Our algorithm finds

the pivots incrementally during the distribution.

34

SECTION 6

Jacobi multipass filter

This section compares an optimal recursive algorithm with a more straightforward

iterative algorithm, both which compute a multipass filter over one-dimensional

data. When computing n generations on n elements, both algorithms use Θ(n2)
work. The iterative incurs Θ(n2=L) cache misses, if the data does not fit into the

cache, where the recursive algorithm incurs only Θ(1+ n=L+ n2=ZL) cache misses

which we prove to be cache optimal. We also provide some brief empirical results

for this problem. The recursive algorithm executes in less than 70% of the time of

the iterative algorithm for problem sizes that do not fit in L2-cache

Consider the problem of a computing a multipass filter on an array A of size

n, where a new value A
(τ+1)
i at generation τ + 1 is computed from values at the

previous step τ according to some update rule. A typical update function is

A
(τ+1)
i �

A
(τ)
i-1 + A

(τ)
i + A

(τ)
i+1��3 . (6.1)

Applications of multipass filtering include the Jacobi iteration for solving heat-

diffusion equations [31, p. 673] and the simulation of lattice gases with cellular

automata. These applications usually deal with multidimensional data, but here,

we shall explore the one-dimensional case for simplicity, even though caching ef-

fects are often more pronounced with multidimensional data.

35

JACOBI-ITER(A)
1 n length of A

2 for i 1 to n=2
3 do for j 1 to n � Generation 2i

4 do tmp[j] �
A[(j- 1) mod n] + A[j] + A[(j+ 1)mod n]�=3

5 for j 1 to n � Generation 2i+ 1

6 do A[j] �
tmp[(j- 1) mod n] + tmp[j] + tmp[(j+ 1) mod n]�=3

Figure 6-1: Iterative implementation of n-pass Jacobi update on array A with n elements.

6.1 Iterative algorithm

We first analyze the cache complexity of the straightforward implementation JA-

COBI-ITER of the update rule given in Equation (6.1). We show that this algorithm,

shown in Figure 6-1, uses Θ(n) temporary storage and performs Θ(n2) memory

accesses for an array of size n. If the array of size n does not fit into cache, the total

number of cache misses is Θ(n2=L).
To illustrate the order of updates of JACOBI-ITER on input A of size n, we view

the computation of n generations of the multipass as a two-dimensional trace ma-

trix T of size n � n. One dimension of T is the offset in the input array and the

other dimension is the “generation” of the filtered result. The value of elementT4,2 is the value of array element A[2] at the 4th generation of the iterative algo-

rithm. One row in the matrix represents the updates on one element in the array.

The trace matrix of the iterative algorithm on a data array of size 16 is shown in

Figure 6-2. The height of a bar represents the ordering of the updates, where the

higher bars are updated later. The bigger the difference in the height of two bars,

the further apart in time are their updates. If the height of a bar is not much bigger

than the height of the bar directly in front of it, it is likely that the element is still in

cache and a hit occurs. The height differences between two updates to the same el-

ement in the iterative algorithm are all equal. Either the updates are close enough

together that all updates are cache hits, or they are too far apart, and all updates

are cache misses.

Theorem 14 The JACOBI-ITER algorithm uses Θ(n2) work when computing n genera-

tions on an array of size n. JACOBI-ITER incurs Θ(1+ n=L) cache misses if the data fits

into cache, and it incurs Θ(n2=L) cache misses if the array does not fit into cache.

Proof. Since there are two nested loops, each of which performs n iterations, the

work is Θ(n2).
36

data array A

generation

time

data array A

generation

(a) (b)

241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256

225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240

209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224

193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208

177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192

161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176

145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160

129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144

113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128

97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112

81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96

65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80

49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64

33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Figure 6-2: Ordering of updates of JACOBI-ITER on an array with 16 elements. (a) The

trace matrix with the order of updates from 1 to 256. (b) A bar-graph illustrating the

updates, where the height of a bar represents the ordering of updates and the smallest bar

is updated first.

We now analyze the cache misses of JACOBI-ITER on a (Z, L) ideal cache. Letα
be a constant sufficiently small that αZ elements fit into a cache of size Z. As long

as the array and the temporary storage fit into cache, e.g., n � αZ, the algorithm

performs well. The cache complexity is only Θ(1 + n=L) since the O(n) elements

are read (in order) only once.

If the array has size n � αZ, however, then it does not all fit in cache at one time.

The optimal replacement strategy can keep at most O(Z) elements in cache. Thus,

per iteration we have Ω(n=L- Z) updates which are cache misses. Consequently,

the total number of cachemisses isΘ(n)Ω(n=L-Z) = Ω(n2=L) for the n iterations.

The algorithm can be optimized to use only O(1) temporary storage and avoid

the modulo computation, but the number of cache misses remains at Θ(n2=L).
6.2 Recursive algorithm

In this section, we present an optimal recursive algorithm to compute an n-pass

Jacobi filter. This cache-oblivious algorithm JACOBI-REC is sketched in Figure 6-3,

where the input size is a power of 2.1 We prove that the work used by JACOBI-

1The algorithm for the general case is slightly more complicated.

37

JACOBI4(A, n, s,w, τ)
1 if w > 2

2 then JACOBI4(A, n, s,w=2, τ)
3 JACOBI4(A, n, (s+w=2),w=2, τ)
4 JACOBI5(A, n, (s+w=4) + 1,w=2, τ)
5 JACOBI4(A, n, (s+w=4),w=2, τ +w=4)
6 else p τ mod 2

7 q (τ + 1) mod 2

8 A[p][s mod n]
9

�
A[q][(s- 1) mod n] + A[q][s mod n] + A[q][(s+ 1) mod n]�=3

10 A[p][(s+ 1) mod n]
11

�
A[q][s mod n] + A[q][(s+ 1) mod n] + A[q][(s+ 2) mod n]�=3

JACOBI5(A, n, s,w, τ)
1 if w > 2

2 then JACOBI5(A, n, s+w=4,w=2, τ)
3 JACOBI4(A, n, s+w=4,w=2, τ +w=4)
4 JACOBI5(A, n, s,w=2, τ +w=4)
5 JACOBI5(A, n, s+w=2,w=2, τ +w=4)
JACOBI-REC(A)
1 n length of A

2 JACOBI4(A, n, 0, n, 0)
3 JACOBI5(A, n, n=2, n, 0)
4 JACOBI4(A, n, n=2, n, n=2)
5 JACOBI5(A, n, 0, n, n=2)

Figure 6-3: The recursive implementation of themultipass filter on array A of size n, where

n is a power of 2. The algorithm uses two auxiliary subroutines JACOBI4(A, n, s,w, τ) and
JACOBI5(A, n, s,w, τ). The input is in A[0] and A[1] is the O(n) auxiliary space. The

parameters s and w specify the position and size of the computed triangle and τ is the

generation of the lowest level of the triangle. JACOBI-REC(A) is the initial call.
38

mod n
1

22

33
4

2

3

g
en

er
at
io
n

data

(a)

1 2
3

4

g
en

er
at
io
n

data

(b)

43 2

1

g
en

er
at
io
n

data

(c)

Figure 6-4: (a) Decomposition of trace matrix in four triangles by JACOBI-REC. Triangles 2

and 3 “wrap around” since array positions are computed modulo n. (b) shows the decom-

position used by JACOBI4 and (c) shows the decomposition used by JACOBI5.

REC is Θ(n2) and the cache complexity is O(1+ n=L+ n2=ZL), even if the problem

does not fit into cache, which is a factor of Z fewer cache misses than the iterative

method.

In order to simplify the description, we describe the recursive algorithm as if

the whole trace matrix would be computed. It turns out that in practice one auxil-

iary array of size n suffices to compute the n steps on an array of size n.

The divide-and-conquer algorithm divides the trace matrix into 4 triangles,

which are recursively divided into smaller triangles, as shown in Figure 6-4(a).

Two auxiliary functions JACOBI4 and JACOBI5 are used to implement the recur-

sion. JACOBI4(A, n, s,w, τ) computes an “upper triangle” of the trace matrix A

of size n, where the base of the triangle has size w and starts at s with generation

τ . It recursively computes up to w=2 generations ahead as shown in Figure 6-4(b).

Analogously, JACOBI5 computes a lower triangle recursively as shown in Fig-

ure 6-4(c). The resulting trace matrix for an array of size 16 is shown in Figure 6-5.

It illustrates the locality of the recursive algorithms. The triangles of the decom-

position are clearly visible. Depending on the cache size, triangles of different size

fit entirely into cache, which are then computed without any further cache misses.

Although JACOBI-REC computes the elements in different order than JACOBI-ITER,

it computes exactly the same values as JACOBI-ITER.

39

data array A

generation

time

data array A

generation

(a) (b)

200 241 242 239 240 243 244 231 232 253 254 251 252 255 256 199

197 198 235 236 237 238 227 228 229 230 247 248 249 250 195 196

194 191 192 233 234 217 218 225 226 223 224 245 246 185 186 193

187 188 189 190 213 214 215 216 219 220 221 222 181 182 183 184

176 179 180 167 168 209 210 207 208 211 212 147 148 177 178 175

173 174 163 164 165 166 203 204 205 206 143 144 145 146 171 172

170 153 154 161 162 159 160 201 202 133 134 141 142 139 140 169

149 150 151 152 155 156 157 158 129 130 131 132 135 136 137 138

104 125 126 123 124 127 128 71 72 113 114 111 112 115 116 103

101 102 119 120 121 122 67 68 69 70 107 108 109 110 99 100

98 95 96 117 118 57 58 65 66 63 64 105 106 89 90 97

91 92 93 94 53 54 55 56 59 60 61 62 85 86 87 88

80 83 84 19 20 49 50 47 48 51 52 39 40 81 82 79

77 78 15 16 17 18 43 44 45 46 35 36 37 38 75 76

74 5 6 13 14 11 12 41 42 25 26 33 34 31 32 73

1 2 3 4 7 8 9 10 21 22 23 24 27 28 29 30

Figure 6-5: Ordering of updates of JACOBI-REC on an array with 16 elements. (a) The

trace matrix with the order of updates from 1 to 256. (b) A bar-graph illustrating the

updates, where the height of a bar represents the ordering of updates and the smallest bar

is updated first.

Theorem 15 The recursive JACOBI-REC algorithm involvesΘ(n2)work and incursΘ(1+
n=L+ n2=ZL) cache misses when computing n generations on n elements.

Proof. To simplify the analysis, we assume that n is an exact power of 2.2 The

work of JACOBI-REC can be described by three recurrences:

W(n) = 2W4(n=2) + 2W5(n=2) +O(1) ,
W4(n) = 3W4(n=2) +W5(n=2) +O(1) ,
W5(n) = 3W5(n=2) +W4(n=2) +O(1) ;

where W4 and W5 are the work used by the recursive procedures JACOBI4 and

JACOBI5. The solution for the total work is W(n) = Θ(n2), which is the same as

the work of the iterative algorithm.

The number Q(n) of cache misses incurred by a subproblem of size n is de-

scribed by three recurrences:

Q(n) = 2Q4(n=2) + 2Q5(n=2) +O(1) ;
Q4(n) � �

Θ(1+ n=L) if n � αZ ,

3Q4(n=2) +Q5(n=2) +O(1) otherwise ;

2The results can be extended, but the analysis is somewhat more complicated.

40

(a) (b) (c)

u

v

Figure 6-6: Computational dag of JACOBI-ITER. (a) complete subgraph of size 9� 9, (b) its

decomposition into lines, and (c) diamond-shaped subdag of width Ω(d) that is enclosed
by two nodes u and v of distance d = 4.

Q5(n) � �
Θ(1+ n=L) if n � αZ ,

3Q5(n=2) +Q4(n=2) +O(1) otherwise ;

where Q4 and Q4 are the cache misses of the two recursive procedures JACOBI4
and JACOBI5, and α is a sufficiently small constant. The base case occurs when

the two arrays fit into the cache. Solving these recurrences, we obtain Q(n) =
Θ(1+ n=L+ n2=ZL) cache misses.

6.3 Lower bound

Finally, we prove that the number of cachemisses for this problem is lower bounded

by Ω(1+ n=L+ n2=ZL), which implies that the recursive algorithm JACOBI-REC is

indeed optimal.

We can use the red-blue pebble game technique described by Hong and Kung

[25] to lower-bound the number of cache misses incurred by any algorithm com-

puting n generations of an Jacobi-multipass filter on n elements. Hong and Kung

use properties of the computation dag (directed acyclic graph) G given by a com-

putation to lower-bound the number of cachemisses on a two-level memory. Nodes

in a computation dag represent operations, and edges, the data-flow of the algo-

rithm. Nodes with no incoming edges are input and nodes with no outgoing edges

are output. Figure 6.3(a) shows a subgraph of the computation dag given by JA-

COBI-ITER. A vertex-disjoint path from inputs to outputs will be called lines. The

decomposition of Figure 6.3(a) into lines is shown in in Figure 6.3(b). The number

of cache misses can be lower-bounded by the information speed function FG(d) of
a dag G, which is defined as follows.

41

For any two vertices u and v on the same line that are at least d apart, there are

FG(d) vertices in the dag G satisfying two properties:

1. None of these vertices belongs to the same line.

2. Each of these vertices belongs to a path connecting u and v.

In the dag given by JACOBI-ITER, for example, two nodes u and v enclose a

diamond-shaped subdag of width Ω(d), where d is the distance of u and v, as

shown in Figure 6.3(c).

We can obtain lower bounds on the cache complexity Q using the following

lemma which is proven in [25].

Lemma 16 Suppose G is a computation dag where all inputs can reach all outputs through

vertex-disjoint paths, and its information speed function is Ω(FG(d)). If FG(d) is mono-

tonically increasing, and F-1G (d) exists, then the number of cache misses required to execute

G is

Q = Ω(K=F-1G (Z)) ,
where K is the total number of vertices on the vertex-disjoint paths or lines.

We use Lemma 16 to prove a lower bound on the cache complexity of any algo-

rithm computing n generations of a Jacobi multipass filter on n elements by finding

an upper bound on F-1G .

Theorem 17 Any scheduling of the computation dag induced by the JACOBI-ITER algo-

rithm on an array of size n incurs Ω(1+ n=L+ n2=LZ) cache misses.

Proof. This theorem can be proven by applying three lower bounds:

1. Suppose that L = 1. We can lower-bound the cache complexity using Lem-

ma 16. Consider the subnetwork of the dag of JACOBI-ITER that includes only

one third of the edges, as shown in Figure 6.3(b). The subnetwork has n lines

with K = Θ(n2) vertices. The information speed function is F(d) = Ω(d),
since a diamond-shaped subdag of width Ω(d- 2) is enclosed by two nodes

as illustrated in Figure 6.3(c) for d = 4. Therefore F-1(d) = O(d) and the

resulting lower bound for Q is Q(n) = Ω(n2=Z).
At most L data items are moved into cache when a cache miss occurs. Thus,

a first lower bound for L > 1 is

Q(n) = Ω(n2=ZL) .
42

512 1024 2048 4096 8192 16384 32768 65536 131072 262148
100

120

140

160

180

200

220

problem size N

tim
e

pe
r

el
em

en
t u

pd
at

e
in

 n
an

os
ec

on
ds

iterative
recursive

Figure 6-7: Plot of update time per element per generation for optimized iterative and

recursive implementations of a multipass filter on a 167-MHz UltraSparc with 16kB L1-

cache and 512kB L2-cache.

2. The algorithmmust read all Θ(n) inputs, which reside on Ω(n=L) cache lines.
This yields the second lower bound of Ω(n=L).

3. The third lower bound is the trivial lower bound of Q(n) = Ω(1).
By combining these lower bounds we get Q(n) = Ω(1+ n=L+ n2=LZ).

6.4 Experimental results

We now compare optimized implementations of the iterative and the recursive

algorithms for the simple update rule given in Equation (6.1). (The iterative algo-

rithm uses only 2 temporary variables, and the recursive implementation uses a

“unfolded” [18] base case.) Figure 6-7 shows a plot of the update time per element

per generation for the two versions on a 167-MHz Sun UltraSparc with 16kB L1-

cache and 512kB L2-cache. The update time for the recursive algorithm is not only

faster than the iterative algorithm, it is also nearly constant, whereas the iterative

implementation slows down with every new level of the memory hierarchy. For

arrays that do not fit in L2-cache, the recursive implementation executes in less

than 70% of the time of the iterative version. The gain can be even higher for out-

of-core algorithms, because disk bandwidth is considerably less than memory or

cache bandwidths.

43

Summary

In this section, we have presented an optimal recursive algorithm to compute a

multipass filter over one-dimensional data. We compared its cache complexity

to a iterative algorithm and gave some brief empirical results for this problem.

The recursive algorithm executes in less than 70% of the time of the iterative al-

gorithm on problems that do not fit in L2-cache. The technique presented here

can be extended to multidimensional stencil-filters. I expect that the advantage of

the cache-oblivious algorithm on the multidimensional data will prove to be even

greater.

44

SECTION 7

Cache complexity of ordinary

algorithms

This section analyzes the cache complexity of the “ordinary” algorithms for ma-

trix transposition, matrix multiplication, and sorting. Although optimal in the

random-access machine model [4] and cache oblivious, these algorithms are not

asymptotically optimal with respect to cache misses. We first prove that the num-

ber of cache misses of algorithms with a “regular” complexity bound (as defined

later) is asymptotically the same even if least-recently-used (LRU) is used instead

of optimal replacement. We then show that the standard iterative algorithm to

transpose a matrix incurs Ω(n2) cache misses on a n� n matrix matching the triv-

ial upper bound of one cache miss per time step. The ordinary iterative algorithm

to multiply two n� n matrices incurs Ω(n3) cache misses, which is also the worst

possible asymptotic behavior for an O(n3)-work algorithm. Many “ordinary” al-

gorithms for sorting exit. We pick mergesort and prove that its cache complexity is

Ω((n=L) lg(n=Z))when sorting an array of n elements, which is a factor of Θ(lg Z)
away from optimal.

The ideal-cache model is well suited for algorithm design and upper-bound

analyses. This comes in part from the optimal replacement strategy employed by

the ideal-cache.

Lower-bounding the cache complexity of an algorithm with optimal replace-

ment is somewhat hard, since it must be proven that the optimal replacement

strategy will do. For upper bounds, we can pick any replacement strategy we

45

want and the optimal replacement will perform as least as well as our arbitrary

strategy. However, for lower bounds we must be more careful. We usually do

not know which line the optimal replacement strategy would replace. The follow-

ing analysis shows that the optimal and omniscient replacement strategy used by

an ideal cache can be simulated efficiently by the LRU replacement strategy. The

LRU strategy replaces the cache line whose most recent access was earliest among

all lines in the associativity set. In fact, for algorithms with a “regular” complex-

ity bound, LRU and optimal replacement yield the same asymptotic bounds. We

define a cache complexity bound Q(n;Z, L) to be regular if

Q(n;Z, L) = O(Q(n; 2Z, L)) . (7.1)

Lemma 18 Consider an algorithm that causes Q�(n;Z, L) cache misses on a problem

of size n using a (Z, L) ideal cache. Then, the same algorithm incurs Q(n;Z, L) �
2Q�(n;Z=2, L) cache misses on a (Z, L) cache that uses LRU replacement.

Proof. Sleator and Tarjan [37] have shown that the cache misses on a (Z, L) cache
using LRU replacement is (Z=(Z-Z� + 1))-competitive with optimal replacement

on a (Z�, L) ideal if both caches start with an empty cache. It follows that the

number of misses on a (Z, L) LRU-cache is at most twice the number of misses on

a (Z=2, L) ideal-cache.
Corollary 19 For algorithms with regular cache complexity bounds, the asymptotic num-

ber of cache misses is the same for LRU and optimal replacement.

Proof. This corollary follows directly from Lemma 18 and the regularity condi-

tion.

The same argument extends to a variety of other replacement strategies [11],

including:

flush when full: Whenever there is a cache miss and there is no space left in the

cache, evict all lines currently in the cache (call this action a “flush”).

clock replacement: An approximation to LRU in which a single “use bit” replaces

the implicit (time of last access) timestamp of LRU.

first-in, first-out: Replace the line that has been in the fast memory longest.

random: Whenever a cache miss occurs, evict a page chosen randomly and uni-

formly among all fast memory pages.

We shall use Corollary 19 in the following lower-bound proofs and assume that

the cache is handled by LRU to simplify our analyses. If an algorithm analyzed

with LRU is regular, then the optimal strategy must also be regular. Therfore,

according to Corollary 19 the bound derived with the LRU analysis applies to the

ideal cache model as well.

46

7.1 Matrix multiplication

In this section, we analyze the straightforward iterative algorithm for matrix mul-

tiplication. We prove that it causes Ω(n3) cache misses when the n � n matrices

are stored in row-major order and do not fit in cache. We further show that even if

the matrices are stored in the order in which they are used and do not fit in cache,

the number of cache misses is at least Ω(n3=L), compared to Θ(n3=LpZ) for an the

cache-optimal Θ(n3)-work algorithm presented in Section 2.

The simplest way to compute the product of two matrices is to evaluate the

formula

ci j = nX
k=1 aikbk j

directly, as in the following program:

ORD-MULT(A, B,C, n)
1 for i 1 to n

2 do for j 1 to n

3 do ci j 0

4 for k 1 to n

5 do ci j ci j + aikbk j

Theorem 20 TheORD-MULT algorithm for matrix multiplication usesΘ(n3)work when
multiplying n� n matrices that do not fit in cache. It incurs Ω(n3) cache misses, when

the matrices are stored in row-major order. Even if the matrices are stored in the order

in which they are used, ORD-MULT incurs Ω(n3=L) cache misses, which is a factor of

Θ(pZ) from optimal.

Proof. Analyzing the work of ORD-MULT(A, B) is straightforward. Since there

are three nested loops, each of which performs n iterations, the work is Θ(n3).
Since the algorithm cannot access more than O(1) elements in constant time,O(n3)
is also an upper bound on the number of cache misses for this algorithm.

First, we assume that both matrices are stored in row-major order (Figure 2-

1(a)): ----C ----A � ----B

The number of cache misses can be lower-bounded by counting only the misses

caused by reading matrix B. In the ith iteration of the outer loop, the elements of

47

the ith row of C are computed. While i is fixed the inner two loops iterate over all

n2 values of k and j, reading all elements of matrix B column by column.

Assuming that the matrix does not fit in cache, e.g. n� Z=L, the LRU replace-

ment strategy overwrites lines of matrix B before they can be reused. Therefore, the

number of misses on matrix B to compute one element of matrix C is Ω(n). Since
C contains n2 elements, the algorithm causes Ω(n3) cache misses. It follows from

Corollary 19 that even with an optimal replacement strategy, ORD-MULT incurs

Ω(n3) cache misses.

ORD-MULT(A, B) does not exhibit good cache behavior. Accesses to the same

element, or at least to the same cache line, are far apart. The spatial locality of the

memory accesses can be improved by changing thememory layout of thematrices:

The previous analysis showed that the accesses tomatrix B alone cause Θ(n3) cache
misses. The problem is that matrix B is stored in row-major order, but accessed

columnwise. Assume that the memory layout for B is changed from row-major to

column-major order (Figure 2-1(b)):

----C ----A � ????B

Now, both matrices are accessed in the order in which they are stored. As long as

the cache can provide a single line for each of A, B, and C, for each cache miss,

the following L - 1 accesses are cache hits. Hence, the number of cache misses

is Θ(n3=L), which is a factor of Θ(L) improvement over the previous algorithm.

This improvement comes with the disadvantage that the matrices are not stored

uniformly and it is still a factor of Θ(pZ) away from the cache-optimal algorithms

shown in Sections 1 and 2.

7.2 Matrix transposition

In this section, we argue that the iterative algorithm for matrix transposition causes

Ω(n2) cache misses on a n� nmatrix, when the matrix is stored in row- or column-

major order (Figure 2-1(a,b)). This is a factor of Θ(L) more cache misses than the

cache-optimal algorithm presented in Section 3.

The ordinary algorithm for matrix transposition walks through the matrix row

by row and swaps elements:

48

ORD-TRANSPOSE(A, B, n)
1 for i 1 to n

2 do for j 1 to n

3 do bij a ji

Theorem 21 TheORD-TRANSPOSE algorithm for matrix multiplication usesΘ(n2)work
and incurs Ω(n2) cache misses, when transposing a n � n matrix that does not fit into

cache.

Proof. Transposing a matrix is equivalent to changing the memory layout from

row- to column-major layout or vice versa. Here, we show that accessing in column-

major order a matrix stored in row-major layout causes Ω(n2) cache misses. After

Z=L cache misses, the cache is filled and lines must be evicted. The LRU strat-

egy replaces the lines in the same order in which they are read. Therefore, after

n accesses, when a line could be reused, it has been evicted from cache by LRU

replacement. Thus, all n2 accesses are cache misses. Since Ω(n3) is regular, it fol-
lows from Corollary 19 that ORD-TRANSPOSE incurs Ω(n2) cache misses in the

ideal-cache model.

7.3 Mergesort

We have just shown that divide-and-conquer algorithms presented in Sections 2

and 3 for matrix multiplication and matrix transposition incur fewer cache misses

than their iterative counterparts. In this section, we show that divide-and-conquer

algorithms are not per se cache-optimal. Specifically, we show that Mergesort [16,

p. 13] incurs Ω((n=L) lg(n=Z)) cache misses for an input of size n, which is a fac-

tor of Θ(lg Z) more cache misses than the cache-optimal algorithms presented in

Sections 4 and 5.

Mergesort is a recursive sorting algorithm that divides the input sequence in

two parts, sorts them recursively and then merges the two sorted subsequences

into one sorted sequence. The following pseudocode is the standard description

of mergesort and can be found in a variety of textbooks [16, 34].

MERGESORT(A, p, r)
1 if p < r

2 then q b(p+ r)=2c
3 MERGESORT(A, p, q)
4 MERGESORT(A, q+ 1, r)
5 MERGE(A, p, q, r)

49

We assume that the input array A of length n is stored in Θ(n) contiguous

memory locations. MERGESORT uses an auxiliary procedure MERGE(A, p, q, r) that
merges two sorted subarrays A[p . . q] and A[q+ 1 . . r] into a single sorted subarray

that replaces the current subarray A[p . . r]. Merging two subarrays of length n=2
uses Θ(n) work and causes O(n=L) cache misses assuming that Z=L � 3, since

the Θ(n) data items can be accessed in linear order and each cache miss brings L

elements into cache.

The work of MERGESORT is Θ(n lg n), which is optimal in the random-access

machine model [16, p. 172]. Although mergesort is a divide-and-conquer algo-

rithm, its cache complexity is not asymptotically optimal.

Lemma 22 MERGESORT incurs Ω((n=L) lg(n=Z)) cache misses for an input of size n.

Proof. The cache complexity of MERGESORT can be described by the recurrence:

Q(n) = �
Ω(n=L) if n � αZ ,

2Q(n=2) + Ω(n=L) otherwise ,
(7.2)

where α is a sufficiently small constant. The base case arises when the Θ(n) ele-
ments fit into the cache. Sorting Θ(n) elements requires Θ(n) auxiliary storage for

the merging procedure. In the recursive case where n > αZ, two subproblems of

half the size are solved and then merged together. After line 3 of MERGESORT is

executed, LRU replacement will have evicted most of the n=2 data items used in

the first recursive call. Thus, Ω(n) data elements must be read from contiguous

memory locations incurring Ω(n=L) cache misses. The solution of Equation (7.2)

is Ω((n=L) lg(n=Z)).
Summary

In this section, we have shown that the cache complexity of the ordinary algo-

rithms for matrix transposition, matrix multiplication, and sorting are not asymp-

totically optimal. We have proven in Corollary 19 that the optimal replacement

strategy can be efficiently simulated by the LRU replacement strategy. For algo-

rithms with regular complexity bounds LRU and optimal replacement yield the

same asymptotic bounds. Since it is easier to analyze the caching behavior of an

algorithmwhenwe understandwhat the replacement strategy does, this Corollary

often helps to simplify the analyses.

50

SECTION 8

Other cache models

In this section we show that cache-oblivious algorithms designed in the two-level

ideal-cache model can be efficiently ported to other cache models. We show that

algorithms with regular complexity bounds (Equation (7.1)) (including all algo-

rithms heretofore presented) can be ported to less-ideal caches incorporating least-

recently-used (LRU) or first-in, first-out (FIFO) replacement policies [24, p. 378].

We argue that optimal cache-oblivious algorithms are also optimal for multilevel

caches. Finally, we present simulation results proving that optimal cache-oblivious

algorithms satisfying the regularity condition are also optimal (in expectation) in

the previously studied SUMH [5, 42] and HMM [1] models. Thus, all the algorith-

mic results in this thesis apply to these models, matching the best bounds previ-

ously achieved.

8.1 Two-level models

Many researchers, such as [3, 25, 43], employ two-level models similar to the ideal-

cache model, but without an automatic replacement strategy. In these models,

data must be moved explicitly between the the primary and secondary levels “by

hand.”

We now show that optimal algorithms in the ideal-cache model whose cache

complexity bounds are regular (Equation (7.1)) can be ported to these models

to run using optimal work and incurring an optimal expected number of cache

misses. Since previous two-level models do not support automatic replacement,

51

to port a cache-oblivious algorithms to them, we implement an LRU (or FIFO) re-

placement strategy in software.

Lemma 23 A (Z, L) LRU cache (or FIFO-cache) can be maintained using O(Z) primary

memory locations such that every access to a cache line in primary memory takes O(1)
expected time.

Proof. Given the address of the memory location to be accessed, we use a 2-

universal hash function [29, p. 216] to maintain a hash table of cache lines present

in the primary memory. The Z=L entries in the hash table point to linked lists in

a heap of memory containing Z=L records corresponding to the cache lines. The

2-universal hash function guarantees that the expected size of a chain is O(1). All

records in the heap are organized as a doubly linked list in the LRU order (or singly

linked for FIFO). Thus, the LRU (FIFO) replacement policy can be implemented in

O(1) expected time using O(Z=L) records of O(L) words each.

Theorem 24 An optimal cache-oblivious algorithmwith a regular cache-complexity bound

can be implemented optimally in expectation in two-level models with explicit memory

management.

Consequently, our cache-oblivious algorithms for matrix multiplication, matrix

transposition, FFT, and sorting are optimal in two-level models with explicit mem-

ory management.

8.2 Multilevel ideal caches

We now show that optimal cache-oblivious algorithms also perform optimally in

computers with multiple levels of ideal caches. Moreover, Theorem 24 extends to

multilevel models with explicit memory management.

The h(Z1, L1), (Z2, L2), . . . , (Zr , Lr)i ideal-cache model consists of an arbitrar-

ily large main memory and a hierarchy of r caches, each of which is managed by

an optimal replacement strategy. The model assumes that the caches satisfy the

inclusion property [24, p. 723], which says that for i = 1, 2, . . . , r - 1, the values

stored in cache i are also stored in cache i + 1. The performance of an algorithm

running on an input of size n is measured by its work complexity W(n) and its

cache complexities Qi(n;Zi, Li) for each level i = 1, 2, . . . , r.

Theorem 25 An optimal cache-oblivious algorithm in the ideal-cache model incurs an

asymptotically optimal number of cache misses on each level of a multilevel cache with

optimal replacement.

52

Proof. The theorem follows directly from the definition of cache obliviousness

and the optimality of the algorithm in the two-level ideal-cache model.

Theorem 26 An optimal cache-oblivious algorithmwith a regular cache-complexity bound

incurs an asymptotically optimal number of cache misses on each level of a multilevel cache

with LRU or optimal replacement.

Proof. Follows from Corollary 19 and Theorem 25.

8.3 The SUMHmodel

In 1990 Alpern et al. [5] presented the uniform memory hierarchy model (UMH), a

parameterizedmodel for a memory hierarchy. In the UMHα,ρ,b(l)model, for integer

constants α,ρ > 1, the size of the ith memory level is Zi = αρ2i and the line

length is Li = ρi. A transfer of one ρl-length line between the caches on level l and

l + 1 takes ρl=b(l) time. The bandwidth function b(l) must be nonincreasing. The

processor can access the cache on level 1 in constant time per access. An algorithm

given for the UMH model must include a schedule that, for a particular set of

input variables, tells exactly when each block is moved along which of the buses

between caches. Work and cache misses are folded into one cost measure T(n).
Alpern et al. prove that an algorithm that performs the optimal number of cache

misses at all levels of the hierarchy does not necessarily run in optimal time in

the UMHmodel, since scheduling bottlenecks can occur when all buses are active.

In the more restrictive SUMH model [42], however, only one bus is active at a

time. Consequently, we can prove that optimal cache-oblivious algorithms run in

optimal expected time in the SUMHmodel.

Lemma 27 A cache-oblivious algorithm with W(n) work and Q(n;Z, L) cache misses on

a (Z, L)-ideal cache can be executed in the SUMHα,ρ,b(l) model in expected time

T(n) = O
�
W(n) + r-1X

i=1 ρi

b(i)Q(n;Θ(Zi), Li)� ,

where Zi = αρ2i, Li = ρi, and Zr is big enough to hold all elements used during the

execution of the algorithm.

Proof. Use the memory at the ith level as a cache of size Zi = αρ2i with line length

Li = ρi and manage it with software LRU described in Lemma 23. The rth level is

the main memory, which is direct mapped and not organized by the software LRU

53

mechanism. An LRU cache of size Θ(Zi) can be simulated by the ith level, since

it has size Zi. Thus, the number of cache misses at level i is 2Q(n;Θ(Zi), Li), and
each takes ρi=b(i) time. Since only one memory movement happens at any point

in time and there are O(W(n)) accesses to level 1, the lemma follows by summing

the individual costs.

Lemma 28 Consider a cache-optimal algorithm whose work on a problem of size n is

lower-bounded by W�(n) and whose cache complexity is lower-bounded by Q�(n;Z, L) on
an (Z, L) ideal-cache. Then, no matter how data movement is implemented in SUMHα,ρ,b(l),
the time taken on a problem of size n is at least

T(n) = Ω

�
W�(n) + rX

i=1 ρi

b(i)Q�(n,Θ(Z j), Li)� ,

where Zi = αρ2i, Li = ρi and Zr is big enough to hold all elements used during the

execution of the algorithm.

Proof. The optimal scheduling of the data movements does not need to obey the

inclusion property, and thus the number of ith-level cache misses is at least as large

as for an ideal cache of size
Pi

j=1 Zi = O(Zi). Since Q�(n,Z, L) lower-bounds the

cache misses on a cache of size Z, at least Q�(n,Θ(Zi), Li) data movements occur

at level i, each of which takes ρi=b(i) time. Since only one movement can occur at a

time, the total cost is the maximum of the work and the sum of the costs at all the

levels.

Theorem 29 A cache-oblivious algorithm that is optimal in the ideal-cache model and

whose cache complexity is regular can be executed in the SUMHα,ρ,b(l) model in optimal

expected time.

Proof. The theorem follows directly from regularity and Lemmata 27 and 28.

8.4 The HMMmodel

Aggarwal, Alpern, Chandra, and Snir [1] proposed the hierarchical memorymodel

(HMM) in which an access to location x takes f (x) time. The authors assume that

f is a monotonically nondecreasing function, usually of the form dlog xe or dxαe.
Lemma 30 Consider a cache-oblivious algorithm with W(n) work and Q(n;Z, L) cache
misses on a (Z, L) ideal cache. Let Z1 < Z2 < � � � < Zr be positive integers such that a

54

cache of size Zr can hold all of the data used during the execution of the algorithm. Then,

the algorithm can be executed in the HMMmodel with cost function f in expected time

T(n) = O
�
W(n) f (s1) + rX

i=2 f (si)Q(n;Θ(Zi), 1)� ,

where s1 = O(Z1), s2 = s1 +O(Z2), . . ., sr = sr-1 +O(Zr).
Proof. Using Lemma 23 we can simulate a h(Z1, 1), (Z2, 1), . . . , (Zr, 1)i LRU cache

in the HMM model by using locations 1, 2, . . . , s1 to implement cache 1, locations

s1 + 1, s1 + 2, . . . , s2 to implement cache 2, etc. The cost of each access to the ith

cache is at most f (si). Cache 1 is accessed at most W(n) times, cache 2 is accessed

at most Q(n;Θ(Z2), 1) times, and so forth. The lemma follows.

Lemma 31 Consider a cache-optimal algorithm whose work on a problem of size n is

lower-bounded by W�(n) and whose cache complexity is lower-bounded by Q�(n;Z, L)
on an (Z, L) ideal cache. Then, no matter how data movement is implemented in an HMM

model with cost function f , the time taken on a problem of size n is at least

T(n) = Ω

�
W�(n) + rX

i=1 � f (Zi-1 - 1) - f (Zi-2 - 1)�Q�(n;Zi, 1)�
for any Z0 = 1 < Z1 < � � � < Zr such that a cache of size Zr can hold all of the data used

during the execution of the algorithm.

Proof. The memory of the HMM model can be viewed as a cache hierarchy with

arbitrary parameters Z0 = 1 < Z1 < � � � < Zr, where the memory elements are

mapped to fixed locations in the caches. The processor works on elements in the

level 0 cache with Θ(1) cost. The first Z1 - 1 elements of the HMM memory are

kept in the level 1 cache, the first Z2 - 1 elements in the level 2 cache, etc. One el-

ement in each cache is used as a “dynamic entry” which allows access to elements

on higher levels. Accessing a location at level i is then done by incorporating the

memory item in the dynamic element of each of the caches closer to the proces-

sor. This “cache hierarchy” obeys the inclusion principle, but it does not do any

replacement. Memory elements are exchanged—as in HMM—by moving them to

the processor and writing them back to their new location.

If we charge f (Zi-1 - 1) - f (Zi-2 - 1) to a cache miss on cache i, an access to

element at position x in cache at level k costs
Pk

i=1 f (Zi-1 - 1) - f (Zi-2 - 1) =
f (Zk-1 - 1) - f (0), which is at most f (x). Thus, the access cost for accessing el-

ement x is the same in the HMM as in this “cached” HMM model. The cost T(n)
55

of an algorithm in the HMMmodel can be bounded by the cost of the algorithm in

the multilevel model, which is at least

T(n) = Ω

�
W(n) + rX

i=1 � f (Zi - 1) - f (Zi-1 - 1)�Q(n;Zi, 1)� .

SinceW(n) �W�(n) and Q(n;Zi, 1) � Q�(n;Zi, 1), the lemma follows.

Theorem 32 A cache-oblivious algorithm that is optimal in the ideal-cache model and

whose cache complexity is regular can be executed in optimal expected time in the HMM

model, if the cost function is monotonically nondecreasing and satisfies f (2x) = Θ(f (x)).
Proof. Assume that the cache at level r is big enough to hold all elements used

during the execution of the algorithm. We choose Z1, � � � ,Zr such that 2 f (Zi-1 -
1) � Zi - 1 = O(Zi-1 - 1) for all 1 < i � r. Such a sequence can be computed

given that f is monotonically nondecreasing and satisfies f (2x) = Θ(f (x)).
We execute the algorithm as described in Lemma 30 on the HMM model with

2Z1, 2Z2, . . . , 2Zr. The cost of warming up the caches is
P

1�i�O(Zr) f (i) = Θ(Zr f (Zr))
which is asymptotically no greater than the cost of the algorithm even if it accesses

each input item just once. The result follows from Lemmata 18, 30 and 31.

Summary

One strength of the ideal-cachemodel, compared to other models studied in the lit-

erature, is that designing and analyzing algorithms is easier. But this section shows

that the assumptions of the ideal-cache model are not stronger than the assump-

tions of two hierarchical memory models in the literature. Specifically, we have

shown that optimal cache-oblivious algorithms in the ideal-cache model are also

optimal in the hierarchical memory model (HMM) [1] and in the serial uniform

memory hierarchy (SUMH) model [5, 42].

Due to its simplifications, the ideal-cache model falls short of modeling some of

the idiosyncrasies of a real-world memory hierarchy. It ignores issues such as con-

flict misses, and has only one level of caching. In developing recursive algorithms,

however, we have found that these additional complications are comparatively

easy to deal with once an algorithm has been designed in the ideal model.

56

SECTION 9

Related work

In this section, we discuss the origin of the notion of cache obliviousness. We also

give an overview of other hierarchical memory models.

Our research group at MIT noticed as far back as 1994 that divide-and-conquer

matrix multiplication was a cache-optimal algorithm that required no tuning, but

we did not adopt the term “cache-oblivious” until 1997. This matrix-multiplication

algorithm, as well as a cache-oblivious algorithm for LU-decomposition without

pivoting, eventually appeared in [9]. Shortly after leaving our research group,

Toledo [40] independently proposed a cache-oblivious algorithm for LU-decom-

position, but with pivoting. For n � n matrices, Toledo’s algorithm uses Θ(n3)
work and incurs Θ(1 + n2=L + n3=LpZ) cache misses. More recently, our group

has produced an FFT library called FFTW [20], which in its most recent incar-

nation [19], employs a register-allocation and scheduling algorithm inspired by

our cache-oblivious FFT algorithm. The general idea that divide-and-conquer en-

hances memory locality has been known for a long time [36].

Previous theoretical work on understanding hierarchical memories and the

I/O-complexity of algorithms has been studied in cache-aware models lacking an

automatic replacement strategy. Hong andKung [25] use the red-blue pebble game

to prove lower bounds on the I/O-complexity of matrix multiplication, FFT, and

other problems. The red-blue pebble game models temporal locality using two

levels of memory. The model was extended by Savage [33] for deeper memory

hierarchies. Aggarwal and Vitter [3] introduced spatial locality and investigated

a two-level memory in which a block of P contiguous items can be transferred in

57

one step. They obtained tight bounds for matrix multiplication, FFT, sorting, and

other problems. The hierarchical memory model (HMM) by Aggarwal et al. [1]

treats memory as a linear array, where the cost of an access to element at location x

is given by a cost function f (x). The BT model [2] extends HMM to support block

transfers. The UMH model by Alpern et al. [5] is a multilevel model that allows

I/O at different levels to proceed in parallel. Vitter and Shriver introduce paral-

lelism, and they give algorithms for matrix multiplication, FFT, sorting, and other

problems in both a two-level model [43] and several parallel hierarchical mem-

ory models [44]. Vitter [41] provides a comprehensive survey of external-memory

algorithms.

58

SECTION 10

Conclusion

Wir stehen selbst entt�auscht und sehn betro�enDen Vorhang zu und alle Fragen o�en. [...]Verehrtes Publikum, los, such dir selbst den Schlu�!Es mu� ein guter da sein, mu�, mu�, mu�!We feel de
ated too. We too are nettledTo see the curtain down and nothing settled. [...]You write the happy ending to the play!There must, there must, there's got to be a way!
BERTOLD BRECHT,Der gute Mensch von Sezuan, 1940

This thesis has introduced the notion of cache obliviousness and has presented

asymptotically optimal cache-oblivious algorithms for fundamental problems. Fig-

ure 10 gives an overview of the known efficient cache-oblivious algorithms, most

of which are described in this thesis. Two that we have not discussed are matrix

addition and LUP-decomposition. For matrix addition, a simple iterative algo-

rithm turns out to be cache-optimal if the matrix elements are read in the same

order in which they are stored in memory. The algorithm for LUP-decomposition

is due to Toledo [40], but it uses cache-aware algorithms as subprocedures. By ap-

plying the cache-oblivious algorithms presented here, however, his algorithm can

be converted into a cache-oblivious one.

The remainder of this section outlines research questions related to cache oblivi-

ousness. Section 10.1 discusses the engineering task of implementing cache-oblivi-

ous algorithms. Section 10.2 discusses cache-oblivious data structures and briefly

presents a cache-oblivious data structure for static binary search trees. Section 10.3

raises two theoretical questions about the general power of cache-oblivious algo-

rithms. Section 10.4 discusses divide-and-conquer as a programming strategy and

the tools needed to help programmers to write recursive programs. In Section 10.5,

I argue that because divide-and-conquer works well with cache hierarchies and

also with parallel computers, the coming revolution of shared-memory multipro-

cessors will make this design paradigm of paramount importance.

59

Algorithm Cache complexity Optimal?

Matrix Multiplication Θ(m+ n+ p+ (mn+ np+mp)=L tight lower+mnp=LpZ) bound unknown

Strassen’s Algorithm Θ(n+ n2=L+ nlog2 7=LpZ) tight lower

bound unknown

Matrix Transpose Θ(1+ n2=L) yes

Matrix Additiony Θ(1+ n2=L) yes

LUP-decompositionz [40] Θ(1+ n2=L+ n3=LpZ) tight lower

bound unknown

Discrete Fourier Transform Θ(1+ (n=L)(1+ logZn)) yes

Distribution sort Θ(1+ (n=L)(1+ logZn)) yes

Funnelsort Θ(1+ (n=L)(1+ logZn)) yes

Jacobi multipass filter Θ(1+ n=L+ n2=ZL) yes

Figure 10-1: Overview of the known cache-oblivious algorithms. Except for matrix addi-

tion (y) and LUP-decomposition (z), all these algorithms are presented in this thesis.

10.1 Engineering cache-oblivious algorithms

The job is not done after an efficient algorithm has been designed in the ideal-

cache model. The software-engineering task of programming the algorithm on a

real machine remains to be done. This task often involves coping with the less-

than-ideal behavior of real caches. Nevertheless, if the original algorithm in the

ideal-cache model exploits locality effectively, a program based on the algorithm

can usually be made to run efficiently in practice. If the algorithm fails to exploit

locality in the ideal-cache model, the algorithm will be slow no matter what the

real-world computer environment looks like.

The trend in architecture is towards bigger caches with steeper hierarchies and

towards new cache organizations which employ more “intelligent” algorithms to

use the cache memory more effectively. But even when caches get more intelli-

gent, the algorithm designer retains responsibility to ensure that frequently ac-

cessed data has the opportunity to reside in cache.

Both cache-aware and cache-oblivious strategies can be used to achieve good

caching behavior of an algorithm. This thesis has shown that optimal cache-ob-

livious algorithms exist which have the same cache complexity as optimal cache-

aware algorithms. But how do these two strategies compare in practice? How

much faster is a cache-aware algorithm optimized for a given architecture than a

cache-oblivious algorithm that solved the same problem?

60

Initial measurements I have taken indicate that cache-oblivious algorithms can

rival the performance of hand-tuned cache-aware code, but in general cache-aware

programs are faster. I hope to quantify this difference, as well as resolve other em-

pirical questions. How do more levels of caching affect the difference between

cache-aware and cache-oblivious algorithms? By how much do cache-aware algo-

rithms slow down when executed on hardware they are not optimized for? An-

swers to these questions will become increasingly important as cache hierarchies

become more pronounced.

10.2 Cache-oblivious data structures

This section discusses cache-oblivious data structures and briefly presents a cache-

oblivious data structure for static binary search trees.

As there are cache-oblivious algorithms, there are cache-oblivious data struc-

tures. The blocked layout (Figure 2-1(c)), for example, is cache aware. To optimize

it for a certain cache, the line length must be known. The bit-interleaved layout

(Figure 2-1(d)), however, is cache oblivious and has the same asymptotic behavior

as the blocked layout for matrix multiplication. Other cache oblivious layouts for

matrices exist like the Morton or Hilbert layouts discussed in [12, 13, 18].

Different data layouts can greatly affect the asymptotic behavior of an algo-

rithm. For cache-optimal matrix multiplication, as discussed in Section 2, the tall

cache requirement can be relaxed if matrices are stored in blocked (Figure 2-1(c))

or bit-interleaved order (Figure 2-1(d)). In Section 7.1 we have shown that the

number of cache misses for the ordinary matrix multiplication algorithm can be

reduced by a factor of Θ(L) by choosing a different data layout.

Can the idea of cache obliviousness be extended to data structures? Do efficient

cache-oblivious data structures exist for dynamic data structures, such as linked

lists, heaps, or trees? Although I do not yet know the answer to this question, I

have been able to devise a cache-oblivious layout for static binary search trees that

is O(1)-competitive with the performance of B-Trees [28], which are used in file

systems and other out-of-core applications because of their low cache complexity.

Figure 10-2 shows the cache-oblivious layout for a complete binary search tree

of height 4. Let T be a complete binary tree of height h = Θ(lg n), where n is the

number of elements in the tree. To find the layout, divide T at level bh=2c, which

separates T into subtree T0 (top bh=2c levels) and k � 2bh=2c subtrees having height

at most dh=2e. The cache-oblivious data layout L(T) of T is defined recursively as

follows. L(T) = L(T0) k L(T1) k � � � k L(Tk) ,
61

8 4 12 2 1 3 6 5 7 10 9 11 14 13 15

memory

Figure 10-2: Cache-oblivious layout of a binary tree of height 4 with 15 elements 1,

2, . . . , 15. The values stored in the nodes of the tree are shown in the order in which they

are stored. Pointers to left children are shown in grey and pointers to right children in

black.

where k is the concatenation operator. The base case, when the tree has only one

node, is trivial. The cache complexity of finding an element in this data structure

on a (Z, L) ideal-cache is O(lgL n), which is asymptotically equivalent to the per-

formance of a B-Tree. Making this layout strategy work for dynamic search trees

is a high research priority.

10.3 Complexity of cache obliviousness

In this section, we discuss whether a separation theorem can be proven, showing

that certain problems can only be solved cache-optimally by a cache-aware algo-

rithm. We also discuss whether a simulation result can be proven that bounds the

advantage of cache-aware algorithms over cache-oblivious algorithms.

We know now that many optimal cache-oblivious algorithms exist. But, how

powerful are cache-oblivious algorithms compared to cache-aware algorithms in

general?

Separation: Is there a separation in asymptotic complexity between cache-aware

and cache-oblivious algorithms?

It appears that cache-aware algorithms should be able to use caches better than

cache-oblivious algorithms since they havemore knowledge about the system they

are running on. But so far, I have not found a cache-aware algorithm that has better

asymptotic behavior than a well-designed cache-oblivious algorithm. Neverthe-

less, I do believe a seperating problem exists. I conjecture that for such a seperat-

ing problem, the best cache-oblivious algorithm has a factor of Ω(lg Z)more cache

misses than the best cache-aware algorithm.

Simulation: Given a class of optimal cache-aware algorithms to solve a single

problem, can we construct a good cache-oblivious algorithm that solves the

same problem?

62

I believe that the gap between cache-aware and cache-oblivious algorithms (if it

exists) is not bigger than a factor of O(lg Z) difference. Perhaps this result can

be proven by using simulation techniques to convert a class of cache-aware algo-

rithms into a cache-oblivious algorithm. I have not yet had much success in this

line of research, however.

10.4 Compiler support for divide-and-conquer

This section discusses how new compiler techniques can help to ease the program-

ming of divide-and-conquer algorithms. Most algorithms given in this thesis are

divide-and-conquer algorithms. Conventional wisdom says that recursive proce-

dures should be converted into iterative loops in order to improve performance [8].

While this strategy was effective ten years ago, many recursive programs now ac-

tually run faster than their iterative counterparts. So far most of the work by archi-

tects and compiler writers is concentrated on loop-based iterative programs. Their

tools are often not appropriate for recursion and divide-and-conquer programs.

For a divide-and-conquer algorithm to be efficient, the base case must be ef-

ficiently coded. Coding recursion with a simple “unit” base case is usually easy

for a programmer, but then the overhead of the recursive implementation can be

substantial. To get full performance out of a recursive algorithm, it is necessary

to coarsen the base case of recursion (a transformation called “unfolding” in [18]),

which is analogous to loop unrolling. Coarsening of base cases is motivated by

the observation that for many recursive algorithms, the overhead of recursion is

often in the lowest few levels, near the leaves. With a branching factor of 2, for

example, 97% of the recursive function calls are in the bottom 5 levels of recursion.

The proportion is even higher for branching factors greater than 2.

Typically, a variety of coarsened base cases must be written, making it hard

to code by hand. Can a compiler effectively generate coarsened base cases? This

problem is much like loop-unrolling, which is already done by compilers.

Matteo Frigo, a member of our research group, and Steve Johnson, also at MIT,

have implemented a discrete Fourier transform library FFTW [20] that incorpo-

rates a cache-oblivious algorithm with a specialized compiler to generate coars-

ened base cases. I believe that parts of their technique can be extended to general

divide-and-conquer algorithms.

FFTW also employs an adaptive runtime execution, which chooses base cases

during an initialization phase of the program. This strategy is effective when the

question of which of several coarsened base cases yields the fastest results on a

63

given architecture cannot be determined at compile time. An adaptive execution

strategy allows the compiler to produce several distinct base-case implementa-

tions at different granularities and with different strategies, and then at runtime

initialization, choose the fastest for the particular machine by timing the various

alternatives. Benchmarks performed on a variety of platforms show that FFTW’s

performance is typically superior to that of other publicly available FFT software,

and it rivals or is better than many hand-coded vendor libraries.

10.5 The future of divide-and-conquer

Shared-memory multiprocessors are now available as deskside workstations and

will appear in desktop PC’s in the next two years and in mobile laptops within five

years. Divide-and-conquer algorithms seem to be a perfect match for these parallel

machines in which the technologies of parallelism and caching are converging.

In a shared-memory multiprocessor machine, multiple processors, each having

its own cache, work together to solve problems faster, communicating through a

single shared memory.

Our research group discovered, while working on the parallel programming

language Cilk [39, 9], that divide-and-conquer programs work well with shared-

memory multiprocessors. In Cilk a function can be “spawned”, making it logically

parallel to the spawning procedure. Since the Cilk scheduler decides at runtime

whether two logically parallel functions are actually executed in parallel, a Cilk

program is processor oblivious. It can be effectively executed on many processors,

as long as the problem has enough inherent parallelism. Rugina and Rinard [32]

have experimented with automatic parallelization from C to Cilk and achieved

good speedups on divide-and-conquer programs.

Recursive calls can often be replaced by recursive spawns, which allow the chil-

dren to work in parallel. Once the division phase is complete, the subproblems are

usually independent and can therefore be solved in parallel. Our experiments with

Cilk show that divide-and-conquer algorithms scale well and have good memory

behavior on a parallel machine. The number of cache misses of a Cilk program can

be upper-bounded using the cache complexity of its C elision (the Cilk program

without the parallel keywords) as shown in [9, 10].

Can we design algorithms which are optimal with respect to work, parallelism,

and cache complexity but which are also cache oblivious and processor oblivious?

I believe that resource-oblivious versions of the algorithms given in this thesis can

be proven to satisfy all three optimality requirements.

Small shared-memory multiprocessors are readily avaiable: A 4-processor ma-

64

chine costs less than $20,000 [26]. Most of these machines are designed to be

servers, but workstations intended to be used by a single user are starting to ap-

pear [35]. These machines will become more common over the next few years, and

it is expected that we will see a shared-memory multiprocessor-on-a-chip within a

few years [23, 27]. Writing efficient parallel programs is considered hard. Caching

problems are more pronounced in these machines than they are in single-processor

machines. Memory hierarchies will be bigger and steeper in the future, and cache

misses will be more expensive. The new Alpha 21264 chip [14], for example,

can deliver 2 words from L1-cache in one cycle, but it takes around 100 cycles

to fetch from main memory. Divide-and-conquer seems to provide a way to write

processor- and cache-oblivious algorithms, which will help to ease programming

on the future machines.

65

66

Bibliography

[1] AGGARWAL, A., ALPERN, B., CHANDRA, A. K., AND SNIR, M. A model

for hierarchical memory. In Proceedings of the 19th Annual ACM Symposium on

Theory of Computing (May 1987), pp. 305–314.

[2] AGGARWAL, A., CHANDRA, A. K., AND SNIR, M. Hierarchical memory with

block transfer. In 28th Annual Symposium on Foundations of Computer Science

(Los Angeles, California, 12–14 Oct. 1987), IEEE, pp. 204–216.

[3] AGGARWAL, A., AND VITTER, J. S. The input/output complexity of sorting

and related problems. Communications of the ACM31, 9 (Sept. 1988), 1116–1127.

[4] AHO, A. V., HOPCROFT, J. E., AND ULLMAN, J. D. The Design and Analysis of

Computer Algorithms. Addison-Wesley Publishing Company, 1974.

[5] ALPERN, B., CARTER, L., AND FEIG, E. Uniformmemory hierarchies. In Pro-

ceedings of the 31st Annual IEEE Symposium on Foundations of Computer Science

(Oct. 1990), pp. 600–608.

[6] BAILEY, D. H. FFTs in external or hierarchical memory. Journal of Supercom-

puting 4, 1 (May 1990), 23–35.

[7] BELADY, L. A. A study of replacement algorithms for virtual storage com-

puters. IBM Systems Journal 5, 2 (1966), 78–101.

[8] BENTLEY, J. L. Writing Efficient Programs. Prentice-Hall, 1982.

[9] BLUMOFE, R. D., FRIGO, M., JOERG, C. F., LEISERSON, C. E., AND RAN-

DALL, K. H. An analysis of dag-consistent distributed shared-memory algo-

rithms. In Proceedings of the Eighth Annual ACM Symposium on Parallel Algo-

rithms and Architectures (SPAA) (Padua, Italy, June 1996), pp. 297–308.

[10] BLUMOFE, R. D., FRIGO, M., JOERG, C. F., LEISERSON, C. E., AND RAN-

DALL, K. H. Dag-Consistent distributed shared memory. In Proceedings of

67

the 10th International Parallel Processing Symposium (IPPS) (Honolulu, Hawaii,

Apr. 1996).

[11] BORODIN, A., AND EL-YANIV, R. Online Computation and Competitive Analy-

sis. Cambridge University Press, 1998.

[12] CHATTERJEE, S., JAIN, V. V., LEBECK, A. R., AND MUNDHRA, S. Nonlinear

array layouts for hierarchical memory systems. In Proceedings of the ACM

International Conference on Supercomputing (Rhodes, Greece, June 1999).

[13] CHATTERJEE, S., LEBECK, A. R., PATNALA, P. K., AND THOTTETHODI, M.

Recursive array layouts and fast parallel matrix multiplication. In Proceedings

of the Eleventh Annual ACM Symposium on Parallel Algorithms and Architectures

(SPAA) (Saint-Malo, France, June 1999).

[14] COMPAQ. http://ftp.digital.com/pub/Digital/info/semiconductor/ ...literature/dsc-library.html.
[15] COOLEY, J. W., AND TUKEY, J. W. An algorithm for the machine computation

of the complex Fourier series. Mathematics of Computation 19 (Apr. 1965), 297–

301.

[16] CORMEN, T. H., LEISERSON, C. E., AND RIVEST, R. L. Introduction to Algo-

rithms. MIT Press and McGraw Hill, 1990.

[17] DUHAMEL, P., AND VETTERLI, M. Fast Fourier transforms: a tutorial review

and a state of the art. Signal Processing 19 (Apr. 1990), 259–299.

[18] FRENS, J. D., AND WISE, D. S. Auto-blocking matrix-multiplication or track-

ing blas3 performance from source code. In Proceedings of the Sixth ACM SIG-

PLAN Symposium on Principles and Practice of Parallel Programming (Las Vegas,

NV, June 1997), pp. 206–216.

[19] FRIGO, M. A fast Fourier transform compiler. In Proceedings of the ACM

SIGPLAN’99 Conference on Programming Language Design and Implementation

(PLDI) (Atlanta, Georgia, May 1999).

[20] FRIGO, M., AND JOHNSON, S. G. FFTW: An adaptive software architecture

for the FFT. In Proceedings of the International Conference on Acoustics, Speech,

and Signal Processing (Seattle, Washington, May 1998).

68

[21] FRIGO, M., LEISERSON, C. E., PROKOP, H., AND RAMACHANDRAN, S.

Cache-oblivious algorithms. Extended abstract submitted for publication,

May 1999.

[22] GOLUB, G. H., AND VAN LOAN, C. F. Matrix Computations. Johns Hopkins

University Press, 1989.

[23] HENNESSY, J. L. Back to the future: Time to return to some long standing

problems in computer systems? Plenary talk at FCRC’99.

[24] HENNESSY, J. L., AND PATTERSON, D. A. Computer Architecture: A Quantita-

tive Approach, 2nd ed. Morgan Kaufmann Publishers, INC., 1996.

[25] HONG, J.-W., AND KUNG, H. T. I/O complexity: the red-blue pebbling game.

In Proceedings of the Thirteenth Annual ACM Symposium on Theory of Computing

(Milwaukee, 1981), pp. 326–333.

[26] IBM. http://www.pc.ibm.com/us/netfinity/index.html.
[27] KENNEDY, K. Future investment in information technology research: Report

of the president’s information technology advisory committee. Plenary talk

at FCRC’99.

[28] KNUTH, D. E. Sorting and Searching, second ed., vol. 3 of The Art of Computer

Programming. Addison-Wesley, 1997.

[29] MOTWANI, R., AND RAGHAVAN, P. Randomized Algorithms. Cambridge Uni-

versity Press, 1995.

[30] NODINE, M. H., AND VITTER, J. S. Deterministic distribution sort in shared

and distributed memorymultiprocessors. In Proceedings of the Fifth Symposium

on Parallel Algorithms and Architectures (Velen, Germany, 1993), pp. 120–129.

[31] PRESS, W. H., FLANNERY, B. P., TEUKOLSKY, S. A., AND VETTERLING, W. T.

Numerical Recipies in C. Cambridge University Press, 1988.

[32] RUGINA, R., AND RINARD, M. Automatic parallelization of divide and con-

quer algorithms. In Seventh ACM SIGPLAN Symposium on Principles and Prac-

tice of Parallel Programming (PPOPP) (Atlanta, Georgia, May 1999), pp. 72–83.

[33] SAVAGE, J. E. Extending the Hong-Kung model to memory hierarchies. In

Computing and Combinatorics, D.-Z. Du andM. Li, Eds., vol. 959 of Lecture Notes

in Computer Science. Springer Verlag, 1995, pp. 270–281.

69

[34] SEDGEWICK, R. Algorithms in C. Addison-Welsey Publishing Company, 1990.

[35] SGI. http://www.sgi.com/products/hw workstations.html.
[36] SINGLETON, R. C. An algorithm for computing the mixed radix fast Fourier

transform. IEEE Transactions on Audio and Electroacoustics AU-17, 2 (June 1969),

93–103.

[37] SLEATOR, D. D., AND TARJAN, R. E. Amortized efficiency of list update and

paging rules. Communications of the ACM 28, 2 (Feb. 1985), 202–208.

[38] STRASSEN, V. Gaussian elimination is not optimal. Numerische Mathematik 13

(1969), 354–356.

[39] SUPERCOMPUTING TECHNOLOGIES GROUP, MIT LABORATORY FOR COM-

PUTER SCIENCE. Cilk-5.2 (Beta 1) Reference Manual. Cambridge, MA, 1998.

Available on the Internet from http://supertech.lcs.mit.edu/cilk.
[40] TOLEDO, S. Locality of reference in LU decomposition with partial pivoting.

SIAM Journal on Matrix Analysis and Applications 18, 4 (Oct. 1997), 1065–1081.

[41] VITTER, J. S. External memory algorithms and data structures. In External

Memory Algorithms and Visualization, J. Abello and J. S. Vitter, Eds., DIMACS

Series in Discrete Mathematics and Theoretical Computer Science. American

Mathematical Society Press, Providence, RI, 1999.

[42] VITTER, J. S., AND NODINE, M. H. Large-scale sorting in uniform memory

hierarchies. Journal of Parallel and Distributed Computing 17, 1–2 (January and

February 1993), 107–114.

[43] VITTER, J. S., AND SHRIVER, E. A. M. Algorithms for parallel memory I:

Two-level memories. Algorithmica 12, 2/3 (August and September 1994), 110–

147.

[44] VITTER, J. S., AND SHRIVER, E. A. M. Algorithms for parallel memory II: Hi-

erarchical multilevel memories. Algorithmica 12, 2/3 (August and September

1994), 148–169.

[45] WINOGRAD, S. On the algebraic complexity of functions. Actes du Congrès

International des Mathématiciens 3 (1970), 283–288.

70

