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Abstract

We present a unified approach for simultaneously clus-
tering and discovering outliers in data. Our approach is
formalized as a generalization of the k-means problem.
We prove that the problem is NP-hard and then present
a practical polynomial time algorithm, which is guaran-
teed to converge to a local optimum. Furthermore we
extend our approach to all distance measures that can
be expressed in the form of a Bregman divergence. Ex-
periments on synthetic and real datasets demonstrate
the effectiveness of our approach and the utility of car-
rying out both clustering and outlier detection in a con-
current manner. In particular on the famous KDD cup
network-intrusion dataset, we were able to increase the
precision of the outlier detection task by nearly 100%
compared to the classical nearest-neighbor approach.

1 Introduction

Despite their close complementarity, clustering and
anomaly detection are often treated as separate prob-
lems in the data-mining community. This distinction
is not without justification. Often applications are de-
fined in terms of outliers (like in fraud detection, net-
work anomaly detection, etc.) in which case a direct
approach is likely to be more efficient [13, 14]. How-
ever, an important point worth considering is that if
there is no inherent clustering in the data it is unlikely
that there exist any natural outliers.

In this paper we will propose a generalization of the
k-means problem with the aim of simultaneously clus-
tering data and discovering outliers. A näıve approach
is to apply the k-means algorithm and list as outliers
the top ` points that are the furthest away from their
nearest cluster centers. However, there is a subtle point
that needs to be noted: the k-means algorithm itself is
extremely sensitive to outliers, and such outliers may
have a disproportionate impact on the final cluster con-
figuration. This can result in many false negatives: i.e.,
data points that should be declared outliers are masked
by the clustering and also false positives: data points
that are incorrectly labeled as outliers. Thus what is
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Figure 1: The k-means algorithm is extremely sensitive
to outliers. By removing two points (1) and (2), we can
obtain much tighter clusters (the bold circle near 3).
The objective of this paper is to obtain a tight clustering
and report the outliers in an automatic fashion.

required is a more robust version of the k-means algo-
rithm that gracefully handles the presence of outliers.

Figure 1 shows a hypothetical scenario where the k-
means algorithm could potentially be severely affected
by the presence of outliers. In Figure 1(a), if k = 2,
the k-means will force the five data points on the right
into one cluster. On the other hand, if the k-means
algorithm is designed to simultaneously form clusters
and track outliers, a more natural outcome is also shown
in Figure 1(a), where the big cluster has become more
compact (bold circle) and the two data points (1) and
(2) are the outliers. This is precisely what the method
proposed in this paper will be able to achieve in a
computationally efficient manner.

Our main contributions are the following:

• We formulate the (k, `)-means problem of simulta-
neously discovering clusters and outliers as an NP-
hard optimization problem. The optimization prob-
lem paves the way for a systematic and formal anal-
ysis of the outlier detection problem.

• We propose the k-means-- algorithm,1 which given
an input parameter of (k, `), will discover k clusters

1Our algorithm is pronounced “k means minus minus” and in
LATEX is typeset as $k$-means{-}{-}.



and ` outliers in a unified fashion. We show that the
k-means-- algorithm provably converges to a local
optima and the running time is linear in the number
of data points. The algorithm extends to cases when
the similarity metric is a Bregman divergence.

• We have tested the effectiveness of k-means-- on a
large class of synthetic and real datasets, including
an interesting dataset about hurricanes originating
in the Atlantic Ocean in the last five decades.

The rest of the paper is structured as follows. In
Section 2 we describe related work with a special
emphasis on the use of a robust version of Mahalanobis
distance to finding outliers. The (k, `)-means problem
is formalized in Section 3. In Section 4 we describe
our algorithm and prove its properties. In Section 5
we report on a comprehensive set of experiments on
synthetic and real data. Section 6 is a short conclusion.

2 Related work

Outlier detection is a deeply researched problem in both
communities of statistics and data mining [5, 11] — but
with different perspectives.

In data mining, Knorr and Ng [12] proposed a
definition of distance-based outlier, which is free of any
distributional assumptions and is generalizable to multi-
dimensional datasets. Intuitively, outliers are data
points that are far away from their nearest neighbors.

Following Knorr and Ng, several variations and
algorithms have been proposed to detect distance-based
outliers [2, 12, 17]. However, the outliers detected by
these methods are global outliers, i.e., the “outlierness”
is with respect to the whole dataset. Breunig et al. [4]
have argued that in some situations local outliers are
more important than global outliers and cannot be
easily detected by standard distance-based techniques.
They introduced the concept of local outlier factor
(LOF ), which captures how isolated an object is with
respect to its surrounding neighborhood. The concept
of local outliers has subsequently been extended in
several directions [5, 7, 16].

Classical Multivariate Outlier Detection. We
now briefly describe the classical statistical approach
for finding anomalies in multivariate data as it is
germane to our approach: Given an N × d dataset (N
rows, d columns), the (square of) Mahalanobis Distance
between two points x and y is given as

DM (x, y) = (x− y)Σ−1(x− y)T ,

where Σ is the d× d covariance matrix.
For a set S of N d-dimensional points from a normal

distribution, the square of the Mahalanobis distance
follows a χ2

d distribution with d degrees of freedom. It

has been experimentally observed that even when the
data does not strictly follow the normal distribution, the
chi-square distribution is still a good approximation.

As in the case of k-means it is well known that both
the mean and standard deviation are extremely sensitive
to outliers, and one “bad point” can skew the mean and
the variance. We are using the Mahalanobis distance to
find outliers and yet it itself is being effected by outliers.
Thus, a “robustification” procedure is necessary to make
the statistical estimator less sensitive to outliers.

In the statistics literature, the most famous method
for performing such a robustification process is the Mini-
mum Covariance Determinant (MCD) [18]. The MCD
estimator is determined by a subset of points of size
N−`, which minimizes the determinant of the variance-
covariance matrix over all subsets of size N − `. Recall
that the determinant of a d × d matrix Σ is also given
by the product of its eigenvalues, det(Σ) = λ1λ2 . . . λd.
Thus the objective is to identify is a set of size N − `
for which the determinant is minimum. The MCD
algorithm is based on the following observation:

Theorem 2.1. [18] Let S be an N × d dataset. Let S1

be a subset of S of size N − `, and let µS1 and ΣS1 be
the mean and covariance matrix of S1. Compute, the
Mahalanobis distance of all points of S based on µS1

and ΣS1
. Sort the Mahalanobis distance in decreasing

order and select N − ` points with smallest distance.
Let the set be S2. Then

det(S2) ≤ det(S1).

This is a k-means-type of algorithm for k = 1. At each
iteration the value of the determinant does not increase.
However the computation of the determinant requires a
computation of order O(d3) and is practically infeasible
for high-dimensional datasets.

Complexity of MCD. The MCD algorithm proposed
by Rousseeuw [18] only guarantees a local optima.
The computational complexity of MCD was settled by
Bernholt et al. [3] who first proposed a polynomial time

algorithm of complexity O(Nd2) and then proved that
the decision version of MCD when the dimension of the
data varies is NP-hard. Clearly an O(Nd2) algorithm,
while polynomial time, is not practical for modern data-
mining applications.

One of the most interesting aspects of the proposed
approach is that it provides an optimization framework
for an integrated approach to clustering and outlier de-
tection. Similar optimization problems have been stud-
ied in the theoretical computer-science community, in
the context of p-center, k-median, and facility-location
problems [6][8]. In this line of research, approximation



algorithms have been proposed, but their running times
are not practical for very large datasets as they often
require a reduction which entails solving a very large
linear program. Our proposed algorithm is a highly
scalable algorithm, very easy to implement, and in the
spirit of the practical k-means setting, which is one of
the most commonly used algorithms in data mining.

3 Problem definition

In this section we introduce our notation and we present
our problem statement for clustering data with outliers.

We consider a dataset of n points X = {x1, ...,xn}.
We assume a distance function d : X × X → R
defined over pairs of points of X. The most common
setting to consider is when the dataset X consists of
points in the d-dimensional Euclidean space Rd, and the
distance function between pairs of points in X is defined
as the Euclidean distance d(xi,xj) = (

∑d
t=1 |xit −

xjt|2)
1
2 , where xi = (xi1, . . . , xid) is the representation

of xi in Rd, or in general, any other Lp-norm-based
distance. Under certain assumptions, the base setting
can be extended to more general cases, in which the
dataset X consists of points in a metric space and
the distance d is a metric function in the underlying
space. Extensions to non-metric similarity measures
(like Bregman divergence) are also possible [1].

Consider next a set C = {c1, . . . , ck} of k points,
representing potential cluster centers that can be used
for clustering the dataset X. For each x ∈ X we define

c(x | C) = arg min
c∈C
{d(x, c)},

the closest center of x in C. The distance of x ∈ X to
its closest center c(x | C) is simply

d(x | C) = min
c∈C
{d(x, c)} = d(x, c(x | C)).

We define the error of clustering the set X using as
centers the k-point set C as

(3.1) E(X,C) =
∑
x∈X

d(x | C)2.

Note that in the Euclidean setting the set of cluster
centers C may consist of any points of Rd. In the metric-
space setting, sometimes it is necessary to restrict C to
be a subset of the points X provided in the input. The
latter restriction can be overcome when it is possible to
“construct” new objects in the underlying space of X.
For instance, for clustering a set of strings it is possible
to consider the cluster centers to be new strings that are
not part of the input; any string over the same alphabet
as the input strings is a candidate cluster center.

The k-means problem is defined as follows.

Problem 1. (k-means) Given a set of points X =
{x1, ...,xn}, a distance function d : X × X → R and
a number k, find a set of k points C = {c1, . . . , ck} in
order to minimize the error E(X,C), defined in (3.1).

Note the differentiation between k-means, the opti-
mization problem, and k-means, the popular algorithm
used to find a solution to the k-means problem.

We now define the problem of clustering with out-
liers. We consider two parameters: k the number of
clusters, and ` the number of outliers. We refer to
our optimization problem as (k, `)-means. As in the
k-means problem our goal is to find a set of k cluster
center points C, which can be subset of X or points in
the underlying space. Additionally we aim at identify-
ing a set L ⊆ X of outliers and we require |L| = `.

Problem 2. ((k, `)-means) Given a set of points X =
{x1, ...,xn}, a distance function d : X × X → R and
numbers k and `, find a set of k points C = {c1, . . . , ck}
and a set of ` points L ⊆ X so as to minimize the error

(3.2) E(X,C,L) = E(X \ L,C).

Intuitively, in the (k, `)-means problem we want to
find the best clustering of X, defined by cluster centers
C, after we identify the set of outliers L ⊆ X. The
inherent difficulty of this problem is that

(i) the outlier set L depends on the set of cluster
centers C — the points in L should be those points
that are “far away” from the points in C, and

(ii) the set of centers C depends on the outlier set L —
if we knew the outlier set L we could run a standard
k-means algorithm on the remaining points X \ L.

It should come as no surprise that the (k, `)-means
is as hard as the k-means.

Theorem 3.1. The (k, `)-means problem is NP-hard
for k > 1 and ` ≥ 0. For k = 1 and l > 1 and fixed
dimension d, there exists a polynomial time algorithm
of complexity O(nd

3

). For varying dimension d the
problem is NP-hard.

Proof. For ` = 0 the (k, `)-means problem becomes
identical to the k-means problem, which is known to be
NP-hard for general metric spaces, or for the Euclidean
case when the dimension is d > 1. For k = 1 and ` ≥ 1,
the problem is a special case of the MCD problem.

Discussion. 1. In this paper we treat finding the
parameters k and ` as an orthogonal problem, and we
assume that they are given as input to our algorithm.
Finding k is an open problem in data mining, although



some approaches give reasonable results, for example
the minimum-description length principle (mdl) and
Bayesian information criterion (bic).

For the outlier parameter `, we note that all existing
outlier-detection methods use one or more parameters.
For example, if data is modeled as being generated
from a normal distribution N , then a data point x
is an outlier if pN (x) < 0.001. Here 0.001 is the
parameter. Often the application requirement is to
report the top-` outliers; and this is the approach we
have taken. Sometimes more than one parameter is
used. For example when PCA techniques are used for
anomaly detection then we have to set two parameters
(k, t). Here k represents the rank of the approximation
and t represents the distance threshold.

2. The k-means algorithm is a widely-used algo-
rithm, applicable to many different settings. For ex-
ample, k-means is a component for spectral clustering,
which is used to cluster not only objects in arbitrary
metric spaces, but also Euclidean points lying on non-
linear manifolds and having “local” cluster structure.
Our algorithm gives a principled approach to cluster
with outliers in all those different settings that k-means
is used. For example, replacing k-means with (k, `)-
means in above-mentioned component of spectral clus-
tering allows to perform spectral clustering with outlier
detection. Such an example is presented in Section 5,
where we use the k-means-- algorithm in a spectral-
clustering setting to identify outlier trajectories.

4 Algorithm

The proposed algorithm, which we call k-means--, is an
extension of the k-means algorithm. The pseudocode is
shown as Algorithm 4.1

The algorithm works as follows. The initialization
part (lines 1-4) is identical to k-means. In line 5, all the
points are ranked in decreasing order by their distance
to their nearest cluster center. In lines 6 and 7, the top
` points of this ranked list are inserted into Li which is
then removed from the set to form the set Xi. In lines 8
to 9, each of the element of Xi is assigned to its nearest
cluster to form a new set Pj for j ranging from 1 to k.
New cluster centers are estimated from Pj in line 10,
and the process is repeated till the solution stabilizes.

We are able to show that the k-means-- algorithm
converges to a locally optimal solution. To see why such
a local-optimality property holds, we note that in the i-
th iteration the algorithm computes a new set of outliers
Li and a new set of cluster centers Ci. The outlier set
Li is computed in line 7, and the cluster-center set Ci is
computed in lines 7–11. We can that in each consecutive
update of Li and Ci the total error improves. The proofs
of the lemmas are given in the supplementary document.

Algorithm 4.1. (k-means--) Input: Set of points
X = {x1, ...,xn}
A distance function d : X ×X → R
Numbers k and `

Output: A set of k cluster centers C
A set of ` outliers L ⊆ X

1: C0 ← {k random points of X}
2: i← 1
3: while (no convergence achieved) do
4: Compute d(x | Ci−1), for all x ∈ X
5: Re-order the points in X such that

d(x1 | Ci−1) ≥ . . . ≥ d(xn | Ci−1)
6: Li ← {x1, . . . ,x`}
7: Xi ← X \ Li = {x`+1, . . . ,xn}
8: for (j ∈ {1, . . . , k}) do
9: Pj ← {x ∈ Xi | c(x | Ci−1) = ci−1,j}

10: ci,j ← mean(Pj)
11: Ci ← {ci,1, . . . , ci,k}
12: i← i+ 1

Lemma 4.1. E(X,Ci−1, Li) ≤ E(X,Ci−1, Li−1).

Lemma 4.2. E(X,Ci, Li) ≤ E(X,Ci−1, Li).

Combining Lemmas 4.1 and 4.2 we have the following.

Theorem 4.1. The k-means-- algorithm converges to
a local optimum.

4.1 Extension to Bregman divergences. The k-
means-- algorithm is applicable to any Bregman diver-
gence in a straightforward manner. Furthermore, it can
be shown that it still converges to a local optimum. This
result is analogous to the fact that a k-means-type al-
gorithm converges to a local optimum for any Bregman
divergence, as it was shown by Banerjee et al. [1].

We remind that the Bregman divergence dφ : S ×
ri(S)→ [0,+∞) is defined as

dφ(x,y) = φ(x)− φ(y)− 〈x− y,∇φ(y)〉,

where φ : S → R is a strictly convex function defined
on a convex set S ⊆ Rd, which is differentiable on
the relative interior set ri(S), and ∇φ(y) represents the
gradient vector of φ evaluated at y. Many well-known
measures are special cases of Bregman divergence, for
example, the squared Euclidean distance, which we have
considered so far in this paper, the KL-divergence, the
Mahalanobis distance, the Logistic loss, and others. For
more details please see the work of Banerjee et al. [1].

One important property of the Bregman divergence
is that given a finite set of points X = {x1, . . . ,xm} one
can optimize the Bregman information

Iφ(X) = min
s∈ri(S)

m∑
i=1

dφ(xi, s),



that is, it is possible to find the optimal representative
s for the set X. In fact, the representative s is the mean
of X, independently of the Bregman divergence used.

Thus, to apply the k-means-- algorithm for a Breg-
man divergence, we only need to use dφ(·, ·) instead of
the squared Euclidean distance function d(·, ·)2. We are
able to show that the proofs of Lemmas 4.1 and 4.2 still
hold, and thus we have the following.

Theorem 4.2. The k-means-- algorithm converges to
a local optimum for any Bregman divergence.

5 Experiments

We validate our proposed algorithm on a mix of syn-
thetic and real datasets.

5.1 Synthetic data. We generate synthetic datasets
as follows. We start with parameters k for the number of
clusters, m for the number of points per cluster, ` for the
number of outliers, d for dimension, and σ as a sampling
error parameter. We first sample k cluster centers
C∗ = {c∗1, . . . , c∗k} in the space [0, 1]d. These are the
ground-truth cluster centers. We then generate m points
per cluster by sampling each coordinate from the normal
distribution N (0, σ) and adding it to the corresponding
cluster center. We finally sample ` outliers, uniformly
at random, from the space [0, 1]d.

We then run the k-means-- algorithm on the syn-
thetic datasets, using the correct values of the param-
eters k and `. As already discussed, determining these
values is a very hard problem, which we do not study in
this paper. We assume that the data miner has an esti-
mate of these parameters from the application domain,
or that he/she experiments with different values.

We evaluate the performance of the algorithm by
varying different parameters of the data-generation pro-
cess. Our objective is to create increasingly difficult
settings so that the outliers eventually become indistin-
guishable from the points that belong to clusters.

To evaluate the performance of our algorithm we
use three measures. The first measure is the distance
ratio RN = d(x | C)/d(x | C∗) averaged over all non
outliers reported by our algorithm. Here C are the
cluster centers found by our algorithm and C∗ are the
ground truth outliers. The smaller the value of RN the
better is the performance of our algorithm. In fact,
RN < 1 indicates that our algorithm found a solution in
which the distances of the non-outlier points is smaller
than that in the ground truth solution.

The second measure is the same distance ratio
RO = d(x | C)/d(x | C∗) but this time averaged over
all outliers reported by our algorithm. In this case, the
larger the value of RO the better is the performance of

our algorithm, since it means that the algorithm finds
outliers that are further away from their cluster centers
than in the ground-truth solution.

The final measure is the Jaccard coefficient between
the outliers found by our algorithm and the ground-
truth outliers. Thus if O is the set of outliers returned
by the outliers and O∗ are the ground-truth outliers,
the the Jaccard coefficient (J) is defined as

J(O,O∗) =
|O ∩O∗|
|O ∪O∗|

The results of our experiments are shown in Fig-
ures 2, 3, and 4, in which we vary the parameters d, `,
and σ, respectively. The rest of the parameters remain
fixed for each setting and are reported in the captions of
the figures. In each figure we show the three measures
described above, RN , RO and J . The box-plots indicate
running each experiment 30 times.

We see that the performance of the k-means--
algorithm is extremely good. The non-outlier distance
ratio RN is almost always less than 1.1, and the outlier
distance ratio RO is almost always greater than 0.9.
In some settings the outliers become indistinguishable
from the other points, and in these cases the Jaccard
coefficient may become as low as 0. However in those
cases the other two measures RN and RO are very good,
implying that the algorithm did not find the ground-
truth outliers, but found equally good, or even better
solutions. Such a case that our algorithm finds different
but better solutions is when the standard deviation
increases. A case that all three measures are low, is
shown in Figure 3, for 1 000 outliers. Note that this is
a very difficult settings as the fraction of outliers is as
high as 50% of the total number of points.

5.2 Intrusion detection. Next we discuss the per-
formance of our algorithm on real datasets. The first
dataset is from the 1999 kdd·cup and contains in-
stances describing connections of sequences of tcp pack-
ets. Each instance is annotated with respect to being
normal or an intrusion, and in the latter case, with
the intrusion type. We experiment with a 10% sam-
ple, provided by the organizers, which contains 494 021
instances. The dataset has a mix of numerical and cat-
egorical attributes, and for simplicity we consider only
the numerical attributes. In total there are 38 numerical
attributes, and we normalize each one of them so that
they have 0 mean and standard deviation equal to 1.

In total there are 23 classes, and 3 of them account
for 98.3% of the whole dataset. In particular, the class
normal has frequency 19.6%, the class neptune 21.6%,
and the class smurf 56.8%. We consider these three
classes as non-outliers, and we target to discover all
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Figure 2: Behavior of the algorithm on synthetic datasets with respect to increasing dimension. The fixed
parameters are k = 10, m = 100, ` = 100, and σ = 0.1.
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Figure 3: Behavior of the algorithm on synthetic datasets with respect to the number of outliers. The fixed
parameters are k = 10, m = 100, d = 32, and σ = 0.2.

other 20 classes as outliers. Thus we set the number
of outliers equal to 494 021× 1.7% ≈ 8 400.

The results of our algorithm on this dataset is shown
on Table 1. We measure the precision with respect
to the outliers found by the algorithm compared to
the ground-truth outliers, as well as the purity of the
clusters found by the algorithm. Here purity is defined
as the fraction of the majority class of each cluster
with respect to the size of the cluster. We see that
the algorithm is capable of discovering the outliers with
fairly good precision. We also see that the resulting
clustering matches very well the class labels of the
dataset, as shown by the purity scores. Finally, from
Table 1 we see that the performance of the algorithm
remains stable for the different values of k that we try.

For reference, we compare our algorithm with a
standard k-NN algorithm for distance-based outlier
detection. This algorithm works by computing the
k-th nearest neighbor of each point in the dataset
and reporting as outliers the ` points whose distance
to their k-th nearest-neighbor is the largest. This
is an inherently quadratic algorithm. Even though

we implement the algorithm using the smart-pruning
heuristic proposed by Bay and Schwabacher [2], it was
not possible to run it on the whole dataset. Thus, we
run the k-NN algorithm on a sample of 50 thousand
instances. We again apply the rule of searching for 1.7%
outliers, giving ` = 850.

The results for the k-NN algorithm are reported in
Table 1, as well. Note that in this case, the parameter
k is associated to the k-th nearest neighbor and not
to the number of clusters. Since the k-NN algorithm
does not produce a clustering, we do not report any
purity scores. With respect to the precision scores, we
observe that the k-means-- algorithm outperforms the
k-NN algorithm. We also see that the k-NN algorithm is
more sensitive to the value of k. We also note that when
run on the same 50 K sample, the performance of the
k-means-- algorithm actually improves: the precision
score becomes 0.61.

5.3 Shuttle dataset. We use the shuttle dataset,
which is publicly available in the UCI Machine Learning
Repository [10], and we perform a similar analysis as
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Figure 4: Behavior of the algorithm on synthetic datasets with respect to the standard deviation used to generate
the clusters. The fixed parameters are k = 10, m = 100, ` = 200, and d = 64.

Table 1: Results on the kdd·cup dataset
k-means-- algorithm

k ` Precision Purity

5 8400 (1.7%) 0.564 0.987
7 8400 (1.7%) 0.568 0.990
13 8400 (1.7%) 0.593 0.981

k-NN algorithm (50 K sample)

k ` Precision

10 850 (1.7%) 0.241
30 850 (1.7%) 0.331
50 850 (1.7%) 0.301

Table 2: Results on the shuttle dataset
k-means-- algorithm

k ` Precision Purity

10 175 (0.4%) 0.155 0.945
15 175 (0.4%) 0.160 0.957
20 175 (0.4%) 0.172 0.974

k-NN algorithm

k ` Precision

10 175 (0.4%) 0.114
20 175 (0.4%) 0.132
30 175 (0.4%) 0.155

with the kdd·cup dataset. The dataset contains 9
numerical attributes, and one categorical that can be
interpreted as a class label. We use the training part of
the dataset, which consists of 43 500 instances. There
are 7 distinct class labels. The three largest classes
account for the 99.6% of the dataset, with frequencies
78.4%, 15.5%, and 5.6%. We consider these three classes
as non-outliers, and the set to identify as outliers the
rest four classes that account for 0.4% of the dataset.
We set appropriately ` = 43 500× 0.4% = 175.

The results of the k-means-- algorithm on the shut-

Table 3: Stability results on the shuttle dataset
k-means-- algorithm

k ` Precision Purity

10 87 (0.2%) 0.207 0.963
15 87 (0.2%) 0.207 0.967
20 87 (0.2%) 0.207 0.974

10 175 (0.4%) 0.155 0.945
15 175 (0.4%) 0.160 0.957
20 175 (0.4%) 0.172 0.974

10 348 (0.8%) 0.112 0.945
15 348 (0.8%) 0.123 0.969
20 348 (0.8%) 0.137 0.974

tle dataset are shown in Table 2. The clustering purity
score are again high, indicating that the three majority
classes are relatively easy to separate. However, com-
pared with the results obtained on the kdd·cup dataset,
the precision scores are fairly low. The four classes that
we identified as outliers, seem to be inherently difficult
to distinguish from the three majority classes. This con-
jecture is verified by the performance of the k-NN algo-
rithm on the same dataset, which is also shown in Ta-
ble 2. The precision scores are comparable, in fact the
performance of the k-means-- algorithm is somewhat
better, while the performance of the k-NN algorithm is
again sensitive to the choice of k.

5.4 Stability results. We experiment with the sta-
bility of our algorithm: we validate its performance as
a function of the parameter `. We report results on the
shuttle dataset, for which the ground truth value of
` is 0.4% of the total number of data points. We eval-
uate the precision and purity of our algorithm for two
alternative values of `, 0.2% and 0.8%, that is, half and
double the ground-truth number of outliers. The results
are given in Table 3. We observe that as ` increases



the precision of the output decreases. This behavior is
well-explained: the more outliers are asked, the more
difficult it is to distinguish them from the rest of the
data points. On the other hand, the purity figure does
not change much, which means that the algorithm still
returns very good clusters. Overall we see that even
when overestimating the number of outliers by a factor
of two, the k-means-- performs almost as good as the
k-NN algorithm with the correct number of outliers.

5.5 Hurricane trajectories. We also experiment
with clustering and finding outliers in trajectories. This
is a different type of dataset than those in the pre-
vious sections, since the data points are not directly
represented as vectors in a Euclidean space. A two-
dimensional trajectory is a sequence of 〈x, y, t〉 coordi-
nates, where x and y are spatial coordinates and t is
the temporal dimension. We obtain trajectories of hur-
ricanes from the Unisys weather site.2 We compile a
dataset of 479 hurricane trajectories from 1970 to 2010.

We then apply spectral clustering on the resulting
set of trajectories [15]: For each pair of trajectories
P and Q we compute their Fréchet distance [9]. In-
tuitively, the Fréchet distance dF (P,Q) between two
curves P and Q is the minimum length of a leash re-
quired to connect a dog and its owner, constrained on
two separate paths. Both the owner and the dog may
vary their speed but backtracking is prohibited. Be-
fore computing the Fréchet distance of two curves we
normalize them so that their center is located at the
origin, so in fact we are measuring structural similarity
rather than spatial distance. For applying the spectral-
clustering algorithm we need a similarity measure be-
tween pairs of trajectories, and we use the similarity
measure s(P,Q) = e−dF (P,Q)/σ, as proposed by Ng et
al. [15]. We then project each trajectory to a point
in Rr, formed by considering its coordinates in the r
eigenvectors that correspond to eigenvalues λ2, ..., λr+1,
where 0 = λ1 ≤ . . . ≤ λn are the eigenvalues of the
Laplacian of the data similarity matrix.

For our experiment we use r = 2. Thus we
project the data on the second and third “smallest”
eigenvectors. The k-means step of spectral clustering
is replaced by using the k-means-- algorithm, so in
addition to clusters we also obtain outliers. We use our
algorithm with values k = 3 and ` = 10. Our algorithm
correctly identifies the outliers that are evident in the
spectral projection. The actual hurricane trajectories,
are shown in Figure 5 using three different colors for the
three clusters and black thick lines for the outliers. We
see that the clustering nicely captures the three main

2http://weather.unisys.com/hurricane/atlantic/

hurricane trajectories 1970 − 2010

Figure 5: Clustering of the hurricane dataset with
k = 3 and ` = 10. Black trajectories are the outliers.

directions of the trajectories.
We have carried out a deeper analysis of the ten

outlier hurricanes as shown in Table 4. Most (but not
all) of the outlier hurricanes failed to make a US land
fall. In fact their real trajectories show that, like all
hurricanes, they originated near the equator and then
moved towards the United States and then took a sharp
turn towards Europe. Most of the hurricanes did not
cause much damage in the US. On the other hand, Mitch
caused extensive damage in Central America.

6 Conclusion and future work

Clustering and outlier detection are often treated as
separate problems. However, both these problems are
tightly coupled. For example, outliers can have a dis-
proportionate impact on the shape of clusters which in
turn can mask obvious outliers.

We have presented a unified approach by formulat-
ing the (k, `)-means optimization problem whose solu-
tion consists of k clusters and ` outliers. Being a gener-
alization of the k-means the problem is NP-Hard. We
then present an iterative algorithm and prove that it
converges to a local optima. We further show that the
algorithm is not only suitable for Euclidean distance
but also all similarity measures which can be expressed
in the form of Bregman divergence. We first test the
accuracy of the k-means-- on synthetic datasets which
confirms that in a controlled set up, the algorithm his
highly accurate and efficient. We have also conducted
experiments on several real datasets including a novel



Table 4: Information about the top 10 outlier hurricanes obtained from www.wunderground.com.
Name Year Dates Max Winds (mph) Min Pressure (mb) Deaths Damage US Category

Charley 1986 08/13-08/30 80 980 5 15 Category 1
Chantal 1995 07/12/07/22 70 991 0 0 No US Landfall
Iris 1995 08/22-08/28 110 957 3 0 No US Landfall
Lilli 1996 10/14-10/29 115 960 8 0 No US Landfall
Earl 1998 08/31-09/08 100 964 3 700 Category 1
Mitch 1998 10/22-11/09 180 905 9086 40 Tropical Storm
Leslie 2000 10/04-10/10 70 973 0 0 No US Landfall
Maria 2005 09/01-09/13 115 962 0 0 No US Landfall
Ophelia 2005 09/06-09/23 85 985 0 0 No US Landfall
Alberto 2006 06/10-06/19 70 969 0 0 Tropical Storm
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Figure 6: The tracks of three of the ten outliers. Earl and Mitch originated near (the top of) South America
and then moved towards Florida. Maria on the other hand originated in the middle of the Atlantic Ocean and
swerved towards Europe.

archive of hurricanes originating in the Atlantic Ocean.
For the hurricane dataset, we actually embedded the
k-means-- in a spectral clustering framework.

For future work we will integrate the k-means-- into
a wider class of applications with a suitably chosen
Bregman divergence which captures the semantics of
the domain. We also plan to explore methodologies for
automatically determining the number of outliers.

References

[1] A. Banerjee, S. Merugu, I. S. Dhillon, and J. Ghosh.
Clustering with bregman divergences. JMLR, 2005.

[2] S. Bay and M. Schwabacher. Mining distance-based
outliers in near linear time with randomization and a
simple pruning rule. In KDD, 2003.

[3] T. Bernholt and P. Fischer. The complexity of com-
puting the MCD-estimator. TCS, 2004.

[4] M. Breunig, H.-P. Kriegel, R. Ng, and J. Sander. LOF:
Identifying density-based local outliers. In SIGMOD,
2000.

[5] V. Chandola, A. Banerjee, and V. Kumar. Anomaly
detection: A survey. ACM Comput. Surv., 41(3), 2009.

[6] M. Charikar, S. Khuller, D. Mount, and G. Nara-
simhan. Algorithms for facility location problems with
outliers. In SODA, 2001.

[7] S. Chawla and P. Sun. SLOM: A new measure for local
spatial outliers. KAIS, 9(4):412–429, 2006.

[8] K. Chen. A constant factor approximation algorithm
for k-median clustering with outliers. In SODA, 2008.

[9] T. Eiter and H. Mannila. Computing discrete fréchet
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