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ABSTRACT

/

In this paper, the red-blue pebble game is proposed to model the input-output complexity of algorithms.

Using the pebble game formulation, a number of lower bound results for the I/0 requirement are proven.

For example, it is shown that to perform the n-point FFT (or the ordinary nxn matrix multiplication

algorithm) wit. a device of O(S) memory, at least IO(n log n/log S) (or Q(n3/ <'S), respectively) time is
.- - ."1 l t

needed for the I/O. Similar results are obtained for algorithms for several other prolems. All of the lower

bounds presented are the best possible in the sense that they are achievable by certain decomposition

schemes.

The results in this paper provide insight into the difficult task of balancing I/0 and computation in special-

purpose system design. For example, for the n-point FFT, the 1/0 lower bound implies that an S-point

device achieving a speed-up ratio O(log S) over the conventional O(n log n) implementation is all that one can

hope for.
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1. Introduction
When a large computation is performed on a small device or memory, the computation must be

decomposed into subcomputations. Executing subcomputations one at a time may require a substantial

amount of I/O to store or retrieve intermediate results. Very often it is the 1/0 that dominates the speed of a

computation. In fact, IO is a typical bottleneck for performance at all levels of a computer system. However,

to the authors' knowledge the I/O problem was not previously modelled or studied in any systematic or

abstract manner. Similar problems were studied only in a few isolated instances [2, 5]. This paper proposes a

pebble game, called the red-blue pebble game, to model the problem, and presents a number of lower bound

results for the I/O requirement. All the lower bounds presented can be shown to be the best possible, in the

sense that they are achieved by certain decomposition schemes. The paper is organized according to the

techniques used to derive these lower bounds.

In Section 2 we formally define the pebble game and point out its relation to the I/O problem. In Section 3

we show that lower bounds for I/O in the pebble game can be established by studying the so-called

S-partitioning problem. This is the key result of the paper in the sense that it provides the basis for the

derivation of all the lower bounds. In Section 4 we prove a lower bound for the FFT algorithm. Lower

bounds in Section 5 are based on the information speed.function, which measures how fast the number of

vertices on which a given vertex "depends" can grow in a directed acyclic graph of a certain type. We

demonstrate the dramatic difference between the I/O requirement for the odd-even transposition sorting

network and that for the "snake-like" mesh graph. In contrast to the focus of Section 5, Section 6 studies

independent computations for which there are very little information exchanges among vertices. There we

obtain, for example, a lower bound for the ordinary matrix multiplication algorithm. In Section 7 we prove a

general theorem on products of graphs. Using this theorem, one can determine the I/O required by a product

of graphs, by examining only the individual graphs. A summary and concluding remarks are provided in

Section 8.

Results of this paper impose upper bounds on the maximum possible speed-up obtainable with a special-

purpose hardware device when the bandwidth of the memory that supplies data to the device remains

constant. For example, our lower bound on the I/O requirement for the n-point FFT (Corollary 4.1) implies

that an S-point device can achieve a speed-up ratio of at most O(log S) over the conventional O(n log n)

software implementation. Similarly, for matrix multiplication our result (Corollary 6.2) implies that a

v/'xV'" device can achieve a speed-up ratio of at most O(V'-).

... 4
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2. The Red-Blue Pebble Game and Its Relation to the I/0 Problem

As the usual pebble game (see, e.g., [4]), the red-blue pebble game is played on a directed acyclic graph 1.

At any point in the pebble game, some vertices of the graph will have red pebbles, some will have blue

pebbles, some will have both red and blue pebbles and the remainder will have no pebbles at all. Following

the notation of Pippenger [81, define a configuration as a pair of subsets of the vertices, one comprised of just

the vertices having red pebbles, and the other just those having blue pebbles. Thus vertices belonging to the

intersection of the two sets have both red and blue pebbles on them. The set of inputs (or outputs) of the

graph is some designated set of vertices containing at least those vertices that have no predecessors (or

successors, respectively). We assume that the set of inputs is disjoint from that of outputs. For all the

examples discussed in the paper, only vertices that have no predecessors (or successors) are assumed to be

inputs (or outputs, respectively), except in Section 7 where products of graphs are considered. The initial (or

terminal) configuration is one in which only inputs (or outputs, respectively) have pebbles, and they are all

blue pebbles. The rules of the red-blue pebble game are as follows.

R1. (Input) A red pebble may be placed on any vertex that has a blue pebble.

R2. (Output) A blue pebble may be placed on any vertex that has a red pebble.

R3. (Compute) If all the immediate predecessors of a vertex have red pebbles, a red pebble may be
placed on that vertex.

R4. (Delete) A pebble (red or blue) may be removed from any vertex.

A transition is an ordered pair of configurations, the second of which follows from the first according to one

of the rules. A calculation is a sequence of configurations, each successive pair of which form a transition. A

complete calculation is one that begins with the initial configuration and ends with the terminal configuration.

A graph on which the red-blue pebble game is played can model a computation performed on a two-level

memory structure, consisting of say, a fast memory and a slow memory. Vertices represent operations and

their results. An edge from one vertex to another indicates that the result of one operation is an operand of

the other. An operation can be performed only if all the operands reside in the fast memory. Placing a red

pebble using rule R3 corresponds to performing an operation and storing the result in the fast memory.

Placing a blue pebble using rule R2 corresponds to storing a copy of a result (currently in the fast memory)

into the slow memory, whereas placing a red pebble using R1 corresponds to retrieving a copy of a result

(currently in the slow memory) into the fast memory. Removing a red or blue pebble using rule R4 means

freeing a memory location in the fast or slow memory, respectively. The maximum allowable number of red

Lpne red-blue pebble game discussed in this paper is not related in any wa to the black-and-white pebble game introduced by Cook

and Sethi [1].
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or blue pebbles on the graph at any point in the game corresponds to the number of words available for use in

the fast or slow memory, respectively.

For the purpose of this paper, we assume that the fast memory can hold only S words, where S is a

constant, while the slow memory is arbitrarily large. Thus when the pebble game is played on a graph, at

most S red pebbles, and any number of blue pebbles, can be on the graph at any time. For any given graph,

we are interested in the minimum I/0 time Q, which is defined by
Q - the minimum number of transitions according to rule R1 or R2 required by any complete

calculation.

For the FFT graph, it is not difficult to prove the following upper bound on Q by the decomposition scheme

illustrated in Figure 2-12.

Theorem 2.1. For the n-point FFT graph,

Q log S , O(n log n).

----.- log n = 4

log S 2

'E4-pt

(a) (b)

Figure 2-4: (a) the 1.6-point FF1' graph, and (b) decomposing the FF1T graph, with n - 16 and S -,4.

However, for proving tight lower bounds on Q, we found that it was difficult to work with the red-blue

pcbble game directly. Instead we study the S-partitioning problem, which is a "static" problem in the sense

2.\11 Iogarithms u. ed in this paper are to base 2.

. .. .. ..-
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that it does not apply rules on-the-fly as in a game. We show that lower bounds for the S-partitioning

problem can be translated into lower bounds on Q for the red-blue pebble game.

3. The S-Partitioning Problem and the Key Lemma
In this section we show that every complete calculation of the red-blue pebble game on a directed acyclic

graph defines a partition of the graph. Let G - (V, E) be a directed acyclic graph where V and E are the

vertex and edge sets of 0, respectively. A family of subsets of V, {V1. V2 . . Vh}, is called an S-partifion of

0 for some positive integer S if the following four properties hold.

P1. The V 's are disjoint and ul Vi - V.

P2. For each Vi. 1 < i < h, there exists a dominalor set Di for Vi that contains at most S vertices. (A
dominator set for Vi is defined to be a set of vertices in V such that every path from an input of G
to a vertex in Vi contains some vertex in the set.)

P3. For each Vi. 1 < i < h, the minimum set M of V. has at most S vertices. (The minimum set of V is

defined to be the set of those vertices in V. that do not have any sons belonging to Vi.)

P4. There is no cyclic dependence among vertex sets in {V 1 , V2.  Vh}. (A vertex set V. is said to
dependon another vertex set V. if there is an edge in E from a vertex in V. to a vertex in .. )

.3 J1

Theorem 3.1. Let G - (V, E) be a directed acyclic graph. Any complete calculation of the red-
blue pebble game on G, using at most S red pebbles, is associated with a 2S-partizion of G such
that

S-h >q > S.(h- 1),

where q is the I/O time required by the complete calculation, and h is the number of vertex sets in
the 2S-partition.

Proof: Denote by C any complete calculation. We can divide C into a sequence of h
consecutive subcalculations, C1, C2 ' . ..."Ch , for some h such that in each CV, 1 < i < h-1, there are
exactly S transitions using rule R1 or R2, and in Ch there are no more than S such transitions. For
i - 1 .. h, define Vi to be the largest vertex set in which each vertex satisfies the following three
properties.

(i) During subcalculation Ci it has a red pebble placed on it using rule R1 or R3.

(ii) At the end of subcalculation Ci, it either has red pebbles, or blue pebbles that are placed on
it during Ci, or has a son in V.

(iii) It does not belong to any V with j < i.

We claim that the family [V 1, V .  Vh} is a 2S-partition of G. First we show that property P1
holds. By (iii) it follows immediately that the V's are disjoint. In the following we show that every
vertex in V belongs to some V. Suppose that a vertex, which is not an input. has a red or blue
pebble on it at the end of some subcalculation Ci. Then there must exist a subcalculation C , j < i,
during which the vertex has a red pebble placed on it using rule R3. and at the end of CJ it either

remains to have the red pebble or has a blue pebble that is placed on it during C.. 'lIs implies



that the vertex belongs to Vk for some k < j. Similarly one can show that if an input has a red
pebble on it at the end of C,. then it must belong to Vk for some k < i. Because calculation C is a
complete calculation, all outputs have blue pebbles on them at the end of the last subcalculation
Ch; thus they all belong to Uh' V Consider now any immediate predecessor u of an output v.
Suppose that v belongs to Vi. hen v cannot have any pebble on it at the beginning of Ci and thus
must have a red pebble placed on it using R3 during Ci. This implies that we have one of the
following two cases:

Case 1: Vertex u has a red pebble on it at the end of subcalculation Ci_1 . Then by
reasons stated above, u belongs to some VJ j:5 i-1.

Case 2: Vertex u has a red pebble placed on it using rule R1 or R3 during Cr. If u does
not belong to any V. with j < i, then because u has a son v in Vi, u itself must belong to
Vi.

We have shown that all the immediate predecessors of outputs belong to Uh Vi. Similarly, we can
show that all the immediate predecessors of the immediate predecessors of outputs belong to
uih V. Property P1 follows by induction. Note that both Case 1 and Case 2 above imply that if
V1 depends on V. then j < i. Therefore there cannot be any cyclic dependence among Vi's, and thus
property P4 holds. For proving property P2 for any Vi, 1 < i < h, we consider two subsets of V,
VR and VBR, which are defined as follows.

0 VR consists of those vertices that have red pebbles placed on them just before
subcalculation Ci begins.

* VBR consists of those vertices that have blue pebbles placed on them just before
subcalculation Ci begins and have red pebbles placed on them according to rule R1 during
Ci.

It is easy to see that by property (i) in the definition of Vi, VR U VBR forms a dominator set for. Vi .
Since there can be at most S red pebbles on G at any time, we have

IVRI s S.

The fact that at most S transitions can use rule R1 during Ci implies that

IVBRI < S.

Thus

IVR u VBRI _5 IVRI + IVBRI <5 2S.

We have shown that {V1, V2'. ... Vh} satisfies property P2. The proof of property P3 is similar.
By property (ii) in the definition of V,, we know that at the end of subcalculation Ci, every vertex
in M i.the minimum set of Vi, has red pebbles, or blue pebbles that are placed on it during C.
Since there can be at most S vertices having red pebbles placed on them at any time, and at most S
vertices having blue pebbles placed on them according to rule R2 during C, the minimum set M.
can have at most 2S vertices. We have shown that {V1, V2 ... Vh} is a 2S-partition of G. The
theorem follows by noting that corresponding to each I, 1 < i _< h-i, exactly S transitions using
R 1 or R2 are performed and to Vh' no more than S such transiti6ns are performed. 0

Let

P(S) - the minimum number of vertex sets that any S-partition of G must have.

A
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We have, by Theorem 3.1, the key lemma of the paper.

Lemma 3.1. For any directed acyclic graph G, the minimum 1/0 time satisfies

Q a S'(P(2S) - 1).

Using this lemma, lower bounds for P can be translated immediately into lower bounds for Q.

4. Lower Bounds for the FFT Computation

In this section we establish a lower bound on the minimum I/O time Q for the n-point FFT graph (see

Figure 2-1(a)), by proving a lower bound on P.

Define an S-dominaior partition of a graph G - (V, E) to be a family of subsets of V, {V1, V2 .... Vh},

satisfying properties P1, P2 and P4 of an S-partition, but not necessarily property P3. Let

PD(S) - the minimum number of vertex sets that any S-dominator partition of G must have.

Then clearly PD(S) _< P(S), since any S-partition is also an S-dominator partition. The following theorem

establishes a lower bound on PD(S), and thus a lower bound on P(S).

Theorem 4.1. Suppose that S a 2. The minimum number of vertex sets that any S-dominator
partition of the n-point FFT graph must have satisfies

PD(S) - 0((n log n)/(S log S)).

Proof: Since there are a total of 0(n log n) vertices in the n-point FFT graph, it suffices to
prove that any vertex set U that has a dominator set of size no more than S, S < n, can have at
most S log S + S vertices. We shall show this by induction on n. The assertion holds trivially for
the case when n = 2. Assume now that it holds for the m-point FFT for any m. < n. We want to
show that it holds for m = n. Consider the n-point FFT graph. We partition its vertex set into four
disjoint sets A. B, C and D such that sets C and D equally partition the set of outputs, and sets A
and B equally separate the rest of the vertices. See Figure 4-1 below. Let dA' dB, dC or dD be the
number of elements in the dominator set that belong to sets A, B, C or D respectively. Let uA, uaB ,
uC or uD be the number of elements in the vertex set U that belong to sets A, B, C or D,
respectively. It is easy to see that elements in set A that are also in the dominator set form a
dominator set for set U n A. Thus by the inducti. n hypothesis,

uA <S d A log d A + d A ' (1)

Similarly, we have

uR _ dB log dB + dB. (2)

Let RA or RB be the set of those horizontal paths from inputs to outputs on which there are
vertices in the dominator set that belong to A or B, respectively. Then

IRAl< dA and IRBI _< dI. (3)

For each vertex in U n C or U n D, it either belongs to the dominator set or one of its immediate
predecessors is on a horizontal path belonging to R\ and the other on one belonging to RB.
Thcrefore

u < dc + min(IRAI R.[) and uD _ dD + min(IR al, IRDI),

__________
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A C

I D

Figure 4-1: Partitioning the FFT graph for the induction proof.

from which we have

(4)
uC + uD _< dC + dD + 2min(IRAI, IRBI).

By (1), (2), (3) and (4),
u A + u B + u C + u D _< [dA log d A + dB log d B + 2min(d A" d) ] + d A + d B + dC + dD.

Since dA + dB < S - dc - dD, we have

UA + uB + uC + uD < (S-dc-dD) log (S-dc-dD) + S <_ S log S+S,

which completes the induction proof. C

By Lemma 3.1 we have the following lower bound result.

Corollary 4.1. For the n-point FFT graph,

Q -log S - U(n log n).

Thus the 1/O time for the n-point FFT when executed on a special-purpose device with S words of memory is

at least fl(n log n/log S), implying that the maximum-possible speed-up ratio over the usual O(n log n)

implementation is at most O(log S). This upper bound on the speed-up ratio holds no matter how fast the the

device may be, since it is a consequence of the I/O consideration. The upper bound can be reduced only if

the bandwidth of the memory that supplies data to the special-purpose device is increased. A systolic device

that distributes S words of memory in a linear processor array and achieves O(log S) speed-up for the FFT is

described by Kung [7].

OEM=__ _
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5. Lower Bounds Based on Information Speed Functions
Many "regular" graphs G - (V, E) have the property that all inputs can reach all outputs through vertex-

disjoint paths. In the proof of Theorem 4.1 we have alr'ady noted that the FFT graph has this property. In

the current section, this type of graph will be considered. The vertex-disjoint paths from inputs to outputs

will be called lines, for simplicity. We say that the information speed function is R(F(d)) if for any two vertices

u, v on the same line that are d apart, there are at least F(d) vertices in the graph satisfying the following two

properties.

Fl. At most one of these vertices can belong to a single line.

F2. Each of these vertices belongs to a path connecting u and v.

The following theorem shows that lower bounds on Q can be obtained from lower bounds on F or upper

bounds on F'.

Theorem 5.1. For any graph where all inputs can reach all outputs through vertex-disjoint
paths, if the information speed function is 12(F(d)) where F is monotonically increasing and F-1
exists, then

Q. F'(S) = 1(L),
where L is the total number of vertices on the vertex-disjoint paths or the lines.

Proof: As in the proof of Theorem 4.1, we will establish

PD(S) = O2(L / (S- F'(S)))

by showing that any vertex set U in a S-dominator partition can have at most O(S. F'(S)) vertices
on the lines. Note that vertices in U can be on at most S lines, since the lines are vertex-disjoint
and U has a dominator set of size at most S. The theorem follows from the claim that on any line
there can be at most F I(S) + 1 vertices in U. Suppose that the claim is false for some line. Then
on this line there are two vertices u and v in U that are F'(S) + 1 apart. Consequently, there are
F(F5(s) + 1) vertices satisfying properties F1 and F2. If any of these vertices belongs to another
vertex set U' in the S-dominator partition, then by property F2 there will be a cyclic dependence
among vertex sets in the S-dominator partition, violating property P4 in Section 3. Therefore all of
these F(F'(S) + 1) vertices, which form a set of more than S vertices, belong to U, and by property
F1 they belong to distinct lines. This is a contradiction, since vertices in U can be on at most S
lines. "

Corollary 5.1. For the odd-even transposition sorting network (see, e.g., [61) for sorting n-
element runs,

Q - S - 12(n2),

for any S < n.

Proof: Consider the sub-network that includes only half of the inputs and outputs, as shown in
Figure 5-1. It is easy to see that we can assume the sub-network has n/2 lines with L - O(n 2) and
F(d) - d/2 for d < n. C

Corollary 5.2. For the mxn snake-like directed mesh as shown in Figure 5-2,

Q -17(mn),
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Figure 5-1: The odd-even transposition sorting network, where each "o" is a comparator.

for any S <im.

Proof: Consider as lines all the horizontal vertex-disjoint paths from inputs to outputs. It is
easy to see that we can assume F(d) - m for any d > 2. Let U bc any vertex set in an S-dominator
partition of the graph. As in the proof of Theorem 5.1, we note that vertices in U can be on at
most S lines, and that on any line there can be at most two vertices in U. Therefore, U can have at
most O(S) vertices, and thus PD(S) (or P(S)) - Q(mn/S). The corollary follows from Lemma 3.1. 0

-I ... -!-

Figure 5-2: The snake-like directed mesh.

Straightforward decomposition schemes will show that lower bounds in the above corollaries are best

possible. We note that when S increases the 1/0 requirement Q for the odd-even transposition sorting

network decreases at the rate of US, whereas that for the snake-like directed mesh remains unchanged

essentially. We say that graphs like the latter are indecomposable.
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6. Independent Evaluation of Multivariate Expressions
Given values for indeterminates x1 . .. xn, the problem is to evaluate multivariate polynomial expressions

Yi Yi(x .... X), i 1, 2. m. Assume that each y. is a sum of at least two terms and in each y1, all the

terms are distinct and have degrees S D. An example of such a problem is matrix multiplication, where D = 2.

An independent evaluation of y1's is an algorithm or a directed acyclic graph with inputs xi's and outputs y1's

satisfying the following properties.

El. In the evaluation of each yi, all (and only) those product terms which appear in the fully
distributed expression of yi are computed first by multiplications, and then using these product
terms Yi is formed through a summation tree by additions or subtractions only. In particular, no
multiplication can be performed after an addition or subtraction.

E2. Internal vertex sets of the summation trees for all the yi's are disjoint from each other, that is, none
of the internal vertices in one tree appears as an internal vertex in another. (Thus, evaluations of
y 's are independent from each other.)

Let X be any set of x 's or products in xi's. For any output yi, define h(yi, X) as the number of terms in yi

that can be obtained from X directly or by multiplying elements in X. For any Y c {y1.  ym} we further

define

h(Y. X) - 7.yeyh(y, X).

For example, if y, X X22 + 24 2 X 2  xlx3 , Y " ty1, y2}, and X - jx1, 2 2 then h(y, X) - 1.

h(y2, X) - 2, and h(Y, X) - 3. Define the S-combination number to be

H(S) , max{h(Y, X) I 1YI < S, IXI _< S1.

We have the following result.

Theorem 6.1. Suppose that H(S) - 9l(S). Then for any independent evaluation of a
multivariate expression of degree < D,

Q. D. H(S)/S - 11(I Vl),
where IVI is the total number of vertices in the graph corresponding to the independent
evaluation.

Proof: Let {V r, V2.  Vh} be an S-partition of the graph associated with the independent
evaluation. We shall prove the following.

(i) Each Vi, 1 < i < h, can have at most H(S) + 2S internal vertices. (An internal vertex is
defined to be a vertex belonging to the internal vertex set of some summation tree.)

(ii) There are at least IV/(2D) internal vertices in the graph.

By property P3 in the definition of S-partition. the minimum set of VI has at most S vertices.
This implies that V. can have nonempty intersections with internal vertex sets of at most S

summation trees, since by E2 each of such intersections has at least one distinct vertex in the
minimum set. Thus, to bound the number of internal vertices that V can have. we need only
consider summation trees for S y,*s. By property P2 of S-partition, we note that VI has a dominator

4 __WON
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set Di of size no more than S. By the definition of H(S), from Di one can form at most H(S) terms
appearing in the S y1's. These terms, together with possible vertices in Di that are already internal
vertices, can generate at most H(S) + 2S internal vertices. We have shown (i). To prove (ii), let A
be the total number of internal vertices in the graph corresponding to the independent evaluation.
Then the total number of external vertices, or terms, in all the summation trees, is no greater than
2A. Each product term requires at most D - 1 multiplications; thus the total number of vertices
VI in the graph satisfies:

IVI s 2A(D - 1) + A S 2AD.

This proves (ii). It follows from (i) and (ii) that

h > (IVI/2D) /(H(S) + 2S),

and by Lemma 3.1,

Q -SI(S IVI / (D (H(2S)+2S))).

The theorem follows from the assumption that H(S) - U(S). r

Corollary 6.1. For the ordinary matrix-vcctor multiplication algorithm for multiplying an mxn
matrix with an n-vector,

Q. S - Q(mn),

assuming that entries in the matrix can be generated on-the-fly and thus are not required to be
input.

Proof: The corollary follows immediately by noting that H(S) - O(S2) and D - 1. "

Lemma 6.1. For matrix-matrix multiplication,

H(S) - Q(S3).

Proof: We shall only prove H(S) - O(S3/2), since it is trivial to see H(S) - Q(S3" 2). Consider
the matrix multiplication, AB - C. Let W be any set of entries in A and B, with IWI S S. Partition
A into two classes as follows. Class Ad consists of all rows in A, each of which has at least
V," entries in W, and class A' consists of the rest of rows in A. Accordingly, matrix C is
partitioned into two classes, AdB and A'B. Since Ad can have at most V'S" rows, and since in any
row of AdB an entry in B can appear at most once (and B has no more than S entries in W), the
maximum number of terms in AdB that can be obtained by multiplying elements in W is at most
S. " ,, S3/2. For entries in A'B, each of them can be obtained by multiplying at most
VS" elements in W, since each row in A' has at most . elements in W. Therefore, in any S
entries of A'B, there are at most S. \" - S3/2 terms that can be obtained by multiplying elements
inW. d

By Theorem 6.1 and Lemma 6.1, we have the ,.-.jowing result.

Corollary 6.2. For the ordinary matrix-matrix multiplication algorithm for multiplying mxk
and kxn matrices,

Q" V - 9(mkn).

* 4 "T' " , ... ._ L _ . .
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7. Lower Bounds for Products of Graphs

As demonstrated in Sections 4 and 5, one can establish lower bounds on Q by proving upper bounds on the

size of any vertex set that has a dominator set of size at most S. This is equivalent to proving lower bounds on

D(n) - the minimum size of a dominator set for any vertex set having no less than n vertices.

In this section we show that lower bounds on D(n) for the product of two graphs can be obtained from lower

bounds on D(n) for individual graphs. (See, for example, [3] for the definition of the product of two graphs.)

Let GixG2 be the product of G1 and 02. A vertex (v1 , v2) E G1xG2 is defined to be an input (or output) of

GlxG2 if vi is an input of G1 or v2 is an input of G2' (or, respectively, v, is an output of G1 and v2 is an

output of G2.) Of course D(n) depends on the graph on which it defines: we use D,(n), D2(n) and D(n) to

distinguish the case when the graph is G1 , G2 and G respectively.

Lemma 7.1. If f is a positive function such that tRx)/x is non-increasing, Xa a TIT2, and
0 : ai < T2, then

Xf(a) > T1(T2).

Proof:

Xf(a) > 7aif(T2)/T2 > Tf(1T2). 0

Theorem 7.1. (The Production Theorem for Dominators)
If Di(n) = f(di(n)) where di, i = 1, 2, is a positive, non-decreasing function such that di(x)/x is
non-increasing, then

D(nln2) - W(min{n 1 d2(n2), n2"dj(nj)}).

Proof: Let W be a subset in VixV 2 of size nln2. Define

U2 - the set of vertices P2 in V2 f6r which JW n (Vlx{P 2})I> nr

and
U2 - V2 - UT.

Clearly, we have JU21 < n2 giving

jW n ({p1}xU 2)j < n2, (5)
and for p E U ,

1W n (V1 x {P2}) < n. (6)

One of the following two cases must hold.

Case 1. JW n (VIXU 2)1 > nin2/2.

Let p1 be any vertex in V1. Any dominator set for W n ({plgxV 2) is of size at least
d2(IW n ({P1}XV 2)l). Thus the size of any dominator set for W satisfies:

4[
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D(nin2) a: pEVid 2(IW n ({pl}xV2)1).

Since U2 is a subset of V2 and d. is a non-decreasing function, we have

D(nin2); 1P 1 EV1 d 2(1W nl ({PlxU2)j).
By the definition of Case 1.

I P1 EV1 1W n ({P1}XU 2)1 I. n1n 2/2. (7)
By Lemmna 7.1, it follows from (5) and (7) that

I P1 EV1 dl2(IW nl ({pl}xU2)1) 2: nj 2(2/

implying

D(nin2) 2: a, d2(n2)/2.

Case 2. 1W n (VixU )j > njn2/2.

Let P2 be any vertex in V2. Any dominator set for W n (VlXfP2}) is of size at least

dl(jW n (Vjx~p2})I). Thus the size of any dominator set for W satisfies:

D(n n2) 1P Xp2 V d1(I W ni(~~p}

Since U' is a subset of V2 we have

D(n n 2  1P C2 U, dl(IW nl(~~ 2 ))

By the definition of Case 2,

XP2E4IW n (Vjxjp2}fl 2: n1n2/2, (8)

By Lemma 7.1, it follows from (6) and (8) that

implying

D(nin2) Z: n2 -dl(nl)/2. 03

Let L, . IV, E} be a directed line where V - {1, 2,.,m, and E -{(i, i+1) ji - 1, 2, m.,r-11, with unique

input '1' and output "in." We have D (n) - 1 for any n5 inm. See Figure 741.

Let L2 - LjxLj. Then

DL 0n2) - 0(min{1. n, 1 -n)

giving

D L2(n) . 0(n).

Let L 3 .L 2xL,. Then

0L 3(n) _01(miniinn, n
giving

DL (n3) O (n).
3
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D . . L

L2 = L1 xL 1

Figure 7-1: The product of two directed lines, where each "o" represents an input.

LetL -L x... x L1, that is, Ld is the product of d LI's. Then similarly,

DLd (nd) - e(ndl). (9)

Corollary 7.1. For the product Ld with d _ 2,

Q. S/(d-1) . U(md).

Proof: By (9), the maximum size of any vertex set that has a dominator set of size at most S is
O(Sd/(d-1)). Since there are a total of md vertices in Ld, we have

P(S) . g(md/Sd/(d')),

by which the Corollary follows from Lemma 3.1. 03

We have a similar product theorem for separators of a graph. For the special case Ld, bounds on the sizes

of minimum separators have been established by A. L. Rosenberg [9].

8. Summary and Concluding Remarks

To compare 1/O requirements for different algorithms, we propose the use of the following measure. The

decomposability factor X(S) of an algorithm or graph G - (V, E) is defined to be the ratio between the

sequential time of the algorithm, that is IlVI, and the minimum 1/0 time Q when assuming S red pebbles are

used. Thus,

Q. X(S) - lVI.

!
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For a given algorithm, IVI is fixed. We see that the Larger the X(S) is, the less the I/O is required. A summary

of results of this paper on specific algorithms or graphs, expressed in terms of bounds on A(S), is as follows:

Algorithms or Graphs A(S)

Matrix-vector multiplication (ordinary algorithm) G(S)
Odd-even transposition sorting network s(S)
Matrix-matrix multiplication (ordinary algorithm) O(V"S)
L , (d > 2) O)(S/(d-I

)

FfiT e(log S)
Snake-like directed mesh 0(1)

It is also possible to establish upper bounds on A(S) for a class of algorithms for solving a given problem.

For example, it has been shown recently that for any sorting algorithm based on the decision tree model,

A(S) - O(log S) ILO.

The problem of establishing bounds on A(S) is closely related to several other graph partitioning problems.

We intend to work on some of these partitioning problems in the future, and show how they are related to the

I/0 complexity problem addressed in this paper.
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