
Pattern Matching Algorithms with Don’t Cares

Costas S. Iliopoulos and M. Sohel Rahman

Algorithm Design Group
Department of Computer Science, King’s College London,

Strand, London WC2R 2LS, England
{csi,sohel}@dcs.kcl.ac.uk

http://www.dcs.kcl.ac.uk/adg

Abstract. In this paper, we present algorithms for pattern matching, where either the pattern
P or the text T can contain “don’t care” characters. If the pattern P contains don’t care
characters, then we can solve the pattern matching problem in O(n + m + α) time, where α
is the total number of occurrences of the component subpatterns. We also can handle online
queries, given an O(n) preprocessing time, requiring O(m + α) time per query. If, on the
other hand, the text T contains don’t care characters, then we can solve the problem in
O(n + m + |occ(P)|) time where |occ(P)| is the total number of occurrences of P in T . The
assumption that we make in this case is that the length of each component sub-text is greater
than the length of the pattern.
Keywords: algorithm, pattern matching, don’t care.

1 Introduction

The classical pattern matching problem is to find all the occurrences of a given pattern P of length
m in a text T of length n, both being sequences of characters drawn from a finite character set Σ.
This problem is interesting as a fundamental computer science problem and is a basic need of many
applications, such as text retrieval, music retrieval, computational biology, data mining, network
security, among many others. Several of these applications require, however, more sophisticated forms
of searching. Pattern matching has been generalized to searching with error bounds, e.g. Hamming
distance [3, 8, 15], edit distance [5, 15, 21]. These variations of the original problem are known as
approximate pattern matching. In many, if not most, practical cases it is the approximate version of
the pattern matching problem that turns out to be the most applicable one. Several other pattern
matching problems have been considered within the approximate paradigm. Fischer and Paterson
[7] generalized pattern matching to include don’t cares: given a pattern P and a text T , either of
which may contain don’t cares, denoted ∗, the goal is to output all occurrences of P in T . The new
dimension in the problem was the introduction of don’t cares, also known as gaps in the literature,
which matches any character in the alphabet i.e. ∗ matches every symbol a ε Σ. In [7] the don’t
care matching problem was solved in O(n log m log Σ) time1. Since their (deterministic) algorithm
in 1974, the only improvements, until recently, were by Muthukrishan and Palem [17], who reduced
the constant factor. And in fact the string matching with don’t cares problem is proved to be at least
as hard as the boolean convolution problem [18]. Indyk [10], on the other hand gave a randomized
algorithm that also involved convolutions, running in time O(n log n). Kalai [11] presented a slightly
1 The running time reported in [7], O(n log2 m log log m log |Σ|), is slightly higher because they do not use

the RAM model.

better but much simpler randomized algorithm which runs in O(n log m) time. Finally, Cole and
Hariharan in [6], solved the long lasting open problem of removing the dependency on |Σ| in the
algorithm of [2] and presented a deterministic O(n log m) time algorithm. Their algorithm also used
convolution.

Pinter [19] on the other hand avoided the use of convolution and used the Aho-Corasick algo-
rithm [2] to solve the problem. The running time of Pinter’s algorithm is O(n + m + α), where α is
the total number of occurrences of the component subpatterns. Notably, however, Pinter’s technique
cannot be used to index the text. Very recently, Rahman et al. [20] presented an algorithm where they
preprocess the text in optimal O(n) time and can answer subsequent queries in O(m + α log log n)
time. Cole et al., in [4], also presented an algorithm to solve this problem. The algorithm in [4] first
preprocesses the text in O(n logK n + n log |Σ|) time to build a data structure of size O(n logK n)
which answers subsequent queries in time O(2K log log n + m + |occ(P)|). Here K is the number of
don’t cares in the pattern and ooc(P) denotes the set of occurrences of the pattern in the text. As
is evident from the running time, this algorithm is only effective when K is constant. All the results
of [19], [20] and [4], mentioned above, assume only pattern to contain the don’t care characters. To
the best of our knowledge there hasn’t been much progress in the literature to solve the problem
having text (instead of pattern) containing don’t cares without using the fast fourier transform.

In this paper we first present a new algorithm that efficiently finds a pattern with don’t care
characters in a text. We then present algorithm for the case when text has don’t care characters
instead of the pattern. The significance of our algorithms is twofold.

1. Firstly, almost all the algorithms to solve the don’t care matching problem in the literature makes
use of First Fourier Tranformation (FFT) technique which, unfortunately, doesn’t perform well
in practical cases due to its large hidden constant. Also, convolutions, along with other existing
algorithms in the literature, are not conducive to indexing. Our algorithm does not make use of
FFT technique and, as will be shown, they can index the text in linear time to handle online
queries efficiently.

2. Secondly, there hasn’t been much work without employing FFT technique in the literature on
the version where the text has don’t cares instead of the pattern. We here present an efficient
algorithm (not using FFT) for this version as well. In this case, however, we make an assumption
that the length of each component sub-text is greater than the length of the pattern.

The rest of the paper is organized as follows. In Section 2 we present the preliminary concepts.
In Section 3 and 4 we present our new algorithms. Finally we conclude in Section 5.

2 Preliminaries

In what follows, we are considering a finite alphabet Σ. Assume that we are given a text T =
T [1] . . . T [n] of length n and a pattern P = P[1] . . .P[m] of length m. We use the notation T [i..j], 1 ≤
i ≤ j ≤ n, to indicate the substring T [i] T [i + 1] . . . T [j] of T . On the other hand by T −1 we
denote the reverse string of T i.e. T −1 = T [n] . . . T [1]. The classical pattern matching problem
consists in locating all the occurrences of P in T , that is, all possible i such that for all j in [1,m],
T [i + j − 1] = P[j]. This problem has been extended in a very interesting way by introducing don’t
care characters as follows.

Definition 1. Don’t Care Character. A don’t care character, denoted by ‘∗’ is a character such that
∗ /∈ Σ and ∗ matches any character a ∈ Σ. So we say ∗ = a for all a ∈ Σ.

2

Now let us define the problems we wish to tackle more formally.

Problem “DCP” (Don’t Care in Pattern). We are given a text T over the alphabet Σ and a
pattern P over the alphabet Σ ∪ {∗}. The problem is to find all the occurrences of P in T .

Problem “DCT” (Don’t Care in Text). We are given text T over the alphabet Σ ∪ {∗} and a
pattern P over the alphabet Σ. The problem is to find all the occurrences of P in T .

Example 1. Suppose we have a text T and a pattern P :
T = A C C G G A A G G T A A G T C G T A A A T T
P = C G ∗ A A ∗ ∗ T

Note that P[3] can match any character in the T as can P[6] and P[7]. It can easily be verified
that in this case we have two occurrences of P in T , starting at positions 3 and 15.

In our discussion it will be useful to define a pattern P having don’t care characters as follows.

Definition 2. Pattern with don’t care characters. A pattern P with don’t care characters consists
of subpatterns Pi, 1 ≤ i ≤ `, where each subpattern Pi is a string over the alphabet Σ. For each
1 ≤ i ≤ ` − 1, we have a parameter ki which indicates the number of don’t care characters between
Pi and Pi+1.

Therefore, we can view a pattern P as follows:

P = P1 ∗k1 P2 ∗k2 ... ∗k`−1 P`

We denote by occ(Pi) the set of indices where Pi occurs in T . So, occ(Pi) = {r | Pi = T [r..r+|Pi|−
1]}. We define α to be the total number of occurrences of Pi, 1 ≤ i ≤ ` in T , i.e. α =

∑
1≤i≤` |occ(Pi)|,

where as by β we denote the number of occurrences of P in T , i.e. β = |occ(P)|. The following facts
are easily observable.

Fact 1. α = Ω(β)

Fact 2. β = O(n)

Fact 3. α = O(ln)

Similar to the definition of P (Definition 2) we define a text T having don’t care as follows.

Definition 3. Text with don’t care characters. A text T with don’t care characters consists of
subtexts Ti, 1 ≤ i ≤ `, where each subtext Ti is a string over the alphabet Σ. For each 1 ≤ i ≤ `− 1
we have a parameter ki which indicates the number of don’t care characters between Ti and Ti+1.

In both the cases the total number of don’t care characters is K =
∑

1≤i≤`−1 ki. For the pattern
having don’t care characters, we define m =

∑
1≤i≤`−1 |Pi| and m′ = |P| = m+K. Similarly, for the

text with don’t care characters, we define n =
∑

1≤i≤`−1 |Ti| and n′ = |T | = n + K. In this paper,
we present algorithms to solve both Problem DCP and DCT.

3

3 Don’t Care in Pattern

In this section we first present an algorithm to solve Problem DCP. We basically use a counting
argument as follows. We preprocess the occurrences of the subpatterns Pi, 1 ≤ i ≤ ` and construct
an array permitted of length n such that permitted[i] = `, if and only if, for all 1 ≤ j ≤ ` there
exists an rj ∈ occ(Pj) such that rj −

∑
1≤q<j(|Pq| + |kq|) = i. It is easy to see that with the array

permitted duly filled we can set occ(P) = {i | permitted[i] = `}. The algorithm is formally given in
the form of Algorithm 1.

Algorithm 1 Algorithm to Solve Problem DCP
1: Build a Suffix Array SA for T
2: for i = 1 to n do
3: permitted[i] = 0 {initializing the permitted array}
4: end for
5: Set V al[1] = 0
6: for i = 2 to ` do
7: V al[i] = V al[i− 1] + |Pi−1|+ ki−1

8: end for
9: occ(P) = ∅

10: for each Pi, 1 ≤ i ≤ ` do
11: Compute occ(Pi) using SA.
12: for each r ∈ occ(Pi) do
13: permitted[r − V al[i]] = permitted[r − V al[i]] + 1 {Assume that boundary conditions are checked}
14: if permitted[r − V al[i]] = ` then
15: occ(P) = occ(P)

S
(r − V al[i])

16: end if
17: end for
18: end for
19: return occ(P)

Let us now analyze Algorithm 1. Step 1 can be done in O(n) using one of the very recent linear
algorithms of [12–14]. Step 2 initializes the permitted array and requires O(n) time. In the ‘FOR’ loop
of Step 10, we first compute occ(Pi) for all 1 ≤ i ≤ ` (Step 11) and then for each r ∈ occ(Pi), we do
constant time manipulation in the permitted array. The constant time manipulation is warranted
by the construction of the array V al in Step 6 requiring O(`) time. Computing all occ(Pi) and
the O(1) time manipulation per each element of all occ(Pi) can be performed in O(

∑
1≤i≤` |Pi| +∑

1≤i≤` |occ(Pi)|) = O(m + α) time using the algorithms of [1]. So the total running time of our
algorithm would be O(n + m + α).

Theorem 4. Algorithm 1 solves Problem DCP in O(n + m + α) time.

3.1 Indexing

The indexing problem is a very important variant of the pattern matching problem where the given
text has to be preprocessed so that batch of queries can be answered efficiently. The problem is
formally defined as follows:

4

Problem “IDCP” (Indexing with Don’t Care in Pattern). We are given text T over the al-
phabet Σ that can be preprocessed to answer the following form of queries:
Query: Given a pattern P over the alphabet Σ ∪ {∗}, find all the occurrences of P in T .

We can adapt the idea used in Algorithm 1 to solve Problem IDCP. The direct use of Algorithm 1
to answer the queries would require us to use Step 2 to 19 to answer each query requiring O(n+m+α)
time. This would mean, even if α = o(n), we still have O(n + m) time per query. We would prefer
a query time of O(m + α) to avoid direct dependence on n. Note that, we have the n term in the
query running time due to the initialization of the array permitted in Step 2. In order to avoid this
O(n) initialization step we observe the following key fact:

Fact 5. occ(P) ⊆ occ(Pi), 1 ≤ i ≤ l.

Corollary 1. occ(P) ⊆ occ(P1).

Hence, we can ignore all permitted[i] such that i /∈ occ(P1). We avoid initializing the whole permitted
array as follows. As part of the index structure we first initialize the permitted array to ensure that
permitted[i] = 0, 1 ≤ i ≤ n. So the index construction consists of Step 1 to 4 of Algorithm 1.
During a query we only use those indices i of permitted such that i ∈ occ(P1) and when we are
done we (re)initialize those indices for the next round. In this way, instead of O(n) work, for the
initialization of permitted, we only spend O(|occ(P1)|) time per query. The steps are formally stated
in Algorithm 2.

We can see that the index consists of an suffix array of the text and the initialized array permitted
requiring, in total, O(n) time for construction. The query time is O(m+α) as follows. Step 2 requires
O(`) = O(m) time. Step 6 and 7 can be performed in O(|P1|+ |occ(P1)|) time. The whole for loop
of Step 10 requires O((m−|P1|)+ (α−|occ(P1)|)) time. Finally, Step 21 requires O(|occ(P1)|) time.
So, in total, the query time is O(m + α) as required.

Theorem 6. Given a text T over the alphabet Σ, we can preprocess T in optimal O(n) time and
space so that we can report the occurrences of a pattern P over alphabet Σ ∪ {∗} in O(m + α) time.

3.2 Comparison

The algorithm we have presented (Algorithm 1) has the same running time as Pinter’s algorithm [19]
and, in fact, suffers from the same drawback as the one in [19]. As is evident from Fact 3, in the
worst case the running time can be O(n+m+nl). However, unlike Pinter’s algorithm, our algorithm
(Algorithm 2) gives us the ability to process patterns in an online fashion, one after another. Given a
preprocessing time of O(n) for the text T (Step 1 to 4 of Algorithm 1), the occurrences of a pattern
can be reported in O(m + α) using our technique (Algorithm 2).

As is already stated in Section 1, Cole et al. provided a solution for Problem DCP in [4]. The
algorithm in [4] first preprocesses the text T in O(n logK n+n log |Σ|) time to build a data structure
of size O(n logK n) which answers subsequent queries in time O(2K log log n + m + β). As is evident
from the running time, this algorithm is only effective when K is constant. On the other hand, our
algorithm requires only O(n) time and space to preprocess to build a space-efficient suffix array
along with a simple array (permitted). Also both our preprocessing and query time are independent
of K. Our query time is O(m + α) as opposed to O(2K log log n + m + |occ(P)|) of [4]. The only
problem that we have is the presence of the parameter α instead of |occ(P)| in our query time.

5

Algorithm 2 Query Algorithm
1: Set V al[1] = 0
2: for i = 2 to ` do
3: V al[i] = V al[i− 1] + |Pi−1|+ ki−1

4: end for
5: occ(P) = ∅
6: Compute occ(P1) using SA.
7: for each r ∈ occ(P1) do
8: permitted[r] = 1
9: end for

10: for each Pi, 2 ≤ i ≤ ` do
11: Compute occ(Pi) using SA.
12: for each r ∈ occ(Pi) do
13: if permitted[r − V al[i]] ≥ 1 {Checking whether (r − V al[i]) ∈ occ(P1)} then
14: permitted[r − V al[i]] = permitted[r − V al[i]] + 1
15: if permitted[r − V al[i]] = ` then
16: occ(P) = occ(P)

S
(r − V al[i])

17: end if
18: end if
19: end for
20: end for
21: for each r ∈ occ(P1) do
22: permitted[r] = 0 {Re-initializing permitted array}
23: end for
24: return occ(P)

We believe, however, that in many cases our query time will outperform theirs because their query
time is exponential in the number of don’t cares, K. And, in fact, in many practical applications,
including biological instances, K can be O(m). Finally our algorithm is much more simpler than
that of [4]. One final remark is that we can use suffix tree instead of suffix array in the preprocessing
step virtually without any modification at all in Algorithm 1. The reason we preferred suffix array
over suffix tree is because the former is more space-efficient than the latter.

4 Don’t Care Characters in Text

In this section we present a solution for Problem DCT. We however make an assumption that
|Ti| > m, 1 ≤ i ≤ `. We first define some notations that we use to describe our algorithm. We
denote by occT (P) the set of occurrences of P in T . In our algorithm we first construct a generalized
suffix tree [9] of Ti, 1 ≤ i ≤ ` and construct the sets occTi

(P), 1 ≤ i ≤ `. We then update the
indices in sets occTi

(P), 2 ≤ i ≤ ` with respect to T . It is easy to see that after the update we have⋃
1≤i≤` occTi(P) ⊆ occ(P). Hence we now have to find out the set V = occ(P) \

⋃
1≤i≤` occTi(P). It

is easy to see that each j ∈ V comes from 3 cases.
Case 1. If there occurs a prefix P[1..r] ending at the last position of Ti and ki ≥ m− r.
Case 2. If there occurs a prefix P[1..r1] ending at the last position of Ti, a suffix P[m− r2 +1..m]

starting at the first position of Ti+1 and ki = m− r1 − r2.
Case 3. If there occurs a suffix P[m−r+1..m] starting at the first position of Ti and ki−1 ≥ m−r.

6

We compute the set V as follows. Let us define the sets Prej and Sufj such that Prej =
{r | P[1..r] occurs at position j− r + 1} and Sufj = {r | P[m− r + 1..m] occurs at position j}. The
idea is to first construct PreP

1≤j≤i(|Tj |+aj)−ai
and SufP

1≤j≤i(|Tj |+aj)+1 for each pair of Ti and Ti+1

and then check for the occurrences of the above-mentioned three cases.
In what follows we describe the steps with respect to one pair, Ti, Ti+1. The natural idea would

be to construct Aho-Corasic automata [2] ACsuf and ACpre, respectively, for all the suffixes and
prefixes of P. Using the Aho-Corasic Pattern Matching Machine (PMM) [2] we scan each pair of
Ti and Ti+1, 1 ≤ i < ` as follows. We use ACpre for Ti and find all the prefixes of P ending at the
last position of Ti and construct the set PreP

1≤j≤i(|Tj |+aj)−ai
. On the other hand we use ACsuf

for Ti+1 and find all the suffixes of P starting at the first position of Ti+1 and construct the set
SufP

1≤j≤i(|Tj |+aj)+1.
This idea would work but the problem is that the constructions of the two automata would require

O(m2). The essential thing to note here is that we are interested in only 2 particular positions,
namely, the last position of Ti and the first position of Ti+1. As a result the use of PMM with the
two automata is too general a solution in our context spending, perhaps, more computational effort
than required. Indeed, as we shall see, we can perform our required task in O(m) time as follows. We
first describe how we can construct the set SufP

1≤j≤i(|Tj |+aj)+1. In what follows we assume that the
reader is familiar with suffix tree [16, 22]. We build a suffix tree STP of P[2..m]. We start traversing
STP as we scan Ti+1. During this traversal, if at some node, we get a $ transition this means we have
found a suffix and we put the length of the suffix in SufP

1≤j≤i(|Tj |+aj)+1 and continue to traverse.
As soon as we get stuck at a node in STP we stop. we can get stuck in two ways: 1. We can reach
the end of the tree which off course means that we found a suffix as well. 2. We reach a node where
there are no outgoing transitions matching the character we are currently scanning in Ti+1. It is easy
to see that this procedure would give us the set SufP

1≤j≤i(|Tj |+aj)+1 in O(m) time. This follows
from the facts that construction of STP requires O(m) and at most m− 1 characters from T need
be scanned.

To construct PreP
1≤j≤i(|Tj |+aj)−ai

, recall that we want to find out the prefixes of P ending at
Ti[|Ti|]. What we do is follows. We build a suffix tree STP−1 of P−1[2..m] and repeat the above
procedure on T −1

i . To see that this will work we just need to realize that we want to find out the
suffixes of P−1[2..m] starting at T −1

i [1].
To cover Case 1, we check whether ki ≥ m − r for each r in PreP

1≤j≤i(|Tj |+aj)−ai
. If yes, it is

easy to see that we have an occurrence of P at position
∑

1≤j≤i(|Tj | + aj) − ai − r + 1 of T . To
cover Case 3, we check whether ki−1 ≥ m − r for each r in SufP

1≤j≤i(|Tj |+aj)+1. If yes, it is easy
to see that we have an occurrence of P at position

∑
1≤j≤i(|Tj | + aj) + 1 −m + r of T . Finally to

cover case 2 we check whether there is an r1 in PreP
1≤j≤i(|Tj |+aj)−ai

and r2 in SufP
1≤j≤i(|Tj |+aj)+1

such that ki = m− r1 − r2. If yes then it is easy to see that we have an occurrence of P at position∑
1≤j≤i(|Tj | + aj) − ai − r1 + 1 of T . In this case we say that r1 ∈ PreP

1≤j≤i(|Tj |+aj)−ai
has a

matching entry r2 ∈ SufP
1≤j≤i(|Tj |+aj)+1. Now that we have found the set V we are done. The

steps of the algorithm is formally given in Algorithm 3.
Let us now analyze the running time of Algorithm 3. Step 1 can be done in O(

∑
1≤i≤` |Ti|) = O(n)

time. In Step 7 we first find out the occurrences of P in the strings Ti, 1 ≤ i ≤ ` using GST and then
update the corresponding indices of occurrences with respect to T . Using the array V al, constructed
in Step 4 in O(`) time, this can be done in O(m + |occ(P)|) because

∑
1≤i≤` |occTi

(P) ≤ |occ(P)|.
Note that up to this point we have found out all the occurrences of P in T excluding those involving

7

Algorithm 3 Algorithm to Solve Problem DCT
1: Build a generalized suffix tree GST for the strings Ti, 1 ≤ i ≤ `.
2: Set occ(P) = ∅
3: Set V al[1] = 0
4: for i = 2 to ` do
5: V al[i] = V al[i− 1] + |Ti−1|+ ki−1

6: end for
7: for 1 ≤ i ≤ ` do
8: Construct occTi(P).
9: for each j ∈ occTi(P) do

10: Set j = j + V al[i− 1]
11: occ(P) = occ(P)

S
j

12: end for
13: end for
14: Construct a suffix tree STP of P[2..m]
15: Construct a suffix tree STP−1 of P−1[2..m]
16: for 1 ≤ i ≤ ` {Assume that boundary conditions are checked} do
17: Construct the set PreP

1≤j≤i(|Tj |+aj)−ai
.

18: Construct the set SufP
1≤j≤i(|Tj |+aj)+1.

19: end for
20: for 1 ≤ i ≤ `{Assume that boundary conditions are checked} do
21: for each r in PreP

1≤j≤i(|Tj |+aj)−ai
do

22: if ki ≥ m− r then
23: occ(P) = occ(P)

S P
1≤j≤i(|Tj |+ aj)− ai − r + 1

24: else
25: if there is a matching entry in SufP

1≤j≤i(|Tj |+aj)+1 then

26: occ(P) = occ(P)
S P

1≤j≤i(|Tj |+ aj)− ai − r + 1.
27: end if
28: end if
29: end for
30: for each r in SufP

1≤j≤i(|Tj |+aj)+1 do
31: if ki−1 ≥ m− r then
32: occ(P) = occ(P)

S P
1≤j≤i(|Tj |+ aj)− r + 1.

33: end if
34: end for
35: end for
36: return occ(P)

the don’t cares in T . Step 14 and Step 15 each require O(m) time. In the ‘For’ loop of Step 16 we
consider each pair of Ti and Ti+1. For each such pair we perform Step 17 and Step 18 which takes
O(m) as is deduced before. So the total time required for Step 16 is O(lm). Notably, lm < n due to
our assumption that |ti| > m, 1 ≤ i ≤ `. Finally in Step 20 we find out the set V i.e all the occurrences
due to Case 1, 2 and 3. It is clear that |PreP

1≤j≤i(|Tj |+aj)−ai
| < m and |SufP

1≤j≤i(|Tj |+aj)+1| < m

as well. So for a particular pair we can check Case 1 (Step 22) and Case 3 (Step 25) in O(m). But
checking Case 3 (Step 25) is not that trivial. Nevertheless, we can do it in O(m) as follows. We can
implement the set |SufP

1≤j≤i(|Tj |+aj)+1| using an array A of length (m− 1) where A[j] = 1 means
the occurrence of P[m−j +1..m]. So whether there is a matching entry in |SufP

1≤j≤i(|Tj |+aj)+1| for

8

a r ∈ |PreP
1≤j≤i(|Tj |+aj)−ai

| can be found in constant time. So the total time required for Step 20
can be done in O(lm). So we get the following theorems.

Theorem 7. Algorithm 3 solves Problem DCT in O(n + m + |occ(P)|) time.

5 Conclusion

In this paper we have presented algorithms for pattern matching where either the pattern P or the
text T can contain don’t care characters. If the pattern P contains don’t care characters then we can
report all the occurrences of P in T in O(n + m + α) time. Also, our algorithm can deal with batch
of queries (in O(m+α) time per query) once the linear preprocessing is done. If, on the other hand,
the text T contains don’t care characters, then we can solve the problem in O(n + m + |occ(P)|)
time. The assumption that we make in this case is that the length of each component sub-text is
greater than the length of the pattern. A number of issues remain as possible candidates for future
research as follows:

1. It is clear that the bottleneck in the running time of Algorithm 1 is the presence of the term α.
It is desirable to replace α with an o(n) term which, however, doesn’t seem to be very easy to
accomplish without paying much more cost in either the preprocessing time or the query time
itself or in both of them. An example of this situation can be seen in the running time of Cole
et. al [4] (see discussion in Section 3.2). We are currently exploring some heuristic techniques to
apply on Algorithm 1. With these modifications, we strongly believe that, our algorithm would
outperform all the existing algorithms for this problem in practice.

2. For Algorithm 3, obviously, the next step should be to try to lift our assumption that the length
of each component sub-text is greater than the length of the pattern.

References

1. Mohamed Ibrahim Abouelhoda, Enno Ohlebusch, and Stefan Kurtz. Optimal exact string matching
based on suffix arrays. In SPIRE, pages 31–43, 2002.

2. A. Aho and M. Corasick. Efficient string matching: an aid to bibliographic search. Communications of
the ACM, 18:333–340, 1975.

3. Amihood Amir, Moshe Lewenstein, and Ely Porat. Faster algorithms for string matching with mis-
matches. In SODA, pages 794–803, 2000.

4. Richard Cole, Lee-Ad Gottlieb, and Moshe Lewenstein. Dictionary matching and indexing with errors
and don’t cares. In STOC, pages 91–100, 2004.

5. Richard Cole and Ramesh Hariharan. Approximate string matching: A simpler faster algorithm. In
SODA, pages 463–472, 1998.

6. Richard Cole and Ramesh Hariharan. Verifying candidate matches in sparse and wildcard matching. In
STOC, pages 592–601, 2002.

7. M.J. Fischer and M.S. Paterson. String matching and other products. in Complexity of Computation,
R.M. Karp (editor), SIAM AMS Proceedings, 7:113–125, 1974.

8. Z. Galil and R. Giancarlo. Improved string matching with k mismatches. SIGACT News, 17(4):52–54,
1986.

9. Dan Gusfield. Algorithms on Strings, Trees, and Sequences - Computer Science and Computational
Biology. Cambridge University Press, 1997.

9

10. P. Indyk. Faster algorithms for string matching problems: matching the convolution bound. Proceedings
of the 39th Symposium on Foundations of Computer Science, 1998.

11. A. Kalai. Efficient pattern-matching with don’t cares. Proceedings of the Thirteenth Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 655–656, 2002.

12. Juha Kärkkäinen and Peter Sanders. Simple linear work suffix array construction. In ICALP, pages
943–955, 2003.

13. Dong Kyue Kim, Jeong Seop Sim, Heejin Park, and Kunsoo Park. Linear-time construction of suffix
arrays. In CPM, pages 186–199, 2003.

14. Pang Ko and Srinivas Aluru. Space efficient linear time construction of suffix arrays. In CPM, pages
200–210, 2003.

15. Gad M. Landau and Uzi Vishkin. Fast parallel and serial approximate string matching. J. Algorithms,
10(2):157–169, 1989.

16. Edward M. McCreight. A space-economical suffix tree construction algorithm. J. ACM, 23(2):262–272,
1976.

17. S. Muthukrishan and K. Palem. Non-standard stringology: Algorithms and complexity. Proceedings of
the 26th Symposium on the Theory of Computing, Canada, 1994.

18. S. Muthukrishan and H. Ramesh. Non-standard stringology: Algorithms and complexity. Information
and Computation, 122(1):140–148, 1995.

19. R.Y. Pinter. Efficient string matching with dont care patterns. In A. Apostolico and Z. Galil (Eds.).
Combinatorial algorithms on words, NATO Advanced Science Institute Series F: Computer and System
Sciences, 12:11–29, 1985.

20. M. Sohel Rahman, Costas Iliopoulos, Inbok Lee, Manal Mohamed, and W.F. Smyth. Finding patterns
with variable length gaps or don’t cares. In D.Z. Chen and D.T. Lee, editors, COCOON, volume 4112
of Lecture Notes in Computer Science, pages 146–155. Springer, 2006.

21. S.C. Sahinalp and U. Vishkin. Efficient approximate and dynamic matching of patterns using a labeling
paradigm. In FOCS, pages 320–328, 1996.

22. Esko Ukkonen. On-line construction of suffix trees. Algorithmica, 14(3):249–260, 1995.

10

