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The equations and what they describe

Magnetohydrodynamics (MHD) describes the “slow” evolution of an electrically conducting
fluid — most often a plasma consisting of electrons and protons (perhaps seasoned sparingly
with other positive ions). In MHD “slow” means evolution on time scales longer than those
on which individual particles are important, or on which the electrons and ions might evolve
independently of one another. The formal frequency range in which we must work is

slow ⇐⇒ ∂

∂t
¿





ωpe ≡
√

4πe2ne

me
plasma frequency

Ωi ≡ eB

cmp
Ion gyro-frequency

νei ≡ πnee
4 lnΛ√

me(kBT )3/2
collision frequency

frequencies rad/sec

ne [cm−3] T [K] B [G] ωpe Ωi νei MHD

magnetotail 1 107 10−4 105 0.1 10−9 ∆t À 10 sec†

Solar corona (AR) 109 106 102 109 106 102 ∆t À 10 ms

Solar interior (200 Mm) 1023 106 105 1016 109 1016 ∆t À 10 ns

Galaxy 1 104 10−6 105 10−2 10−6 ∆t À 10 days

† Neglecting collisions

Fundamental fields Owing to their slow evolution it is possible to consider the combined
electrons and ions as a single fluid. The instantaneous state of this fluid is characterized by
the following fields

ρ(x, t) Mass density. On these time scales (∆t À ω−1
pe ) the plasma is charge neutral — the

number densities of protons and electrons will therefore balance np = ne ≡ n. The
protons are most of the mass so ρ = nmp.

v(x, t) Fluid velocity. v is the center-of-mass velocity of all particles within a small neigh-
borhood of the point x. Given the vast mismatch in masses v is almost always the
same as the mean velocity of the protons. The electrons may move at a velocity dif-
ferent from the protons to produce a current J. The momentum density of the fluid
is ρv.
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p(x, t) Pressure. This is the sum of electron pressure and proton pressure. Any parcel of
the fluid feels inward force −p da acting on each of its outward-facing surface elements
da. The internal energy density of the fluid (i.e. energy in thermal motions) is ε = 3

2p.

B(x, t) Magnetic field. This is the fundamental field in MHD. J and E are derived from it
rather than the other way around, as is more common in electrodynamics.

MHD equations The fields described above evolve according to the governing equations
which are MHD. The following is a common version of these equations1

∂ρ

∂t
= −∇ · (ρv) Mass continuity

ρ
∂v
∂t

+ ρ(v · ∇)v︸ ︷︷ ︸
M.1

= − ∇p︸︷︷︸
M.2

+
1
4π

(∇×B)×B
︸ ︷︷ ︸

M.3

+ ρg︸︷︷︸
M.4

+ ρν∇2v︸ ︷︷ ︸
M.5

Momentum

∂p

∂t
+ (v · ∇)p = − γp(∇ · v) Adiabatic gas law

∂B
∂t

= ∇× (v ×B)︸ ︷︷ ︸
I.1

+ η∇2B︸ ︷︷ ︸
I.2

Induction

Parameters of the plasma

γ The adiabatic index of the gas. Protons and electrons are point particles so γ = 5/3.

ν Kinematic viscosity. This is a diffusion coefficient, and therefore has units of cm2/sec.
According to classical kinetic theory (way beyond our scope here) viscosity arises from
collisions between particles.

η The magnetic diffusivity. A diffusion coefficient (i.e. units of cm2/sec) describing the
diffusion of magnetic field through a conductor. Writing Ohm’s law as J = σE, the
magnetic diffusivity is η = c2/4πσ. Collisions between electrons and protons drifting
past each other (at speeds much less than either thermal speed) lead to a diffusivity
η = 0.14m

1/2
e e2c2 (kBT )−3/2 ln Λ. Ignoring the logarithmic dependence on density

contained in ln Λ, η depends only on the temperature of the plasma with which it
scales inversely — hotter plasmas are less resistive.

Dimensionless numbers: Whether or not we care about a give term in the MHD equa-
tions depends on how large it is compared to other terms. Terms are compared by assigning
to each field some characteristic value and to each spatial derivative the inverse of a char-

1Most variations of MHD involve variations in the energy equation. The adiabatic gas law is the simplest
possibility. More elaborate versions can include thermal conduction, heating from viscous and resistive
losses, and radiative cooling.
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acteristic length L. The following ratios are common in the MHD literature

M.1
M.2

: M2 ≡ v2

γp/ρ
=

(
v

cs

)2

M = Mach number

M.2
M.3

: β ≡ p

B2/8π
Plasma β

M.1
M.3

: M2
A ≡ v2

B2/4πρ
=

(
v

vA

)2

MA = Alfvén Mach number

M.4
M.2

:
L

Hp
=

Lρ

gp
Hp = Pressure scale height

M.1
M.5

: Re ≡ vL

ν
Reynold’s number

I.1
I.2

: Rm ≡ vL

η
Magnetic Reynold’s number

Secondary fields which can be derived from the fundamental fields

T Temperature. Any plasma is sufficiently rare that the ideal gas law is an extremely
accurate equation of state. Since the fluid’s pressure consists of electron and proton
pressures, both of which have density n, the ideal gas law is

p = 2nkBT =
ρ

µ
kBT

where µ ' mp/2 is the average mass per particle (half the particles are electrons, and
thus have almost no mass).2

J Electric current density. The electric field is sufficiently small (see below) that the
displacement current term, c−1∂E/∂t, can be dropped from Ampere’s law. The re-
maining (pre-Maxwell) equation gives the current in terms of the magnetic field

J =
c

4π
∇×B

Term M.3 arises from the Lorentz for c−1J×B after eliminating J using this expression
for current.

ve Electron velocity. On the time scales of MHD the inertia of the electrons is unimpor-
tant, so their motion is dictated by the requirement of Ampere’s law. They go where
the current needs them to go

ve = v − J
ene

E Electric field. The plasma is charge-neutral, but Ohm’s law dictates that E′ = σJ in
the reference frame of the fluid. The laboratory-frame electric field is E = E′−c−1v×B
so Ohm’s law is

E = − v
c
×B + σJ

The induction equation follows from taking the curl of this and using Faraday’s law.
2When the trace elements are properly accounted for the mean mass in a fully ionized plasma of solar-

system abundances is slightly higher: µ ' 0.6 mp.
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Frozen-in-flux

All astrophysical plasmas (and most laboratory plasmas) are hot enough and big enough
that the Magnetic Reynold’s number Rm À 1 and term I.2 is irrelevant.3 Without term
I.2 the induction equation is called the ideal induction equation

∂B
∂t

− ∇× (v ×B) = 0 =
∂B
∂t

+ (v · ∇)B + (B · ∇)v −B(∇ · v) (1)

using a standard vector identity. While the equation appears formidable it can be inter-
preted quite simply: it states that every magnetic field line moves with the fluid exactly as
a piece of massless thread would move. This is sometimes called the frozen-in-flux theorem.

The frozen-flux theorem is a statement about the relation of trajectories to field lines.
A trajectory is the curve followed by an element of the fluid. The trajectory curve r(t)
satisfies the ODE

dr
dt

= v[r(t), t] . (2)

This can be solved beginning at some initial time t = t0 from an initial condition r(t0) = r0.

Magnetic field lines A field line is a space-curve which is tangent to the magnetic field
B(x) at all points. The field line can be written as a vector-valued function of a scalar
argument, r(`), satisfying the ODE

dr
d`

=
B[r(`)]
|B[r(`)]| . (3)

The scalar argument, `, is length along the field line (Note that |∂r/∂`| = 1.) The same
curve may be parameterized by any scalar which is a monotonic function of position. It turns
out to be convenient to work with a different parameter s defined so that ds/d` = ρ/|B|.
In terms of this parameter the field lines satisfies

dr
ds

=
B[r(s)]
ρ[r(s)]

(4)

Equation (4) is formally very similar to the equation for a trajectory (2), but with B/ρ
taking the place of v and s taking the place of t. Like the trajectory (4) can be solved
uniquely beginning at any point in space r(0) = r0 as an “initial condition”. This shows
that there is a unique field line passing through each and every point in space.4

You may have been warned that magnetic field lines are not “real”. That statement
means that if B doesn’t know about the trajectories of particles (i.e. about v) then each
time you solve (4) it will yield set of field line bearing no relation to the solutions (field
lines) at previous times: the apparent motion of the field lines will have nothing to do with

3Using the numbers provided the resistivity is η ' 104 cm2 sec−1 T
−3/2
6 where T6 is the temperature in

MegaKelvins. In a one-million degree plasma Rm = 1 for motion at 1 m/sec (2 miles per hour) on scales
of 1 meter: i.e. for a person walking! Most natural plasmas are much bigger than a person and move much
faster than walking-speed so Rm À 1.

4There is one exception to this rule: The equation cannot be initiated at a magnetic null point, B(r) = 0.
If this is used as an initial condition, the solution is a point, r(s) = r0, rather than a curve.
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Figure 1: An illustration of the frozen-in-flux calculation. Trajectories (dashed) map r0 → rt

and rs → rst. Field lines (solid) map r0 → rs and rt → rts. In the left illustration there
is no relation between B and v so points rts 6= rst. In the right illustration the induction
equation demands that rts = rst.

the motion of matter — which is by definition “real”. Field line are, in fact, very real in
MHD because the magnetic field does know about the fluid velocity, through equation (1).
This is how that equation leads to the frozen-in-flux theorem.

Consider the field line passing the point r0 at time t0. One other point on that same
field line is

rs ≡ r0 +
B(r0, t0)
ρ(r0, t0)

δs .

Next consider the trajectory passing r0 at time t0. One other point on that trajectory is

rt ≡ r0 + v(r0, t0)δt .

The frozen-in-flux theorem states that the material which is at point rs at time t0 moves
to a point on the same field lines as rt. In order to demonstrate this, consider the two points
rts and rst which are on the field line of rt and the trajectory of rs respectively (see fig. 1).
The first point is found by following the trajectory from r0 → rt and then tracing the field
line defined by magnetic field B(x, t0 + δt):

rts ≡ rt +
B(rt, t0 + δt)
ρ(rt, t0 + δt)

δs

=

rt︷ ︸︸ ︷
r0 + vδt +

B
ρ

δs + [(rt − r0) · ∇]
(

B
ρ

)
δs +

∂

∂t

(
B
ρ

)
δt δs

= r0 + vδt +
B
ρ

δs +
[

∂

∂t
+ (v · ∇)

] (
B
ρ

)
δt δs

where (r0, t0) is implied when no explicit arguments are given.
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The second point is defined by tracing the field lines from r0 → rs and then following
the trajectory for δt:

rst ≡ rs + v(rs, t0)δt

=

rs︷ ︸︸ ︷
r0 +

B
ρ

δs +vδt + [(rs − r0) · ∇]v δt

= r0 +
B
ρ

δs + vδt +
[(

B
ρ

)
· ∇

]
v δt δs

Forming the difference between these two points

rts − rst =
{[

∂

∂t
+ (v · ∇)

] (
B
ρ

)
−

[(
B
ρ

)
· ∇

]
v

}
δt δs

=
1
ρ





∂B
∂t

+ (v · ∇)B− B
ρ

[
∂ρ

∂t
+ (v · ∇)ρ

]

︸ ︷︷ ︸
=−ρ∇·v cont’ity

−(B · ∇)v





δt δs

=
1
ρ

{
∂B
∂t

+ (v · ∇)B + B(∇ · v)− (B · ∇)v
}

δtδs (5)

The foregoing has used the definitions of trajectory and field line but assumed no relationship
between B and v (it did make use of mass continuity, which is a relation between v and
ρ). Now we introduce the ideal induction equation (1), which remarkably states that the
entire factor in {} vanishes exactly from the final expression. Therefore the ideal induction
equation implies that rts − rst = 0.

This demonstrates that the ideal induction equation means that two points on the same
field line at one time (namely r0 and rs) will also be on the same field line at a later
time. We showed this only for points separated by infinitesimal distances over infinitesimal
times. Since there is no difference at O(δt δs) we can add together (i.e. integrate) numerous
separations to say the same for each and every point which shares a field line with r0 —
and thus for the field line as a whole. Then we can add together numerous intervals to
say the same about arbitrary times, and thus for all times. We therefore conclude that all
material which is on the same field line will always be on the same field line. The field line
is therefore “real” — it’s made of material.5

An example

Consider a simple shear flow v = v0 sin(ky)x̂. For magnetic field lying in the x–y plane,
B = Bxx̂ + Byŷ the ideal induction equation, (1), becomes

∂Bx

∂t
= −v0 sin(ky)

∂Bx

∂x
+ v0k cos(ky) By

∂By

∂t
= −v0 sin(ky)

∂By

∂x
5It is worth recalling that the original induction equation contained a diffusive term I.2 which was

neglected to reach the ideal induction equation. Had the “non-ideal” form been placed in eq. (5) we would
conclude that rst 6= rts and thus that field lines are not real at all.
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If the initial configuration is a uniform vertical field B(x, 0) = B0ŷ, then the solution to
the induction equation is

B(x, y, t) = B0 kv0t cos(ky) x̂ + B0ŷ . (6)

Next we show that field lines from (6) are equivalent to threads dragged along with the
flow. As stated above, it is possible to parameterize a field line with any monotonic function
of position. Since By is always positive the y coordinate is just such a parameter and we
can write field lines x(y). The y-parameterized field line satisfies the equation

dx

dy
=

Bx[x(y), y]
By[x(y), y]

= kv0t cos(ky) . (7)

Beginning at x(0) = x0 this equation has the solution

x(y) = v0t sin(ky) + x0 . (8)

Recalling the definition of velocity we can write this as r(y) = v(y) t + r0, which is
the position of a particle moving at constant velocity for time t. This is exactly what the
frozen-in-flux theorem said would happen: each bit of the field line moves with the fluid.

Figure 2: The shear flow (left) and some field lines of the evolving magnetic field. The
initial points for these field lines (diamonds) lie along y = 0 where the velocity vanishes.

Magnetic Pressure and Magnetic Tension

The induction equation describes how the magnetic field changes under a given flow field
v(x, t). Neglecting magnetic diffusivity it states that field lines will flow with the material.
To know how the material flows, however, we must solve the momentum equation for v(x, t).
This equation depends on the magnetic field through the term M.3: 1

4π (∇ × B) × B. In
light of this interdependence the full set of MHD equations must be solved simultaneously
— B depends on v while v also depends on B.
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High-β case: The interdependency problem goes away in those cases where term M.3 may
be dropped from the momentum equation — i.e. where the magnetic forces are negligible.
Referring to the table of dimensionless ratios we see that M.3 may be dropped whenever
β À 1 (the high-β limit). Doing so reduces the momentum equation to that of traditional
fluid dynamics, called the Navier-Stokes equations. In this system the fluid motion is
dictated by pressure, inertia, gravity and possibly by viscosity. This is not to say that the
Navier-Stokes equations are easy to solve, but since we’ve lived our entire lives within a
non-conducting fluid (the air) we can envision what solutions might be like.

Once we solve these equations within a region and time-interval of interest we will know
the flow velocity v(x, t). We can now use this known function in the induction equation
and solve for the magnetic field B(x, t) beginning with the initial condition B(x, 0). To
envision this, think of tracing many field lines of the initial magnetic field. We can try to
choose initial positions so that the transverse spacing of lines will be inversely related to the
field strength |B| (not automatically the case!). If we “paint” these into the fluid with dye,
then the dye-lines will be moved exactly like the field lines, according to the frozen-in-flux
theorem. Dye is a classic example of a “passive field”: it is affected by the flow but does
not affect the flow in return. In the high-β limit the magnetic field is also a passive field.

Magnetic Forces In general cases we are faced with equations of fluid dynamics which
are modified by the presence of a force density due to the magnetic field (called the Loretnz
force). The force density is

f (mag) =
1
4π

(∇×B)×B = − ∇|B|
2

8π︸ ︷︷ ︸
pressure

+
1
4π

(B · ∇)B
︸ ︷︷ ︸

tension

(9)

where the final expression exploits a vector calculus identity. The first term on the right
can be re-cast to look like the traditional hydrodynamic pressure force −∇pM where

pM ≡ |B|2
8π

,

is often called the magnetic pressure.
If there were only a magnetic pressure term then a magnetic field would affect the plasma

exactly like another phase of the fluid, with its own pressure. There is also the tension term.
Rewriting B = Bb̂ the tension term is

1
4π

(B · ∇)B = b̂ b̂ · ∇
(

B2

8π

)
+

B2

4π
(b̂ · ∇)b̂ .

The first term here is equal and opposite to that component of the pressure term acting
along b̂. When this is added to −∇pM we get a pressure which acts only perpendicular to
the magnetic field — a strange gas indeed. This is re-assuring because expression we began
with, 1

4π (∇×B)×B is obviously perpendicular to B and thus to b̂.
To understand the last term we return to the length-parameterized field line expression

(3), whose right-hand-side is the unit vector b̂. We also note that b̂ · ∇ = ∂/∂`, is the
directional derivative along a field line. This makes the remaining term

B2

4π
(b̂ · ∇)b̂ =

B2

4π

∂2r
∂`2

=
B2

4π
k
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where k is called the curvature vector in the mathematics of space-curves; it’s magnitude
is the inverse of the local radius of curvature and it points toward the center of curvature.
When a string under tension T is bent it is subject to a linear force density (force per unit
length) Tk. Comparing this to the expression above it seems that a bundle of field lines
behaves like a string with tension T = AB2/4π, where A is the area of the bundle. A wave
travels along the string at speed vφ =

√
T/µ where µ is the linear mass density. The linear

mass density of the field line bundle is µ = Aρ. By analogy to a string, the field lines will
support waves with phase speed

vA =
B√
4πρ

, (10)

known as the Alfvén speed.
To summarize, the magnetic force density on the plasma

f (mag) = −∇⊥pM +
B2

4π
(b̂ · ∇)b̂ (11)

consists of a magnetic pressure gradient, which acts only perpendicular to the field, and a
magnetic tension (which is naturally perpendicular to the field).

The Lorentz force is actually a generic feature of Maxwell’s equations. Writing it in
index notation gives

f
(mag)
i =

∂

∂xj

(
BiBj

4π
− B2

8π
δij

)
=

∂Tij

∂xj
(12)

where Tij is the Maxwell stress tensor for the case E = 0. Everything here has been in cgs
units. The SI version of the expression may be recovered by replacing factors of 4π with
µ0 the permeability of free space.6 On the basis of our previous discussion we see that the
Maxwell stress tensor consists of an isotropic pressure term −B2/8π and an off-diagonal
term capable of creating shear shear stresses — this is the magnetic tension.

Example

The magnetic field from the induction example (6) is

B(x, y, t) = B0 kv0t cos(ky) x̂ + B0ŷ . (13)

The force-density may be readily found

1
4π

(∇×B)×B =
1
4π

(B0v0t)2k3 sin(ky) cos(ky)ŷ − 1
4π

B2
0k2v0t sin(ky)x̂

The first term is a vertical force directed away from regions of stronger magnetic field:
ky = mπ — the is the pressure force. The second term acts horizontally, and is strongest
where the field is most curved ky = ±π/2, ±3π/2. Referring to fig. 2 we see that the force

6In fact, the actual value is µ0 = 4π × 10−7, where the factor 10−7 can be thought of as a conversion
from Gauss2 to Tesla2 (10−8) and from J m−3 to erg cm−3 (×10). Often astrophysicists use a kind of
hybrid-SI system in which B is measured in Gauss and lengths and energies are measured in cm and ergs,
but Ampere’s law is written with a µ0. In this case µ0 = 4π.
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opposes the bending of the field lines — it is leftward at ky = π/2, rightward at ky = −π/2
etc. This is the tension force. To see this relation mathematically we can re-write the above
equation as

1
4π

(∇×B)×B = − 1
8π

ŷ
∂

∂y
[B0v0kt cos(ky)]2 +

1
4π

B0
∂

∂y
[B0kv0t cos(ky)x̂]

= − 1
8π
∇|B|2 +

1
4π

(B · ∇)B

To work self-consistently we replace v0t sin(ky) = x(y, t) and discard terms proportional
to x2. This leaves only the tension force

1
4π

(∇×B)×B ' − B2
0k2

4π
x(y) x̂ =

B2
0

4π

∂2x

∂y2
x̂ (14)

The horizontal velocity is v = x̂∂x/∂t and the horizontal momentum equation becomes

ρ
∂2x

∂t2
=

B2
0

4π

∂2x

∂y2
, (15)

which is the wave equation. This has the periodic solution

x(y, t) = A sin(ky) sin(kvAt) = 1
2A cos[k(y − vAt)] + 1

2A cos[k(y + vAt)] . (16)

This is a standing Alfvén wave of wavelength 2π/k. In the final expression it is decomposed
into counter-propagating traveling waves.

This scenario is similar to every other oscillation or wave in Physics: motion leads to a
restoring force, which reverses the motion, overshoots and leads to the opposite restoring
force. Here the shear flow drags the field lines as depicted in fig. 2, according to the
frozen-in-flux theorem. The distorted field produces a restoring force, magnetic tension,
which opposes the shear flow, eventually reversing it. The reversed flow then undoes the
distortion (fig. 2 form right to left), overshooting and creating the opposite distortion. Thus
the Alfvén wave is one in which magnetic tension provides the restoring force; its phase speed
is vA = B/

√
4πρ.

There are two other waves in MHD: the fast magnetosonic (FMS) wave and the slow
magnetosonic (SMS) wave. The restoring forces in the FMS wave is the combined pressures
of the plasma and the field, p + pM. The restoring force for the SMS wave is the plasma
pressure alone, p, just like the accoustic wave (sound wave) in the Navier-Stokes equation.
The magnetic pressure is absent from this case because the gradients are in the direction
of B, where the magnetic pressure exerts no force. It resembles a sound wave in a hose.
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