
Quantifier Rank Spectrum of L-infinity-omega

by

Nathanael Leedom Ackerman

Bachelor of Arts, Harvard University, June 2000

Submitted to the Department of Mathematics in partial
fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2006

c©Nathanael Leedom Ackerman, MMVI. All rights reserved.

The author hereby grants to MIT permission to reproduce and
distribute publicly paper and electronic copies of this thesis

document in whole or in part.

Author .
Department of Mathematics

May 3, 2006

Certified by. .
Gerald Sacks

Professor of Mathematics
Thesis Supervisor

Accepted by .
Pavel Etingof

Chairman, Department Committee on Graduate Students

Quantifier Rank Spectrum of L-infinity-omega

by

Nathanael Leedom Ackerman

Submitted to the Department of Mathematics
on May 3, 2006, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

In Part A we will study the quantifier rank spectrum of
sentences of Lω1,ω. We will show that there are scattered sen-
tences with models of arbitrarily high but bounded quantifier
rank. We will also consider the case of weakly scattered and
almost scattered sentences, and we will make some conjectures.

In Part B we will look at a new method of induction in the
case of sheaves. We will then use this method to generalize the
classical proof of the Suslin-Kleene Separation Theorem to the
context of sheaves on a partial Grothendieck topology.

Thesis Supervisor: Gerald Sacks

Title: Professor of Mathematics

3

Dedication

I would like to dedicate this paper to my parents, Joanne Leedom-

Ackerman and Peter Ackerman, as well as to my brother Elliot Ackerman. I

couldn’t have done this without their support.

I would especially like to thank my advisor Professor Gerald Sacks for

his guidance and advice over the last 8 years. He has taught me an enor-

mous amount, and I wouldn’t be the mathematician I am today if it wasn’t

for him.

I would also like to thank Professor Akihiro Kanamori and Professor

Hartley Rogers Jr. for being part of my thesis committee as well as for all

they have taught me during my time in graduate school.

In addition I would like to thank Professor Robin Knight for the all of

his help and the many hours he spend explaining his paper “The Vaught

Conjecture: A Counterexample”

I would also like to thank all the other members of the Boston Logic

Group. I have really enjoyed and learned a lot from the conversations I have

had with all of you. I would especially like to thank Peter Ahumada, Alice

Chan, Andrew Brooke-Taylor, Cameron Freer, Sy Friedman, Marta Garcia-

Matos, Christina Goddard, Byunghan Kim, Peter Koellner, Jessica Millar

and Josh Nichols-Barrer.

And finally I would like to thank all the people whose classes I have

taken while at MIT and all of the staff. And I would especially like to thank

Linda Okun for all of her help and patience over the years.

Contents

A Quantifier Rank Spectrum 11

1 Introduction 12

1.1 Summary . 12

1.1.1 The Goal . 12

1.1.2 The Approach . 13

1.2 Background . 15

1.2.1 L∞,ω . 15

1.2.2 Quantifier Rank . 19

1.2.3 Scattered Like Theories 27

1.2.4 Vaught Tree . 33

1.2.5 Miscellaneous . 34

2 Component Trees 38

2.1 Introduction . 38

2.2 Basic Trees . 38

2.2.1 Introduction . 38

2.2.2 Language of Trees . 40

2.3 Comparing Color . 47

4

CONTENTS 5

2.3.1 R≤ . 49

2.3.2 S= . 52

3 Collections of Archetypes 56

3.1 Definitions . 56

3.2 Weak Collection of Archetypes 56

3.3 Collection of Archetypes . 63

3.4 Results . 73

4 Gluing Homogeneous Theories 77

4.1 Definitions . 77

4.1.1 Results . 80

4.1.2 Construction of Models 86

4.1.3 Quantifier Rank of TK(M) 91

5 Robin Knight’s Theory Θ 96

5.1 Introduction . 97

5.2 Generalized Saturation for Restricted Archetypes 99

5.2.1 Introduction . 99

5.2.2 Definitions . 100

5.2.3 Generalized Saturation for Restricted Archetypes . . . 105

5.3 Consistent Pairs of Cells . 118

5.3.1 Cells . 120

5.3.2 Forests . 121

5.3.3 Augmented Unitary Trees 125

5.3.4 Sensible Trees of arity 1 129

5.3.5 Ambiguity Nodes . 131

CONTENTS 6

5.3.6 Ambiguity Trees . 134

5.3.7 Sensible Trees . 139

5.3.8 Archetypes . 145

5.4 A Collection of Archetypes for Θ 150

5.4.1 Weak Collection of Archetypes 151

5.4.2 Collection of Archetypes 154

5.5 Quantifier Rank Equivalence 157

5.6 Extensions of Θ . 162

5.6.1 Models of Θ Extending Tuples 162

6 Other Component Trees 168

6.1 Notation . 169

6.1.1 Ordinal Equivalence 170

6.2 TΛ . 173

6.2.1 Introduction . 173

6.2.2 Basic Theory . 173

6.3 TΩ . 174

6.3.1 Introduction . 174

6.3.2 Basic Theory . 175

7 Almost Scattered Sentences 184

7.1 Introduction . 184

7.2 Almost Scattered Sentences which aren’t Scattered 185

7.2.1 Axioms . 185

7.3 Construction of Almost Scattered Models 190

7.3.1 Definitions . 190

CONTENTS 7

7.3.2 Properties of Ta(M) 192

7.3.3 Conjecture about Ta(M) 194

8 Multiple Trees 199

8.1 Introduction . 199

8.2 Comparing Different Colors 200

8.2.1 Definitions . 200

8.2.2 Correctness . 201

8.3 T nΩ . 202

8.3.1 Definitions . 202

8.3.2 General Results . 205

8.3.3 Quantifier Rank . 208

8.3.4 First Construction of Models 209

8.3.5 Second Construction of Models 217

8.4 T nΩ(M) . 223

8.4.1 Introduction . 223

8.4.2 Definitions . 223

8.4.3 Theorems . 225

8.4.4 Conjectures . 227

8.5 T nΛ . 228

8.5.1 Definitions . 228

8.6 T nΛ (M) . 230

8.6.1 Introduction . 230

8.6.2 Definitions . 230

8.6.3 Conjectures . 231

CONTENTS 8

A Vaught Tree 234

A.1 Vaught Tree . 235

A.1.1 Definition . 235

A.1.2 Theorems . 236

A.2 Well Behaved Sentences . 238

A.2.1 Weakly Scattered . 238

A.2.2 Scattered . 239

A.2.3 Theorems . 239

B Strong Separation Theorem for Projections of Sheaves

242

9 Introduction 243

9.1 Summary . 243

9.1.1 Goal . 243

9.1.2 Approach . 244

9.2 Background . 245

9.2.1 Definition by Transfinite Induction 245

9.2.2 Baire Space . 247

9.2.3 Trees . 248

9.2.4 Sheaves on a Topological Space 249

9.2.5 Partial Topologies . 252

9.2.6 Admissible Sets . 256

10 Partial Sites and Induction 262

10.1 Introduction . 262

CONTENTS 9

10.2 Definitions . 263

10.2.1 Grothendieck Topology 263

10.2.2 Partial Grothendieck Topology 266

10.2.3 Sheaves . 268

10.3 Basic Results . 270

10.3.1 Topology . 270

10.3.2 Separation Lemmas . 270

10.3.3 Qusai-Supremums . 272

10.4 Induction . 276

10.4.1 Motivation . 276

10.4.2 Induction for Sheaves on a Topological Space 278

10.4.3 Disjoint Collection . 281

10.4.4 General Induction Argument 283

11 Separation for Topological Sheaves 287

11.1 Notation, Terminology and Basic Results 288

11.2 The Separation Theorem . 290

11.2.1 The Theorem . 290

11.2.2 Corollaries . 296

11.2.3 Examples . 297

12 Separation for Sheaves on a Site 300

12.1 Basic Results . 301

12.1.1 The Separation Theorem 301

12.1.2 Corollaries . 308

CONTENTS 10

B Suslin-Kleene Separation Theorem 310

B.1 Suslin Theorem . 310

B.1.1 Definition . 310

B.1.2 Results . 311

B.2 Kleene Separation Theorem 312

B.2.1 Definitions . 312

B.2.2 Results . 315

Part A

Quantifier Rank Spectrum

11

Chapter 1

Introduction

1.1 Summary

1.1.1 The Goal

The goal of Part A of this thesis is to study the expressive power of

sentences of L∞,ω. Specifically we wish to measure a sentences expressive

power by looking at the quantifier rank of its models. We will call the set of

quantifier ranks of models of a sentence its “quantifier rank spectrum”.

However, as we will see in Section 1.2.4, the question of which quantifier

rank spectra exist isn’t particularly interesting. It is easy to construct a

sentence φ with any desirable quantifier rank spectrum (so long as it is a

set). The problem though is that the quantifier rank of φ is the supremum

of it’s quantifier rank spectrum (at least in the naive construction). The

question that we will ask instead is, given a fixed (but small) bound β, what

can be said about the quantifier rank spectra of sentences which themselves

12

CHAPTER 1. INTRODUCTION 13

have quantifier rank ≤ β?

In this paper we will show that given any limit ordinal ω ∗ α there is

a scattered sentence φω∗α of Lω1,ω such that the quantifier rank spectrum

of φω∗α is cofinal in ω ∗ α, has supremum ω ∗ α, and the quantifier rank of

φω∗α ≤ ω. As it is a well known fact (See Appendix A) that the quantifier

rank spectrum of any scattered sentence must be cofinal in its supremum,

this is essentially the best possible result for scattered sentences of Lω1,ω.

In addition to our results concerning scattered theories, we will also

prove several results concerning weakly scattered theories, as well as make

several conjectures.

1.1.2 The Approach

We will prove the existence of our scattered sentences φω∗α by explicitly

constructing them from homogeneous trees with nice extra structure. The

method of construction we will use is to “glue” two copies of these trees to-

gether in such a way as to maintain homogeneity and to bound the quantifier

ranks of the models.

In Chapter 2 we will introduce the languages we wish to work in, and

we will prove some important results concerning the tools we have in these

languages.

After we have presented the necessary background information concern-

ing our trees we will, in Chapter 3, introduce the idea of a “collection of

archetypes”. A collection of archetypes is supposed to represent a way to

indirectly describe, the tree structure of our models. We will show, among

other things, that if a theory of trees has such a collection of archetypes then

CHAPTER 1. INTRODUCTION 14

the set of archetypes which are realized completely determine the model.

Once we understand what a collection of archetypes for a sentence is we

will, in Chapter 4, take such a sentence and glue together two copies. This

will allow us to show that, assuming the original theory was scattered and

had models of high enough quantifier rank, our gluing together produces a

scattered sentence of whichever quantifier rank spectrum we want.

While a collection of archetypes is a very useful tool for studying a theory

there is one thing we have to be careful of. Having a collection of archetypes

is such nice property that it is not, apriori, obvious that it is even consistent.

As such, in Chapter 5, we will show that in fact it is consistent to have a

collection of archetypes. We will do this by showing that (essentially) the

theory Θ from Robin Knight’s The Vaught Conjecture: A Counterexample

([8]) has such a collection of archetypes. In addition, in Chapter 5 we will

prove several other interesting properties of Θ

Once we have dealt with the case of scattered sentences we will turn our

attention to the non-scattered case. In Chapter 6 we will introduce other

component trees which we believe will be useful.

In Chapter 7 we will prove some results concerning the case of almost

scattered sentences which aren’t scattered. In particular we will provide a

way of turning any scattered sentence into one which is almost scattered and

not scattered but has the same quantifier rank. We will then also use the

component trees from Chapter 6 to build a theory which looks very similar

to the one in Chapter 4 and we will make some conjectures about them.

In Chapter 8 we will consider the case when we glue together an infinite

number of copies of our sentences. In this case the sentences we get are not

CHAPTER 1. INTRODUCTION 15

even weakly scattered. But, we believe that this approach will allow us to

get some very sharp results concerning the quantifier ranks of the models.

We will prove some results concerning these theories and then make some

conjectures concerning their quantifier rank spectrum and discuss why we

believe them.

Finally, we will provide Appendixes with important information. In Ap-

pendix A we will present the basic theory of Vaught trees, their relationship

to Quantifier Rank, and we will give references for the theorems which we

do not prove.

1.2 Background

1.2.1 L∞,ω

1.2.1.1 Introduction

When studying infinite model theory one often wants more expressive

power than is provided by 1st order logic. But at the same time would like

to retain the many nice properties of 1st order logic. A natural way in which

one might hope to find this balance is to loosen the restrictions on what a

formula. Over the years people have looked at many very different ways in

which the idea of a formulas can be generalized, and one of the most fruitful

generalizations has been to what is called L∞,ω.

One of the many advantages of L∞,ω is that not only does it have ex-

pressive power far greater than 1st order logic, but it is absolute in a way

which many other generalizations of 1st order logic aren’t. Specifically, when

CHAPTER 1. INTRODUCTION 16

dealing with infinite models we are often interested in how similar they are,

or when they “look the same up to a given complexity of formula”. When

comparing the complexity of two models we would like the result only de-

pends on the models and not on the underlying model of set theory which

we are in. And, we find that this is the case with L∞,ω.

In addition, if we are only concerned with countable models we will see

that we can restrict ourselves to countable formulas. In this case we will

also have that L∞,ω (or Lω1,ω as it is called) preserves several properties of

1st order logic which make it so easy to work with. Including, a form of

compactness, a form of completeness, and an omitting type’s theorem.

The purpose of this paper is to study the expressive power of L∞,ω.

By a well known result of Scott [13] every countable model has a sentence

of Lω1,ω which describes it up to isomorphism. However, the complexity of

these sentences is at least as great as the complexity of the model which it

characterizes. As such, our measure of expressive power isn’t what can be

characterized by sentences of L∞,ω, but rather knowing the complexity of

the formula, what can be said about the complexity of the models of that

formula.

All of the material in this section is standard in the study of L∞,ω and

Lω1,ω. The interested reader can find a more detailed description in [7], [2],

or [1].

1.2.1.2 Definitions and Notation

Definition 1.2.1.1. Let L = 〈Ri : i ∈ κ〉 be a relational language with

arity(Ri) = ni ∈ ω.

CHAPTER 1. INTRODUCTION 17

Let L∞,ω(L) = least set such that

• Ri(x1, . . . xni
) ∈ L∞,ω(L) for all i ∈ κ, and free variables x1, . . . xni

.

• If φ ∈ Lω1,ω(L) then ¬φ, (∃y)φ ∈ L∞,ω(L)

• If for some set A, and finite n {φi : i ∈ A} ⊆ L∞,ω, and (∀i ∈ A)Free

Variablesφi ⊆ {x1, . . . xn} then (
∧

i∈A φi) ∈ L∞,ω(L).

We will use (∀y)φ as short hand for ¬(∃y)¬φ and (
∨

i∈A φi) as a shorthand

for ¬(
∧

i∈A ¬φi). We also will omit mention of L in L∞,ω(L) when it is

understood which language we are talking about.

In the case that all conjunctions and disjunctions are countable we say

a formula is in Lω1,ω. We will only mention Lω1,ω when we are considering

countable models and, as we will see, in this case we can assume without

loss of generality that we are working in Lω1,ω or in L∞,ω. As such, after

this section, we will only refer to Lω1,ω when we wish to highlight that the

argument only works for countable models.

There are two ideas worth pointing out explicitly. First the central idea

behind L∞,ω(L) and Lω1,ω(L) is that we allow ourselves arbitrary infinite

conjunctions and disjunctions with the one condition that the end result has

to have only finitely many free variables.

The second thing worth mentioning is that restricting L to be a relational

language is purely for convenience. This is because given any language L′

with function and/or constat symbols, it is easy to convert it to a relational

language without loosing any of the expressive power (just add a relation

for each function and an axiom saying that the relation is the graph of the

CHAPTER 1. INTRODUCTION 18

function (and treat constants as functions of 0 arity)). As such we will from

here on assume all languages are relational.

Definition 1.2.1.2. Let L = 〈Ri : i ∈ A〉 be a language and let φ(x) ∈ L∞,ω.

Let M be a model of the language L, a ∈M . We will recursively define what

it means for M to model φ(a) (M |= φ(a)).

• If φ(x) = ¬ψ(x) then M |= φ(a) iff M 6|= ψ(a). If φ(x) = (∃y)ψ(y,x)

then M |= φ(a) iff there is a b ∈M such that M |= ψ(b, a).

• If φ(x) = (
∧

i∈A ψi(x)) then M |= φ(a) iff for all i ∈ A, M |= ψi(a).

We will see shortly that this covers all formula’s of L∞,ω. But first we want

to define some important conventions which we will use.

Definition 1.2.1.3. Let ψ(y), φ(x, z) ∈ L∞,ω where Free Variables(ψ) =

{y}.

Define φ(z)ψ(y) to be:

• φ(z1, . . . , zn)
ψ ⇔ φ(z1, . . . , zn) ∧

∧

i∈n ψ(zi) if φ is an atomic formula.

• [
∧

i∈I φ(z)]ψ ⇔
∧

i∈I [φ(z)ψ]

• [¬φ(z)]ψ ⇔ [¬φ(z)ψ] ∧
∧

i∈n ψ(zi)

• [(∃x)φ(x, z)]ψ ⇔ (∃x)(ψ(x) ∧ [φ(x, z)]ψ)

We say that ψ |= φ(z) if (φ(z))ψ holds.

We also define ψ(x1, . . . , xn) ↔
∧

i∈n ψ(xi).

Intuitively we are relativizing the formulas so that we only consider

elements which realize ψ.

CHAPTER 1. INTRODUCTION 19

Definition 1.2.1.4. Let ψ(y,x) be a formula in L∞,ω. For each n ∈ ω define

∃nyφ(y,x) ↔ (∃y1, . . .yn)
∧

i≤n φ(yi,x) and yi ∩ yj = ∅ if i 6= j.

The idea is that ∃nφ just says there are n distinct tuples which satisfy

φ.

Finally, unless otherwise specified x,y, z, a, b, c, d, e represent tuples (of

the appropriate model or of variables) of some arbitrary but fixed arity.

Whereas x, y, z, a, b, c, d, e represent individual elements (of the appropriate

model) or individual variables. We will often say a finite tuple a ∈ M if M

is a model and a ⊆M .

1.2.2 Quantifier Rank

1.2.2.1 Introduction

As mentioned in the introduction to the last section one of the most

appealing features of L∞,ω is that in the degree to which two models look

a like is absolute. The main way in which we will measure how similar two

models are will go as follows. First we will assign, in a natural way, an ordinal

rank to each formula of L∞,ω. Then we say that two models are similar up

to α ∈ ORD(α ∈ ω1) if they satisfy all the same formula’s of rank < α. We

will also say that two models have relative rank of at least α if the above

holds.

Now there are obviously many different ways in which we can assign

rank to the formula’s of L∞,ω but as it turns out almost all of them are

“essentially” the same (i.e. they will be the same on a Closed Unbounded

Set of κ for all cardinals κ). We will choose a particularly nice rank named

CHAPTER 1. INTRODUCTION 20

“Quantifier Rank”. Quantifier rank is particularly nice because not only is

relative quantifier rank absolute between different models of set theory, but

it is also absolute (for countable models) relative to which of L∞,ω or Lω1,ω

we consider.

Despite these very nice properties though, the most useful property of

quantifier rank is that there is a very constructive way to determine the

relative quantifier rank of two models (via the study of partial isomorphisms

between them). Not only will this method allow us to see the absoluteness

of relative quantifier rank, but it will prove an invaluable tool for explicitly

determining the relative quantifier rank of two models.

All of the material in this section is standard in the study of L∞,ω and

Lω1,ω. The interested reader can find a more detailed description in [7], [2],

or [1].

1.2.2.2 Formulas

In order to define quantifier rank we will build up L∞,ω (and Lω1,ω) explicitly.

Definition 1.2.2.1. Let L = 〈Ri : i ∈ A〉 be a language.

Define L〈α,n〉 for α ∈ ORD, n ≤ ω as follows:

• L〈0,0〉 = {Ri(x),¬Ri(x) : i ∈ A}.

• L〈α,n+1〉 = L〈α,n〉 ∪ {
∧

i∈B φi,
∨

i∈B φi :
⋃

i∈B Free Variables(φi) is finite,

{φi : i ∈ B} ⊆ L〈α,n〉}.

• L〈α,ω〉 =
⋃

j∈ω L〈α,j〉

• L〈α+1,0〉 = L〈α,ω〉 ∪ {(∃y)φi, (∀y)φi : φi ∈ L〈α,ω〉, y is a free variable}.

CHAPTER 1. INTRODUCTION 21

• L〈ω∗α,0〉 =
⋃

γ<ω∗α L〈γ,0〉

Notice that if φ ∈ L〈α,n〉 then there is a ψ ≡¬ ¬φ such that ψ ∈ L〈α,n〉. (Here

A ≡¬ B iff A/{¬¬φ ∼= φ : φ ∈ L∞,ω} = B/{¬¬φ ∼= φ : φ ∈ L∞,ω})

The first thing to notice is that
⋃

α∈ORD L〈α,0〉 = L∞,ω(L). This is be-

cause every formula of
⋃

α∈ORD L〈α,0〉 must be in L∞,ω and
⋃

α∈ORD L〈α,0〉 is

closed under the required operations.

Further notice that if we require all conjunctions and disjunctions to be

countable then we have
⋃

α∈ω1
L〈α,0〉 = Lω1,ω(L). To see this notice that after

stage 〈ω1, 0〉 of the construction any countable conjunction or disjunction we

can make from the formula’s must already appear (because ω1 is regular).

Now the least 〈α, n〉 such that a formula φ ∈ L〈α,n〉 is a little bit more

information than we need. So instead we have:

Definition 1.2.2.2. Let φ ∈ L∞,ω(L) (or Lω1,ω(L)). Define the Quantifier Rank

of φ (qr(φ)) = least α such that φ ∈ L〈α,ω〉.

Notice that if φ ∈ Lω1,ω(L) it doesn’t matter if we consider it an element

of Lω1,ω(L) or L∞,ω(L) for the purposes of calculating it’s quantifier rank.

Definition 1.2.2.3. Let φ, ψ ∈ L∞,ω(L) and ψ is a subformula of φ. We

then say ψ ≺sub φ.

Definition 1.2.2.4. We say A ⊆ L∞,ω is a fragment iff

• A 6= ∅

• (∀φ, ψ ∈ A)¬φ, ψ ∧ φ, ψ ∨ φ, (∃x)φ, (∀x)φ ∈ A

CHAPTER 1. INTRODUCTION 22

• (∀φ, ψ ∈ L∞,ω)φ ∈ A ∧ ψ ≺sub φ→ ψ ∈ A

A good way to think of a formula of L∞,ω(L) is as a well founded tree.

Specifically the tree is given by ≺sub |{φ : (∃α)φ ∈ L〈α,0〉}. I.e. the nodes of

the tree are those formulas which have a quantifier outside all conjunctions

and disjunctions.

To see this consider the representation of the formula:

(∃x1)
[

[(∀x2)R(x1, x2, z)]
∧

[S(x3, y) ∨ (∀x4)R(x3, x4, z)]
∧

[S(x1, z)]
]

This would have the following tree:

(∃x1) [[(∀x2)R(x1, x2, z)]
∧

[S(x3, y) ∨ (∀x4)R(x3, x4, z)]
∧

[S(x1, z)]]

(∀x2)R(x1, x2, z)
∧

[S(x3, y) ∨ (∀x4)R(x3, x4, z)]
∧

[S(x1, z)]

(∀x2)R(x1, x2, z) S(x3, y) (∀x4)R(x3, x4, z) S(x1, z)

R(x1, x2, z) R(x3, x4, z)

��

uukkkkkkkkkkkkkkkkkkk

��))SSSSSSSSSSSSSSSSSSS

,,YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

�� ��

We can then think of the quantifier rank of a formula as the height of the

wellfounded tree.

1.2.2.3 Models

Now that we have our definition of quantifier rank of a formula, we can

begin to compare the complexities of models.

Definition 1.2.2.5. Let M,N be models of a language L. We say M and

N are equivalent up to quantifier rank α (M ≡α N) if and only if

CHAPTER 1. INTRODUCTION 23

(∀φ ∈ L∞,ω)[qr(φ) ≤ α] ⇒ [M |= φ⇔ N |= φ]

In other words two models are equivalent up to quantifier rank α if they

agree on all formulas of quantifier rank ≤ α.

Theorem 1.2.2.6. Let V,W be transitive models of ZFC. Let L be a language

such that and M,N,L ∈ V ∩W where M,N are models of a language L.

Then (M ≡α N)V iff (M ≡α N)W .

Proof. See [2] Chapter 7 §5, §6.

Definition 1.2.2.7. Define Thα(M) = {φ : M |= φ, qr(φ) ≤ α}

Theorem 1.2.2.8. If M,N are countable models then (M ≡α N)Lω1,ω iff

(M ≡α N)L∞,ω

Proof. See [2] Chapter 7 §5, §6.

It is this theorem which allows us to assume we are working in Lω1,ω

(without loss of generality) if all our models are countable.

Definition 1.2.2.9. Let M be a model of a language L. We say the Quan-

tifier Rank of M (qr(M)) = least α such that

(∀ models N)(∀β > α)M ≡α N ⇔M ≡β N

.

Similarly we define

CHAPTER 1. INTRODUCTION 24

Definition 1.2.2.10. For a ∈ M define Quantifier Rank of a (qr(a)) =

min{α : ∃φ(x), qr(φ(x)) = α,M |= φ(a), (∀ψ(x) ∈ L∞,ω)[(∀ models N, b ∈

N)N |= φ(b) → ψ(b)] or [(∀ models N, b ∈ N)N |= φ(b) → ¬ψ(b)]

We say a ∈ M , b ∈ N have the same γ-type (typeγ(a) = typeγ(b),(a ≡γ b))

if they are equivalent up to formulas of quantifier rank γ. In other words if

(M,a) ≡γ (N, b).

We then have

Theorem 1.2.2.11. For all a ∈M , qr(〈M,a〉) = qr(a).

Proof. See [2] Chapter 7 §5, §6.

So in particular we can think of qr(M) as qr(∅M). We then also have.

Theorem 1.2.2.12. For all M , qr(M) is defined, qr(M) < |M |+.

Proof. See [2] Chapter 7 §5, §6.

Definition 1.2.2.13. Let M be an L structure. A sentence σM of L∞,ω is a

Scott Sentence for M if (∀N an L structure)N |= σM → N ≡∞ M .

Theorem 1.2.2.14. For all M there is a Scott sentence σM ∈ L∞,ω. And,

if M is countable, σM ∈ Lω1,ω.

Proof. See [2] Chapter 7§6.

What is more, if M is countable we can get even better results via the

Scott Isomorphism Theorem.

CHAPTER 1. INTRODUCTION 25

Theorem 1.2.2.15. If M is a countable model and N is any countable model

such that M ≡qr(M) N then M ∼= N .

Proof. See [13].

Definition 1.2.2.16. Let φ ∈ L∞,ω. We define the Quantifier Rank Spectrum of φ

to be {α : (∃M)M |= φ, qr(M) = α}.

1.2.2.4 Partial Isomorphism

The true value in considering quantifier rank comes not just from its

absolute, but from the fact that there is a concrete way to determine if two

models are equivalent up to a given rank. This method is by constructing

sequences of partial isomorphisms, or what we sometimes call the back and

forth method (in deference to the game description which we will discuss at

the end of the section). These sequences of partial isomorphisms are also

sometimes called Ehrenfeucht-Fraisse (EF) Sequences.

Definition 1.2.2.17. If M,N are models of a language L, f : M → N is a

partial isomorphism from M to N if

• f is one to one.

• |dom(f)| < ω

• For each relation R ∈ L and a ⊆ dom(f),M |= R(a) iff N |= R(f(a)).

Definition 1.2.2.18. We say 〈Ii : i < α〉 is a Sequence of Partial Isomorphisms

from M to N if

CHAPTER 1. INTRODUCTION 26

• Ii ⊇ Ij if i ≤ j

• If f ∈
⋃

i∈α Ii then f is a partial isomorphism from M to N .

• If β + 1 ≤ α and f ∈ Iβ+1 then

– (∀m ∈M)(∃g ∈ Iβ)f ⊆ g and m ∈ dom(g)

– (∀n ∈ N)(∃g ∈ Iβ)f ⊆ g and n ∈ range(g)

One way to think about these partial isomorphism sequences is to con-

sider the following game between two players (called the Ehrenfeucht-Fraisse

(or EF) Game). We will call Player I the Spoiler and Player II the Duplicator.

The game starts at an ordinal α. At each stage Spoiler plays an ordinal less

than the one already played and an element a of either M or N . Duplicator

then plays an element of the other model. The game ends once Spoiler has

played the ordinal 0. Duplicator wins this game if the sequence produced

from M has the same atomic diagrams (i.e. satisfy the same atomic formulas

from L) as the sequence produced from N . Spoiler wins otherwise.

The reason why this game is useful is because we can consider a sequence

of partial isomorphisms 〈Ii : i < α〉 as a winning strategy for duplicator in

the game starting at α. This is because if Spoiler plays (β, a) then Dupli-

cator simply finds the partial isomorphism in Iβ extending the current play

by adding a (to the domain or range) and plays what that isomorphism says

corresponds to a.

The real importance of the partial isomorphisms with regards to quan-

tifier rank though is in the following theorems.

CHAPTER 1. INTRODUCTION 27

Theorem 1.2.2.19. If M,N are models of a language L and a ∈M, b ∈ N

then (M,a) ≡α (N, b) if and only f ∃〈Ii : i ≤ α〉 a partial isomorphism se-

quence from M to N and f ∈ Iα with f(a) = b

If M,N are models of a language L then M ≡∞ N iff ∃I such that 〈I, I〉 is

a partial isomorphism sequence from M to N .

Proof. See [2] Chapter 7 §5.

Corollary 1.2.2.20. If M,N are models of a language L then M ≡α N iff

∃〈Ii : i ∈ α〉 a partial isomorphism sequence from M to N .

Proof. Immediate from [2] Chapter 7

It is because of this theorem more than any other feature of quantifier

rank that we have chosen to use it (as opposed to the many other “essentially”

equivalent ranks).

1.2.3 Scattered Like Theories

Now that we have some idea of how we are going to be measuring the

complexity of the models of a theory (i.e. by looking at the quantifier rank

spectrum) we can start to consider special classes of theories we would like

to look at. As we will see there are three levels of refinement that we can

apply to our theories. For motivation on why these definitions are chosen see

Appendix A.

CHAPTER 1. INTRODUCTION 28

1.2.3.1 Background Notation

Definition 1.2.3.1. Let T ∈ L∞,ω(L) be a sentence in a language L. Let

Frag(T) be the smallest fragment of L∞,ω containing T , and S(T) = {p : p

is a consistent complete type over Frag(T) extending T}. Let k(T) = inf{κ :

T ∈ Lκ,ω}, s(T) = sup{k(T), |L|}.

Lemma 1.2.3.2. S(T) =
⋃

N |=T{type(n)|A(T): n ∈ N}

Proof. See [2] Chapter 3 §2.

1.2.3.2 Weakly Scattered

Definition 1.2.3.3. Let L be a countable language. Let T ∈ Lω1,ω(L). We

say that T is Weakly Scattered if for all M |= T, α ∈ ω1, S(Thα(M) ∪ T) is

countable.

What this says is that if we have any model of T and we look at its

theory among sentences of quantifier rank at most α then that theory has at

most countably many types over it. This is an important condition because

of the following important theorem (called the “Omitting Types Theorem”).

Theorem 1.2.3.4. Let LA be a countable fragment of L∞,ω and let T be

a set of sentences of LA which has a model. For each n let Φn be a set of

formulas of LA with free variables among v1, . . . , vkn
. Assume that for each

n and each formula ψ(v1, . . . , vkn
) of LA: If

T + ∃v1, . . . , vkn
ψ

has a model, so does

T + ∃v1, . . . , vkn
(ψ ∧ φ)

CHAPTER 1. INTRODUCTION 29

for some φ(v1, . . . , vkn
) ∈ Φn. Given this hypothesis, there is a countable

model M of T such that for each n < ω

M |= ∀v1, . . . , vkn

∧

φ∈Φn

φ(v1, . . . , vkn
)

Proof. See [2] Chapter III §3.8

With the “Omitting Types Theorem” we see that if a theory T is weakly

scattered and M |= T then Thα(M)∪T has an atomic model (because we can

omit all the non-principle types). This is important because, as can be seen

in Appendix A, we then can build a tree of theories over T , each of which

has an atomic model. In addition, the height of this tree is (approximately)

the supremum of (the quantifier rank spectrum of T).

1.2.3.3 Almost Scattered

Definition 1.2.3.5. Let L be a countable language. Let T ∈ Lω1,ω(L). We

say that T is Almost Scattered if for all α < ω1 there exists Sa(T, α), a

countable collection of formulas of Lω1,ω(L), such that

• For allM |= T and q ∈ S(Thα(M)∪T) there is at least one p ∈ Sa(T, α)

such that |= (∀x)[p(x) ∧ Thα(M) ∧ T] → q(x)

• For allM |= T and p ∈ Sa(T, α) there is at most one q ∈ S(Thα(M)∪T)

such that T |= (∀x)[p(x) ∧ Thα(M) ∧ T] → q(x)

The idea behind weakly scattered theories is we are trying to get a very

loose bound on what extensions of the theory look like. To be precise, in the

case of a weakly scattered theory T , we don’t really know what the collection

CHAPTER 1. INTRODUCTION 30

of theories extending T looks like, all we know is that each individual theory

extending T is itself weakly scattered (i.e. it and all its extensions have only

countably many types).

However, in the context of an Almost Scattered theories, we know a

little bit more. In this context we know that not only does each extension

only have countably many types over it, but in some sense all extensions at

the same level have countably many types over them in a uniform way. That

is each extension at the same level has all of its types come from a set of

types which is “the same” for all theories at that level of the construction.

Theorem 1.2.3.6. If T is almost scattered then T is weakly scattered.

Proof. As Sa(T, α) is countable and for each M |= T , every element of

S(Thα(M) ∪ T) comes from a unique p ∪ Thα(M) ∪ T with p ∈ SaT, α

we must have S(Thα(M) ∪ T) is countable as well.

Almost Scattered theories are important because often the easiest way

to show a theory is weakly scattered is to simply show that it is almost

scattered. In fact, at the time of writing, the author knows of no example

of a weakly scattered sentence which is not almost scattered (although the

author is very confident that they exists). In other words, often the easiest

way to show a theory is weakly scattered isn’t to show that for each individual

extension of the theory, at each quantifier rank, that that extension must

have only countably many types, but rather to show that the collection of

all types over all theories up to the same quantifier rank is itself (essentially)

countable. And hence the collection over any particular extension must also

be countable.

CHAPTER 1. INTRODUCTION 31

In fact, as we will see later in Section 7.2, there is a simple way to turn

any scattered theory into an almost scattered theory which isn’t scattered

but which has the same quantifier rank.

1.2.3.4 Scattered

Definition 1.2.3.7. Let L be a countable language. Let T ∈ Lω1,ω(L). We

say that T is Scattered if for all α {Thα(M) ∪ T : M |= T} is countable.

Scattered sentences are especially nice because we find that the Vaught

Tree for a scattered sentence is absolute. In other words, the Vaught tree

doesn’t change as we move from one model of set theory to another. Hence,

everything that we want to know about a scattered sentence T we can find

out by looking at L(T) (here L(T) is the constructible universe with T at

the base). For more information on this see [3].

We also have the following very nice theorem concerning scattered sen-

tences.

Theorem 1.2.3.8. If T is scattered, then for each α < ω1 and for all M |= T ,

S(Thα(M) ∪ T) is countable.

Proof. Assume S(Thα(M)∪T) is uncountable. Then there must be uncount-

ably many non-principle types. But then each one of those must be realized

by some model. Hence {Thα+1(M) ∪ T : M |= T} must be uncountable.

⇒⇐

Corollary 1.2.3.9. If T is Scattered, T is Almost Scattered.

CHAPTER 1. INTRODUCTION 32

Proof. Because for eachM , S(Thα(M)∪T) is countable, and because {Thα(M)∪

T : M |= T} is countable we know
⋃

{S(Thα(M)∪T) : M |= T} is countable

and hence witnesses that T is almost scattered.

1.2.3.5 General Case

As all of these definitions are essentially absolute (see [3]), we want to

define the uncountable case in terms of the countable case.

Definition 1.2.3.10. Let V be the model of ZFC in which all proofs up to

this point have been carried out in.

Definition 1.2.3.11. Let L be a language and T ∈ L∞,ω(L). Then T is

(weakly/almost) scattered if for all set generic G, and for all

• (W, ǫ) |= ZFC

• W ⊆ V [G]

• W |= s(T) ≤ ω

W |= T is (weakly/almost) scattered.

So our definition in the case that T or L is uncountable is that it is

(weakly/almost) scattered exactly when it is (weakly/almost) scattered in

every universe which makes the theory countable. Once again, this defini-

tion isn’t a problem because the definability of the Vaught tree (see [3] and

Appendix A) means that these ideas are absolute.

CHAPTER 1. INTRODUCTION 33

1.2.4 Vaught Tree

1.2.4.1 Possible Quantifier Ranks

While the quantifier rank spectrum of a sentence is a good measure of how

complex its collection of models the study of the possible quantifier rank

spectrums themselves isn’t very interesting. This is because of the following

theorem.

Theorem 1.2.4.1. Let X ⊆ α where |α| = ωa. Then there is a formula φX

of Lωa+1,ω such that Quantifier Rank Spectrum of φX = X.

First we need an easy lemma which we will state without proof.

Lemma 1.2.4.2. For all α there is a model Mα in the language 〈≤〉 such

that the Scott Sentence of Mα is in L|α|+,ω and qr(Mα) = α.

(to see this consider the well-founded homogeneous tree of height α)

Proof of Theorem. Let φα = Scott sentence of Mα. Then φX =
∨

α∈X φα

1.2.4.2 Vaught Tree

As it turns out what we really want to be studying is not the quantifier rank

spectrum of a sentence but the “Vaught Tree” of the sentence. The reason

for this is that the Vaught tree of a sentence is a very robust object which

determines many of the nice properties of the sentence. Further the Vauht

tree will also allow us to get a handle on the models of its sentence.

We find that the height of the Vaught tree of a sentence is a good measure

for how complex the collection of models of the sentence is relative to the

CHAPTER 1. INTRODUCTION 34

sentence itself. For example, while the sentences φX in Theorem 1.2.4.1 had

arbitrary quantifier rank spectrums, the φX constructed in the theorem all

have Vaught trees of height 1. This corresponds to our intuition that while

the collection of models is complicated, there is no simple way to describe

the complex structure.

What we would like be able to do, and indeed what we will do in this

part of our paper, is show that for arbitrary α there is a scattered formula

whose Vaught tree is (approximately) of height α. This intuitively means

that will be able find scattered sentences (i.e. well behaved sentences) which

can have models far more complicated than the sentence itself.

Unfortunately though there is no nice way know to build up Vaught

trees and no nice way know to study individual Vaught trees. However,

we are in luck as we will be able to study the Vaught trees by looking at

approximations to them given by quantifier ranks.

Specifically we know by Theorem A.1.2.2 and Theorem A.1.2.3 that the

height of the Vaught tree of φ is (approximately) qr(φ)+max{Quantifier Rank

Spectrum(φ)}. So what this means is that if we can find scattered sentences

φα such that max{Quantifier Rank Spectrum(φ)} is (approximately) α and

qr(φα) < β for all α then these sentences will also have Vaught trees whose

height is (approximately) α.

1.2.5 Miscellaneous

Here is some other important notation we will use later.

CHAPTER 1. INTRODUCTION 35

1.2.5.1 Slant Lines

Definition 1.2.5.1. A slant line is a function m−{0} → ORD∪{−∞} such

that for all n < m−1, f(n) > f(n+1). If in addition we have that whenever

f(n) = γ + 1 we also have f(n+ 1) = γ then we call f a slow slant line

If f is a slant line and f(1) = γ ∗ ω + n we say the rank of f is n

(rank(f) = n) and the base of f is γ ∗ ω (base(f) = γ ∗ ω).

For two slant lines f, g with the same domain, we say that f ≤ g iff

(∀x)f(x) ≤ g(x).

We say that a slant line f is less than an ordinal γ iff (∀x)f(x) < γ.

Definition 1.2.5.2. Let f, g : A×X≤n → ORD be maps from finite subsets

of X indexed by A into an ordinal α. Let L : ω → ORD be a function with

domain ≥ n.

We say that f is the same as g up to a function K (f |K = g|K) if ∀(a,x) ∈

A×X<n

• f(a,x) ≥ K(|x|) iff g(a,x) ≥ K(|x|)

• If f(a,x), g(a,x) < K(|x|) then f(a,x) = g(a,x)

To get an intuitive idea of what it means for two functions to be the

same up to a function K, look at the case when K is the constant function

at γ. Then the idea is that below γ we have a completely clear view of what

f and g are. But, once we have passed γ, things are less focused. In this

case, all we can say about the functions is that they have passed the furthest

CHAPTER 1. INTRODUCTION 36

point at which we can distinguish distances, in the same places.

Color

Tuples

L

f
g

x1 x2 x3 x4 x5
//

OO

Example of two functions, f, g on tuples which are equivalent up to L

1.2.5.2 Short Hand

Definition 1.2.5.3. Let T be some sentence of L∞,ω. If σ(x) is some state-

ment about x and ϕ(x) is some statement then we say σ(x) forces ϕ(x)

(σ(x)
T ϕ(x)) if (∀M |= T)(∀x ∈M)(σ(x) → ϕ(x))

Similarly, if σ(x), τ(y) are some statements and ϕ(x,y) is some statement,

then we say σ(x), τ(y) forces ϕ(x,y) (σ(x), τ(y)
T ϕ(x,y)) if (∀M,N |=

T)(∀x ∈M,y ∈ N)([σ(x) ∧ τ(y)] → ϕ(x,y))

The idea behind this forcing notation is we want to be able to talk about

properties of the models of our theory which aren’t necessarily expressible in

L∞,ω. One such example could be a statement like “(P,≤) is a well ordering

 (P,≤) has limit order type”. These are ideas which we might know for

CHAPTER 1. INTRODUCTION 37

some external reason are true but which can’t necessarily be expressed in

L∞,ω.

It is also worth pointing out explicitly that if we have something of the

form σ(x), τ(y)
 ϕ(x,y) then it is possible that x and y are in different

models. For example consider the case

“〈P (x,−),≤〉 is a linear order, 〈P (y,−),≤〉 is a linear order

 〈P (x,−),≤〉 is an initial segment of 〈P (y,−),≤〉 or vice versa”.

Now the point is that what this says is that for all x and y 〈P (x,−),≤〉 is an

initial segment of 〈P (y,−),≤〉 or vice versa, even if x and y are in different

models, which is much stronger than just saying

“(∀M)M |= (∀x, y)〈P (x,−),≤〉 is a linear order, 〈P (y,−) ≤〉 is a linear

order → 〈P (x,−),≤〉 is an initial segment of 〈P (y,−),≤〉 or vice versa”.

Chapter 2

Component Trees

2.1 Introduction

In this chapter we begin to define the languages and theories we will use

as building blocks for the rest of Part A. We will introduce our method of

representing trees as well as our method for comparing the heights of trees.

2.2 Basic Trees

2.2.1 Introduction

In this section we will finally begin to define the tree structure on our

models. As we will see, much of our later arguments will assume that the

trees we are working with are well founded. This poses a problem though as

well-foundedness can’t be isolated in L∞,ωas can be seen from the following

well know theorem:

38

CHAPTER 2. COMPONENT TREES 39

Definition 2.2.1.1. Let L be a language with a binary relational symbol <

and possibly other relations. A sentence φ pins down an ordinal α if

• N |= φ implies N |=< is a well ordering

• φ has a model N such that N |=order type(<) = α.

Theorem 2.2.1.2. Let L be a language with a binary relation <. Let φ ∈

L∞,ω(L) be a formula which pins down an ordinal. Then there is an ordinal

α such that every ordinal pinned down by φ is less than α

Proof. This is an immediate consequence of [2] Chapter 3 Theorem 7.3

We therefore know that no matter what we do, non well-founded models

trees will be lurking in the background. As a first attempt to contain them

we will want to make sure that if we have an ill-founded model, any ill-

founded branch must have order type ω, the least possible for an ill-founded

tree. There are several ways in which we can do this, but the method we

will choose is to build the tree on the finite subsets of the model itself. In

other words, we will specify whether or not a finite set x is in the tree. Any

extension of x in the tree will then be of the form x∧a for some a in our

model. This way we can never have a branch which has length greater than

ω as our relations only deal with finite tuples.

As an added bonus, we will see that defining our trees in this way will

allow us (in the case our trees are well founded) to compare in a definable

way the height of nodes of our tree.

CHAPTER 2. COMPONENT TREES 40

2.2.2 Language of Trees

2.2.2.1 P

In order to define a tree structure on the finite tuples we will need a

predicate of each arity which says that the tuple is in the tree. We will then

also require that if a tuple is in the tree so are all subtuples. Finally we will

also want “being in the tree” to be a property of a finite set and not a specific

tuple (i.e an ordered finite set).

Definition 2.2.2.1. Let LP = {Pn : Pn is an n-ary predicate}.

Definition 2.2.2.2. Let TP be universal closure of the following LP sen-

tences:

• For all i1, . . . in ∈ n P n(x1, . . . , xn) → P n(xi1 , . . . , xin)

• P n+1(x0, . . . , xn) → P n(x1, . . . , xn)

We can consider (by abuse of notation) all the predicates P n to really

be one < ω-ary predicate (i.e. a predicate on the finite tuples of the model).

Under this abuse of notation, the predicate P satisfies the axioms of being a

tree under the partial order x ⊆ y. (In other words under this partial order

the predicate P is upwards closed).

2.2.2.2 Color

Now that we have defined our tree, we can define informally the height

of a tree. The name we give for the height of the tree extending a tuple is

it’s “Color”. This is inspired by the definition of color given in [8].

CHAPTER 2. COMPONENT TREES 41

Definition 2.2.2.3. Define the color of a (‖a‖) as follows:

• ¬P (a) ↔ ‖a‖ = −∞

• P (a) ↔ ‖a‖ ≥ 0

• For all b ‖a‖ ≥ ‖ab‖ + 1

• ‖a‖ = sup{α : ‖a‖ ≥ α} if it exists.

• ‖a‖ = ∞ otherwise.

Under this definition if a tuple is not in the tree defined by P it has

color −∞. But, if a tuple is in the tree, its color is the height of the tree

of tuples extending it, by the usual definition of height on a tree. (here ill

founded branches are defined to have height ∞).

Lemma 2.2.2.4. If M |= TP , a ∈M,P (a) then ‖a‖ = sup{‖ab‖+1 : b ∈M}

(where we consider −∞ + 1 = 0)

Proof. We know that ‖a‖ ≥ sup{‖ab‖+ 1 : b ∈M}. But, for any α the only

condition that will allow ‖a‖ > α is that there is a b such that ‖ab‖+ 1 > α.

So in fact ‖a‖ ≤ sup{‖ab‖ + 1 : b ∈M} and hence ‖a‖ = sup{‖ab‖ + 1 : b ∈

M}.

It is worth mentioning explicitly that ‖ · ‖ is not a predicate in the 1st

order language and by Theorem 2.2.1.2 ‖ · ‖ is not even definable in L∞,ω.

‖ · ‖ is just a shorthand we will use to discuss colors in a model.

Definition 2.2.2.5. Let M |= TP . Then Spectrum of M

Spec(M) = {(α : ∃a ∈M)‖a‖ = α}

.

CHAPTER 2. COMPONENT TREES 42

Thus the spectrum of a model is just the collection of colors realized

in it. We will see later that in the models of TP we are interested in, the

spectrum essentially determines the model.

Theorem 2.2.2.6. If M |= TP , α < β and β ∈ Spec(M) ∩ ORD then

α ∈ Spec(M)

Proof. Assume not and let α ∈ Spec(M) be the least such that there is a

β < α for which the theorem fails. Let x ∈M, ‖x‖ = β. So β = sup{‖xa‖+

1 : a ∈M}. Therefore, there must exists an a ∈M such that β > ‖xa‖ > α

(because the colors of the extensions x are are cofinal in ‖x‖.) But, then we

know there is a c ∈ M such that ‖xac‖ = α because β was assumed to be

the least such that the theorem failed. ⇒⇐.

So in any model M of TP Spec(M) ∩ ORD is in fact an ordinal.

Lemma 2.2.2.7. There exists ϕ≥
α (x) ↔ ‖x‖ ≥ α, qr(ϕ≥

α) = α.

Proof. Let ϕ≥
0 (x) = P (x) then

ϕ≥
0 (x) ↔ ‖x‖ ≥ 0, qr(ϕ≥

0) = 0)

and qr(ϕ≥
0 (x)) = 0.

Let ϕ≥
γ (x) =

∧

α<γ(∃x)(ϕ
≥
α (x, x)) then

ϕ≥
γ (x) ↔

∧

α<γ

‖xx‖ ≥ α

↔
∧

α<γ

‖x‖ ≥ α+ 1

↔ ‖x‖ ≥ α

CHAPTER 2. COMPONENT TREES 43

and qr(ϕ≥
γ) = sup{qr(ϕ≥

α) + 1 : α < γ} = γ.

Corollary 2.2.2.8. There exists ϕ=
α (x) ↔ ‖x‖ = α, qr(ϕ=

α) = α + 1, ϕ=
α ∈

L|α|,ω.

Proof. ϕ=
α (x) = ϕ≥

α (x) ∧ ¬ϕα+1(x)

2.2.2.3 Slant Lines

Now that we understand the definition of color we can begin to under-

stand why slant lines are important. First though we will need a definition.

Definition 2.2.2.9. Let M |= TP , a ∈M , f is a slant line such that domf ≥

|a|. Then we say a is on the slant line f if f(|a|) = ‖a‖.

The purpose of slant lines is to allow us (in some sense) to compare the

information contained in tuples of different lengths. To see this notice that

in a well-founded model, as we extend a tuple, the color must decrease. This

is because in any well-founded tree the height of any node is always less than

the height of it’s predecessor.

Intuitively when we think about slant lines we want to be thinking

about slow slant lines. This is because if we have a slow slant line f and

we have two tuples a, b of arity n, m such that ‖a‖ = f(n), ‖b‖ = f(m) and

f(0) = γ + max{m,n} then a and b differ by the minimum amount possible.

So, if there was a way to minimally extend them to be of the same arity

then they would have the same color. Hence when looking at the color of a

tuple, it isn’t the actual color which matters as much as the slant lines the

tuple/color is on.

CHAPTER 2. COMPONENT TREES 44

Tuples

Color

b‖a1‖ω ∗ α + 4
b‖a1a2‖ω ∗ α + 3

b‖a1a2a3‖ω ∗ α + 2
b‖a1a2a3a4‖ω ∗ α + 1

b‖a1a2a3a4a5‖ω ∗ α

b‖a1a2a3a4a5a6‖ω ∗ λ + n
b‖a1a2a3a4a5a6a7‖ω ∗ λ + n − 1

· · ·

Now that we know the right information to consider is the slant line of

a tuple and not its color, we will be interested in comparing tuples when

the color functions are the same up to a slant line (see Definition 6.1.1.7).

By only comparing tuples up to slant lines we know that, assuming enough

homogeneity, we will be able to extend the tuples we are comparing and not

gain any new information about them up to the slant line from the extension.

This construction will be very useful for building partial isomorphisms. To

see why we can find extensions which don’t add information up to slant lines,

but why we can’t in general find extensions that preserve information up to

an ordinal, lets look at an example.

Lets assume we are in a model such that if a tuple has a color then

it has extensions by single elements which have all lesser colors (this is a

very mild homogeneity requirement which we will almost always have). Now

consider a tuple of color ω and one of color ω+1. Intuitively we would think

that we shouldn’t be able to distinguish between these tuples up to ω, and

in fact we can’t. But now lets look at the extensions. We know that the

tuple of color ω + 1 has an extension which is different up to ω from all the

CHAPTER 2. COMPONENT TREES 45

extensions of the tuple of color ω. Hence by looking at the extensions we can

distinguish between the two tuples. This is bad if we want to say when two

sequences contain the same information (as will be necessary for back and

forth arguments).

Now lets look at the case where we only preserve information up to a

slant line. For each slant line, and each extension of the tuple of color ω+ 1,

there is an extension of the tuple of color ω which looks the same up to the

slant line. This is what we want.

Tuples

Color

ω ∗ α + 6

ω ∗ α + 5

ω ∗ α + 4

ω ∗ α + 3

ω ∗ α + 2

ω ∗ α + 1

ω ∗ α

a1 a2 a3 a1a2 a2a3 a1a3 a1a2a3

f
g

Example of two functions the same up to a slant line.

CHAPTER 2. COMPONENT TREES 46

2.2.2.4 Color Archetypes

Definition 2.2.2.10. Define the Color Archetype of a tuple x = x0 . . . xn−1

(ctype(x)) = {〈(i0, . . . , im), ‖xi0 . . . xim‖〉 : (i0, . . . , im) ⊆ n}

The idea behind the color archetype is that it contains all the information

about the color of a tuple and its subtuples. . We will see that in the models

we are interested in this in fact is all the information we have about a tuple

in LP .

Before we continue lets consider what an extension of a color archetype

C on x might look like (and which ones are possible). Say we are looking

at an extension xb and we want to know what possible color archetypes it

might have. Well we know that any color restricted to a subtuple of x must

be the same as the color witnessed by C. The only new information is the

color of the new subtuples. But, because we are only extending the tuple

by one element, we know that the only new subtuples are of the form yb

where y ⊆ x. And, because of the nature of the definition of color, the only

requirement limiting the value ‖yb‖ is that we must have ‖yb‖ < ‖y‖, and

‖zb‖ < ‖yb‖ if z ⊆ b (Here we consider ∞ <∞.)

It is also worth mentioning explicitly that while order of the tuple doesn’t

matter with regards to the color predicate, it does matter with regards to

the color archetype.

Definition 2.2.2.11. We say that two tuples x = (x0 . . . xn−1),y = (y0 . . . yn−1)

have the same color archetype up to a slant line f (ctype(x)|f = ctype(y)|f)

if the they are the same when the color archetypes are considered as functions

from x, y to ORD. We say that two tuples x = (x0 . . . xn−1),y = (y0 . . . yn−1)

CHAPTER 2. COMPONENT TREES 47

have the same color archetype up to a limit ordinal γ if for all slant lines

(f < γ) ctype(x)|f = ctype(y)|f

Lemma 2.2.2.12. Let x,y be tuples. Then x,y have the same color archetype

up to γ if and only if ctype(x)|cγ = ctype(y)|cγ

(where here we consider the color archetypes as functions and cγ as the con-

stant function with value γ (and domain ω)).

Proof. The implication from right to left is immediate from the definitions.

The implication left to right follows from the fact that if we have a finite

collection of ordinals less than a limit ordinal (like the colors of the subtuples

of x,y) then there is an ordinal greater than all of them. Hence with respect

to x,y if we choose a slant line with values large enough below γ it is just as

good as choosing γ.

2.3 Comparing Color

Now that we have defined the tree structure we are putting on our model,

as well as the color of the tuples in the tree structure, we will want to be

able compare the colors of different tuples in the same model.

Of course by considering all formulas of L∞,ω it is easy to tell what the

difference between two colors is (as we are able to say with a single formula

if a tuple has exactly color α for any particular α). But as we are concerned

about the quantifier ranks of the models, we would like a way to compare

colors that is definable in a 1st order manner. However, being able to com-

pare the colors of tuples in a 1st order definable way isn’t enough either. We

CHAPTER 2. COMPONENT TREES 48

will want our definition to be unique as well. In other words we want our

method of comparing colors to be the true one and to completely define the

relationships between the colors of two tuples.

We will need our method of comparison to be unique because we are also

worried about how many models and types our theories will have. If there

are several different ways to extend our model of TP so that we have a model

of our new theory (which allows us to compare colors), we very quickly could

find ourselves with to many models and types.

As it turns out though, this is impossible. It is impossible because if

we could really come up with an extension that satisfied all those properties

then we could define what it means to be well-founded (i.e. all extensions

have color strictly less than you). And, as we mentioned earlier (Theorem

2.2.1.2) it is a well known fact that L∞,ω can’t define what it means to be

wellfounded. Fortunately though this is the only stumbling block. In the

models we are looking at (i.e. the trees which are very homogeneous in a

strong sense that will be described later), our theory TR does correctly and

completely define the relationships between colors, so long as our tree is well

founded, i.e. there are no tuples of color ∞ in the model.

While in homogeneous trees the color of a tuple does completely deter-

mine the structure of the tree extending it, in the non-homogeneous case

there is more going on. As such, there will be times when we want a predi-

cate which doesn’t just talk about the color of a tuple, but also talks about

the tree extending the tuple. This is where the theory TS comes in. We will

find that this theory (in the case there are no tuples of color ∞) correctly

and completely says when two tuples of the same arity have isomorphic trees

CHAPTER 2. COMPONENT TREES 49

extending them.

2.3.1 R≤

2.3.1.1 Definitions

We will compare the color of nodes by mimicking one half of a back and

forth construction. We will do this by saying that two tuples “look the same”

if for every extension of one we can find an extension of the other such that

the extensions “look the same”.

Definition 2.3.1.1. Let LR≤
= LR = LP ∪ {Ri,j

≤ : Ri,j
≤ is i+ j ary, i, j ∈ ω}.

For notational convenience we will treat Ri,j
≤ as a predicate of two argu-

ments (one i-ary, one j-ary). Further abusing notation (in a similar way as

we did with P) we will consider R≤ as a two argument predicate on finite

tuples.

We also define in LR for notational convenance

R=(a, b) ↔ R≤(a, b) ∧R≤(b, a)

and

R<(a, b) ↔ R≤(a, b) ∧ ¬R=(a, b)

Now before we continue we want to point out the intended interpretation

of R≤(a, b) is ‖a‖ ≤ ‖b‖.

Definition 2.3.1.2. Let TR be universal closure of the following LR sen-

tences:

CHAPTER 2. COMPONENT TREES 50

• TP

• R≤(x,y) ↔ [[¬P (x)] ∨ [P (x) → P (y) ∧ (∀a)(∃b)R≤(xa,yb)]]

The idea behind the predicate R≤ is that if we know for every extension

of the first argument there is an extension of the second argument with color

at least as great as the first, then we know that the second argument must

have color at least as great (by the definition of color).

2.3.1.2 Correctness

In this section we will show that if R≤ holds then R≤ accurately describes

the relationship between the colors of its arguments. Further we will show

that if our model has no tuple of color ∞ then we have R≤(a, b) iff ‖a‖ ≤ ‖b‖

Theorem 2.3.1.3. If M |= TR then M |= (∀a, b)R≤(a, b) → ‖a‖ ≤ ‖b‖

Proof. Assume ‖a‖ = −∞

(∀b)R≤(a, b) by the definition of R≤, and (∀‖a‖ ≤ ‖b‖.

Assume [if ‖x‖ < α <∞ then R≤(x,y) ⇒ ‖x‖ ≤ ‖y‖] and let ‖a‖ = α

Then R≤(a, b) → (∀a′)(∃b′)R≤(aa′, bb′) and hence [(∀a′)(∃b′)‖aa′‖ ≤

‖bb′‖] by the induction hypothesis.

Therefore R≤(a, b) → [‖a‖ = sup{‖aa′‖ + 1 : a′ ∈M} ≤ sup{‖bb′‖ + 1 :

b′ ∈M} = ‖b‖]. So R≤(a, b) → ‖a‖ ≤ ‖b‖.

By induction our theorem holds for any a such that ‖a‖ <∞.

Assume ‖a‖ = ∞.

CHAPTER 2. COMPONENT TREES 51

Let a, a0, a1, . . . be an infinite sequence such that P (a, a0, . . . , an) for all

n (this exists by the definition of color ∞). Therefore there must exist

a sequence b, b0, b1, . . . such that R≤(aa0 . . . an, bb0 . . . bn) for all n. But

then we have (by the definition of R≤), P (b, b0, . . . , bn) for all n. Hence,

‖b‖ = ∞ by the definition of color ∞.

Theorem 2.3.1.4. If M |= TR, a, b ∈ M and ‖a‖ ≤ ‖b‖ < ∞ then M |=

R≤(a, b).

Proof. First notice that if ‖a‖ = −∞ then this is trivially true.

Now assume for all x,y ∈ M |= TR if ‖x‖ < α < ∞ and ‖x‖ ≤ ‖y‖ < ∞

then M |= R≤(x,y). Then let ‖a‖ = α.

First off we know that P (a) → P (b) by the definition of color. We also

know by the definition of (∀a′)(∃b′) such that ‖aa′‖ ≤ ‖bb′‖. Further,

by the inductive hypothesis, we then have R≤(aa′, bb′). But then by the

definition of R≤ we then have R≤(a, b) and we are done.

Theorem 2.3.1.5. Let M |= TP and has no tuples of color ∞. Then there

is a unique extension of M to a model of LR.

Proof. This is immediate from Theorem 2.3.1.4 and Theorem 2.3.1.3.

Theorem 2.3.1.6. For each n there is a n+n ary formula En
a (a, b) ∈ L∞,ω(LR≤

)

such that TR |= En
a (a, b) → ctype(a) = ctype(b).

Proof. Let

En
a (x1, . . . , xn, y1, . . . , yn) ↔

∧

S⊆n

R=({xi : i ∈ S}, {yi : i ∈ S})

CHAPTER 2. COMPONENT TREES 52

Then the theorem follows by Theorem 2.3.1.3 and Theorem 2.3.1.4.

Corollary 2.3.1.7. If M |= R=(a, b) ↔ ‖a‖ = ‖b‖ then En
a (a, b) ↔ ctype(a) =

ctype(b)

Proof. By the definition of archetypes.

When the context is clear, we will leave of the superscript of En
a .

2.3.2 S=

In this chapter we will introduce a theory which will allow us to tell

when the trees extending two tuples of the same arity are isomorphic. We

will do this by mimicking a back and forth argument in a similar manner to

what we did in Section 2.3.1. However, this time instead of looking at only

one side of the back and forth argument at a time, we will look at both sides

simultaneously.

2.3.2.1 Definitions

Definition 2.3.2.1. Let LS= = LP ∪ {Si= : Si= is 2i ary, i ∈ ω}.

For notational convenience we will treat Si= as a predicate of two argu-

ments (each i-ary).

Definition 2.3.2.2. Let TS be universal closure of the following LS= sen-

tences:

• TP

CHAPTER 2. COMPONENT TREES 53

• S=(x,y) ↔ [[¬P (x) ∧ ¬P (y)] ∨ [P (x) ∧ P (y) ∧ (∀a)(∃b)S=(xa,yb) ∧

(∀b)(∃a)S=(xa,yb)]]

There is one subtle point in this definition that is worth stressing. This

point is that unlike with R≤ we can’t compare the color tuples of different

sizes. This is because if we could compare colors of tuples of different sizes

then we could find a formula which would allow us to say when one tuple had

greater color than another. Specifically ϕR=(x,y) := (∃z)R=(x,yz) would

imply ‖y‖ > ‖x‖ and hence we would have the same information (in the

case of homogeneous trees) as if we actually had defined R≤.

2.3.2.2 Correctness

In this section we will show that if S= hold between two tuples then the

tuples do have the same color.

Theorem 2.3.2.3. If M |= TS then M |= (∀a, b)S=(a, b) → ‖a‖ = ‖b‖

Proof. Assume ‖a‖ = −∞

S=(a, b) ⇒M |= ¬P (b) ⇒ ‖b‖ = −∞

Assume if ‖x‖ < α <∞ then S=(x,y) ⇒ ‖x‖ = ‖y‖ and let ‖a‖ = α

Then S=(a, b) → [(∀a′)(∃b′)‖aa′‖ = ‖bb′‖] by the induction hypothesis.

Therefore S=(a, b) → [‖a‖ = sup{‖aa′‖ + 1 : a′ ∈ M} ≤ sup{‖bb′‖ + 1 :

b′ ∈M} = ‖b‖]

And similarly we have S=(a, b) → [(∀b′)(∃a′)‖aa′‖ = ‖bb′‖] and hence

[‖b‖ = sup{‖bb′‖ + 1 : b′ ∈M} ≤ sup{‖aa′‖ + 1 : a′ ∈M} = ‖a‖].

CHAPTER 2. COMPONENT TREES 54

So S=(a, b) → ‖a‖ = ‖b‖.

And by induction works for any a such that ‖a‖ <∞.

Assume ‖a‖ = ∞.

Then let a, a0, a1, . . . be an infinite sequence such that P (a, a0, . . . , an)

for all n (this exists by the definition of color ∞). Therefore there must

exist a sequence b, b0, b1, . . . such that S=(aa0 . . . an, bb0 . . . bn) for all n.

But then we have (by the definition of S=), P (b, b0, . . . , bn) for all n. So

in particular ‖b‖ = ∞ by the definition of color ∞.

Theorem 2.3.2.4. Let M |= TP and have no tuples of color ∞. Then there

is a unique extension of M to a model of TS.

Proof. We will prove this by induction on the color of the tuples of M .

Base Case: ‖a‖ = −∞

In this case we have S=(a, b) iff ‖b‖ = −∞.

Inductive Case: Assume that for all tuples x of color < α there is only one

consistent way to define S=(x,y). Now let ‖a‖ = α.

Assume we have two extensions of M to TS, M0,M1 and suppose

M0 |= S=(a, b). We therefore know that M0 |= (∀c)(∃d)S=(ac, bd) ∧

(∀d)(∃c)S=(ac, bd). But, ‖ac‖ < ‖a‖ = α and so we know that we

also must have M1 |= (∀c)(∃d)S=(ac, b, d) ∧ (∀d)(∃c)S=(ac, bd) (by the

inductive assumption). So we also have M1 |= S=(a, b). Hence, there is

a unique way to extend M to TS on tuples of color ≤ α.

So in particular we know by induction that there is a unique way to extend

M to a model of LS= .

CHAPTER 2. COMPONENT TREES 55

This is a very important theorem when dealing with LS= because it says

that in the case where there are no tuples of color ∞ (the case we care about)

TS= is a conservative extension of TP .

Theorem 2.3.2.5. For each n there is a n+n ary formula En
a (a, b) ∈ L∞,ω(LS=)

such that TS |= En
a (a, b) → ctype(a) = ctype(b).

Proof. Let

En
a (x1, . . . , xn, y1, . . . , yn) ↔

∧

S⊆n

S=({xi : i ∈ S}, {yi : i ∈ S})

By Theorem 2.3.2.3

Corollary 2.3.2.6. If M |= S=(a, b) ↔ ‖a‖ = ‖b‖ then Ea(a, b) ↔ ctype(a) =

ctype(b)

Proof. By the definition of color archetypes.

The purpose of Definition 2.3.2.5 is that we will want later to prove

theorems which only rely on whether or not two tuples look the same with

respect to S=, or R=. Hence we will use this definition which will allow us

to prove the theorems for both TR and TS simultaneously.

Chapter 3

Collections of Archetypes

3.1 Definitions

The language we will be using for this section is an extension of LP .

Definition 3.1.0.7. Let LK = LP
⋃

{Ki : i ∈ κ}, arity of Ki = ni.

3.2 Weak Collection of Archetypes

We are now ready to define the extra structure we want. This structure is

going to come in four parts. The most important part will be the archetypes.

The idea is that we want an archetype to tell us everything we need to know

about a tuple. One way to think about an archetype is as a generalized L∞,ω

infinity type (i.e. a formula of L∞,ω which completely determines what other

formulas of L∞,ω hold). The difference though between an archetype and an

L∞,ω type is that we don’t require an archetype to actually be a formula.

The only thing we require of an archetype is that it is an “abstract property”

56

CHAPTER 3. COLLECTIONS OF ARCHETYPES 57

of tuples.

In addition to the archetypes we are going to want a collection of “con-

sistent pairs of consistent archetypes”. Eventually we are going to want to

“glue” together two copies of our theory with this extra structure and so the

consistent pairs of archetypes are going to tell us how we can “glue” tuples

together.

Before we describe the other elements of the extra structure we are go-

ing to define a “Weak Collection of Archetypes”. The only purpose of this

definition is to break up the definition of “Collection of Archetypes” into two

parts as it is very long.

Definition 3.2.0.8. Let T be a sentence of L∞,ω(LK) such that |= T → TP .

Let AT(T) be a collection of “abstract properties” on elements of models of

T . Further let 〈2−AT(T),≤〉 be a collection of pairs of elements from AT(T)

with ≤ a partial order. We say that AT(T) is a Weak Collection of Archetypes

(with 〈2 − AT(T),≤〉 the Consistent Pairs of Archetypes) if we have

(Truth on Atomic Formulas)

If φ ∈ AT(T) then φ(x1, . . . , xn), φ(y1, . . . , yn)

∧

S⊆n(∀atomic formula

θ)[θ(〈xi : i ∈ S〉) ↔ θ(〈yi : i ∈ S〉)]

(Truth on Color)

If φ ∈ AT(T) then φ(x), φ(y)
 ctype(x) = ctype(y)

(Restriction of Arity for Archetypes)

For each φ(x1, . . . , xn) ∈ AT(T) and each S ⊆ n there is a φS(〈xi : i ∈ S〉) ∈

AT(T) such that φ(x1, . . . , xn)
 φS(〈xi : i ∈ S〉). We say φS(〈xi : i ∈ S〉) =

CHAPTER 3. COLLECTIONS OF ARCHETYPES 58

φ|〈xi : i ∈ S〉

(Restriction of Arity for Consistent Pairs of Archetypes)

If (τ0, τ1), (σ0, σ1) ∈ 2 − AT(T) and (τ0, τ1)(x, y1, . . . , yn) ≤ (σ0, σ1)(x) then

• (τ0, τ1)|〈x, {yi : i ∈ S}〉 ∈ 2 − AT(T)

• (τ0, τ1)|〈x, {yi : i ∈ S}〉 ≤ (σ, σ′)(x)

for each S ⊆ n

(Completeness for Archetypes)

φ(x)
 (∀y)
∨

ψ(x,y)
φ(x) ψ(x,y)

(Amalgamation for Archetypes)

For each φ, ψ, ζ ∈ AT(T) if φ(x,y)
 ζ(y) and ψ(y, z)
 ζ(y) then there is

a η ∈ AT(T) such that

η(x,y, z)
 (φ(x,y)∧ψ(y, z))∧(∅ 6= x′ ⊆ x, ∅ 6= z′ ⊆ z,y′ ⊆ y) → ¬P (x′,y′, z′)

(Amalgamation for Consistent Pairs of Archetypes)

For each (φ0, φ1), (ψ0, ψ1), (ζ0, ζ1) ∈ 2 − AT(T) if

• (φ0, φ1)(x,y) ≤ (ζ0, ζ1)(y)

• (ψ0, ψ1)(y, z) ≤ (ζ0, ζ1)(y)

then there is a (η0, η1) ∈ 2 − AT(T) such that

• (η0, η1)(x,y, z) ≤ (φ0, φ1)(x,y)

CHAPTER 3. COLLECTIONS OF ARCHETYPES 59

• (η0, η1)(x,y, z) ≤ (ψ0, ψ1)(y, z)

• η0
 (∀x′, z′, y′)(∅ 6= x′ ⊆ x, ∅ 6= z′ ⊆ z,y′ ⊆ y)¬P (x′,y′, z′)

• η1
 (∀x′, z′, y′)(∅ 6= x′ ⊆ x, ∅ 6= z′ ⊆ z,y′ ⊆ y)¬P (x′,y′, z′)

(Consistency of Color)

If (φ, φ′) ∈ 2 − AT(T) then

φ(x1, . . . , xn), φ
′(y1, . . . , yn)

∧

S⊆n

‖{xi : i ∈ S}‖ ≤ ‖{yi : i ∈ S}‖

(Consistency of ≤)

If (φ0, φ1), (ψ0, ψ1), (ζ0, ζ1) ∈ 2 − AT(T), (ζ0, ζ1)(x,y, z) ≤ (φ0, φ1)(x,y) and

(φ0, φ1)(x,y) ≤ (ψ0, ψ1)(x) then

• (ζ0, ζ1)(x,y, z) ≤ (ψ0, ψ1)(x)

• φ0(x,y)
 ψ0(x)

• φ1(x,y)
 ψ1(x)

(Extension of 0-Colors)

Suppose (σ, σ′) ∈ 2−AT. Further assume that τ ′(x,y)
 σ′(x). Let τ(x,y)

σ(x) ∧ ‖x′y′‖ = −∞ (if ∅ 6= x′ ⊆ x, ∅ 6= y′ ⊆ y). Then (τ, τ ′) ∈ 2 − AT and

(τ, τ ′)(x,y) ≤ (σ, σ′)(x).

Lets go step by step through each part of this definition. The idea behind

(Truth on Atomic Formulas) is that we want each archetype to determine

the atomic type of the tuple it is meant to describe (i.e what atomic formu-

las hold on subtuples). Similarly (Truth on Color) says that the archetype

should completely determine the color of the tuple it is mean to describe as

CHAPTER 3. COLLECTIONS OF ARCHETYPES 60

well as the color of all its subtuples. As we will see, the intuitive purpose

behind the axioms for a collection of archetypes is to ensure that the only

information which is important about a tuple is it’s ctype (i.e the colors of

its subtuples), and its atomic type.

Now (Restriction of Arity for Archetypes) and (Completeness for Archetypes)

guarantee that every tuple has an archetype which describes it. This is a sim-

plifying assumption which will make our arguments much cleaner.

Similarly (Restriction of Arity for Consistent Pairs Archetypes) says

that if we have a consistent pair of archetypes (τ, τ ′) ≤ (σ, σ′) and we restrict

(τ, τ ′) to an element of its domain which still contains the domain of (σ, σ′)

then we still have a consistent pair of archetypes which extends (σ, σ′). This

way don’t have to worry that ≤ only defines extensions on certain arities

(which would be annoying)

(Amalgamation for Archetypes) says that if we have two archetypes

φ(x,y) and ψ(y, z) which agree on the intersection of their domains, then we

can amalgamate them by putting every new tuple (i.e. tuples which overlap

with both domains and aren’t in the intersection) at −∞.

Definition 3.2.0.9. Let σ(x,y)
 ζ(y), τ(y, z)
 ζ(y) and η(x,y, z)

(σ(x,y) ∧ τ(y, z)) and (∅ 6= x′ ⊆ x, ∅ 6= z′ ⊆ z,y′ ⊆ y) → ¬P (x′,y′, z′). We

then say that η(x,y, z) = Trivial(σ, τ,y) is a Trivial Amalgamation of σ and

τ around y.

(Amalgamation for Consistent Pairs of Archetypes) is almost identi-

cal to (Amalgamation for Archetypes) except it deals with consistent pairs

of archetypes. Specifically it says that if we have two consistent pairs of

archetypes (φ0, φ1)(x,y) and (ψ0, φ1)(y, z) each of which which agree on the

CHAPTER 3. COLLECTIONS OF ARCHETYPES 61

intersection of their domains, then we can amalgamate them by putting every

new tuple (i.e. tuples which overlap with both domains and aren’t in the in-

tersection) at −∞ on both archetypes in the consistent pairs of archetypes.

Definition 3.2.0.10. Let

• (σ0, σ1), (τ0, τ1) ∈ 2 − AT(T)

• (σ0, σ1)(x,y) ≤ (ζ0, ζ1)(y)

• (τ0, τ1)(y, z) ≤ (ζ0, ζ1)(y)

• ηi(x,y, z) = Trivial(σi, τi,y)

Then we say (η0, η1) is a Trivial Amalgamation of (σ0, σ1) and (τ0, τ1) around

y.

What (Consistency of Color) says is that if we have a consistent pairs

of archetypes (σ, σ′) then any color which σ′ forces on a subtuple must be

at least as big as the corresponding color that color σ forces on the same

subtuple.

(Consistency of ≤) is the axiom which say that ≤ behaves like extension

should. In other words if (τ, τ ′) is an extension of an extension of (σ, σ′)

then (τ, τ ′) is an extension of (σ, σ′) and (τ, τ ′) determines the archetype of

(σ, σ′) (i.e. if (σ, σ′)(x) ≥ (τ, τ ′)(x,y) and (σ∗, σ
′
∗)(x) ≥ (τ, τ ′)(x,y) then

we know (σ, σ′)(x) = (σ∗, σ
′
∗)(x)). There is one point to mention explicitly

though. We are not assuming though that just because if τi(x,y)
 σi(x)

that (τ0, τ1)(x,y) ≤ (σ0, σ1)(x).

CHAPTER 3. COLLECTIONS OF ARCHETYPES 62

The idea is that we want (τ0, τ1)(x,y) ≤ (σ0, σ1)(x) to hold not just

when (τ0, τ1) forces (σ0, σ1) to hold but if in addition whenever there is a

consistent pair of archetypes which “look like” (σ0, σ1) there is a consistent

pair of archetypes extending them which “looks like” (τ0, τ1) (Here “looks

like” means have the same consistent pairs of base predicates).

Once we have our consistent pairs archetypes we will want to make sure

that they have enough extensions so as to get models of our original theory

T on each of the “components”. (Extension of 0-Colors) is the first of the

axioms which will guarantee such an extension exists. What it says is that if

we have a consistent pair of archetypes (σ, σ′) and we have some archetype

τ ′ extending σ′ then we can extend σ by “adding no new information” and

get a consistent pair extending the original.

Before we give the rest of the conditions we are going to want to define

what it means for two archetypes to be the same up to a slant line. Intuitively

two archetypes are the same up to a slant line if they satisfy the same atomic

formulas and the color archetypes look the same up to the slant line. This is

an important idea because we want our archetypes to (in some sense) allow

us to say that the only thing which is important about a tuple is its color

and which atomic formulas it satisfies.

Definition 3.2.0.11. Let T be a sentence of L∞,ω with a weak collection of

archetypes AT(T). Let σ, τ ∈ AT(T) and let sl be a slant line. We then say

σ and τ are the same up to sl (σ|sl = τ |sl) if

• σ(x), τ(y)
 ctype(x)|sl = ctype(y)|sl

• atomic diagram(x) =atomic diagram(y)

CHAPTER 3. COLLECTIONS OF ARCHETYPES 63

3.3 Collection of Archetypes

We still have some more information that we want to add to our structure

T . Specifically there are two other pieces, the “Extra Information” function,

and the “Base Predicates”

The archetype realized by a a tuple is intended to completely describe

the tuple. At the same time though, we want to be able to get a handle on

the archetypes inside our language (otherwise they aren’t very useful). This

is where “Base Predicates” come in. The “Base Predicates” are a subset

of LK − LP which we will use to “talk about” archetypes. In addition, we

will require find that every archetype will force exactly one basic predicate

to hold (up to equivalence) on its domain. As such it will be very useful to

extend the idea of a consistent pair of archetypes to a consistent pair of base

predicates.

Definition 3.3.0.12. We say that (A0, A1) is a Consistent Pairs of Base Predicates

((A0, A1) ∈ 2−BP) if there is (σ0, σ1) ∈ 2−AT(T) such that σi(x)
 Ai(x).

We say that (B0, B1) ≤ (A0, A1) if there are (σ0, σ1), (τ0, τ1) ∈ 2 − AT(T)

such that

• σi(x)
 Ai(x)

• τi(x,y)
 Bi(x)

• (τ0, τ1)(x,y) ≤ (σ0, σ1)(x)

In other words, (A0, A1) is a consistent pairs of base predicates if there

is a consistent pairs of archetypes which witness it and similarly (B0, B1) ≤

CHAPTER 3. COLLECTIONS OF ARCHETYPES 64

(A0, A1) if there are consistent pairs of archetypes which witness this.

However there is one more thing we have to worry about. It is possible

that some archetypes are only realized in some “types” of models and so,

we will need a way to say this. The method we will use will be an “Extra

Information” function. Intuitively each model and each archetype the extra

information function returns the “types of tuples” which are forced to exist

in the model or forced by the archetype. As it turns out the “type of tuple”

(in this context) will be completely determined by its color, its arity and one

other bit of information. Note that this is a very loose definition of “type

of tuple” as we are only interested in collections of them and not individual

tuples (as there is obviously more information that can be said about a tuple

than just its arity and color).

The reason why we need this is that it turns out in the case we are

interested in, the spectrum of a model won’t quite be enough to completely

determine it. Specifically when we have a model whose spectrum is not a

limit ordinal then the tuples with color above the highest limit ordinals come

in two types. In this case, just knowing the color of the tuple isn’t enough.

We also need to know a little more. In addition we will want to ensure that

if we insist an archetype is realized in a model then that archetype won’t try

and put a tuple on a color where it couldn’t go. So the “Extra Information”

is there to keep track of this.

With this notation we are now ready to define our Archetype Collection.

Definition 3.3.0.13. Let T be a sentence of L∞,ω(LK). Let AT(T), 2 −

AT(T) be a weak collection of archetypes for T . We then say AT(T), 2 −

CHAPTER 3. COLLECTIONS OF ARCHETYPES 65

AT(T) is a Collection of Archetypes for T if there is a collection of Base Predicates

predicates, BP(T) ⊆ LK , and a function EIT : {M : M |= T} ∪ {φ ∈

AT(T)} →Power Set(ORD ×X) for some set X such that

(Prediction)

For all σ, τ ∈ AT(T)(τ(x,y)
 σ(x)) there is a ητ (a) such that

• (∀M |= T)EI(τ) ⊆ EI(M) ⇔ EI(ητ) ⊆ EI(M)

• EI(ητ) ⊆ EI(M) →M |= (∃a)ητ (a)

and there is a base predicate Aσ,τ (x,y, z, a) such that

• Aσ,τ (x,y, z, a)
 Aη(a) (where ητ (a)
 Aη(a))

• For all M |= T M |= ητ (a) ∧ σ(x) ∧ Aσ,τ (x,y, z, a) → τ(x,y).

(Prediction up to a Slant Line)

(∀sl a slant line with ω ∗ ζ ≤ sl(1), sl(|x,y|) < ω ∗ (ζ + 1) ≤ Spec(M) or

sl = ∞)

For all σ, σ′, τ ∈ AT(T)(τ(x,y)
 σ(x)) there is a ηt|sl(a) such that if σ|sl =

σ′|sl then

• (∀M |= T)EI(σ′) ∩ EI(σ) ⊆ EI(M) ⇔ EI(ηt|sl) ⊆ EI(M)

• If sl = ∞ then (∃M |= T)EI(M) ⊇ EI(σ) ∪ EI(σ′)

• M |= σ′(x) →M |= (∃a)ητ |sl(a)

and there is a base predicate Aσ|sl,τ |sl(x,y, z, a) such that

• Aσ|sl,τ |sl(x,y, z, a)
 Aη(a) (where ητ |sl(c)
 Aη(c))

CHAPTER 3. COLLECTIONS OF ARCHETYPES 66

• (∀M |= T)M |= ητ |sl(x, a)∧Aσ|sl,τ |sl(x,y, z, a)∧τ
′(x,y) → τ ′|sl = τ |sl.

(Truth on Atomic Formulas)

(∀A ∈ BP(T))[A(x1, . . . , xn), A(y1, . . . , yn)]

∧

S⊆n(∀atomic formula θ)θ(〈xi :

i ∈ S〉) ↔ θ(〈yi : i ∈ S〉)

(Amalgamation for Base Predicates)

For each A,B,Z ∈ BP (T) if A(x,y)
 Z(y) and B(y, z)
 Z(y) then there

is a C ∈ BP (T) such that C(x,y, z)
 (A(x,y)∧B(y, z))∧ (∅ 6= x′ ⊆ x, ∅ 6=

z′ ⊆ z,y′ ⊆ y) → ¬P (x′,y′, z′)

(Homogeneity for Base Predicates)

If A ∈ BP (T) and A(x,y)
 B(x) then for each n, B(x)
 (∃ny)A(x,y)

(Extension of 1-Colors)

Suppose (σ, σ′) ∈ 2 − AT(T), τ(x,y)
 σ(x) and EI(σ′) ∪ EI(τ) ⊆ EI(M).

Then there is an archetype τ ′ such that (τ, τ ′) ∈ 2 − AT(T) and EI(τ ′) ⊆

EI(M)

(Homogeneity of Consistent Pairs of Archetypes)

Suppose

• (σ, σ′), (τ, τ ′), (η, η′) ∈ 2 − AT

• (η, η′)(x,y)
 (σ, σ′)(x)

• (η, η′)(x,y)
 (B,B′)(x,y)

• (τ, τ ′)(x), (σ, σ′)(y)
 (A,A′)(x) ∧ (A,A′)(y)

CHAPTER 3. COLLECTIONS OF ARCHETYPES 67

(where A,A′, B,B′ ∈ BP). Then there is a (ζ, ζ ′) ∈ 2 − AT(T) such that

• (ζ, ζ ′)(x,y) ≤ (τ, τ ′)(x)

• (ζ, ζ ′)(x,y)
 (B,B′)(x,y)

• (∀M |= T)EI(M) ⊇ EI(τ) ↔ EI(M) ⊇ EI(ζ)

• (∀M ′ |= T)EI(M ′) ⊇ EI(τ ′) ↔ EI(M ′) ⊇ EI(ζ ′)

(Completeness of Extra Information)

If M |= T φ ∈ AT(T), then M |= (∃x)φ(x) iff φ ⊆ EI(M).

(Completeness of Consistent Pairs of Base Predicate)

If (A,A′) is a consistent pair of base predicates and σ, σ′ ∈ AT(T) such that

• σ(x)
 A(x)

• σ′(x)
 A′(x)

• σ(x1, . . . , xn), σ
′(y1, . . . , yn)

∧

S⊆n ‖{xi : i ∈ S}‖ ≤ ‖{yi : i ∈ S}‖

Then (σ, σ′) ∈ 2 − AT(T).

(Uniqueness of Base Predicate)

(∀A,A′ ∈ BP (T))(∃N |= T,x ∈ N)(N |= A(x) ∧ A′(x)) → ∅
 (A(x) ↔

A′(x))

Lets go through what each of these conditions says. First lets consider

(Prediction). This is one of the most important axioms we have. Those

of you who are familiar with [8], will recognize it as being very similar to

CHAPTER 3. COLLECTIONS OF ARCHETYPES 68

Generalized Saturation for Archetypes (Proposition 4.3.2.1 of [8]) which is

probably the most important theorem of the paper (for a discussion of that

specific Proposition see Section 5.2).

So what exactly is (Prediction) saying. To understand (Prediction) we

need to understand the intended connection between the base predicates and

the archetypes. Intuitively the archetypes are supposed to contain all im-

portant information about the tuple they describe. But, this in and of itself

isn’t particularly useful as we are not even requiring that the archetypes be

formulas of L∞,ω. As such, we need some way to get a handle on what the

archetypes are saying. This is where the base predicates come in.

What we would like to be able to say is that if we have an archetype

σ(x), and we know which base predicate xy satisfies, as well as which base

predicates extensions of xy satisfy, then in fact we know what the archetype

of xy is. This way all the information about an extension of a tuple would be

contained in the the base predicates and the archetype of the original tuple.

This would then allow us to completely describe our model by the archetypes

of arity 1 which it realizes. This is because we know by (Homogeneity of Base

Predicates) that all base predicates are extended in every consistent way. So,

we could produce a back and forth argument guaranteeing that if two models

satisfied these same archetypes of arity 1 they are L∞,ω equivalent.

However, we can’t quite do this. And in fact upon further thought, if we

could do this it would lead to (at best) a theory where all models have the

same spectrum. To see this suppose we start with an archetype which places

it’s sole tuple x at −∞. Now this archetype will be realized in every model.

Now suppose we have two models. One of which, M , has an element of color

CHAPTER 3. COLLECTIONS OF ARCHETYPES 69

α and one of which, N doesn’t. Let a be such a tuple of color α in M . Then

the archetype realized by xa is witnessed by some base predicate A. But

then in N there is some b such that N |= A(xb). Hence by assumption b has

color α. ⇒⇐.

After considering the previous argument, we realize that in addition to a

base predicate witnessing the extension of our archetype we need something

else which will force the archetype to be realized in the model we are looking

at. That is what ητ is for. ητ is meant to contain the same colors as τ and

so anytime τ is realized in a model, so is ητ . This then allows us to pin down

τ by comparing the colors of tuples in the domain to those in ητ .

Now (Prediction up to a Slant Line) says essentially the same thing as

(Prediction) except instead of requiring that we can extend an archetype to

another, we only require that we can extend it up to a slant line. We hence re-

quire that this extension is witnessed by a base predicate extending the base

predicates of both σ, σ′ and ηt|sl. Now there are a couple of subtle points to

notice about this axiom. The first of which is that this axiom implies that if

σ|sl = σ′|sl and τ(x,y)
 σ(x) then there is an archetype τ ′(x,y) such that

τ ′(x,y)
 σ′(x) and τ ′|sl = τ |sl. This in and of itself is a VERY strong form

of homogeneity (and will be crucial for determining the quantifier ranks of

our models). It says not only if we have two different realizations that they

must have exactly the same extensions (like (Prediction) says) but if we have

two realizations of different archetypes which just happen to look the same

then as far as they look the same their extensions must look the same as well.

The next subtle point to notice is that in some circumstances the archetype

ηt|sl and the base predicate Aσ|sl,τ |sl may be simply be the same as ηt and

CHAPTER 3. COLLECTIONS OF ARCHETYPES 70

Aσ,τ . Specifically, this might be the case if σ′|sl = σ and τ ′|sl = τ (with the

obvious meanings).

On a similar note, it is worth understanding what happens in the case

that sl = ∞. In this we find that the archetype τ ′ places all colors in ex-

actly the same place as τ does and what is more that τ and τ ′ force exactly

the same atomic formulas. The point of this clause though is that this does

not necessarily mean that τ = τ ′. And in fact if σ 6= σ′ then τ can’t equal

τ ′. In particular it is possible that there is more information encoded in the

archetypes we have chosen than just the color of their tuples and the atomic

formulas they realized.

The reason for this, as we will see later, is that if models of the theory

Θ which we are interested in, which have Spectrum {−∞}∪ω ∗α+n, come

in two forms. What is more, these models will look fundamentally different

above ω ∗ α. But at the same time we won’t be able to see this difference

just by looking at the color of a tuple (which is above ω ∗ α).

Hence, in addition to the the color archetype of its domain as well as

which atomic formulas are satisfied by its domain, an archetype will have to

keep track of which “type” of model it is allowed to be in. It will do this by

using the “Extra Information” function (and in fact that was why we need

the “Extra Information” function). Further, the way we treat this in regards

to (Prediction up to a Slant Line) is we either require the slant line to be

below the largest limit ordinal in the Spectrum, or we require the slant line

to be ∞ and for both archetypes being compared to be “compatible” (i.e.

both realizable in the same model)

The (Truth on Atomic Formulas) condition in Definition 3.3.0.13 says

CHAPTER 3. COLLECTIONS OF ARCHETYPES 71

essentially the same thing as the (Truth on Atomic Formulas) condition in

Definition 3.2.0.8. That is, if we know a tuple satisfies a base predicate then

that information determines which atomic formulas that tuple satisfies.

(Amalgamation for Base Predicates) says essentially the same thing as

(Amalgamation for Archetypes) in Definition 3.2.0.8. If we have two base

predicates which agree on the intersection of their domain then it is possible

to amalgamate them in such a way that all new tuples are given color −∞.

What (Homogeneity of Base Predicates) says is that if it is consistent

for a Base Predicate B to be extended to a Base Predicate A then for any

tuple which satisfies B there are infinitely many extensions which realizes A.

(Extension of 1-Colors) is similar to (Extension of 0-Colors). The main

difference is that this time instead of starting with an extension of the second

element of a consistent pair of archetypes we start with an extension of the

first element of the sequence. This makes things a little more complicated

because it is not immediately clear what the choice for our extension of the

second element of the sequence should be. What is more, it is not clear in this

case (unlike in the case of (Extension of 0-Colors)) that this new consistent

pair of archetypes should always be realized in any pair of modes in which

the original sequence is realized (consider the case where τ forces a color

larger than anything in the model in which τ ′ is realized in). (Extension of

1-Colors) is specifically to ensure that we can do this (and we will see that

it is non-trivial that this can be done for the theory Θ from [8])

(Homogeneity of Consistent Pairs of Archetypes) is one of the main

ways in which consistent pairs of archetypes are tied to consistent pair of

base predicates. This says if we have a consistent pair of archetypes and

CHAPTER 3. COLLECTIONS OF ARCHETYPES 72

we know that the consistent pair of base predicates which they force (say

(A,A′)) can be extended to another consistent pair of base predicates (say

(B,B′)), then we can extend our original consistent pair of archetypes to a

consistent pair of archetypes over (B,B′), such that the extensions of our

archetype are realized in the same same models as our original consistent

pair of archetypes were realized in.

(Completeness of Extra Information) simply says a model realizes an

archetype if and only if all the “extra information” about that archetype is

realized in the model. This is a way of codifying the idea that the extra

information simply describes types of tuples which are realized.

The purpose of (Completeness of Consistent Pairs of Base Predicate) is

to ensure that the only information being used to determine whether or not

a pair of archetypes is consistent is whether or not the pair satisfies (Con-

sistency of Color) and if they are over a consistent pair of base predicates.

This is very useful as, at the end of the day, it is only the base predicates

which we actually can talk about in our theory. So this will then allow us

also ensure that “enough” consistent pairs of archetypes exist.

The only condition left is (Uniqueness of Base Predicates). This just

says that each tuple only realizes one Base Predicate up to equivalence.

Definition 3.3.0.14. Let T be such that it has a collection of archetypes

AT(T). If φ ∈ AT(T) and A ∈ BP(T) such that φ(x)
T A(x) we say that

φ is over A

So, in particular, by (Uniqueness of Base Predicate) and (Truth of

Atomic Formulas) every archetype is over exactly one basic predicate (up

to equivalence).

CHAPTER 3. COLLECTIONS OF ARCHETYPES 73

3.4 Results

Lemma 3.4.0.15. If σ, τ ∈ AT (T) both force A ∈ BP (T) and σ(x), τ(y)

ctype(x)|sl = ctype(y)|sl then σ|sl = τ |sl for some slant line sl.

Proof. This is by (Truth on Atomic Formulas)

Lemma 3.4.0.16. Let M |= T , a ∈M , φ, φ′ ∈ AT(T). If M |= φ(a)∧ φ′(a)

then φ(x)|∞ = φ′(x)|∞.

Proof. We know by (Truth on Color) that both φ(x) and φ′(x) must force

ctype(x) to be the same. So all that is left is to make sure that they both force

all predicates to be the same. But they must do this because φ(x1, . . . , xn)

forces K(〈xi : i ∈ S〉) iff M |= φ(a1, . . . , an) → K(〈ai : i ∈ S〉), and similarly

for φ′ (by (Truth on Atomic Formulas))

Definition 3.4.0.17. Let T have a collection of archetypes and M |= T .

Define the ATYPET (M) = {φ ∈ AT(T) : EI(φ) ⊆ EI(M)}

If M,N |= T and sl is a slant line, we say ATYPET (M)|sl = ATYPET (N)|sl

if

(∀φ ∈ ATYPET (M))(∃ψ ∈ ATYPET (N))(φ|sl = ψ|sl)

and

(∀ψ ∈ ATYPET (N))(∃φ ∈ ATYPET (M))(φ|sl = ψ|sl)

Lemma 3.4.0.18. Let T have a collection of archetypes and M |= T then

(∀φ ∈ AT(T))φ ∈ ATYPE(M) ↔M |= (∃x)(φ(x))

Proof. This is immediate by (Completeness of Extra Information).

CHAPTER 3. COLLECTIONS OF ARCHETYPES 74

Theorem 3.4.0.19. Let T have a collection of archetypes. If M,N |= T

such that for each slant line sl < ω ∗ γ, ATYPE(M)|sl = ATYPE(N)|sl and

ω ∗ γ ≤ min{Spec(M) ∩ ORD, Spec(N) ∩ ORD} then M ≡ω∗γ N

Proof. In order to prove this result we need to define a sequence of partial

isomorphisms from M to N of length at least ω ∗ γ.

Definition 3.4.0.20. Define I∗η(M,N) = I∗η as follows:

I∗η∗ω+n = {f : M → Ns.t.f is a bijection, |dom(f)| < ω, there exists a slant

line sl < (η + 1) ∗ ω such that if M |= σf (dom(f)) and N |= τf (range(f))

then σf |sl = τf |sl and where sl(|dom(f)| + n) ≥ η ∗ ω}

Let f ∈ Iω∗η+n+1. Notice that f is a partial isomorphism because the

range and domain of f satisfy archetypes which are equal up to some slant

line, and hence f preserves all atomic formula of LK

All that is left to show is that 〈Iζ : ζ < ω ∗ β〉 satisfies the back and

forth property. Let ω ∗ η + n+ 1 < ω ∗ β and let a ∈M . We want to find a

b ∈ N such that g(a) = b, f ⊆ g, g ∈ Iω∗η+n.

Let σ′ ∈ AT(T) be such that M |= σ′(dom(f)a). Then we know by

(Prediction up to a Slant Line) that there is an archetype ηt|sl and a base

predicate Aσ|sl,σ′|sl such that

N |= Aσ|sl,σ′|sl(x, b, c, d) ∧ ητ |sl(c) ∧ τ
′(x, b)

then τ ′|sl = τ |sl.

But in particular we also know thatN |= (∃c, b, d)ητ |sl(c))∧Aσ|sl,σ′|sl(x, b, c, d)

(by the conditions on the “Extra Information” about ητ |sl and (Homogeneity

of Base Predicates)). So if we let b be as above then g = f ∪ (a, b) ∈ Iω∗η+n

(because sl(|dom(f)| + n+ 1) = sl(|dom(g)| + n).

CHAPTER 3. COLLECTIONS OF ARCHETYPES 75

We can then do the case where we are given a b ∈ N and we need to

find an a ∈ M analogously and so we have proved that 〈Iζ : ζ < ω ∗ γ〉 has

the back and forth property. Hence that M ≡ω∗γ N .

Theorem 3.4.0.21. Let T have a collection of archetypes. If M,N |= T ,

such that ATYPE(M)|∞ = ATYPE(N)|∞ then M ≡∞ N

Proof. In order to prove this result we need to define a sequence of partial

isomorphisms I ⊆ I from M to N .

Definition 3.4.0.22. Define I(M,N) = I = {f : M → Ns.t.f is a bijection,

|dom(f)| < ω, if M |= σf (dom(f)) and N |= τf (range(f)) then σf |∞ =

τf |∞}

Let f ∈ I. Notice that f is a partial isomorphism because the range

and domain of f satisfy archetypes which are equal up to ∞ and hence f

preserves all atomic formula of LK .

All that is left to show is that I ⊆ I satisfies the back and forth property.

Let a ∈M . We want to find a b ∈ N such that f ∪ (a, b) ∈ I.

Let σ′ ∈ AT(T) be such that M |= σ′(dom(f)a). We then know that

there is some τ ′(x, c) ∈ ATYPE(N) such that τ ′|∞ = σ′|∞ (by the assump-

tion of the theorem). So in particular if τ ′(x, c)
 τ+(x) then τ+|∞ = σ|∞ =

τ |∞. Hence by (Prediction up to a Slant Line) there must be some τ ∗(x, c)

such that τ ∗(x, c)
 τ(x), τ ∗|∞ = τ ′|∞ = σ′|∞ and N |= (∃b)τ ∗(range(f)b).

So in particular if we let b be as above we have f ∪ (a, b) ∈ I.

We can then do the case where we are given a b ∈ N and need to find

an a ∈ M analogously and so we have proved that I ⊆ I has the back and

forth property. Hence that M ≡∞ N .

CHAPTER 3. COLLECTIONS OF ARCHETYPES 76

The purpose of Theorem 3.4.0.19 and Theorem 3.4.0.21 is to show that if a

theory T has a collection of archetypes, then in fact models of T are deter-

mined by the “types of archetypes” they realize.

Chapter 4

Gluing Theories with

Collections of Archetypes

4.1 Definitions

We are now almost ready to begin the process of gluing models together.

First though we will need a few more conditions on our theory other than

having a collection of archetypes.

Definition 4.1.0.23. Let TK be some sentence of L∞,ω (with TK(α) = TK ∪

(∀x) 6= ϕ≥
α (x)) such that

• |= TK → TP

• {Spec(M)/−∞ : M |= TK(α)}

– (1) is cofinal in α

– (2) contains α

77

CHAPTER 4. GLUING HOMOGENEOUS THEORIES 78

• There is a collection of archetypes (AT(TK(α)))

We are now finally ready to present the theories we will be looking at.

The theories will consist of two copies of TK glued together. Specifically, one

copy will have its spectrum fixed by the theory and the other copy will be

under it (in an appropriate sense). First though we need our language.

Definition 4.1.0.24. Let

• M |= TK have no tuples of color ∞

• Spec(M) = {−∞} ∪ α.

• LQ = {〈ci : i ∈ M〉, Q(x)}

• LK(M) = L0
K ∪ L1

K ∪ L1
R ∪ LQ

Here the superscript is meant to distinguish different copies of the same

language.

Definition 4.1.0.25. Let TK(M) be universal closure of the following LK(M)

sentences:

Q:

• Q(x) ↔
∨

a∈M x = ca

• Q |= φ(ca1 , . . . can
) in L1

P iff M |= φ(a1, . . . an)

• Q(x) ∧ ¬Q(y) → ¬U(x,y) where U is any predicate other than R1
≤ or

P 1 and |x| > 0

CHAPTER 4. GLUING HOMOGENEOUS THEORIES 79

L1
K :

• (∀x)(∃c)Q(c) ∧R1
≤(x, c)

• (∀c)(∃x)¬Q(x) ∧R1
≤(x, c)

Other Axioms:

• ¬Q |= T 1
K

• ¬Q |= T 0
K

• ¬Q |= P 0(x) → P 1(x)

• (Homogeneity) For all (A,A∗), (B,B∗) ∈ 2 − BP such that (A,A∗) ≤

(B,B∗),

¬Q |= [(∀x)[A0(x) ∧ A1
∗(x)] → (∃ny)(B0(x,y) ∧B1

∗(x,y))]

• (Completeness) (∀x)(∃y)
∨

(A,A′)∈2−BP(A,A′)(xy)

The first thing to notice is that our theory TK(M) is in fact a sentence

of L∞,ω. And, if M is countable it is a sentence of Lω1,ω. As such TK(M)

makes no explicit mention of the archetypes (which aren’t required to be

sentences in any particular logic).

Now the purpose of the Q axioms are to fix everything that can be said

about any element which satisfies Q. In particular, we want the collection

of elements which satisfy Q to be isomorphic to M in L1
K and to have every

element named. We further want nothing to be true in L0
K of elements which

satisfy Q. Finally, we want to be able to compare the 1-color (using R1
≤) of

elements which satisfy Q with elements which satisfy ¬Q.

CHAPTER 4. GLUING HOMOGENEOUS THEORIES 80

The purpose of the L1
K axioms to guarantee that the spectrum the collec-

tion of elements which satisfy ¬Q is the same as M. It is worth mentioning

explicitly that the only connection between elements satisfying ¬Q and those

satisfying Q is by the fact that in L1
R they must have the same spectrum. As

such, if we were to restrict our models only to the part which satisfies ¬Q,

we see that in fact all that matters concerning Q is the height of the tree M,

and nothing about its structure. But, in the theories we will be interested in

and in the heights we will be interested in, there will only be a single tree of

any height α.

As for the other axioms, the only ones which aren’t self explanatory are

(Homogeneity) and (Completeness). (Homogeneity) says that if we have a

consistent pair of base predicates extending another consistent pair of base

predicates, whenever the second is realized we can find an extension which

realizes the first. This is very similar to (Homogeneity for Base Predicates)

in Definition 3.3.0.13 except for consistent pair of base predicates instead of

for single Base Predicates. Notice though that this axiom does not in fact

make reference to archetypes.

(Completeness) on the other hand is there to guarantee that when ever

we have a consistent pair of base predicates realized in the model, then it

can be extended to a consistent one.

Definition 4.1.0.26. If σ0, σ1 ∈ AT(TK(α)) and M |= TK(M). we say

M |= (σ0, σ1)(x) if M |L0
K |= σ0(x) and M |L1

K |= σ1(x).

4.1.1 Results

Lemma 4.1.1.1. Let

CHAPTER 4. GLUING HOMOGENEOUS THEORIES 81

• (σ, σ′) be a consistent pair of archetypes

• τ(x,y)
 σ(y)

• τ ′(y, z)
 σ′(y)

• EI(τ) ⊆ EI(M)

• EI(τ ′) ⊆ EI(M ′)

Then there is a consistent pair of archetypes (η, η′) such that

• η(x,y, z)
 τ(x,y)

• η′(x,y, z)
 τ ′(y, z)

• EI(η) ⊆ EI(M)

• EI(η′) ⊆ EI(M ′)

• (η, η′) ≤ (σ, σ′)

Proof. Let

• (σ, σ′)(x)
 (A,A′)(x)

• τ(x,y)
 B(x,y)

• τ ′(y, z)
 B′(y, z)

• A,A′, B,B′ ∈ BP (T)

We know there is a base predicate D(y, z) such that any tuple with any ele-

ment of z in it has color −∞. Let C(x,y, z) be the amalgamation of D(y, z)

CHAPTER 4. GLUING HOMOGENEOUS THEORIES 82

with A(x,y) guaranteed by (Amalgamation of Base Predicates). Let ζ(y, z)

be any archetype such that ζ(y, z)
 σ(y) ∧ D(y, z) and EI(ζ) ⊆ EI(M)

(we can find this by letting ζ(y, z) be the trivial amalgamation of σ(y) with

υ(z) where υ puts everything at −∞). Let η(x,y, z) be an amalgamation of

ζ(y, z) and τ(x,y) realized in M (so EI(η) ⊆ EI(M)).

Now we know that (ζ, τ ′)(y, z) is a consistent pair of archetypes and

(ζ, τ ′)(y, z) ≤ (σ, σ′)(y) by the axiom (Extending 0-Colors) because ζ put all

tuples not σ′ at −∞. In particular, by the axiom (Extending 1-Colors), there

must be some η′(x,y, z) such that (η, η′) ∈ 2−AT(T), EI(η′) ⊆ EI(M ′), and

(η, η′)(x,y, z) ≤ (ζ, τ ′)(y, z).

Tuples

Color

τ σ

τ ′σ′

Tuples

Color

τ σ

τ ′σ′

η

η′

Lemma 4.1.1.2. Let N |= TK(M). Let (σ0, σ1), (τ0, τ1) ∈ 2 − AT(TK),

(τ0, τ1)(x,y) ≤ (σ0, σ1)(x) and EI(τ0) ⊆ EI(N |L0
K), EI(τ1) ⊆ EI(N |L1

K).

Then N |= (∀x)(σ0, σ1)(x) → (∃y)(τ0, τ1)(x,y).

Proof. We will prove this by two applications of (Prediction). First find

ητ0(x, a) as in (Prediction). Then we find ητ1(b). We know by Lemma 4.1.1.1

that there is a consistent pair of archetype such that N |= (η0, η1)(x, a, b).

ηi(a, b)
 Trivial(ητ0(a), σi, ∅) (we know each of η0, η1 are realized inN |L0
K , N |L1

K

because each of N |LiK |= TK and EI(ητi) ⊆ EI(N |LiK)).

We also know that if (τ0, τ1)(x,y)
 (B0, B1) and (σ0, σ1)(x)
 (A0, A1)

CHAPTER 4. GLUING HOMOGENEOUS THEORIES 83

(where A0, A1, B0, B1 ∈ BP) then (B0, B1) is a consistent pair of base predi-

cates and (B0, B1) ≤ (A0, A1). In particular they must be realized by some

(in fact infinitely many) x,y in N . Now let C0(x,y, z, z
′, d)
 Aσ0,τ0(x,y, z)

and C1(x,y, z, z
′, d)
 Aσ1,τ1(x,y, z

′) (where Aσ0,τ0 , Aσ1,τ1 are from (Predic-

tion)) and such that (C0, C1) is a consistent pair of base predicates (we get

this the same way we got (η0, η1)). Simply extend first on N |L0
K and then

extend (disjointly) on N |L1
K and look at the consistent pair of base predi-

cates of the tuples you get. These are extendible to consistent pairs of base

predicates by (Completeness).

We therefore know by the way these were constructed that

N |= (σ0, σ1)(x) → (∃y, z, z, a, b, d)(C0, C1)(x,y, z, z
′, d) ∧ (η0, η1)(x,y, a, b)

But, once again, by (Prediction) and how these consistent pairs of base pred-

icates and consistent pairs of archetypes were created we know that we must

also have N |= (σ0, σ1)(x) → (∃y)(τ0, τ1)(x,y).

Now we are going to do something very similar but we will use (Predic-

tion up to a Slant Line) instead of (Prediction).

Lemma 4.1.1.3. Let N |= TK(M). Let sli (i ∈ {0, 1}) be slant lines with

sli < ω ∗ γ ≤ Spec(N |LiK) or sli = ∞. Let (σ0, σ1), (σ′
0, σ

′
1), (τ0, τ1) ∈

2 − AT(TK(α)),

• sl0 ≤ sl1

• (τ0, τ1)(x,y) ≤ (σ0, σ1)(x)

• (∃M |= TK(M))M |= (∃x,y)(τ0, τ1)(x,y)

CHAPTER 4. GLUING HOMOGENEOUS THEORIES 84

• σi|sli = σ′
i|sli

• If sli = ∞ then

– (∃N ′ |= TK(α)EI(σi) ∪ EI(σ
′
i) ⊆ N ′)

– EI(τi) ⊆ EI(N |LiK)

Then there is a consistent pair of archetypes (τ ′0, τ
′
1) such that

• N |= (∀x)(σ′
0, σ

′
1)(x) → (∃y)(τ ′0, τ

′
1)(x,y).

• τ ′i |sli = τi|sli

Proof. This proof will be almost identical to the proof of Lemma 4.1.1.2,

except instead of using (Prediction) we will use (Prediction up to a Slant

Line).

First we find ητ0|sl0(a) as in (Prediction up to a Slant Line). Then we

find ητ1|sl1(b). We know that there is a consistent pair of archetype such that

N |= (η0, η1)(x, a, b) such that η0(x, a, b)
 ητ0|sl0(a)∧ σ0(x) and η1(x, a, b)

ητ1|sl1(b)∧ σ1(x) (we know each of η0, η1 are realized in N |L0
K , N |L1

K because

each of N |LiK |= TK and EI(ητi|sl) ⊆ EI(N |LiK)).

We also know that if (τ0, τ1)(x,y)
 (B0, B1) and (σ0, σ1)(x)
 (A0, A1)

(where A0, A1, B0, B1 ∈ BP) then (B0, B1) is a consistent pair of base pred-

icates with (B0, B1) ≤ (A0, A1) (because (τ0, τ1) is realized in some model

of TK(M)). In particular, they must be realized by some (in fact infi-

nitely many) x,y in N . Now let C0(x,y, z, z
′, d)
 Aσ0|sl0,τ0|sl0(x,y, a, z)

and C1(x,y, z, z
′, d)
 Aσ1|sl1,τ1|sl1(x,y, b, z

′) (where Aσ0|sl0,τ0|sl0 , Aσ1|sl1,τ1|sl1

are from (Prediction up to a Slant Line)) and such that (C0, C1) is a consis-

tent pair (we get this in a similar way to how we got (η0, η1)).

CHAPTER 4. GLUING HOMOGENEOUS THEORIES 85

Therefore by the way these were constructed

N |= (σ′
0, σ

′
1)(x) → (∃y, z, z, a, b, d)(C0, C1)(x,y, z, z

′, a, b, d)∧(η0, η1)(x, a, b)

But, once again, by (Prediction up to a Slant Line) and by how these consis-

tent pairs of base predicates and consistent pairs of archetypes were created

we know that we also have N |= (σ′
0, σ

′
1)(x) → (∃y)(τ ′0, τ

′
1)(x,y), for some

consistent pair of archetypes (τ ′0, τ
′
1) where τ ′i |sli = τi|sli.

Lemma 4.1.1.4. Let (σi, σ
′
i), i ∈ {1, 2, 3} be consistent pair of archetype such

that

• (σ1, σ
′
1)(x1, . . . , xn) ≥ σ3(〈xi : i ∈ S1〉)

• (σ2, σ
′
2)(y1, . . . , ym) ≥ σ3(〈yi : i ∈ S2〉)

• (∃N |= TK)EI(N) ⊇ ∪1≤i≤3EI(σi)

• (∃N ′ |= TK)EI(N ′) ⊇ ∪1≤i≤3EI(σ
′
i)

where |S1| = |S2|. Then there is a consistent (σ4, σ
′
4) such that

• (σ4, σ
′
4)(x1, . . . , xn+m−|S1|) ≤ (σ1, σ

′
1)(〈xi : i ∈ S∗

1〉)

• (σ4, σ
′
4)(x1, . . . , xn+m−|S1|) ≤ (σ2, σ

′
2)(〈xi : i ∈ S∗

2〉)

• (σ4, σ
′
4)(x1, . . . , xn+m−|S1|) ≤ (σ3, σ

′
3)(〈xi : i ∈ S∗

1 ∩ S
∗
2〉)

Proof. This is just a precise statement of (Amalgamation of Consistent Pairs

of Archetypes).

CHAPTER 4. GLUING HOMOGENEOUS THEORIES 86

4.1.2 Construction of Models

In this section we will explicitly construct models of TK(M) such that

our models look like M (when |M| = ω) in the language L1
K and look like

a countable model of our choosing in L0
K . This will show that our theory

TK(M) is consistent.

Theorem 4.1.2.1. If M0 |= TK, and |M0| = |M| = ω, then there is a model

M∗ |= TK(M) such that M∗|L0 = M0.

Proof. We are going to construct our model M∗ in the following manner.

First we are going to create a bijection f : M0 → M such that if M0 |= σ(a)

and M |= σ′(f [a]) then (σ, σ′) can be extended to a is a consistent pair of

archetypes (σ∗, σ+) such that M0 |= σ∗(ac) and M |= σ′(f [ac]). Further we

will do this is such a way that if (τ, τ ′) is a consistent pair of archetype such

that

• (τ, τ ′)(x,y, z) ≤ (σ∗, σ+)(x,y)

• EI(τ) ⊆ (M0)

• EI(τ ′) ⊆ EI(M)

then there is a b ∈M0 such that M0 |= τ(a, c, b) and M |= τ ′(f [a, c, b]).

We then will extend our initial model M0 to a model M on L0
K∪L1

K∪L1
R

so that M |= (σ, σ′)(a) iff M0 |= σ(a) and M |= σ′(f [a]). We then extend

our model M to M∗ = M ∪{cm : m ∈ M} in such a way that M∗ is a model

in LK(M). We do this as follows:

• M∗ |= ¬Q(a) ↔ a ∈M

CHAPTER 4. GLUING HOMOGENEOUS THEORIES 87

• M∗|L1 |= φQ(cm1 , . . . cmn
) iff M |= φ(m1, . . .mn).

• M∗|L1 |= R≤(a, b) iff ‖a‖1 ≤ ‖b‖1.

It is immediate from this construction that all axioms of TK(M) are

satisfied except possibly for (Homogeneity) ((Completeness) is trivially true

as every tuple can be extended to be in some consistent pair of archetypes

and hence must also satisfy a consistent pair of base predicates). To see that

(Homogeneity) is satisfied assume we have a tuple a ∈M0 such that

• M0 |= σ(a) ∧ τ(b) and M |= σ′(f [a]) ∧ τ ′(f [b]).

• σ, τ are over a cell A

• σ′, τ ′ are over a cell A′

• There is a consistent pair of archetypes (ζ, ζ ′)(x,y)
 (τ, τ ′)(x) such

that (ζ, ζ ′) is over (C,C ′)

• EI(ζ) ⊆ EI(M0)

• EI(ζ ′) ⊆ EI(M)

In order to prove homogeneity what we need to show is that there is an

extension (η, η′)(x,y)
 (σ, σ′)(x) such that (η, η′) is over (C,C ′) (because

all such extensions are realized by our assumption on f). But this is exactly

what the (Homogeneity on Consistent Pairs of Archetypes) says (and in fact

why we have the axiom).

All that is left is to construct our bijection f : M0 → M. We will do

this by a method very similar to the creation of a term model. First let

CHAPTER 4. GLUING HOMOGENEOUS THEORIES 88

M0 = 〈mi : i ∈ ω〉 be an enumeration of M0, M = 〈ni : i ∈ ω〉 be an

enumeration of M, Σ = 〈σi : i ∈ ω〉 be an enumeration of the archetypes

realized in M0 and Υ = 〈τi : i ∈ ω〉 be an enumeration of the archetypes

realized in M.

Before we begin we will need some combinatorical definitions.

Definition 4.1.2.2. Let w3 : ω×ω×ω → ω be a bijection with w3(i, j, k) ≥ i

for all i, j, k and let w2 : ω × ω → ω be a bijection with w2(i, j) ≥ i for all

i, j.

Definition 4.1.2.3. Let 〈(F 0
i,j, Si,j) : j < ω〉 be a (countably redundant) enu-

meration of the archetypes such that Si,j ⊆ n and σi(x1, . . . xn)
 F 0
i,j(〈xs :

s ∈ Si,j).

Let 〈(F 1
i,j, Si,j) : j < ω〉 be a (countably redundant) enumeration of the

archetypes such that Si,j ⊆ n and τi(y1, . . . yn)
 F 1
i,j(〈ys : s ∈ Si,j)

Definition 4.1.2.4. Let 〈Gi(σ, τ) : i < ω〉 ⊆ AT(TK) be a (countably

redundant) enumeration of the archetypes realized in M such that

• Gi(σ, τ)(x,y)
 τ(x)

• (σ,Gi(σ, τ)) ∈ 2 − AT(TK(α))

• (σ,Gi(σ, τ)) ≤ (σ|dom(τ), τ)

Intuitively this is the collection of extensions of τ in M which form a

consistent archetype pair with σ.

Lemma 4.1.2.5. If (σ|dom(τ), τ) is consistent then this is non-empty.

CHAPTER 4. GLUING HOMOGENEOUS THEORIES 89

Proof. Immediate from the axiom (Extending 1-Color).

Definition 4.1.2.6. Let 〈H0
i,j,k : k < ω〉, be the set of all archetypes H0

i,j,k(y)

realized in M0 extending F 0
i,j.

Let 〈H1
i,j,k : k < ω〉, be the set of all archetypes H1

i,j,k(y) realized in M

extending F 1
i,j.

Stage -1:

Let f(∅) = ∅. And let (ζ0
0 , ζ

0
1) = (∅, ∅). Let x−1 = y−1 = ∅

Let m = w2(n, l), and n = w3(i, j, k). ζ
0
i = σp, ζ

1
i = τq

Stage 3m:

Let η be an amalgamation of ζ0
i with H0

p,j,k around F 0
p,j and let β be an

amalgamation of η and ζ0
3m−1 around ζ0

i (as it is included in the construction

of ζ0
3m−1).

Now let η′ = Gl(η, ζ
1
i), so in particular (η, η′) is a consistent pair of

archetypes. Let β′ be an amalgamation of η′ and ζ1
3m−1 around ζ1

i . We can

now use Lemma 4.1.1.1 to find a consistent pair of archetypes (ζ0
3m, ζ

1
3m) such

that

• ζ0
3m(x, a, b, z)
 β(x, a, b)

• ζ1
3m(x, a, b, z)
 β′(a, b, z)

• (ζ0
3m, ζ

1
3m)(x, a, b, z) ≤ (η, η′)(a, b) ≤ (ζ0

3m−, ζ
1
3m−)(a)

• EI(ζ0
3m) ⊆M0

• EI(ζ1
3m) ⊆ M.

CHAPTER 4. GLUING HOMOGENEOUS THEORIES 90

Now as ζ0
3m extends ζ0

3m−1 we can find an extension x3m of x3m−1 such

that M0 |= ζ0
3m(x3m). And similarly we can find an extension y3m of y3m−1

such that M |= ζ1
3m(y3m). So define f [x3m] = y3m.

Stage 3m+1:

Let r be the least such that f(mr) has not been defined yet. Let ζ0
3m+1 ∈

AT(TK(α)) be such that M0 |= ζ0
3m+1(x3mmrc) with c∩x3mmr = ∅. We know

by (Extensions to 1-Color) that there is a ζ1
3m+1 such that (ζ0

3m+1, ζ
1
3m+1)(x, y, z) ≤

(ζ0
3m, ζ

1
3m)(x) and (ζ0

3m+1, ζ
1
3m+1) ∈ 2−AT(T). Now finally let bd be such that

M |= ζ1
3m+1(y3mbd) where y3m∩bd = ∅. Let x3m+1 = x3mmrc, y3m+1 = y3mbd

and f [mrc] = bd.

Stage 3m+2:

Let r be the least such that nr has not been defined yet. Let ζ1
3m+2 ∈

AT(TK) be such that M |= ζ1
3m+2(y3m+1nr). We know by (Extensions to 0-

Color) that there is a ζ0
3m+2 such that (ζ0

3m+2, ζ
1
3m+2)(x, y) ≤ (ζ0

3m+1, ζ
1
3m+1)(x)

and (ζ0
3m+2, ζ

1
3m+2) ∈ 2 − AT(T). Now finally let a be such that M0 |=

ζ0
3m+1(x3m+1a) where a 6∈ x3m+1. Let x3m+2 = x3m+1a, y3m+2 = y3m+1nr and

f [a] = nr.

So the construction of f is done! Notice also that in this construction

f is a bijection because it is injective and dom(f) = M0 and range(f) = M

(these last facts were taken care of in Steps 3m+1, 3m+2 respectively). Fur-

ther, if (τ, τ ′)(x,y)
 (σ, σ′)(x) and both are consistent pairs of archetype

and EI(τ) ⊆ EI(M0) and EI(τ ′) ⊆ EI(M), then for each a ∈ M0 such

CHAPTER 4. GLUING HOMOGENEOUS THEORIES 91

that M0 |= σ(a) and M |= σ′(f [a]) there is a b such that M0 |= τ(b) and

M |= τ ′(f [b]) (this was taken care of in Step 3m)

In particular we have finished the construction of the model.

4.1.3 Quantifier Rank of TK(M)

Theorem 4.1.3.1. Let M,N |= TK(M) be such that ATYPE(M |L1
K) =

ATYPE(N |L1
K) and let ω ∗ γ ≤ min{Spec(M |L0

K) ∩ ORD, Spec(N |L0
K) ∩

ORD}. If for all slant lines sl < ω∗γ ATYPE(M |L0
K)|sl = ATYPE(N |L0

K)|sl

then M ≡ω∗γ N

Proof.

Definition 4.1.3.2. Define Iη(M,N) = Iη as follows:

Iω∗η+n = {f : M → N such that

• f is a bijection, |dom(f)| < ω

• f preserves Q, 〈cm : m ∈ M〉

• If qf = a ∈ dom(f),¬Q(a), M |= (σf0 , σ
f
1)(qf) and N |= (τ f0 , τ

f
1)(f [qf])

then σf0 |sl = τ f0 |sl and σf1 |∞ = τ f1 |∞ (where sl is a slow slant line such

that sl < ω ∗ (η + 1), and sl(|dom(f)| + n) ≥ ω ∗ η)

Let f ∈ Iω∗η+n+1, ω ∗ η + n + 1 < ω ∗ γ. The first thing to observe is

that by the definition of Iη∗ω+n+1 f must preserve L0
K , L

1
K and LQ. The only

atomic formulas we don’t know immediately are preserved are those of L1
R.

But we do know that f preserves color on L1
K (because σf1 |∞ = τ f1 |∞) and

hence f must preserve L1
R (as M has no tuples of color ∞).

All that is left to show is that 〈Iζ : ζ < β〉 satisfies the back and forth

CHAPTER 4. GLUING HOMOGENEOUS THEORIES 92

property. Choose a ∈ M . We want to find a b ∈ N such that g = f ∪ (a, b)

g ∈ Iη∗ω+n.

This breaks into two cases:

Case 1: M |= Q(a)

In this case we know that there is a m ∈ M such that M |= cm = a.

Let b be such that N |= cm = b.

Case 2: M |= ¬Q(a)

Let (σ0, σ1)(qfa). We then know by Lemma 4.1.1.3 that there is a

(τ0, τ1) ∈ 2 − AT(TK) such that τ0|sl = σ0|sl, τ1|∞ = σ1|∞ and N |=

(∃b)(τ0, τ1)(f [qf]b). Let b be such. We then have g = f ∪ (a, b) ∈ Iω∗η+n

because sl(|dom(g)| + n) = sl(|dom(f)| + n+ 1).

So 〈Iζ : ζ < ω ∗ γ〉 witnesses (by Theorem 1.2.2.19) that M ≡ω∗γ N

Notice that it is not obvious where we are using the assumption that

ATYPE(M |L0
K)|sl = ATYPE(N |L0

K)|sl. This is because we really only need

it to get the first step of the back and forth argument. In other words we only

really need it to guaranteed that Iω∗η+n is non-empty and for every a ∈ M

there is a b ∈ N (and vice versa) such that (a, b) ∈ Iω∗η+n.

Also notice that there is an extra requirement for using Lemma 4.1.1.3

and that is that τ f1 and σf1 be realized in some model together. But, we

know that this must be the case because M |L1
K and N |L1

K have the same

archetypes.

Now we want to prove an almost identical theorem except we want to

show when the models satisfy the same archetypes in the language L0
K then

they satisfy the same L∞,ω sentences.

CHAPTER 4. GLUING HOMOGENEOUS THEORIES 93

Theorem 4.1.3.3. Let M,N |= TK(M) be such that ATYPE(M |L1
K) =

ATYPE(N |L1
K) and ATYPE(M |L0

K) = ATYPE(N |L0
K) then M ≡∞ N

Proof.

Definition 4.1.3.4. Define I(M,N) = I as follows:

I = {f : M → N such that

• f is a bijection, |dom(f)| < ω

• f preserves Q, 〈cm : m ∈ M〉

• If qf = a ∈ dom(f),¬Q(a), M |= (σf0 , σ
f
1)(qf) and N |= (τ f0 , τ

f
1)(f [qf])

then σf0 |∞ = τ f0 |∞ and σf1 |∞ = τ f1 |∞

Let f ∈ I. The first thing to observe is that by the definition of I we

know that f must preserve L0
K , L

1
K and LQ. The only atomic formulas we

don’t know immediately know from this are those of L1
R. But we do know

that f preserves color on L1
K (because σf1 |∞ = τ f1 |∞) and hence f must

preserve L1
R (as M has no tuples of color ∞).

All that is left to show is that I ⊆ I satisfies the back and forth property.

Choose a ∈M . We want to find a b ∈ N such that g = f ∪ (a, b) g ∈ I.

This breaks into two cases:

Case 1: M |= Q(a)

In this case we know that there is a m ∈ M such that M |= cm = a.

Let b be such that N |= cm = b.

Case 2: M |= ¬Q(a)

Let (σ0, σ1)(qfa). We then know by Lemma ?? that there is a (τ0, τ1) ∈

CHAPTER 4. GLUING HOMOGENEOUS THEORIES 94

2−AT(TK(α)) such that τ0|∞ = σ0|∞, τ1|∞ = σ1|∞ andN |= (∃b)(τ0, τ1)(f [qf]b).

Let b be such. We then have g = f∪(a, b) ∈ I and so I witnesses (by Theorem

1.2.2.19) that M ≡∞ N

Notice that there is an extra requirement to use Lemma 4.1.1.3, and

that is that τ fi and σfi must be realized in some model together. But, we

know that this must be the case because M and N have the same archetypes

on both languages.

Corollary 4.1.3.5. Let M,N |= TK(M) be such that EITK
(M |L0

K) = EITK
(N |L0

K),

M |L1
K
∼= N |L1

K then M ≡∞ N .

Proof. Immediate from Theorem 4.1.3.3 and the fact that if EITK
(M |L0

K) =

EITK
(N |L0

K) then ATYPE(M |L0
K) = ATYPE(N |L0

K)

Corollary 4.1.3.6. Let M,N |= TK(M), |M | = |N | = ω, M |L0
K

∼= N |L0
K,

and M |L1
K
∼= N |L1

K. Then M ∼= N .

Proof. Immediate from Theorem 4.1.3.3 and Theorem 1.2.2.14

Corollary 4.1.3.7. If TK(α) has only κ many models then TK(M) has only

κ many models up to L∞,ω equivalence. In particular if TK(α) has only

countably many models all of which are countable, then TK(M) is scattered.

Proof. Immediate from Corollary 4.1.3.6

Corollary 4.1.3.8. Let α be such that TK has only ω many countable mod-

els. Further assume that the {qr(M) : M |= TK} ⊆ ω ∗ α and is unbounded

in ω ∗ α.

CHAPTER 4. GLUING HOMOGENEOUS THEORIES 95

Let M be such that for all ω ∗ β there is a N |= TK(ω ∗ α) such that

ATYPE(N)|sl = ATYPE(M)|sl for all slant lines sl < ω ∗ β. Then TK(M)

is a scattered sentence of Lω1,ω such that {qr(M) : M |= TK(M)} ⊆ ω ∗ α

and is unbounded in ω ∗ α. Further, qr(TK(M)) = max{qr(TK), ω}.

Proof. Immediate from the previous results and the definition of TK(M).

Chapter 5

Robin Knight’s Theory Θ

[4]

Now that we have a way of constructing a scattered sentence with quan-

96

CHAPTER 5. ROBIN KNIGHT’S THEORY Θ 97

tifier rank spectrum unbounded in ω∗α from a sentence which has a collection

of archetypes all we need to do is come up with a sentence of L∞,ω which

has a collection of archetypes. However, this is easier said then done. The

method we will use (and at the time of this writing the only known method)

is to show that Θ from [8] has a collection of archetypes. For those read-

ers who are already very familiar with [8] the proofs in this section should

(hopefully) be pretty strait forward. However, for those who are not familiar

with [8] this chapter will most likely be very difficult to follow. The only

consolation I can make to the reader is that I have in fact gone through [8]

line by line to ensure that everything followed from what came before. And,

to the best of my ability as a proof checker the paper is sound (modulo trivial

typos).

5.1 Introduction

Before we can prove that Θ has the properties we want, we will need two

important new results concerning Θ. The first result is what we call “General-

ized Saturation for Restricted Archetypes”. This proof is a generalization the

proof of what Knight calls “Generalized Saturation for Archetypes” (Propo-

sition 4.3.2.1, in [8]). Generalized Saturation for Restricted Archetypes will

be what allows us to get (Prediction up to a Slant Line). We will prove this

in Section 5.2

The second new result we will allow us to define which pairs of archetype

are consistent in our collection of archetypes. Specifically we will describe

special pairs of cells and then describe when one pair of cells “extends” an-

CHAPTER 5. ROBIN KNIGHT’S THEORY Θ 98

other. We then define the consistent pairs of archetypes to be those pairs of

archetypes which are over one of these special pairs of cells and which also

respects (Consistency of Color) from Definition 3.2.0.8. In Section 5.3 we

will provide the necessary constructions to ensure that this can be done.

After we have all the background material we will show in Section 5.4

that Θ has a collection of archetypes and we will explicitly describe what it

is.

After we show Θ has a collection of archetypes we will prove a strong

bound on the quantifier ranks of the models of Θ which we are interested

in (in Section 5.5). This will be the final step necessary to get a scattered

theory with the desired quantifier rank spectrum.

We will end this Chapter by proving some other interesting results about

Θ (Section 5.6).

It also important to note that much of the proof that Θ has the necessary

properties is actually shown in [8]. What is more, the many of the cases which

aren’t shown in [8] rely on theorems which are very similar to theorems found

in [8]. As such, there are some parts where we would like to say something like

“We know this by methods identical to those in [8]”. However, as [8] is not

common knowledge (or even published at the time of writing this), in these

cases we have reproduced the argument from [8] (with very minor modifica-

tions if necessary). To signify this, we put in parentheses after the number

of the theorem a * and the number of the Theorem/Proposition/Lemma in

[8] from which the argument originally appears.

As [8] only deals with countable models we will assume that all models

of Θ will be countable. For the rest of this chapter a thorough understanding

CHAPTER 5. ROBIN KNIGHT’S THEORY Θ 99

of [8] is assumed.

5.2 Generalized Saturation for Restricted Archetypes

5.2.1 Introduction

Before we start the proof of Generalized Saturation for Restricted Archetypes

it is worthwhile to make sure we understand the proof of Generalized Satu-

ration for Archetypes (Proposition 4.3.2.1 of [8]). Recall what Generalized

Saturation says. It says that if we have an archetype σ(x) and we have

another archetype τ(x,y) such that τ(x,y)
 σ(x) and we have a model

M such that M |= σ(a) and τ doesn’t place any tuples somewhere that is

inconsistent with M (i.e. tuples which are above the spectrum of M or are

inaccessible when M has no inaccessibles) then there is some b such that

M |= τ(a, b).

In fact the proposition says just a little bit more than this. Not only do

we know that there is such a b but we can find an archetype extending σ (what

is called υ in the proof of Proposition 4.3.2.1 of [8]) as well as a cell (what is

called K4) such that if M |= υ(a,x) ∧K4(x,y, a, b) then M |= τ(a, b). (The

similarity to our (Prediction) from Definition 3.3.0.13 is no coincidence).

Lets go through the general idea of the proof. The main goal of this

proof is to find the cell K4. The way we want to get K4 is to in some way

translate down all the information about τ to being encoded in colors less

than ω. That way they can be talked about in our cell.

However there is a problem. The problem is that cells by themselves

can’t say anything about what the actual color of tuples is. All cells can

CHAPTER 5. ROBIN KNIGHT’S THEORY Θ 100

talk about is the relative position of tuples. For this reason, if we want to

force a tuple in τ to be at a certain point in o ∈ Ω we had better have some

other point “near” Ω so that we can compare them. This is the purpose of

υ. υ is simply an extension of σ with some tuples in the right place to allow

comparisons. In particular, notice that υ can easily be viewed as a trivial

amalgamation of σ with an archetype υ∗ which simply places tuples in ap-

proximately the same place as they are in τ (this isn’t mentioned explicitly

in the proof in [8] but is immediate form how υ is defined).

Now that we have a general idea of what is going on with Generalized

Saturation for Archetypes we can begin to think about Generalized Satura-

tion for Restricted Archetypes. Here we do almost exactly the same thing

except this time we only talk about tuples up to a slant line. Beyond the

slant line we aren’t going to care what happens.

There is one subtle point to mention here and that is that it is okay for

the slant line to be ∞. In this case (as long as σ and σ′ can be realized in the

same model (i.e one doesn’t try to put a tuple somewhere which is inconsitent

with where the other places a tuple)) the proof of Generalized Saturation for

Archetypes in [8] gives us Generalized Saturation for Restricted Archetypes

up to ∞.

5.2.2 Definitions

First, it will be useful to recall from [8] the definition of an Archetype.

Definition 5.2.2.1 (*3.2.1.1). An archetype is a triple E = 〈K, C, φ〉 where

1. K is a cell. If K = 〈xi∈N ,Φ〉, say Φ(xi∈N) = PN
F

CHAPTER 5. ROBIN KNIGHT’S THEORY Θ 101

2. φ =
⋃

1≤i≤N φ∗ i where φ∗ i is a partial function whose domain includes

{−∞}, some i-sections in Ω and possibly ∞ and where

(a) φ ∗ i(−∞) is an ambiguity tree 〈Ti, Fi〉 of characteristic arity i on

Pxi∈N

(b) For all i, there exists < T, F 〉 ∈ F such that 〈Ti, Fi〉 ⇐ 〈T, F 〉

(c) 〈Ti, Fi〉 is the projection of 〈Ti+1, Fi+1〉

(d) If γ ∈ domφ ∗ i and γ′ i its immediate predecessor in domφ ∗ i and

φ ∗ i(γ) 6= ⊤ (see clause (e)) then

i. If γ′ is trivial, then φ ∗ i(γ) is radically included in φ(γ′)

ii. If γ′ is non-trivial, then φ ∗ i(γ) is a bough of φ(γ′)

iii. If γ is non-trivial, then γ′ is trivial, and φ ∗ i(γ) = φ ∗ i(γ′),

and is rooted.

iv. ∞ counts as being non-trivial for this purpose.

(e) Top elements:

i. The top element of γi of domφ ∗ i is one of

A. ∞ or

B. a non-trivial section; and φ ∗ i(γi) = 〈{n}, {〈n, Fi(n)〉}〉

where n is atop node of Ti, or

C. φ ∗ i(γi) = ⊤, γi non-trivial [the idea is that in this case,

all remaining i-tuples are suppressed to the top of γi]

D. γi is a non-trivial section, φ ∗ i(γi) 6= ⊤ [and we think of

all remaining i-tuples as being arity suppressed to the top

element of γ.]

CHAPTER 5. ROBIN KNIGHT’S THEORY Θ 102

ii. Monotonicity: either γi is ∞, or it is strictly above γi+1, or

γi+1 = −∞.

(f) Consistency: suppose γ ∈ dom(φ ∗ i) and γ is non above γi+1

Then the i + 1-section γ′ that γ belongs to is in domφ ∗ (i + 1).

Moreover, φ ∗ (i + 1)(γ′) projects at γ to φ ∗ i(γ) and the layout

of φ ∗ (i+ 1)(γ′) correctly describes the position of γ

3. C is a precoloring such that if C(xi∈X) = a, |S| = i, and a is the

top element of γ, then γ ∈ domφ ∗ i and according to the layout of

φ ∗ i(γ),xi∈S is positioned in γ; or else φ ∗ i(γ) = ⊤.

Let T (E, n) = φ ∗ n(−∞) and let B(E, n) be the branch of T (E, n)

inferred from φ ∗ n

Definition 5.2.2.2. Let σ = 〈K, C, φ〉 be an archetype. We say σ is complete

if (∃M)M |= “Robin Knight’s Theory Θ” (from [8]) and M |= ∃xσ(x) as in

Definition 4.2.2.5 of [8].

Definition 5.2.2.3. Let f be a slow slant line. If σ = 〈K, C, φ〉 is a regular

archetype such that for all n ≤ |dom(σ)| (∃γ)φ ∗ n(γ) = ⊤ ⇒ E#n = f(n)

then we say σ is an f -archetype.

Intuitively this means that for each arity either no suppression takes

place (in the form of ⊤), or if it does take place, it happens uniformly at the

slant line f .

Lemma 5.2.2.4 (*3.3.2.1). Let σ = 〈K, C, φ〉 be an archetype with precolors

in {−∞}∪Ω∪{∞} (with domain(σ) = x(i∈R)) and let f be a slow slant line

CHAPTER 5. ROBIN KNIGHT’S THEORY Θ 103

of rank greater than or equal to the arity of the largest tuple on σ with color

above base(f). Then there is an archetype 〈K, C′, φ′〉 with the same underlying

cell-structure, such that C′♭(x) ≤ f(|x|) and C♭(x) < f(|x|) → C′♭(x) = C♭(x).

Proof. Let f(1) = λ ∗ ω + n(=base(f)+rank(f)). If C(x) ≥ 〈λ, n〉, then

let C′(x) = 〈λ, n, 0, n − 1, 0, . . . 0, |x| − 1〉. So, if C makes K true, then by

arity suppression, so does C′. We can now easily construct φ′. Namely,

ζ ∈domφ′ ∗ j iff ζ ∈domφ ∗ j and ζ is not above 〈λ, n, . . . , j − 1〉; if ζ <

〈λ, n, . . . j− 1〉, then φ′ ∗ j(ζ) = φ ∗ j(ζ); if maxC”Pjx(i∈R) ≥ 〈λ, n, . . . j− 1〉,

then φ′ ∗ j(〈λ, n, . . . j − 1〉) = ⊤.

Essentially what we are doing here is placing any tuple above the slant

line f on it. Then, we are suppressing all information above the slant line to

that slant line (if necessary). We need that the rank of the slant line is at

least the arity of σ because, if it isn’t than we might have n-tuples (for large

enough n) which have to have their colors suppressed but can’t be placed on

the slant line.

Definition 5.2.2.5. Let σ = 〈K, C, φ〉 be an archetype. Let f be a slow slant

line with rank(f) greater than the arity of the largest tuple with color above

base(f) on σ. We define σ|f to be the archetype defined in the previous

lemma.

Notice that by the definition, for any regular τ , τ |f is an f -archetype

for any slant line with rank greater than or equal to the arity of τ .

Definition 5.2.2.6. Let γ = ω ∗ λ ∈ w1. Let ̟σ
γ = max{β < λ : (∃x) a

tuple on σ such that C♭(x) + |x| > ω ∗ β} and let Sσγ = max{r : (∃x) a tuple

CHAPTER 5. ROBIN KNIGHT’S THEORY Θ 104

on σ such that C♭(x) + |x| = ω ∗ β + r}.

Let f τ,σγ be a slant line with base(f) ≥ max(̟τ
γ , ̟

σ
γ) and rank(f) >

max(Sτγ , S
σ
γ).

We say τ |γ = σ|γ if (∀g > f τ,σγ)(g(1) < γ) → (τ |g = σ|g).

Similarly we say that τ |γ witnesses some fact ψ if (∀g > fτ)(g(1) < γ) →

(τ |g = σ|g) witnesses ψ (where rank(fτ) > Sτγ and base(fτ) ≥ ̟τ
γ)

We will sometimes abuse notations and talk about the archetype τ |γ.

However, it will always be clear what we mean.

Lemma 5.2.2.7. If τ |f τ,σγ∗ω = σ|f τ,σγ∗ω then τ |γ ∗ ω = σ|γ ∗ ω.

Proof. The idea is that in both τ and σ nothing happens in between f τ,σγ∗ω and

γ ∗ ω and what is more every point which is on f τ,σγ∗ω comes from a reduction

of a point above γ ∗ ω. So, if f τ,σγ∗ω < g and g(1) < γ ∗ ω then both τ and

σ will think there is a point on g iff they think there is one on f τ,σγ∗ω in the

same place. And, they will both think that below f τ,σγ∗ω the exact same stuff

happens as below g. (This is because of how we choose f τ,σγ∗ω). So, τ |g = σ|g

and so τ |γ ∗ ω = σ|γ ∗ ω.

The idea is that saying two archetype are the same below a limit ordinal

γ is the same as saying for all sufficiently large slant lines g below γ, their

restriction to g is the same. But this is the same as saying that if you go

above all interesting points on either archetype (below γ) and restrict the

archetypes to such a slant line, then the restricted archetypes are the same.

Also note that τ |∞ = τ .

Lemma 5.2.2.8. If τ = σ|f with σ a regular complete archetype then τ is

an f -archetype.

CHAPTER 5. ROBIN KNIGHT’S THEORY Θ 105

Proof. We know that because σ is complete, it is the result of completely

determining where, on the appropriate trees, it’s subtuples are relative to

some fixed realization (a). This is done when we define what it means for σ

to be realized (and hence complete) (Definition 4.2.2.4 and Definition 4.2.2.5

of Knights paper). As there can’t be any unknown questions about where

a fixed a is (as would be implied by a value of ⊤), we know that ⊤ isn’t

in the range of
⋃

i φσ ∗ i. In particular, either range(φτ ∗ i) ⊆ f(i) and

⊤ 6∈ range(φτ ∗ i) or we are suppressed to ⊤ at f for arity i. But, because

σ is complete and hence regular, this is exactly what is necessary to say τ is

an f -archetype.

5.2.3 Generalized Saturation for Restricted Archetypes

We now show a version of generalized saturation for complete f -archetypes.

We do this by showing that if we have an archetype σ, if rank(f) is large

enough, and if σ’s restriction to f can be extended to an f -archetype τ then

σ can be extended to a τ ′ such that τ = τ ′|f . Intuitively what this is saying

is that stuff higher up in color can’t force stuff below to happen. But it

is worth pointing out that stuff below can force stuff higher up to happen,

which is the key to Knight’s proof of Generalized Saturation for Complete

Archetypes in [8].

Before we start it is important to mention again that this Proposition

is a generalization of “Generalized Saturation for Archetypes” (Proposition

4.3.2.1 of [8]). And, as it is a generalization, after appropriate modifications

of the definitions, the proof in [8] only requires small modifications (modulo

typos). As such we have tried to follow the general layout of the proof in [8]

CHAPTER 5. ROBIN KNIGHT’S THEORY Θ 106

in the hopes it will make understanding the proof easier.

Theorem 5.2.3.1 (Generalized Saturation for Restricted Archetypes). Sup-

pose σ = 〈K0, C0, φ0〉 where K0 = 〈x(i∈n0),Φ
0〉 is a complete archetype, where

there is a tuple x(i∈n0) ∈ M such that M |= σ(x(i∈n0)) (that is x(i∈n0) realizes

σ in M)

Let f be a slant line. Let τ = 〈K1, C1, φ1〉 be an f -archetype where

K1 = 〈x(i∈n1),Φ
1〉. If τ ≤ σ|f , then there exists τ ′ ≤ σ such that τ ′|f = τ .

Further, if specM∩ ω1 = ω ∗ ζ + n and f(1) < ω ∗ ζ then

M |= ∃x(i∈[n0,n1))τ(x(i∈n1))

Also notice that if base(f) 6∈ Spec(M) (or base(f) = ∞) then τ is

a complete archetype, and this would just reduce to the statement of full

Generalized Saturation.

Before start the proof there is something which it is important to no-

tice. For the archetype extension to be realized we require f to be below

the highest limit ordinal which is a subset of the spectrum or ∞. The rea-

son for this requirement is that in the case where M has inaccessibles we

run into difficulty. The problem is that while we know that the points in

τ which are on f are in fact above f , we don’t have any control on how

they are situated. So, if we allowed f to be above the largest limit, then

the result of this process might put the tuples on f in a place they can’t be

in the model (because remember, this process is independent of the model

we are working in so long as the model realizes τ |f). For example, suppose

Spec(M)∩ ω1 = ω ∗ γ +m, and rank(f) = n < m, base(f) = γ ∗ ω. Then, if

τ is an f -archetype, extending the empty archetype, then the result of this

CHAPTER 5. ROBIN KNIGHT’S THEORY Θ 107

process will be an archetype τ ′. But τ ′, because it was created independently

of any specific model, will have no idea where it should put elements of τ

that were on f . Say, for example, it puts a 1-tuple at color ω ∗ γ + n + 1.

Then, it could only hollow models in which it can be realized are those with

spectrum ω ∗ γ + n + 2. (In fact, it wouldn’t be able to be realized in any

hallow model with spec(M)∩ω1 ≤ γ ∗ω+ω as all tuples with colors ≥ γ ∗ω

are inaccessible. But, that would take some effort to show and isn’t needed.)

Hence we need some sort of requirement to say which f -archetypes we are

considering.

We will actually see later on that all models of Θ with Spec(M)∩ ω1 ≥

ω ∗ γ “look the same” among tuples with color less than ω ∗ γ.

We are now ready to start the proof. Our method is to proceed in two

stages. First, in Section 5.2.3.1, we construct “scaffolding” which contains

information about the colors that we wish to manifest in τ ′. This “scaffold-

ing” is contained in an archetype υ with cell cell K2.

Next, in Section 5.2.3.2, we recursively use witnessing tuples to transmit

the information about υ down to the finite level. But, when we do this, we

only worry about information below base(f)+ω. We then obtain a “witness-

ing cell” of K4 with K1, such that whenever K2 realizes υ, and K1 realizes

τ ′, τ ′|f = τ |f .

5.2.3.1 The Scaffolding

Definition 5.2.3.2. An ordinal λ is bounded if it is in the spectrum and

there are arbitrarily large tuples above it.

We then define a scaffolding archetype υ to contain σ and be based on

CHAPTER 5. ROBIN KNIGHT’S THEORY Θ 108

τ . We will do this by first defining υ∗ which will contain all the information

we need. We will then amalgamate υ∗ with σ to get υ. This is very similar

to how it was done in Knight’s original proof of Generalized Saturation for

Archetypes (although in his proof there were minor typos where he used cells

when the author believes archetypes were intended).

Definition 5.2.3.3. υ∗ contains some uµ such that ‖uµ‖ ∈ [µ, µ+ ω) when-

ever there is a tuple a on τ such that C1♭(a) ∈ [µ, µ+ ω) and µ ≤ γ. Let Aµ

be defined so that ‖uµ‖ + |uµ| = µ+ Aµ.

Lemma 5.2.3.4. This is possible, if µ < Spec(M) ∩ ω1.

Proof. specM∩ ω1 is an ordinal.

Definition 5.2.3.5. Let υ be the trivial amalgamation of υ∗ and σ. Let

υ = 〈K2, C2, φ2〉

Lemma 5.2.3.6. υ is an f -archetype

Proof. Every tuple x which is added to υ can be chosen such that C2♭(x) +

|x‖ ≤ f(|x|)

5.2.3.2 The witnessing cell

We define K3, the witnessing cell.

Definition 5.2.3.7. Let K0
2 = K2, λ0 =base(f) + ω.

Now for r > 0, let Kr
2 be the strong witness of Kr−1

2 at λr−1, and let

λr be the drop of the strong witnessing and let Nr be its breadth. Let p be

least such that λp = −∞.

CHAPTER 5. ROBIN KNIGHT’S THEORY Θ 109

Let υr be an archetype which is an extension of υr−1 and realizes Kr
2 .

Let K3 = Kp
2 .

Notice that the main difference between the above definition and the one

which is used in Generalized Saturation for Archetypes is that we only require

the strong witnesses describe colors up to base(f) +ω. If we preserve all the

information below base(f)+ω then everything below f is preserved. But, the

point is that τ can’t say anything above f and so by preserving everything

below base(f) + ω we guarantee that whatever we get when restricted to f

will get us τ back again.

Definition 5.2.3.8. Now, let υp = 〈〈x(i∈n0∪[n1,n3)),Φ
3〉, C3, φ3〉. Let Φ3(x(i∈n0∪[n1,n3))) =

P n3−n1+n0

F 3 and let Φ1(x(i∈n1)) = P n1

F 1 .

We have now constructed the witnessing cell.

5.2.3.3 Achieving Generalized Saturation

Definition 5.2.3.9. Let F∗,4 = F1 ×F3.

Definition 5.2.3.10. Let F4 be the subset of F∗,4 defined as follows.

Let Hr
3 , for r ≤ p, be the Nr-history witnessed by B(υr, Nr) as far as λr.

We insist that, in any element of F4:

1. If 〈T, F 〉 ∈ F4 has characteristic arity Np, then the witnessing tuples

declaring that Hp
3 holds, also declare that the desired history Hp

1 of F1

holds as far as λp +Np: say such a branch is p-special.

2. Any p-special branch projects to an r-special branch for each r.

In these two conditions, the order is in terms of position in the ambiguity

tree of appropriate characteristic arity.

CHAPTER 5. ROBIN KNIGHT’S THEORY Θ 110

These conditions are exactly what we need to guarantee that our cell

K4 forces x(i∈n1) to satisfy τ up to base(f) + ω when M |= υ(x(i∈n0)∪[n1,n2)),

which will intern imply that if M |= τ ′(x(i∈n1)) then τ ′|f = τ .

Before we go on though, it is important to understand how K4 and σ

can force τ to be realized up to f . To do this we have to understand the

relationship between, sensible trees, forests, witnessing tuples, the definition

above and archetypes.

First, it is important to understand what a sensible tree is supposed to

represent. We have a sensible tree on a tuple x, that sensible tree is supposed

to represent possible colors that the subtuples of x could have. But as we

follow any single path through a sensible tree we are forced to make choices

about what the colors of the tuples actually are. Now despite this generality,

it isn’t quite general enough, which is where forests come in. The idea behind

a forest F is that it is just a collection of sensible trees such that if a tuple

realizes PF then it must be able to be placed on a sensible tree in F .

Now for witnessing tuples. The idea behind the witnessing tuples is

to be able to bring information about about tuples at a certain color down

below that color. But, just knowing which sensible tree a tuple is on isn’t

enough to actually say what the color of that tuple is. So, the witnesses

bring information about all possible colors that a tuple can have (depending

on the path you follow). Also, when we are placing these witnessing tuples

we are doing it in such a way that if we follow a path up a tree and we come

a cross a witnessing tuple, it will be talking about the path we are on.

In order to get υ, what we are doing is we are placing some tuples in

an expansion σ in such a way that it tells us some information about τ (and

CHAPTER 5. ROBIN KNIGHT’S THEORY Θ 111

possibly our model). Then, we repeatedly take the witness transform until

we get that all information below base(f) + ω can be found by looking at

the restriction to colors less than ω (i.e. at cells) and comparing the results

to the actual colors in υ. We now have a forest F3 which tells us everything

that will happen all the way up to base(f) + ω for tuples in F1 (relative to

υ). We then combine it with a copy of F1 to get F∗,4. But, this isn’t enough

because while we know all the things that “could” happen, we don’t know

what does. So, the first thing we have to do is to make sure that we only

consider the elements of F∗,4 which always follow the same paths up both

trees. In other words, we consider the subforest F4 of F∗,4 consisting only

of those trees where going up a path in F3 means you are going up the same

path in F1. That is exactly what p-special means.

From now on the proof is almost identical to the proof of Generalized

Saturation for Archetypes in Knight’s paper.

Lemma 5.2.3.11 (*4.3.5.3). F4 is a forest and is ≤ F1,F3.

Proof. F4 ≤ F1 is easy. Let T1 ∈ F1, let T 0 be such that T ∗
1 |Px((i ∈ n0)) →

T0, where if s is the characteristic arity of T1, then T ∗
1 is the projection of T1

to arity min(n0, s), and let T3 ∈ F3 be such that T0 ⇒ T3|Px(i∈n0).

Now the characteristic arity of T1 is ≤ n1, and we have assumed that

the characteristic arity of T3 is ≤ n0.

Let T4 be an ambiguity tree formed from the weak ambiguity tree T1×T3

by harmonization. Then since n1 < Np, T4 ∈ F 4, and T4|Px(i∈n1) ⇐ T1.

To prove F 4 ≤ F 3, suppose T3 ∈ F 3. If the characteristic arity j of T3

is < Np, then there is no difficulty. There exists T0 and T1 ∈ F 1 such that

T ∗
3 |Px(i∈n0) → T0 ⇒ T1|Px(i∈n0), where T ∗

3 is the projection to arity n0 of T3.

CHAPTER 5. ROBIN KNIGHT’S THEORY Θ 112

Form T3 × T1 accordingly and harmonize.

Suppose the characteristic arity of T3 is Np. We construct a “transform”

̟T3 such that ̟T3 ∈ F 4, and T4 ⇒ ̟T3|Px(i∈n3n1∪n0).

Firstly, if T3 is not rooted, we may express it as a sum +k
i=1T3,i; then let

̟T3 = +k
i=1̟T3,i.

So without loss of generality T3 is rooted, with root r, say. Let T3 =

〈T3, F3〉.

We ask what the locus of F 3(r) is: in particular, we ask whether it is at

{−∞} or not. We argue that we may assume that it is not. For if it is at

{−∞}, then let Ť3 = 〈Ť3, F̌3〉 be the deracination of T3; let ̟Ť3 = 〈T̃3, F̃3〉;

letting {rj : j < p} be the set of roots of this, where F̃3(rj) = 〈Sj, Hj〉, let T 3

be the result of adding a root r to Ť3, and let F3 be the extension of F̃3 such

that F3(r) = 〈
⋃

j Sj, H〉 where H is an appropriately chosen superficial his-

tory; let ϕT3 be the harmonization of 〈T3, F3〉. It will be worth noting (once

we have done the construction) that in the case where the root r of T3 has

locus above {−∞}, that if F3(r) = 〈S, H〉 and S has just one element, then

this property of 〈T3, F3〉 is preserved by ̟ - so in the case we are examining

at the moment, the harmonization of 〈T3, F3〉 will be filled.

So now let us assume that the locus of F3(r) is above {−∞}. Let

F3(r) = 〈S, H〉. We ask what H says about {−∞} and about the first

Np-section of Ω. We ask, in particular, whether it describes the interval

[−∞, 〈0, Np − 1〉] in the archetype υp.

If it does not, then we proceed as in the case where the characteristic

arity of T3 is less than Np.

If it does, we let H4 be a common superficial history incorporating infor-

CHAPTER 5. ROBIN KNIGHT’S THEORY Θ 113

mation about τ : specifically, H4 just describe the condition of being p-special

(see Definition 5.2.3.10): we describe how this is done. We begin by looking

at H, and see what it tells us.

Consulting Definition 5.2.3.7, we note that H tells us that a passive

witnessing tuple from Kp−1
2 exists in [−∞, 〈0, Np − 1〉] at arity Np−1, telling

us about an initial portion of the history of the archetype υp−2; this initial

portion includes a witnessing tuple from Kp−2
2 which tells about an initial

portion of the history of υp−3, and so on. Proceeding backwards in this way,

we find that we have information about all of υ, namely a history where the

locus of υ (by which is meant: the locus of the history corresponding to the

hightest non-inaccessible node of the branch B(υ,N) of 〈T2, F2〉 = T (υ,N))

is some node x of T2 which is either a maximal node of T2 or has the property

that all its successors are in the inaccessible region. (Even though τ has no

inaccessibles, σ might and so there might be some inaccessibles in υ)

To gain an insight into what is happening here, we examine the move-

ment from Kr
2 to Kr−1

2 in a little more detail. Consider for instance the

first step, going from Kp
2 to Kp−1

2 . Reading the witnessing tuple from Kp−1
2

does not tell us exactly what is happening in the next Np−1 section up in

Kp−1
2 – that is, in the first significant Np−1-section not contained in the first

Np-section in Kp
2– for it does not specify exactly which Np−1-tuples are lo-

cated in it. However, it does specify precisely everything else about that

Np−1-section – including the portion of the history of Kp−2
2 contained in it.

So in the Np−1-section, we have partial information about Kp−1
2 , and exact

information about Kp−2
2 .

Proceeding in this way, we see that – on the assumption that no arities

CHAPTER 5. ROBIN KNIGHT’S THEORY Θ 114

have been suppressed – we know precisely what is happening in the cell K2

right the way up to base(f) + ω.

Now, using arguments similar to those used prior to Lemma 4.3.5.3 in

Knights paper, without loss of generality if the node x is not maximal in T2,

then it has a unique successor y: let X = x if x is maximal, and let X = y

otherwise. Let H4 be a superficial history restricting to the superficial history

corresponding to the history of F2(X) on K2, and to the history of τ on K1.

Now define Ť4 to be the harmonization of the product 〈↑ X,F2| ↑

X〉 ×H4 T1, where T1 is T (τ, P) where P is the characteristic arity of the

archetype τ (recall that all f -types are regular)

It is now possible to define a tree T ∗
4 at the same characteristic arity

such that

1. Ť4 is an up-closed subtree of T ∗
4 ,

2. The projections of T ∗
4 to the appropriate respective arities refine T1

and closely refine T2, with the map witnessing close refinement of T2

including the map which witnesses that Ť4 closely refines an up-closed

subtree of T2.

We do this as follows. Once we have constructed Ť4, the history Ĥ of its

root yields a partial map θ taking the nodes from T2 not above X, to initial

segments of Ĥ.

So, if w ∈ domθ, and w′ is its immediate successor in domθ (if w′ doesn’t

exist, then we are at X already), we form a product

ψ(w) = 〈↑ {w}, F2| ↑ {w}〉 ×θ(w) T1

CHAPTER 5. ROBIN KNIGHT’S THEORY Θ 115

where ↑ {w} is the upclosure of {w} in T2. Now define

ψ̃(w) = ψ(w) " ψ̃(w′).

(if w = X, just let ψ̃(w) = Ť4.)

Now if T2 is rooted and s is its root, let T ∗
4 = ψ̃(s). If T2 is not rooted,

let S be its set of roots, and let s be that root which is blow X. Then let

T ∗
4 = (+s′∈S{s}〈↑ {s′}, F2| ↑ {s′}〉 × T1) + ψ̃(s).

Now, noting that T2 ⇒ T ∗
4 |Px(i∈n2n1∪n0), with this being witnessed by a

function including the root of Ť4 in its domain, we may form the product

T3 × T ∗
4 , and harmonize to obtain a tree T4. This is then p-special, because

of the special role of the node X and the tree Ť4; so T4 ∈ F4. And also,

T3 ⇒ T4|Px(i∈n3n1∪n0), as required. We may define ̟T3 = T4.

Finally, if the characteristic arity of T3 is above Np, let T ∗
3 be its pro-

jection to characteristic arity Np, and let ̟T3 be the harmonization of

T3 ×̟T ∗
3 .

Lemma 5.2.3.12 (*4.3.5.4). K4 is realized as an extension of K3, by some

tuple x(i∈n4) on M.

Proof. By the axiom of Generalized Saturation for Θ.

Definition 5.2.3.13. Let τ ∗ = 〈K4, C4, φ4〉 be a complete archetype such

that

M |= τ ∗(x(i∈n4))

and, let τ ′ = τ ∗|Px(i∈n1).

Corollary 5.2.3.14. τ ′|f = τ .

CHAPTER 5. ROBIN KNIGHT’S THEORY Θ 116

Proof. We have constructed F4 specifically to make this true.

And so we are done!

Before we continue, we want to be clear why we didn’t need to worry

about inaccessible elements and the hollowness of our models as Knight did.

What this process did was come up with a method for extending a given cell

K0 to a cell K4 that would witness an initial portion of the domain x(i∈n1)

would satisfy our τ up to f (assuming the appropriate other conditions on

the rest of its domain). Now, we choose f specifically so we wouldn’t have

to encode anything above the largest limit ordinal. However, this does not

mean that there are no elements in τ ′ which are in the inaccessible region. In

fact there may even be some elements of τ ′ which must be in the inaccessible

region (i.e. if there are elements of σ in the inaccessible region). However,

what it does mean is the only time this construction will force new tuples to

be placed in the inaccessible region is if there were already inaccessibles in σ

(and so then the inaccessibles aren’t a problem).

To be more precise all we know is that whenever K0 is a cell of an

archetype, we can find an archetype extension with K4 as a cell. But, we

don’t know that this extension will force τ |f to be realized unless we know

that the archetype over K3 is in fact υ.

To end this section we will prove a couple of corollaries to Generalized

Saturation for Restricted Archetypes.

Corollary 5.2.3.15. Let σ be as in Theorem 5.2.3.1. Let f τγ be the slant line

with ̟τ
ω∗(γ+1) > f τγ (1), f τγ (max(Sτγ∗ω,arity of τ) + 1) ≥ ̟τ

ω∗γ. Now, assume

τ |f τγ ≤ σ|f τγ , then ∃τ ′ ≤ σ such that τ ′|f τγ = τ |f τγ .

CHAPTER 5. ROBIN KNIGHT’S THEORY Θ 117

Proof. The idea is that if we know τ is an extension of σ below γ but above

anything that happens in τ or σ then we can find an actual extension of σ

which agrees with τ below anything that happens in τ below γ.

Corollary 5.2.3.16. Let σ be as in Theorem 5.2.3.1. If τ |γ ∗ ω + ω ≤

σ|γ ∗ ω + ω, then ∃τ ′ ≤ σ such that τ ′|γ ∗ ω = τ |γ ∗ ω.

Proof. If τ |γ ∗ ω + ω ≤ σ|γ ∗ ω + ω then τ |f τγ ≤ σ|f τγ . But we then know

by Corollary 5.2.3.15 that there is a ∃τ ′ ≤ σ such that τ ′|f τγ = τ |f τγ . But we

then also have τ ′|γ ∗ω = τ |γ ∗ω because restriction is transitive and how we

defined f τγ .

One might hope that we could actually get τ |ω ∗ γ + ω = τ ′|ω ∗ γ + ω

(because τ |ω ∗ γ + ω ≤ σ|ω ∗ γ + ω), but we can’t in general. The reason is

that for the construction we have to pick a point (below ω ∗ γ + ω) which

is above everything that happens in τ . Now we can pick that point as high

as we want, but once we pick it we can’t say anything about what is above

it. So, while we faithfully preserve everything below the slant line ending at

that point, what is above it is given free reign to do whatever it wants (so

long as it is consistent with σ). So it is possible for some of the tuples which

in τ are above ω ∗ γ + ω to be between ωγ and ω ∗ γ + ω in τ ′.

In fact, not only do we know that this proof doesn’t create a τ ′ such that

τ |f(1) + ω = τ ′|f(1) + ω and τ ′ ≤ σ but in the general this can’t be done if

γ ∗ ω + ω <specM ∩ ω1. To see why this can’t in general be done, assume it

could in general be done. Let I = {g : g is finitely generated bijection fromM

toN s.t. if σ(dom(g)), τ(range(g)) then τ |f(1)+ω = σ|f(1)+ω}. But, by our

assumption and Generalized Saturation for Restricted Archetypes, if g ∈ I

CHAPTER 5. ROBIN KNIGHT’S THEORY Θ 118

and m ∈M then there is an n ∈ N, g′ ⊇ g with g′(dom(g)∧m) = range(g)∧n

and g′ ∈ I (and similarly, for each n ∈ N there exists an m ∈M which makes

this true). But then I is a set of partial isomorphisms (by construction) and

hence M ∼= N (because both are countable). Except, we only assumed that

Spec(M) ∩ ω1, Spec(N) ∩ ω1 were larger than γ ∗ ω + ω and not even that

they were equal. ⇒⇐

5.3 Consistent Pairs of Cells

The goal of this section is to define consistent pairs of cells and archetypes

in such a way as will allow us to show the collection of archetypes satisfies

(Homogeneity of Consistent Pairs of Archetypes) and (Extension of 1-Color).

Suppose we have a consistent pair of cells (A,A′) and we have a cell B which

extends A. We then want to find a cell B′ which extends A′ such that (B,B′)

is a consistent pair of cells which extends (A,A′).

The first questions we have to answer before we can show this is “What

Exactly is a Consistent Pair of Cells?”, and “What Does it Mean for A Con-

sistent Pair of Cells to Extend Another?”.

The central question which we will consider when we look at consistent

pairs of cells is what is happening to the colors of the two cells. We are going

to intuitively want (A,A′) to be a consistent pair of cells if whenever there is

a color C which is according to A there is also a color C ′ which is according

to A′ such that the color of a tuple according to C ′ is always at least as large

as the color according to C.

While this is a good first approximation of what it means for (A,A′) to

CHAPTER 5. ROBIN KNIGHT’S THEORY Θ 119

be a consistent pair of cells, it turns out this isn’t going to be quite enough.

We will also need to understand the allowable ways in which a consistent

pair of cells can be extended. Specifically we only want to allow extensions

which allow all pairs of colors to have an extension. To be more precise, if

(C,C ′) are precolors according to (A,A′) and D is a precolor according to B

whose restriction to dom(A) is C then if (B,B′) is a consistent pair of cells

there should be a precolor D′ according to B′ such that D′ places every tuple

at least as high as D and D′ restricted to domain(C ′) is C ′

For technical reasons this isn’t quite what we want. We also want to

be able to weaken the conditions on the two colors (C,C ′) so that we only

require C to place nodes below C ′ i the node on C is below some fixed o ∈ Ω

(and we don’t worry about what is above them). Of course the precolors

(D,D′) will also only be “consistent” up to o.

As the actual cell structure are very complicated we will prove the main

theorem of this section recursively in stages which mimic the definition in [8]

of a cell. But first we will want a definition.

Definition 5.3.0.17. Let (S, S ′) be a “consistent” pairs of “structures” we

are considering. Then we say that S is Below S ′ and S ′ is Above S.

Definition 5.3.0.18. If C,C ′ are precolors we say that (C,C ′) is a consistent pair

up to o ∈ Ω if C,C ′ are on the same domain and to each tuple a, min{C(a), o} ≤

min{C ′(a), o}. We say that (C,C ′) are consistent if they are consistent for

all o ∈ Ω.

CHAPTER 5. ROBIN KNIGHT’S THEORY Θ 120

5.3.1 Cells

Before we continue it is worth recalling the definition of a cell:

Definition 5.3.1.1 (*2.9.2.2). A cell is a pair K = 〈x(i<n),Φ〉, where

1. x(i<n) is a non-repeating tuple of variable letters

2. Φ is a relation with domain {x(f(i):i<m) : m ≤ n, f injective}, and range

the set of predicates Pm
F , and

3 For all m, for all one-to-one functions f : m → n, 〈x(f(i):i<m), P
k
F〉 ∈ Φ

implies k = m

4 K satisfies LE (Local Embedding). That is if f : k → l and g : l → n

are functions, and if P k
F ′ and P l

F are letters, where either f is not one-

to-one or F ′ is not extensible to F along f , then

(〈x(g(i):i<l), P
k
F l〉 ∈ Φ) → ¬(〈x(g◦f(i):i<k), P

k
F ′〉 ∈ Φ)

So Φ is a partial function.

If 〈x(i:i∈S),Φ〉 and 〈x(i:i∈S′),Φ
′〉 are cells, we say 〈x(i:i∈S),Φ〉 ≥ 〈x(i:i∈S′),Φ

′〉

iff S ′ ⊂ S, and Φ′|Px(i∈S) = Φ

It is important to notice that a cell is “almost” completely determined by

the forest which the domain of the cell realizes. The only other information

are the subforests each of which has to closely refine (⇒) the large forest on

the appropriate arity. In particular if we could show that our construction

“respects” close refinement, then all that would be needed would be to show

the construction for Forests.

CHAPTER 5. ROBIN KNIGHT’S THEORY Θ 121

To be precise lets say we have two “structures” S, S ′ and an extension

of S to a structure of the same type T . We will construct a structure T ′

in terms of T and S ′. Let us call the structure we construct Const(T, S ′).

What we want to show is that if S ⇒ R, S ′ ⇒ R′ (where R′ extends R) and

T ⇒ Q then Const(T, S ′) ⇒ Const(Q,R′).

Definition 5.3.1.2. If C,C ′ are cells we say that (C,C ′) is a consistent pair

if C,C ′ are on the same domain for each tuple x ⊆ dom(C) if C witnesses

PF (x) and C ′ witnesses PF ′(x) then (F, F ′) is a consistent pair of forests.

Definition 5.3.1.3. If (C,C ′), (D,D′) are consistent pairs of cells we say

(D,D′)(x,y) is a Consistent Extension of (C,C ′)(x) ((D,D′)(x,y) ≤ (C,C ′)(x))if

for each tuple x ⊆ dom(C)

• (C,C ′) witnesses (PFx
, PFx

′)(x)

• (D,D′) witnesses (PGx
, PGx

′)(xy)

• (Fx, F
′
x) ≥ (Gx, G

′
x)

(see Section 5.3.2 for an explanation of ≤ on pairs of forests)

5.3.2 Forests

Now recall the definition of a forest.

Definition 5.3.2.1 (*2.8.1.1). A forest on Px(i∈N) is a set F of reduced,

filled ambiguity trees of all characteristic arities up to N on Px(i∈N), closed

under

CHAPTER 5. ROBIN KNIGHT’S THEORY Θ 122

1. Projection: so if T ∈ F , then its projection is in F , and

2. Disentangleing ambiguity trees into their component sensible trees:

that is, if 〈F, T 〉 is an ambiguity tree in F , x ∈ T , and F (x) = 〈S,H〉,

then for each T ∈ S, the ambiguity tree representation of T is in F

3. Retrojection: so if T ∈ F has characteristic arity n < N , its retro-

jection is the ambiguity tree representation of the sensible tree 〈〈⊏

,Υ〉, T , φ〉, where

(a) Υ = {−∞} ∪ Ω

(b) If |x| = n+ 1 then x ⊏ −∞

(c) dom(φ) = {{−∞}} and φ({−∞}) = T

Definition 5.3.2.2. Let F, F ′ be forests. We say F ′ is above F if for every

precolor C according to an ambiguity tree T ∈ F there is a precolor C ′

according to an ambiguity tree T ′ ∈ F ′ such that (C,C ′) is a consistent pair

(and T, T ′ have the same arity).

Definition 5.3.2.3. Let F, F ′, G,G′ forests such that

• F ′ is above F

• G′ is above G

• G(x,y)
 F (x)

• G′(x,y)
 F ′(x)

• If C ∈ S ∈ F,C ′ ∈ S ∈ F ′ and D ∈ T ∈ G such that

CHAPTER 5. ROBIN KNIGHT’S THEORY Θ 123

– (C,C ′) is a consistent pair of precolors up to o ∈ Ω

– S, S ′ have the same arity

– D|dom(C) = C

Then there is a D′ ∈ T ′ ∈ G′ such that

– (D,D′) is a consistent pair of precolors up to o ∈ Ω

– T, T ′ have the same arity

– D′|dom(C) = C ′

We then say that (G,G′) is a Consistent Extension of (F, F ′) ((G,G′) ≤

(F, F ′)).

Definition 5.3.2.4. If arity(F) =arity(F ′) = 1 then we say (F, F ′) is

a consistent pair of forests if F ′ is above F .

For arbitrary arity we say that (G,G′) is a consistent pair of forests if

(∃(∅, ∅) = (F0, F
′
0), . . . (Fn, F

′
n) = (G,G′)) where (Fi+1, F

′
i+1) is a consistent

extension of (Fi, F
′
i) and

Lets consider what exactly is going on here. The first thing to notice is

that the forests don’t usually say much about the colors of tuples. All the

forests really talk about is the relative position of colors. This is the reason

why just having F over F ′ isn’t enough for (F, F ′) to be a consistent pair of

forests.

Hence what we are really interested isn’t whether there is some consistent

pair of precolors (C,C ′) according to forests (F, F ′) which is consistent (as

CHAPTER 5. ROBIN KNIGHT’S THEORY Θ 124

there usually will be). Rather what we care about is that once we have our

precolors they have enough extensions. This is a common theme when dealing

with forests and cells. The forests and cells can’t tell you exactly what is

going on, they can only tell you what is going on relative to something else.

But if you already have a list of colors of Ω which you can use as reference

then the forest can tell you exactly what is going on (if you remember this

was the reason why we needed υ∗ in the proof of Theorem 5.2.3.1).

Specifically in this case we want (G,G′) to be a consistent extension of

(F, F ′) if whenever we have a conistent pair of colors (C,C ′) according to

(F, F ′) and we extend the bottom one to a precolor D in a way consistent

with G then we can extend the top one to a precolor D′ in a way consistent

with G′ so that we still have a consistent pair (D,D′).

Remember our original goal. Given a consistent pair of forests (F, F ′)

and an extension of F to a forest G we want to find some forest G′ such

that (G,G′) is a consistent extension of (F, F ′). In particular remember our

forests are composed of ambiguity trees. Hence it is enough to show that

given a “consistent pair of ambiguity trees” (S, S ′) relative to a consistent

pair of precolors (C,C ′), and an ambiguity T and precolor D as in Definition

5.3.2.3 that we can find the an ambiguity tree T ′ and a precolor D′ such

that (T, T ′) is a “consistent extension” of (S, S ′) relative to (D,D′). This is

enough because we can then let our forest G′ be the collection of all such

ambiguity trees.

Of course we still have to define what a “consistent pair of ambiguity

trees relative to a consistent pair of precolors” is. And so we will now start

our recursive definition.

CHAPTER 5. ROBIN KNIGHT’S THEORY Θ 125

5.3.3 Augmented Unitary Trees

The first stage of the recursion occurs at the level of Augmented Unitary

Trees. An augmented unitary tree is it is meant to provide the most basic

framework for assigning possible colors to a subtuples. One way to think

about an augmented unitary tree is an augmented unitary tree is to a precolor

what a tree ordering is to a linear order.

Definition 5.3.3.1. An augmented unitary tree of characteristic arity n on

Px(i∈N) is a pair 〈⊏,Υ〉 such that

1. Υ is a tree of colors of characteristic arity n

2. ⊏ is a relation with domain some subset of P≤nx(i∈N) and range Υ;

3. Writing ⊏̆ for ⊏ |Pnx(i∈N), 〈⊏̆,Υ〉 is a unitary tree of characteristic

arity n;

4. For all S, {a;x(i∈S) ⊏ a} is an antichain (not necessarily maximal), and

if x(i∈S) ⊏ a, then |a| = |S|;

5. For all S and a such that x(i∈S) ⊏ a, there exists T of arity n and b ≥ a

such that x(i∈T) ⊏ b (so the tuples of arity n delimit the augmented

unitary tree);

6. If V ⊃ U, and x(i∈U) ⊏ a, then there is b < a such that x(i∈V) ⊏ b

Definition 5.3.3.2. Let U,U ′ be augmented unitary trees of arity n on the

same domain and (C,C ′) be a consistent pair of colors up to o. Then we say

that (U,U ′) is a Consistent Pair of Augmented Unitary Trees with Respect to

CHAPTER 5. ROBIN KNIGHT’S THEORY Θ 126

(C,C ′) (up to o) if there is a branch of the augmented unitary trees U,U ′

which places all ≤ n tuples in the same place as C,C ′ respectively.

Definition 5.3.3.3. We say an augmented unitary tree of arity n is ex-

tendible (relative to o) if every branch point has a predecessor and o is an

n+ 1 successor.

Before we continue lets clarify what it means for an augmented unitary

tree to be extendible. Because of how the augmented unitary trees of arity

n are defined we know every branch point projects to a point o ∈ Ω which is

an n− 1 successor. The reason for this is that the intended interpretation of

a tuple being placed at a point in Ω is that that tuples color plus its arity is

at that point. Hence, if we are going to place an n-tuple somewhere it had

better be at a place which is an n− 1 successor (or the color function ceases

to make sense).

While this definition of augmented unitary tree is fine, it makes it diffi-

cult, in general, to increase the arity of an augmented unitary tree. This is

because, apriori, there is nothing to stop a branch point from being a n− 1

successor in Ω but not an n successor and hence we will not be able to place

any tuples of arity n + 1 right after the branch point (which is not good).

We say an augmented unitary tree is extendible if in fact we can shift the

branches just a little (but keep the placement of all tuples) to allow us to

place n+ 1 tuples after the branch.

Lets suppose we have a consistent pair of augmented unitary trees (U,U ′)

of arity n with respect to (C,C ′) which are both extendible (say the domain

of (U,U ′) is x). Now lets further suppose that V is an n+1 arity augmented

CHAPTER 5. ROBIN KNIGHT’S THEORY Θ 127

unitary tree (on domain xy) such that when V is restricted to x and such

that every branch point of V is moved to its predecessor then you get U .

Further let D be some path through V which restricts to C on x. We now

want to find a V ′ such that V ′ restricted to x, and with the modified branch

points, gives U ′. Further we want a path D′ on V ′ which when restricted to

x gives C ′, and such that (D,D′) is a consistent pair.

There are two things we have to consider when trying to construct our

augmented unitary tree V ′. The first is that the collection of points where

any n + 1 tuple is placed is an anti chain with at most one placement not

being immediately after a branch point. The second is that n + 1 tuples

delimit the tuples of arity ≤ n on the tree.

The way we are going to construct our tree is as follows. First lets look

at the branch that C′ follows. Suppose we have a tuple a ⊆ x which is placed

at a point which projects to o′ ∈ Ω. What we do will be determined by the

nature of o′.

• If o′ is on an n + 1 section, then place a, y on the same section (so in

particular this means that if a is immediately after a branch point, so

is ay)

• If o′ is not on a n+ 1 section (so we can’t place ay immediately before

it) then we have thwo cases

– Case 1: o′ ≤ o

Place ay below a but above anything that happens on D below

where a is placed (on the branch C′ follows in U ′). We can do this

because we know that a is at least as high on C ′ as on C because

CHAPTER 5. ROBIN KNIGHT’S THEORY Θ 128

we are below o.

– Case 2: o′ > o

Here we want to put ay at some point above o (because we only

require that (D,D′) will be consistent up to o). The problem is

it is conceivable that o and o′ are in the same n section and in

this case we know we can’t place ay above o (o is not an n + 1

successor). This though is a problem because even if we place ay

above everything else in D (which is below o) we still don’t have

(D,D′) is consistent up to o as one precolor might place ay below

o and the other might place it above o (if D places a above where

D′ places a).

However, in the case of extendible augmented unitary trees

up to o we know this isn’t a problem as o has to be on an n + 1

section and so can’t be in the same n-section as o′ (and in fact

this was why we had this requirement). Hence we can place ay at

some n+ 1 section above o.

Finally place y along D′ and above anything which happens anywhere. And

place ay immediately after the branch points in all other branches.

So our constructed V ′ has all the properties we want and is almost an

augmented unitary tree. All that is left is to ensure that there are n+1-tuples

delimiting the tree. But that is easy. Simply add for each branch a new n+1

tuple z and place it beyond anything on that branch in V ′. Similarly place

all such z at −∞ on V .

For notational consistency we will define Const([V,D], [U ′, C ′]) = [V ′, D′]

CHAPTER 5. ROBIN KNIGHT’S THEORY Θ 129

5.3.4 Sensible Trees of arity 1

As with [8], we will start our recursion with the case of sensible trees of

arity 1.

Let S, S ′ be consistent extendible sensible trees of arity 1 on x relative

to a consistent pair of precolors (C,C ′). (recall that a sensible tree of arity 1

is the same thing as a unitary tree of arity 1). Now let T be a sensible tree

of arity 2 whose restriction to x at arity 1 is S. Further let D be a precolor

according to T (i.e. a path through the tree) whose restriction to S at arity

1 is C.

We know by the previous section that we can find an augmented unitary

tree T ′ of arity 2 with the properties that we want. All that is left is to turn

this augmented unitary tree into a sensible tree. To do this we need to assign

to each point in range(⊏) an ambiguity tree of arity 1.

Recall from the definition of ambiguity tree that an ambiguity tree of

arity 1 consists of a finite tree and a collection of ambiguity nodes of arity

1, which are placed on the nodes of the finite tree. Further notice that we

require that the gist (see Definition 2.4.1.6 of [8]) of the root of the ambiguity

tree is the same as the gist of the point on which it was placed (when then

node is non-trivial).

But, this isn’t hard to do. We simply create an ambiguity tree where the

tree part is isomorphic (as a partial order) to the nodes on the augmented

unitary tree T ′. Then at the root of this ambiguity tree place an ambiguity

node which contains only one sensible tree of arity 1 (i.e. the tree S ′). We

then follow the tree S ′ along. Suppose we come to a point N with a node on

it. Then this node corresponds to a node N∗ on our ambiguity tree. At this

CHAPTER 5. ROBIN KNIGHT’S THEORY Θ 130

node place an ambiguity node with 1-history up to N∗ and only one element

which is the unitary tree S ′ pruned below N . So in particular the gist of the

ambiguity node at this point will be the same as the gist of N .

Another and perhaps more intuitive way to think about the process is

by considering only the roots of the ambiguity trees placed at each point in

range(⊏). Here what we are doing is simply placing an ambiguity node at

each point in range(⊏) in such a way that the history of the node is exactly

the path through the sensible tree S ′ up until that point. Further, the only

tree in the ambiguity node is the tree S ′. Then, in order to find the ambiguity

tree which is placed at each point in T ′ all we do is combine all the ambiguity

nodes at or above the point in T ′ into an ambiguity tree.

In particular we know that there is a path D′ along this sensible tree of

arity 2 such that D′ restricted to x at arity 1 is C ′ and further (D,D′) is a

consistent pair of colors (this was the whole point of Section 5.3.3).

Technically there is one more thing to worry about. What we have

actually defined here isn’t in fact a sensible tree because we need to place

unrooted ambiguity trees at trivial 1-sections in between any two rooted

ambiguity trees. But this isn’t a problem as there is an obvious way to choose

the ambiguity trees (just chop off the root of the first tree) and between any

two non-trivial 1-sections there is a trivial one (Lemma 2.2.3.5 of [8]). So we

can define Const([T,D], [S ′, C ′]) = [T ′, D′]

All that is left is to prove that if S ⇒ S∗|dom(S) and S ′ ⇒ S ′
∗|dom(S)

are all unitary trees of arity 1 such that (S, S ′), (S∗, S
′
∗) are consistent pair and

T ⇒ T∗|dom(T) are augmented unitary trees of arity 2 such that T extends

S and T∗ extends S∗ then Const([T,D], [S ′, C ′]) ⇒ Const([T∗, D], [S ′
∗, C

′]) =

CHAPTER 5. ROBIN KNIGHT’S THEORY Θ 131

[T ′
∗, D

′] (were C,C ′, D,D′) are the appropriate colors. But this is trivially

true because on sensible trees of arity 1, X ⇒ Y iff X = Y .

While we are done with the construction (and the construction does in

fact ensure what we want) we still want to make one more observation. The

observation is that if we have S ′, S∗ such that they agree on the 1-history

which C ′, C∗ respectively follow then in fact the corresponding T ′, T ∗ will

produce paths D′, D∗ which agree on the 2-history. The reason is simply that

everything that was done to create a new branch is completely determined

by the old branch we are looking at (i.e. we never care about something

which happens on the tree outside of the branch we are looking at).

5.3.5 Ambiguity Nodes

Recall the definition of an ambiguity node.

Definition 5.3.5.1 (*2.5.1.1). An ambiguity node of characteristic arity n

on Px(i∈N) is a pair 〈S, H〉 such that

1 H is an n-history of characteristic arity n, and

2 S is a non-empty set of order-representations of sensible trees of char-

acteristic arity n on Px(i∈N) for each of which H is an n-history

Our inductive assumption will be, given a consistent pair of extendible

sensible trees (S, S ′) of arity n relative to a consistent pair of colors (C,C ′)

and such that T is an extension of S and D is an extension of C then we can

find an extension of T ′ with color D′ such that

• D′ is an extension of C ′

CHAPTER 5. ROBIN KNIGHT’S THEORY Θ 132

• (T, T ′) is consistent relative to (D,D′)

• T ′ restricted to domain of S ′ and arity n is S ′

Definition 5.3.5.2. We say that a pair of ambiguity nodes (A,A′) is Consistent

Relative to a consistent pair of colors (C,C ′) if for every sensible tree S in A

such that S follows C along the history of A then there is a sensible tree S ′

in A′ such that S ′ follows C ′ along the history of A′ (i.e (S, S ′) are consistent

relative to (C,C ′)).

Definition 5.3.5.3. We say that a consistent pair of ambiguity nodes (B,B′)

of arty n+ 1 extends a consistent pair of ambiguity nodes of arity n (A,A′)

on x if

(1) (B,B′) restricted to arity n and x equals (A,A′)

(2) Whenever we have a consistent pair of sensible trees (S, S ′) relative to

(C,C ′), where (S, S ′) ∈ (A,A′) and S, S ′ follow the colors C,C ′ along

the histories of A,A′ and a T ∈ B extending S, there is a T ′ ∈ B′

extending S ′ such that (T, T ′) is a consistent pair of sensible trees

relative to (D,D′) (where D,D′ are the colors according to (T, T ′)

along the histories of (B,B′)).

This definition, while a little complicated, says exactly what we want it

to. The idea behind an extension is that whenever we have a consistent pair

of “structures” and we extend the bottom one, we can find some extension

of the top one. This is what Definition 5.3.5.3 says.

Before we continue it is worth pointing out something explicitly. Notice

CHAPTER 5. ROBIN KNIGHT’S THEORY Θ 133

that here we have only required the colors to be the same as far as the history

of the ambiguity nodes goes. This is because beyond the history of A,A′ the

ambiguity nodes can’t really say anything about the trees. In fact, the only

reason why we insisted that we consider consistent pairs of precolors up to

o ∈ Ω instead of just consistent pairs of precolors was so that we could handle

this case.

Our goal is given (A,A′) a consistent pair of ambiguity nodes relative

to precolors (C,C ′), and an ambiguity node B extending A to come up

with an ambiguity node B′ and color D′ so that (B,B′) is a consistent pair

of ambiguity nodes relative to (D,D′). But this is easy by the inductive

hypothesis. Let B′ = {Const([T,D], [S ′, C ′]) : (S, S ′) is a consistent pair of

sensible trees relative to (C,C ′) (which follow the histories of the ambiguity

nodes) up to the height of corresponding histories of the ambiguity nodes

with S ′ ∈ A′ and T ∈ B is an extension of S ∈ A}

Now B′ is an ambiguity node because whenever we have two sensible

trees which follow the same branch (i.e as in the case of an ambiguity node)

then this construction applied to both the trees returns the same branch.

So we can let the history of B′ be the branch common to all of the sensible

trees. Further (B,B′) is a consistent extension of (A,A′) relative to (D,D′)

(the colors extending (C,C ′)) by the way it was constructed.

All that is left is to show if

• A⇒ A∗|dom(A) and A′ ⇒ A′
∗|dom(A) are all ambiguity nodes of arity

n

• (A,A′), (A∗, A
′
∗) are consistent pairs of ambiguity nodes.

CHAPTER 5. ROBIN KNIGHT’S THEORY Θ 134

• B ⇒ B∗|dom(B) are ambiguity nodes of arity n+ 1

• B extends A and B∗ extends A∗

then [B′, D′] = Const([B,D], [A′, C ′]) ⇒ Const([B∗, D], [A′
∗, C

′])|dom(B) =

[B′
∗, D

′]|dom(B) (were C,C ′, D,D′) are the appropriate colors.

But recall what it means for X ⇒ Y when X,Y are ambiguity nodes.

Definition 5.3.5.4 (*2.5.2.2 (2)). Suppose 〈S,H〉 and 〈S ′,H′〉 are ambiguity

nodes of characteristic arity n on Px(i∈N)

Then we say 〈S,H〉 ⇒ 〈S ′,H′〉 iff

(a) for all T ∈ S, there exists T ′ ∈ S ′ such that T ⇒ T ′; and

(b) for all T ∈ S, there exists T ′ ∈ S ′ such that T ⇒ T ′; and

(c) H and H ′ have the same superficial history.

In particular if we have a T∗ ∈ [B′
∗, D

′] we need to find a T ∈ [B′, D′] such

that T∗ ⇒ T . But this is easy as T∗ must have come (via the construction)

from a S∗ ∈ [A′
∗, C

′] (i.e. T∗ = Const([T+
∗ , D], [S∗, C

′]), with T+
∗ ∈ B∗). And,

by assumption there must be some S ∈ [A′, C ′] such that S∗ ⇒ S and a

T+ ∈ B such that T+
∗ ⇒ T+. But, because we know that this construction

preserves ⇒ on sensible trees we then have that Const([T+, D], [S,C ′]) ⇒ T∗.

We get the other direction (i.e. starting with T ∈ [B′D′]) in exactly the

same way. So, we are done with the ambiguity node case of the recursive

definition.

5.3.6 Ambiguity Trees

First of all recall the definition of an ambiguity tree.

CHAPTER 5. ROBIN KNIGHT’S THEORY Θ 135

Definition 5.3.6.1. An ambiguity tree of characteristic arity n on Px(i∈N)

is a pair 〈T, F 〉 such that

1. T is a finite tree

2. F is a function from T to the set of ambiguity nodes of characteristic

arity n on Px(i∈N) and,

3. if x is an immediate successor of y in T then F (x) ⊲ F (y)

Definition 5.3.6.2. We say that a pair of ambiguity trees (A,A′) is con-

sistent relative to a consistent pair of colors (C,C ′) (up to a pair of nodes

(N,N ′)) if A,A′ below N,N ′ are isomorphic (as linear orders) and the am-

biguity nodes (N,N ′) are consistent.

Definition 5.3.6.3. We say that a consistent pair of ambiguity trees (B,B′)

of arty n + 1 (up to nodes (N,N ′)) extends a consistent pair of ambiguity

nodes of arity n (A,A′) on x (where (A,A′) are consistent relative to (C,C ′)

and up to nodes (M,M ′)) if

(1) (B,B′) restricted to arity n and x closely refines (A,A′) (B ⇒ A and

A′ ⇒ B′)

(2) (N,N ′) is an extension of (M,M ′) as consistent ambiguity nodes rela-

tive to (C,C ′)

Before we can understand what these definitions mean we need a sense

of what exactly an ambiguity tree is. Recall that an ambiguity node is a

collection of sensible trees all of which agree on a common path, up to a

CHAPTER 5. ROBIN KNIGHT’S THEORY Θ 136

point (the history of the node). One way to think about an ambiguity node

is as a collection of things which “look a like” up to a point. The idea being

that we have chosen some “facts” about our universe (the history) and all of

our sensible trees in the ambiguity node have to agree on the facts we have

chosen. But, beyond those facts we don’t know what the universe looks like.

To understand what an ambiguity tree looks like, lets consider the tree

with out the sensible trees at each node. In this case an ambiguity tree is

a finite list of possible paths. In other words, along each branch of the tree

we can glue together the histories (i.e. facts we have chosen). Further, if

we glue all these histories together then what we get, considered as a partial

ordering, will look like the tree part of the ambiguity tree.

What we are doing is assuming we have two pairs of ambiguity trees

which “look the same” along a branch. Then when we enlarge the lower one,

we want to make sure that we can enlarge the upper one so that for a fixed

“new” branch in the lower one there is a branch in the upper one which looks

the same.

This is also why we only require that the extension be a close refinement

of the tree it is extending. It is possible that the extension might add in some

new nodes along the history and we want to allow for that.

Assume we have a consistent pair of ambiguity trees (A,A′) of arity n

on the same tuple x with n-histories H,H ′ up to nodes (M,M ′) which are a

consistent pair of ambiguity nodes relative to (C,C ′). Also assume we have

B an ambiguity tree with node N , which is an extension of M and a color

D which is an extension of C.

One of the most important things to realize about this construction is

CHAPTER 5. ROBIN KNIGHT’S THEORY Θ 137

that we don’t actually care about what happens outside of the branch below

N . The first thing we are going to do is to create to create the branch ending

at N ′ = Const([N,D], [M ′, C ′]).

We do this by first going along the branch of M ′ in A′. Suppose we have

already applied the construction to all nodes below P ′. What we want to

do is look at the branch M is on and find the highest node P such that if

C follows the history of P up to o and C ′ follows the history of P ′ up to o

then (C,C ′) is a consistent pair up to min{o, o′}. Now we want to find some

ambiguity node Q in B and our color D which follows the history of Q and

where D extends C

We then apply our construction to [Q,D], [P ′, C ′]. However, there is a

small problem. The histories of P, P ′ might not be “the same size” (i.e. we

only know that (C,C ′) is a consistent pair relative to min{o, o′}). But this

isn’t that big a problem as we can simply ignore the extra information when

we do our construction to get the node Q′. Then, because the construction

is done independent of the length of the path through the tree, there will

be an extension of our history in Q′ which is according to all of the sensible

trees in Q′ (the only purpose of having a point below for comparisons was to

ensure that in the result we still get a consistent pair of colors at least as far

as we had the original colors consistent.)

The point to realize in this construction is that we really want is to just

apply the construction to N,M ′ and then say that the lower nodes on the

tree are just restrictions. The problem is that we have to ensure our resultant

tree closely refines the tree we started with. In particular, for every node we

started with, that node had better not “disappear” on the end result.

CHAPTER 5. ROBIN KNIGHT’S THEORY Θ 138

So all we have to worry about is what to do with the nodes of A′ which

aren’t below M ′. Well if a node P ′ is not below M ′ then what we want to

do is temporarily ignore the history of P ′ above where it is inconsistent with

that of M ′. Call this history H ′. Then we want to apply the construction

with the node Nα extending MP where MP is the ambiguity node whose sole

element is the sensible tree equal to the history (so (MP , P) is a consistent

pair of ambiguity nodes)

We then will get a node Q′. We know that because the construction on

sensible trees is independent of the length of the path we are choosing we will

be able to “reconstruct” a history on Q′ which extends the history of P ′. The

node Q′ we will place in the tree B′ will then be Q′ with the reconstructed

history. We Const([B,N], [A′,M ′]) as the tree just described.

All that is left is to show ⇒ is preserved. Let A ⇒ A∗|dom(A) and

A′ ⇒ A′
∗|dom(A) are all ambiguity trees of arity n, (A,A′), (A∗, A

′
∗) are a

consistent pairs relative to (C,C ′), (C∗, C
′
∗) (up to nodes (M,M ′), (M∗,M

′
∗)).

Also let B ⇒ B∗|dom(B) be ambiguity trees of arity n + 1 such that B

extends A and B∗ extends A∗. Then let [B′, N ′] = Const([B,N], [A′,M ′]) ⇒

Const([B∗, N∗], [A
′
∗,M

′
∗])|dom(B) = [B′

∗, N
′
∗]|dom(B). But recall what it

means for X ⇒ Y when X,Y are ambiguity trees.

Definition 5.3.6.4 (*2.5.4.5). Suppose 〈T, F 〉 and 〈T ′, F ′〉 are ambiguity

trees or weak ambiguity trees on Px(i∈S), of characteristic arity n.

1. Then say 〈T, F 〉 → 〈T ′, F ′〉 iff there is a non-strictly order-preserving

φ : T → T ′ such that for all a ∈ T , F (a) ⇐ F ′(φ(a)).

We say that 〈T, F 〉 is a refinement of 〈T ′, F ′〉

CHAPTER 5. ROBIN KNIGHT’S THEORY Θ 139

2. Say 〈T, F 〉 ⇐ 〈T ′, F ′〉 iff there is a function φ witnessing 〈T, F 〉 →

〈T ′, F ′〉, and there is a one-to-one strictly order-preserving map ψ :

T ′ → T , with φ◦ψ being the identity, such that for all b ∈ T ′, F (ψ(b)) ⇐.

We say that 〈T, F 〉 is a close refinement of 〈T ′, F ′〉.

In particular all we need to show is that the tree part of [B′, N ′] can be

injected into the tree part of [B′
∗, N

′
∗] by a function f such that Q ⇒ f(Q)

for all nodes in B′. But, the tree part of B′ is the same as the tree part of A′

and similarly the tree part of B′
∗ is the same as the tree part of A′

∗. So there

is an injective map f from the tree part of B′ to the tree part of B′
∗|dom(B)

(it is the same map which we know must exist because A′ ⇒ A′
∗|dom(A)).

And because ⇒ is preserved on ambiguity nodes this map witnesses that

B′ ⇒ B′
∗|dom(B). (Notice that just having an injection from X → Y is not

enough to ensure X ⇒ Y . We also need a surjection going the other way

(where the composition is the identity in the direction that makes sense).

But, as our construction doesn’t modify the tree part of an ambiguity tree

we can just use the maps between A′, A′
∗|dom(A)).

5.3.7 Sensible Trees

We are almost done with the construction. All that is left is the case of

sensible trees of arity > 1. Recall the definition of a sensible tree:

Definition 5.3.7.1 (*2.6.2.1). If Υ is a tree of colors of characteristic arity,

and φ is a finite partial function from the union of {{−∞}} with the set of

n−1 sections to pairs 〈T ′, F ↾ T ′〉, where T ′ ⊆ T , and 〈T, F 〉 is an ambiguity

tree of characteristic arity n-1, then φ is orderly iff

CHAPTER 5. ROBIN KNIGHT’S THEORY Θ 140

1. For all γ ∈dom φ if φ(γ) = 〈T ′, F ↾ T ′〉, then T ′ is up-closed in T;

2. {−∞} ∈dom φ and φ({−∞}) = 〈T, F 〉. [The history of the root T

could say that nothing has happened yet]

3. If γ ∈dom φ is non-trivial or equal to {−∞} then

(a) φ(γ) is rooted

(b) if γ′ is an immediate successor of γ in domφ, then φ(gamma′) is

a bough of φ(γ).

(c) If γ is not {−∞} then there exists γ′ < γ with γ′ trivial with

φ(γ) = φ(γ′), or else non-trivial or equal to {−∞} with φ(γ)

being the deracination of φ(γ′).

4. If γ ∈ dom φ is trivial and γ′ is an immediate successor of γ in dom φ,

then φ(γ′) is radically included in φ(γ).

5. dom φ is as small as possible. Specifically, if γ and γ′ are in dom φ are

trivial and γ′ is an immediate successor of γ in dom φ, then

(a) If γ and γ′ in are trivial, then φ(γ′) 6= φ(γ).

(b) If γ′ is trivial and γ is non-trivial or is equal to {−∞}, then φ(γ′)

is not the deracination of φ(γ).

Definition 5.3.7.2 (*2.6.2.2). A clear tree of characteristic arity n on PxN

is a triple 〈〈⊑,Υ >, 〈T, F 〉, φ〉 such that

1. 〈⊑,Υ〉 is an augmented unitary tree of characteristic arity n on PxN

CHAPTER 5. ROBIN KNIGHT’S THEORY Θ 141

2. 〈T, F 〉 is a reduced, filled ambiguity tree of characteristic arity n-1 on

PxN

3. φ is an orderly partial function on the union of {{−∞}} with the set

of n-1 sections on Υ such that φ({−∞}) = 〈T, F 〉.

Definition 5.3.7.3 (*2.6.2.3). A clear tree 〈⊑,Υ, 〈T, F 〉, φ〉 on PxN is sen-

sible iff

1. whenever γ ∈ dom φ is non-trivial, the gist of γ in 〈⊑,Υ〉 is the same

as that of the root of φ(γ), and

2. Every n-1 section meeting ⊑ ”P<nxN belongs to dom φ.

Suppose we have a consistent pair of extendible sensible trees (S, S ′) of

arity n on x and relative to two precolors (C,C ′) (up to o ∈ Ω). Now let T

be an extension of S to arity n+ 1 and let D be an extension of the precolor

C on the tree T . We want to find an extension T ′ of S ′ and a precolor D′

extending C ′ such that (T, T ′) is a consistent pair of sensible trees relative

to (D,D′).

The approach is going to be very similar to the case where n = 1. The

first thing we are going to do is extend the augmented unitary tree S ′ to an

augmented unitary tree T ′ as in Section 5.3.3. Then all that is left to do is

to place the ambiguity trees.

The method we are going to use to place the ambiguity tree will be to

first consider the roots of the trees. We will then place ambiguity nodes at

each point in the sensible tree so that if one ambiguity node is placed at a

point greater than another, then the history of the ambiguity node which

CHAPTER 5. ROBIN KNIGHT’S THEORY Θ 142

was placed at the greater point will extend the history of the ambiguity node

placed at the lower point.

Notice that (by the construction in Section 5.3.3) all new tuples which

are not placed on the branch we are considering (i.e. the branch that D′

follows) are placed immediately after a branching point. In particular if we

have a point X in S ′ which is immediately after a branching point then there

is some tuple which is placed there. Now on any node Y ∈ range(⊏) which

is off the path we are considering in S ′ there is some ambiguity tree A′ of

arity n − 1. We want to extend the root of this ambiguity tree to an ambi-

guity node of arity n by simply putting all new tuples in all histories and all

sensible trees at the same point immediately after the branching point (we

can do this because there is already a tuple there and so all we have to do is

put all new tuples at the same place as the tuple that already is there).

However, the construction of ambiguity trees for nodes off the main

branch isn’t important. The only thing we care about is the branch that

D′ follows, and the only reason we put ambiguity trees on the nodes on the

other branches is to ensure that our end result will be a sensible tree of the

correct arity.

The most important thing we know about this main branch is that

(D,D′) follow the branch and what is more is (D,D′) are a consistent pair

of precolors up to o (which was as far as we assumed that (C,C ′) were con-

sistent). So when we come across any node in T ′ (at a point X below o)

which has a node in S ′ which was at the same place (modulo the shifting

in branch points), find the largest node of T below that point (call it Y)

and apply the construction to the root of the ambiguity tree at X with the

CHAPTER 5. ROBIN KNIGHT’S THEORY Θ 143

root of the ambiguity tree at Y but only requiring that the colors (C,C ′)

are consistent as far as the history of Y . If we look at the construction

Const(X,Y) on ambiguity nodes we see that the construction did not in fact

use anything about the histories of either node when it was modifying the

sensible trees in X. The only reason we kept track of the history was to

ensure that (Y,Const(X,Y)) was a consistent pair. In particular, there is a

unique history extending the history of Const(X,Y) to the point on which

X was placed. So the ambiguity node we place at X is the ambiguity node

gotten from Const(X,Y) by extending the history up to the point where X

was.

It is worth pointing out explicitly for the purposes of the above con-

struction we consider any point on T ′ which is above o to be on the branch

we are considering. To be more precise if we look at a node X above o we

apply the construction to X and N and then extend the history to go all the

way up to X.

There is only one more case we have to consider. If we remember the

construction of the branch, it was possible that we could have an m tuple

a at a point which was not an m + 1 successor. This case corresponded to

when we take an extension and the color of the extension falls below a limit

ordinal which the original tuple was above. In this case we wanted to put

ax (where x was the new element) at some node which was above everything

important that happened in D.

In this case, we want to put the extension of the ambiguity tree that

was at a in S ′ at the ax in T ′ except we are going to add a single node below

the root. This node will be identical to the root except that the history will

CHAPTER 5. ROBIN KNIGHT’S THEORY Θ 144

only go as far as ax (and not as far as a).

The reason why we do this is because we have to have some ambiguity

tree to place at the n+ 1 section of a and we need the ambiguity tree to be

a rooted subtree of that placed at ax.

We have now placed an ambiguity node at every point in T ′ which has

to have an ambiguity tree. The next step is to combine all of these ambiguity

nodes into ambiguity trees. We do this by simply creating the ambiguity tree

of all nodes above the one we are at (and including it). We then obviously

get a rooted ambiguity tree (the histories of the ambiguity nodes were de-

fined in such a way as to be consistent, and if we started with a subset of

an ambiguity node, when we applied the construction we get a subset of the

result). Further the ambiguity trees are obviously all rooted.

The next thing we need to do is the same as had to do in the case of

n = 1. In between any of the non-trivial n + 1 sections with rooted trees

(which have branches immediately above them) we need to choose a trivial

n+ 1 section and place at that n+ 1 section the lower tree with the root cut

off. Finally we just need to observe that the gist of the any point is in fact

the same as the gist of the root of the ambiguity tree (by construction).

We can now define Const([T,D], [S ′, C ′]) to be the constructed tree. All

that is left to show is that the construction preserves ⇒. But this is trivially

true because ⇒ on the augmented unitary trees implies they are the same

and we know by assumption that this construction preserves ⇒ on the am-

biguity trees because ⇒ is preserved in our construction on ambiguity node

and ambiguity trees.

CHAPTER 5. ROBIN KNIGHT’S THEORY Θ 145

So we are done with the construction!

Lets just recap what this construction gets us.

Theorem 5.3.7.4. Suppose we have a consistent pair of cells (C,C ′) and D

is an extension of C. Then there is a consistent pair of cells (E,E ′) such

that E is an extension of D and E ′ is an extension of C ′

Note we can’t just find an extension of C ′ such that (D,D′) is consistent

because we might have had to add in some dummy variables. But, in the

other direction we don’t have to worry about that.

Theorem 5.3.7.5. Suppose we have a consistent pair of cells (C,C ′) and D′

is an extension of C ′. Then there is a consistent pair of cells (D,D′) such

that D is an extension of C.

Proof. Simply let D be the extension of C which places every new tuple at

−∞. This is obviously a consistent pair as (C,C ′) is.

5.3.8 Archetypes

Now that we have proved Theorem 5.3.7.4 we will want something similar

for archetypes.

Definition 5.3.8.1. We say that (σ, σ′) is a Consistent Pair of Archetypes

if

• σ(x1, . . . , xn), σ
′(y1, . . . , yn)
 C(x1, . . . , xn) ∧ C

′(y1, . . . , yn)

• σ(x1, . . . , xn), σ
′(y1, . . . , yn)

∧

S⊆n ‖{xi : i ∈ S}‖ ≤ ‖{yi : i ∈ S}‖

CHAPTER 5. ROBIN KNIGHT’S THEORY Θ 146

• (C,C ′) is a consistent pair of cells

• For some M,N |= Θ, M |= (∃x)σ(x), N |= (∃x)σ′(x).

We say that (τ, τ ′) is a Consistent Extension of (σ, σ′) ((τ, τ ′) ≤ (σ, σ′)) if

• (τ, τ ′) is a consistent pair of archetypes

• τ(x,y)
 σ(x)

• τ ′(x,y)
 σ′(x)

• τ(x,y), τ ′(x′,y′)
 B(x,y) ∧B′(x′,y′)

• (B,B′)|x ≥ (B,B′)(x,y)

Note that the last condition in the definition of consistent pair of archetypes

was to ensure that the archetypes are in fact complete (see Definition 5.2.2.2).

Essentially this says that a pair of archetypes is consistent if they obey (Con-

sistency of Color) (of Definition 3.3.0.13) and they are over a consistent pair

of cells. Similarly a pair of archetypes (τ, τ ′) is an extension of (σ, σ′) if (τ, τ ′)

forces (σ, σ′) to hold on their domain and further the consistent pair of cells

that (τ, τ ′) is over is an extension of the consistent pair of cells that (σ, σ′)

are over.

Theorem 5.3.8.2. Suppose we have

• A consistent pair of archetypes (σ, σ′)

• τ(x,y)
 σ(x) ∧B(x,y) for some cell B

• Suppose (B,B′) is a consistent pair of cells

CHAPTER 5. ROBIN KNIGHT’S THEORY Θ 147

• (B,B′)(x,y) ≤ (A,A′)(x)

• σ′(x)
 A′(x).

Then there is an archetype τ ′ such that

• τ ′(x,y)
 B′(x,y) ∧ σ(x)

• (τ, τ ′) is a consistent pair of archetypes

• (τ, τ ′) ≤ (σ, σ′)

Before we begin the proof lets consider exactly what this is saying. It

is saying that if we have a consistent pair of archetypes and we extend the

cells which they are over then we can also extend the archetypes. What is

more, we can also choose the archetype which is in the bottom half of the

pair. It was to be able to prove this that we went through so much effort in

the previous sections.

Proof. This construction is immediate from our definitions. We simply

treat the archetype like several different sensible trees which only have one

branch (one tree for each arity). We then apply the construction exactly as

we did in the case of the sensible trees.

There are only a few things we have to check. First we have to check

that when we apply the construction to the ambiguity trees the resultant

ambiguity trees don’t violate any of the conditions on being an archetype.

Notice that our construction preserves projection (i.e. if A|dom(A∗) =

A∗, A
′|dom(A′

∗) = A′
∗, B|dom(B∗) = B∗ then Const(B,A)|dom(B∗) =

Const(B∗, A∗). (This is immediate from how we built our construction.))

CHAPTER 5. ROBIN KNIGHT’S THEORY Θ 148

The second observation we need to make is to ensure that each of our new

ambiguity trees at −∞, according to ψ∗i, closely refines a tree in B′. But this

is true because as we have shown our construction preserves ⇒ and further,

because of how we defined what it meant for a pair of forest to extend one

another, we know that when we applied the construction to the ambiguity

trees which φ′ ∗ i(−∞) closely refines, we get something in our forest B′.

All that is left to show is that in fact we can also find a color D′ which

extends C′ (the color of σ′) and makes this constructed τ ′ into an archetype.

But, we know that (B,B′) is a consistent extension of (A,A′) and this im-

mediately implies such a D′ exists by the definition of a consistent extension

(and in fact why we defined a consistent extension that way instead of just

as a consistent pair of archetypes which extended another). Further, we

know that (τ, τ ′) ≤ (σ, σ′) by the definition of what it means for a pair of

archetypes to extend another.

There is only one more thing which we need to observe from this con-

struction. This is that not only do we get a τ ′, but we can find a τ ′ so that

every new color is less than sup{α+ ω, β + ω : τ(x1, . . . , xm)
 ‖xi‖ = α, i ∈

m,σ′(y1, . . . , yn)
 ‖yi‖ = β, i ∈ n}.

Notice that this theorem really is saying two things. First it is saying

if you have a consistent pair of archetypes over a consistent pair of cells,

then you can always extend that pair of archetypes to be over any consistent

extension of cells. This is crucial if we want to find a way to glue to models

together so that they satisfy a form of homogeneity. I.e. if we have a real-

ization of some consistent pair of cells then we can find a realization of every

consistent extension.

CHAPTER 5. ROBIN KNIGHT’S THEORY Θ 149

The second thing this theorem is saying is that if we have a consistent

pair of archetypes and we have some archetype which extends the bottom

one, then we can find some archetype which extends the top one and what is

more the archetype which extends the top one doesn’t force anything “new”

(at least not beyond a new limit ordinal). This will be very important as it

will allow us to find a consistent way of gluing two models together.

We would also like to have the other direction of Theorem 5.3.8.3 (i.e.

given (B,B′) extending (A,A′), (σ, σ′) over (A,A′) and τ ′ over B′ extending

σ′ then we can find a τ over B extending σ such that (τ, τ ′) is a consistent

pair of archetypes extending (σ, σ′). However, we run into a problem. That

problem is we don’t now that for every extension of σ′ to a τ ′ we can find

an archetype τ under τ ′ if we require τ to be over a prechosen B. So we will

have to settle with being able to find some τ , an extension of σ, such that τ

is over some B and such that (τ, τ ′) is a consistent pair of archetypes.

Theorem 5.3.8.3. Suppose we have a consistent pair of archetypes (σ, σ′).

Further suppose τ ′(x,y)
 σ′(x) ∧ B′(x,y) for some cell B′. Then there is

a cell B such that (B,B′) is a consistent extension and of (A,A′) (where

σ(x)
 A(x), σ′(x)
 A′(x)) and such that there is a τ(x,y)
 B(x,y) and

(τ, τ ′) is a consistent pair of archetypes.

Proof. Just let τ(x,y) be the archetype which puts every tuple not in x at

−∞. Then this trivially satisfies all the conditions needed.

There is just one more theorem we will need in from this section.

Theorem 5.3.8.4. Suppose we have consistent pairs of archetypes (σ, σ′), (τ, τ ′)

(possibly with some overlap on their domain). Then there is a consistent pair

CHAPTER 5. ROBIN KNIGHT’S THEORY Θ 150

of archetypes (η, η′) such that

• η(x,y, z)
 σ(x,y) ∧ τ(y, z) ∧ A′(x,y,x

• η′(x,y, z)
 σ′(x,y) ∧ τ ′(y, z) ∧ A′(x,y,x

• (A,A′)(x,y, z) is a consistent pair of cells

• (η, η′)(x,y, z) ≤ (η, η′)|y

Proof. Let η, η′ be the archetypes which put every new tuple at −∞. Also

note that this gives rise to an identical amalgamation of consistent pairs of

cells.

Finally, the last point to notice is that no where in this construction did

we use the color ∞. So in fact if everything we have done doesn’t mention ∞

then we can apply our construction such away that nothing new has precolor

at ∞

5.4 A Collection of Archetypes for Θ

In this section we will finally show that Θ (with slight modifications)

satisfies the conditions in Definition 3.3.0.13.

Definition 5.4.0.5. Let LΘ∗ = LΘ ∪ {Ci : i is a Cell in [8]} (there are only

countably many cells by Lemma 2.10.1.1 of [8]).

Let Θ∗ = Θ ∪ {(∀x)(Ci(x) ↔ x satisfies Cell i) : i is a Cell in [8]}. Note

that Θ∗ is still a 1st order theory because “x satisfies Cell i”, i is a Cell is

expressible in LΘ. (see Definition 2.9.2.2 in [8]).

CHAPTER 5. ROBIN KNIGHT’S THEORY Θ 151

Lemma 5.4.0.6. Θ∗ is a conservative extension of Θ (i.e for each model of

Θ there is a unique way to extend it to a model of Θ∗).

Proof. Because each predicate in LΘ∗ − LΘ is equivalent to a formula of

LΘ.

Theorem 5.4.0.7. Θ∗ satisfies all the conditions in Definition 4.1.0.23 ex-

cept having a collection of archetypes for Θ.

Proof. First note that TP ⊆ Θ∗. Also observe that {Spec(M)/ −∞ : M |=

Θ} = ORD (i.e there are models without tuples of color ∞ of all ordinal

height).

5.4.1 Weak Collection of Archetypes

Definition 5.4.1.1. Let ATYPE(Θ∗) = {complete archetypes in [8]}.

Define 2−ATYPE(Θ∗) = 〈{(σ, σ′) : (σ, σ′) is a consistent pair of archetypes},≤

〉 (as in Definition 5.3.8.1)

Define EIΘ∗(φ(x1, · · · , xn)) as

{〈‖{xj : j ∈ S}‖, |S|, ◦S〉 : S ⊆ n, ◦S = i if {xj : j ∈ S} is an

inaccessible and a otherwise}

Then define EIΘ∗(M) =
⋃

{EIΘ∗(φ) : M |= (∃x)φ(x)}

Finally define BP(Θ∗) = {Ci : i a cell as in [8]}

So what exactly is this definition saying. Well the archetypes which we

want in our “Collection of Archetypes” for Θ∗ are, not surprisingly, just the

archetypes of Θ as defined in [8]. Similarly, the consistent pairs of archetypes

are just the consistent pairs of archetypes and the base predicates are just

CHAPTER 5. ROBIN KNIGHT’S THEORY Θ 152

the predicates added to the language of LΘ∗ to talk about the cells.

What is going on with the “Extra Information Function” is a little bit

less clear. The idea behind this function is we want it to include all “types”

of tuples which the model/archetype force to exist. Well, as it turns out,

what matters about a tuple in this context its color, it’s arity, and whether

or not it is inaccessible. And, this is exactly the information about a tuple

that EIΘ∗ captures.

There is just one more subtle point worth mentioning explicitly. In the

general definition of collection of archetypes (Definition 3.3.0.13) we defined

the pairs of archetypes we were interested in and then defined the consistent

pairs of base predicates in terms of them (as the consistent pairs of base

predicates which were realized). However, because of the (Completeness of

Consistent Pairs of Base Predicate) axiom, we know that we could have just

as easily defined the pairs of cells we were interested in and then defined the

archetypes in terms of those (as we did here)

Theorem 5.4.1.2. ATYPE(Θ∗), 2 − ATYPE(Θ∗), is a weak collection of

archetypes (see Definition 3.2.0.8) for Θ∗.

Proof. (Truth on Atomic Formulas):

If σ(x) is an archetype then σ determines the color of each subset of x.

In particular it determines whether or not a subset satisfies P (and hence

has color). σ(x) also determines the cell that x satisfies. So, by the defini-

tion of what it means for a tuple to realize a cell (Definition 2.9.2.3 of [8])

we know that the cell which a tuple satisfies determines exactly which of

the forest predicates its subtuples satisfy. Hence, the cell of a tuple also de-

termines which cells its subtuples satisfy (and which predicates in LΘ∗ −LΘ).

CHAPTER 5. ROBIN KNIGHT’S THEORY Θ 153

(Truth on Color):

This is because any archetype determines the color of all subtuples of

it’s domain.

(Restriction of Arity for Archetypes):

If σ(x) is an archetype then σ(x)|Py (as defined in Definition 3.2.2.1 of

[8]) is an archetype on y for any y ⊆ x.

(Restriction of Arity for Consistent Pairs of Archetypes):

This is because if (B,B′)(x,y, z) ≤ (A,A′)(x) (for consistent pairs of

cells (A,A′), (B,B′)) then we must also have (B,B′)|(x,y) ≤ (A,A′)(x). To

see this assume we have a consistent pair of precolors (C,C ′) according to

(A,A′) and we have a precolor D extending C and according to B|(x,y) and

we want to find a D′ according to B′|(x,y) such that (D,D′) is a consistent

pair of precolors.

Well just extend D to D∗ which is according to B and is an extension

of D. Then we know we can find a D′
∗ according to B′ which is an extension

of C ′ because (B,B′) is a consistent extension of (A,A′). We can then just

let D′ = D′
∗ restricted to (x,y).

(Completeness for Archetypes):

This is immediate from how Archetypes are defined

(Amalgamation for Archetypes):

CHAPTER 5. ROBIN KNIGHT’S THEORY Θ 154

First note that all archetypes which are realized in a model are regular

(i.e. they contain all the information about the tuples the describe). Then

notice that in the amalgamation of regular archetypes in Lemma 3.2.3.2 of

[8], any “new” tuple is placed at color −∞.

(Amalgamation for Consistent Pairs of Archetypes):

This is exactly Theorem 5.3.8.4

(Consistency of Color):

This is immediate from the definition of 2 − ATYPE(Θ∗).

(Consistency of ≤):

This is immediate from the definition of 2 − ATYPE(Θ∗).

(Extension of 0-Colors):

This simply says that if we have a consistent pair of archetypes and we

extend the second archetype, we can extend the first archetype trivially (i.e.

putting everything new at −∞) and we get a consistent pair of archetype

extending the first. This is immediate from the definition of archetype pair

and Theorem 5.3.8.3.

5.4.2 Collection of Archetypes

And now we show that in fact we have a collection of archetypes.

Theorem 5.4.2.1. ATYPE(Θ∗), 2 − ATYPE(Θ∗), EIΘ∗ ,BP(Θ∗) for a Col-

lection of Archetypes for Θ∗ (see Definition 3.2.0.8)

CHAPTER 5. ROBIN KNIGHT’S THEORY Θ 155

Proof. We know by Theorem 5.4.1.2 that these are a weak collection of

archetypes for Θ∗.

(Prediction):

This is exactly what Generalized Saturation for Archetypes (Proposition

4.3.2.1 of [8]) says. You just have to observe (as in the discussion of Sec-

tion 5.2) that υ comes from a trivial amalgamation of an υ∗ with σ.

(Prediction up to a Slant Line):

This breaks up into two cases.

Case 1: sl = ∞

In this case we just observe that in the proof of Generalized Saturation

for Archetypes (Proposition 4.3.2.1 of [8]) if we amalgamate υ∗ with

an archetype σ′ which is not σ but which does have σ′|∞ = σ|∞

then in fact the archetype (τ ′) which is witnesses as an extension

of σ by Aσ,τ satisfies τ ′|∞ = τ |∞. This is because τ ′ has all the

colors of its tuples in the same place as τ does (because σ has all

tuples in the same place as σ′). And also must satisfy the same cell

as τ as the cell is simply the restriction of the cell Aσ,τ to the domain of τ .

Case 2: sl 6= ∞

This is exactly Generalized Saturation for Restricted Archetypes (The-

orem 5.2.3.1) and in fact why we proved it.

(Truth on Atomic Formulas):

Similarly to the case of (Truth on Atomic Formulas) in Theorem 5.4.1.2 we

have that the cell structure of a tuple determines the cells of all subtuples as

CHAPTER 5. ROBIN KNIGHT’S THEORY Θ 156

well as whether or not a subtuple has color.

(Amalgamation for Base Predicates):

This is because given any two archetypes σ(x,y), τ(y, z) which can be real-

ized in the same model there is always an archetype η(x,y, z) which amal-

gamates τ and σ around x and puts all new tuples at −∞. Hence we can

just look at the Basic Predicates which σ, τ, η are over.

(Homogeneity for Base Predicates):

Suppose A is a cell and A(x,y)
 B(x). Let τ(x,y)
 A(x,y) ∧ σ(x). We

can then let τn be an amalgamation of n copies of τ around σ. (See Corollary

3.2.3.4 of [8]). Let C be the cell such that τn(x,y)
 Cn(x,y). Then we know

B(x)
 (∃z)C(x, z) (By the Generalized Saturation Axiom of Θ∗) and hence

B(x)
 (∃y1, · · ·yn)
∧

i∈nA(x,yi) and(yi 6= yj) if i 6= j.

(Extension of 1-Colors):

This is immediate from Theorem 5.3.8.2 (and one of the purposes of Section

5.3)

(Homogeneity of Consistent Pairs of Archetypes) :

This is immediate from 5.3.8.2 (and one of the purposes of Section 5.3)

(Completeness of Extra Information):

This is immediate from how we define EIΘ∗

CHAPTER 5. ROBIN KNIGHT’S THEORY Θ 157

(Completeness of Consistent Pairs of Base Predicate):

This is immediate from how we defined consistent pairs of archetypes.

(Uniqueness of Base Predicate):

This is because, by the Local Embedding Axiom of Θ∗ and the definition of

cell (Definition 2.9.2.2 of [8]), no tuple can satisfy two distinct cells.

Definition 5.4.2.2. Let Mω∗α |= Θ∗ be the unique model of Θ∗ such that

Spec(Mω∗α) = {−∞} ∪ ω ∗ α (Note it is the unique model by Proposition

4.3.6.1 of [8])

Let ATYPE(Θ∗(ω ∗ α)) = {complete archetypes in [8] which are realized in

Mω∗α}.

Define 2 − ATYPE(Θ∗(ω ∗ α)) = 2 − ATYPE(Θ∗) ∩ ATYPE(Θ∗(ω ∗ α))

Define EIΘ∗(ω∗α)(X) = EIΘ∗(X)

Finally define BP(Θ∗(ω ∗ α)) = BP(Θ∗)

Corollary 5.4.2.3. Let Θ∗(ω ∗ α) = Θ∗ ∪ (∀x‖x‖ < ω ∗ α). Then Θ∗(ω ∗ α)

has a collection of archetypes (which in fact are those in Definition 5.4.2.2)

Proof. This is immediate from Definition 5.4.2.2, Theorem 5.4.2.1 and The-

orem 5.4.1.2

5.5 Quantifier Rank Equivalence

In this section we will completely categorize when two models M,N of Θ

satisfy the same formula’s of quantifier rank less than or equal to ω∗γ(M ≡ω∗γ

N) (and even a little more). First though, we need a Lemma.

CHAPTER 5. ROBIN KNIGHT’S THEORY Θ 158

Lemma 5.5.0.4. If M,N |= Θ,M ≡ω∗γ+n+1 N and Spec(M)∩ω1 < ω∗γ+n

then Spec(M) = Spec(N).

Proof. Lets assume Spec(M) ∩ ω1 = ω ∗ β +m < ω ∗ γ + n

First lets show that Spec(N) ∩ ω1 = Spec(M) ∩ ω1. Let ϕ=
α (x) be

the statement from Corollary 2.2.2.8. Then M |= (∃x)ϕ=
α (x) for all α ∈

Spec(M)∩ORD and so Spec(M)∩ORD ⊆ Spec(N)∩ORD as α ∈ Spec(M)∩

ORD ⇒ qr(ϕ=
α) ≤ ω∗β+m ≤ γ∗ω+n. But, if Spec(M) = ω∗β+m then we

also have M |= (∀x)¬ϕ=
ω∗β+m(x) which has quantifier rank ≤ ω ∗β+m+2 ≤

ω∗γ+n. So, N |= (∀x)¬ϕ=
ω∗β+m(x) as well. So, because Spec(N)∩ORD is an

ordinal Spec(N)∩ORD ≤ ω∗β+m and so Spec(N)∩ORD = Spec(M)∩ORD.

All that is left is to show is that ∞ ∈ Spec(M) ⇔ ∞ ∈ Spec(N). But we

know that ∞ ∈ Spec(M) ⇔M |= (∃x)ϕ=
ω∗β+m(x) ⇔ N |= (∃x)ϕ=

ω∗β+m(x) ⇔

∞ ∈ Spec(N). (The first and last equivalences are true because we know

that β ∗ ω +m is not in the spectrum, and so if we have an element whose

color is at least β ∗ ω +m, then it must have color ∞.)

Lemma 5.5.0.5. If M,N |= Θ,M ≡ω∗γ+n+1 N and Spec(M) ∩ ORD =

ω ∗ β +m+ 2 < ω ∗ γ + n+ 1 then M is hollow iff N is hollow.

Proof. First note that by Lemma 5.5.0.4 we know Spec(M)∩ORD = Spec(N)∩

ORD = ω ∗ β +m+ 2. Then we know the M (or N) is not-hollow precisely

when it models [(∃x)ϕ=
ω∗β+m+1(x)]∧ [(∃y)ϕ=

ω∗β+m(y)]. But as this is a formula

of quantifier rank ω ∗β+m+ 3 ≤ ω ∗ γ+n+ 1 so we know that M is hollow

iff N is hollow.

It is worth making explicit why this argument does not work if Spec(M) =

γ ∗ ω + 1. The reason is that in this case we can’t distinguish between the

CHAPTER 5. ROBIN KNIGHT’S THEORY Θ 159

hollow and non-hollow models simply by looking at the combinations of (tu-

ple size, color of tuple) which are satisfied by the model.

Intuitively what is happening in the hollow case is that you have your

normal model with colors less than ω ∗ β and then you have a collection of

elements all of which have been placed at one point above ω ∗ β (and by one

point we mean they are all in the same n section in Ω in the archetype, for

appropriate n). What is more there is an infinite descending chain of these

elements (this can be done because Ω looks like Q). Because these points are

all in the “same place”, the result of looking at the colors of the model is that

all these points are on the same slant line. This is what Knight means when

he says he thinks the hollow models should be viewed as models whose limit

is a model with ∞ in the Spectrum. In other words, they have an infinite

descending chain of precolors, but when we go to colors, we can no longer tell

that it is an infinite descending chain. That is the reason why we can’t dis-

tinguish between the hollow and non-hollow cases when Spec(M) = γ ∗ω+1

just by looking at the (tuple size, color of tuple) pairs satisfied in M .

Lemma 5.5.0.6. If M,N |= Θ,M ≡ω∗γ+ω N and Spec(M)∩ORD = ω∗γ+1

then M is hollow iff N is hollow.

Proof. Let ψn ↔
∨

k∈ω(∃x1, · · ·xn)(∃y)Φk(y
∧x1

∧ · · · ∧xn)∧ϕ
=
ω∗γ(x)

∧

i∈n ϕ
=
ω∗γ(xi)

where {Φk : k < m} = { Cells which say xi is above xi+1 but have the same

color}.

(Note it is the authors belief that we don’t actually need an infinite

disjunction of cells. However, we do need an infinite conjunction of ϕn

so removing the disjunction won’t lower the quantifier rank)

CHAPTER 5. ROBIN KNIGHT’S THEORY Θ 160

The point is that if M thinks x1 . . . xn is a descending sequence of ele-

ments and further M says all of x1, . . . , xn have color ω ∗ γ, then that will

be witnesses by some cell containing x1 . . . xn as well as the formula ϕ=
ω∗γ

(because it is witnessed by the archetype containing x1 . . . xn). So, M |= ψn

iff M thinks there is some descending sequence of n elements all of which

have color ω ∗ γ (i.e. inaccessible). Further, qr(ψn) = ω ∗ γ + ω

If we let ψ′ =
∧

n∈ω ψn then qr(ψ′) = γ ∗ ω + ω and M |= ψ′ iff M

has an infinite descending chain of elements all with color γ ∗ ω. But this is

exactly what it means for M to be hollow. So, M is hollow iff N is hallow

because M ≡γ∗ω+ω N (and Spec(M) ∩ ORD = Spec(N) ∩ ORD by Lemma

5.5.0.4).

We are now ready for one of the main theorems of this section.

Theorem 5.5.0.7. If M,N |= Θ,M ≡ω∗γ+ω N and Spec(M) ∩ ORD <

ω ∗ γ + ω then M ∼= N .

Proof. By Lemmas 5.5.0.4, Lemma 5.5.0.5, and Lemma 5.5.0.6 we know M

and N have the same spectrum and M is hollow iff N is hollow. So, by

Proposition 4.3.6.1 of [8], N ∼= M .

Theorem 5.5.0.8. If Spec(M)∩ORD ≥ ω ∗ ι, Spec(N)∩ORD ≥ ω ∗ ι then

M ≡ω∗ι N

Proof. Lets first define our sequence of partial isomorphisms.

Definition 5.5.0.9. Define Iζ(M,N)(= Iζ) as follows:

Iω∗η+n = {f : M → Ns.t.f is a bijection, |dom(f)| < ω, f preserves all

atomic formula’s in LΘ and if M |= σ(dom(f)) and N |= τ(range(f)) then

CHAPTER 5. ROBIN KNIGHT’S THEORY Θ 161

σ|g = τ |g where g < ω ∗ ι is some slow slant line with base(g) ≥ η ∗ ω and

rank(g) ≥ |dom(f)| + n}.

Let f ∈ Iω∗η+n+1, a = dom(f), b = range(f), M |= σ(a), N |= τ(b) and

g be the slow slant line required to exist by Iω∗η+n+1. Then f ∈ Iη∗ω+n then

f is a partial isomorphism by construction. So all that is left is to show that

〈Iζ : ζ < ω ∗ ι〉 has the back and forth property.

Let a ∈M and M |= σ∗(a∧a). By the definition of Iη∗ω+n we know that

σ|g = τ |g and therefore σ∗|g ≤ τ |g. We also know that σ∗|g is a g-archetype,

because σ∗ is a complete archetype. But then, by Generalized Saturation for

Restricted Archetypes (Theorem 5.2.3.1) we can find an archetype τ ∗ realized

in N such that τ ∗|g = σ∗|g.

Let b be the element corresponding to a in τ ∗ and let h(a) = b. Then

h ⊇ f and h ∈ Iη∗ω+n because rank(g) ≥ |dom(f)| + n+ 1 = |dom(h)| + n.

We further know Iζ ⊇ Iζ′ if ζ ′ < ζ by the transitivity of restrictions (i.e.

if τ |g = σ|g and g′ ≤ g then τ |g′ = σ|g′). Hence, M ≡ω∗η+n N if Iω∗η+n 6= ∅.

So, all we need to show is that Iη∗ω+n 6= ∅ for all η ∗ ω + n < ι ∗ ω. Fix

a ∈ M such that M |= σ(a) with all colors of subtuples of a less than ω ∗ ι.

Then, by Generalized Saturation for Archetypes (Proposition 4.3.2.1 of [8])

we know that there must be some b ∈ N such that N |= σ(b). Now take g

to be any slow slant line above any color which occurs in σ. Hence if we let

f(a) = b then f ∈ Iω∗η+n for all ω ∗ η + n < ω ∗ ι (because σ|g = σ|g).

Theorem 5.5.0.10. If Spec(M) ∩ ORD = η ∗ ω + n then ω ∗ η < qr(M) ≤

ω ∗ η + ω.

Proof. By Theorem 5.5.0.7 we know that M ≡ω∗η+ω N implies M ∼= N , so

CHAPTER 5. ROBIN KNIGHT’S THEORY Θ 162

ω∗η+ω ≥ qr(M). But, by Theorem 5.5.0.8 we know that if Spec(N)∩ORD ≥

ω ∗ η then M ≡ω∗η N and hence ω ∗ η < qr(M).

Theorem 5.5.0.11. For each α there is a sentence Θ∗(Mω∗α) of Lω1,ω of

quantifier rank ≤ ω such that

• Θ∗(Mω∗α) is scattered.

• {qr(M) : M |= Θ∗(Mω∗α)} ⊆ ω ∗ α

• {qr(M) : M |= Θ∗(Mω∗α)} is unbounded in ω ∗ α.

Proof. By Theorem 5.5.0.8 and Theorem 5.4.2.3 we know that Θ∗ satisfies

the conditions on TK in Corollary 4.1.3.8

5.6 Extensions of Θ

In this section, we will prove several results about models of Θ. Specifically

we will look at what happens to a model if we remove a single tuple. We will

find that when we do this we still have a model of Θ (under the appropriate

definition)

5.6.1 Models of Θ Extending Tuples

Definition 5.6.1.1. Let M |= Θ, let a ∈M be a tuple. Let M−a be defined

as follows:

• M − a |= P ′(b) ⇔M |= P (a∧b)

• M − a |= P ′
F ′(b) ⇔ (∃F)M |= PF(a∧b) and F ′ = F |b

CHAPTER 5. ROBIN KNIGHT’S THEORY Θ 163

Theorem 5.6.1.2. M − a |= Θ in the language P ′, P ′
F

Proof. Lets go through the proof in detail.

Local Color(LC)

This is true in M − a because it is true in M .

Local Compactness(LK)If b is non-repeating, ∃c such that M |= PF(a∧b∧c)

by (LK). So, M − a |= PF|b∧c(b
∧c), so M − a |= (LK)

Generalized Saturation (GS)

Let A be a cell, and let B be a cell to which it can be extended. If

M − a |= A(x) then ∃ a cell A′ such that M |= A′(a∧x), A′|x = A. This is

by the definition of M − a.

Now, as A can be extended to be B, there must exist some B′ extending

A′ such that B′|x∧y = B. (As cells are compatible and we can always find

a cell containing any tuple). So ∃y such that M |= B′(x∧y∧a), and hence,

M − a |= B(x,y) therefore M − a |=(GS)

Local Order (LO)

This says that if PF(x) holds, then it is true as far as any finite slant

line.

But, this doesn’t in any way take into account (by itself) the global

structure. So, if PF(x∧a) is true as far as f (a slant line) in M then the same

axiom with P ′ replacing P guarantees inM−a PF|x(x) is true as far as f−|a|.

Local Extension(LE)

CHAPTER 5. ROBIN KNIGHT’S THEORY Θ 164

Let F ′ not be extensible to F along f .

We need to show that M − a |= PF(xi) → ¬PF ′(xf(i))

So, we need to show M |= [(∃F),F|x = F , PF(x∧a)] → [(∀F
′
),F

′
|x = F ′ →

¬PF ′(x∧a)]

Claim 5.6.1.3. It suffices to show that if F(x∧a) ⇒ F ′(x∧
y
∧a)|x∧a than

(∃G,G ′) s.t. G(x,y, z)
 F(x,y) and G ′(x,y, z)
 F ′(x,y) and G,G ′ put all

tuples (of arity ≥ 2) not in dom(F) at −∞ and F(x∧a)|x ⇒ F ′(x∧
y
∧a)|x.

Proof. Let M |= PF(xi) so ∃F s.t. F|x = F ,M |= PF(xi
∧a).

Assume to get a contradiction ∃F
′
,F

′
|xf(i) = F ′, PF

′(xf(i)
∧a)

So we know F ′ is not extensible to F along f (where f(i) = i if

xi ∈ a, f(i) = f(i) otherwise) because M |= PF(x, a) → ¬PF
′(xf(i)

∧a)

and M |= Θ.

So, f
∗
F

′
⇒ F|xf(i)

∧a, but by the claim this means f
∗
F

′
|xf(i) ⇒

(F |xf(i)
∧a)|xf(i) which is the same as f ∗F ′ ⇒ F|xf(i) because of how we

constructed f . But, this means F ′ is extensible to F along f . ⇒⇐.

Claim 5.6.1.4. If F(x∧a) ⇒ F ′(x∧
y
∧a)|x∧a then (∃G,G ′) s.t. G(x,y, z)

F(x,y) and G ′(x, a, z)
 F ′(x, a) and

mcG,G ′ put all tuples (of arity ≥ 2) not in dom(F) at −∞ and F|x ⇒ F ′|x.

Proof. It suffices to show if (F(x∧a) ⇒ F ′(x∧a)) then F|x ⇒ F ′|x. To do

this we need to break down the analysis of ⇒.

Forests: F ⇒ F ′∀T ∈ F∃T ′ ∈ F ′ s.t. T ⇒ T ′ and

CHAPTER 5. ROBIN KNIGHT’S THEORY Θ 165

∀T ′ ∈ F ′∃T ∈ F s.t. T ′ ⇒ T

Sensible Trees: T ⇒ T ′ iff A ⇒ A′ where A,A′ are the ambiguity trees

and if we “fill in” the process of φ, φ′ then φ(γ) ⇒ φ′(γ) (and φ(γ) is rooted).

Where by fill in we mean as we go up φ′ we make sure that we have a point

immediately above γ (say γ′) such that φ(γ′) is the deracination of φ(γ).

Ambiguity Nodes: 〈S ′, H ′〉 ⇒ 〈S,H〉′ iff ∀T ∈ S∃T ′ ∈ S ′ s.t. T ⇒ T ′ and

∀T ′ ∈ S ′∃T ∈ S s.t. T ′ ⇒ T

And H, H ′ have the same superficial histories, which means at least as far as

the histories are concerned 〈S,H〉, 〈S ′, H ′〉 “place” tuples in the same place

on the augmented unitary trees part of the sensible trees in S (but what they

place might be different).

Ambiguity Trees: This is where the heart of ⇒ is defined.

〈T ′, F ′〉 ⇒ 〈T, F 〉′ iff ∃ maps φ, ψ s.t. φ : T → T ′, ψ : T ′ → T, φ ◦ ψ = id

φ is non-strictly order preserving.

ψ is order preserving

∀a ∈ T, F (a) ⇐ F (φ(a))

∀b ∈ T ′, F (ψ(b)) ⇐ F ′(b)

The idea is that T is somehow a “larger” tree than T ′ and every node of T

is “larger” then the corresponding node in T ′

But, at the same time T isn’t too much larger than T ′ because the nodes

CHAPTER 5. ROBIN KNIGHT’S THEORY Θ 166

which are in T and not in T ′ can be “projected” onto nodes in T ′ in such a

way that the node in T is “larger” than the node is is “projected” to.

This is a complicated recursion but the key point is that it mainly takes

place at the ambiguity tree stage.

Lets look at this recursion in the case of F(x∧a) ⇒ F ′(x∧a) where

|a| = n.

Now lets try and “remove” the mention of a from the forest and see

what happens.

First lets go all the way down the recursion and look at the base case

where we only have 1-tuples on sensible trees (and forests).

Here T ⇒ T ′ iff T = T ′, so if we remove all mention of a from T and

all mention of a from T ′ we still have T |x = T ′|x and so T |x → T ′|x. And

similarly if T, T ′ are forests.

Now if we look at ambiguity nodes of arity 1 we see that 〈S,H〉 ⇒

〈S ′, H ′〉 iff 〈S ′, H ′〉 = 〈S,H〉, and so if we remove all mention of a from

〈S ′, H ′〉, 〈S,H〉, we still have 〈S ′, H ′〉|x = 〈S,H〉|x, so 〈S ′, H ′〉|x ⇒ 〈S,H〉|x

Now lets look at ambiguity trees of arity 1. Assume 〈T, F 〉 ⇒ 〈T ′, F ′〉.

This means we have an injection ψ : T → T ′ and a surjection φ : T ′ ⇒ T

each preserving ⇒. Now, if F (y) talks about tuples in z and F ′(c) ⇐ F (y),

then F ′(c) talks about exactly the same tuples (although it may say different

things). So, if we restrict our maps only to ambiguity nodes in T, T ′ which

don’t talk about a (i.e. 〈T, F 〉|x, 〈T ′, F ′〉|x) then our maps ψ, φ still witness

〈T, F 〉|x ⇒ 〈T ′, F ′〉|x.

Now we are finally ready to consider tuples of arbitrary size.

Assume for all tuples x′ |x′| = n, and Z ⇒ Z ′ implies Z|x′ ⇒ Z ′|x′

CHAPTER 5. ROBIN KNIGHT’S THEORY Θ 167

where Z is either a sensible tree, ambiguity tree, forest, or ambiguity node

on x′∧a′(|a′| ≤ |a|

Now if W ⇒ W ′ is a sensible tree, forest, ambiguity node on x∧a′ such

that |x| = n+1, |a′| ≤ |a| then W |x ⇒ W ′|x by the definition of ⇒ for these

structures.

Now let W = 〈T, F 〉,W ′ = 〈T ′, F ′〉 be ambiguity trees. First we extend

W,W ′ to ambiguity trees V, V ′ by placing all new 1-tuples at −∞ and placing

a sequence of 1-tuples going up the tree with a new tuple added to the history

at each step. Now if W ′ ⇒ W and the maps φ : T → T ′, ψ : T ′ ֌ T witness

this then they immediately extend to witness V ′ ⇒ V . Now remove all

mention of a from the ambiguity trees V ′, V . Then the maps which witnessed

V ′ ⇒ V still witness that these restrictions closely refine each other. The

only thing we had to worry about is that when we removed some tuples that

two old ambiguity nodes which weren’t the same get collapsed to the same

thing and now ψ is no longer injective. But, this was exactly why we added

extra dummy elements (and why we had to).

Corollary 5.6.1.5. If ∞ 6∈ Spec(M) and M is non-hollow, then M − a ∼=

M − b iff M |= ‖a‖ = ‖b‖.

Proof. By construction of M −a, M −a |= ‖y‖ = α ⇔M |= ‖a∧y‖ = α and

M − a |= y is above x ⇔M |= a∧y is above a∧x. This is because taking the

restriction of cells preserves the order of points.

So in particular, if M models there are no inaccessibles then M − a

models there are no inaccessibles as well.

Chapter 6

Other Component Trees

Having a collection of archetypes is a very strong property and allows

us to get very sharp results concerning the sentence which has the collection

of archetypes. However, there are two main problems with the study of

such sentences. The first draw back is that the only known examples of

a sentence with a collections of archetypes only has such a collection for

countable models. As such, the approach breaks down when we try to look

at languages beyond Lω1,ω. The second (more asthenic) draw back is that the

only known examples are somewhat unwieldy to deal with. In this chapter

we will consider which have models that look very similar to those in Chapter

3, but which do not in fact have a collection of archetypes.

In this chapter we will introduce two theories of trees which we believe

can be fruitfully used as components in larger theories in a similar way as

sentences with a collection of archetypes were in Chapter 4. In Section 6.2

we will add a small amount of information onto the basic tree structure TP

to get theories TΛ, TΩ. This information will allow us to tell when two tuples

168

CHAPTER 6. OTHER COMPONENT TREES 169

have the same tree structure extending them.

While being able to tell when two tuples have the same trees extending

them is a very nice feature to have, unless we have some way of limiting trees

we are considering we very quickly end up with 2ω many countable models.

In Section 6.3 we will introduce a theory TΩ where we allow ourselves to

compare colors and thereby ensure that our trees are homogeneous. We will

also calculate the quantifier rank of most such models.

However, as we will see, when we use our ability to compare the colors

of a tree to ensure homogeneity we loose much of the sharp relationship

between quantifier rank and the spectrum of the model which sentences with

a collection of archetypes have (Theorem 3.4.0.19). As such, we need some

new machinery to study these components. The notation which will be used

in this machinery as well as the background notation for TΛ is introduced in

Section 6.1

6.1 Notation

Definition 6.1.0.6. Define

• Ξ(1) = w

• Ξ(α+ 1) = ω ∗ Ξ(α)

• Ξ(γ) =
⋃

β<γ Ξ(β) if γ a limit.

CHAPTER 6. OTHER COMPONENT TREES 170

6.1.1 Ordinal Equivalence

Definition 6.1.1.1. We say that two ordinals are equivalent up to ζ (α ≡ζ β)

iff (∀x < ζ)[(∃a)a + x = α ↔ (∃b)b + x = β]. We also define ♮(α) = {x :

(∃a)a+ x = α}

For notational convenience we will assume −∞ 6≡ζ β for all β, ζ ∈ ORD.

Lemma 6.1.1.2. α ≡ζ β iff ♮(α) ∩ ζ = ♮(β) ∩ ζ

Proof. Immediate from the definitions.

Corollary 6.1.1.3. For all α, β, γ, ζ

• α ≡ζ α

• α ≡ζ β ↔ β ≡ζ α

• α ≡ζ β ∧ β ≡ζ γ → α ≡ζ γ

Proof. Immediate from 6.1.1.2 the definitions.

Lemma 6.1.1.4. Let α ≡ζ β and let γ < ζ. Then α+ γ ≡ζ β + γ

Proof. Let x < ζ such that (∃a)a + x = α + γ. If x ≤ γ then let b be such

that b + x = γ. Then β + b + x = β + γ. If x > γ then let z be such that

a + z = α. So there must exist a b such that b + z = β (because z ≤ x < ζ

and α ≡ζ γ). Hence β + γ = b+ z + γ = b+ x.

The other direction (starting with β) is identical.

Lemma 6.1.1.5. (∀α, n)(∃β ≤ Ξ(n))(∀x)α ≡Ξ(n) x+ Ξ(n) + β.

CHAPTER 6. OTHER COMPONENT TREES 171

Proof. First observe that for all x, if ρ ≡Ξ(n) Ξ(n) then x + ρ + β ≡Ξ(n) β.

This is because for each z < Ξ(n), y < x+ ρ, y + z < x+ ρ < x+ ρ+ β. So

it suffices to prove that for each α there is a β < Ξ(n) such that α ≡Ξ(n) β

Now let Y = {y : y < α, (∃z(y) < Ξ(n))y + z(y) = α}. Now if Y is

empty then α ≡Ξ(n) Ξ(n) and we are done.

So lets assume Y is not empty. Then Y has a least element y′ with

z(y′) < Ξ(n). Now notice that if (∃a < Ξ(n), b < y′) such that b + a = y′

then we have b+a+z(y′) = α and a+z(y′) < Ξ(n) contradicting minimality

of y′. So, we must have y′ ≡Ξ(n) τ(n).

Hence α = y′ + z(y′) ≡Ξ(n) z(y
′) and we are done.

The idea is that we are going to be looking at two maps into the ordinals

and we want to say when they look the same up to a certain “distance”.

Definition 6.1.1.6. Let f, g : X → ORD be maps from a set X into the

ordinals. Let α ∈ ORD. We say f is the same as g up to distance α (f |dα =

g|dα) if

• (∀x, y ∈ X)f(x) ≤ f(y) iff g(x) ≤ g(y)

• (∀x ∈ X, y ∈ X)(∀β < α)f(x) + β = f(y) iff g(x) + β = g(y)

• (∀x ∈ X)f(x) ≡α g(x).

The idea here is that two functions are the same if they “look the same

up to distance α”. In other words, if two elements get mapped to ordinals

(by f) which are less than α apart, then we know that they must get mapped

by g to ordinals which are the same distance apart. But, if two elements get

mapped to ordinals which are greater than or equal to α apart, all we know

CHAPTER 6. OTHER COMPONENT TREES 172

is that they are too far apart to talk about.

In addition we require one other conditions. We individual elements

“look the same up to α” from below. What this means is that if a point gets

mapped to two different ordinals, then those ordinals must “look the same

from below”. So in particular, if there is an ordinal below f(x) from which

f(x) is less than α away, then there must also be such an ordinal below g(x).

Definition 6.1.1.7. Let f, g : A×X<ω → ORD be maps from finite subsets

of X indexed by A into an ordinal α. Let L : ω → ORD.

Let 〈x1, . . . , xn〉 ∈ X<ω. Let fk = f restricted to A × 〈xi, . . . , xk〉
<ω, Let

gk = g restricted to A× 〈xi, . . . , xk〉
<ω.

For a set A we say f is the same as g relative to L on 〈x1, . . . , xn〉, A

f(A, 〈x1, . . . , xn〉)|dL = g(A, 〈x1, . . . , xn〉)|dL) if:

fk|dL(k) = gk|dL(k) for all k ≤ n.

There are a few points worth mentioning about this definition. First, no-

tice that the order of the tuple really does matter when determining whether

or not two functions are the same up to L. This is because we want to even-

tually consider when functions are the same up to a slant line for the purpose

of back and forth arguments. So, when we add on a new element we will only

require all the new tuples to be equivalent up to the slant line at the arity

of the whole tuple. As we will see, the fact that we are only looking at new

tuples up to the slant line at the arity of the whole tuple and not the arity of

the tuple we are considering will be crucial to allow us to get our back and

forth argument.

CHAPTER 6. OTHER COMPONENT TREES 173

The second point worth noting explicitly is that the set A is there so

that we can essentially have for each function, multiple ordinals on each tuple

〈x1, . . . , xn〉.

6.2 TΛ

6.2.1 Introduction

In this section we will define our theory TΛ. The goal is to ensure as

much saturation/homogeneity as we can without being able to actually say

when one tuple has color greater than another.

6.2.2 Basic Theory

6.2.2.1 Definitions

Definition 6.2.2.1. Let LΛ = LS= .

Definition 6.2.2.2. Let TΛ be the universal closure of the following LS=

sentences:

• TS=

• (Homogeneity for Archetypes) For each m ∈ ω

(∀x,y, a)(∃mb)Ea(x,y) → Ea(xa,yb)

The purpose of (Homogeneity for Archetypes) is to ensure that if two

tuples look identical (with respect to S=) then they can be extended in

CHAPTER 6. OTHER COMPONENT TREES 174

exactly the same ways. Something that is important to notice though is that

there Ea is as in Definition 2.3.2.1 and not as in Definition 2.3.1.2(as R≤ isn’t

even in the language of TΛ).

6.3 TΩ

6.3.1 Introduction

In this section we will look at a theory with enough expressive power to

guarantee that the models are homogeneous. We will use the tools of Section

2.3.1 to study these trees.

We are going to want two things from our trees. First we are going to

want the γ-type of a tuple to be completely determined by what the ordinal

colors of it’s subtuples look like up to Ξ(γ) (where Ξ is as in Definition

6.1.0.6). Second, we want there to be a huge amount of homogeneity. In

other words we want (in some strong sense) if we are looking at some finite

part of the model and it is consistent that it can be extended in a certain

way, then we must be able to extend it that way.

The reason why we want this new language is because the properties

previously mentioned are ones which can’t be defined in the language LS= .

6.3.1.1 Color Infinity

It is worth mentioning again that our description above isn’t completely

accurate. There is one time when we won’t worry if the γ-type of a tuple

is determined by the color of the subtuples (and in general when it won’t

be). This is when some subtuple has color infinity. The reason why we won’t

CHAPTER 6. OTHER COMPONENT TREES 175

worry about this case is that when we put together these trees (as they are

just components) we will make sure we combine them in such a way as to

guarantee that there are no models with ill-founded branches.

This lack of a color infinity makes things significantly easier. This is

because we know, by Theorems 2.3.1.3 and Theorem 2.3.1.4 that if there are

no tuples of color infinity then R≤ actually defines when one tuple has color

less than the other. And as we shall see, this will allow us to guarantee that

all the information about the models is contained in the colors of its tuples.

However, if there are tuples of color infinity in our model, then there is

no easy way tell when two tuple of color infinity have the same γ-type (for

arbitrary γ). And in fact, much of the effort in [8] is due to a need to force

that the archetypes of tuples of color infinity do in fact determine everything

about the tuples.

It is finally worth mentioning that whenever we assume that a model has

no tuple of color infinity in a theorem (without actually proving that it must

be so) it suffices for our purposes to only assume that R≤(a, b) ↔ ‖a‖ ≤ ‖b‖

for the model.

6.3.2 Basic Theory

6.3.2.1 Definitions

Definition 6.3.2.1. Let LΩ = LR≤
.

Definition 6.3.2.2. Let TΩ be universal closure of the following LΩ sen-

tences:

• TR

CHAPTER 6. OTHER COMPONENT TREES 176

• (∀a)(∀x)(∃y)R=(ax, ay) ∧ |x| + 1 = |y|

• (Saturation for Archetypes) For each m ∈ ω

(∀x1, . . . xn)(∀{yS : S ⊆ n})(∃nb)
∧

S⊆n

[R<(yS, {xi : i ∈ S}) → R=(yS, {xi : i ∈ S}b)]

The first new axiom is there to ensure that the ordinal part of the spec-

trum of the model is a limit. This isn’t strictly necessary, but it will make

calculations later on a little bit cleaner.

The second new axiom is the more important one. This says essentially

that if an extension is consistent with the colors of a tuple then that exten-

sion must be realized infinitely often. So in a strong sense, everything that

can happen does.

Definition 6.3.2.3. Let M,N |= TΩ. Define

ATYPE(M) = {ctype(a) : a ∈M}

We also say ATYPE(M)|dγ = ATYPE(N)|dγ if

• (∀X ∈ ATYPE(M))(∃Y ∈ ATYPE(N))[X|dγ = Y |dγ]

• (∀Y ∈ ATYPE(N))(∃X ∈ ATYPE(M))[X|dγ = Y |dγ]

Consider color types as functions on finite tuples (see Definition 6.1.1.6)

6.3.2.2 Results

Theorem 6.3.2.4. If M |= TΩ and has no tuples of color ∞ then Spec(M)∩

ORD is a limit.

CHAPTER 6. OTHER COMPONENT TREES 177

Proof. Assume Spec(M) ∩ ORD = β + 1.

So (∀x ∈ M)‖x‖ ≤ β, and there is an element of M with color β. So,

there is an 2 tuple xx′ such that ‖xx′‖ = β. But then ‖x‖ ≥ β + 1.

⇒⇐.

Theorem 6.3.2.5. Let M,N |= TΩ and have no tuples of color ∞. If

ATYPE(N)|dΞ(γ) = ATYPE(M)|dΞ(γ) and (Spec(M)∩ORD)|dΞ(γ) =(Spec(N)∩

ORD)|dΞ(γ), then M ≡γ N .

Proof. First we define our sequence of partial isomorphism.

Definition 6.3.2.6. Define Iη(M,N) = Iη as follows:

Iη = {f : M → Ns.t.f is a bijection, |dom(f)| < ω, f preserves all atomic

formulas in LΩ and ctype(dom(f))|Ξ(η) = ctype(range(f))|Ξ(η)}

Let f ∈ Iη, η ≤ γ. Notice that f is a partial isomorphism by definition. All

that is left to show is that 〈Iζ : ζ ≤ γ〉 satisfies the back and forth property.

Let η + 1 ≤ γ and let a ∈ M . We want to find a b ∈ N such that g(a) = b,

f ⊆ g, g ∈ Iη.

Let A = ctype(dom(f)a). We will now define a color archetype B on

(range(f), b).

The idea is that we want the structure of where tuples are placed in

ORD to look the same (up to Ξ(η)) no matter if we are looking at dom(f)a

or at range(f)b. We will do this in two stages. In the first stage we are going

to make sure that all the new tuples in range(f)b get placed in between the

correct tuples of range(f).

In the second stage we will organize the new tuples in the right order,

and with the correct distances and between the boundaries of the interval.

CHAPTER 6. OTHER COMPONENT TREES 178

While doing this second stage we will fix the actual values.

First some notation though. Let C = 〈(ci, αi) : ‖ci‖ = αi, i ≤ j → αi ≤

αj,

• ci ⊆ dom(f) or

• ci = M and αi = Spec(M) ∩ ORD or

• ci = −∞ and αi = −∞〉

We will further abuse notation by saying f(−∞) = −∞, f(M) = N , and

‖ − ∞‖ = −∞, ‖M‖ = Spec(M) ∩ ORD, ‖N‖ = Spec(N) ∩ ORD and

f(αi) = ‖f [ci]‖.

Stage 1: Let d be a subtuple of range(f). We define our interval [β(db), ζ(db)]

as follows. Let (cj, αj) be such that αj is the greatest ordinal in C which

is less than ‖f−1(d)a‖. Let β(db) = ‖f [cj]‖. Let (ck, αk) be such that αk is

the least ordinal in C which is greater than ‖f−1(d)a‖. Let ζ(db) = ‖f [ck]‖.

Note that these always exist by our abuse of notation and the fact that C is

finite.

Stage 2: First let 〈e1a, . . . ena〉 be the subtuples of dom(f)a such that β(f(ei)b) =

β, ζ(f(ei)b) = ζ and such that i ≤ j → ‖eia‖ ≤ ‖eja‖. Further, by an abuse

of notation, let ‖e0a‖ = β (even if there is no tuple containing a with color

β). We will define the colors of f(ei)b inductively on i.

Assume we have defined ‖f(ej)b‖ for all j < i.

We will break this into cases.

• Case 1: β + Ξ(η + 1) ≥ ζ.

Let ‖f(ei)b‖ = β + ρ where ‖eia‖ = f−1(β) + ρ.

CHAPTER 6. OTHER COMPONENT TREES 179

• Case 2: ‖ej−1a‖ + Ξ(η) ≥ ‖eja‖.

Let ‖f(ei)b‖ = ‖f(ej−1a)‖ + ρ where ‖ej−1a‖ + ρ = ‖eja‖.

• Case 3: ‖eja‖ + Ξ(η) ≥ ζ.

Let ‖f(ei)b‖ = µ for some µ such that µ + ρ = ζ where ‖eja‖ + ρ =

f−1(ζ).

• Case 4: Everything else.

Let ρ < Ξ(η) such that ρ ≡Ξ(η) ‖eia‖

Let ‖f(ei)b‖ = ‖f(ej−1a)‖ + Ξ(η) + ρ

Before we continue it is worth explaining what is going on in each of

the four cases. First notice that by the definition of our sequence of partial

isomorphism we require that dom(f) looks like range(f) up to Ξ(η + 1).

Hence in Case 1 we are in an interval which, in the context both of dom(f)

and range(f) is completely determined. In particular we know the size of the

interval is exactly the same in both M and N . So, we can put our tuples from

range(f)b in exactly the sample places in the interval as the corresponding

tuples of dom(f)a were.

In Case 2 we know that in M we placed the tuple we are looking at

less than Ξ(η) from the previously placed tuple. So even if we are only

considering the tuples up to Ξ(η) we still know exactly the distance from the

current tuple and the previous one. Hence that distance must be the same

for the corresponding tuples in N .

Now here we also have to be a little bit careful for two reasons. The first

reason is that we have to make sure that the ordinal on which our tuple in N

is placed is “the same up to Ξ(η)” as the ordinal on which the corresponding

CHAPTER 6. OTHER COMPONENT TREES 180

tuple in M was placed. But this is true by Lemma 6.1.1.4

The second reason you need to be a little careful is that it is conceivable

that at some point by placing successive copies of Ξ(η) end to end that we

might over take the end of the interval (which is the next highest tuple).

However, in this case we don’t have to worry about this happening as we are

only placing a finite number of tuples and we know that the interval has to

have length at least ω ∗ Ξ(η) = Ξ(η + 1).

Case 3 is the case where something like the above happened. In Case 3

we find that in M we have placed a tuple so that we can now reach ζ in less

than Ξ(η). But we know that ζ and f−1(ζ) are equivalent up to Ξ(η + 1)

(and hence up to Ξ(η) by assumption) and so there must be some ordinal

(possibly not unique) below ζ which corresponds to where the tuple in M

was placed.

Now finally we are at Case 4. This is the case where everything is so

far away from where we are placing our point in M that we can’t tell the

exact distance in either direction (up to Ξ(η)). So as long as we pick an

ordinal that is at least Ξ(η) from the ordinals on either end, and such that

the ordinal is equivalent up to Ξ(η) with the ordinal that the tuple in M

is on then we are okay. But, we know we can always find such an ordinal

because the distance between the previously placed point and the end of the

interval is at least Ξ(η + 1) and by Lemma 6.1.1.5.

CHAPTER 6. OTHER COMPONENT TREES 181

β, ‖(e0a)‖

ζ, ‖(ena)‖

β + Ξ(η + 1)

Case 1

‖(eja)‖ + Ξ(η)

‖(ej+1a)‖

‖(eja)‖ + Ξ(η)

Case 2

‖(eja)‖

‖(ena)‖

‖(eja)‖ + Ξ(η)

Case 3

‖(eja)‖

‖(eja) + Ξ(η)‖

‖(ej+1a)‖

Case 4

Now that we have defined the color archetype B that we want range(f)b

to satisfy, we need to show two things. First we need to show that B is a

consistent extension of A (and hence realized) and then we need to show that

if range(f)b satisfies this color archetype then in fact f ∪ (a, b) ∈ Iη.

To check consistency we only need to check that it is consistent with

the spectrum of N and that if a (b then ‖f [a]‖ ≤ ‖f [b]‖. But we know by

construction that ‖f [a]‖ ≤ ‖f [b]‖ iff ‖a‖ ≤ ‖b‖. And that is enough because

we know (ctype(dom(f)a)) is consistent. To see that the colors are consistent

with (i.e. less than) the spectrum of N observe that (M, Spec(M)∩ORD) ∈

C and so all colors in B are less than Spec(N)∩ORD as all tuples in M are

less than Spec(N) ∩ ORD.

So all that is left is to make sure that f ∪ (a, b) is in Iη. Well to do that

CHAPTER 6. OTHER COMPONENT TREES 182

we have to show ctype(dom(f)a)|dΞ(η) = ctype(range(f)b)|dΞ(η). But each

of the above 4 Cases in the definition of the color archetype were specifically

designed to ensure this was the case.

Corollary 6.3.2.7. Let A,A′ be color archetypes such that A|dΞ(γ + 1) =

A′|dΞ(γ + 1). Then for all B ≤ A such that |dom(B)| = |dom(A)| + 1 there

exists a B′ extending A′ with |dom(B′)| = |dom(A′)| + 1 and B|dΞ(γ) =

B′|dΞ(γ).

Proof. This is immediate from the proof of Theorem 6.3.2.5. (And in fact

this was the central idea needed in the proof)

Theorem 6.3.2.8. Let M,N |= TΩ and have no tuples of color ∞ Also let

Spec(M) ∩ ORD = Ξ(γM) and Spec(N) ∩ ORD = Ξ(γN) and let ζ + 1 <

min{γM , γN} = γ′. Then M ≡ζ N

Proof. By Theorem 6.3.2.5 It suffices to show that

(1) Ξ(γM) ≡Ξ(ζ) Ξ(γN)

(2) ctype(M)|dΞ(ζ) = ctype(N)|dΞ(ζ)

To show (1) observe that if α ≥ ζ there is no x < Ξ(α) such that

x+ Ξ(ζ) > Ξ(α). This is because if α is a limit then such an x would be less

than some Ξ(ζ ′) and so x + Ξ(ζ) < Ξ(ζ ′) + Ξ(ζ) < Ξ(ζ ′ + 1) < Ξ(α). And,

if α = γ∗ + 1 then such an x would have to be less than n ∗ Ξ(γ∗) for some

n < ω and hence x+ Ξ(ζ) < (n+ 1) ∗ Ξ(γ∗) < Ξ(γ′).

To show (2) assume we have a color archetype A of M or N . We will

then define a color archetype B realized in both N and M as follows. First

CHAPTER 6. OTHER COMPONENT TREES 183

order all the colors of subtuples A by their color. Suppose the n and n+ 1’s

tuples are separated by αn. If αn < Ξ(ζ) then add αn to the color of the

n tuple of B to get the color of the n + 1’s tuple. If αn ≥ Ξ(ζ) then add

Ξ(ζ) + α∗
n (where α∗

n ≡Ξ(ζ) αn and α∗
n < Ξ(ζ)) to the color of the n tuple of

B to get the color of the n+ 1’s tuple.

By construction we have that A|dΞ(ζ) ≡ B|dΞ(ζ) and B is realized in

both M and N (as all colors in B are less than the Spectrum of either M or

N respectively. So in particular we have (because A was an arbitrary color

archetype of either M or N) that ATYPE(M)|dΞ(ζ) = ATYPE(N)|dΞ(ζ)

and hence M ≡ζ N .

Chapter 7

Almost Scattered Sentences

7.1 Introduction

In this chapter we will study quantifier rank spectrum for almost scat-

tered sentences. In Section 7.2 we will give a procedure which will turn any

scattered sentence into an almost scattered sentence which is not scattered

but which has exactly the same quantifier rank spectrum.

In Section 7.3 we will consider another construction which will yield

an almost scattered structure. The construction is very similar to that in

Section ?? except we will not assume that the component structures have a

collection of archetypes (see Definition 3.3.0.13). Further, we believe that,

similar to the construction in Section ?? this construction will allow us to

get a structure with the supremum of the quantifier rank spectrum what

we wish. However, there is a problem. As the construction does not have

a collection of archetypes we have had to “build into the theory” the idea

of Homogeneity of Color Archetype pairs (see Definition 6.3.2.2). But, the

184

CHAPTER 7. ALMOST SCATTERED SENTENCES 185

obvious method poses a problem when it comes time to calculate a lower

bound on the supremum of the quantifier rank spectrum. So, we will point

out exactly what the problem is and conjecture that the structure still has

the properties we want.

7.2 Almost Scattered Sentences which aren’t

Scattered

The way we are going to get an almost scattered sentence from a scat-

tered one is by looking at κ many disjoint copies of our scattered sentence.

7.2.1 Axioms

First we need our almost scattered sentence which we will modify.

Definition 7.2.1.1. Let φSc be an almost scattered sentence in the language

LSc.

7.2.1.1 Language

Definition 7.2.1.2. Let LA(LSc, κ) = LSc ∪ {Qi : i ∈ κ, arity(Qi) = 1}.

7.2.1.2 Axioms

Definition 7.2.1.3. Let TA(φSc, κ) be universal closure of the following

LA(LSc, κ) sentences:

•
∧

i∈κQi(x)

CHAPTER 7. ALMOST SCATTERED SENTENCES 186

• Qi(x) ∧Qj(y) → ¬U(axbyc) if i 6= j and U is any predicate in LSc.

• (∃x)Qi(x) for each i ∈ κ

• Qi |= φSc for each i ∈ κ.

The idea is that we want our theory to consist of κ many disjoint copies

of our sentence φSc. We hence have the following obvious lemmas.

Lemma 7.2.1.4. |LA(LSc, κ)| = max{κ, |LSc|}, and if φSc ∈ Lβ,ω(LSc) then

TA(φSc, κ) ∈ Lmax{β,κ},ω(LA(LSc, κ)).

Proof. By definition of LA(LSc, κ) and TA(φSc, κ)

Lemma 7.2.1.5. Let M,N |= TA(φSc, κ). Then M ∼= N iff QM
i

∼= QN
i for

all i ∈ κ.

Proof. The right to left direction of the if and only if is trivial. Left to right

is true because if fi : M |Qi → N |Qi is a bijection which preserves predicates

(i.e. an isomorphism) then
⋃

i∈κ fi : M → N is a bijection and also preserves

all predicates because there is no interaction between elements which satisfy

differentQi’s (i.e. all predicates with arguments from differentQ-components

are false). So
⋃

i∈κ fi is an isomorphism.

Lemma 7.2.1.6. If φSc has β many models of size ≤ α then TA(φSc, κ) has

βκ many models of size ≤ max{κ, α}

Proof. Let 〈Mi : i ∈ β〉 be a list of all models of φSc of size ≤ α. For each

f ∈ βκ let Mf |= TA(φSc, κ) be the model where Mf |= Qi
∼= Mf(i). Then

every model of TA(φSc, κ) is of the form Mf for some f ∈ βκ and Mf
∼= Mg

iff f = g (by Lemma 7.2.1.5)

CHAPTER 7. ALMOST SCATTERED SENTENCES 187

Similarly we have the following theorem.

Theorem 7.2.1.7. Let M,N |= TA(TS, κ). Then M ≡γ N iff QM
i ≡γ Q

N
i

for all i.

Proof. First notice that the left to right direction of the iff is trivial. Now

Let 〈I iζ : ζ ≤ γ〉 be a sequence of partial isomorphisms that witness that

QM
i ≡γ Q

N
i . We then construct a sequence of partial isomorphisms, 〈Iζ : ζ ≤

γ〉, that witness M ≡γ N .

Define Iα = {f : |dom(f)| < w, f |(dom(f) ∩ QM
i) ∈ I iα for each i ∈ κ}.

First of all notice that by construction if f ∈ Iα then f must preserve all

predicates and hence is a partial isomorphism.

All that is left is to show that 〈Iζ : ζ ≤ γ〉 has the back and forth

property. Let f ∈ Iα+1 and let a ∈ M . We know that M |= Qi(a) for some

i ∈ κ. We then also know that f |(dom(f) ∩ QM
i) ∈ I iα+1 and so there must

be some element b ∈ QN
i such that f |(dom(f) ∩QM

i) ∪ (a, b) ∈ I iα. But then

by construction f ∪ (a, b) ∈ Iα. We can do the other direction (starting with

a b ∈ N and finding an a ∈M) in exactly the same way and hence we know

that 〈Iζ : ζ ≤ γ〉 has the back and forth property. So in particular we know

M ≡γ N .

Corollary 7.2.1.8. If M,N |= TA(φSc, κ) and a ∈M, b ∈ N then (M,a) ≡γ

(N, b) iff (QM
i , a ∩Q

M
i) ≡γ (QN

i , b ∩Q
N
i) for all i ∈ κ.

Proof. This is immediate from the construction of the sequence of partial

isomorphisms (〈I iζ : ζ ≤ γ〉) from M to N in Theorem ?? and Theorem

1.2.2.19.

CHAPTER 7. ALMOST SCATTERED SENTENCES 188

Corollary 7.2.1.9. For each α M |= TA(φSc, κ), if p(x) is a type over

TA(φSc, κ) ∪ Thα(M) then let (p)i(x) = {φQi(x) : φ ∈ LSc, qr(φ) ≤ α, p →

φQi(x)}. We then know each (p)i is a type over φSc ∪ Thα(M |Qi). What is

more, for each 〈φ(i) : i ∈ κ〉 a sequence of types over φSc, each with quanti-

fier rank ≤ α, and such that all but finitely many φ(i) have no free variables,

then there is a unique complete type p such that qr(p) ≤ α, p is a type over

TA(φSc, κ) and (p)i = φ(i) for all i ∈ κ.

Proof. This is immediate from Corollary 7.2.1.8 says.

Specifically what this Corollary says is that any α type is uniquely de-

termined by it’s components on each of the Qi.

We therefore also have

Theorem 7.2.1.10. Let s(φSc) = ω. Then for each α < ω1 there ex-

ists Sa(α, TA(φSc, ω)), a countable collection of formulas of Lω1,ω(LA(LSc, ω))

such that

(1) For all M |= TA(φSc, ω) and q ∈ S(Thα(M) ∪ TA(φSc, ω)) there is

at least one p ∈ Sa(TA(φSc, ω), α) such that TA(φSc, ω) |= (∀x)[p(x) ∧

Thα(M) ∧ TA(φSc, ω)] → q(x)

(2) For all M |= TA(φSc, ω) and p ∈ Sa(TA(φSc, ω), α) there is at most

one q ∈ S(Thα(M) ∪ TA(φSc, ω)) such that TA(φSc, ω) |= (∀x)[p(x) ∧

Thα(M) ∧ TA(φSc, ω)] → q(x)

Proof. Let M |= TA(φSc, ω). Then we know by Corollary 7.2.1.9 that each

p ∈ S(Thα(M) ∪ TA(φSc, ω)), qr(p) ≤ α is uniquely determined by (p)i

for all i ∈ ω. But, we know that each (p)i is either uniquely determined

CHAPTER 7. ALMOST SCATTERED SENTENCES 189

by an element of Sa(φSc, α) (for φSc), or (p)i has no free variables. If (p)i

has free variables call (p)∗i the element of S(Thα(M), φSc) which uniquely

determines it. Otherwise let (p)∗i be x = x. We know that each element p ∈

S(Thα(M)∪TA(φSc, ω)) is uniquely determined by the formula Thα(M)Qi ∪

TA(φSc, ω)∪ (
∧

i∈ωQi(x)∧ (p)∗i) and further each such sequence 〈(p)∗i : i ∈ κ〉

determines at most one element of S(Thα(M) ∪ TA(φSc, ω)). So if we define

Sa(TA(φSc, ω), α) = {〈Thα(M)Qi ∪
∧

i∈ωQi(x)∧ (p)∗i : i ∈ ω〉 : all but finitely

many entries are empty} then Sa(TA(φSc, ω), α) is countable and witnesses

that TA(φSc, ω) is almost scattered.

Theorem 7.2.1.11. Let W,V |= ZFC,W ⊆ V [G] for some generic exten-

sion of V φSc ∈ W ∩ V and W |= s(TA(φSc, κ)) = ω. Then for each (α <

ω1)
W there exists Sa(α, TA(φSc, κ)), a collection of formulas of [Lω1,ω(LA(LSc, ω))]W ,

such that

(1) For all M |= TA(φSc, κ) and q ∈ S(Thα(M)) there is exactly one p ∈

Sa(TA(φSc, κ), α) such that TA(φSc, κ) |= (∀x)[p(x) ∧ Thα(M)] → q(x)

(2) For all M |= TA(φSc, κ) and p ∈ Sa(TA(φSc, κ), α) there is at most

one q ∈ S(Thα(M) ∪ TA(φSc, κ)) such that TA(φSc, κ) |= (∀x)[p(x) ∧

Thα(M) ∧ TA(φSc, κ)] → q(x)

Proof. This is immediate from Theorem 7.2.1.10 and the fact that (s(TA(φSc, κ)) =

ω)W implies |κ|W = ω.

Theorem 7.2.1.12. (a) TA(φSc, κ) is Almost Scattered and has at least

countably many models of size ≤ s(TA(φSc, κ)) then TA(φSc, κ) is not

Scattered.

CHAPTER 7. ALMOST SCATTERED SENTENCES 190

(b) Further the quantifier rank spectrum of TA(φSc, κ) =Limits under κ

sequences of the quantifier rank spectrum of φSc.

Proof. To see (a) notice by Lemma 7.2.1.6 TA(φSc, κ) has 2ω many countable

models in any model of ZFC where s(TA(φSc, κ)) = ω.

(b) is an immediate consequence of Theorem 7.2.1.7

7.3 Construction of Almost Scattered Mod-

els

In this section we will construct explicit sentences which are almost

scattered. We will construct these sentences by gluing together two copies of

the sentence TΩ in a very similar way to how we glued together two copies of

TK in Section 4.1. The crucial difference will be that, because we don’t have a

collection of archetypes, we will have to get homogeneity of our components in

a different way. We will get the homogeneity of the components by explicitly

saying that we have it in the language.

7.3.1 Definitions

7.3.1.1 Language

Definition 7.3.1.1. Let M |= TΩ be such that no tuples have color ∞. Let

LQ = {〈ci : i ∈ M〉, Q(x)} where Q is a 1-ary predicate.

We then define the language La(M) = L0
Ω ∪ L1

Ω ∪ LQ

(Here L0
Ω, L

1
Ω are two distinct copies of LΩ)

CHAPTER 7. ALMOST SCATTERED SENTENCES 191

7.3.1.2 Axioms

Definition 7.3.1.2. Let Ta(M) be universal closure of the following La(M)

sentences:

Q:

• Q(x) ↔
∨

a∈M x = ca

• Q |= φ(ca1 , . . . can
) in L2

Ω iff M |= φ(a1, . . . an)

• Q(x)∧¬Q(y) → ¬U(x,y) where U is any predicate other than R2
≤ and

|x|, |y| > 0

• Q(x) → ¬U ′(x) where U ′ is any predicate other than R2
≤, P

L2
Ω :

• (∀x)(∃c)Q(c) ∧R2
=(x, c)

• (∀c)(∃x)¬Q(x) ∧R2
=(x, c)

Other Axioms:

• ¬Q |= T 1
Ω

• ¬Q |= T 2
Ω

• (Homogeneity) For each m ∈ ω,

¬Q |= (∀a, b, c)(∃nd)(R0
a(a, b) ∧ E

2
a(a, b) → E1

a(ac, bdi) ∧ E
2
a(ac, bdi))

The intent of the Q axioms are to fix everything that can be said about

any element which satisfies Q. In particular, we want the collection of el-

ements which satisfy Q to be isomorphic to M in L2
Ω and to have every

CHAPTER 7. ALMOST SCATTERED SENTENCES 192

element named. We further want nothing to be true in L2
Ω of elements which

satisfy Q. And, finally, we want to be able to compare the 2-color (using R2
≤)

of elements which satisfy Q with elements which satisfy ¬Q.

The intent of the L2
Ω axioms are to guarantee the spectrum the collec-

tion of elements which satisfy ¬Q is the same as M in L1
Ω. Now it is worth

mentioning explicitly that the only connection between elements satisfying

¬Q and those satisfying Q is the fact that in LOmega
1 they must have the

same spectrum. As such, if we were to restrict our models only to the part

which satisfies ¬Q, we would get the same restrictions for any tree structures

placed on Q of the same height.

As for the other axioms, the only one which isn’t self explanatory is (Ho-

mogeneity). This says that if we have a pair of color archetypes which are

realized by two different tuples in the same model, then we have to be able to

extend both tuples in exactly the same ways. An important point is that we

don’t require anything specific about the possible ways of extending a given

pair of color archetypes is. We just require that the ways i which a pair of

color archetypes can be extended depends only on the color archetypes.

Definition 7.3.1.3. IfM |= Ta(M), a ∈M we say that 〈ctype0(a), ctype1(a)〉(=ats(a))

is the Color Archetype Sequence of a.

If M |= Ta(M) we let ATS(M) = {ats(a) : a ∈M}

7.3.2 Properties of Ta(M)

In this section we will construct an upper bound on the quantifier rank

spectrum of Ta(M) and show that Ta(M) is almost scattered.

CHAPTER 7. ALMOST SCATTERED SENTENCES 193

Theorem 7.3.2.1. Let M,N |= Ta(M) be such that ATS(M) = ATS(N).

Then M ≡∞ N .

Proof.

Definition 7.3.2.2. Let I = {f : M → N, dom(f) < ω and if qf = {a ∈

dom(f) : ¬Q(a)} then ats(qf) = ats(f [qf]) and f preserves atomic formula

on Q}.

We want to show then that I ⊆ I is a sequence of partial isomorphisms.

Notice if f ∈ I then f preserves all atomic formula by construction. So all

that is left is to show that I ⊆ I has the back and forth property.

Let f ∈ I and a ∈ M . We then need to find a b ∈ N such that

f ∪ (a, b) ∈ I. We can break this into two cases.

Case 1: M |= Q(a)

In this case we know that there is a m ∈ M such that M |= cm = a. Let b

be such that N |= cm = b.

Case 2: M |= ¬Q(a)

Let M |= (σ0, σ1)(qfa) and N |= (τ0, τ1)(f [qf]) where (σ0, σ1), (τ0, τ1)

are color archetype sequences. In particular we have there is some cc ∈ N

such that N |= (σ0, σ1)(cc) because ATS(N) = ATS(M). But, we then also

must have (τ0, τ1)(c) by our conditions on when f ∈ I. So, by (Homogeneity)

there must be a b ∈ N such that (σ0, σ1)(f [qf]b). Hence f ∪ (a, b) ∈ I and

we are done. I ⊆ I has the back and forth property and I witnesses that

M ≡∞ N .

Corollary 7.3.2.3. Let M,N |= Ta(M) and a ∈M, b ∈ N . Then (M,a) ≡∞

(N, b) iff M ≡∞ N and ats(a) = ats(b).

CHAPTER 7. ALMOST SCATTERED SENTENCES 194

Proof. This is immediate from the construction of the sequence of partial

isomorphisms (I ⊆ I) fromM toN in Theorem 7.3.2.1 and Theorem 1.2.2.19.

Theorem 7.3.2.4. Let |M| = ω. Then Ta(M) is almost scattered.

Proof. Let Sa(Ta(M), α) = {ats(a) : a ∈M,M |= Ta(M)}

Now it is clear from Corollary 7.3.2.3 that

(1) For all M |= Ta(M) and q ∈ S(Thα(M)∪ Ta(M)) there is at least one

p ∈ Sa(Ta(M), α) such that Ta(M) |= (∀x)[p(x) ∧ Thα(M)] → q(x)

(2) For all M |= Ta(M) and p ∈ Sa(Ta(M), α) there is at most one q ∈

S(Thα(M)) such that Ta(M) |= (∀x)[p(x) ∧ Thα(M)] → q(x)

7.3.3 Conjecture about Ta(M)

7.3.3.1 The Conjecture

Now that we have an upper bound on the quantifier rank of models

of Ta(M) we would like to come up with some conditions gives us a lower

bound on the quantifier ranks of some models. However, here we run into a

little bit of a problem as every attempt we have made to find such conditions

has failed. So we will make a conjecture on the quantifier rank spectrum of

Ta(M) and talk about why a few of the obvious problems.

Conjecture 7.3.1. If γ = Ξ(γ) and Spec(M) = {−∞} ∪ γ then the supre-

mum of the quantifier ranks of Ta(M) is γ.

CHAPTER 7. ALMOST SCATTERED SENTENCES 195

7.3.3.2 The Problem

Lets consider how we might prove this. What we will want to do is to

construct two models which are the same up to formulas of quantifier rank

α for any particular α < γ. This then leads to the question of what can

be said by formulas of quantifier rank α. Remember from Section ?? that

two tuples “look the same” up to formulas of quantifier rank α in TΩ if there

color archetypes place tuples on ordinals which are equivalent up to Ξ(α).

To be more precise, we know that the most important information we

know about a tuple in a model of TΩ is what the colors of its subtuples look

like up to equivalence of the ordinals. In other words, as we increase the

quantifier rank of our formula we are able to say not just what the colors of

tuples are, but also “how far apart” tuples are.

Now that we know what properties to consider, we would like to con-

struct two models M,N of Ta(M) such that M ≡α N . In order to show this

equivalence we must be able to create a sequence of partial isomorphisms

from M to N of length α.

Recall how we proved the lower bound on the quantifier rank of a model

of TΩ (Theorem 6.3.2.5). The way we constructed the proof was we first

noticed that if we had two finite sequences of ordinals which looked the same

up to Ξ(γ + 1) then we could add in a finite number of new ordinals to each

and still maintain the equivalence up to Ξ(γ) (including the order). We were

then able to use this plus (Saturation) to get a back and forth property for

a collection of partial isomorphism.

Remembering how we proved the lower bound on quantifier rank for

models of TΩ, we would hope that we would be able to do something similar

CHAPTER 7. ALMOST SCATTERED SENTENCES 196

in the case of Ta(M). Specifically, we know that there is still only a finite

number of ordinals to consider and we still have a version of (Homogeneity)

so we would hope that we could do a similar argument to construct a se-

quence of partial isomorphisms with the back and forth property In fact, if

we are only interested in models of Ta(M) restricted to L0
Ω ∪L1

Ω then we can

do just that.

The problem is that in Ta(M) we are introducing constants which make

the back and forth argument fall apart. Specifically, given two finite se-

quences of ordinals which are Ξ(γ) equivalent, if we are allowed to choose an

arbitrary constant and look at the sequences with that constant added in,

there is no reason to believe that they should still be Ξ(γ) equivalent.

For example in the following two cases f and g are the same up to Ξ(ω)

on {x1, x2, x3} but once we fix the constant value of f(c) = g(c), f and g no

longer even have the same ordering.

0

f

Ξ(ω + 1) x1

Ξ(ω + 1) + 2 ∗ Ξ(ω) x2

Ξ(ω + 2) x3

Ξ(ω + 1) + 5 ∗ Ξ(ω)

0

g

Ξ(ω + 1) x1

Ξ(ω + 1) + 8 ∗ Ξ(ω) x2

Ξ(ω + 2) x3

c

CHAPTER 7. ALMOST SCATTERED SENTENCES 197

7.3.3.3 The First Approach

As we saw in Theorem 7.3.2.1, each model is determined by its col-

lection of color archetype sequences which are realized. So the problem of

constructing two different models which look the same up to quantifier rank

α is the same as the problem of determining two collection of color archetype

sequences which allow a back and forth argument to take place of length α.

The main difficulty in the back and forth argument is if we have two

sequences of ordinals which “look the same” up to Ξ(γ) and we add a con-

stant value to each sequence then the sequences might not look the same any

more. So one of the first solutions we would want to consider is to require all

constants which could be added to be “above” any 1-color which is realized.

That way we could never add a constant which could mess up the equivalence

of our finite sequences of ordinals.

Attempt 7.3.3.1. Say that if M |L1
Ω ≡γ N |L1

Ω and in M,N , if (α′, β′) is a

color sequence realized in M or N then either β = −∞ or β′ > Spec(M) or

Spec(N)

To be more specific, what we are doing is construct two models with

1-spectrum α, β respectively. But we would require that any time we have a

1-tuple whose color is less than γ >> α, β then that tuples 1-color is −∞.

This way, we would hope that the back and forth argument that we would

produce by only looking at L1
Ω would carry over to La(M).

The problem is that in this situation, even though we have required

all actual constants to be above anything mentioned in the back and forth

argument for L1
Ω, there is no easy way to guarantee that we can’t “transmit”

CHAPTER 7. ALMOST SCATTERED SENTENCES 198

information back down to the 1-color. Hence, we still have to deal with what

is effectively a constant in the 1-color.

To see how this effective transmission of information can take place

consider the model M such that for all a ∈ M such that M |= (‖a‖1 6=

−∞) → (‖a‖1 + α = ‖a‖2) where α >> Spec(M) ∩ ORD. In this case we

never can compare constants from the 2-colors with the sequences of 1-colors

as the 2-colors are much to big. But, the constants still “force” the 1-colors

to be a fixed value and hence adding a tuple with a given 2-color “forces” us

to keep track of a fixed value among the 1-colors and this is just as bad as if

we added a constant.

Chapter 8

Multiple Trees

8.1 Introduction

Now that we have defined out component trees in Chapter 6 in this

chapter we will consider ways of “gluing” them together (in a very similar

way to Section 4.1).

Specifically in Section 8.2 we will introduce some machinery which will

allow us to study what happens when we glue together ω many copies of

TΩ. And, in Section 8.3 we will do just that. We will produce two different

methods of constructing a model for such a theory. Next, in Section 8.4, we

consider what happens to the theory when we place an internal bound on

the spectrums.

Then in Section 8.6 we will consider something very similar but we will

glue together copies of TΛ instead of TΩ.

199

CHAPTER 8. MULTIPLE TREES 200

8.2 Comparing Different Colors

8.2.1 Definitions

Our method for comparing color will be almost identical to 2.3.1.

Definition 8.2.1.1. Let L◦
R≤,n

= {R◦,i
≤,j,k : j, k ≤ n where R◦,i

≤,j,k is a + b

ary, a, b ∈ ω}.

For notational convenience we will treat R◦,a,b
≤,i,j as a predicate of two

arguments (one a ary and one b ary). Further abusing notation (in a

similar way as we did with P) we will consider R◦
≤,i,j as a two argument

predicate on finite tuples (i.e. R◦
≤,i,j takes two finite tuples, one of size

a one of size b as arguments).

Definition 8.2.1.2. Let LnR consist of L◦
R≤,n

as well as n disjoint copies of

LR.

We will add a superscript to distinguish between different copies of the

same relations. To further simplify notation when we want to distinguish

between different copies of the language inside LnR we will omit the R (so

L1, L2 are two distinct copies of LR.)

Definition 8.2.1.3. Let T nR be universal closure of the following LnR sen-

tences:

• T iR, i ≤ n(i.e. TR on the ith copy of LΩ)

• R◦
≤,i,j(x,y) ↔ [¬P i(x)] ∨ [P i(x) ∧ P j(y) ∧ (∀a)(∃b)R◦

≤,i,j(xa,yb)]

CHAPTER 8. MULTIPLE TREES 201

8.2.2 Correctness

In this section we will show that if R◦
≤,i,j holds then R◦

≤,i,j accurately

describes the relationship between the colors of its arguments. Further we

will show that if our model has no tuple of color ∞ then we have R◦
≤,i,j(a, b)

iff ‖a‖i ≤ ‖b‖j

Theorem 8.2.2.1. If M |= T nR, a, b ∈M then M |= R≤(a, b) → ‖a‖ ≤ ‖b‖

Proof. Assume ‖a‖i = −∞

(∀b)R◦
≤,i,j(a, b) by the definition of R≤.

Assume if ‖x‖i < α <∞ then R◦
≤,i,j(x,y) ⇒ ‖x‖i ≤ ‖y‖j and let ‖a‖i = α

Then R◦
≤,i,j(a, b) → [(∀a′)(∃b′)‖aa′‖ ≤ ‖bb′‖] by the induction hypoth-

esis. Therefore R◦
≤,i,j(a, b) → [‖a‖i = sup{‖aa′‖i + 1 : a′ ∈ M} ≤

sup{‖bb′‖j + 1 : b′ ∈ M} = ‖b‖j]. So R◦
≤,i,j(a, b) → ‖a‖i ≤ ‖b‖j and by

induction this is true for any a such that ‖a‖i <∞.

Assume ‖a‖i = ∞.

Then let a, a0, a1, · · · be an infinite sequence such that P i(a, a0, · · · , an)

for all n (this exists by the definition of color ∞). Therefore there must

exist a sequence b, b0, b1, · · · such that R◦
≤,i,j(aa0 · · · an, bb0 · · · bn) for all

n. But then we have (by the definition of R◦
≤,i,j), P

j(b, b0, · · · , bn) for all

n. Hence, ‖b‖j = ∞ by the definition of color ∞.

Theorem 8.2.2.2. If M |= T nR, a, b ∈ M and ‖a‖i ≤ ‖b‖j < ∞ then

M |= R◦
≤,i,j(a, b).

Proof. First notice that if ‖a‖i = −∞ then this is trivially true.

Now assume for all x,y ∈M |= T nR if ‖x‖i < α <∞, ‖x‖i ≤ ‖y‖j <∞ then

CHAPTER 8. MULTIPLE TREES 202

R◦
≤,i,j(x,y) and let ‖a‖i = α.

First off we know that P i(a) → P j(b) by the definition of color. We also

know by the definition of color that (∀a′)(∃b′) such that ‖aa′‖i ≤ ‖bb′‖j.

Further, by the inductive hypothesis, we then have R◦
≤,i,j(aa

′, bb′). But

then by the definition of R◦
≤,i,j we then have R◦

≤,i,j(a, b) and we are done.

So by induction we are done.

8.3 T nΩ

8.3.1 Definitions

Definition 8.3.1.1. If 〈Ci : i ≤ n〉 are color archetypes on the same domain

x such that for all y ⊆ x ‖y‖i ≤ ‖y‖j if i ≤ j (where ‖ · ‖i is that forced by

Ci) then we say 〈Ci : i ≤ n〉 is an n-color archetype sequence (we will leave

out the n when the context is clear.)

IfM |= T nΩ andM |= ctypei(a) for all i ≤ n then we say that (ctype1, · · · , ctypen)

(= ats(a)) is the Color Archetype Sequence of a.

Definition 8.3.1.2. If C1, . . . , Cn are color archetype sequences we say C1 . . . Cn ≥

D (for an color archetype sequence D) if domain(Ci) = xi, domain(D) =

x1 . . .xny and D → Ci for each i. In other words every thing which is true

about Ci is forced to be true by D.

(Notice that we are requiring that x be an initial segment. This is only

for notational convenience and has no bearing on the intuitive meaning).

We are now ready to define our theory.

Definition 8.3.1.3. Let LnΩ = LnR≤

CHAPTER 8. MULTIPLE TREES 203

Definition 8.3.1.4. Let T nΩ be universal closure of the following LnΩ:

• P i(x) → P j(x) if i < j ≤ n

• T nR

• (Homogeneity for Archetypes Sequences) For each m ∈ ω

∧

i≤n

Ei
a(x,y) → (∀b)(∃ma)

∧

i≤m

Ei
a(xa,yb)

• (Amalgamation of Archetype Sequences) For each m ∈ ω

(∀x,y)(∃ma, b)
∧

i≤n

Ei
a(x, a) ∧ E

i
a(y, b) ∧

∧

∅6=S⊆a,∅6=S′⊆b,i≤n

¬P i(SS ′)

• If i are successor ordinals:

– T iΩ, i ≤ n(i.e. TR on the ith copy of LR)

– (Saturation for Finite Sequences of Archetypes) For each m ∈ ω,

for each 〈ik : k ∈ p < ω, s < t → is ≤ it〉 ⊆ n − (limit point(n))

(∀x1, . . . xn)(∀{y
k
S : S ⊆ n})(∃mb)

∧

S⊆n[
∧

k≤k′∈pR
ik
< (ykS, {xi : i ∈

S}) ∧R◦
k,k′,≤(ykS, y

k′

S)] → [
∧

k∈pR
ik
= (ykS, {xi : i ∈ S}b)]

• If i is a limit ordinal:

– P i(x) ↔
∨

j<i P
j(x)

The idea is we want to take n different models of TΩ and put them all on

the same set (here we only require n ∈ ORD whereas we will look at the case

of n = ω). However, we don’t want to do this arbitrarily for two reasons.

CHAPTER 8. MULTIPLE TREES 204

First of all, an arbitrary combination of models of TΩ is so messy that we

have no nice way to talk about it. Second, because an arbitrary combination

of models is so messy that even given just two fixed models of size κ there

are 2κ many ways to combine them (and hence 2κ many types as well as 2κ

many models).

The need for the axiom of (Amalgamation of Archetype Sequences) is a

little less obvious. The reason we need it is that as we will see shortly, a model

of T nΩ (which doesn’t have a tuple of color ∞) is completely determined (in

L∞,ω) by the archetype sequences it realize. So what this axiom says is that

if we have two archetype sequences we can combine them in such a way that

the color of any overlap is −∞. This will allow us eventually to construct a

large number of non-isomorphic models all L∞,ω equivalent to a given model.

(Saturation for Finite Sequences of Archetypes) says essentially that

given any color archetype sequence which is realized and a finite number of

successor colors, if we have some consistent extensions of the color archetype

of our tuple on those finite colors, then in fact that is realized somewhere.

(Homogeneity for Archetypes) says that given two different tuples which

realize the same archetype, they can be extended in exactly the same ways.

Why we have a separation into the case of limit ordinals and non-limit

ordinals, is not clear at first glance. The reason is that because the color of

a limit is the limit of colors below it we have no reason to believe it should

satisfy TΩ (although it should satisfy TΛ.

CHAPTER 8. MULTIPLE TREES 205

8.3.2 General Results

8.3.2.1 Introduction

Now that we have several ways of constructing models of T nΩ , we want

to look at submodels of T nΩ . To be specific, we will show in this section that

if we choose a single color (say the ith) and a single limit ordinal (say ω ∗ γ)

and we only look at those elements whose i-color is less than ω ∗ γ then in

fact we still have a model of T nΩ .

8.3.2.2 Submodels

Theorem 8.3.2.1. Let M |= T nΩ , let N i
ω∗γ(M) = N i

ω∗γ := {a ∈ M : M |=

‖a‖i < ω ∗ γ}. Then N i
ω∗γ |= T nΩ and (∀a ∈ N i

ω∗γ)(‖a‖
j)N

i
ω∗γ = (‖a‖j)M

Proof. First off, it is obvious that N i
ω∗γ |= T jP for all j ≤ n because all axioms

of TP are universal.

Claim 8.3.2.2. If a ∈ N i
ω∗γ and let x be in M such that (∀∅ 6= b ⊆

a)(‖bx‖j)M < ω ∗ γ. Then there exists an element y ∈ N i
ω∗γ such that

(∀∅ 6= b ⊆ a)(‖bx‖j)M = (‖by‖j)M

Proof. The only condition that y must satisfy is that (‖y‖i)M < ω ∗ γ. We

now need to break into two cases

• Case 1 (i ≥ j): In this case we can find by (Saturation for Finite Se-

quences of Archetypes) a y such that in M

– ‖y‖j < min{ω ∗ γ, Spec(M)j}

– ‖y‖j > ‖bx‖j

CHAPTER 8. MULTIPLE TREES 206

– ‖y‖j = ‖y‖i

– ‖bx‖j = ‖by‖j = ‖by‖i

• Case 2 (i < j): In this case we can find by (Saturation for Finite Se-

quences of Archetypes) a y such that in M

– ‖y‖j = ‖b‖j

– ‖y‖i = −∞

– ‖bx‖j = ‖by‖j

Hence y ∈ N i
ω∗γ and we are done.

Claim 8.3.2.3. (∀a ∈ N i
ω∗γ)(‖a‖

j)N
i
ω∗γ = (‖a‖j)M

Proof. We have (‖a‖j)N
i
ω∗γ = sup{‖ax‖j + 1 : x ∈ N i

ω∗γ} ≤ sup{‖ax‖j + 1 :

x ∈M} because N i
ω∗γ ⊆M .

To see the other direction notice that if (‖a‖j)M ≤ 0 then the claim

is true. So, assume it is true if (‖x‖i)M < α. Now let (‖a‖j)M = α. But

then we know by Claim 8.3.2.2 that (∀x ∈ M)(∃y ∈ N i
ω∗γ) such that α >

(‖ax‖j)M = (‖ay‖j)M . In particular we have (‖ax‖j)M = (‖ay‖j)N
i
ω∗γ and so

(‖a‖j)N
i
ω∗γ = sup{‖ax‖j + 1 : x ∈ N i

ω∗γ} ≥ sup{‖ax‖j + 1 : x ∈ M} and we

are done.

Corollary 8.3.2.4. If a ∈ N i
ω∗γ then (ats(a))M = (ats(a))N

i
ω∗γ

Proof. This is because the only information in an archetype sequence is the

colors of the subtuples of it’s domain and these are indepnedent of which of

N i
ω∗γ or M you are in by Claim 8.3.2.3

CHAPTER 8. MULTIPLE TREES 207

Corollary 8.3.2.5. If C is an archetype sequence realized in N i
ω∗γ and x

realizes C in M then x ∈ N i
ω∗γ

Proof. This is because if C is realized in N i
ω∗γ it forces the i color of all

1-tuples to have color < ω ∗ γ and hence any realization is in N i
ω∗γ.

To see that N i
ω∗γ |= TΩ on each LnΩ observe that we have

(∀a)(∀x)(∃y)R=(ax, ay) ∧ |x| + 1 = |y|

because we know that the spectrum in N i
ω∗γ are limit’s (and the color in of

a tuple in N i
ω∗γ is the same as the color in M).

So we are now ready to show that N i
ω∗γ |= T nΩ . First notice that N i

ω∗γ |=

P i(x) → P j(x) if i < j because it is a universal statement. Also notice that

it satisfies (Saturation for Finite Sequences of Archetypes) because M does

and Corollary 8.3.2.5 (and henceN i
ω∗γ satisfies (Saturation for Archetypes) on

every Li+1). Seeing that it satisfies (Amalgamation of Archetype Sequences)

is easy. Let C,D be a pair of archetype sequences realized inN i
ω∗γ. Then inM

there are realizations which witness (Amalgamation of Archetype Sequences).

Hence, by Corollary 8.3.2.5 these realizations are in N i
ω∗γ . Similarly, to see

N i
ω∗γ satisfies (Homogeneity of Archetype Sequences) let a, b ∈ N i

ω∗γ be two

tuples which have which have the same archetype sequence. Then if a can be

extended to an archetype sequence C which is realized in N i
ω∗γ then there is

an extension of b to C in M . But by Corollary 8.3.2.5 this extension must be

in N i
ω∗γ and so we have N i

ω∗γ satisfies (Homogeneity of Archetype Sequences)

and hence N i
ω∗γ |= T nΩ .

CHAPTER 8. MULTIPLE TREES 208

8.3.3 Quantifier Rank

Definition 8.3.3.1. Define ATS(M) = {ats(a) : a ∈M}.

Theorem 8.3.3.2. Let M,N |= T nΩ and be such that there are no tuples

of color ∞ for any color on either model. If ATS(M) = ATS(N) then

M ≡∞ N and for all a ∈M, b ∈ N ∗ (a) = ∗(b) → a ≡∞ b.

Proof. Let M,N |= T nΩ and be such that there are no tuples of color ∞ for

any color on either model and ATS(M) = ATS(N).

Let I = {f : M → N, |dom(f)| < ω ats(dom(f)) =ats(range(f))}

Claim 8.3.3.3. 〈I, I〉 is a partial isomorphism sequence.

Proof. Notice that I is a collection of partial isomorphisms from M to N so

it suffices to show that I ⊆ I has the back and forth property.

Let f ∈ I. Now choose a ∈ M . We know that ats(dom(f)a) is realized

in N by some sequence xc. But we then know that ats(x) = ats(range(f)).

So, by (Homogeneity for Archetype Sequences) we know one of two things

happens.

Case (1) x = range(f): In this case we can let g = f ∪ (a, c)

Case (2) x 6= range(f): Then we know that ats(x) = ats(range(f)) and so there

is an element b such that ats(range(f)b) = ats(xc) = ats(dom(f)a).

And in this case let g = f ∪ (a, b).

In either case we know that g ⊇ f and by construction g ∈ I.

We can then do the other direction (i.e. starting with a an element of

N and coming up with an element of M) in exactly the same way.

CHAPTER 8. MULTIPLE TREES 209

We now have by Theorem 1.2.2.19 that M ≡∞ N and that if a ∈M, b ∈

N and ats(a) = ats(b) then (∃f ∈ I)f(a) = b and hence a ≡∞ b.

Theorem 8.3.3.4. If M |= T nΩ and M has no tuples of color infinity at any

arity then qr(M) ≤ sup{Spec(M)i +m : i ≤ n,m ∈ ω}

Proof. Let D be an archetype sequence and let ϕ=
D(x) say that x satis-

fies D, using the formula’s ϕ=
α from Corollary 2.2.2.8. Now let ϕM ↔

∧

a∈M(∃x)ϕ=
ats(a)(x) ∧ (∀x)

∨

a∈M ϕ=
ats(a)(x)

We now need to notice two things. First of all we find that if N |= ϕM

then every color of every tuple of N is less than or equal to sup{Spec(M)i :

i ≤ n}. This is because if N |= (ϕ=
α)i(a) then we know that in Li the color of

a ∈ N is exactly α. Hence, if N |= ϕM then N has no tuples of color infinity

at any arity.

The second observation we need to make is that if N |= ϕM then

ATS(N) = ATS(M) (in fact ϕM was defined specifically for this purpose).

So, we then have by Theorem 8.3.3.2 that if N |= ϕM then N ≡∞ M .

Hence qr(M) ≤ qr(ϕM) = sup{Spec(M)i +m : i ≤ n,m ∈ ω}

The most important idea behind Theorem 8.3.3.2 and Theorem 8.3.3.4

is that the L∞,ω types of a tuple is determined by its color archetype sequence

(if we are in models where no tuples have color infinity).

8.3.4 First Construction of Models

While the theories T nΩ are very nice, we still need to show that they are

consistent. In this section we will construct a collection of models of T nΩ such

that there are 2κ many of size κ. We will do this by first choosing a collection

CHAPTER 8. MULTIPLE TREES 210

of archetype sequences for 1-tuples which are consistent (i.e a collection of

sequences of non-decreasing ordinals). We will then construct model such

that the only archetype sequences of 1-tuples which are realized are the ones

we have chosen. But, we will maintain the necessary homogeneity of our

models by forcing that for i-tuples with i > 1, every possible extension that

can happen (consistent with our choice of 1-tuples) does.

Definition 8.3.4.1. If X = 〈α1, · · · , αn〉 then define X(i) = αi for i ≤ n

Let S ⊆ {〈α1, · · · , αn〉 : αi ≤ αj if i ≤ j} ⊆ (ω ∗ ζ1 ∪{−∞})× · · ·× (ω ∗ ζn ∪

{−∞})

If:

(1) For all i ≤ n there is a sequence ω ∗ ηγ cofinal in ζi such that ∃Xγ ∈ S

where X(j) = −∞ if j < i and Xγ(j) = ηγ if j ≥ i

(2) There is a sequence 〈Xγ : γ ≤ ζn〉 ⊆ S where Xγ(i) ≤ Xγ′(i) if γ ≤ γ′

and 〈Xγ(i) : γ ≤ ζn〉 is cofinal in ζi.

(3) If {αik : k ∈ p < ω} is such that

– (∀k ∈ p)ik ∈ p− (limit point(n))

– αik < ω ∗ ζik

– (∀k, k′ ∈ p)k < k′ → ik ≤ ik′ → αik ≤ αik′

– Then there is a 〈ai : i ≤ n〉 such that aik = αk

(4) If 〈ζ1, · · · , ζn〉 ∈ S and ω ∗ γ ≤ n then ζω∗γ = sup{ζi : i < ω ∗ γ}

then we say S is a full subset of 〈ζ1, · · · , ζn〉

CHAPTER 8. MULTIPLE TREES 211

Now these conditions may appear on first reading like they came out

of thin air. But, what we intend for S to be (if S is full) is the collection

of archetype sequences of 1-tuples in our model (with ω ∗ ζi =Spectrum in

Li). As we will see these conditions turn out to be exactly the conditions we

need to make our argument work. So lets take a closer look at what they are

saying.

The first condition will end up saying that given a copy of the language,

say Li, then there is a sequence of elements whose i-colors are confinal in the

possible color of Li but where the only relevant information concerning the

tuple is it’s i-color (i.e. if j < i then all j-colors are −∞ and if j > i all

j-colors are the same as the i-colors).

The second condition says that there is a sequence of elements whose

colors are cofinal in all the colors simultaneously.

The final two conditions are relatively strait forward. The third condi-

tion is there to guarantee that (Saturation for Finite Sequences of Archetypes)

holds and similarly the fourth condition is there to ensure that the condition

on limit colors is preserved.

We can now begin our construction.

Definition 8.3.4.2.

Stage 1:

For each c ∈ S letKc = {ki : ki are elements, i ∈ ω such that 〈‖ki‖
1, · · · , ‖ki‖

n〉 =

c}

Let M (1,1) =
⋃

c∈SKc

Let M (j,1) = {x ⊆M (1,1) : |x| = j and ‖x‖i = −∞ if i > 1}

Notice that |M (1,1)| = ω ∗ |S|n = |S|n

CHAPTER 8. MULTIPLE TREES 212

Stage i+1:

For each x ∈ M (i,i), each archetype sequence D of arity i + 1 such that

D(xy) → ats(x) ≤ D, and ats(b) ∈ S, let Bx,D = {bx,Dm : m ∈ ω and each

bx,Dm is new}.

Then, for each b ∈ Bx,D let ats(xb) = D.

Let M (1,i+1) = M (1,i) ∪
⋃

x,D B
x,D. So all that is left is to assign colors to

the j-tuples. Let M (j,i+1) = {x ⊆ M (1,i+1) : |x| = j}. Now if y ∈ M (j,i+1) we

have three cases:

1) y ∈M (j,i): Then just define the color of y in M (j,i+1) be the same as it

was in M (j,i).

2) y = zbx,Di , z ⊆ x: Then have the color of y be that determined by D.

3) Otherwise: ‖y‖r = −∞ for all r ∈ n.

Notice that this procedure puts a color on all i + 1-tuples of M (1,i+1) in a

unique and consistent way (this is important as it means we can amalgamate

tuples in a unique and consistent way).

Also notice that |M (j,i+1)| = ω ∗ |M (i,i)| ∗ sup{xr : x ∈ S}|n = |sup{xr : x ∈

S}|n

Let M (i,ω) =
⋃

j∈ωM
(i,j)

Let M(S) = M (1,ω) along with the structure that for each x ∈ M(S), P r(x)

iff x ∈M (|x|,ω) and ats(x) → P r(x). Further we require M(S) |= Rr
≤(a, b) ↔

‖a‖r ≤ ‖b‖r and M(S) |= R◦
i,j,≤(a, b) ↔ ‖a‖i ≤ ‖b‖j.

Notice that |M(S)| = |sup{xr : x ∈ S}|

CHAPTER 8. MULTIPLE TREES 213

Okay, so now lets consider what it is we are doing here. The idea is

that by stage i we have have an approximation of the model we want, which

works just so long as we don’t look at any tuples of arity i+1 or greater. At

stage i + 1 we add single elements which are meant to guarantee that all i

tuples already defined can be extended in every way possible. This will then

allow us show that the axioms on i tuples are all satisfied. But, we have

the problem of making sure that these new elements don’t interact with each

other or with the other old tuples. The way we ensure this is to say that the

color of any new tuple is −∞ unless the tuple consists of an old tuple and a

single element specifically added to extend it.

Because at stage i we will have shown all the axioms work on less than

i tuples which are already defined, and because we have a unique way to

amalgamate tuples to get tuples of higher arity, we will then be able to show

that in the limit (i.e. at “stage ω”) we will have determined the color of all

finite tuples of our model and all the axioms will be satisfied.

Claim 8.3.4.3. Let x ∈ M(S). Let γr(x) = ‖x‖r as determined by the

archetype assigned to it in the construction (i.e. in M (|x|,ω)). Let M(S) |=

γ∗r (x) = ‖x‖r. Then γr(x) = γ∗r (x).

Proof. First notice that we ensured by our construction that every finite tuple

of M(S) is assigned an archetype in the construction (just let i be some stage

greater than the point when all elements of x appear for the first time in the

construction.)

Base Case:

Assume γr(x) = 0 or −∞.

CHAPTER 8. MULTIPLE TREES 214

We the know that for any y such that xy ∈ M (|xy|,ω), γr(xy) = −∞ as

this fact is witnessed by the archetype of x. But, then we know that for

all y M(S) |= ¬Pr(xy) (by definition of our color structure on M(S)

and so γ∗r (xy) = −∞

But we also know by construction that γ∗r (x) ≥ 0 (i.e.

M(S) |= P r(x)) iff γr(x) ≥ 0 (i.e. ats(x) in the construction

witnesses that P r(x) holds). So, we know that γ∗r (x) = γr(x).

Inductive Case:

Assume that if z ∈M(S) and γr(z) < α then γr(z) = γ∗r (z). Let γr(x) = α.

So we have γ∗r (x) = sup{γ∗r (xy) + 1 : y ∈ M∗} = sup{γr(xy) + 1 : xy ∈

M(S)} = γr(x)

Now we have the last equality because by construction any consistent

extension of x is realized and so there must be a yβ ∈ M(S) such that

γr(xyβ) = β for all β < γr(x) (we have to be a little careful to make

sure that fact that we don’t have all 1-tuples of colors won’t mess us

up. Specifically we have to make sure that we can find yβ such that

‖yβ‖
r > β. But this was exactly why we had our condition (2) in our

definition of full S).
So by induction and the fact that γr(x) is never is ∞ the claim is proved.

Claim 8.3.4.4. M(S) is a model of T nΩ .

Proof. M(S) obviously models TR≤
on each of the n copies of LR≤

as we de-

fine the relation R≤ on M(S) to make this so. Also M(S) |= P i(x) → P j(x)

if i ≤ j because all tuples are realized as part of an archetype sequence.

All that is left to check is (Saturation for Finite Sequences of Archetypes),

(Homogeneity of Archetype Sequences), the (Amalgamation of Archetype Se-

CHAPTER 8. MULTIPLE TREES 215

quences) and the condition on limit colors (this is because (Saturation for

Finite Sequences of Archetype) implies (Saturation on Archetypes) in each

language).

Well (Saturation for Finite Sequences Archetypes) is easy. Lets say we

have a j-tuple x ∈M(S) and we want to show it can be extended to a color

archetype sequence A such that A(ik) = Bk for a finite ordered sequence

〈ik : k ∈ p < ω〉.

First notice it suffices to consider extending by a single element (as do-

ing this multiple times gets us any extension). Lets say x comes into the

construction at stage i. In particular then, x is a subtuple of some i-tuple

y ∈ M (i,i). We know then that there must be an extension of ats(y) to an

archetype sequence D(y, a) such that D implies

(1) If z ⊆ x, ik ≤ i < ik+1 then ‖za‖i = ‖za‖ik

(2) ctype(x, a) = Bk

(3) The color of any other subtuple of y which contains a must have color

−∞.

The reason such an extension must exist is because the only three conditions

which must be preserved by an extension of an archetype sequence are

(1) All subtuples must have strictly greater color than the tuple they are

contained in

(2) If i > j then the ith color must be at least as great as the jth.

(3) All archetype sequences of 1-tuples must be contained in S

CHAPTER 8. MULTIPLE TREES 216

and the conditions on S being full were designed to make this work.

As for (Amalgamation of Archetype Sequences), that is easily seen to

hold as well. Say we have a pair of archetypes C,D realized in the model.

Then, by construction they are realized by disjoint tuples x,y respectively,

for the first time at stage i(= max{|x|, |y|}). But then by construction, at

stage i+ 1 we see that ‖xy‖r = −∞ for each r ≤ n, ∅ 6= x′ ⊆ x, ∅ 6= y′ ⊆ y

(Homogeneity for Archetype Sequences) trivially holds because if we

have two elements x,y which realize the same archetype sequence then

they must be realized as subtuples of some a, b respectively. Now let C =

ctype(x, c). We can then amalgamate ctype(b) and C around y (because

we know M(S) satisfies (Amalgamation for Archetype Sequences)) and get

an archetype D which must be an extension of ctype(b) consistent with the

Spectra and with S. Hence D must be realized as an extension of b and

that will give us the extension of y we need to witness (Homogeneity for

Archetype Sequences)

The limit condition on colors is satisfied by virtue of the fact that all

archetype sequences preserve the condition on limit colors and that the co-

ordinate of a limit ordinal α ≤ n in an element X of a full S is the limit of

the coordinates of X which are less than α.

Lemma 8.3.4.5. {〈αi : i ≤ n〉 : (∃a ∈ N)|a| = 1, (∀i ≤ n)‖a‖i = αi} = S

Proof. This is immediate from the construction.

Lemma 8.3.4.6. If x ∈M(S) with archetype sequence C, and D ≤ C such

that the archetype sequence of each individual element in the domain of D is

in S, then D is realized as an extension of x.

CHAPTER 8. MULTIPLE TREES 217

Proof. This is just an iterated use of the construction at stage i+1 (iterated

the number of times necessary to get the domain to have the same size as

the domain of D)

8.3.5 Second Construction of Models

8.3.5.1 Introduction

In Section 8.3.4 we started with a collection of consistent archetype se-

quences for 1-tuples and showed we could construct a model which realized

them. In this section we will go through a similar construction but this time

we will start with a model N of T nΩ and we will construct a collection of new

models of T nΩ each with the same archetype sequences. This will allow us to

show that each model of T nΩ with an uncountable spectrum (and without a

tuple of color ∞) has a large number of models which are L∞,ω equivalent

to it.

We know by Theorem 8.3.3.2 any two models with the same archetype

sequences are L∞,ω equivalent. So, what we are going to do is construct a col-

lection of uncountable models which all have the same archetypes sequences

but which have a different number of realizations of the archetypes. To be

specific, we know that each archetype sequence must be realized infinitely

often, but we have no way of forcing what the actual number of these real-

izations are.

What we will do in this section is take a model of T nΩ and modify the

sizes of the infinite tuples to get new models which are L∞,ω to our original

but not isomorphic to it. When we limit ourselves to the case when n = 1,

CHAPTER 8. MULTIPLE TREES 218

this will allow us (among other things) to get a ω-categorical L∞,ω complete

sentence of Lω1,ω which has κω many models of size ℵκ.

8.3.5.2 The Construction

Definition 8.3.5.1. Let N |= T nΩ and let κ(N) = sup{‖a‖i : i ≤ n, a ∈ N}.

Let D = D(N){〈D,m〉 : (∃x ∈ N)|x| = m ∧ ats(x) = D〉}. Let f : D →

ORDand define D(f) = {D : (∃n)〈D,n〉 ∈ dom(f)}

The idea behind the construction is that for every tuple in N and every

possible extension of that tuple in N there are infinitely many elements all

of which realize that extension. So we want to ensure that for each extension

of an archetype sequence D which is realized in N there are ℵf(D) many

extensions realized in our model.

Stage 1:

For each 〈D, 1〉 ∈ D let KD = {ki : ki are elements i ∈ ℵf(D) such that

ats(ki) = D}

Let M (1,1) =
⋃

〈D,1〉∈DKD

Let M (j,1) = {x ⊆M (1,1) : |x| = j and ‖x‖r = −∞ if i > 1}

Notice that |M (1,1)| = sup{κ,ℵf (D) : 〈D, 1〉 ∈ D}

Stage i+1:

For each x ∈ M (i,i) and each archetype sequence D of arity i + 1 such that

D(xy) → ats(x) ≤ D and 〈D, i + 1〉 ∈ D let Bx,D = {bx,Dm : m ∈ ℵf (D) and

each bx,Dm is new}.

Then, for each b ∈ Bx,D let ats(xb) = D.

Now let M (1,i+1) = M (1,i) ∪
⋃

x∈M(i,i),〈D,i+1〉∈D B
x,D. So all that is left is to

assign colors to the j-tuples. Let M (j,i+1) = {x ⊆ M (1,i+1) : |x| = j}. Now if

CHAPTER 8. MULTIPLE TREES 219

y ∈M (j,i+1) we have three cases:

1) y ∈M (j,i): Then just have the color of y in M (j,i+1) be the same as it

was in M (j,i).

2) y = zbx,Di , z ⊆ x: Then have the color of y be that determined by D.

3) Otherwise: ‖y‖r = −∞ for r ∈ n.

Notice that this procedure is almost identical to the one in Section 8.3.4.

In particular it puts a color on all i + 1-tuples of M (1,i+1) in a unique and

consistent way (this is important as it means we can amalgamate tuples in

a unique and consistent way). However, there is one point which we will

need to check for later. That is that any archetype realized in M (i,j) is also

realized in N . But, this is the case because all archetypes of tuples of M (i,j)

consist of collections of archetypes of N which have all colors −∞ on their

over lap. And, because N |= (Amalgamation of Archetype Sequences) we

know that all such archetypes are in fact realized in N . Also notice that

|M (j,i+1)| = sup{κ, f(D) : 〈D, j〉 ∈ D, j ≤ i+ 1}

Let M (i,ω) =
⋃

j∈ωM
(i,j). Let M(f) = M (1,ω) along with the structure

that for each x ∈ M(f), P r(x) iff x ∈ M (|x|,ω) and ats(x) → P r(x). In

addition we add M(f) |= Rr
≤(a, b) ↔ ‖a‖r ≤ ‖b‖r and M(f) |= R◦

≤,i,j(a, b) ↔

‖a‖i ≤ ‖b‖j. Notice that |M(f)| = sup{κ, f(D) : 〈D, j〉 ∈ D, j ≤ ω}

This construction mimics the one in the Section 8.3.4 very closely. There

are only two main differences. First, when we look to see which extensions

of a tuple we want, instead of forcing everything that could happen does, we

only force extensions realized in N to be realized (and we always know there

is a valid extension in this strategy because N |= T nΩ). And second, instead

CHAPTER 8. MULTIPLE TREES 220

of adding only ω many extensions of a given tuple with a given archetype

sequence we allow ourselves to choose how many we want to add.

Claim 8.3.5.2. Let x ∈ M(f). Let γr(x) = ‖x‖r as determined by the

archetype assigned to it in the construction (i.e. M (|x|,ω)). Let M(f) |=

γ∗r (x) = ‖x‖r. Then γr(x) = γ∗r (x).

Proof. First notice that we ensured by our construction that the archetype

of every finite tuple of M(f) is determined in our construction (just let i be

some stage greater than the point when all elements of x appear for the first

time in the construction to find ‖x‖i.)

Base Case:

Assume γr(x) = 0 or −∞.

We the know that for any y such that xy ∈ M (|xy|,ω), γr(xy) = −∞ as

this fact is realized by the archetype of x. But, then we know that for

all y, γ∗r (xy) = −∞ by how we define color on M(f).

But we also know by construction that γ∗r (x) ≥ 0 (i.e.

M(f) |= P r(x)) iff γr(x) ≥ 0 (i.e. ats(x) in the construction

witnesses that P r(x)). So, we know that γ∗r (x) = γr(x).

Inductive Case:

Assume that if z ∈M(f) and γr(z) < α then γr(z) = γ∗r (z). Let γr(x) = α.

CHAPTER 8. MULTIPLE TREES 221

So we have γ∗r (x) =sup{γ∗r (xy) + 1 : y ∈ M(f)} = sup{γr(xy) + 1 :

xy ∈M(f)} = γr(x)

Now we have the last equality because by construction if ats(x) = D

and C ≤ D and C is realized as an extension of D in N then there is

some extension of x which realizes C. So, because this last equality

holds in N it must also hold in M(f).

So by induction the claim is proved.

Claim 8.3.5.3. M(f) is a model of T nΩ .

Proof. So M(f) obviously models TR on each of the n copies of LR.

Also M(f) |= P i(x) → P j(x) if i ≤ j because all tuples are realized as part

of an archetype sequence.

All that is left to check is (Saturation for Finite Sequences of Archetypes),

(Homogeneity of Archetype Sequences), the (Amalgamation of Archetype Se-

quences) and the condition on limit colors (this is because (Saturation for

Finite Sequences of Archetype) implies (Saturation on Archetypes) in each

language).

Well (Saturation for Finite Sequences Archetypes) is easy. Lets say we

have a j-tuple x ∈M(S) and we want to show it can be extended to a color

archetype sequence A such that A(ik) = Bk for a finite ordered sequence

〈ik : k ∈ p < ω〉.

First notice it suffices to consider extending by a single element (as do-

ing this multiple times gets us any extension). Lets say x comes into the

construction at stage i. In particular then, x is a subtuple of some i-tuple

y ∈ M (i,i). We know then that there must be an extension of ats(y) to an

CHAPTER 8. MULTIPLE TREES 222

archetype sequence D(y, a) such that D implies

(1) If z ⊆ x, ik ≤ i < ik+1 then ‖za‖i = ‖za‖ik

(2) ctype(x, a) = Bk

(3) Any color of other subtuple of y which contains a must have color −∞.

and D is realized in N (this is because N satisfies (Saturation for Finite

Sequences of Archetypes)). Hence this extension must also be realized by

the construction.

As for (Amalgamation of Archetype Sequences), that is easily seen to

hold as well. Say we have a pair of archetypes C,D realized in the model.

Then, they are realized in N and hence there trivial amalgamation is realized

in N (because N |=(Amalgamation of Archetype Sequences)). In particular,

by the construction, this means that the trivial amalgamation is realized in

M(f).

(Homogeneity for Archetype Sequences) trivially holds because if we

have two elements x,y which realize the same archetype sequence D then

they both can be extended to a color archetype sequence E iff the color

archetype sequence D can be extended in N to E.

The limit condition on colors is satisfied by virtue of the fact that all

archetype sequences realized in N satisfy the condition.

Theorem 8.3.5.4. D(f) = ATS(M(f))

Proof. The construction is designed to make this true.

Corollary 8.3.5.5. If D(f) = D(g) then M(f) ≡∞ M(g).

CHAPTER 8. MULTIPLE TREES 223

Proof. This is a direct consequence of Theorem 8.3.5.4

Theorem 8.3.5.6. For each N |= T nΩ (with no tuple of N has color ∞) and

for each ωλ ≥ κ(N) there are at least λκ(N) many distinct models of size ℵλ

which are all L∞,ω to N .

Proof. This is because |D(N)| = κ(N) and so there are λκ many functions

from D → λ

8.4 T nΩ(M)

8.4.1 Introduction

Now that we have defined our theories T nΩ we will want to place an upper

bound the models in a similar way to our theories Ta(M) and TK(M)

8.4.2 Definitions

8.4.2.1 Language

Definition 8.4.2.1. Let M |= TΩ be such that no tuples have any color ∞.

Let LQ = {〈ci : i ∈ M〉, Q(x)} where Q is a 1-ary predicate.

We then define the language LωΩ(M) = LωΩ ∪ ∪LQ.

8.4.2.2 Axioms

Definition 8.4.2.2. Let T nΩ(M) be universal closure of the following Ln∗ (M)

sentences:

CHAPTER 8. MULTIPLE TREES 224

Q:

• Q(x) ↔
∨

a∈M x = ca

• Q |= φ(ca1 , · · · can
) in L2

Ω iff M |= φ(a1, · · · an)

• Q(x)∧¬Q(y) → ¬U(x,y) where U is any predicate other than Rω
≤ and

|x|, |y| > 0

Q(x) → ¬U ′(x) where U ′ is any predicate other than Rω
≤, P

Lω :

• TR on Lω

• (∀x)(∃c)Q(c) ∧Rω
=(x, c)

• (∀c)(∃x)¬Q(x) ∧Rω
=(x, c)

Other Axioms:

• ¬Q |= T ω∗

Now the intent of the Q axioms is that we want to fix everything that

can be said about any element which satisfies Q. In particular, we want the

collection of elements which satisfy Q to have each element named and to

have a spectrum which is the same as M in Lω. We further want nothing

else to be true in Lω of elements which satisfy Q. Finally, we want to be able

to compare the ω-color (using Rω
≤) of elements which satisfy Q with elements

which satisfy ¬Q.

The intent of the Lω axioms is to ensure that ωth spectrum of a model

is the same as the spectrum of M. One point worth mentioning explicitly

CHAPTER 8. MULTIPLE TREES 225

is that even if for all i ∈ ω our model looks like a model of TΩ on Li∗ we

still don’t know that on Lω it will look like a model of TΩ. And, in general

our models will not have the required saturation in the Lωth language to be

models of TΩ. This is because in Lω the color of a tuple has to be the limit

of the color on all other languages. It is for this reason that we need a copy

of TR and not just TS to bound the ωth color.

8.4.3 Theorems

Theorem 8.4.3.1. Let M,N |= T ωΩ (M). If ATS(M) = ATS(N) then

M ≡∞ N .

This proof is almost identical to Theorem 8.3.3.2.

Proof. Let M,N |= T ωΩ (M) with ATS(M) = ATS(N).

Definition 8.4.3.2. Let I = {f : M → N, dom(f) < ω and if qf = a ∈

dom(f),¬Q(a) then ats(qf) = ats(f [qf]) and f preserves atomic formula on

Q}.

We want to show then that I ⊆ I is a sequence of partial isomorphisms.

So if f ∈ I then f preserves all atomic formula by construction. So all that

is left is to show that I ⊆ I has the back and forth property.

Let f ∈ I and a ∈ M . We then need to find a b ∈ N such that

f ∪ (a, b) ∈ I. We can break this into two cases.

Case 1: M |= Q(a)

In this case we know that there is a m ∈ M such that M |= cm = a. Let b

be such that N |= cm = b.

Case 1: M |= ¬Q(a)

CHAPTER 8. MULTIPLE TREES 226

Let M |= σ(qfa) and N |= τ(f [qf]) where σ, tau are color archetype

sequences. In particular we have by assumption that there is some cc ∈

N such that N |= σ(cc) because ATS(N) = ATS(M). But, we then also

must have τ(c) by our conditions on when f ∈ I. So, by (Homogeneity for

Archetypes Sequences) (see Definition 8.3.1.4) there must be a b ∈ N such

that σ(f [qf]b). Further we know that f ∪ (a, b) ∈ I and we are done. I ⊆ I

has the back and forth property, and hence I witnesses that M ≡∞ N .

Corollary 8.4.3.3. Let M,N |= T ωΩ (M) and a ∈M, b ∈ N . Then (M,a) ≡∞

(N, b) iff M ≡∞ N and ats(a) = ats(b).

Proof. This is immediate from the construction of the sequence of partial

isomorphisms (I ⊆ I) from M to N in Theorem 8.4.3.1

Theorem 8.4.3.4. If M |= T nΩ(M) and M has no tuples of color ∞ at any

color then qr(M) ≤ sup{Spec(M)i +m : i ≤ n,m ∈ ω}

Proof. Let D be an archetype sequence and let ϕ=
D(x) say that x satisfies D,

using the formula’s ϕ=
α from Corollary 2.2.2.8. Let ϕM ↔

∧

a∈M(∃x)ϕ=
ats(a)(x)∧

(∀x)
∨

a∈M ϕ=
ats(a)(x)

Notice if N |= ϕM then ATS(N) = ATS(M) (in fact ϕM was de-

fined specifically for this purpose). We then have by Theorem 8.4.3.1 that

if N |= ϕM then N ≡∞ M . We then have that qr(M) ≤ qr(ϕM) =

sup{Spec(M)i +m : i ≤ n,m ∈ ω}

The most important idea behind Theorem 8.4.3.1 and Theorem 8.4.3.4

is that the L∞,ω types of a tuple is determined by it’s archetype sequence.

CHAPTER 8. MULTIPLE TREES 227

8.4.4 Conjectures

Conjecture 8.4.1. If

• Spec(M) = {−∞} ∪ α

• Ξ(α) = α

• M |= T ωΩ (M)

then qr(M) = α

So what is this conjecture saying? This conjecture says that if the spec-

trum of M is “nice enough” (i.e. a fixed point of Ξ) then all models of

T ωΩ (M) have exactly the same quantifier rank. First off notice that we have

by Theorem 8.4.3.4 that the quantifier rank of any model of T ωΩ (M) is at

most α. So what we need to show is that given a model M |= T ωΩ and an

ordinal β < α we can find another model Nβ |= T ωΩ which “looks like” M up

to β.

Now there is an obvious candidate for such a model Nβ. Let i be

some color such that Speci(M) ∩ ORD > β (we know this must exists as

Specω(M) = Spec(M) = α ∪ {−∞}). Now let α > λ > β (we know such

must exists as Ξ(α) = α). Now let Nβ = N i
Ξ(λ)(M) from Theorem 8.3.2.1.

The reason why N i
Ξ(λ)(M) is a candidate to witness that qr(M) is at

least β is that in each component j 6= i M |LjΩ
∼= N |LjΩ and M |LiΩ ≡β N |LiΩ

by Theorem 6.3.2.5. However, there are two points we have to worry about.

The first (and less troublesome) is the fact that given any tuple we now

have to deal with countably many colors. So when we extend a tuple by an

element we have to make sure that the new sequences of colors “look the

CHAPTER 8. MULTIPLE TREES 228

same” up the the appropriate ordinal. As such we will need an analogous

theorem to Theorem 6.3.2.5 to deal with infinite sequences of ordinals. But,

that shouldn’t be to difficult and the techniques used in the proof of Theo-

rem 6.3.2.5 should generalized immediately (although you may need to look

at slightly larger ordinal to guarantee the back and forth argument works).

And it is the authors belief that for “most” λ > β N i
Ξ(λ)(M) ≡β M in LωΩ

(notice this is not the same as being equivalent up to β in LωΩ(M))

The second problem we have to deal with in a proof of Conjecture 8.4.1

is that unlike in the case of T ωΩ we have a method for completely determining

the ω-color of an arbitrary tuple. As it turns out this is a big problem (just as

it was in the case of Ta(M) in Section 7.3). The reason is that if we can nail

down exactly any particular color than given any two sequences of ordinals

which “look the same” we can distinguish them by choosing a color relative

to which the order isn’t preserved

Because of this second reason a new method of proof other than the one

described above will be needed to prove Conjecture 8.4.1. It is because of

that we have the next section.

8.5 T nΛ

8.5.1 Definitions

Definition 8.5.1.1. Let LnΛ = n copies of LΛ

Definition 8.5.1.2. Let T nΛ be the universal closure of the following LnΛ

sentences:

CHAPTER 8. MULTIPLE TREES 229

• P i(x) → P j(x) if i < j ≤ n

• (Homogeneity for Archetypes Sequences) For each m ∈ ω

∧

i≤n

Ei
a(x,y) → (∀b)(∃ma)

∧

i≤m

Ei
a(xai,yb)

• (Amalgamation of Archetype Sequences) For each m ∈ ω

(∀x,y)(∃a, b)
∧

i≤n

Ei
a(x, a) ∧ E

i
a(y, b) ∧

∧

∅6=S⊆a,∅6=S′⊆b,i≤n

¬P i(SS ′)

• If i is a successor ordinals:

– T iΛ, i ≤ n (i.e. TS on the ith copy of LS)

• If i is a limit ordinal:

– P i(x) ↔
∨

j<i P
j(x)

The idea behind this theory is that we want to take n different models

of TΛ and put them all on the same set just as in Section 8.4. The main

difference between this example and that of Section 8.4 is that here we are

not able to compare different colors in different languages (or for that matter

even comparing colors in the same language). As we will see this is actually

useful as it means our proof won’t fall through because we could access the

constant value.

CHAPTER 8. MULTIPLE TREES 230

8.6 T nΛ(M)

8.6.1 Introduction

Now that we have defined our theories TΛ we want to place an upper

bound the models in a similar way to our theories Ta(M), TK(M), and

T nΩ(M).

8.6.2 Definitions

8.6.2.1 Language

Definition 8.6.2.1. Let M |= TΛ be such that no tuples have any color ∞.

Let LQ = {〈ci : i ∈ M〉, Q(x)} where Q is a 1-ary predicate.

We then define the language LωΛ(M) = LωR ∪ ∪LnS ∪ LQ

8.6.2.2 Axioms

Definition 8.6.2.2. Let T nΛ (M) be universal closure of the following Ln∗ (M)

sentences:

Q:

• Q(x) ↔
∨

a∈M x = ca

• Q |= φ(ca1 , · · · can
) in L2

Λ iff M |= φ(a1, · · · an)

• Q(x)∧¬Q(y) → ¬U(x,y) where U is any predicate other than Rω
≤ and

|x|, |y| > 0

CHAPTER 8. MULTIPLE TREES 231

Q(x) → ¬U ′(x) where U ′ is any predicate other than Rω
≤, P

Lω :

• TR on Lω

• (∀x)(∃c)Q(c) ∧Rω
=(x, c)

• (∀c)(∃x)¬Q(x) ∧Rω
=(x, c)

Other Axioms:

• ¬Q |= T nΛ if n is not a limit.

• P i(x) → P j(x) if i ≤ j

Now the intent of the Q axioms is that we want to fix everything that

can be said about any element which satisfies Q. In particular, we want the

collection of elements which satisfy Q to have each element named and to

have a spectrum which is the same as M in Lω. We further want nothing

else to be true in Lω of elements which satisfy Q. And, finally, we want to

be able to compare the ω-color (using Rω
≤) of elements which satisfy Q with

elements which satisfy ¬Q.

8.6.3 Conjectures

Conjecture 8.6.1. If

• Spec(M) = {−∞} ∪ α

• Ξ(α) = α

CHAPTER 8. MULTIPLE TREES 232

• M |= T ωΛ (M)

then qr(M) = α

This conjecture is very similar to Conjecture 8.4.1, except it deals with

T ωΛ (M) instead of T ωΩ (M). Because it deals with different theories it presents

a different set of obstacles than does Conjecture 8.4.1. To understand the

differences we first really have to understand the differences between TΩ and

TΛ.

The most important difference between TΩ and TΛ is that in TΛ we are

not able to say when one color is greater than another. This is important

because it means unlike in the case of T ωΩ we don’t have to worry about

having colors named. Even if we know that some tuple has a fixed ω-color

that doesn’t tell us anything about any other colors of any other tuples in

any other language in the model.

The downside to TΛ though is that we no long have a nice description

of the L∞,ω type of an tuple. In TΩ we know that the L∞,ω type of a tuple is

determined completely by its colors. And what is more we even have a way to

describe when two L∞,ω types in TΩ are the same up to some quantifier rank

(see Theorem 6.3.2.5). In TΛ however we don’t have this easy description.

It is possible to have several (in fact infinitely many) different L∞,ω types

all with the same color (consider a tuple with color ω such that it only has

extensions of color in S for some S unbounded in ω).

It is this reason why TΛ doesn’t work as a component when trying to

build almost scattered sentences. But, in the case where we don’t care about

the number of models or the number of types, but only about the quantifier

rank, then TΛ is a very good sentence to use as a component.

CHAPTER 8. MULTIPLE TREES 233

It is the belief of the author that once a method has been developed for

describing the L∞,ω types over TΛ then Conjecture 8.6.1 should follow from

the techniques developed in this paper.

One last point which we should make is that the theory TP was designed

for use with TΩ and for theories with collections of archetypes. It is the

authors believe that TP is not the theory best suited to deal with TΛ. It is

the authors belief that a better suited theory of trees would be one where

each element can only extend at most one finite sequence, and further where

we deal with finite sequences of elements instead of finite sets (i.e. unordered

sequences) of elements.

One such theory which the author believes would be better suited for

the study of TΛ is the following:

Definition 8.6.3.1. Let LP∗
= {P n

∗ : P n
∗ is an n-ary predicate}.

Definition 8.6.3.2. Let TP∗
be universal closure of the following LP∗

sen-

tences:

• P n
∗ (x,y) ∧ P n

∗ (x′,y) → x′ = x for all tuples x,x′,y

• P n+1
∗ (x0, · · · , xn) → P n

∗ (x1, · · · , xn)

Here the intended interpretation is that P∗ is a tree under the order

〈xi : i ∈ n〉 < 〈xi : i ∈ m〉(m > n). I.e. in the order of extension of finite

sequences.

If we replace TP with TP∗
in the definition of TS, TΛ and T ωΛ then all the

proofs of Section 8.6 should go through unchanged. And, the author believes

that in this context it will be easier to study the L∞,ω types of TΛ and hence

easier to study Conjecture 8.6.1

Appendix A

Vaught Tree

In Part A the most useful measure of the complexity of the collection of

models of a theory was the theories quantifier rank spectrum. However, in the

case that our theories are sufficiently well behaved, there is another method

which highlights the relationships between the model and the theories they

satisfy. This method is the Vaught tree. It is from the Vaught tree that we

get many of our intuitions for what well behaved theories should look like.

In this section we explain what the Vaught tree is, explain the relationship

between the Vaught rank of a model and it’s quantifier rank, and define in

terms of both the Vaught tree what it means for a theory to be Scattered

or Weakly Scattered (and show that they have the same meaning as the

Definition 1.2.3).

234

APPENDIX A. VAUGHT TREE 235

A.1 Vaught Tree

A.1.1 Definition

Definition A.1.1.1. Let L0 be a countable language A0 a countable frag-

ment of L∞,ω(L0) and T0 a complete theory in A0. Let M |= T0 be a model.

We define the theory of M at level α as follows

Limit Ordinals

• Lω∗α(M) =
⋃

ζ<ω∗α Lζ(M).

• Aω∗α(M) =
⋃

ζ<ω∗αAζ(M).

• Tω∗α(M) =
⋃

ζ<ω∗α Tζ(M).

Successor Ordinals

• Lζ+1(M) = Lζ(M) ∪ {Pp : p a complete type in Aζ(M) over Tζ(M)}

• Aζ+1(M) to be the smallest fragment containing Aζ(M) and {Pp(x) ↔
∧

ϕ∈p ϕ(x)}

• Tζ+1(M) =Theory of M in Aζ+1(M).

We define the Vaught Tree of a sentence T ∈ L∞,ω to be

⋃

M |=T,α∈ORD

TheoryAα(M)(M)

ordered by inclusion (where A0 = Frag(T), the smallest fragment containing

T .

APPENDIX A. VAUGHT TREE 236

Intuitively we start with a theory in L∞,ω which is in a fragment A.

Then for each model M we add a node at Level 1 which corresponds to the

theory of M in the language with names for all types over A.

To find out what happens at level 2 we repeat this procedure but this

time looking at each individual node at level 1. We then continue this process

forever and that is the Vaught tree.

The reason why this is useful is we are building up all the models of

our theory 1 piece at a time. As such we get further up the Vaught tree

we have better and better approximations for the model we are trying to

describe. This is especially useful because we know, by Theorem 1.2.2.14,

that for all models there is a Scott sentence, so for any model this “growing”

of the model piece by piece must end.

Theorem A.1.1.2. If T is a sentence of Lω1,ω(L) with M |= T a countable

model. Then there is an ordinal α such that the theory of M in Aα(M) has

no non-principle types.

Proof. See [3] Section 2.

Definition A.1.1.3. We say Scott Rank(M) (sr(M)) = least α such that

Tα(M) is atomic (i.e. has no non-principle types).

A.1.2 Theorems

Theorem A.1.2.1. Each formula in ϕ ∈ Aγ(M) is equivalent to a formula

in ϕ′ ∈ L|κ|,ω (where κ = max{qr(φ) : φ ∈ Aγ(M)}) and such that qr(ϕ′) ≤

max{qr(φ) : φ ∈ A0} + ω ∗ γ.

APPENDIX A. VAUGHT TREE 237

Proof. Assume this is true for all formulas in Aγ(M).

Let ϕ ∈ Aγ+1(M) − Aγ(M).

• If Pp is atomic and not in Aγ(M), let P ′
p = [

∧

ϕ∈p ϕ(x)]

• If ϕ = ¬ψ then let ϕ′ = ¬ψ′.

• If ϕ =
∧

i∈I ψi let ϕ′ =
∧

i∈I ψ
′
i

• If ϕ = (∃x)ψ then ϕ′ = (∃x)ψ′.

If ϕ ∈ Aγ(M) let ϕ′ = ϕ.

So in particular as Aγ+1(M) contains only formulas which are finite conjunc-

tions/disjunctions of finitely quantified formulas of Aγ ∪ Lγ+1 and we know

that qr(ϕ′) ≤ max{qr(φ) : φ ∈ Aγ(M)} ∪ qr(P ′
p) + ω ≤ max{qr(φ) : φ ∈

Aγ + ω}

Hence we are done by induction.

Corollary A.1.2.2. For all countable M |= T , qr(M) ≤ ω ∗ sr(M)

Proof. This is an immediate consequence of Theorem A.1.2.1.

Theorem A.1.2.3. For all countable M |= T sr(M) ≤ qr(M)

Proof. Because the α-characteristic of s ∈ M (see [?] Chapter VII §6.1) is

definable in Aα(M) and because M |= σαN ↔ M ≡α N (see [?] Chapter

VII §5, §6) we know that N |= Tqr(M)(M) implies that M ∼= N if N,M are

countable.

Assume to get a contradiciton that sr(M) > qr(M).

APPENDIX A. VAUGHT TREE 238

So this means that Tqr(M)(M) must have a non-principle type p over

Aqr(M)(M). But then this type must be realized by a countable model

N and omitted by a countable model N ′.

⇒⇐ Any two countable models of Tqr(M)(M) must be isomorphic to

M .

Hence sr(M) ≤ qr(M)

A.2 Well Behaved Sentences

Now that we have seen what the Vaught tree we will can begin to understand

the motivation behind the definition of scattered and weakly scattered.

A.2.1 Weakly Scattered

Definition A.2.1.1. Let A be a countable fragment of Lω1,ω and let T be

a theory in A. T is Weakly Scattered if for all countable fragments A′ ⊇ A

and finitely consistent and ω-complete T ′ ⊆ T in A′, T has only countably

many types over T ′ in A′.

Intuitively weakly scattered theories are nice because not only can we build

the Vaught tree as in the previous section, but we find that for each Tα(M)

we also have a model Mα which is atomic over Tα(M). In this way not only

can we approximate a model by the nodes of the Vaught tree, but we can

approximate a model with other models Mα at those nodes.

APPENDIX A. VAUGHT TREE 239

A.2.2 Scattered

Definition A.2.2.1. Let A be a countable fragment of Lω1,ω and let T be

a theory in A. T is Scattered if it is weakly scattered and for all countable

fragments A′ ⊇ A the set {T ′ ⊆ A′ : T ′ is finitely consistent and ω complete}

is countable.

Intuitively a scattered sentence not only has an atomic model at each node

of the Vaught tree (because it is weakly scattered) but there are only ω many

nodes at any particular level of the tree.

A.2.3 Theorems

A.2.3.1 Consistency

Theorem A.2.3.1. The definition of weakly scattered in Section A.2.1 and

in Section 1.2.3 are the same.

Proof. First of all it is obvious that if a sentence is weakly scattered in the

sense of Section A.2.1 then it is weakly scattered in the sense of Section 1.2.3

by Theorem A.1.2.2 and Theorem A.1.2.3

To see the other direction notice that any countable fragment A is con-

tained in Thα(M) for some countable α and some M .

Theorem A.2.3.2. The definition of scattered in Section A.2.2 and in Sec-

tion 1.2.3 are the same.

Proof. First of all it is obvious that if a sentence is scattered in the sense of

Section A.2.2 then it is scattered in the sense of Section 1.2.3 by Theorem

A.1.2.2 and Theorem A.1.2.3

APPENDIX A. VAUGHT TREE 240

To see the other direction notice that any countable fragment A is con-

tained in Thα(M) for some countable α and M . So any fragment A con-

taining a scattered (in the sense of Definition 1.2.3.7) T must have only

countably many complete theories extending T over A. Further by Corollary

1.2.3.9 any scattered sentence in the sense of Section 1.2.3 is weakly scattered

in the sense of Section 1.2.3 and hence (by Theorem A.2.3.1) is also weakly

scattered in the sense of Section A.2.1.

A.2.3.2 Miscellaneous Theorems

Theorem A.2.3.3. If T is scattered and β < α < ω1 and L(α, T) is Σ1

admissible then 〈{Tβ(M) : M |= T},⊆〉 ∈ L(α, T).

Proof. See [3] Proposition 4.4.

What this says is that the Vaught tree of a scattered theory is completely

determined by the constructible universe over that theory. In particular it

doesn’t matter which set theoretic universe you are in, the Vaught tree over

a scattered theory T will be the same.

Theorem A.2.3.4. If T is a sentence of Lω1,ω which has less than 2ω many

countable models in some generic extension of the universe, then T is scat-

tered.

Proof. See [3]

Corollary A.2.3.5. Let T be a sentence of Lω1,ω. Then in any model of set

theory containing T , T has either ≤ ω, ω1 or 2ω countable models.

Proof. Immediate from Theorem A.2.3.4 and the definition of scattered

APPENDIX A. VAUGHT TREE 241

It is because of this result that scattered sentences were originally studied.

Part B

Strong Separation Theorem for

Projections of Sheaves

242

Chapter 9

Introduction

9.1 Summary

9.1.1 Goal

In Part B we will prove a generalization of the Suslin-Kleene separation

theory for analytic sets. The theorem is called the Suslin-Kleene separation

theorem because it was realized that two separation theorems, one due to

Suslin and one due to Kleene, were really two instances of the same theorem

(See Theorem 9.2.6.5 and Appendix B). In particular, Suslin’s Separation

Theorem says.

Theorem 9.1.1.1 (Suslin Separation Theorem). If A,B are disjoint projec-

tions (onto ωω) of closed sets in ωω × κω then there is a κ + 1-Borel set C

such that C ⊇ A and C ∩B = ∅.

Proof. See [10] Chapter 2E Theorem 2E.1

243

CHAPTER 9. INTRODUCTION 244

As we will see, there is a strong relationship between closed sets in Xω

and sheaves on a particular topological space. It is this relationship that we

will use to replace closed subsets of ωω × κω with sheaves. We then get that

if A and B are “disjoint” subsheafs of W ×K there is a X-Borelian set with

“separates” them.

9.1.2 Approach

In Section 9.2 we will provide the necessary background material so that

the reader can understand the relationship between sheaves and trees and

hence follow the proof of our Separation Theorem.

In Chapter 10 we will introduce and discuss “Partial Grothendieck Topolo-

gies”. These are a weakening of the usual axioms of a Grothendieck Topology

which will allow us to prove our result in a more general context. In this

chapter we will also prove many of the background results concerning par-

tial Grothendieck topologies which we will need in our proof our separation

theorem.

Finally in Chapter 11 and Chapter 12 we will prove our Separation The-

orem. We will prove this in two ways. First, in Chapter 11, we will provide

a proof in the case that our partial site is actually a topological space. The

hope is that by seeing this case first the reader will be able to better follow

the argument. Then, in Chapter 12 we will provide the full proof of the

theorem.

Finally, in Appendix B we will provide a general discussion of the Suslin-

Kleene Separation Theorem.

CHAPTER 9. INTRODUCTION 245

9.2 Background

9.2.1 Definition by Transfinite Induction

One of the most useful methods for defining complicated infinite objects

is by transfinite induction (or transfinite recursion). Transfinite induction

provides a way to assign an object to every node in a well-founded tree, in

terms of the objects which extend the node in the tree. To understand how

it works we first need to know what a well founded tree is.

Definition 9.2.1.1. Let X be a set. A Pretree on X is a subset of X≤ω

closed under initial segments. That is Y ⊆ X≤ω is a pretree if

(P) (∀〈yi : i < n〉 ∈ Y ∩Xn, n ≤ ω)(∀m < n)(〈yi : i < m〉 ∈ Y ∩Xm).

If 〈xi : i ∈ n〉 ∈ X≤ω and m < n we define 〈xi : i ∈ n〉|m = 〈xi : i ∈ m〉

Definition 9.2.1.2. Let X be a set. A Tree on X is a pretree on X which is

closed under “gluing together”. That is Y ⊆ X≤ω is a tree if

(P) Y is a pretree

(S) ((∀n ∈ ω)〈yi : i < n〉 ∈ Y ∩Xn) → 〈yi : i < ω〉 ∈ Y ∩Xω

We say that a tree Y on X is Well-Founded if Y ∩Xω 6= ∅. We say a tree Y

is Ill-Founded otherwise.

We will see later that the condition (P) is exactly what it means to say

that Y is a subpresheaf of a particular sheaf X (for an appropriate topology).

Similarly we will see that the condition (S) is exactly what it means for such

a subpresheaf to be a sheaf (for the appropriate topology).

CHAPTER 9. INTRODUCTION 246

Definition 9.2.1.3. Let Y be a well-founded tree onX. Let F :Powerset(X≤ω×

A) → A. We say that g : X≤ω → A is Defined by Transfinite Induction on

Y using F if

(∀b ∈ X≤ω)g(b) = F ({〈c, g(c)〉 : (∃d ∈ X≤ω)c = b∧d ∧ c ∈ Y })

Theorem 9.2.1.4. If Y is a well-founded tree on X and F :Powerset(X≤ω×

A) → A, then there is a unique g : X≤ω → A definable by transfinite induc-

tion on Y using F .

Proof. This is a standard result. See [10] Chapter 2D.

Lets consider what is going on here. Suppose we have some function

F :Powerset(X≤ω × A) → A and some well founded tree Y and we want to

define g by transfinite induction on Y using F . How should we do this? Well

the procedure we want to use to calculate g(x) for x ∈ X≤ω is as follows

(1) Find the set Yx = {x∧c : c ∈ X≤ω ∧ x∧c ∈ Y } of nodes which are

extensions of x in the tree Y .

(2) Find the value of g on all nodes of Yx

(3) Construct the set Y A
x

= {(y, g(y)) : y ∈ Yx}

(4) Set g(x) = F (Y A
x

)

Now on first examining this procedure step (2) looks a little suspicious.

It looks like (2) implies that in order to calculate g(x) we have to calculate

g(y) for all y extending x. But to calculate g(y) we then have to calculate

g(z) for all z extending each y. But to calculate g(z)

CHAPTER 9. INTRODUCTION 247

At first glance it seems like because of (2) this procedure just doesn’t

make sense. But here is where well-foundedness comes to the rescue. Suppose

this procedure produced a point x where g was undefined. We then know

that x ∈ Y (because if x 6∈ Y then g(x) = F (∅) and hence is defined). But,

the only way in which g(x) could be undefined is if there is some extension

x∧x1 ∈ Y on which g is undefined. But the only way g(x∧x1) is undefined

is if there is some extension x∧x1
∧x2 ∈ Y on which g is undefined In

this way we produce an infinite sequences (x,x∧x1,x
∧x1

∧x2, · · ·) ∈ Y ∩Xω.

So, by condition (S) in Definition 9.2.1.2 we have there must be an infinite

path x∧x1
∧x2

∧ · · · ∈ Y . But, as Y is well founded this can’t happen. So our

original assumption (that g was undefined somewhere) must be false.

9.2.2 Baire Space

Now that we understand what a tree is we can start to look at the space

of all illfounded branches on a set X. Specifically we will look at spaces of

the form Xω. As it turns out such function spaces are very well behaved.

Definition 9.2.2.1. Let Xω ⊇ Of = {x ∈ Xω : (∀i ∈ dom(f))x(i) = f(i)}.

Define O = {
⋃

i∈ω Ofi
: fi ∈ X<ω} as the open sets for the topology on Xω.

If |X| = ω we say Xω is the Baire Space. If |X| = 2 we say Xω is the

Cantor Space

Theorem 9.2.2.2. Xω is complete meterizable. Further if |X| ≤ ω Xω is

separable and if |X| < ω it Xω is compact.

Proof. This is a standard result. See [10] or [6]

CHAPTER 9. INTRODUCTION 248

There are many other very nice properties of Xω and we would refer the

interested reader to [?] or [10].

9.2.3 Trees

One of the many nice properties of topological spaces of the form Xω is

that their topology has a succinct description in terms of trees. But, before

we begin to discuss this we will need some definitions.

Definition 9.2.3.1. Let Y be a pretree on X. Define [Y] = {〈yi : i ∈ ω〉 ⊆

Y } = Y ∩Xω. Similarly if Y ⊆ Xω define 〈Y 〉 = {x|n s.t. n ∈ ω and x ∈ Y }.

So [Y] is the collection of infinite paths through the pretree Y . Similarly

given a set Y ⊆ Xω 〈Y 〉 is the collection of initial segments of elements of

Y .

Definition 9.2.3.2. Let Y be a tree on X. We say that Y is Pruned if

(∀n < ω)(∀y ∈ Y ∩Xn)(∃y ∈ [Y])y|dom(y) = y.

In other words, we say a tree is pruned if every element of the tree

belongs to an infinite path through the tree.

Pruned Tree Unpruned Tree

We are now ready to see the connection between the topology on Xω

CHAPTER 9. INTRODUCTION 249

Theorem 9.2.3.3. For all trees T on X, [T] ⊆ Xω is a closed set. Further,

for every set U ⊆ Xω, [〈U〉] = U (the closure of U in Xω).

Proof. This is a standard result. See [10] Chapter 2C, Theorem 2.C1.

So we find that the closed sets of Xω correspond in a natural way to the

pruned trees on X.

9.2.4 Sheaves on a Topological Space

Before we continue our study of function spaces of the form Xω lets

first review a little bit about the actual objects we will be studying, sheaves.

Recall the definition of a presheaf on a topological space.

9.2.4.1 Presheaves

Definition 9.2.4.1. Let (T,O) be a topological space. Let T be the category

of open sets on X with inclusion maps as morphisms. A Presheaf on T is a

functor SET T
op

.

So, a presheaf on a topological space X is a function which assigns to

each open set U a set P (U). In addition, for all open U ⊆ V the presheaf

gives us a map P (iV,U) : P (V) → P (U) in such a way that the maps com-

mute. I.e. if U ⊆ V ⊆ W then P (iW,U) = P (iW,V) ◦ P (iV,U).

To better understand the definition of presheaf, lets consider what presheaves

look like on a very simple topological space.

Definition 9.2.4.2. Let On = {i ∈ ω : i ≤ n}. Let Oω = {O:n ≤ ω}. Define

ω = (ω,Ow).

CHAPTER 9. INTRODUCTION 250

Now what does this topological space look like? Well the only open

sets are those which are initial segments of ω or all of ω. (Notice that this

topological space is closed under arbitrary unions and intersections as they

correspond to sup, inf respectively).

b

0
b

1
b

2
· · ·
ω

So what does a presheaf P on ω look like? Well we know that for each

n ≤ ω P (n) is a set of elements. What is more, if m < n then there is a map

P (in,m) : P (n) → P (m) such that P (in,m) ◦ P (ik,n) = P (ik,m).

Now this looks an awful lot like the condition (P) from Definition 9.2.1.2

of a tree. To make this even clearer, lets consider a special type of presheaf X

where X(n) = Xn and let X(in,m) : X(n) → X(m) simply ignore everything

after the first m elements of the sequence. Now lets consider a presheaf

Y ֌ X.

The presheaf condition simply says that whey you ignore the tail end of

an element of Y (n) (beyond m) you get an element of Y (m). In particular

if we let Y =
⋃

n≤ω Y (n) ⊆ X≤ω then the presheaf condition says if

[(∀〈yi : i < n〉 ∈ Y ∩Xn, n ≤ ω)] → (∀m < n)(〈yi : i < m〉 ∈ Y ∩X≤m).

But this is exactly what condition (P) says in Definition 9.2.1.2.

CHAPTER 9. INTRODUCTION 251

9.2.4.2 Sheaves

Now that we understand the relationship between presheaves and pre-

trees in X≤ω lets consider what the sheaves look like. Recall the definition

of a sheaf on a topological space.

Definition 9.2.4.3. Let (T,O) be a topological space. Let P be a presheaf

on T . We say that {xi : i ∈ I} is a compatible set of elements for P if

xi ∈ P (Ui) and P (iUi,Ui∩Uj
)(xi) = P (iUj ,Ui∩Uj

)(xj).

We say that P is a Sheaf on T if for all {xi : i ∈ I}, a compatible set of

elements for P , there is a unique x ∈ P (U) (where U =
⋃

i∈I dom(xi)) such

that P (iU,Ui
)(x) = xi.

We say that a presheaf is a sheaf if any time we have a collection of

elements which pairwise “agree on their intersection”, we can glue them

together uniquely.

Lets consider what this means for presheaves on our topological space

ω. The first thing we have to consider is the ways in which is it possible

to “cover” a set. In other words, when is it possible to find 〈Ui : i ∈ I〉

such that U =
⋃

i∈I Ui for a U of our choosing. Well, if U is a finite open

set in our topology then the only way U =
⋃

i∈I Ui is if U = Ui for some i

(this is because union corresponds to taking sup). Hence any time we have

a compatible family of elements on Ui’s, where
⋃

i∈I Ui = U = n for some

n < ω , the “gluing together” process simply returns the element already on

n (we know one such element must exist because n = Ui for some i)

All that is left is to consider is the case when U = ω. Once again, if

CHAPTER 9. INTRODUCTION 252

ω = Ui for some i then the gluing just returns the element of the compatible

family whose domain is ω. So lets assume ω 6= Ui for all i ∈ I. In this

case we know that the Ui are finite and cofinal in ω. In particular we know

that we can generate uniquely a consistent sequence 〈xi : i ∈ ω〉 such that

P (in,m)(xn) = xm and xn ∈ P (n) (because the xi are a compatible collection).

Hence we know that any such sequence uniquely determines an element of

P (ω) (and trivially any element of P (ω) determines such a sequence).

In particular if we consider our presheaf Y (n) ⊆ X≤n then the sheaf

condition corresponds to saying

(∀n ∈ ω)〈yi : i < n〉 ∈ Y ∩Xn(= Y (n)) → 〈yi : i < ω〉 ∈ Y ∩Xω(= Y (ω))

But this is exactly the condition (S) in Definition 9.2.1.2.

So in fact we can consider trees on X as nothing more than subsheaves

on ω of X. It is also worth mentioning explicitly the following theorem

Theorem 9.2.4.4. Let · be the closure operator induced by the Grothendieck

topology on T . Then a presheaf P is a sheaf if and only if P = P .

Proof. See [9] Chapter V

Hence the closed presheaves on ω which are subsheaves of X are essen-

tially the same thing as the closed subsets of Xω. It is this relationship which

will inspire our generalization of the Suslin-Kleene separation theorem.

9.2.5 Partial Topologies

Before we continue we will need to understand the exact nature of what

it means to be a topological space. Recall the definition of a topology.

CHAPTER 9. INTRODUCTION 253

Definition 9.2.5.1. Let X be a set. A Topology on X is a collection of

Open Sets O ⊆ Powerset(X) such that

(1) X ∈ O

(2) If {Ui : i ∈ n} ⊆ O is a finite collection of open sets
⋂

i∈n Ui ∈ O

(3) If {Ui : i ∈ I} ⊆ O is an arbitrary collection of open sets
⋃

i∈I Ui ∈ O

We further say B ⊆ Powerset(X) is a Basis for (X,O) if

• B ⊆ O

• (∀U ∈ O)(∃{Bi : i ∈ I} ⊆ B) U =
⋃

i∈I Bi

Given a set X and a basis B for a topological space we can ask what

the topology on X generated by B will look like? (as an example to keep in

mind recall Definition 9.2.2.1 where the basis is Bω = {
⋃

i∈nOfi
: fi : ω → X

is a partial function with |dom(f)| < ω})

There is one phrase in the definition of topology though which we want

to be careful of. This the phrase “an arbitrary collection”. Given nothing

more than the information above we have no way of knowing what exactly an

arbitrary collection of open sets looks like. In fact, in order to determine what

an arbitrary collection of subsets looks like we need to know what exactly

the Powerset(Powerset(X)) is. And, to determine this we need to know what

model of set theory we are working in.

As it turns out the universe of set theory we are working in, makes a

great deal of difference to the topology generated by a given basis. To see

this consider the topological space R.

CHAPTER 9. INTRODUCTION 254

Definition 9.2.5.2. Let R be the real numbers and let BR = {(a, b) : a, b ∈

Q ∪ {−∞,∞}}. We let the topology on R be that generated by arbitrary

unions and finite intersection of elements of BR.

We then have the following two theorems which are examples of how depen-

dent the topology of the reals is on the background universe.

Theorem 9.2.5.3. In L (the constructible universe) there is a ∆1
2 well or-

dering of the reals and hence a Σ1
2 non-Lebesgue measurable set of reals.

Proof. This is a standard result of set theory.

Theorem 9.2.5.4 (Solovay). Suppose that κ is an inaccessible cardinal and

G is Col(ω, κ)-generic. Then V [G] has an inner model satisfying:

(a) Every set of reals is Lebesgue measurable.

(b) Every set of reals has the Baire property

(c) Every set of reals has the perect set property.

(d) The Principle of Dependent Choices (DC)

Proof. See [5] Chapter 11 for a discussion.

The reason the background universe makes such a big difference on the

topology (even when the basis is the same) is that the background universe

determines what subsets of the basis exists, and hence determine which open

sets exists.

Despite the fact that the background universe makes such a difference

on the actual topology, there is still something which is absolute between the

CHAPTER 9. INTRODUCTION 255

universes (at least in the case of R) . . . the basis. No matter what model of

set theory we are in (assuming it agrees with the real universe on ω), the

rational numbers are the same. In particular this means that, in some sense,

the basis for the topology on the real numbers is the same.

What we would like to do is to consider the pair (R,BR) and look at

what topologies are generated in various universes and compare them. The

problem that we run into when trying to do this is that while the rationals

(and hence the information in BR) is the same no matter what model of set

theory you are in, R itself is not. So, the structure (R,BR) is not absolute.

To see this notice that if RV 6= RW , V ⊆ W , then

[the topological space generated by (RV ,BR)]W

is not the same thing as

[the topological space generated by (RW ,BR)]W = RW

So the only information which is absolute is the basis. We therefore want

a way to express this fact. Specifically we want some piece of information

which is absolute between models of set theory and such that we can recover

our topology from it once we know what universe we are in and the exact set

we are working on.

Definition 9.2.5.5. Let C be a lattice. We then say that C, considered

as a category, is a Partial Topology. Let X be a set. Then a realization

of a partial topology C on X is a faithful functor C →Powerset(X) which

preserves finite inf and finite sup.

The idea is that the lattice C contains all the information about the basis

which is absolute. Our partial topology then assigns to each element of the

CHAPTER 9. INTRODUCTION 256

lattice a unique “Basic Open Set” (i.e. an element of a basis for a topology

on X) in such a way that finite unions and intersections are preserved.

As we will see in Section 10.2.2, our definition of a partial Grothendieck

topology will be the natural generalization of a partial topology.

9.2.6 Admissible Sets

One of the most interesting features of the Suslin-Kleene separation

theorem is that it historically was discovered in two very different forms.

The Suslin Separation Theorem (Theorem 9.1.1.1) as well as the Kleene

Separation theorem

Theorem 9.2.6.1 (Kleene Separation Theorem). If X,Y are disjoint Σ1
1 sets

of reals then there is a hyperarithmatic set Z such that Z ⊇ X and Z∩Y = ∅

Proof. See [10] Chapter 7B

Other than the superficial similarity in form, there is no obvious reason

why the Suslin Separation Theorem and the Kleene Separation Theorem

should be related, let alone should be instances of the same theorem. After

all the Suslin Separation Theorem is talking about topological spaces and sets

in the Borel and Analytic hierarchies whereas the Kleene separation theorem

is talking about sets in the computability hierarchy. The connection between

the Suslin Separation Theorem and the Kleene Separation theorem comes by

considering very carefully which universe you are proving the theorem in.

CHAPTER 9. INTRODUCTION 257

9.2.6.1 Definitions

An admissible set can be thought as a small version of the universe of

sets. In an admissible set we don’t usually have anything near the full power

of ZFC, but we do have enough power to do many of the actual calculations

on sets that we want to do.

Definition 9.2.6.2. Let L(∈) = {∈, R} (where R is a 1-ary predicate and

∈ is a 2-ary predicate). The theory KPU is the universal closure of the

following axioms in L(∈)

Extensionality: (∀x)(x ∈ a↔ x ∈ b) → a = b

Foundation: (∃x)ϕ(x) → (∃x)[ϕ(x)∧ ∀y ∈ x¬ϕ(y)] for all ϕ ∈ L(∈) in which y

does not occur free.

Pair: (∃a)(x ∈ a ∧ y ∈ a)

Union: (∃b)(∀y ∈ a)(∀x ∈ y)(x ∈ b)

∆0 Separation: (∃b)(∀x)(x ∈ b↔ x ∈ a∧ϕ(x)) for all ∆0 formulas in which b does

not occur free.

∆0 Collection: (∀x ∈ a)(∃y)ϕ(x, y) → (∃b)(∀x ∈ a)(∃y ∈ b)ϕ(x, y) for all ∆0

formulas in which b does not occur free.

We say a structure (A, ǫ) is an Admissible Structure if (A, ǫ) |= KPU . We

say a set A is an Admissible Set if A is transitive and (A,∈) is an Admissible

Structure.

Admissible sets have been studied in great detail over the years. For

CHAPTER 9. INTRODUCTION 258

more information see [2] or [7].

Definition 9.2.6.3. Let (A,∈) be an admissible set. If b ∈ A we say that

b is A-Finite. If B ⊆ A is ∆1 definable over A in L(∈) we say that B is

A-Recursive. If B ⊆ A is Σ1 definable over A in L(∈) we say that B is

A-Recursively Enumerable.

9.2.6.2 The Relationship between Suslin’s and Kleene’s Separa-

tion Theorems

Before we compare Suslin’s and Kleene’s separation theorems we need a

definition.

Definition 9.2.6.4. Let W (X,Y) =Lattice Generated by 〈(X × Y)<ω,≤〉

with s ≤ t if s is an initial segment of t. Then define Code(α,X, Y) as follows.

• Code(0, X, Y) = obj(W (X,Y))

• Code(ω ∗ α,X, Y) =
⋃

λ<ω∗αCode(λ,X, Y)

• Code(β + 1, X, Y) =Code(β,X, Y) ∪ {(¬, a) : a ∈Code(β,X, Y)} ∪

{(∪, a) : a ⊆Code(β,X, Y), |a| = ω}

As we have already seen (see Section 9.2.5) the actual Borel sets in ωω depend

heavily on actual value of ωω (and hence the set theoretic universe we are

working in). However, the actual informal contained in the Borel sets (as with

the closed sets) is in some sense more absolute than the sets themselves. This

is what Code(α,X, Y) is meant to define. Intuitively we want to think of an

element of Code(α,X, Y) as procedure for constructing a Borel sets of rank

CHAPTER 9. INTRODUCTION 259

α which is independent of the actual set values of (ωω)V (where V is our set

theoretic universe.)

Now we can see how both the Suslin Separation Theorem and the Kleene

Separation theorem are really special cases of the following

Theorem 9.2.6.5. Let A be an admissible set containing W (X,Y). Then

there is an A-recursively enumerable function such that

• B :Code(1, X, Y) ∩ A×Code(1, X, Y) ∩ A→Code(ω1, X, Y) ∩ A

• The domain of B consists of those codes for closed sets whose projec-

tions to X are disjoint.

• B(a, b) is the code for a Borel set separating the projection of the set

coded by a from the projection of the set coded by b.

Proof. This is immediate from the classical proofs (See [10] Chapter 7B)

We can now see how both the Kleene Separation Theorem and the Suslin

Separation Theorem are special cases of Theorem 9.2.6.5. In the case of the

Suslin Theorem we are letting the admissible set be our model V of ZFC.

In this case we know that any such Borel Set must actually be in V . In the

case of the Kleene Separation theorem we are working in the admissible set

L(ωCK1) and so we know that the code for the Borel set must be in L(ωCK1)

and hence must be constructible in a “computable way”.

The proof of this theorem is then exactly the proof of either the Suslin

Separation Theorem or the proof of the Kleene Separation Theorem except

relativized to the appropriate set.

In fact this presentation of the Suslin-Kleene Separation theorem makes

CHAPTER 9. INTRODUCTION 260

it obvious why, by the following theorem, the Kleene-Separation theorem

relativizes.

Theorem 9.2.6.6. L(ωT1) is admissible for all T ⊆ ω. Further if L(α) is

admissible and α > ω then there is some T such that α = ωT1

Proof. See [11]

9.2.6.3 Admissible Categories

In a similar way to how the Suslin-Kleene separation theorem can be

proved in an admissible set our proof will also be able to be done in an

admissible set. As such we need to be able to define what it means for a

category and for a presheaf to be on an admissible set.

Definition 9.2.6.7. LetA be an admissible set. A category C is anA -Admissible

Category if

• obj(C),morph(C) are A-recursively enumerable sets

• dom, range : morph(C) → obj(C) are A-recursively enumerable func-

tions.

• Identity: obj(C) → morph(C) is A-recursively enumerable

• ◦ : morph(C) × morph(C) → morph(C) is an A-recursively enumerable

Intuitively a category is A-admissible if it is a subset of A and everything we

are interested in is A-recursively enumerable.

Definition 9.2.6.8. Let A be an admissible set, C an A -admissible category.

(C, J) is an A-admissible partial presite if J is A recursively enumerable (and

so in particular J(C) is A-finite for all C ∈ obj(C).

CHAPTER 9. INTRODUCTION 261

Definition 9.2.6.9. Let A be an admissible set, C an A-admissible category.

A presheaf P is A-admissible if

• IN⊆ A × obj(C) is A-recursively enumerable where IN= {(x,C) : x ∈

P (C)}

• EXTENSION: A × morph(C) → A is A-recursively enumerable where

EXTENSION(x, f) = y if x ∈ cod(f) then y = {z ∈ dom(f) : z|f = x}

and if x 6∈ cod(f) then EXTENSION(x, f) is undefined

Intuitively a presheaf is A-admissible if it is a subset of A and it is

possible to calculate in an A-recursively enumerable way what the preimage

of an element under a function is. In particular this means that given any

element x ∈ P (C) and any f : C → D we have {y : y|f = x} is A-finite.

We will see that when we are working in an A-admissible category with

A-admissible presheaves that in fact our methods of induction give us a

function which is A-recursively enumerable.

Chapter 10

Partial Sites and Induction

10.1 Introduction

In this chapter we will not only introduce the idea of a partial Grothendieck

topology but also our method of generalized induction. Partial Grothendieck

topologies are intended to contain just enough information to allow our proof

to go through. Further, any partial Grothendieck topology will generate a

full Grothendieck topology in a way very similar to how a normal topology

on a set can be generated from the basis of the topology.

In Section 10.2 we will give all the necessary definitions of a partial

Grothendieck topology and discuss their relationships with full Grothendieck

topologies and with admissible sets.

In Section 10.3 we will then prove some basic results concerning partial

Grothendieck topologies which we will use in the proof of our separation the-

orem.

In Section 10.4 we will then introduce our generalization of induction to

262

CHAPTER 10. PARTIAL SITES AND INDUCTION 263

sheaves on a partial site and discuss how it relates to admissible sets.

10.2 Definitions

10.2.1 Grothendieck Topology

First we need to recall the definition of a Grothendieck topology.

Definition 10.2.1.1. Let C be a category. We say that a Sieve on an object

C ∈ obj(C) is a subfunctor of Hom(−, C). In other words S is a sieve on C if

S ⊆ Hom(−, C) and (∀g ∈ morph(C))(∀f ∈ S)cod(g) = dom(f) ⇒ f ◦g ∈ S

If S is a sieve on C and h : D → C then h∗(S) = {g : cod(g) = D∧h◦g ∈ S}

is a sieve on D.

A sieve on C is a set of morphisms with codomain C which acts like a

right ideal in algebra under ◦. If we let our category T be a topological space

then a sieve S on C is just a collection of open subsets such that if U ∈ S

and V ⊆ U then V ∈ S.

Definition 10.2.1.2. A Grothendieck Topology on a category C is a function

J which assigns to each C ∈ obj(C) a collection of sieves on C in such a way

that

(i) (Identity) The maximal sieve tC = {f : cod(f) = C} ∈ J(C)

(ii) (Stability Axiom) If S ∈ J(C) and h : D → C then h∗(S) ∈ J(D)

(iii) (Transitivity Axiom) If S ∈ J(C) and R is any sieve on C such that

h∗(R) ∈ J(D) for all h : D → C ∈ S then R ∈ J(C).

CHAPTER 10. PARTIAL SITES AND INDUCTION 264

We say that (C, J) is a Site.

To better see the connection with topologies (and partial topologies) it

is often useful to consider a Grothendieck pretopology.

Definition 10.2.1.3. A Grothendieck Pretopology on a category C with

pullbacks is a function K which assigns to each C ∈ obj(C) a collection of

Covering Families of morphisms with codomain C in such a way that

(i’) (Isomorphism) If f : C ′ → C is an isomorphism then {f} ∈ K(C)

(ii’) (Stability Under Base Change) If {g : Cα → C : α ∈ I} ∈ K(C) and

h : D → C then {fα : Cα ×C D → D} ∈ K(D)

(iii’) (Stability Under Composition) If {fα : Cα → C : α ∈ I} ∈ K(C) and

{gα,β : Dα,β → Cα : β ∈ Iα} ∈ K(Cα) then {fα ◦ gα,β : Dα,β → Cα →

C : α ∈ I, β ∈ Iα} ∈ K(C)

We say (C, K) is a Presite.

Theorem 10.2.1.4. Let K be a Grothendieck pretopology on a category C

with pullbacks. If J is defined as

S ∈ J(C) ⇔ (∃R ∈ K(C))R ⊆ S

then J is a Grothendieck topology on C. Further, every Grothendieck topology

arises in this way from a Grothendieck pretopology (although sometimes the

same Grothendieck topology can arise from different Grothendieck pretopolo-

gies).

Proof. See [9] Chapter III §2

CHAPTER 10. PARTIAL SITES AND INDUCTION 265

Theorem 10.2.1.5. Let 〈Si : i ∈ I〉 be sieves on C ∈ obj(C). Then
⋂

i∈I Si

is a sieve.

Proof. Let f : D → C ∈
⋂

i∈I Si and g : E → D ∈ morph(C). Then we know

f ◦ g ∈
⋂

i∈I Si because each Si is a sieve.

Definition 10.2.1.6. Let F ⊆ Hom(−, C). We define the Sieve generated by F

to be
⋂

{S : S is a sieve and F ⊆ S}

As is often useful when considering Grothendieck topologies, lets look

at what these axioms are saying in the case of standard topological spaces.

Intuitively a covering family {Ui → U : i ∈ I} for an open set U is meant to

represent a collection of open subsets of U such that U =
⋃

i∈I Ui.

Under this interpretation we see that the (Isomorphism) condition in

Definition 10.2.1.3 says that for any set, the set itself is a cover. (Stability

Under Base Change) on the other hand says that if we have a covering family

{Ui ⊆ U : i ∈ I} of U and V ⊆ U then {Ui∩V ⊆ U ∩V : i ∈ I} is a covering

family for V . If we consider a covering family (loosely) as a generalized open

set then this looks like the condition on a topology which says that open sets

are closed under intersection.

The condition of (Stability Under Composition) is the most interesting

of the three conditions though (for our purposes). This says that if we have

a cover {Uα ⊆ U : α ∈ I} of U and for each α we have covers {Vα,β ⊆ Uα :

β ∈ Iα} then in fact {Vα,β ⊆ U : α ∈ I, β ∈ Iα} is a cover of U . Once

again, considering a covering family as (loosely) a generalized open set, this

condition is saying that the union of generalized open sets is a generalized

open set.

CHAPTER 10. PARTIAL SITES AND INDUCTION 266

10.2.2 Partial Grothendieck Topology

As with classical topology hidden in the statement that an arbitrary

union of (generalized) opens sets is a (generalized) open set lurks implicitly

the existance of a fixed universe of set theory. Further, as in the case of

classical topologies, if we were to change the background universe we would

change the sets of morphisms which are forced to be covering families.

Further, in the same way as the partial topologies of Section 9.2.5 were

meant to allow us to talk about the part of a topological space which was

“independent” from the model of set theory we are working in, the following

idea of a partial Grothendieck topology is meant to allow us to talk about

that part which is independent of the model of set theory we are in. We will

do this in a very similar way to how we defined partial topology. We will

simply restrict the unions of open sets which we we require to be open to be

finite unions (hence absolute in all models of set theory which agree on ω)

Definition 10.2.2.1. A Partial Grothendieck topology on a category C is a

function J which assigns to each C ∈ obj(C) a collection of sieves on C in

such a way that

(i) (Identity) The maximal sieve tC = {f : cod(f) = C} ∈ J(C)

(ii) (Stability Axiom) If S ∈ J(C) and h : D → C then h∗(S) ∈ J(D)

(iii) (Finite Transitivity Axiom) If S ∈ J(C) is a sieve such that every

element factors through one of {fi : i ∈ n < ω} and R is any sieve on

C such that h∗(R) ∈ J(D) for all h : D → C ∈ S then R ∈ J(C).

We say that (C, J) is a Partial Site.

CHAPTER 10. PARTIAL SITES AND INDUCTION 267

Definition 10.2.2.2. A Partial Grothendieck Pretopology on a category C is

a functionK which assigns to each C ∈ obj(C) a collection of Covering Families

of morphisms with codomain C in such a way that

(i’) (Isomorphism) If f : C ′ → C is an isomorphism then {f} ∈ K(C)

(ii’) (Stability Under Base Change) If {fβ : Cβ → C : β ∈ I} ∈ K(C) and

h : D → C then there is a cover {gα : Dα → D : α ∈ I ′} ∈ K(D) such

that each h ◦ gα factors through some fβ.

(iii’) (Finite Stability Under Composition) If {fα : Cα → C : α ∈ n} ∈

K(C), n ∈ ω and {gα,β : Dα,β → Cα : β ∈ Iα} ∈ K(Cα) then {fα◦gα,β :

Dα,β → Cα → C : α ∈ I, β ∈ Iα} ∈ K(C)

We say that (C, J) is a Partial Presite.

Theorem 10.2.2.3. Let K be a partial Grothendieck pretopology on C. If J

is defined as

S ∈ J(C) ⇔ (∃R ∈ K(C))R ⊆ S

then J is a partial Grothendieck topology on C. Further, every partial Grothendieck

topology arises in this way from a partial Grothendieck pretopology (although

sometimes the same partial Grothendieck topology can arise from different

partial Grothendieck pretopologies).

Proof. This is exactly the same proof as Theorem 10.2.1.4 (See [9] Chapter

III §2)

This theorem says that the relationship between partial Grothendieck

pretopologies and partial Grothendieck topologies is the same as the rela-

tionship between Grothendieck pretopologies and Grothendieck topologies.

CHAPTER 10. PARTIAL SITES AND INDUCTION 268

This is something we would want to be true of any reasonable generalization

of these concepts.

There is one difference in the definition of a partial Grothendieck topol-

ogy and a Grothendieck topology worth mentioning explicitly. Our condition

(Stability Under Base Change) for partial Grothendieck pretopologies is not

quite the same as the condition we gave for Grothendieck topologies. This is

because in the theorems we will be proving we do not want to assume that

our categories have pullbacks. As such we have had to explicitly assume there

are maps which “look like” pullbacks for the purpose of the axiom. This does

not in any way change the relationships we are studying (it just allows us to

look at a wider collection of categories). Further if we were to replace the

(Stability Under Base Change) condition in the definition of Grothendieck

pretopology with the (Stability Under Base Change) condition in the defini-

tion of partial Grothendieck pretopology all the previously mentioned results

would still go through.

10.2.3 Sheaves

Now that we know what a partial site is we need to define what a sheaf

on such a site is. First though we need some notation.

Definition 10.2.3.1. Let C be a category. We say that Q is a presheaf on

C if Q ∈ SET Cop

.

Definition 10.2.3.2. Let Q be a presheaf on the category C. If x ∈ Q(U)

we say dom(x) = U . If x ∈ Q(U), y ∈ Q(V), f : U → V we say y|f = x if

x = Q(f)(y).

CHAPTER 10. PARTIAL SITES AND INDUCTION 269

Notice that we can assume that Q(U)∩Q(V) = ∅ for U 6= V (and hence

dom(·) is well defined). This is because we can construct a sheaf Q∗ where

Q∗(U) = {(x, U) : x ∈ Q(U)} with the obvious values on morphisms. And,

Q∗ is “essentially the same” as Q (for our purposes) (i.e. they are isomorphic,

ect.)

We will now return to the definition of sheaf. The most important point

to notice is that the definition of a sheaf on a full Grothendieck topology

only refers to the covering sieves which exists and nothing about their rela-

tionships. Hence the definition should generalize to any collection of sieves.

Definition 10.2.3.3. Let C be a category and let S(C) be a collection of

sieves on C ∈ obj(C). Let P be a presheaf on C (P ∈ SET Cop

). We say P

is a sheaf for S if for each α ∈ S(C) P (C) is an equalizer in the following

diagram

P (C) Π
f ∈ α

P (dom(f)) Π
f, g

f ∈ α
dom(f) = cod(g)

P (dom(g))
e

a

p

where

• e(x) = 〈P (f)(x) : f ∈ α〉

• p(〈xf : f ∈ α〉) = 〈xf◦g : cod(g) = dom(f), f ∈ α〉

• a(〈xf : f ∈ α〉) = 〈P (g)(xf) : cod(g) = dom(f), f ∈ α〉

Lets go through exactly what this definition is saying. Suppose α ∈ S(C)

and we have a collection of 〈xf : f ∈ α〉 such that

• xf ∈ P (dom(f))

CHAPTER 10. PARTIAL SITES AND INDUCTION 270

• For all g ∈ morph(C), f ∈ α, xf |g = xf◦g

(we call such a collection a Compatible collection for a covering sieve α).

Then in fact there is a unique element x ∈ P (C) such that P (f)(x) = xf .

Lets consider the case when our category comes from a topological space.

In this case we know that a sieve α on an open set U is just a cover of U

where V ′ ⊆ V ∈ α → V ′ ∈ α. In this case a compatible collection is a set

{xV : V ∈ α} such that if V,W ∈ α then xV |V ∩W = xW |V ∩W . Hence a

presheaf P is a sheaf if every compatible collection of elements which agree

on the intersection of their domain comes from a unique element. I.e. can

be “glued” together in a unique way.

10.3 Basic Results

In this section we will prove some basic results concerning partial sites

which will useful later on.

10.3.1 Topology

Theorem 10.3.1.1. Let T be a partial topology. Then (C, T) is a partial

presite where {Ui → U : i ∈ I} ∈ T (U) if sup{Ui : i ∈ I} = U

Proof. This is immediate from the definition of partial topology.

10.3.2 Separation Lemmas

As with the usual proof of the Suslin-Kleene theorem our proof will rely

on the following lemma (and it’s generalization to the case of presheaves).

CHAPTER 10. PARTIAL SITES AND INDUCTION 271

Lemma 10.3.2.1. Let A =
⋃

i∈I Ai, B =
⋃

j∈J Bj, where A,B ⊆ X are sets.

If Ci,j separates Ai from Bj then
⋃

i∈I

⋂

j∈J Ci,j separates A from B.

Proof. Notice that for each i, j, Ai ⊆ Ci,j and so Ai ⊆
⋂

j∈J Ci,j and hence

A ⊆
⋃

i∈I

⋂

j∈J Ci,j.

On the other hand, for each i, j Bj ⊆ X−Ci,j and so B ⊆
⋃

j∈J X−Ci,j

for each i. So B ⊆
⋂

i∈I

⋃

j∈J X − Ci,j and so B ∩
⋃

i∈I

⋂

j∈J Ci,j = ∅

The version for presheaves will follow almost immediately from Lemma

10.3.2.1 by virtue of the fact that intersections and unions on presheaves are

calculated componentwise. But first we have to define what it means for one

presheaf to separate another two.

Definition 10.3.2.2. Let C be a category and let U ∈ obj(C). Let P,Q be

presheaves on C such that

P (U) ∩Q(U) = ∅

We say a presheaf R on C separates P from Q up to U -elements if P ֌ R

and Q(U) ∩R(U) = ∅.

Lemma 10.3.2.3. Let A =
⋃

i∈I Ai, B =
⋃

j∈J Bj, where A,B,Ai, Bj are

presheaves on a category C. If Ci, j separates Ai from Bj up to U-elements

then
⋃

i∈I

⋂

j∈J Ci,j separates A from B up to U-elements.

Proof. First off notice that in the category of presheaves limits/colimits are

computed point wise (see [9]). So, unions and intersections are also calcu-

lated pointwise.

Now notice thatA(U) ⊆ [
⋃

i∈I

⋂

j∈J Ci,j](U) and [B∩
⋃

i∈I

⋂

j∈J Ci,j](U) =

∅ by Lemma ??.

CHAPTER 10. PARTIAL SITES AND INDUCTION 272

One more thing worth mentioning explicitly is that this separation theo-

rem is using
⋃

/
⋂

in the context of presheaves and not sheaves. Hence even

if all Ci,j are sheaves we will not in general have
⋃

i∈I

⋂

j∈J Ci,j is a sheaf (at

least not in the context we are using it).

10.3.3 Qusai-Supremums

Definition 10.3.3.1. Let (C, J) be a partial presite. We say that (C, J) has

quasi-supreumums if for all A,B ∈ obj(C) there is f : A → V, g : B → V

such that {f, g} ∈ J(V) and if f ′ : A→ V ′, g′ : B → V ′ with {f ′, g′} ∈ J(V ′)

then there is a (not necessarily unique) monic αf ′,g′ : V ֌ V ′ such that

A

f ��@
@@

@@
@@

f ′

''PPPPPPPPPPPPPPP

V //
αg′,h′

// V ′

C

g
??~~~~~~~ g′

77nnnnnnnnnnnnnnn

commutes.

One of the nice features of a topological space when dealing with sheaves

is that for any two open sets U, V there is a set U ∪ V such that {U, V } is a

cover of U∪V and for anyW where U ⊆ W and V ⊆ W we know U∪V ⊆ W .

In particular if P is a sheaf and x ∈ P (U), y ∈ P (V) and we want to know

if there is an extension of both x and y in P (i.e. a W , z ∈ P (W) such that

z|U = x and z|V = y) then we only have to look at one set (U ∪ V).

Quasi-supreumums are supposed to be a generalization of this idea (and

trivially any partial presite on a partial order with finite supremums also has

CHAPTER 10. PARTIAL SITES AND INDUCTION 273

quasi-supremums).

Specifically we have the following.

Definition 10.3.3.2. Let (C, J) be a partial presite with quasi-supremums.

Let Q be a sheaf on (C, J) and let f ∈ Q(W). Define

Qf (U) ={s ∈ Q(U) : (∃g : dom(f) → V, h : U → V)(∃a ∈ Q(V))

{g, h} ∈ J(V), a|h = s and a|g = f}

Note that here Q∅ = Q

Theorem 10.3.3.3. Let (C, J) be a partial presite with quasi-supremums. If

Q is a sheaf on (C, J) then so is Qf , and Qf ֌ Q.

Proof.

Claim 10.3.3.4. Qf is a presheaf on C.

Proof. Let x ∈ Qf (U) and let g : U → V , h : dom(f) → V be such that

{g, h} ∈ J(V) and there is a ∈ Q(V) such that x = a|g and f = a|h.

Let k : W → U and g′ : W → V ′, h : dom(f) → V ′ be such that

{g′, h′} ∈ J(V ′) and αg,h : V ′ → V and the following diagram commutes

W
k //

g′

$$I
IIIIIIII U

g

 A
AA

AA
AA

A

V ′ //
αg,h // V

dom(f)

h′
;;vvvvvvvvv h

66lllllllllllllll

So we know x|k = (a|g ◦k) = a|(αg,h ◦g
′) = (a|αg,h)|g

′. But we also have

f = a|h = a|(αg,h ◦ h
′) = (a|αg,h)|h

′. In particular we then have that a|αg,h

witnesses that x|k ∈ Qf (W). So Qf is a presheaf.

CHAPTER 10. PARTIAL SITES AND INDUCTION 274

Claim 10.3.3.5. Qf ֌ Q.

Proof. This is immediate from the definition and the fact that for presheaves

A ֌ B iff A(U) ⊆ B(U) for all U (see [9]).

Claim 10.3.3.6. Qf is a sheaf on (C, J).

Proof. Let 〈pi : Ui → U s.t. i ∈ κ〉 = S be a covering sieve of U and let

xpi
∈ Qf (Ui) such that xpi

|k = xpi◦k if cod(k) = dom(pi). (i.e. 〈xpi
: i ∈ κ〉 is

a compatible sequence of elements for the covering sieve S). We know that

there is a unique element y ∈ Q(U) such that y|pi = xpi
because Q is a sheaf.

Let g : U → V , h : dom(f) → V be such that {g, h} ∈ J(V). Further

let gi : Ui → Vi, hi : dom(f) → Vi be such that {gi, hi} ∈ J(Vi) and such

that (∀i ∈ κ)(∃ai ∈ Q(Vi))ai|gi = xpi
∧ ai|hi = f . We know that these must

exist by the definition of Qf . In particular we have the following diagram.

Ui
pi // +3+3

gi

##G
GG

GG
GG

GG
G U

g

��?
??

??
??

?

Vi
αi

g,h // V

dom(f)

hi

;;wwwwwwwww h

66mmmmmmmmmmmmmmm

Let S ′ = Hom(−, dom(f)) be the trivial covering sieve of dom(f).

We therefore have (by (Finite Stability Under Composition) of Definition

10.2.2.2) that T = g(S) ∪ h(S ′) = {g ◦m : m ∈ S} ∪ {h ◦m′ : m′ ∈ S ′} is a

covering sieve of V .

Next let R = {q ∈ Hom(−, V) : q factors through αig,h ◦ hi or αig,h ◦ gi

for some i ∈ κ} = {q ∈ Hom(−, V) : q factors through h or through g ◦ pi

for some i ∈ κ}.

CHAPTER 10. PARTIAL SITES AND INDUCTION 275

Claim 10.3.3.7. 〈y|pi : i ∈ κ〉 ∪ 〈f |m : m ∈ S ′〉 is a compatible sequence of

elements for the covering sieve T .

Proof. All we need to show is that if g ◦ pi = h ◦m then f |m = xpi
(because

y|pi = xpi
). But αig,h ◦ gi = g ◦ pi and h ◦m = αig,h ◦ hi ◦m. So in particular,

because αig,h is monic, we know gi = hi ◦m. Therefore y|pi = xpi
= a|gi =

a|(hi ◦m) = (a|hi)|m = f |m

So we know that 〈y|pi : i ∈ κ〉 ∪ 〈f |m : m ∈ S ′〉 come from a single element

z ∈ Q(V) such that z|g = y and z|h = f . Hence z witnesses that y ∈ Qf (U).

Hence Qf is a sheaf.

As we will see later these particular sheaves (of the form Qf for a sheaf

Q) play an important role in our construction. It is because of this fact that

our proof only works for partial sites with quasi-supremums.

Theorem 10.3.3.8. Let T be a partial order with pairwise supremums. Then

T has quasi-supremums.

Proof. This is immediate because supremums are obviously quasi-supreumum.

Corollary 10.3.3.9. Let T be a partial topology. Then T has quasi-supremums.

Proof. This is immediate by the definition of a partial topology and Theorem

10.3.3.8.

Theorem 10.3.3.10. Let Q,P be sheaves on a partial site (C, K) with Q ֌

P . If f 6∈ Q(dom(f)) then Qf (V) = ∅ for all V ∈ obj(C).

CHAPTER 10. PARTIAL SITES AND INDUCTION 276

Proof. Assume there exists z ∈ Qf (dom(z)).

Then (∃g : dom(z) → V, h : dom(f) → V)(∃a ∈ Q(V))a|g = z∧a|h = f .

But then f ∈ Q(dom(f)) as Q is a presheaf ⇒⇐.

10.4 Induction

10.4.1 Motivation

Before we continue it is worth talking about how we will generalize the

proof of the traditional Suslin-Kleene theorem. In the classical proof we start

with two pruned trees A,B on ωω × κω and we want to separate the pro-

jections onto ωω of [A] and [B] when the projections don’t intersect. In the

classical proof (as in [10] Chapter 2E) we do this by finding a specific tree

which is definable from the we construct a tree J in terms of the trees A and

B in such a way that J is well-founded if the projections of [A] and [B] don’t

intersect. Then, once we have this tree we define by transfinite induction on

J the Borel set we want to separate the projections.

We would like to do something similar for our separation theorem. How-

ever, there is one obvious problem that we will have to deal with first. In

general our objects will be sheaves and not trees. As such the classical

method of getting a well-founded tree from trees whose projections don’t

intersect just doesn’t work. And, without a wellfounded tree we can’t use

transfinite induction to construct the Borel presheaves. So, the first thing

we will have to do is to find a way to generalize the method of transfinite

induction so that it allows us to deal with sheaves instead of trees.

CHAPTER 10. PARTIAL SITES AND INDUCTION 277

Recall from Section 9.2.1 the way definition by transfinite induction

works. We start with some tree W which has no infinite path through it.

Then for each node in our tree we have some method for assigning a value

to that node based on the values assigned to the nodes which extend it. We

then know that if this procedure does not assign a value to a given node

then we can find some extension of that node where a value wasn’t assigned.

We can then repeat this procedure and get an infinite path through the tree.

But we know (by assumption) that there are no infinite paths through the

tree. Hence our procedure must have assigned a value to each node.

Now recall from Section 9.2.4 our analogy between sheaves and trees.

Specifically we found that trees turn out to be just (particular) sheaves on

the topological space ω. Under this analogy a well founded tree T is just a

sheaf such that T (ω) = ∅. Now lets go through the definition of transfinite

induction again but this time from the vantage point of sheaves on ω.

Suppose we have a sheaf T on ω such that T (ω) = ∅. We want to assign

some value to each element of T (n) for each n ∈ obj(ω). Further, given any

x ∈ T (n) we want to the value of x to be based on the values assigned to the

elements of {y ∈ T (m) : y|n = x}. Now suppose there is a point x0 ∈ T (n0)

that this procedure doesn’t assign a value to. Then we know that for some

n1 ∈ ω (with n0 ⊆ n1) there must be a y ∈ T (n1) such that y|n1 = x0 and

this procedure doesn’t assign a value to y. Lets pick one such and call it x1.

Then, in a similar manner, we can find an x2 ∈ T (n2) where x2|n1 = x1.

So, we have produced a collection of elements x = 〈xi : i ∈ T (ni)〉 where

xi|ni ∩ nj = xj|ni ∩ nj. But we also know that {ni : i ∈ ω} must be a cover

of ω (in the site ω). So, x is a compatible collection of elements for a cover

CHAPTER 10. PARTIAL SITES AND INDUCTION 278

of ω. Hence, because T is a sheaf, there must be a unique element x∗ ∈ T (ω)

such that x∗|ni = xi. But we assumed that T (ω) = ∅. ⇒⇐

So our original assumption that there was an element that this procedure

didn’t assign a value to must be false.

10.4.2 Induction for Sheaves on a Topological Space

Notice that in the case of ω the key idea which allows the induction it

to work is we are able to construct a compatible sequence of elements and

hence we know that there must be an amalgamation. In the case of a general

sheaf on a topological space we are going to try and do something similar.

The procedure will go as follows

10.4.2.1 General Definition

Let (T,O) be a topological space and let 〈Ui : i ∈ κ〉 be a disjoint cover of

T . Now let B,D be sheaves on T such that B(T) = ∅ and B ֌ D. Suppose

we want to assign a value I(x) to each element x ∈ D(U) with U ⊆ T open.

Suppose further that there are functions G, Fi such that G assigns a value to

every x ∈ D(dom(x))−B(dom(x)) and Fi assigns a value to x assuming that

I has been defined on all extensions of x in B(dom(x)∪Ui). Further suppose

we want to define I so that I(x) = G(x) if x ∈ D(dom(x))−B(dom(x)), and

I(x) = Fi(x) for some i ∈ κ otherwise.

To do this we will define I in stages.

• I∅(x) = G(x) if x ∈ D(dom(x))−B(dom(x)) and undefined otherwise.

• Iω∗α =
⋃

γ<ω∗α Iγ

CHAPTER 10. PARTIAL SITES AND INDUCTION 279

• Iβ+1(x) =

– Iβ(x) if Iβ(x) is defined.

– If i is least such that Iβ is defined everywhere on {y ∈ B(dom(x)∪

Ui) : y|dom(x) = x} then Iβ+1(x) = Fi(x).

– Iβ+1(x) is undefined if no such i exists

We then define I(x) = Iα(x) if (∃α)Iα(x) is defined and we say I(x) is

undefined otherwise.

10.4.2.2 I is Defined Everywhere

Claim 10.4.2.1. I(x) is defined on all x ∈ D(dom(x)).

Proof. Assume I(x) is not defined for some x ∈ D(dom(x)).

The first thing to notice is that x ∈ B(dom(x)) because if

x ∈ D(dom(x)) − B(dom(x)) then I(x) = G(x). Next notice that we

also have for each i ∈ κ there is some yi ∈ B(dom(x) ∪ Ui) such that

yi|dom(x) = x and I(yi) is undefined.

But we know that (Ui ∪ dom(x)) ∩ (Uj ∪ dom(x)) = dom(x) (if

i 6= j) and
⋃

i∈κ dom(yi) =
⋃

i∈κ(Ui ∪ dom(x)) = T , because 〈Ui : i ∈ κ〉

is a disjoint cover of T . Hence yi|dom(yi) ∩ dom(yj) = yi|dom(x) =

x = yj|dom(x) = yj|dom(yi) ∩ dom(yj). So 〈yi : i ∈ κ〉 is a compatible

sequence of elements for the cover 〈Ui ∪ dom(x) : i ∈ κ〉 of T . In

particular we know that there must be a unique y ∈ B(T) such that

y|dom(yi) = yi because B is a sheaf. But B(T) = ∅. ⇒⇐

So I is defined on all x ∈ D(dom(x)).

CHAPTER 10. PARTIAL SITES AND INDUCTION 280

Lets go through what is going on here. Just like in classical induction we

want to calculate the value we assign to an element in terms of the elements

which extend it. But, unlike when we are working with trees, in a sheaf on a

topological space there are several different directions in which we can extend

any given element. So, we have to decide which ones we care about.

The way that this induction is set up, if it fails at a point we know it must

also fail at an extension of that point in each direction we are considering.

In other words if x isn’t assigned a value, but it is possible to assign a

value to x once values have been assigned for all extensions of x at U∪dom(x),

then we know there must be an extension of x at U ∪ dom(x) which isn’t

assigned a value either.

However, while we know there is some such point we have no control over

what that point is (other than it extends x). This is why this induction only

works if we consider disjoint covers. Specifically what we have done is allow

the value assigned to x to be defined in terms of the values of x’s extensions

on a whole bunch of different open sets. In this way, if x isn’t assigned a

value, for each open set we consider we will get a single element extending

x. But, we have chosen our open sets so that ANY collection of elements

extending x, whose domains are our open sets, is a compatible collection.

10.4.2.3 Admissible Sets

Before we continue it is worth talking about what happens when we ap-

ply this procedure to A-admissible sheaves. Specifically we have the following

theorem.

Theorem 10.4.2.2. Let A be an admissible set. Let C be an A-admissible

CHAPTER 10. PARTIAL SITES AND INDUCTION 281

category. If B,D are as in Section 10.4.2.1 and are A-admissible presheaves.

Further let F (x, i) = Fi(x), G(x) be A-recursively enumerable functions and

the cover {Ui : i ∈ I} be A-recursively enumberable. Then I(α, x) = Iα(x) is

A-recursively enumerable.

Proof. This is immediate by transfinite induction on an admissible set (see

[2] or [12]).

Theorem 10.4.2.3. Assuming the same condition as Theorem 10.4.2.2 I(ORD∩

A, x) is defined everywhere.

Proof. This is because I(α, x) can be defined by a Σ1 formula over A (because

it is A-recursively enumerable) and {x : I(α, x)} ⊆ {x : I(β, x)} if α ⊆ β.

So the monotone relation corresponding to it yields a fixed point which is

≤ ORD∩A (by [2] Chapter VI Corollary 2.8). But we know that
⋃

α∈ORD{x :

I(α, x)} is defined everywhere in V and so if β is a fixed point of the monotone

relation then
⋃

α∈ORD{x : I(α, x)} =
⋃

α≤β{x : I(α, x)}.

10.4.3 Disjoint Collection

Notice that in order for our construction in Section 10.4.2 to work we

needed a disjoint cover of our topological space T . We needed this because

given any x we wanted to find a collection of extensions of x whose domains

didn’t overlap (outside of dom(x)) and hence we know could be amalgamated

(no matter what they were). However, in the case of a general partial site

it isn’t clear what should take the place of a disjoint cover (which is why we

have the following definition)

CHAPTER 10. PARTIAL SITES AND INDUCTION 282

Definition 10.4.3.1. Let C be a category and let C ∈ obj(C). A Cone over C

is a subset of
⋃

D∈obj(C)

Hom(−, C)

A Co-Cone over C is a subset of

⋃

D∈obj(C)

Hom(C,−)

Definition 10.4.3.2. Let C be a category. Let P be a presheaf on C. We say

M = 〈mi : Di → D s.t. i ∈ I〉 are disjoint for P relative to F = 〈fi : F → Di

s.t. i ∈ I〉 (a co-cone over F) if (∀G = 〈gi : G → Di s.t. i ∈ I〉) a co-cone

over M either:

(1) (∀〈xi ∈ P (Di) : i ∈ I〉)(∀n,m ∈ I)(xn|gn) = (xm|gm).

(2) There is a map G → F (not necessarily unique).

(3) |I| = 1 (e.g. a singleton set is always a set of disjoint sets)

Lets consider what is going on here. We are trying to generalize the idea

of a disjoint cover. Or more specifically, starting with an object F we want

to find a way to extend elements of P (F) so that any collection of extensions

are compatible for a cover of D. But we want to be careful on how we do

this. Specifically, given an x ∈ P (F) we want to find some condition so that

any sequence 〈yi ∈ P (Di)〉 where each yi|mi = x is a compatible sequence.

In order to make this happen we have to make sure that for any G ∈

obj(C) and maps from G to each of the Di which commute with the maps

from Di to D, the restrictions of any combination of our elements give us the

CHAPTER 10. PARTIAL SITES AND INDUCTION 283

same thing (and hence they are compatible).

There are three possible ways we let this happen. First, in (1), we just

strait out require that any restrictions are equal for all elements of P (Di).

This is a very stringent and non-constructive condition. So in addition we

also allow the case where the co-cone factors through our object F . In this

case we know that when checking for compatibility we first go through F .

But we will have by assumption that the compatible sequences all extend the

same element in F and so they must all go to the same thing in G as well

Finally the last case we allow is when the coveringDi’s is a single element

(because then we don’t have to worry about elements being restricted to

incompatible things)

10.4.4 General Induction Argument

Now that we have discussed how we will generalize induction for sheaves

on a topological space, and we have defined our generalization of disjoint

maps for an arbitrary category, we can given an abstract example of our

generalization of the induction argument for sheaves on a partial site.

10.4.4.1 General Definition

Definition 10.4.4.1. Let (C, K) be a partial presite and let C ∈ obj(C).

Let B,D be sheaves on (C, K) such that

• B(C) = ∅

• B ֌ D

CHAPTER 10. PARTIAL SITES AND INDUCTION 284

Let C = {E ∈ obj(C) : (∃f ∈ morph(C))f : E → C}. For each U ∈ C and

each x ∈ B(U) define Mx = {mx
i : U → Mx

i s.t. i ∈ κx}, Nx = {nxi : Mx
i →

Qx s.t. i ∈ κx} where

(1) Nx ∈ K(Qx)

(2) (∃q)q : C → Qx

(3) Nx is disjoint relative to B and Mx

Finally let G :
⋃

E∈C(D(E) − B(E)) → Z and Fi be a function such that if

Fi(x, y) = z then

• y is a function

• dom(y) = {α ∈ B(Mx
i) : α|mx

i = x}

• range(y) = Z

• z ∈ Z

We see that in fact this is exactly the definition we want to make our

induction go through. So we have the following.

Definition 10.4.4.2. Let

• I∅(x) = G(x) if x ∈ D(dom(x))−B(dom(x)) and undefined otherwise.

• Iω∗λ =
⋃

γ<ω∗λ Iγ

• Iβ+1(x) =

– Iβ(x) if Iβ(x) is defined.

CHAPTER 10. PARTIAL SITES AND INDUCTION 285

– If i is least such that Iβ is defined everywhere on {α ∈ B(Mx
i) :

α|mx
i = x} = Xi then let Iβ+1(x) = Fi(x, Iβ|Xi)

– Iβ+1(x) is undefined if no such i exists

We then define I(x) = Iλ(x) if (∃λ)Iλ(x) is defined and we say I(x) is unde-

fined otherwise.

10.4.4.2 I is Defined Everywhere

Claim 10.4.4.3. I(x) is defined on all x ∈ D(dom(x)).

Proof. Assume I(x) is not defined for some x ∈ D(dom(x)).

The first thing to notice is that x ∈ B(dom(x)) because if

x ∈ D(dom(x)) − B(dom(x)) then I(x) = G(x). Next notice that we

then also have for each i ∈ κ there is some yi ∈ B(Mx
i) such that

yi|m
x
i = x and I(y) is undefined.

But we know that Nx is pairwise disjoint relative to B and Mx

and so in particular this means that 〈yi : i ∈ κ〉 generates a compatible

collection of elements on Qx relative to the covering sieve generated by

nxi . Hence we know there is a unique y ∈ B(Qx) such that y|nxi = yi.

But we also know that there is a map q : C → Qx and so in particular

this means that y|q ∈ B(C). ⇒⇐ (by assumption B(C) = ∅)

So I is defined on all x ∈ D(dom(x)).

The point to notice is that our conditions were chosen precisely to give

us enough machinery for our induction argument on sheave on a topological

space to generalize to sheaves on a category.

CHAPTER 10. PARTIAL SITES AND INDUCTION 286

10.4.4.3 Admissible-Sets

Just as in the case of a topological space we get that this construction

is A-recursively enumerable if all of its component are.

Theorem 10.4.4.4. Let A be an admissible set and let C be an A-admissible

category. Following the same notation as in Section 10.4.4.1 if

• B,D are A-admissible presheaves

• M(x, i) = mx
i is A-recursively enumerable

• N (x, i) = nxi is A-recursively enumerable

• q(x) is A-recursively enumerable where q(x) : C → Qx

• F (x, y, i), G(x) are A-recursively enumerable.

then I(α, x) = Iα(x) is A-recursively enumerable.

Proof. This is immediate by transfinite induction on an admissible set (see

[2] or [12]).

Theorem 10.4.4.5. Assuming the same conditions as Theorem 10.4.4.4

then I(ORD ∩ A, x) is defined everywhere.

Proof. This is because I(α, x) can be defined by a Σ1 formula over A (because

it is A-recursively enumerable) and {x : I(α, x)} ⊆ {x : I(β, x)} if α ⊆ β.

So the monotone relation corresponding to it yields a fixed point which is

≤ ORD∩A (by [2] Chapter VI Corollary 2.8). But we know that
⋃

α∈ORD{x :

I(α, x)} is defined everywhere in V and so if β is a fixed point of the monotone

relation then
⋃

α∈ORD{x : I(α, x)} =
⋃

α≤β{x : I(α, x)}.

Chapter 11

Separation Theorem for

Sheaves on a Topological

Spaces

In this chapter we will prove our separation theorem in the context of

sheaves on a topological space. Even though this result is a special case

of Theorem 12.1.1.2 we still believe that it is useful to first consider our

separation theorem in the context of sheaves on a topological space before

looking at sheaves on a partial site.

All the ideas in Theorem 12.1.1.2 are present in this proof. But, because

we know that there is at most a single map between any two objects (i.e. the

inclusion map), the presentation is much cleaner and hence it will (hopefully)

be easier to see the important elements of the proof.

287

CHAPTER 11. SEPARATION FOR TOPOLOGICAL SHEAVES 288

11.1 Notation, Terminology and Basic Results

Definition 11.1.0.6. Let L be a topological space. Define O(L) = {U ⊆

L : U is open}. If P is a presheave on O(L), f : U → V and x ∈ P (V) then

we define the restriction of x to U (x|U) is P (f)(x) (i.e. x|f).

Definition 11.1.0.7. IfA is a sheaf on the topological space L, let PreSh(A) =

subobjects of A in the category of presheaves on the topological space L and

Sh(A) = subobjects of A in the category of sheaves on the topological space

L.

Definition 11.1.0.8. Let Q be a sheaf and let f ∈ Q. We define Qf (U) =

{s ∈ Q(U) : (∃a ∈ Q(dom(s) ∪ dom(f))) a|dom(s) = s and a|dom(f) = f}.

Note that here Q∅ = Q

Theorem 11.1.0.9. The above notation is consistent with Definition 10.3.3.2

Proof. This is because dom(s) ∪ dom(f) is the supreumum of dom(s) and

dom(f) and {dom(f), dom(s)} is a cover for dom(s) ∪ dom(f).

Lemma 11.1.0.10. Let A be a sheaf and Q ∈ PreSh(A). If f 6∈ Q(dom(f))

then Qf (V) = ∅ for all V ∈ O(L).

Proof. This is immediate from the definition of Qf and by virtue of the

fact that for all V ∈ O(L) and all x ∈ Q(V) x|dom(f) 6= f (otherwise

f ∈ Q(dom(f)) because Q is a presheaf.)

We will fix sheaves A and X. These will correspond to ωω and κω in the case

of Suslin’s Separation Theorem.

CHAPTER 11. SEPARATION FOR TOPOLOGICAL SHEAVES 289

Definition 11.1.0.11. Let Q ֌ A×X. Define p[Q](U) to be

{a : (∃x ∈ X(U))(a, x) ∈ Q(U)}

Lemma 11.1.0.12. Let Q ∈ PreSh(A×X). Then p[Q] ∈ PreSh(A).

Proof. Let a ∈ p[Q](U), V ⊆ U . We then know there is an x ∈ X(U) such

that (a, x) ∈ Q(U). So in particular we know (a, x)|V = (a|V, x|V) ∈ Q(V)

because Q is a presheaf. Hence a|V ∈ p[Q](V). So, p[Q] is a presheaf.

It is worth mentioning explicitly that even when Q is a sheaf we have

no reason to believe that p[Q] will be a sheaf. This is because if we have

a compatible collection of elements 〈ai : i ∈ κ〉 where ai ∈ p[Q](Ui), we

know that each one comes from an (ai, xi) ∈ Q(Ui). But, there is no reason

(apriori) why this should mean 〈xi : i ∈ κ〉 is a compatible collection.

Definition 11.1.0.13. The κ-Borelian presheaves on PreSh(A) is the small-

est collection of presheaves closed under κ-Unions and κ-Intersections (in

PreSh(A)) and containing Sh(A)

This is the analog of being κ-Borelian in the descriptive set theory case.

Notice though that this is not analogous to being κ-Borel. Specifically the

collection of κ-Borel sets is the smallest collection closed under κ-Union,

Complementation, and containing the Open Sets. Now while in the context

of ωω, ω-Borelian sets are exactly those which are ω-Borel (See [6] Chapter

I §3 Proposition I.3.7) in the context of sheaves we no longer even have that

¬¬Q = Q and so these concepts are very different.

Definition 11.1.0.14. Let f ∈ Πi∈IAi(U). Define (f)k ∈ Ak(U) the projec-

tion onto the kth component.

CHAPTER 11. SEPARATION FOR TOPOLOGICAL SHEAVES 290

Similarly, if fi ∈ Ai(U) then define 〈fi : i ∈ I〉 ∈ Πi∈IAi(U) to be the

product.

Definition 11.1.0.15. Let U ⊆ T be an open set. We say a presheaf P on

T is U -Complete if for all x ∈ P (V) with V ⊆ U there is a (not necessarily

unique) xU ∈ P (U) such that xU |V = x.

Intuitively the U -Complete presheaves correspond to the pruned trees

(i.e. if X is a set Y ֌ X, then Y is ω-complete if and only if Y considered

as a pretree is pruned.)

11.2 The Separation Theorem

11.2.1 The Theorem

Theorem 11.2.1.1. Let A,X be sheaves. T, S ֌ A × X be U-complete

sheaves such that p[T] ∩ p[S](U) = ∅. Then there is an W -Borelian element

of PreSh(A) which separates p[T] and p[S] in PreSh(A) up to U-elements

where

W = max
{x∈

S
V ⊆U T (V)∪S(V)}

{

min
{〈Ui:i∈κ〉: disjoint cover of U}

{

max
i∈κ

|{y ∈ T (Ui ∪ dom(x)) ∪ S(Ui ∪ dom(x)) : y|dom(x) = x}|}}

(We will talk about where exactly this bound comes from after we have

gone through the proof)

CHAPTER 11. SEPARATION FOR TOPOLOGICAL SHEAVES 291

Proof. For simplicity of notation, if f ∈ A×X×X(U) we are going to define

τ(f) = 〈(f)0, (f)1〉, and σ(f) = 〈(f)0, (f)2〉.

Let J be defined as

f ∈ J(U) ⇔ τ(f) ∈ T (U) ∧ σ(f) ∈ S(U)

Claim 11.2.1.2. J ∈ PreSh(A×X ×X).

Proof. Let f ∈ J(U) and V ⊆ U . So τ(f) ∈ T (U) and σ(f) ∈ S(U). There-

fore τ(f)|V ∈ T (V) and σ(f)|V ∈ S(V). But, τ(f)|V = 〈(f)0|V, (f)1|V 〉

and σ(f)|V = 〈(f)0|V, (f)2|V 〉. So, 〈(f)0|V, (f)1|V, (f)2|V 〉 = f |V ∈ J(V).

Hence J is a subsheaf of A×X ×X.

Claim 11.2.1.3. J ∈ Sh(A×X ×X).

Proof. Let V be an open set in L and let {Vi : i ∈ I} be a cover of V . Let

{fi : i ∈ I} be a set of elements such that fi ∈ J(Vi) and fi|Vi∩Vj = fj|Vj∩Vi.

We know {σ(fi) : i ∈ I} and {τ(fi) : i ∈ I} are also compatible collections

because {fi : i ∈ I} is a compatible collection. So, as S, T ∈ Sh(A×X) there

are unique gS ∈ S(V), gT ∈ T (V) such that gS|Vi = σ(fi) and gT |Vi = τ(fi).

But then (gS|Vi)0 = (gT |Vi)0 so (gS)0 = (gT)0 because A is a sheaf. Hence

there must exist a unique g such that (g)0 = (gS)0 = (gT)0, (g)1 = (gT)1, and

(g)2 = (gS)2. Therefore g ∈ J(V) and so J is a sheaf.

Claim 11.2.1.4. J(U) = ∅

Proof. If f ∈ J(U) then τ(f) ∈ T (U) and hence (f)0 ∈ p[T](U). But we then

also have σ(f) ∈ S(U) and so (f)0 ∈ p[S](U). But then (f)0 ∈ p[T]∩p[S](U).

⇒⇐ (we assumed p[T] ∩ p[S](U) = ∅).

CHAPTER 11. SEPARATION FOR TOPOLOGICAL SHEAVES 292

Our goal will be to find, for each open V ⊆ L and each f ∈
⋃

V ∈O(L)A×

X × X(V), a W -Borelian presheaf Cf which separates p[Tf] from p[Sf] up

to U -elements. Then we can just define our presheaf to be C∅ and we are

done (as T∅ = T, S∅ = S where ∅ is considered the sole element of any sheaf

evaluated at ∅)

We are going to do this in the following way. For each α we are going

to define a partial function Iα :
⋃

V ∈O(L)A × X × X(V) → W−Borelian

presheaves on PreSh(A). We will define this in such a way that if β >

α, f ∈ dom(Iα) then Iβ(f) = Iα(f), and Iα(f) separates p[Tf] ∩ p[Sf] up to

U -elements. And, Iα in no way uses α in defining any of it’s values.

Under these conditions we know that at some ordinal this function sta-

bilizes to a function I. It will be I(∅) which will give us our W -Borelian set

(see Section 10.4).

Lemma 11.2.1.5. p[Tτ(f)] separates p[Tτ(f)] from p[Sσ(f)] up to U-elements.

Proof. This is because p[Sσ(f)] ∩ p[Tτ(f)] ֌ p[S] ∩ p[T] and p[S] ∩ p[T] has

no U -elements so p[Sσ(f)] ∩ p[Tτ(f)] must not either.

11.2.1.1 Definition of Iα

Define Iα as follows:

Base Case:

α is a limit:

Iα =
⋃

β<α Iβ.

CHAPTER 11. SEPARATION FOR TOPOLOGICAL SHEAVES 293

α is not a limit:

If ∃β < α such that Iβ(f) is defined, let Iα(f) = Iβ(f).

If f 6∈ J then:

If τ(f) 6∈ T

Then Tτ(f)(V) = ∅ for all V ∈ O(L) (by Lemma 11.1.0.10). Hence

p[Tτ(f)](V) = ∅ for all V ∈ O(L) as well. So, p[Tτ(f)] is a sheaf and

hence W -Borelian.

But by Lemma 11.2.1.5 we also have p[Tτ(f)] separates

p[Sσ(f)] ∩ p[Tτ(f)] up to U elements.

So we can let Iα(f) = p[Tτ(f)].

Otherwise σ(f) 6∈ S in which case

Then Sσ(f)(V) = ∅ for all V ∈ O(L) (by Lemma 11.1.0.10). Hence

p[Sσ(f)](V) = ∅ for all V ∈ O(L) as well.

So we can let Iα(f) = A.

Cover Condition:

Before we continue with the definition of Iα it is important to notice some-

thing. For each f ∈ A×X ×X(W), U ⊇ W) V we have

Tτ(f)(W) =
⋃

g∈A×X×X(V),g|dom(f)=f

Tτ(g)(W)

Sσ(f)(W) =
⋃

g∈A×X×X(V),g|dom(f)=f

Sσ(g)(W)

because both T and S are U -complete sheaves. As such we also have

p[Tτ(f)](W) =
⋃

g∈A×X×X(V),g|dom(f)=f

p[Tτ(g)](W)

CHAPTER 11. SEPARATION FOR TOPOLOGICAL SHEAVES 294

p[Sσ(f)](W) =
⋃

g∈A×X×X(V),g|dom(f)=f

p[Sσ(g)](W)

Definition 11.2.1.6. For the rest of the definition of Iα, we are going to fix

{Uµ : µ ∈ κ} a disjoint cover of U

If Iα(f) is undefined but ∃µ ∈ κ such that for each g ∈ A × X ×

X(dom(f)∪Uµ) with g|dom(f) = f , Iα(g) is defined then let Uµ be such and

define Iα+1(f) as follows.

First notice by the above that it suffices to construct W -Borelian Dt,ζ,s,η

(for each 〈t, ζ〉, 〈s, η〉 ∈ A×X(Uµ ∪ dom(f)) such that 〈t, ζ〉|dom(f) = τ(f),

and 〈s, η〉|dom(f) = σ(f)) such that Dt,ζ,s,η separates p[T〈t,ζ〉] from p[S〈s,η〉]

up to U -elements.

This is because because we can then let

Iα+1(f) =
⋃

t,ζ

⋂

s,η

Dt,ζ,s,η

and by the Lemma 10.3.2.3 Iα+1(f) separates p[Tτ(f)] from p[Sσ(f)] up to U -

elements, and is W -Borelian because each Dt,ζ,s,η is.

We will break the construction of Dt,ζ,s,η into cases:

Case (1) t = s:

Then 〈s, ζ, η〉 ∈ A×X ×X(Uµ ∪ dom(f)) and 〈s, ζ, η〉|dom(f) = f . So, by

assumption Iα(〈s, ζ, η〉) separates p[Tτ(〈s,ζ,η〉)](= p[T〈t,ζ〉]) from p[Sσ(<s,ζ,η〉)](=

p[S〈s,η〉]) up to U -elements and we can let Dt,ζ,s,η = Iα(〈s, ζ, η〉)

Case (2) t 6= s:

Notice that p[T〈t,ζ〉] ֌ At.

CHAPTER 11. SEPARATION FOR TOPOLOGICAL SHEAVES 295

Assume (to get a contradiction) that ∃a ∈ (At ∩ p[S〈s,η〉])(U).

So, (∃x)〈a, x〉 ∈ S〈s,η〉(U). Hence 〈a, x〉|(dom(〈s, η〉)) =

〈a, x〉|(Uµ ∪ dom(f)) = 〈s, η〉 because Uµ ∪ dom(f) ⊆ U (and the

definition of S〈s,η〉). In particular, a|(Uµ ∪ dom(f)) = s.

We also have a|dom(t) = t because dom(t) ⊆ U and a ∈ At(U).

But, because dom(t) = Uµ ∪ dom(f) we therefore have s = t ⇒⇐.

So (At ∩ p[S〈s,η〉])(U) = ∅ and we can let Dt,ζ,s,η = At as At is a sheaf

and separates p[Tτ(〈s,ζ,η〉)] from p[Sσ(〈s,ζ,η〉)] up to U -elements.

Finally, if Iα(f) is undefined and ∀µ ∈ κ ∃g ∈ A×X×X(dom(f)∪Uµ),

such that g|dom(f) = f , and Iα(g) is undefined then let Iα+1(f) be unde-

fined. Now define I =
⋃

α∈ζ Iα where Iζ = Iζ+1.

Claim 11.2.1.7. I(f) is defined for each f ∈
⋃

W∈O(L),W⊆U(A×X×X)(W).

Proof. Let UD(I) =
⋃

W∈O(L),W⊆U{f ∈ (A×X×X)(U) : I(f) is undefined}

Assume there exists f ∈ UD(I)

By the definition of I (and because f ∈ UD(I)) we know that

for each µ ∈ κ there is some g such that dom(g) = Uµ ∪ dom(f),

g|dom(f) = f and g ∈ UD(I). Let fµ be one such g.

CHAPTER 11. SEPARATION FOR TOPOLOGICAL SHEAVES 296

By assumption, Uµ ∩ Uβ = ∅ if µ 6= β. And so

dom(fµ) ∩ dom(fβ) = dom(f) (if µ 6= β) and hence

fµ|(dom(fµ) ∩ dom(fβ)) = fβ|dom(fµ) ∩ dom(fβ) = f (because

fβ, fµ both extend f).

(Note it is to get this fact that we need {Uµ : µ ∈ κ} is a disjoint

cover of U and not just a cover.)

So, {fµ : µ ∈ κ} is a compatible collection of elements of J (as

I is defined for any element of A × X × X(V) not in J(V) for all

open V ⊆ U). Hence, as J is a sheaf, there must be an element of

J(
⋃

µ∈κ dom(fµ)) from which all of these come. But
⋃

µ∈κ dom(fµ) = U

and J(U) = ∅ by assumption. ⇒⇐

So UD(I) = ∅.

Hence I(∅) is defined, separates p[T] from p[S] up to U -elements and is W -

Borelian.

11.2.2 Corollaries

Lemma 11.2.2.1. If {Ai : i ∈ I} are sheaves, so is
⋂

i∈I Ai.

Proof. Limits are preserved by the inclusion functor Sheaves(L) → Presheaves(L).

(See [9])

Lemma 11.2.2.2. p[
⋃

i∈I Ai] =
⋃

i∈I p[Ai].

Proof. This is true because it is true point wise (i.e. point wise there is a

witness to an element being p[
⋃

i∈I Ai] iff there is a witness to it being in

p[Ai] for some i ∈ I)

CHAPTER 11. SEPARATION FOR TOPOLOGICAL SHEAVES 297

Corollary 11.2.2.3. If {Si,j : i ∈ I, j ∈ J}, {Ti,j : i ∈ I ′, j ∈ J ′} are sheaves

such that p[
⋃

i∈I

⋂

j∈J Si,j]∩ p[
⋃

i∈I′

⋂

j∈J ′ Ti,j](U) = ∅ then p[
⋃

i∈I′

⋂

j∈J ′ Ti,j]

can be separated from p[
⋃

i∈I

⋂

j∈J Si,j] by a max{W, I, I ′}-Borelian presheaf.

Proof. First note that because the intersection of sheaves is still a sheaf it

suffices to consider the case p[
⋃

i∈I Si] ∩ p[
⋃

i∈I′ Ti](U) = ∅.

But, by the definition of projection we have p[
⋃

i∈I Si] =
⋃

i∈I p[Si]. We

also have p[Sj]∩ p[Ti] has no U -elements and so p[Sj] and p[Ti] are separated

up to U -elements by W -Borelian presheaves Ci,j. Hence, by Lemma ??

p[
⋃

i∈I′ Ti], p[
⋃

i∈I Si] are separated up to U -elements by
⋃

i∈I

⋂

j∈I′ Ci,j which

is a max{W, I, I ′}-Borelian presheaf.

11.2.3 Examples

Now that we have proved the theorem it will be worthwhile to go through

a couple of examples and calculate the exactly how complicated our Borelian

presheaves are.

11.2.3.1 ω

So as a first example lets look at our topological space ω and see what

this generalization of the Suslin-Kleene Separation theorem tells us about

what Borelian presheaves can separate the analog of analytic sets.

Lets start by considering the sheaves A = ωω and X = κω. Recall the

definition of W in Theorem 11.2.1.1. In order to calculate W for this space

lets first consider what disjoint covers of ω look like. Well, as the topology on

ω has the property that for any two open sets U, V either U ⊆ V or V ⊆ U

CHAPTER 11. SEPARATION FOR TOPOLOGICAL SHEAVES 298

we know the the only disjoint open cover of any open set is itself. In other

words, the only disjoint open cover of ω is {ω}.

In particular we know that W = maxx∈ωω×κω{|{y ∈ T (ω) ∪ S(ω)}|}.

But, in all but a few cases this will in fact be |ωω|.

However, we already knew that for any space Xω and any disjoint sets

there is a |Xω|-Borel subset separating them (See Theorem B.1.2.3). So in

this particular case we don’t find out anything new.

11.2.3.2 κ

Instead of looking at ω lets consider the topological space κ with the

discrete topology.

Definition 11.2.3.1. For all U ⊆ κ let λκ(U) = {f : U → λ}. If V ⊆ U

and f ∈ λκ(U) let f |V (i) = f(i) for all i ∈ V .

Lemma 11.2.3.2. λκ is a sheaf

Proof. λκ is a presheaf by definition of restriction. Similarly if {xi : i ∈ I} is

a compatible collection where xi and xj agree on dom(xi)∩ dom(xj) and we

can define x(n) = xj(n) for all i ∈
⋃

i∈I dom(xi) and n ∈ dom(xj), and so λκ

is a sheaf.

Now lets consider the sheaves A = λκ, X = λκ. In order to find the

minimum bound on Borelian presheaf, we are going to want to find a cover

which minimizes the number of extensions of each x ∈ λκ × λκ(U) for all U .

Now notice the larger we can make the cover (i.e. the more elements of the

cover) the less extensions there will be to any particular element of the cover.

So we are looking for a maximal disjoint cover.

CHAPTER 11. SEPARATION FOR TOPOLOGICAL SHEAVES 299

Now there is an obvious maximal disjoint open cover which is {{i} :

i ∈ κ}. So lets consider what bound we get with this cover. Well given any

x ∈ λκ × λκ(U) and for all {i} in our cover we need to consider the number

of y ∈ λκ × λκ(U ∪ {i}) such that y|U = x. But, as any such y is just a

function the number of such y is just the |{f : (U ∪ {i} − U) → λ}| = λ.

Further, because this is true for all x and this cover is obviously a max-

imal one we know that in this context W = λ. And more to the point we

know that in fact W is (in general) far less than the trivial upper bound we

knew before of λκ (see Theorem B.1.2.3)

Chapter 12

Separation Theorem for

Sheaves on a Site

In this chapter we will finally prove our separation theorem for sheaves and

presheaves on a partial site.

Definition 12.0.3.3. Let C be a category. We say that a presheaf P on C

is U -complete (for U ∈ obj(C)) if

(∀g : V → U)(∀x ∈ P (V))(∃y ∈ P (U))y|g = x

U -complete presheaves are the generalization of pruned trees to the context

of sheaves on an arbitrary partail site.

Definition 12.0.3.4. IfA is a sheaf on the partial site (C, L), let PreSh(A) =

{ subobjects of A in the category of presheaves on C} and Sh(A) = { sub-

objects of A in the category of sheaves on (C, L)}.

300

CHAPTER 12. SEPARATION FOR SHEAVES ON A SITE 301

Definition 12.0.3.5. Let Q ֌ A×X. Define p[Q](U) to be

{a : (∃x ∈ X(U))(a, x) ∈ Q(U)}

Lemma 12.0.3.6. Let Q ∈ PreSh(A×X). Then p[Q] ∈ PreSh(A).

Proof. Let a ∈ p[Q](U), f : V → U . We then know there is an x ∈ X(U) such

that (a, x) ∈ Q(U). So in particular we know (a, x)|f = (a|f, x|f) ∈ Q(V)

because Q is a presheaf. Hence a|f ∈ p[Q](V) and p[Q] is a presheaf.

Definition 12.0.3.7. The κ-Borelian presheaves on PreSh(A) is the small-

est collection of presheaves closed under κ-Unions and κ-Intersections (in

PreSh(A)) and containing Sh(A).

12.1 Basic Results

12.1.1 The Separation Theorem

First a little notation

Definition 12.1.1.1. Let f ∈ Πi∈IAi(U). Define (f)k ∈ Ak(U) the projec-

tion onto the kth component. Similarly, if fi ∈ Ai(U) then define 〈fi : i ∈

I〉 ∈ Πi∈IAi(U) to be an element of product.

Theorem 12.1.1.2. Let A,X be sheaves on (C, J) where (C, J) is a partial

site with quasi-supremums and an initial object 0. Let T, S ֌ A × X such

that p[T] ∩ p[S](U) = ∅. Then there is a W -Borelian element of PreSh(A)

CHAPTER 12. SEPARATION FOR SHEAVES ON A SITE 302

which separates p[T] and p[S] in PreSh(A) up to U-elements where

W = max
{x∈

S
V ⊆U T (V)∪S(V)}

{

min
{〈Mx

i :i∈κ〉: disjoint cover with the properties in the proof}
{

max
i∈κ

|{y ∈ T (Mx
i) ∪ S(M)xi : y|mx

i (x) = x}|}}

Proof. For simplicity of notation, if x ∈ A×X×X(U) we are going to define

τ(x) = 〈(x)0, (x)1〉, and σ(x) = 〈(x)0, (x)2〉.

Let J be defined as

x ∈ J(V) ⇔ τ(x) ∈ T (V) ∧ σ(x) ∈ S(V)

Claim 12.1.1.3. J ∈ PreSh(A×X ×X).

Proof. Let x ∈ J(Y) and f : V → Y . So τ(x) ∈ T (Y) and σ(x) ∈

S(Y). Therefore τ(x)|f ∈ T (V) and σ(x)|f ∈ S(V). But T (f)(〈a, x〉) =

A × X(f)(〈a, x〉), S(f)(〈a, x〉) = A × X(f)(〈a, x〉) and A × X(f)(〈a, x〉) =

〈A(f)(a), X(f)(x)〉 because T, S are subobjects (i.e. subfuctors) of the sheaf

A×X. So, τ(x)|f = 〈(x)0|f, (x)1|f〉 ∈ T (V) and σ(x)|f = 〈(x)0|f, (x)2|f〉 ∈

S(V). Hence, 〈(x)0|f, (x)1|f, (x)2|f〉 = x|f ∈ J(V) and J is a presheaf of

A×X ×X.

Claim 12.1.1.4. J ∈ Sh(A×X ×X).

Proof. Let V ∈ obj(C) and let {fi : Vi → V s.t. i ∈ I} be a covering

family of V . Let {xi : i ∈ I} be a set of compatible elements such that

xi ∈ J(Vi). Now we know because S, T ∈ Sh(A × X) there are unique

gS ∈ S(V), gT ∈ T (V) such that gS|fi = σ(xi) and gT |fi = τ(xi). But

CHAPTER 12. SEPARATION FOR SHEAVES ON A SITE 303

by construction (gS|fi)0 = (gT |fi)0 so there must exist some g such that

(g)0 = (gS)0 = (gT)0, (g)1 = (gT)1, and (g)2 = (gS)1 (because A is a sheaf).

Therefore g ∈ J(V), and g|fi = xi. So J is a sheaf.

Claim 12.1.1.5. J(U) = ∅.

Proof. If z ∈ J(U) then τ(z) ∈ T (U) and hence (x)0 ∈ p[T](U) and similarly

σ(x) ∈ S(U) and so (x)0 ∈ p[S](U). In particular if J(U) 6= ∅ then p[T] ∩

p[S](U) 6= ∅. But we have assumed for this theorem that p[T]∩ p[S](U) = ∅.

⇒⇐

Now our goal is to find for each U ∈ obj(C) and each x ∈
⋃

U∈obj(C)A×

X × X(U) a W -Borelian set Cx which separates p[Tx] from p[Sx] up to U -

elements. We can then just define our W -Borelian presheaf to be C∅ and we

are done (as T∅ = T, S∅ = S where ∅ is considered the sole element of any

sheaf evaluated at 0)

We are going to do this in the following way. We are going to define a

partial function Iα :
⋃

U∈obj(C)A×X ×X(U) → W−Borelian presheaves on

PreSh(A). We will define this in such a way that if β > α, x ∈ dom(Iα) then

Iβ(x) = Iα(x), Iα(x) separates p[Tx] ∩ p[Sx] up to U -elements, and Iα in no

way uses α in defining any of it’s values.

Under these conditions we know that at some ordinal these functions

stabilizes to a function I. And, it will be I(∅) which will give us our W -

Borelian presheaf separating p[T] from p[S] up to U -elements.

Before we continue we need one lemma.

Lemma 12.1.1.6. p[Tτ(x)] separates p[Tτ(x)] from p[Sσ(x)] up to U-elements.

CHAPTER 12. SEPARATION FOR SHEAVES ON A SITE 304

Proof. This is because p[Sσ(x)]∩p[Tτ(x)] ֌ p[S]∩p[T] and p[S]∩p[T](U) = ∅

so p[Sσ(x)] ∩ p[Tτ(x)](U) = ∅ also.

12.1.1.1 Definition of Iα

Define Iα as follows:

Base Case:

α is a limit:

Iα =
⋃

β<α Iβ.

α is not a limit:

If ∃β < α such that Iβ(f) is defined, let Iα(f) = Iβ(f).

If f 6∈ J then:

If τ(f) 6∈ T

Then Tτ(f)(V) = ∅ for all V ∈ obj(C) by Lemma 10.3.3.10. So,

p[Tτ(f)] is a sheaf and hence W -Borelian.

But by Lemma 11.2.1.5 we also have p[Tτ(f)] separates p[Sσ(f)] from

p[Tτ(f)] up to U elements.

So we can let Iα(f) = p[Tτ(f)].

Otherwise σ(f) 6∈ S in which case

Then Sσ(f)(V) = ∅ for all V ∈ obj(C) (by Lemma 10.3.3.10). So

we can let Iα(f) = A.

CHAPTER 12. SEPARATION FOR SHEAVES ON A SITE 305

Cover Condition:

Before we continue we need to define the covers of our space. For each

x ∈ J(V) define Mx = {mx
i : V → Mx

i s.t. i ∈ κx}, Nx = {nxi : Mx
i → Qx

s.t. i ∈ κx} where

(1) Nx is a cover of Qx in the site

(2) There is a map qx : U → Qx

(3) If r, r′ : Mx
i → V, t : U → V and {r, t}, {r′, t} are covering families of

V then V ∼= U and r = r′.

(4) Nx is disjoint relative to J and Mx

(5) For each i ∈ I

Tτ(x)(V) =
⋃

y|mx
i =x

Tτ(y)(M
x
i)

Sσ(x)(V) =
⋃

y|mx
i =x

Sσ(y)(M
x
i)

Before we continue it is worth discussing what these conditions say. So

the point of (1) and (4) is to get us a disjoint cover of Qx. Now intuitively we

think we would want the cover to be a cover of U but as it turns out we don’t

actually need this. The reason is that we are going to use our disjoint cover

to get an element of J(U). But, if we know there is a map from U → Qx (as

in (3)) then it suffices to know that there is an element of J(Qx).

Item (3) is a little less clear. It is a technical requirement that we will

need to ensure that the presheaf we want actually separates the presheaves

we want it to. Intuitively though (3) is meant to be the generalization of

CHAPTER 12. SEPARATION FOR SHEAVES ON A SITE 306

the fact that in a topological case we only consider V ⊆ U . What it says

is that when ever we have U and another element which cover a third, then

that third element must be isomorphic to U . Further it implies that there is

a unique map from Mx
i to U (because {idU} is a covering family for U). So

in fact, we see that U “looks like” a terminal object.

Finally (5) allows us to get

p[Tτ(x)](V) =
⋃

y|mx
i =x

p[Tτ(y)](M
x
i)

p[Sσ(f)](V) =
⋃

y|mx
i =x

p[Sσ(y)](M
x
i)

And it is worth noticing that (5) isn’t immediate from the previous

axioms. But what it says essentially is that the maps J(mx
i) are surjective.

Now if Iα(x) is undefined but ∃µ ∈ κx such that for each y ∈ A×X ×

X(Mx
µ), such that y|mx

i x, Iα(x) is defined then let µ be the least such and

define Iα+1(x) as follows.

Notice by the above that it suffices to construct W -Borelian Dt,ζ,s,η (for

each 〈t, ζ〉, 〈s, η〉 ∈ A×X(Mx
µ) where 〈t, ζ〉|mx

µ = τ(x), and 〈s, η〉|mx
µ = σ(x))

such that Dt,ζ,s,η separates p[T〈t,ζ〉] from p[S〈s,η〉] up to U -elements.

This is because because we can then let

Iα+1(x) =
⋃

t,ζ

⋂

s,η

Dt,ζ,s,η

And by the Lemma 10.3.2.3 Iα+1(x) separates p[Tτ(x)] from p[Sσ(x)] up to

U -elements, and is W -Borelian because each Dt,ζ,s,η is.

We will break the construction of Dt,ζ,s,η into cases:

Case (1) t = s:

CHAPTER 12. SEPARATION FOR SHEAVES ON A SITE 307

Then 〈s, ζ, η〉 ∈ A × X × X(Mx
µ) and 〈s, ζ, η〉|mx

µ = x. So, by assumption

Iα(〈s, ζ, η〉) separates p[Tτ(〈s,ζ,η〉)](= p[T〈t,ζ〉]) from p[Sσ(〈s,ζ,η〉)](= p[S〈s,η〉]) up

to U -elements and we can let Dt,ζ,s,η = Iα(〈s, ζ, η〉)

Case (2) t 6= s:

Notice that p[T〈t,ζ〉] ֌ At.

Assume (to get a contradiction) that ∃a ∈ (At ∩ p[S〈s,η〉])(U).

So, (∃x)〈a, x〉 ∈ S〈s,η〉(U). But then we know there is a morphism

h : Mx
µ → U and 〈a, x〉|h = 〈s, η〉 (by condition (3) on the covers and

the fact that quasi-supremums exists). But, also by condition (3) on

the covers (and in fact why we had it) h is the unique such. Hence we

must have a|h = t (as a ∈ At.) ⇒⇐. We are assuming s 6= t.

So (At ∩ p[S〈s,η〉])(U) = ∅ and we can let Dt,ζ,s,η = At as At is a sheaf and

separates p[Tτ(〈s,ζ,η〉)] from p[Sσ(〈s,ζ,η〉)] up to U -elements.

Finally, if Iα(x) is undefined and ∀µ ∈ κ, ∃y ∈ A × X × X(Mx
µ), such

that y|mx
i = x and Iα(y) is undefined then let Iα+1(x) be undefined as well.

Now define I =
⋃

α∈ζ Iα where Iζ = Iζ+1.

Claim 12.1.1.7. I(x) is defined for each x ∈
⋃

U∈obj(C)(A×X ×X)(U).

Proof. Let UD(I) =
⋃

U∈ob(C){x ∈ (A×X ×X)(U) : I(x) is undefined}

Assume there exists x ∈ UD(I)

CHAPTER 12. SEPARATION FOR SHEAVES ON A SITE 308

By the definition of I (and because x ∈ UD(I)) we know that

there is some y|mx
µ = x such that dom(y) = Mx

µ and y ∈ UD(I). Let

xµ be one such y.

Now by assumption, {xµ : µ ∈ κx} is a compatible compatible set

of elements for J over the covering family Nx (because I is defined for

all elements which aren’t in J and so we must have xµ ∈ J(Mx
µ) for all

µ). Hence the they must all come from a single element in J(Qx). (This

was why we defined disjointness the way we did. So that it wouldn’t

matter the choices of xµ just so long as they were in the images of the

right objects). But if J(Qx) 6= ∅ then we must have J(U) 6= ∅ as there

is a map from U → Qx by assumption. ⇒⇐

So UD(I) = ∅.

Hence I(∅) is defined, separates p[T] from p[S] up to U -elements and is W -

Borelian.

It is worth mentioning explicitly that if all the presheaves are A-finite

than we can define a “code” which represents the presheaf which separates

p[T] from p[S] up to U -elements in an identical way to Definition 9.2.6.4 and

Theorem 9.2.6.5 and the codes will also be A-Recursively Enumerable.

12.1.2 Corollaries

Lemma 12.1.2.1. If {Ai : i ∈ I} are sheaves, so is
⋂

i∈I Ai.

Proof. Limits are preserved by the inclusion fuctor

Sheaves(C, L) → Presheaves(C, L)

CHAPTER 12. SEPARATION FOR SHEAVES ON A SITE 309

Lemma 12.1.2.2. p[
⋃

i∈I Ai] =
⋃

i∈I p[Ai].

Proof. This is true because it is true point wise (i.e. pointwise there is a

witness to an element being p[
⋃

i∈I Ai] iff there is a witness to it being in

p[Ai] for some i.

Corollary 12.1.2.3. If {Si,j : i ∈ I, j ∈ J}, {Ti,j : i ∈ I ′, j ∈ J ′} are

sheaves such that p[
⋃

i∈I

⋂

j∈J Si,j]∩p[
⋃

i∈I′

⋂

j∈J ′ Ti,j] has no U-elements then

p[
⋃

i∈I′

⋂

j∈J ′ Ti,j] can be separated from p[
⋃

i∈I

⋂

j∈J Si,j] by a max{W, I, I ′}-

Borelian presheaf.

Proof. First note that because the intersection of sheaves is still a sheaf it

suffices to consider the case when p[
⋃

i∈I Si] ∩ p[
⋃

i∈I′ Ti] has no U -elements.

But, by the definition of projection, we have p[
⋃

i∈I Si] =
⋃

i∈I p[Si].

So we also have p[Sj] ∩ p[Ti](U) = ∅ and so p[Sj] and p[Ti] are separated

up to U -elements by W -Borelian presheaves Ci,j. Hence, by Lemma 10.3.2.3,

p[
⋃

i∈I′ Ti], p[
⋃

i∈I Si] are separated up to U -elements by
⋃

i∈I

⋂

j∈I′ Ci,j which

is a max{W, I, I ′}-Borelian presheaf.

Appendix B

Suslin-Kleene Separation

Theorem

B.1 Suslin Theorem

B.1.1 Definition

Definition B.1.1.1. Let T be a set. X ⊆ P (T) is a κ algebra on T if

whenever 〈Ui : i ≤ α ∈ κ〉 ⊆ X then
⋃

i∈ω Ui ∈ X and
⋂

i∈ω Ui ∈ X

Definition B.1.1.2. Let T be a topological space. The κ-Borelian sets on

T is the smallest κ algebra containing the open sets. The κ-Borel sets on T

is the smallest κ algebra containing both the open and closed sets.

Definition B.1.1.3. Let T be a topological space. We say a set A ⊆ T is

κ-Suslin if there is a closed set X ⊆ T × κω such that the projection of X to

T is A (p[X] = A).

310

APPENDIX B. SUSLIN-KLEENE SEPARATION THEOREM 311

Definition B.1.1.4. We say a set is Σ1
1Σ1
1Σ1
1 if it is ω-Suslin. We say a set is Π1

1Π1
1Π1
1

if it is the complement of a Σ1
1Σ1
1Σ1
1 set. We say a set is ∆1

1∆1
1∆1
1 if it is both Σ1

1Σ1
1Σ1
1 and

Π1
1Π1
1Π1
1.

B.1.2 Results

Theorem B.1.2.1 (Suslin Separation Theorem). If A,B are disjoint pro-

jections (onto ωω) of closed sets in ωω × κω then there is a κ+ 1-Borel set C

such that C ⊇ A and C ∩B = ∅.

Proof. See [10] Chapter 2E Theorem 2E.1

Corollary B.1.2.2. A subset of ωω is ω + 1-Borel iff and only if it is ∆1
1∆1
1∆1
1

Proof. See [10] for the implication from left to right. To see the direction

right to left let A be ∆1
1∆1
1∆1
1. Then we know by Suslin’s Separation Theorem that

A and ¬A can be separated by a ω + 1-Borel set B (because they are both

Σ1
1Σ1
1Σ1
1). So we must have B = A.

This is a particularly important consequence of the Suslin Separation theorem

as ω + 1-Borel sets are very common and very useful in mathematics. This

corollary gives us a concrete way to describe the entire class of ω+1-Borel at

once (as opposed to just saying they are the smallest set closed under certain

operations) which is very useful.

Theorem B.1.2.3. Let T be a T0 topological space with A ⊆ T . Then A is

|T | + 1-Borelian.

Proof. Let O(x, y) be open in T such that x ∈ O(x, y) and y 6∈ O(x, y)

(that we can always do this is exactly what it means for the space to be

APPENDIX B. SUSLIN-KLEENE SEPARATION THEOREM 312

T0). Let Bx =
⋂

y∈T O(x, y). Then Bx is |T | + 1-Borelian and Bx = x. So

A =
⋃

x∈ABx is |T | + 1-Borelian

This shows that just being able to be separated two sets by a κ-Borelian set

for some κ isn’t apriori a very strong property for a set to have. Rather what

is important is the bound we can put on κ.

B.2 Kleene Separation Theorem

B.2.1 Definitions

B.2.1.1 Recursion Theory

Definition B.2.1.1. The class of Kleene Schemes relative to g (for g : ω →

ω) is the smallest class of functions which contains the following 3 groups

of “trivial functions”, g and which is closed under the following 3 schemes.

If f is a function defined by Kleene Schemes relative to g, then we say f is

recursive in g

Trivial Functions:

Here, {x1, · · · xk, n} ⊆ ω and c is a constant.

Successor: S(n) = n+ 1

Constant c on k arguments: Ck
c (x1, · · · xk) = c

Projection of k arguments onto the ith: P k
i (x1, · · · xk) = xi

Schemes:

Here,x ∈ ωi, n,m ∈ ω and the range of all functions is ω

APPENDIX B. SUSLIN-KLEENE SEPARATION THEOREM 313

Composition: Given g1, g2, · · · , gj : ωi → ω and h : ωj → ωk then

define f : ω) → ωk:

f(x) = h(g1(x), g2(x), · · · , gj(x)).

Recursion: Given h(n,m, x) and g(x) then define:

f(0, x) = g(x)

f(n+ 1, x) = h(f(n, x), n, x).

Minimization: Given g(n, x) such that (♯)∀x ∈ ωi∃nx ∈ ω such that

g(nx, x) = 0, then define f(x) = µn[g(n, x) = 0] (i.e. f(x) is the least n

such that g(n, x) = 0. If we do not assume (♯), then the functions are

not necessarily defined everywhere, and so we say f is partial recursive.)

If g = id and f is recursive in g then we say f is recursive.

B.2.1.2 Basic Sets

Definition B.2.1.2. A basic space is a pair (X, (N(X, s))s∈ω) with a recur-

sive function R : ω3 → ω such that X is second countable, (N(X, s))s∈ω is an

enumeration (possibly with repetitions) of a countable basis for the topology

of X and

N(X,m) ∩N(X,n) ⇔
⋃

p

N(X,R(n,m, p)),

where R is called the witness function.

Definition B.2.1.3. Let X be a basic space. We say a set S ⊆ X is

semirecursive in g if there is a function f recursive in g such that

S =
⋃

n∈ω

N(X, g(n)).

APPENDIX B. SUSLIN-KLEENE SEPARATION THEOREM 314

Definition B.2.1.4. LetX be a basic space. We say a set S ⊆ X is recursive

if both S and X − S are semirecursive.

Intuitively the basic spaces are meant to be generalizations of ω. They are

designed to give us enough control over the topology to so that we can gen-

eralize the idea of recursive and recursive enumerable sets (which is case

correspond to recursive and semirecursive sets).

B.2.1.3 Hyperarithmatic Sets

Definition B.2.1.5. We define the set of Borel Codes for Σ0
ϕΣ0
ϕΣ0
ϕ to be denoted

BCϕ, by induction on ϕ as follows.

BC0 := {α : α(0) = 0}

BCϕ := {α : α(0) = 1 ∧ (∀n)[{α⋆}(n) ↓ ∧{α⋆}(n) ∈
⋃

ξ<ϕ

BCξ]}

and finally

BC := ∪ϕBCϕ<ω1 .

Definition B.2.1.6. Let X be a basic space. We define the functions πcXϕ :

BCϕ → Σ0
ϕΣ0
ϕΣ0
ϕ inductively over ϕ as follows:

πcX0 (α) := N(X,α(1))

πcXϕ (α) := ∪n(X − πcXβ(n)({α
⋆}(n)))

Where β(n) = µϕ[{α⋆}(n) ∈ BCϕ].Finally

πcX := ∪ϕπc
X
ϕ .

We say πcX(α) is the set with Borel code α.

APPENDIX B. SUSLIN-KLEENE SEPARATION THEOREM 315

Definition B.2.1.7. LetX be a basic space. We say a subsetA is hyperarithmatic in g

if there is a Borel code α recursive in g such that πcXϕ (α) = A for some ϕ. If

A is hyperarithmatic in id then we say A is hyperarithmatic

Intuitively the hyperarithmatic sets are those Borel sets in which there is a

computable way to build up the Borel set from the basic open sets.

Definition B.2.1.8. Let X be a basic space. We say a subset A is Σ1
1(g) if

there is a Borel code α

• α is recursive in g

• πcX×ωω

ϕ (α) = C

• C is closed in X × ω

• A is the projection of C onto X.

We say A is Σ1
1 if it Σ1

1(id)

The Σ1
1 sets are the recursive analog of the ω-Suslin sets.

B.2.2 Results

Theorem B.2.2.1. Let s : ω → ω<ω be a bijection. Then ωω is a basic space

with N(ωω, n) = {x ∈ ωω : x|dom(s) = s} and

R(n,m) = n if s(m) ⊆ s(n)

R(n,m) = m if s(n) ⊆ s(m)

R(n,m) = s−1(∅) otherwise

APPENDIX B. SUSLIN-KLEENE SEPARATION THEOREM 316

Proof. Immediate from the definition of basic space.

Theorem B.2.2.2 (Kleene Separation Theorem). If X,Y are disjoint Σ1
1

sets of reals then there is a hyperarithmatic set Z such that Z ⊇ X and

Z ∩ Y = ∅

Proof. See [10] Chapter 7B

Theorem B.2.2.3. Borel Sets =
⋃

g:ω→ωSets Hyperarithmatic in g

Σ1
1Σ1
1Σ1
1 =

⋃

g:ω→ω Σ1
1(g)

Proof. This follows from Theorem 9.2.6.6. (See [10])

This give a concrete version of Theorem 9.2.6.5.

Index

M − a, 162162162
Thα(M), 23
Xω, 247247247

Baire Space, 247247247
Cantor Space, 247247247

L∞,ω, 161616
Σ1

1(g), 315315315
Ξ, 169169169
κ Algebra, 310310310
ω, 249249249
L∞,ω, 15
∆1

1∆1
1∆1
1, 311311311

Π1
1Π1
1Π1
1, 311311311

Σ1
1Σ1
1Σ1
1, 311311311

Admissible Set, 258258258
Admissible Presheaf, 261261261
Admissible Presite, 260260260
Admissilbe Category, 260260260
KPU, 257257257

Almost Scattered, 292929, 32
Ambiguity Node, 131131131

⇒, 134134134
Consistent Extension, 132132132
Pair, 132132132

Ambiguity Tree, 134134134
Consistent Extension, 135135135
Consistent Pair, 135135135

Ambiguity Trees
⇒, 138138138

Archetype, 100100100

Complete Archetype, 102102102
Consistent Extension, 146146146
Consistent Pair, 145145145
Restricted Archetype, 102, 103102, 103102, 103

Augmented Unitary Tree, 125125125
Consistent Pair, 125125125
Extendible, 126126126

Basic Space, 313313313
Borel

Code
Baire Space, 314314314

Borel Set, 310310310
Borel Code, 258258258

Borelian Set, 310310310

Cell, 120120120
Consistent Extension, 121121121
Consistent Pair, 121121121

Collection of Archetypes
Amalgamation for Archetypes, 585858
Amalgamation for Consistent Pairs

of Archetypes, 585858
Amalgamation of Base Predicates,

666666
ATYPE, 737373
Base Predicate, 646464
Completeness for Archetypes, 585858
Completeness of Consistent Pairs

of Base Predicates, 676767

317

INDEX 318

Completeness of Extra Informa-
tion, 676767

Consistency of ≤, 595959
Consistency of Color, 595959
Consistent Pairs of Archetypes, 575757
Consistent Pairs of Base Predi-

cates, 636363
Extension of 0-Colors, 595959
Extension of 1-Colors, 666666
Extra Information (EI), 646464
Homogeneity for Base Predicates,

666666
Homogeneity of Consistent Pairs

of Archetypes, 666666
Prediction, 656565
Prediction up to a Slant Line, 656565
Restriction of Arity

Restriction of Arity for Consistent
Pairs of Archetypes, 585858

Truth on Atomic Formulas, 575757, 666666
Truth on Color, 575757
Uniqueness of Base Predicate, 676767

Color, 404040
Color Archetype, 46, 464646

Disjoint Collection
Category, 282282282

Forces, 363636
Forest, 121121121

Consistent Extension, 122122122
Consistent Pair, 123123123

Fragment, 212121

Generalized Saturation for Restricted
Archetypes, 99, 105, 106106106

Grothendieck Topology, 263263263
Partial, 266266266

Partial Pretopology, 267267267
Pretopology, 264264264

Hyperarithmatic, 315315315

Kleene Theorem, 256256256, 259, 316

Ordinal Equivalence, 170170170
On Finite Tuples, 172172172
On Sets, 171171171

Partial Isomorphism, 25, 252525
Sequence Of, 252525

Precolors
Consistent Pair, 119119119

Presheaf
Category, 268268268
U -Complete, 300300300
Projection, 300300300

Topological Space, 249249249
Topology
U -Complete, 290290290
Projection, 288288288

Presheaves
Category

Borelian, 301301301
Separate to U -Elements, 271271271
Topology

Borelian, 289289289

Quantifier Rank, 19
Equivalent up to, 222222
Of a Element, 232323
Of a Formula, 212121
Of a Model, 232323
Spectrum, 25

Quasi-Supremums, 272272272

Recursive
Basic Space, 314314314

INDEX 319

Function, 312312312
Semirecursive, 313313313

Relativized Formula, 181818

Scattered, 313131, 32
Vaught Tree, 239239239

Scott Rank, 236236236
Scott Sentence, 24
Sensible Tree, 141141141
Sheaf

Category, 269269269
Topological Space, 251251251

Compatible Set of Elements, 251251251
Sieve, 263263263

Generated by Morphisms, 265265265
Slant Line, 353535, 43
Spectrum, 414141
Suslin Set, 310310310
Suslin Theorem, 243243243, 259, 311

Theory Θ
ATYPE, 151151151
Collection of Archetypes, 157157157
Theory Θ∗, 150150150

Theory R≤, 49
LR, 494949
R=, R<, 494949
TR, 494949

Theory S=, 52
LS, 525252
TS, 525252

Theory T nΛ
LnΛ, 228228228
T nΛ , 228228228
Amalgamation of Archetype Se-

quences, 229229229
Homogeneity for Archetype Sequences,

229229229

Theory T nΛ (M)
LnΛ(M), 230230230
T nΛ (M), 230230230

Theory T nΩ
LnΩ, 202202202
N i
ω∗γ, 205205205

T nΩ , 203203203
Amalgamation of Archetype Se-

quences, 203203203
First Construction, 211211211
Homogeneity for Archetype Sequences,

203203203
Saturation for Finite Sequences of

Archetypes, 203203203
Second Construction, 218218218

Theory T nΩ(M)
LnΩ(M), 223223223
T nΩ(M), 223223223

Theory T nR
L◦
R≤,n

, 200200200
LnR, 200200200
T nR, 200200200
Color Archetype Sequence, 202202202

Extension, 202202202
Theory TΛ, 173173173

LΛ, 173173173
TΛ, 173173173

Theory TΩ, 174174174
LΩ, 175175175
TΩ, 175175175
ATYPE, 176176176

Theory TA, 185185185
Theory Ta

La, 190190190
Ta, 191191191
ats, 192192192

Theory TK , 777777
LK , 565656

INDEX 320

LK(M), 787878
TK , 777777
TK(M), 787878

Theory TP∗

LP∗
, 233233233

TP∗
, 233233233

Theory P, 40
LP , 404040
TP , 404040

Topology, 252252252
Partial Topology, 255255255

Tree, 245245245
Ill-Founded, 245245245
Pretree, 245245245
Pruned, 248248248
Transfinite Induction, 245245245
Well-Founded, 245245245

Trivial Amalgamation
Archetypes, 606060
Consistent Pairs of Archetypes, 616161

Vaught Tree, 235235235

Weakly Scattered, 282828, 32
Vaught Tree, 238238238

Bibliography

[1] J. Barwise and S. Feferman, editors. Perspective in Mathematical Logic.
Springer-Verlag, 1985.

[2] Jon Barwise. Perspective in Mathematical Logic. Springer-Verlag, 1975.

[3] Sacks Gerald. Bounds on weak scattering. 2002.

[4] S Harris. Miracle.

[5] Akihiro Kanamori. Perspectives in Mathematical Logic. Springer-
Verlag, 1997.

[6] Alexander S. Kechris. Graduate Texts in Mathematics. Springer-Verlag,
1994.

[7] H. Jerome Keisler. volume 62 of Studies in Logic and the Foundations
of Mathematics. North-Holland Publishing Company, 1971.

[8] Robin Knight. The vaught conjecture: A counter example. 2002.

[9] Saunders Mac Lane and Ieke Moerdijk. Universitext. Springer-Verlag,
1992.

[10] Yiannis N. Moschovakis. Springer-Verlag, 1980.

[11] Gerald E. Sacks. Countable admissible ordinals and hyperdegrees.

[12] Gerald E. Sacks. Perspective in Mathematical Logic. Springer-Verlag,
1980.

[13] Dana Scott. Logic with denumerably long formulas and finite strings of
quantiiers. The Theory of Models.

321

