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Abstract 
 
Several publications during the last 10 years by Woodward and colleagues have: (1) indicated a 
theory based on special relativity, that predicted transient mass fluctuations; (2) cited specific 
embodiments where a net average force would be present; (3) suggested a few ways that this 
theory might be tested in the laboratory; and (4) reported such test results incorporating these 
embodiments, which are interpreted to support theory (1) to (3) above.  In this paper we show 
that: (1) the average force predicted by Woodward’s theory occurred only because of a neglected 
term in a product derivative, and that when the neglected term is correctly returned, the average 
force identically vanishes; (2) this vanishment of the average force occurs for arbitrary forcing 
functions, not just the sinusoidal one considered by Woodward; (3) the transient mass 
fluctuation, predicted by Woodward, was developed in a theory which neglected local 
gravitational forces which are several dozen orders of magnitude greater; (4) additionally 
considering the dominant local gravitational forces produces a vastly smaller transient mass 
fluctuation; (5) several inconsistencies between Woodward's referents and the development of 
his wave equation lead to a formulation that does not follow from the antecedents even in the 
absence of the demonstrations (1) to (4) above; (6) there is an alternate interpretation of the 
Woodward/Mahood experiments that can entirely explain the findings in terms of force 
contributions due to time varying thermal expansion, without invoking any general relativistic 
effects; and (7) a laboratory demonstration of the alternate interpretation produced 100 times the 
Woodward effect without resort to non-Newtonian explanations. 
 

1.  Introduction 
 
It would be a major advance in space travel if a rocket could be made that would require no 
material to be ejected as the source of the rocket’s momentum.  From the standpoint of classical 
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mechanics, this would appear to be a violation of momentum conservation.  One approach has 
been taken by Woodward et al. [1,6] whereby non-conservation of classical momentum is 
justified by the assertion that the momentum imbalance is made up by a corresponding 
momentum change in the rest of the universe.  This assertion is made in the context of an 
analysis consisting of a flat-space low-velocity relativistic evaluation of the four-divergence of 
gravitational field using Machs’ principle and a (first order) theoretical result by Sciama [7].  
From this proposition, several publications during the last 10 years by Woodward and colleagues 
[1,6] have: (1) predicted transient mass fluctuations; (2) cited specific embodiments where a net 
average force would be present; (3) indicated how this might be tested in the laboratory; and (4) 
reported such test results incorporating these embodiments.  In this paper we will comment on 
these findings. 
 

2.  Reconsideration of the Average Force for the   
Case Considered by Woodward 

 
The average force predicted by Woodward can be shown to occur only because of a neglected 
term in a product derivative, and that when the neglected term is correctly returned, the average 
force can be shown to vanish identically.  The product derivative is:  
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may be grouped in such a way that a term by term cancellation can be demonstrated analytically.  
Further, one may see that the term cancellation occurs for any forcing function representable by a 
Fourier series, not just the sinusoidal one considered by Woodward.  These arguments suggest 
that attempts to measure an average net force associated with transient mass fluctuations under 
the Woodward-Mahood paradigm will fail and that any unresolved anomalies found in the 
experiments are not due to transient mass effects, but rather due to other causes.  In a later 
section, we will establish a systematic effect which has gone unnoticed and which would mimic 
the transient force effects expected by Woodward and Mahood.  However, these arguments do 
not in and of themselves allow any conclusion about the existence of the transient mass effect 
itself, just their measurability with the proposed experimental paradigm.  In the next three 
sections we will consider the development of the theory leading to a transient mass effect itself. 
 

4.  Reconsideration of the Proposed Transient Mass Fluctuations  
 
Examination of the Woodward theory [1-5] leading to the transient mass fluctuation indicates 
that only non-local gravitational forces were considered in his simplification of the relativistic 
time term and all other forces, which are vastly larger, were neglected.  By the term "non-local 
gravitational force" we mean that gravitational forces due to local inhomogeneities such as the 
earth in the ambient mean density are neglected.  This omission in the theory occurs when he 
substitutes φ== c2, which he attributes to Sciama's [7] estimate of the potential due to non-local 
matter, to eliminate two terms and obtain Eq. (A.17) of [5], whose remaining terms are replicated 
below,  
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where the forces acting on the test body are equal to the negative gradient of the same non-local 
gravitational scalar potential (Eq. 5).  All of the terms in Eq. (4) refer to a non-local gravitational 
potential.  Equations (4-5) directly lead to the inhomogeneous wave equation, below for the non-
local gravitational potential φ: 
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Since local gravitational forces are neglected, this determination of transient mass fluctuation 
neglects all commonly observed and far larger forces, including even those required to test the 
concept in the laboratory.  As an example, in spite of the enormous precision trajectory 
calculation required to send a probe out to the distant planets, no consideration of non-local 
gravitational forces need ever be made – only a very precise calculation of local gravitational 
forces.  In summary, the theory is constructed around a nonlocal gravitational potential (Eqs. 4-
5), while Eq. 2 above (or equation A.31 [5]), considers local forces.  
 
The neglect of nonlocal gravitation is justified if the mass distribution in the universe is not only 
continuous, but also homogeneous.  To everyone who has noticed that they are attracted to the 
center of the earth (to a good approximation) instead of the center of the universe, or who has 
bumped into a wall, the approximation of a homogeneous mass distribution is certainly suspect.  
It would be useful in this context to provide a sense of how dominant the local gravitational 
forces are compared to the nonlocal forces.  The absolute value of the nonlocal potential is about 
1020 (cgs) [7].  Since the Hubble Radius of the universe is 1023 cm, the gradient of the potential is 
about 10-3 (cgs).  On the other hand, the gradient of the local gravitational potential gradient near 
the surface of the earth is 980 (cgs).  The ratio between these shows that the nonlocal 
gravitational potential gradient is 10+6 times smaller than the experiential local gravitational 
potential gradient.  Another way of looking at it is that the nonlocal gravitational potential 
gradient is about the same as the gravitational potential gradient produced by a one-half kilogram 
object a meter away. 
 

5. Extension of Woodward’s Theory to include 
Experiential Forces 

 
Alternatively, to consider other forces during the formulation process, one needs to at least 
consider the simplest alternative to Woodward's equation (4) for which a potential, ψ, induced by 
local sources, whose spatial dependence can be significant on laboratory scales, is added to the 
potential, φ, induced by observable non-local sources.  Replacement of φ by φ+ψ leads to 
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φ+ψ~φ, the gradients of the local potentials can be vastly larger than the gradients of the 
nonlocal potentials, i(φ+ψ)~iψ, in fact by as much as eight orders of magnitude, as described 
above.  It is also important to note that while time derivatives of the non-local potential are very 
small, the time derivatives of the local potential may not be neglected.  Taking the 
Mahood/Woodward's [5] interpretation of Sciama’s theory [7] to second order so that the local 
potential appears, and inserting into Woodward’s theory, one gets 
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s is a hyperbolic wave equation in terms of the local potential instead of the nonlocal 
ential.  Also there is a term of order c-4 involving the local potential retained on the left hand 
e.  All derivative terms on the right hand side involve the nonlocal potential and so are 
ected to be small. 

6. Miscellaneous Inconsistencies Including 
 those in the Four-Divergence Equation 

hood and Woodward [5] derive an invariant function and manipulate its terms to define a 
ss fluctuation.  The function he chooses is the D'Alembertian or wave equation, which he 
lates from terms that arise from the four-divergence of the gravitational field (a scalar) over a 
all volume containing a mass, m.  In his derivation the gravitational field is treated as a vector. 
s section explores only the self-consistency of his derivation and does not deal with the 
idity of its flat-space approach. 

 exploration considers a parallel derivation of the wave equation that used the conventional 
inition of force according to Rindler [8].  Mahood and Woodward introduced a minus sign.  
 potential energy from gravitational sources is negative as confirmed by Sciama's [7] 
mate, φ/c2 = -1, to estimate orders of magnitude.  (Woodward employs a plus sign consistent 
h his definition of negative force.)  Our definition of relativistic energy density is 
/∆V+ρoc2 (E=T+moc2), where T/∆V=Vmax/∆V-ρφ=and ∆V is a volume element.  T is the 

etic energy of a unit volume constrained to move between potential energies, Vmax and Vmin, 
a region whose local potential is φ.  The equation for relativistic energy density is now 

max/∆V-ρφ+ρoc2, which differs from Woodward's ε=+ρφ.  We take the relation between 
nd ρo=to be ρ=γ2ρο, which corresponds to a collisionless mass density distribution [8].  It 
ows that  

pared with the Mahood/Woodward [5] equation replicated above (Eq. 6).  Three significant 
ervations emerged from this discussion. 

Proper evaluation of the scalar from the four-divergence in the rest frame of mass, ρo∆V, 
produced an additional two terms compared with Woodward's 4πGρο term.  These terms are  
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2. Woodward’s use of a minus sign in the initial definition of force (anti-force) is followed by 

an inconsistent representation of force (anti-force) as the negative gradient of a potential.  
The Mahood/Woodward [5] unconventional initial force (anti-force) definition requires that 
force be a positive gradient of a potential, which causes the spatial- and time-dependent 
terms of the wave equation to have the same sign. 

 
3. After the wave equation is isolated to delineate the function it contains terms that cannot be 

dismissed because they are squares and cross products of time derivatives of rest mass 
density and local potential energy.  These time derivatives will normally be significant as 
discussed in section.  

 
4.  Because the time derivative of the local potential can be significant the term, (jφo/jt)2/c4, 

cannot be ignored.  Since φ/c2~-1 and mass fluctuation depends upon the time rate of change 
of the rest mass density not being zero, Woodward's last term in Eq. 6 is of the same order as 
retained terms and can't be ignored. 

 
There are four differences between Eq. 10 and the Mahood/Woodward [5] Eq. 6.  These are: 1) 
Another term that is twice the time-dependent term in the wave equation appears on the RHS; 2) 
When the additional time derivative of the rest mass density in Eq. 10 is considered, Woodward's 
last term in Eq. 6, which can't be ignored, is multiplied by -3 instead of -1; 3) When the 
additional time derivative of the rest mass density in Eq. 10 is considered, another term in the 
product of the time derivative of the potential with the time derivative of the rest mass density 
appears, which cannot be ignored; and 4) the sign of the mass transient term is reversed. 
 
Our conclusion is that Woodward's derivation is not consistent with itself. 
 
 

7.  An Alternate Interpretation of the Woodward  
and Mahood Experiments 

 
This section is based on the experiments discussed in the Mahood Thesis [5] which purport to 
show a transient mass effect quantitatively consistent with Woodward's thesis [1-5].  We here 
show that a systematic effect was neglected in the interpretation of these experiments, which, 
when accounted for, suggests that the anomalous transient mass observations are explainable by 
simple classical Newtonian thermodynamic considerations.  As an aside the Mahood 
experiments originally appeared to exhibit one millionth of the effect predicted by the original 
theory [1-5] and so cannot be said to be in agreement with the Woodward/Mahood theory 
anyway.  Now that the original theoretical development has been shown above to produce no 
average force due to transient mass fluctuations (Sect. 2, 3), and any transient mass effects if 
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they exist at all are several orders of magnitude smaller, it is no surprise that there was a 
disagreement.  But there is still a small anomalous force in the Woodward/Mahood interpretation 
of the experiment and so it is useful to reconsider the analysis of the experiment to see if a 
simple classical explanation can be found. In the Woodward experiment, a mass is excited by a 
piezoelectric device providing oscillatory motion and, incidentally, becoming hot in the mode of 
operation chosen to produce the greatest anomalies. 
 
The excited mass and piezoelectric elements are at each end of a torsional pendulum and all 
classically expected motion is perpendicular to the arm of the pendulum.  When the piezoelectric 
element and associated mass heat up and begin to expand, there is initially a momentum jerk due 
to the onset of thermal expansion (accelerated thermal expansion) and thus a transient force 
giving rise to a torque about the axis of interest, for each expanding element, 
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the heat flows from the piezo electric unit to a block of metal at one end always results in a non-
zero second order time derivative, or acceleration of portions of the expanding elements and 
attachments.  When the piezoelectric unit is turned off, typically after five seconds, a second 
momentum jerk occurs in the opposite direction, resulting in a transient force in the opposite 
direction.  If the application and removal of heat is synchronized with the movement of the 
pendulum, the pendulum motion may be increased in a resonant fashion.  With no further 
operation of the piezoelectric element the temperature eventually starts to decrease and the mass 
compresses.  A momentum in the opposite direction, although much smaller, appears and a small 
negative torque is generated.  This is cancelled out later when the mass fully contracts, a matter 
of many minutes in the apparatus described in the Mahood thesis. 
 
Figure 2 shows the force and the subsequent pendulum motion predicted by the thermal model 
described above for the nonsymmetric case in [5].  In the example considered here the system is 
initially at rest; the motion shown is entirely due to the purely classical phenomena of 
accelerated thermal expansion. 
 
A torsional pendulum was constructed with a self-contained, battery-powered resistance heater 
coupled to a mass at one end to demonstrate the force due to heat transfer without the 
complication of piezoelectric elements and alternating current power supplies.  The heater, 
shown in Fig. 3, could be switched on or off using light from an external lamp.  The entire 
apparatus, shown in Fig. 4, was hung from a massive table and completely encased to eliminate 
air currents.  As in the Woodward experiment, the motion could be monitored using a laser 
reflecting off a mirror to a meter stick.  By turning the lamp on and off the pendulum could be 
made to oscillate with no other external influence.  A typical plot showing the motion indicated 
on the meter stick is shown in Fig. 5. 
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Fig. 1. Lagrangian model used to derive force equation for a series of elements.  A support is 
included explicitly so that Woodward’s symmetric and non-symmetric cases may be evaluated. 

 
Fig. 2. Thermal model prediction for Woodward experiment.   
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Fig. 3.  Schematic of heater and photoelectric switch 
for demonstration of thermal expansion acceleration. 

 
 
 

 

 
Fig. 4. Experimental layout of the torsional pendulum 

for demonstrating thermal expansion acceleration. 
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Fig. 5. Movement of torsional pendulum due to thermal expansion alone.  *After the pendulum 
began to move, the heating was synchronized with the period in such a way as to reinforce the 
motion to the extent possible.  Each cycle corresponds to approximately 20 seconds, the 
pendulum period.  The maximum movement of the end of the pendulum was 0.5 cm, 
corresponding to 5 cm on the chart in this figure.  The second peak appears lower because the 
second cycle starts at a higher equilibrium temperature. 
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