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Featured Application: Population screening for blood abnormalities suggestive of haemoglob
inopathies, thalassemias and pre-diabetes/diabetes in national health care control programs of
Asian, Middle East and African countries.

Abstract: Screening programs for genetic and metabolic diseases such as haemoglobinopathies,
thalassemias and diabetes are a worldwide problem that faces economic and technological limitations.
This is mainly because genetic and metabolic tests are too expensive and time consuming to be
implemented. MALDI-ToF mass spectrometry is a rapid and affordable high throughput technique
with diagnostic potential for these diseases but still constrained by the timing and complexity of data
analysis. To overcome this technological limitation, we developed a fully automated software solution
in our MALDI-ToF instrument towards the detection of haemoglobinopathies, thalassemias and
diabetes on one blood card sample. The software was tested for its efficiency and accuracy on 171 blood
samples rendering 30-fold faster analysis with less bias and rounding errors in comparison with the
manual approach. In this study, we identified the variability associated with the disease biomarkers
in healthy individuals and successfully applied predictive models to detect blood abnormalities.
Taken together, we demonstrated in this study that population screening of multiple blood disorders
is made possible using MALDI-ToF technology in combination with automated software tools.

Keywords: MALDI-ToF mass spectrometry; software applications; clinical diagnostic; blood disorders;
population screening

1. Introduction

Haemoglobinopathies and thalassemias are inherited genetic mutations in the α and β subunits
of haemoglobin that have been classified worldwide as endemic diseases and frequently observed in
Asia, Middle East and African populations [1]. These genetic alterations lead to abnormal expression
and structural changes in haemoglobin, often resulting in anemia and has been estimated that 5% of
the population suffers from its symptoms [1,2]. The diagnostic of these diseases is based on expensive
and time-consuming genetic tests that are not affordable for screening large populations, making this
a huge problem for national health care systems [3–5]. Type 2 diabetes is also another worldwide
healthcare problem that most countries face, based on the increased number of cases over the past years
suggesting effective screening programs for early detection are required [6,7]. This early stage of the
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disease is called pre-diabetes and preventive medicine is considered advantageous to reduce the burden
of diabetes in the healthcare systems [8]. So far, rapid, effective and affordable methodologies towards
screening of haemoglobinopathies, thalassemias and pre-diabetes detection in large populations are
still problematic due to economic and technical constraints [8,9].

Matrix assisted laser desorption ionization (MALDI) time of flight (ToF) mass spectrometry
(MS) is a direct, rapid and affordable analytical method already used in clinical microbiology for the
pathogenic bacteria identification [10–12]. This methodology has been successfully implemented in
clinical laboratories with demonstrated effective diagnostic power and substantial reduction in the costs
per test [13–15]. Several studies have shown that the accuracy of MALDI-ToF MS allows the detection
of chemical modification of biomolecules in complex mixtures such as urine and blood [16–19].
The application of MALDI-ToF for the detection of haemoglobinopathies in blood was recently
demonstrated by Iles and Nasse [18]. Their proposed method has the potential of identifying not only
haemoglobinopathies but also α-thalassemia, β-thalassemia, and pre-diabetes in a single sample run
using a single drop of blood. This is based on the detection and quantification of globin subunits (e.g.,
α and β) and their correspondent glycated fractions in the MS as biomarkers for these diseases.

MALDI-ToF MS has evolved towards an ultra-fast high-throughput technology, which has the
potential to be applied to the screening of large populations [18,20,21]. However, interpretation of the
quality of the MS and quantification of biomarkers for the correct diagnosis of a particular disease
requires highly specialized technicians. Additionally, this can insert human errors, bias, extra costs
in human resources and it is time consuming, which prevents MALDI-ToF to reach its full potential
as a rapid and affordable high-throughput technology. Smart and fully automated software that
optimizes time costs while also increasing accuracy can provide a solution for the implementation
of MALDI in clinical laboratories. Previously, we developed an automated bioinformatic workflow
that successfully pre-processes raw data, performs accurate quality control decisions and analyzes
large data sets from urine MS generated by MALDI-ToF [22]. We further adapted these workflows and
developed a user-friendly software tool (HbAnalizer), which was designed to perform fully automated
detection of abnormalities in MS of human blood in large data sets. In this work, we present a software
application as a solution for the screening of haemoglobinopathies, thalassemias and pre-diabetes in
clinical laboratories.

2. Materials and Methods

2.1. Blood Samples

A single drop of fresh human blood was collected from a total of 58 assorted volunteers from
the UK in November 2018. All individuals provided written informed consent to participate in the
study declaring their age, ethnicity, sex and relative health status. Assorted samples are composed
of 42 males and 17 females. The minimum age of volunteers was 18 and the maximum 72 years old,
with an average age of 41 years old.

2.2. Sample Preparation

A pinprick of fresh blood was spotted on a DBS card (SLS) and allowed to fully dry. A 6 mm
single hole office punch was used to extract the blood-stained DBS card and soaked in 3 ml mass
spectrometry grade water (Romil, UK) for two hours. The 6 mm single hole office punch was cleaned
with methanol (Romil, UK) between each set. A further two doubling dilutions were performed on
each sample provided, constituting the final dilutions of 1:500, 1:1000 and 1:2000 as estimated by
measuring the volume of haemoglobin. One microliter of each dilution of each sample was plated on a
MALDI-ToF stainless steel target plate with sinapinic acid (Sigma-Aldrich, St. Louis, MO, USA) matrix.
Plate samples were allowed to fully air dry.
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2.3. Mass Spectrometry

Mass spectra were acquired with a MALDI 8020 (Shimadzu, UK) mass spectrometer set in a linear,
positive mode. The benchtop instrument was equipped with 200 Hz solid state laser (λmax = 355 nm)
and pulse extraction of 23,000 nanoseconds was performed. A total of 4000 shots in 200 positions of a
single plate well were obtained and the raw spectra were computed and saved in mzML files. The mass
spectrometer was externally calibrated using Apomyoglobin (16,952 Da) (ProteoMass, Sigma-Aldrich)
for both singly and doubly charged ions. The laboratory SOPs in place ensure that the data acquisition
is always standardized minimize any potential batch effects. The extremely high repetition number
and raster patterning across samples ensures that the data recorded is an average for the sample and
minimizes any plate to plate variation.

2.4. Quality Control

Mass spectra were checked for quality to produce robust results based on identifying minimal data
features and possible interferents on the mass region between 7200 m/z and 8500 m/z, corresponding to
the doubly charged ions. First, we checked for the presence of α-globin and β-globin as well-defined
peaks within plausible m/z ranges that are characteristic for these proteins as a minimum requisite.
At this stage, all spectra that did not have both α-globin and β-globin main peaks were rejected and
no further analysis was performed. Additionally, we have checked for the characteristic secondary
peaks of α-globin and β-globin forms complexed with sinapinic acid, which are expected to be located
~83 m/z from the correspondent free form. Next, we checked for baseline interference by calculating
the absolute deviation between the minimum intensity of the two extreme regions (7200–7400 m/z and
8300–8500 m/z), which is expected to be close to the y-axis in a good quality MS (<1% of maximum
intensity value). For the identification of possible contaminant interference, we checked for additional
well-defined peaks close to the α-globin and β-globin detected peaks. Furthermore, data normalization
is implemented within the final process, so any slight batch variation does not affect the analysis.

2.5. MS Biomarkers for Blood Abnormalities

Haemoglobin subunits α-globin, β-globin and respective glycated forms were identified on the
MS of blood samples using the patented method for detecting several abnormalities, described by
Iles et al. [23]. According to this methodology, we calculated the distance between the detected
positions of α-globin and β-globin peaks (Dαβ) as a way to detect haemoglobinopathies [18]. For the
identification of α and β thalassemias, we used the calculated ratio between β-globin and α-globin
(Rβα). For pre-diabetes, we used as biomarker the estimated percentage of glycated α-globin (αGlc) in
the MS of blood according to the procedure described by Iles et al. [23].

2.6. Scoring the Detection of Blood Abnormalities

Scores for the detection of blood abnormalities were computed based on the estimated probability
of a given level of a biomarker in a blood sample belonging to a statistical model of the disease.
All models assumed that the probability of having a particular disease follows a Gaussian distribution
of biomarker values. Model parameters are described by the expected value (µ) as the threshold
for the biomarker and its associated standard deviation (δ), see Table 1 for values and references.
Scoring functions were derived from the probability density function by normalizing its values
with the maximum probability value, considering only the relevant tails. Thus, for the case of
haemoglobinopathies detection, we considered both tails of the distribution (Equation (1)), where Xi
the obtained Dαβ for blood sample i.

Score = 1− e
(Xi−µ)2

2δ2 (1)
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For α thalassemia and diabetes, we modelled disease detection (Equation (2)) by considering only
the left side of the Gaussian distribution and assuming maximum probability when the respective
biomarker value (Xi) of the sample is higher than the threshold value for the reported for the
disease biomarker.

Score =

 e
(Xi−µ)2

2δ2 , Xi ≤ µ
1, Xi > µ

(2)

For β thalassemia, we modelled the detection based on the probability of not being in normal
ranges for Rβα, only considering the left side of the biomarker variation (Equation (3)). In this case,
we assumed minimum probability when the respective biomarker value (Xi) of the sample is higher
than the threshold value for the disease biomarker.

Score =

 1− e
(Xi−µ)2

2δ2 , Xi ≤ µ
0, Xi > µ

(3)

Table 1. Model parameters and references used for the detection of blood abnormalities. m/z values
indicate the distance between α- and β-peaks.

Disease Detection Biomarker µ Value Ref. δ Value Ref.

Haemoglobinopathies Dαβ 368.2 m/z [18,23] 1 6 m/z MS data 2

α Thalassemia Rβα 90% [23] 1 15% MS data 2

β Thalassemia Rβα 51% [23] 1 25% MS data 2

Diabetes αGlc 10% [24,25] 1 3% [24,25] 1

1 Adjusted value from reference. 2 Estimated to fit the MS of normal individuals.

2.7. Manual Data Analysis

Mass spectra from blood samples were manually interpreted for quality using the free software
tool mMass version 5.5.0 by performing a visual inspection for noise and spectra quality of Hb variants
peaks in a zoomed-in mass region between 7200 m/z to 8500 m/z [26]. For analysis of good quality spectra,
we smoothed data with a 10 m/z window over 5 cycles with Savitzky-Golay method and collected
the values of the peak positions and intensities using the mMass processing and analytical tools [27].
All calculations of biochemical parameters for detection of blood abnormalities was performed using
Microsoft Excel.

2.8. Automated Data Analysis

For a fully automated quality assessment and biomarkers detection on MS of blood samples,
we used the MAP Sciences HbAnalyser beta version 1 software tool (HbAnalyser), developed in our lab.
The software tool was developed in Python version 3.7 and operates on Microsoft Windows compatible
computers, with an operational requirement of 2587 Kilobytes of RAM. This software was developed
using wxPython 4.0 toolkit for generating a user-friendly interface (Figure 1). We implemented two
tabs on the menu bar, one for single sample analysis and another for multiple sample analysis (see
Supplementary Video for a full software demonstration). The software was written to be compatible
with the mzML file system of Shimadzu instruments. For a single sample analysis with this tool,
the user chooses a single file location and simply runs the process button to show the processed spectra
and computed biochemical parameters for detection of blood abnormalities on display (Figure 1) with
optional saving results in CSV or MS image. For running multiple samples systematically, the user
chooses the folder containing all files and the quality control status for each sample systematically
appears on the display while running the process (Figure 1), whereas the biochemical parameters for
each sample detection of blood abnormalities and MS are automatically saved in CSV and MS as image.
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In this software, we implemented algorithms adapted from [22] to systematically normalize, smooth,
estimate noise, and peak detection/selection. For computing all parameters for detection of blood
abnormalities (see Section 2.5), we developed an algorithm according to the procedure described by Iles
et al. [23]. Simultaneously, the algorithm generated two computed values for each parameter analyzed;
one that is based on the intensity value retrieved from expected location (Theoretical), and another
based on the peak detected nearest to the theoretical peak position (Correct position). We programmed
the algorithm such as the computed value of a parameter is retrieved from the theoretical location
only if the method did not find a well-defined peak in the neighborhood of the theoretical location.
Automated quality control decision was implemented in the tool with an algorithm adapted from
the one used in [22], which checks all typical MS requisites of blood (see Section 2.4) and prints to
display the summary of quality checking with possible warning messages (Figure 1). For optimization
of running times, we used cPython package to convert python code in C++ code, which renders faster
numerical processing.
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Figure 1. The HbAnalyser software tool version beta 1 for automated detection of blood abnormalities.
This version was developed to systematically detect haemoglobinopathies, Thalassemias and diabetes
on blood mass spectra from MALDI-ToF instruments.

3. Results

Screening of blood abnormalities was performed on blood samples from 58 individuals using
MALDI-ToF technology and a patented methodology [23]. We analyzed the blood samples mass
spectra with 3 dilutions to compare data quality, accuracy and robustness of the methodology,
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rendering a total of 171 mass spectra. After soaking time of samples, we were able to generate mass
spectral data with a high-throughput production rate of 3.4 min, under its maximum sample load
capacity (48 samples/plate). We have analyzed the generated data in terms of its quality for using in
diagnostics and quantified biomarkers for haemoglobinopathies, thalassemias and diabetes detection
on good-quality data. We first performed mass spectral data analysis using a manual approach that
requires a fully trained and specialized technician for making a quality control decision and calculating
the levels of biomarkers (see Section 2.7). Next, we analyzed the same data with a fully automated
approach using software specifically designed for this purpose (see Section 2.8). The results obtained
from the automated approach are presented in the following sections of results and compared with a
manual approach.

3.1. Efficiency of Automated Approach vs. Manual

To compare the data processing speed of our automated software tool with the manual approach,
we have monitored the timings of data analysis for both automated and manual approaches. On average,
the observed timing of the fully automated software tool was 3.4 seconds per sample, running under
the entire data set (see Supplementary Video). This performance was about 30-fold faster in comparison
with the observed times that a trained technician took to process and analyze the same data (~2 min
per sample). In general, mass spectral data obtain by MALDI-ToF showed good quality for diagnostic
purpose using both manual and automated approaches for quality control assessment (Table 2, see
also Supplementary Table S1 in a file for further details). Our data also shows that quality drops
slightly with dilution between 1:500 and 1:2000 but still keeping a reasonable acceptance rate. Except
for 17 cases, the quality control decision using automated software and manual assessment were in
agreement (Table 2). In most cases, spectra had a good quality, where the α-globin and β-globin peaks
were identified by both approaches and no spectral issues observed (see example in Figure 2a). For
most of the rejected samples, there was not enough signal in the range of α-globin and/or β-globin
peaks, showing only noise in the mass spectrum (see example in Figure 2b). For the cases where
automated and manual approaches were in disagreement, mass spectra showed lower signal to noise
ratios for α-globin and/or β-globin peaks close to quality threshold (see example in Figure 2c).

Table 2. Quality control decision comparison between the automated and manual approach.

Automated Manual Dilution 1:500 Dilution 1:1000 Dilution 1:2000

Accepted Accepted 94.7% (54 cases) 82.5% (47 cases) 66.7% (36 cases)
Rejected Rejected 3.5% (2 cases) 10.5% (6 cases) 11.1% (6 cases)
Accepted Rejected 1.8% (1 case) 7.0% (4 cases) 22.2% (12 cases)
Rejected Accepted 0.0% (0 cases) 0.0% (0 cases) 0.0% (0 cases)
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Figure 2. Illustrative examples of mass spectra accepted (a,c) and rejected (b,c) for clinical diagnostic 
of blood abnormalities. Quality control decisions made by both manual and automated approaches 
are depicted in the inset table in grey. The detected peaks of α-globin, β-globin and glycated α-globin 
are indicated with +. The α-globin and β-globin mass distance value (m/z) is indicated with black 
dashed lines and the calculated value indicated below. Mass spectrum figures generated using an 
automated software tool. 

3.2. Variability of Biomarkers 

Screening of blood samples of healthy individuals from the UK allowed us to explore the natural 
variability of biomarkers which is not related to blood abnormalities when applying our MALDI-
ToF-based diagnostic technique. We analyzed the variability of biomarkers using both automated 

Figure 2. Illustrative examples of mass spectra accepted (a,c) and rejected (b,c) for clinical diagnostic of
blood abnormalities. Quality control decisions made by both manual and automated approaches are
depicted in the inset table in grey. The detected peaks of α-globin, β-globin and glycated α-globin are
indicated with +. The α-globin and β-globin mass distance value (m/z) is indicated with black dashed
lines and the calculated value indicated below. Mass spectrum figures generated using an automated
software tool.

3.2. Variability of Biomarkers

Screening of blood samples of healthy individuals from the UK allowed us to explore the
natural variability of biomarkers which is not related to blood abnormalities when applying our
MALDI-ToF-based diagnostic technique. We analyzed the variability of biomarkers using both
automated software tool and manual approach obtaining consistent results. In comparison with the
manual approach, we obtained a 10% ± 15% deviation in each biomarker value, which was mainly due
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to rounding errors made by the operator when extracting the peak values in mMass. The biomarkers
variability computed using our software tool is presented in Figure 3. For the Dαβ as a biomarker of
haemoglobinopathies, we have obtained a natural variability on mass spectra associated with healthy
individuals between 366 m/z to 371 m/z with an average value of 368.2 m/z (Figure 3a). This variation
can be explained by a slightly drift around both α-globin and β-globin mass peaks discarding any type
of variability on the amino acid composition suggestive of genetic mutation. For glycated α-globin
ratio (αGlc), the biomarker of diabetes, we obtained a variability that ranges between 0.5% to 3.5%
describing 95% of data and with an average value of 1.6% (Figure 3c). Additionally, the variability of
these biomarkers shows conservation across different blood dilutions used. This indicates that they
are robust markers which are not affected by blood concentration (Figure 3a,c). For the biomarker
of thalassemias (Rβα), we obtained ratios of β-globin over α-globin between 20% to 85% with an
average value of 51% (Figure 3b). In this case, we obtained an apparent shift in the distribution of
the Rβα towards lowering the average value for dilutions of 1:1000 but still keeping similar upper
and lower limits in comparison with the dilution of 1:500. Also, the variability of the dilution 1:2000
was lower than the higher dilutions which indicate that dilution may affect the diagnostic power of
this biomarker.
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Figure 3. Variability of blood biomarkers in the mass spectra in healthy individuals for three
dilutions using the automated approach. (a) Variability for the measured mass distance between
α-globin and β-globin detected (Dαβ). (b) Variability for the calculated ratio between β-globin and
α-globin peak intensities (Rβα). (c) Variability for the calculated percentage of glycated α-globin peak
intensities (αGlc).
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3.3. Detected Cases of Blood Abnormalities

In this screening study, we have systematically applied predictive models for haemoglobinopathies,
thalassemias and diabetes detection on blood mass spectra using the automated software tool (see
Section 2.6 for details). Using these models, we obtained low probabilities (p < 0.4) of having each of
the analyzed diseases in healthy individuals with blood dilutions of 1:500 and 1:1000. This indicates
that the predictive models used were robust in their capacity to discard blood abnormalities accounting
for natural variability in these conditions. For the dilution of 1:2000, we also obtained low probabilities
(p < 0.4) of having diseases in healthy individuals, except for β-thalassemia detection. For this disease,
the model predicted low probabilities of having β-thalassemia in 80% of healthy individuals and
probabilities between 0.4 and 0.58 for the remaining individuals. This further indicates that lowering
the concentration of blood down to 1:2000 increases the uncertainty in predicting β-thalassemia.

During our blood screening study, we have not detected any haemoglobinopathy but detected a
possible α-thalassemia case with a probability of 0.68, which has been further analyzed on the mass
spectrum (Figure 4). The blood mass spectrum in this particular case shows a reduced abundance
of α-globin in comparison with β-globin suggesting α-thalassemia blood abnormality. Despite this
abnormality, the other blood markers were within the range of variation of a healthy individual
indicating no α-globin saturation. Mass spectrum passed all quality control checking, where no
baseline deviations and no presence of contaminants were detected. This further supports that the
obtained high β-globin to α-globin ratio is due to an α-thalassemia scenario.

Appl. Sci. 2019, 9, 4999 9 of 14 

β-globin detected (Dαβ). (b) Variability for the calculated ratio between β-globin and α-globin peak 
intensities (Rβα). (c) Variability for the calculated percentage of glycated α-globin peak intensities 
(αGlc). 

3.3. Detected Cases of Blood Abnormalities 

In this screening study, we have systematically applied predictive models for 
haemoglobinopathies, thalassemias and diabetes detection on blood mass spectra using the 
automated software tool (see Section 2.6 for details). Using these models, we obtained low 
probabilities (p < 0.4) of having each of the analyzed diseases in healthy individuals with blood 
dilutions of 1:500 and 1:1000. This indicates that the predictive models used were robust in their 
capacity to discard blood abnormalities accounting for natural variability in these conditions. For the 
dilution of 1:2000, we also obtained low probabilities (p < 0.4) of having diseases in healthy 
individuals, except for β-thalassemia detection. For this disease, the model predicted low 
probabilities of having β-thalassemia in 80% of healthy individuals and probabilities between 0.4 and 
0.58 for the remaining individuals. This further indicates that lowering the concentration of blood 
down to 1:2000 increases the uncertainty in predicting β-thalassemia. 

During our blood screening study, we have not detected any haemoglobinopathy but detected 
a possible α-thalassemia case with a probability of 0.68, which has been further analyzed on the mass 
spectrum (Figure 4). The blood mass spectrum in this particular case shows a reduced abundance of 
α-globin in comparison with β-globin suggesting α-thalassemia blood abnormality. Despite this 
abnormality, the other blood markers were within the range of variation of a healthy individual 
indicating no α-globin saturation. Mass spectrum passed all quality control checking, where no 
baseline deviations and no presence of contaminants were detected. This further supports that the 
obtained high β-globin to α-globin ratio is due to an α-thalassemia scenario. 

 
Figure 4. Mass spectrum of the blood of an individual predicted to have α-thalassemia. The detected 
peaks of α-globin, β-globin and glycated α-globin are indicated with +. The α-globin and β-globin 
mass distance value (m/z) is indicated with black dashed lines and the calculated value indicated 
below. The mass spectrum was generated with 1:1000 blood dilution and visualized using the 
automated software tool. 

We also detected three potential pre-diabetes cases in our screening, which were discarded from 
the healthy control group. The mass spectra of these individuals resulted in calculated percentages 

Figure 4. Mass spectrum of the blood of an individual predicted to have α-thalassemia. The detected
peaks of α-globin, β-globin and glycated α-globin are indicated with +. The α-globin and β-globin
mass distance value (m/z) is indicated with black dashed lines and the calculated value indicated below.
The mass spectrum was generated with 1:1000 blood dilution and visualized using the automated
software tool.

We also detected three potential pre-diabetes cases in our screening, which were discarded from
the healthy control group. The mass spectra of these individuals resulted in calculated percentages
of glycated α-globin between 4.5% and 7.6% (see example in Figure 5). These percentages were
1–3% higher than those observed for healthy individuals, and near the range of values reported for
haemoglobin of pre-diabetic patients (6% to 6.4%) [25]. This further suggests an abnormal percentage
of glycated α-globin that can be associated with either a pre-diabetic or controlled diabetic status.
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α-globin shows a well resolved peak, resulting in a 3-fold higher percentage than the reported 
threshold for diabetes diagnosis [25]. As expected, the calculated probability using the model was 
maximum for having diabetes. In general, no other disease was detected in the mass spectra of pre-
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Figure 5. Mass spectrum of a blood sample of a putative pre-diabetic individual. The detected peak
of α-globin, β-globin and glycated α-globin are indicated with +. The α-globin and β-globin mass
distance value (m/z) is indicated with black dashed lines and the calculated value indicated below.
The mass spectrum was generated with 1:1000 blood dilution and visualized using the automated
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A sample from a patient with uncontrolled diabetes was also analyzed in this study using the
software tool (Figure 6). In this case, the mass spectrum showed a much higher percentage of glycated
α-globin in comparison with healthy individuals and putative pre-diabetics. In this case, the glycated
α-globin shows a well resolved peak, resulting in a 3-fold higher percentage than the reported threshold
for diabetes diagnosis [25]. As expected, the calculated probability using the model was maximum
for having diabetes. In general, no other disease was detected in the mass spectra of pre-diabetic and
diabetic blood samples and no spectral issues were detected, supporting a correct identification of this
disease using our approach.
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spectrum was generated with 1:1000 blood dilution and visualized using the automated software tool.

4. Discussion

In this work, we successfully demonstrated the feasibility of combining MALDI-ToF diagnostic
potential with a fully automated software tool towards rapid and affordable screening of
blood abnormalities in large populations using the methodology proposed by Iles et al. [18,23].
We demonstrated this application by analyzing a total of 171 mass spectra. The software tool enabled a
30-fold faster analysis, saving human resources while keeping comparable quality control decisions
obtained. Here, we have also shown that the software application was able to overcome human bias
and rounding errors made by the laboratory technician. While performing manual quality control, no
particular cut-off values were taken, leaving it to the experience and decision to the technician, judging
the appearance of the spectra was in fact consistent-accurate. On the other hand, the automated
quality control is based on the implemented cut off values of the precise threshold which can be further
tuned in a consistent way. Thus, we deemed that the automated method is preferable because it
performs systematically in the same manner removing the human bias in decision making due to its
experience, especially when a peak is too small and may mislead the human eye. This was a major
advantage in favor of the automated approach, resulting in higher accuracy in quantifying biomarkers
and preventing unnecessary rejection of mass spectra. Together, the software efficiency and accuracy
in quality control decision made it possible for the analysis of mass spectral data in detecting blood
abnormalities without resorting to highly trained and specialized technicians. This is critical when
facing large demand and economic challenges for blood abnormality screening in Asia, Middle East
and African countries [1]. Additionally, the rate of systematic processing using the software tool rate
was almost instantaneous in comparison with the capacity of data generation by our MALDI-ToF
instrument. Thus, we can argue that we have developed a methodological framework that explores
the full potential of MALDI-ToF as an ultrafast, high-throughput technique for the detection of blood
abnormalities [20].

Blood analysis using MALDI-ToF mass spectrometry of 58 individuals further allowed us to have
an idea of the natural variability around the biomarkers for haemoglobinopathies, thalassemias and
diabetes detection. This observed variability provides an already useful benchmarking for reference
values in terms of biomarkers for clinical diagnostics of haemoglobinopathies, thalassemias, diabetes
and even pre-diabetes using mass spectrometry methodology. Moreover, the observed variability
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of biomarkers was found to be consistent as a function of blood concentration. It has remarkable
importance for clinical diagnostics since haemoglobin concentration in the blood may vary due to
dehydration or anaemic state of the patients. However, in terms of generation of predictions, the
statistical models of disease used in the tool requires more data from patients with disease to be
validated for clinical usage. Yet, our objective was to demonstrate that MALDI-ToF can be used for
affordable screening of large populations using a bioinformatics automated system, implemented in a
software tool for our clinical laboratory. Despite our modelling assumptions and limitations, the used
models have still made accurate predictions which we considered an illustration of the future potential
of the tool when more accurate models are available.

It is important to mention that we developed and optimized this tool for the Shimadzu system
model H8020 under our laboratory conditions. For other MALDI-ToF models and laboratory
experimental settings, we cannot guaranty that the present tool works with properly. This is
mainly because different models may use different output file systems and we have optimized the
quality control decision algorithm and biomarker detection algorithm for our experimental settings.
Nevertheless, we have previously worked with other models and tuned the optimization parameters
to keep a good performance of the method, which allow the adaptation of the tool to other laboratory
systems in future versions.

Based on the obtained variability in biomarkers and empirical knowledge related to disease
detection, we were able to successfully apply predictive models that recapitulated healthy individuals
and detected some cases of blood abnormalities. Although these models still require more data
with confirmed disease cases to be validated for its diagnostic power, our results already provide
a demonstration of their potential; in particular, they may help future clinicians on relating the
quantification of biomarkers with the likelihood of having a particular disease based on populational
data. This would be further advantageous in future clinics when making correlations based on the
variability of their particular population instead of published studies on other populations. Thus, future
studies and the accumulation of clinical data would be fundamental for improving and validating such
predictive models. For this purpose, the implementation of machine learning algorithms as the ones
already applied for mass spectral data would likely boost the accuracy of our predictive models [28].

Taken together, the software tool presented shows remarkable potential as a future tool in
clinical diagnostics. Even though the tool was developed on a Shimadzu system and calibrated for
our laboratory, it can be adapted to other MALDI-ToF models and laboratories in future versions.
Additionally, the tool requires further improvements towards clinical implementation. Thus, we are
including the detection of more blood disorders such as sickle cell disease, blood poisoning, effects
of air pollution and even the detection of specific variants of haemoglobinopathies and thalassemias
based on already developed methodologies [18,23,29]. This will substantially increase the multiplicity
of the tool for blood abnormalities and make it even more applicable. Theoretically, the implementation
of these features is feasible and is considered to be included in the future extension of the tool. Software
improvements towards adding patient history tracking and monitoring would also be a key feature for
clinics, especially in the case of diabetes and pre-diabetes control. Finally, we are also implementing a
systematic and custom-made report, which would be handy for communication between laboratory,
doctor and a patient.

5. Conclusions

In this work, we proved that rapid and affordable screening of multiple genetic and metabolic
diseases on large populations on a single blood sample is possible using MALDI-ToF mass spectra
spectrometry. Here, we demonstrated that this technological breakthrough is made by using automated
quality control assessment and state-of-the-art blood mass spectrum analysis. Moreover, we showed
a novel software that shows promising application as a future clinical diagnostic tool for laboratory
detection of haemoglobinopathies, thalassemias and diabetes in blood samples.
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6. Patents

Method for detection of blood abnormalities in blood using mass spectrometry is under the Patent:
PCT/GB2015/052491 WO/2016/030688 2016.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-3417/9/23/4999/s1;
Table S1: Data quality control and biomarkers quantification with software versus manual approach, Video S1:
Software tool with some blood mass spectral data for demonstration.
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