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Chapter 1

Introduction to Secret-Key Cipher
Systems

1.1 Basics of the Subject

According to Shannon [Sha49], a family of encryption transformations E = {Ek |
k ∈ K}, each mapping the space of plaintexts to the space of ciphertexts, is called a
cipher system or cipher in short. Parameter k is called the key and it is taken from
key space K. For any k ∈ K encryption transformation Ek should be invertible,
which guarantees that any ciphertext corresponds to the unique plaintext. The
inverse E−1

k is commonly denoted by Dk and called the decryption transformation.
In secret-key, or symmetric, ciphers sender and receiver share the same key k and
this key is the only thing needed to implement encryption and decryption of any
message in the space of plaintexts and ciphertexts. Symmetric ciphers are still by
far the most widely used in all applications where the main requirement is high
security, high throughput capacity and low hardware complexity.

The space of plaintexts is made up of all various-length sequences over some
finite alphabet. This alphabet, depending on a particular instance, can contain
Latin letters only, letters plus decimal digits, all ASCII characters or can just con-
sist of the two binary digits 0 and 1. Except for the classical ciphers, all currently
used electronic cipher systems work with binary plaintexts. Thus, any plaintext
message should be encoded prior to the encryption. For practical reasons, plain-
text sequences after encoding are usually divided into blocks of a fixed size. An
encryption transformation is then applied separately to each block to produce the
corresponding block of the ciphertext. Thus, an encryption transformation can be
viewed as a finite-state deterministic automaton having the sequence of plaintext
blocks at its input and outputting the sequence of ciphertext blocks. The block size
and the alphabet of plaintexts and ciphertexts are usually the same. Therefore, be-
ing invertible, any encryption and decryption transformations implement one-to-one
mappings and the length of an encoded message is not changed due to encryption.

When an encryption transformation implements a memoryless automaton, i.e., is
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2 Introduction to Secret-Key Cipher Systems

a mapping, then equal plaintext blocks are mapped onto equal ciphertext blocks. In
this case we are speaking about a block cipher in the Electronic Codebook (ECB)
mode. The block size has to be large enough to prevent elementary methods of
frequency cryptanalysis that are used to break simple substitution ciphers. In all
the other cases, when encryption is made using a varying (i.e., time- or memory-
dependent) transformation, we should speak about a stream cipher. Thus, the
formal distinction between block and stream ciphers is the presence of memory in
the encryption transformation.

According to this classification, all feedback modes of block ciphers such as Ci-
pher Block Chaining (CBC), Cipher Feedback (CFB) and Output Feedback (OFB)
modes (see [FIP81]) should be considered as stream ciphers. Due to the fact that
block ciphers are rarely used in their original ECB mode of operation and all the
other modes implement memory-dependent transformations, almost all practical
encryption systems can be formally classified as stream ciphers. However, the true
distinction of block and stream ciphers is rather based on completely different de-
sign principles and analysis techniques adopted for these two classes of symmetric
ciphers. For instance, the security of CBC, CFB and OFB modes of operation
solely relies on the properties of the underlying block cipher. This is the reason for
considering these modes in the theory of block ciphers.

Unlike block ciphers, the block length for a stream cipher can be small or even
equal to one. In this case, the encryption transformation is applied to the characters
(or bits) of the plaintext. This thesis is focused mostly on stream ciphers.

It is our conviction that designing a secure and efficient stream cipher is a rather
difficult task. We are basing this belief on the latest results of the NESSIE project
[NES03] regarding final selection of cryptographic algorithms, where no stream ci-
pher has been selected, since none of the six submitted ones met all the stringent
security requirements.

1.2 Stream Ciphers and their Security

In what follows we give a formal definition of encryption and decryption automata
that implement a stream cipher. Consider a plaintext t = {tn}n≥0 divided into
blocks and an arbitrary key k from the key space and generate the corresponding
ciphertext c = {cn}n≥0. This means that the plaintext and the ciphertext are related
to each other by identities Ek(t) = c and Dk(c) = t. When processing sequence t
with the encryption automaton or sequence c with the decryption automaton, both
automata run through the same sequence of internal states z = {zn}n≥0 and their
output functions satisfy the identities fE(tn, zn) = cn and fD(cn, zn) = tn. For
these equalities to hold it is necessary and sufficient for function fE to be an injective
mapping of the first argument for any fixed value of the second one. The output
function of both the encryption and the decryption automata is usually called a
mixer. After applying the output function, the transition function δ updates the
internal state of the automaton taking the current state and the input block as the
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arguments, i.e., δE(tn, zn) = zn+1 and δD(cn, zn) = zn+1. Note that key k may
determine the initial state of the automata and the concrete type of the transition
and output functions, but in other cases the initial state may be publicly known or
be transmitted in plaintext along with the ciphertext.

By the transition function, current internal state zn of the encryption automaton
is defined by previous state zn−1 and input tn−1. In the same way, zn−1 is defined
by zn−2 and tn−2, etc. Thus, in general, zn is a function of initial state z0 and
all previously processed plaintext blocks t0, . . . , tn−1. If, due to this dependence,
output value cn of the ciphertext depends not only on current input tn but also on
t0, . . . , tn−1 then we are speaking about feedforward encryption (see Fig. 1.1(a)).
The corresponding decryption automaton has to run through the same sequence of
internal states and, therefore, its current state will depend on the output value of
plaintext blocks. Such a system is called the feedback decryption (see Fig. 1.1(b)).
If output value cn of the ciphertext is a function of tn and previously generated
ciphertext blocks c0, . . . , cn−1 (thus, there is no direct dependence on previously
processed plaintext blocks t0, . . . , tn−1) then we are speaking about the feedback
encryption (see Fig. 1.1(c)). The corresponding decryption should implement a
feedforward system (see Fig. 1.1(d)).
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c nt n

(a) Feedforward encryption
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(b) Feedback decryption
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(c) Feedback encryption
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(d) Feedforward decryption

Figure 1.1: Stream cipher with feedforward (feedback) dependencies

Current internal state zn and current output value cn of a feedforward (feed-
back) encryption system can in general essentially depend on all the previously pro-
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cessed plaintext blocks (generated ciphertext blocks). If no additional restrictions
are imposed on this dependence then both feedforward and feedback encryption sys-
tems are highly impractical because any single error in the communication channel
causes an infinite number of errors in the decrypted text. Therefore, in practical
implementations of encryption systems the dependence is usually restricted to some
finite number of plaintext or ciphertext blocks. This means that for some d > 0,
current internal state zn is completely determined by the d previously processed
plaintext blocks tn−d, . . . , tn−1 in the feedforward mode and the d ciphertext blocks
cn−d, . . . , cn−1 in the feedback mode (see Fig. 1.2(a)). Initial state z0 defines the
initial content of d memory cells.

Consider a feedback encryption system with the dependence restricted to d ci-
phertext blocks and assume that some block was transmitted with error to the
decryption side. Since the internal state of the decryption automaton is estimated
as a function of d previously received ciphertext blocks, the current state will be
estimated incorrectly as long as the erroneous ciphertext block is fed to an argument
of this function (see Fig. 1.2(b)). Therefore, one block will be decrypted with an
error due to the incorrect ciphertext and d subsequent blocks will be erroneous due
to the incorrectly estimated internal state. This means that any single error in the
communication channel causes at most d + 1 errors in the decrypted text. Such a
stream cipher is said to have a finite error propagation equal to d + 1 and is called
asynchronous or self-synchronizing. The decryption side of this cipher automati-
cally re-synchronizes after d consecutive correct ciphertext blocks are received. An
example of an asynchronous stream cipher is a block cipher used in CBC or CFB
modes.

Note that a feedforward encryption system even with a restricted dependence
will still have an error propagation equal to infinity. Indeed, as soon as any erroneous
ciphertext block is received by the feedback decryption automaton, the current and
all the subsequent outputs will be incorrect since the arguments of the current state
function (plaintext blocks) will always be with errors. That is why such systems are
not considered in practice.
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(b) Feedforward decryption

Figure 1.2: Asynchronous stream cipher (F is a memoryless function)

In many encryption systems current output value cn of the ciphertext does not
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depend on earlier processed plaintext t0, . . . , tn−1. In this case we can assume that
the next state of such an automaton depends only on the previous state and not
on the input and thus the transition function can be presented as δ(zn−1) = zn

both for encryption and decryption automata. Such a stream cipher is called syn-
chronous. It can be decomposed into the autonomous part generating the sequence
of internal states called the key-stream generator and the memoryless mixer imple-
menting the output function (see Fig. 1.3). The generated sequence of states z that
controls the mixer is called the key stream. An example of a synchronous stream
cipher is a block cipher used in OFB mode. Synchronous stream ciphers provide
no error propagation but in order to get the correct plaintext on the receiver side,
encryption and decryption automata have to be perfectly synchronized. Therefore,
additional mechanisms are needed for detecting lost synchronization and succes-
sive re-synchronization of the devices. One of the most common mixers used in
synchronous stream ciphers is modular addition. In such a system both plaintext
blocks and internal states of a key-stream generator are represented by non-negative
integers in the same range (say, up to M) and the encryption function is of the form
fE(tn, zn) = tn + zn (mod M).

±

f E
z n

c nt n

(a) Encryption

±

f D
z n

c n t n

(b) Decryption

Figure 1.3: Synchronous stream cipher

It follows from Shannon’s fundamental theorem on information-theoretic cryp-
tography [Sha49] that the amount of information that can be sent absolutely secure
over a public channel is at most as much as the information present in the key.
Therefore, the only perfectly secure cipher system is the one-time-pad that cor-
responds to an additive mixer with a purely random key stream. Unfortunately,
synchronous stream ciphers in practice have to use a key stream that is far from
being purely random. This explains the fact that the basic problem in the design of
key-stream generators is to define reasonable randomness criteria such that breaking
a cipher which uses a key stream satisfying these criteria would involve infeasible
calculations. This type of security is usually called practical security.

Moreover, an even bigger challenge is to build an efficient generator able to
produce a key stream with the desired randomness characteristics. On one hand, if
the key stream is generated efficiently then it can be described in some simple way,
while any random sequence should not allow such a characterization. On the other
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hand, finding this simple description could mean breaking the key-stream generator
while that should be computationally infeasible.

Statistical tests of randomness are the most natural criteria for checking whether
the statistical properties of a generated sequence agree with those of the sequence
consisting of uniform, independent and identically distributed random variables.
Since any finite-state automaton outputs a sequence that is eventually periodic, we
shall from now on assume that the key-stream sequence is binary with period p.
Any p consecutive elements of such a sequence are called a cycle. Any segment
consisting of repeated zeros or ones which is neither preceded nor succeeded by the
same symbol is called a run. The classical randomness criteria for a periodic binary
key stream are Golomb’s postulates [Gol67, p. 25] which are the following.

1. In every cycle the difference between the number of ones and the number of
zeros is at most 1.

2. In every cycle half of the runs have length one, one-fourth have length two,
one-eighth have length three, etc., as long as the number of runs so indicated
exceeds 1. Moreover, for each of these lengths there are (almost) equally many
runs of zeros and of ones.

3. The auto-correlation function [LN83, pp. 463-464] is constant for all phase
shifts that are not a multiple of p.

The basic property of purely random sequences is unpredictability. Note that an
output sequence of a maximum-length Linear Feedback Shift Registers (LFSR) satis-
fies Golomb’s postulates (see [HK98] and [HK99, Sect. 8.2]) but is easily predictable
when using the Berlekamp-Massey algorithm [Mas69, vT00]. Therefore, being nec-
essary for a periodic pseudo-random sequence to look random, these postulates are
anything but sufficient for this sequence to be considered random. Many additional
statistical tests have been proposed in order to improve the randomness criteria (see
[MvOV97, Sect. 5.4] for an overview).

Different notions of security and different assumptions about the cryptanalytic
context result into four principal approaches to the design of stream ciphers [Rue92,
p. 68]. The information-theoretic approach deals with Shannon’s notion of security.
When following the system-theoretic approach the designer’s goal is to make sure
that none of the currently known basic cryptanalytic principles are applicable to the
cipher system. The complexity-theoretic approach means that security of a stream
cipher is based on some computationally infeasible problem that cannot be solved
in polynomial time. Finally, randomized stream ciphers ensure that for breaking the
system the cryptanalyst has to examine an infeasible amount of data. Key-stream
generators are studied in this thesis following the system-theoretic approach.

Virtually all of the currently known attacks on stream ciphers are based on
the following cryptanalytic principles: substitution and approximation, divide and
conquer of the key space, and statistical analysis. In order to prevent these attacks,
a number of general design criteria for key-stream generators have been formulated.
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The most important criteria that are necessary but not sufficient for the security of
a key-stream generator are the following:

1. Long period.

2. Linear and nonlinear complexity profiles resembling the profiles (often called
typical) of a purely random sequence.

Note 1.1 According to [Rue86, p. 33], by the complexity profile we mean
the dynamic behavior of the linear (nonlinear) complexity as a function of
the number of bits processed. The typical linear complexity grows approxi-
mately as n/2. The behavior of nonlinear (maximum order) complexity of a
random sequence was studied in [Jan89]. In general, estimating the nonlinear
complexity is computationally hard, while methods for estimating the linear
complexity are quite developed at the moment.

3. Statistical uniformity.

4. Confusion - every key stream symbol depends on all or on most of the key
bits.

5. Logical functions (filtering and combining) satisfying the relevant security cri-
teria (see Chap. 2).

F

L F S R

z

(a) Nonlinear filter generator

L F S R - 1

L F S R - n
F...

. z

(b) Nonlinear combination generator

Figure 1.4: Basic key-stream generators

Most of the well-known key-stream generators are built following the system-
theoretic approach and are based on LFSR’s (see [vT00, Sect. 3.2]). The idea
to use LFSR’s for generating pseudo-random sequences dates back to the work of
Zierler [Zie59]. Their practical significance is based on the fact that LFSR’s allow
efficient hardware implementation and produce sequences with a large period and
good statistical properties (if the feedback polynomial is chosen to be primitive).
Unfortunately, inherent linearity of these sequences results in low linear complexity
that prevents immediate use as a key stream. Three basic schemes were suggested
to increase the linear complexity preserving at the same time a large period and
good statistical properties of the LFSR output sequence [Rue86]. These are the
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nonlinear filter generator (see Fig. 1.4(a)), the nonlinear combination generator (see
Fig. 1.4(b)) and the clock-controlled arrangement (see Fig. 3.1 on page 50). These
designs are usually combined in a key-stream generator to produce sequences with
higher complexity and higher security.

Today, the question of security in the system-theoretic sense for stream ciphers
is far from being settled. This area of cryptography is an excellent example of
how the development of new cryptanalytic techniques stimulates new research and,
in particular, how it changes our understanding of what security for stream ciphers
means. Current security requirements for stream ciphers simply reflect the currently
known cryptanalytic attacks. If, after thorough cryptanalysis, it seems that the
exhaustive search of an effective key space is the only way to break the cipher then
the cipher is often accepted as being secure.

Most of the attacks on stream ciphers follow the known-plaintext scenario. For
synchronous stream ciphers this means that an attack is mounted on a key-stream
generator when a segment of the generated sequence is known. Attacks on key-
stream generators can be divided into key-recovery attacks where the secret key (or
part of it) is targeted and distinguishing attacks where the goal is to distinguish
the key stream from a purely random sequence. One of the most efficient classes
of key-recovery attacks that can be applied to all synchronous ciphers are (fast)
correlation attacks. Other key-recovery attacks that exploit the inherent linearity
of LFSR’s underlying a key-stream generator, are usually referred to as algebraic
attacks. Attacks that exploit statistical irregularities in a key stream are called
statistical attacks.

1.3 Outline of the Thesis

In the thesis we address some important problems in the design and analysis of
key-stream generators for stream ciphers. Traditionally, all research in this area is
carried out along two major directions.

The first direction is focused on the building blocks (e.g., feedback shift registers,
logical functions, modulo N arithmetic, etc.) that constitute the generator, and on
estimating the related number-theoretical characteristics of the key stream. Doing
this, the main objective is to find methods for generating key-stream sequences
with characteristics that provide security against algebraic attacks. Following this
approach, we analyze combining and filter functions in Chap. 2 and clock-controlled
LFSR’s in Chap. 3.

A tensor transform introduced in Chap. 2 proves to be helpful when analyzing the
security of Boolean and multivalued logical functions in cryptographic applications.
Special cases of this approach not only provide easy proofs for known relations in
the theory of algebraic normal, arithmetic and Walsh transforms, but also lead to
some new properties of these transforms. We also propose a new type of tensor
transform, the so-called probabilistic transform, giving an important insight into
certain probabilistic properties of Boolean functions. Another new type of tensor
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transform that we propose, is the weight transform. It relates a Boolean function
to the weights of its subfunctions.

In Chap. 2 we also study correlation properties of Boolean functions. We show
how correlation coefficients that provide an estimate for correlation dependencies
of a Boolean function, can be obtained from its weight transform. We demonstrate
that the number of fixed-order product terms in the Algebraic Normal Form of a
balanced Boolean function depends on its correlation coefficients. We prove that
highly resilient Boolean functions cannot be approximated by a function that is
nondegenerate on few variables. We also introduce in this chapter a polynomial
that estimates the bias of the output distribution as a function of the input biases.
The coefficients of this polynomial can be obtained by means of the probabilis-
tic transform. Further, we suggest a characteristic for balanced Boolean functions
that measures their ability to compensate a nonuniform distribution of the inputs.
Resilient functions are proved to have good compensating qualities.

The other building block being analyzed in the context of the first direction is
a clock-controlled LFSR. In Chap. 3 we estimate the period of its output sequence
when the feedback polynomial is irreducible and the structure of the control sequence
is arbitrary. A sufficient condition for this period to reach its maximal value is
formulated. Some specific configurations of clock-controlled arrangements with a
maximal period of the output sequence are described. Relevant recommendations
for estimating the linear complexity are given. We also formulate the rules that
have to be observed when constructing a clock-controlled arrangement in order to
provide a close-to-uniform element distribution in the output sequence.

Moving slightly away from building blocks, in Chap. 3 we also construct a key-
stream generator based on the one suggested by Geffe. Unlike the Geffe generator
that has three binary input m-sequences, this generator runs over the field GF(q)
and combines multiple inputs having arbitrary periods. In particular, this implies
that clock-controlled shift registers can be used as inputs. The original Geffe gener-
ator cannot be used for secure key-stream generation since its combining function is
zero-order correlation immune and correlation attacks can easily be launched. Us-
ing clock-controlled registers and multiple inputs makes the new generator immune
against fast correlation attacks and less susceptible to basic attacks. We analyze
some relevant algebraic properties of the suggested generator.

The second direction in the design and analysis of key-stream generators on which
we focus are the statistical properties of a key stream. Following this approach,
in Chap. 4 we develop several attacks that exploit statistical weakness in the key
stream. Our first algorithm uses statistical tests based on invariant statistics. It tests
a key stream for a linear recurrence perturbed with a nonuniform additive noise. For
the particular case of trinomial feedback we construct a couple of invariant statistics
that allow construction of computationally feasible tests.

Our second algorithm tests a ciphertext for key-stream reuse. We construct non-
randomized and randomized most powerful tests that efficiently distinguish families
consisting of up to four ciphertexts obtained from different plaintexts but using the
same key-stream segment. Moreover, we provide explicit algorithms for constructing
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parameter intervals, where these tests are uniformly most powerful.
If the cryptanalyst is dealing with blocks of key-stream or ciphertext then it may

be helpful to use statistical procedures for selecting the most probable outcomes
from the multinomial population. We construct new procedures that are based
on the calculation of reduced frequencies. That makes them more efficient when
the total number of outcomes is big compared to the amount of memory available.
Using these procedures we can detect possible statistical irregularities in a generated
sequence of key-stream or ciphertext blocks. If such an irregularity is detected then
this can be used as a basis for the distinguishing attack on the cipher. Another
useful applications can be found in frequency analysis, namely, where it is a part
of a dictionary attack on ciphers and various other attacks on codes. We prove the
limit theorem for the distribution of reduced frequencies.

Results presented in Chap. 2 appeared in [KvT02, Kho03], results of Chap. 3
appeared in [Kho01], and Chap. 4 in the part concerning multinomial selection
procedures was published in [Kho98a].



Chapter 2

Tools for Analyzing the Security of
Logical Functions Used in
Key-Stream Generators

2.1 Introduction

Among the basic schemes for key-stream generators are the nonlinear filter gen-
erator and the nonlinear combination generator (see Fig. 1.4 and [Rue86]). They
correspond respectively to a nonlinear transformation applied to several phases of
the same linear feedback shift register (LFSR) or to the outputs of several indepen-
dent LFSR’s. The nonlinear transformation can be represented by a Boolean (in
general, multivalued) logical function and the security of the key-stream generators
heavily relies on the specific qualities of this function. If the function is not chosen
properly then the whole system is susceptible to different types of correlation [Jö02]
and algebraic [DXS91] attacks.

It is currently generally accepted that secure functions to be used in key-stream
generators must meet the following requirements: balancedness, high nonlinearity,
fulfilling the Strict Avalanche Criterion, sufficiently high algebraic degree that should
hold for each individual variable and should be optimized with respect to certain
correlation properties. These conditions are necessary, although it is not clear if
they are sufficient to resist all kinds of attacks. The algebraic degree of a multi-
valued function is the degree of its Algebraic Normal Form (ANF); balancedness,
nonlinearity, avalanche and correlation properties are defined by its Walsh transform
[XM88, CC99, For89]; the Numerical Normal Form (NNF), that can be estimated via
the arithmetic transform, characterizes probabilistic properties of Boolean functions
(see Sects. 2.2, 2.5 and [KB81, CG99] for the details). Thus, the algebraic normal,
arithmetic and Walsh transforms of a logical function define the most important
cryptographic characteristics of the function. These are all the transforms that
have been extensively studied and have been used in cryptography. The objective
of this chapter is to generalize the known transforms and to develop the new ones

11



12 Tools for Analyzing the Security of Logical Functions

which would provide efficient means for analyzing the security of logical functions.
We understand that any useful transform applied to a logical function, firstly, should
produce data giving immediate characterization of some important cryptographic
properties of the function and, secondly, should allow efficient estimation.

In Sect. 2.2 we describe the general basis for a tensor transform of pseudo-
Boolean functions by which we mean any function of Boolean variables taking on
its values in an arbitrary field. Special cases of this approach not only provide
easy proofs for known relations in the theory of algebraic normal, arithmetic and
Walsh transforms, but also lead to some new properties of these transforms. We also
propose a new type of tensor transform, the so-called probabilistic transform, giving
an important insight into certain probabilistic properties of Boolean functions that
are discussed in Sect. 2.5. Another new type of tensor transform that we propose, is
the weight transform. It relates a Boolean function to the weights of its subfunctions.
It is proved that coefficients of the ANF of a Boolean function depend on the values
contained in its binary weight transform for the zero-valued vector.

Interrelated algebraic and correlation properties of Boolean functions are inves-
tigated in Sect. 2.3. We suggest that not-correlation-immune Boolean functions can
still be cryptographically secure if only slight dependence between input bits and
the output is allowed. We show how correlation coefficients that provide an esti-
mate for correlation dependencies of a Boolean function, can be obtained from its
weight transform. We demonstrate that the number of fixed-order product terms
in the ANF of a balanced Boolean function depends on its correlation coefficients.
We also prove that highly resilient Boolean functions cannot be approximated with
a function that is nondegenerate on few number of variables.

In Sect. 2.4 we generalize a tensor transform of pseudo-Boolean functions (that
was discussed in Sect. 2.2) to the multivalued case. This transform covers algebraic
normal and Walsh transforms of functions over GF(q). We also give a new proof
for the spectral characterization of high-order correlation immune functions over a
finite field. These results appeared in [Kho03].

The arrangement with a Boolean function combining random inputs that are
distributed nonuniformly with some known biases is considered in Sect. 2.5. We in-
troduce a polynomial that estimates the bias of the output distribution as a function
of input biases. The coefficients of this polynomial can be obtained by means of the
probabilistic transform. Further, we suggest a characteristic for balanced Boolean
functions that measures their ability to compensate a nonuniform distribution of the
inputs. Resilient functions are proved to have good compensating qualities. The
extended abstract of Sects. 2.2 and 2.5 appeared in [KvT02].

In Sect. 2.6 we apply the known idea of equivalence relation of Boolean functions
under a transformation group to facilitate the problem of estimating the number
of functions that fulfil a relevant set of security criteria. This approach is also
helpful when checking whether a design criterion remains invariant under some
“weak” transformations. We prove invariance of some important cryptographic
characteristics of Boolean functions under weak transformations.
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2.2 Tensor Transform of Pseudo-Boolean Functions

Let Mn(P ) denote the ring of n-dimensional square matrices over the field P . For
a pair of matrices A ∈ Mn(P ) and B ∈ Mm(P ) let A ⊗ B denote the Kronecker
product [MS96, p. 421] of these matrices and A[k] denote the kth Kronecker power
of A. For a matrix A ∈ M2n(P ) we use notation A = (g0, . . . , g2n−1), where gi

(i = 0, . . . , 2n − 1) denotes the ith column of A and the coordinates of gi are
indexed lexicographically by the elements in {0, 1}n, so

gi =




gi(0, . . . , 0)
gi(0, . . . , 1)

...
gi(1, . . . , 1)


 .

Let αi = (α1
i , . . . , α

n
i ) (i = 0, . . . , 2n − 1) denote the n-bit binary expansion of i,

where the leftmost bit is the most significant. Then gi = (gi(α0), . . . , gi(α2n−1))T ,
where the superscript T denotes transpose of a matrix.

Lemma 2.1 Let A = (g0, . . . , g2n−1) ∈ M2n(P ) and A′ = (g′0, . . . , g
′
2n−1−1) ∈

M2n−1(P ). Suppose that A = B ⊗ A′ for some matrix B =
(

b00 b01

b10 b11

)
. Then for

any i ∈ {0, . . . , 2n − 1}

gi(x1, . . . , xn) =
{

(b00x1 + b10x1)g′i′(x2, . . . , xn), if αi = (0, αi′),
(b01x1 + b11x1)g′i′(x2, . . . , xn), if αi = (1, αi′),

where αi′ is the (n− 1)-bit vector, binary expansion of i′.

Proof: By the definition of the Kronecker product, A =
(

b00A
′ b01A

′

b10A
′ b11A

′

)
. Thus,

gi(0, x2, . . . , xn) =
{

b00g
′
i′(x2, . . . , xn), if αi = (0, αi′),

b01g
′
i′(x2, . . . , xn), if αi = (1, αi′)

and

gi(1, x2, . . . , xn) =
{

b10g
′
i′(x2, . . . , xn), if αi = (0, αi′),

b11g
′
i′(x2, . . . , xn), if αi = (1, αi′).

These equations combined together prove the claimed identity. ut

The following proposition easily follows from Lemma 2.1.

Proposition 2.2 Let A = B1⊗· · ·⊗Bn, where Bj =

(
b
(j)
00 b

(j)
01

b
(j)
10 b

(j)
11

)
for j = 1, . . . , n,

and A = (g0, . . . , g2n−1). Then for any i ∈ {0, . . . , 2n − 1}

gi(x1, . . . , xn) =
n∏

j=1

(
αj

i

(
b
(j)
00 xj + b

(j)
10 xj

)
+ αj

i

(
b
(j)
01 xj + b

(j)
11 xj

))
.
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Let A ∈ M2n(P ) be an invertible matrix and A = (g0, . . . , g2n−1). Further,
let pseudo-Boolean function f(x1, . . . , xn), mapping {0, 1}n to P , be defined by its
string of values T f = (f(α0), . . . , f(α2n−1))T ∈ P 2n

and function F (x1, . . . , xn) be
defined by the string of values TF = A−1T f = (F (α0), . . . , F (α2n−1))T ∈ P 2n

.
Vectors T f and TF are considered further as column-vectors. Then T f = ATF ,

T f =
2n−1∑

i=0

giF (αi) and f(x1, . . . , xn) =
2n−1∑

i=0

gi(x1, . . . , xn)F (αi) (2.1)

for any (x1, . . . , xn) ∈ {0, 1}n. Equations (2.1) represent the decomposition of func-
tion f with respect to the basis vector set (g0, . . . , g2n−1). We will say that functions
f and F are related by a tensor transform if matrix A of the linear transform is
equal to the Kronecker product of n elementary cells of size 2× 2.

Hereafter, by fβ1,...,βm

i1,...,im
for any 1 ≤ i1 < · · · < im ≤ n, we denote the subfunction

of f obtained by fixing variables xi1 , . . . , xim with binary values β1, . . . , βm respec-
tively. By wt(ω) we also denote the Hamming weight of a binary string ω and by
wt(f) we denote the Hamming weight of a Boolean function f , i.e., the weight of
T f .

It is well known that if B1 and B2 are invertible matrices over P then the
Kronecker product matrix B1⊗B2 is invertible too and (B1⊗B2)−1 = B−1

1 ⊗B−1
2 .

In particular, if B ∈ Mm(P ) is an invertible matrix and A = B[n] then A is invertible
too and A−1 = (B−1)[n].

Now we will demonstrate how Proposition 2.2 substantially facilitates proving
some important matrix identities for various representations of pseudo-Boolean func-
tions. By convention, for a Boolean variable x we assume that x0 = x and x1 = x.

The Identity Transform.

Let P be an arbitrary field and set B =
(

1 0
0 1

)
and A = B[n], where 0 and 1 are

zero and identity elements of P respectively. Then, by Proposition 2.2,

gi(x1, . . . , xn) =
n∏

j=1

(
αj

i xj + αj
i xj

)
=

n∏

j=1

x
αj

i
j = x

α1
i

1 · · · · · xαn
i

n

and

f(x1, . . . , xn)
(2.1)
=

2n−1∑

i=0

gi(x1, . . . , xn)F (αi) =

=
2n−1∑

i=0

(
x

α1
i

1 · · · · · xαn
i

n

)
F (αi) = F (x1, . . . , xn) .
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The Algebraic Normal and Arithmetic Transforms.

Let P be an arbitrary field and set B =
(

1 0
1 1

)
and A = B[n], where 0 and 1 are

zero and identity elements of P respectively. Then, by Proposition 2.2,

gi(x1, . . . , xn) =
n∏

j=1

(
αj

i + αj
i xj

)
=

∏

j=1,...,n: αj
i=1

xj (2.2)

and

f(x1, . . . , xn)
(2.1)
=

2n−1∑

i=0

gi(x1, . . . , xn)F (αi) =
2n−1∑

i=0


 ∏

j=1,...,n: αj
i=1

xj


F (αi) .

If we take P = GF(2) then one can easily recognize the Algebraic Normal Form
(ANF) of Boolean function f on the right hand side of the last identity, where
F (αi) (i = 0, . . . , 2n − 1) are the coefficients of the ANF polynomial. Let P f

denote the coefficient vector of the ANF polynomial for function f and take also

R2 =
(

1 0
1 1

)
= R−1

2 , R2n = R
[n]
2 . Then

T f = R2nP f and P f = R2nT f . (2.3)

This transform of Boolean function f is called the algebraic normal transform and
was introduced in [Jan89, Sect. 4.2].

On the other hand, basis vector set (2.2) for the algebraic normal transform over
GF(2) can be expressed in the following form:

gi(x1, . . . , xn) =
{

1, if αj
i ≤ xj (j = 1, . . . , n),

0, otherwise .

Therefore, by (2.3),

f(x) =
∑

i=0,...,2n−1: αi¹x

Pf (αi) and Pf (αi) =
∑

x=0,...,2n−1: x¹αi

f(x) ,

where x = (x1, . . . , xn), ¹ is the partial ordering on the Boolean lattice (defined as
α ¹ x if and only if αj ≤ xj for j = 1, . . . , n) and Pf (αi) is the ith coefficient of
the ANF of function f . In the sum over x the summation index is considered as an
integer in the range 0, . . . , 2n − 1 but written in its binary expansion. The latter
identity for ANF coefficients can be found in [MS96, p. 372].

If R2n is considered as a matrix over the real number field R and the algebraic
normal transform of a Boolean function f is implemented over R then TF is equal
to the coefficient vector of a real-valued, exponent-free (in variables) polynomial of
n variables with integer coefficients that takes on the same values as function f on



16 Tools for Analyzing the Security of Logical Functions

the points from GF(2)n. Let Πf denote the coefficient vector of such a polynomial.

In this case R−1
2 =

(
1 0

−1 1

)
, R−1

2n = (R−1
2 )[n],

T f = R2nΠf and Πf = R−1
2n T f . (2.4)

According to [CG99], this real-valued polynomial is called the Numerical Normal
Form of f . Corresponding transform (2.4) was introduced in [KB81] and is com-

monly called the arithmetic transform. Using Proposition 2.2 for B =
(

1 0
−1 1

)

and A = B[n] we obtain

gi(x1, . . . , xn) =
n∏

j=1

(
αj

i (xj − xj) + αj
i xj

)
=

=
{

(−1)wt(x1,...,xn)−wt(αi), if αj
i ≤ xj (j = 1, . . . , n),

0, otherwise .

Therefore, by (2.4),

Πf (ω) = (−1)wt(ω)
∑

i=0,...,2n−1: αi¹ω

(−1)wt(αi)f(αi) ,

where Πf (ω) is the ωth coefficient of the NNF of function f . The latter identity
can be found in [CG99, Proposition 2]. The ANF coefficients of a Boolean function
f can be obtained just by reducing the corresponding NNF coefficients modulo
2. The formula for calculating the NNF coefficients from the ANF is proved in
[CG99, Theorem 1]. The NNF gives an important insight into certain probabilistic
properties of Boolean functions that will be discussed further in Sect. 2.5. Note that
the algebraic normal transform can also be implemented over the complex field C
for any pseudo-Boolean function taking on its values in C.

The Probabilistic Transform.

Assume that P = R and set B = 1
2

(
2 −1
2 1

)
and A = B[n]. Then B−1 =

1
2

(
1 1

−2 2

)
and, by Proposition 2.2,

gi(x1, . . . , xn) =
n∏

j=1

(
αj

i +
1
2
αj

i (xj − xj)
)

=

=
∏

j=1,...,n: αj
i=1

1
2
(xj − xj)

(◦)
=

∏

j=1,...,n: αj
i=1

δj ,
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where (◦) is obtained by using xj = 1− xj and introducing the new variable δj :=
xj − 1/2. Therefore,

f(x1, . . . , xn)
(2.1)
=

2n−1∑

i=0

gi(x1, . . . , xn)F (αi) =
2n−1∑

i=0


 ∏

j=1,...,n: αj
i=1

δj


 F (αi) .

The right hand side of the last identity contains the real-valued, exponent-free
polynomial of n variables δ1, . . . , δn that for {δ1, . . . , δn} ∈ {−1/2, 1/2}n takes on
the same values as function f on corresponding arguments {x1, . . . , xn} if identity
xj = δj + 1/2 is assumed. Therefore, if Df (x1, . . . , xn) denotes the NNF polyno-
mial of function f then the probabilistic transform gives coefficients for polynomial

Df (1/2+δ1, . . . , 1/2+δn) that we will denote by ∆f . Denote also Q2 = 1
2

(
2 −1
2 1

)
,

Q2n = Q
[n]
2 . Then Q−1

2 = 1
2

(
1 1

−2 2

)
, Q−1

2n = (Q−1
2 )[n],

T f = Q2n∆f and ∆f = Q−1
2n T f . (2.5)

We will call this transform of pseudo-Boolean function f the probabilistic transform.
Applications of this transform will be discussed further in Sect. 2.5.

The Walsh Transform.

According to [Rue86, p. 118], the direct and inverse Walsh transform operations on
a real-valued pseudo-Boolean function f of n variables are defined in a point as

Sf (αi) =
2n−1∑
x=0

f(x)(−1)〈αi,x〉 and f(x) =
1
2n

2n−1∑

i=0

Sf (αi)(−1)〈αi,x〉 , (2.6)

where x = (x1, . . . , xn) and 〈αi,x〉 = α1
i x1⊕· · ·⊕αn

i xn is the standard inner product
over GF(2). In the sum over x in (2.6) the summation index is considered as an
integer in the range 0, . . . , 2n − 1 but written in its binary expansion. Coefficients
Sf (αi) obtained by the direct Walsh transform are called Walsh coefficients and
vector Sf = (Sf (α0), . . . , Sf (α2n−1)) is called the Walsh transform of function f .

Assume that P = R and set B =
(

1 1
1 −1

)
= 2B−1 and A = B[n]. Thus, A is

a Hadamard matrix of order 2n (see [MS96, p. 422]). Then, by Proposition 2.2,

gi(x1, . . . , xn) =
n∏

j=1

(
αj

i + αj
i (xj − xj)

)
=

∏

j=1,...,n: αj
i=1

(xj − xj) = (−1)〈αi,x〉

and

f(x1, . . . , xn)
(2.1)
=

2n−1∑

i=0

gi(x1, . . . , xn)F (αi) =
2n−1∑

i=0

F (αi)(−1)〈αi,x〉 .
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This identity corresponds to the inverse Walsh transform (2.6) but without the
multiplicative coefficient. Therefore, in this case F (αi) = 1/2nSf (αi), where Sf (αi)

is the Walsh transform of f evaluated in αi. Let H2 =
(

1 1
1 −1

)
and H2n = H

[n]
2 .

Then
T f =

1
2n

H2nSf and Sf = H2nT f . (2.7)

Note 2.3 It is possible to generalize property (2.7) of the Walsh transform. Assume
that function f is Boolean. Let r be an integer in the range 1 ≤ r ≤ n and let
i1, . . . , ir be a set of indices with 1 ≤ i1 < · · · < ir ≤ n. Let k1, . . . , kn−r with
1 ≤ k1 < · · · < kn−r ≤ n denote the indices complementing i1, . . . , ir with respect
to {1, . . . , n}. Also let the real-valued function w(y1, . . . , yr) of r Boolean variables
be defined as follows

w(α1
j , . . . , α

r
j) = wt

(
f

α1
j ,...,αr

j

i1,...,ir
(xk1 , . . . , xkn−r )

)
= wj

for 0 ≤ j < 2r, where (α1
j , . . . , α

r
j) = αj is the r-bit binary expansion of j. Then, by

(2.7), Sw = H2r (w0, . . . , w2r−1)T . On the other hand, for any i ∈ {0, . . . , 2r − 1}

Sw(αi)
(2.6)
=

2r−1∑

j=0

w(αj)(−1)〈αj ,αi〉 =
2r−1∑

j=0

2n−r−1∑
t=0

f
α1

j ,...,αr
j

i1,...,ir
(αt)(−1)〈αj ,αi〉 =

=
2n−1∑

k=0

f(αk)(−1)〈αk,θi〉 (2.6)
= Sf (θi) ,

where θi is the n-bit vector whose coordinates at the index positions i1, . . . , ir are
equal to α1

i , . . . , α
r
i respectively (where (α1

i , . . . , α
r
i ) = αi) and the remaining (n−r)

coordinates are set to zero. Thus,

H2r (w0, . . . , w2r−1)T = (Sf (θ0), . . . , Sf (θ2r−1))T , (2.8)

that is the generalization of [Sar00, Proposition 3.1], while the proof here is less
complicated. If r is set equal to n then wj = f(αj), θi = αi and (2.8) transforms
into (2.7). Identity (2.8) can be used for proving the Xiao-Massey criterion [XM88]
of high-order correlation immunity for Boolean functions in terms of the Walsh
transform (see Note 2.5 in Sect. 2.3).

If function f is Boolean then in some cases it is more convenient to work with
the real-valued counterpart (sign function) of f , defined as f̂(x) = 1 − 2f(x), and
to apply the Walsh transform to f̂ . Note that f̂(x) is equal to the image of the
element f(x) ∈ GF(2) under the canonical additive character (see [LN83, p. 190]).
Function f̂ can be recovered by the inverse Walsh transform of Sf̂ . Further, since
f(x) = 1/2 − 1/2f̂(x), the original function f can be obtained from the Walsh
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transform Sf̂ by the following inverse transform:

f(x) =
1
2
− 1

2n+1

2n−1∑

i=0

Sf̂ (αi)(−1)〈αi,x〉 .

The relationship between the Walsh transform of f(x) and f̂(x) is given by [For89,
Lemma 1] as follows

Sf̂ (0) = 2n − 2Sf (0) and Sf̂ (w) = −2Sf (w) for 0 < w < 2n . (2.9)

By these identities and (2.7),

T f =
(

1
2
, . . . ,

1
2

)T

− 1
2n+1

H2nS f̂ and Sf̂ = (2n, 0, . . . , 0)T − 2H2nT f (2.10)

since H2n

(
1
2 , 0, . . . , 0

)T =
(

1
2 , . . . , 1

2

)T . On the other hand, identities, similar to
(2.7), hold:

T f̂ =
1
2n

H2nSf̂ and Sf̂ = H2nT f̂ .

Combining (2.3) with (2.7) or (2.10) we obtain the following identities relating
the coefficient vector of the ANF polynomial of f with the Walsh transforms Sf

and S f̂ :

P f =
1
2n

R2nH2nSf (mod 2) =
1
2n

(
1 1
2 0

)[n]

Sf (mod 2) (2.11)

P f = R2n

((
1
2
, . . . ,

1
2

)T

− 1
2n+1

H2nSf̂

)
(mod 2) ,

where all operations on the right hand side are performed in R and the final result is

reduced modulo 2. Using Proposition 2.2 for B =
(

1 1
2 0

)
and A = B[n] we obtain

gi(x1, . . . , xn) =
n∏

j=1

(
xj + 2αj

i xj

)
=

{
2wt(x1,...,xn), if αj

i ≤ xj (j = 1, . . . , n),
0, otherwise .

Therefore, by (2.11),

Pf (ω) =
1

2n−wt(ω)

∑

i=0,...,2n−1: αi¹ω

Sf (αi) (mod 2)
(2.9)
=

= 2wt(ω)−1


1− 1

2n

∑

i=0,...,2n−1: αi¹ω

Sf̂ (αi)


 (mod 2) , (2.12)

where ω denotes the bitwise completion to 1, ¹ is the earlier defined partial ordering
on the Boolean lattice and Pf (ω) is the ωth coefficient of the ANF of function f .
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Relation (2.12) between the ANF and Walsh coefficients can be found in [CF01,
Proposition 3] but the proof above seems easier.

If (2.4) is combined with (2.7) then the resulting identities relate the NNF coef-
ficients of f with the Walsh transform Sf :

Πf =
1
2n

(
1 1
0 −2

)[n]

Sf and Sf =
(

2 1
0 −1

)[n]

Πf . (2.13)

Using Proposition 2.2 for B =
(

2 1
0 −1

)
and A = B[n] we obtain

gi(x1, . . . , xn) =
n∏

j=1

(
2αj

i xj + αj
i (xj − xj)

)
=

=
{

2n−wt(αi)(−1)wt(x1,...,xn), if xj ≤ αj
i (j = 1, . . . , n),

0, otherwise .

Therefore, by (2.13),

Sf (ω) = (−1)wt(ω)
∑

i=0,...,2n−1: ω¹αi

2n−wt(αi)Πf (αi) .

Similarly it can be easily proved that

Πf (ω) =
1
2n

(−2)wt(ω)
∑

i=0,...,2n−1: ω¹αi

Sf (αi) .

Finally, if (2.5) is combined with (2.7) then the resulting identities relate the
probabilistic transform of f with the Walsh transform Sf :

∆f =
1
2n

(
1 0
0 −2

)[n]

Sf and Sf =
(

2 0
0 −1

)[n]

∆f . (2.14)

Since the matrix of transform (2.14) is diagonal, coordinates of zero values in vectors

∆f and Sf are the same. Now, using Proposition 2.2 for B =
(

1 0
0 −2

)
and

A = B[n] we obtain

gi(x1, . . . , xn) =
n∏

j=1

(
αj

i xj − 2αj
i xj

)
=

{
(−2)wt(αi), if xj = αj

i (j = 1, . . . , n),
0, otherwise .

Therefore, by (2.14),

∆f (ω) =
1
2n

(−2)wt(ω)Sf (ω)
(2.9)
=

{ 1
2n (−2)wt(ω)−1Sf̂ (ω), if ω 6= 0,
1
2 − 1

2n+1 Sf̂ (0), if ω = 0,
(2.15)

where ∆f (ω) is the ωth coordinate of the probabilistic transform of function f .
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The Weight Transform.

Take P = R and set D0 =
(

0 1
1 −1

)
, D1 =

(
1 −1
0 1

)
and A = Dβ1 ⊗ · · · ⊗Dβn

for some n-bit vector β = (β1, . . . , βn). Let also

A−1 = B−1
1 ⊗ · · · ⊗B−1

n = D−1
β1
⊗ · · · ⊗D−1

βn
= (g̃0, . . . , g̃2n−1) ,

where B−1
j =

(
b
(j)
00 b

(j)
01

b
(j)
10 b

(j)
11

)
, D−1

0 =
(

1 1
1 0

)
and D−1

1 =
(

1 1
0 1

)
. Using Proposi-

tion 2.2 for A−1 and since b
(j)
00 = b

(j)
01 = 1 for any j = 1, . . . , n, we obtain

g̃i(x1, . . . , xn) =
n∏

j=1

(
xj + xj

(
αj

i b
(j)
10 + αj

i b
(j)
11

))
(∗)
=

(∗)
=

n∏

j=1

(
xj + xj

(
αj

i βj + αj
i βj

))
=

∏

j=1,...,n: αj
i 6=βj

xj . (2.16)

Equality (*) holds because b
(j)
10 = βj and b

(j)
11 = βj . Thus, g̃i(x1, . . . , xn) is equal to

one if and only if the coordinates where vectors αi and β differ, correspond to the
zero entries in vector (x1, . . . , xn).

Assume that function f is Boolean. Then

F (x1, . . . , xn) =
2n−1∑

i=0

g̃i(x1, . . . , xn)f(αi) =

=
2n−1∑

i=0


 ∏

j=1,...,n: αj
i 6=βj

xj


 f(αi) = wt

(
f

βt1 ,...,βtk
t1,...,tk

)
,

where k = wt(x1, . . . , xn) and t1, . . . , tk are coordinates of nonzero entries in (x1, . . . ,
xn). Here it is assumed that if αi = β then

∏
j=1,...,n: αj

i 6=βj
xj = 1. Therefore,

wt
(
fβ1,...,βn

1,...,n

)
= f(β).

Let Θf
β denote the ordered 2n-tuple, containing the weights of the subfunctions

of f obtained by fixing all possible subsets of variables with corresponding values
from vector β. Thus,

Θf
β =

{
wt

(
f

βi1 ,...,βik
i1,...,ik

)
| 1 ≤ i1 < · · · < ik ≤ n; k ∈ {0, . . . , n}

}
.

Denote also Dβ = Dβ1 ⊗ · · · ⊗Dβn . Then

T f = Dβ Θf
β and Θf

β = D−1
β T f . (2.17)

We will call this transform of f the weight transform. In particular, if vector β

consists of zeros only then Dβ = D
[n]
0 , and if it consists only of ones then Dβ = D

[n]
1 .
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If we consider matrices D0 and D1 as matrices over the field GF(2) and perform
all operations in (2.17) in this field then (2.17) will relate the string of values of
function f with binary weights of its subfunctions.

Let us compare basis vector set (2.16) of the weight transform when β = (0, . . . ,
0) with basis vector set (2.2) of the inverse algebraic normal transform. It is clear
that they are directly related via a simple variable complementation. Since R2n =
R−1

2n , the basis vector sets of the algebraic normal transform and its inverse are
equal. Therefore,

Pf (α1
i , . . . , α

n
i ) = Θf

0 (α1
i , . . . , α

n
i ) (mod 2) (2.18)

for any i = 0, . . . , 2n − 1, where (α1
i , . . . , α

n
i ) = αi. This identity is easily accounted

for by the well-known fact that a Boolean function has maximal algebraic degree
if and only if it has an odd weight. Indeed, the right hand side of the identity
contains the binary weight of the subfunction whose maximal possible order term in
the ANF is equal to

∏
j=1,...,n: αj

i=1 xj and the coefficient for this term in the ANF
of f is the value on the left hand side of the identity. To construct the subfunction,
relevant variables of f are being fixed only with zero values. Therefore, the term∏

j=1,...,n: αj
i=1 xj is either present in the ANF’s of both f and the subfunction or is

missing in both.
In Sect. 2.3 correlation coefficients are defined as a measure for correlation de-

pendencies of a Boolean function. These coefficients are estimated by means of
the weight transform and that suggests the importance of the weight transform for
assessing cryptographic characteristics of Boolean functions.

It is important to note that the P f , Πf , ∆f , Sf , Sf̂ and Θf
β transforms of a

function f can be represented by matrix equations (2.3), (2.4), (2.5), (2.7), (2.10)
and (2.17), all based on the Kronecker product of appropriate elementary cells. This
fact allows to use fast Fourier and Walsh transform algorithms [AHU74, Bea84] for
efficient estimation of these transforms and easy transition from one transform to
another. Indeed, let a and b be arbitrary 2n-dimensional vectors over P , such

that b = (B1 ⊗ · · · ⊗ Bn)a, where Bj =

(
b
(j)
11 b

(j)
12

b
(j)
21 b

(j)
22

)
(j = 1, . . . , n) are arbitrary

elementary cells over P . Then

b =

(
b
(1)
11 B′ b

(1)
12 B′

b
(1)
21 B′ b

(1)
22 B′

)
a =

(
b
(1)
11 B′a + b

(1)
12 B′a

b
(1)
21 B′a + b

(1)
22 B′a

)
, (2.19)

where B′ = B2 ⊗ · · · ⊗ Bn and a = (a, a) is the split of a into two halves. Thus,
estimation of b requires 2n+1 multiplications, 2n additions in P and two transforms
of order n − 1. It is easy to prove by induction that the total complexity of the
nth-order transform is equivalent to O(n2n) arithmetic operations in P .

Also note that if a is the string of values of a function f , i.e., a = T f , then a and
a are strings of values of subfunctions f0

1 and f1
1 respectively. Thus, B′a and B′a

are the adequate transforms of these subfunctions. Thus, (2.19) provides a relation
between the transform of a function f and transforms of its subfunctions f0

1 and f1
1 .
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2.3 Algebraic and Correlation Properties of Boolean Func-
tions Related to the Weight Transform

The concept of correlation immunity relates to the statistical dependence between
m-tuples of inputs and the output of a cryptographic transformation. This idea
is extremely important, especially for the design of stream ciphers, where filter
and combination generators with not correlation immune filtering and combining
functions are susceptible to ciphertext-only attacks [Sie85]. A function is said to
be mth-order correlation immune if the distribution probability of its output is
unaltered when any m of its inputs are fixed.

High-order correlation immunity for Boolean functions was first introduced in
[Sie84] where the well-known Siegenthaler’s inequality has also been first proved in
[Sie84, Theorem 1]. According to this inequality, the sum of the algebraic degree and
the order of correlation immunity for a Boolean function of n variables cannot exceed
n. Moreover, it is upper-bounded by n−1 if the function is balanced (i.e., when the
function takes on the zero-value exactly on a half of the domain). Balanced mth-
order correlation immune functions are called m-resilient [Sar00] and any balanced
function is also called 0-resilient. By Siegenthaler’s inequality, high-order correlation
immune functions necessarily have low algebraic degree and vice versa. In order to
handle this situation one has either to find a trade-off between these two properties
or somehow to weaken the requirement for a function to be correlation immune.
From a practical point of view, functions with low correlation dependencies are as
secure as correlation immune ones. In this case we need an estimate for correlation
dependencies of a Boolean function.

Here we assume that X1, . . . , Xn are uniform, independent and identically dis-
tributed random binary variables and f(x), where x = (x1, . . . , xn) ∈ GF(2)n, is a
Boolean function of n variables that is not identical 0 or 1. Let X = (X1, . . . , Xn).
Then f(X) denotes the binary random variable obtained by substituting random
values Xi for the variables of f . Formally speaking, Boolean function f(x) is corre-
lation immune of order m (as defined in [Sie84]) if

Pr(f(X) = 0 | Xi1 = β1, . . . , Xim = βm) = Pr(f(X) = 0)

for any choice of integer i1, . . . , im with 1 ≤ i1 < · · · < im ≤ n and any m-bit tuple
(β1, . . . , βm). The following definition of correlation coefficients generalizes the basic
concept of correlation immunity.

Definition 2.4 Let m and i1, . . . , im be integers with 1 ≤ m ≤ n and 1 ≤ i1 <
· · · < im ≤ n. Then the set of 2m conditional probabilities

cβ1,...,βm

i1,...,im
= Pr(Xi1 = β1, . . . , Xim = βm | f(X) = 0) ,

evaluated for all possible values of the m-bit tuple (β1, . . . , βm) and ordered lexico-
graphically along these values, is called a vector of mth-order correlation coefficients
of f , evaluated for the input subset (i1, . . . , im).
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By the Bayes rule, function f is mth-order correlation immune if and only if all
its mth-order correlation coefficients are equal to 1/2m. On the other hand, for any
Boolean function f ,

Pr(Xi1 = β1, . . . , Xim
= βm | f(X) = 0) =

2n−m − wt
(
fβ1,...,βm

i1,...,im

)

2n − wt(f)
(2.20)

Pr(Xi1 = β1, . . . , Xim
= βm | f(X) = 1) =

wt
(
fβ1,...,βm

i1,...,im

)

wt(f)
.

Conditional probabilities in (2.20) are equal to 1/2m if and only if wt
(
fβ1,...,βm

i1,...,im

)
=

2−mwt(f). Therefore, the mth-order correlation immunity of f implies that the
output of f and any m input variables, considered jointly, are statistically indepen-
dent. Correlation coefficients cβ1,...,βm

i1,...,im
are easily estimated, making use of (2.20), if

the weights of function f and of the subfunctions fβ1,...,βm

i1,...,im
are known (see Sect. 2.2

about the weight transform). For instance, 1st-order correlation coefficients satisfy
the identity

cβ
i =

1
2n − wt(f)

(
2n−1 − wt

(
fβ

i

))
,

and wt
(
fβ

i

)
is equal to the number of n-bit vectors (x1, . . . , xn) in the support of

f that have the ith coordinate xi, equal to β. By the support of f we mean the
subset of GF(2)n where f is equal to 1.

Note 2.5 It is well known [XM88] that a Boolean function f of n variables is
mth-order correlation immune for 1 ≤ m ≤ n, if and only if its Walsh transform
coefficients are equal to zero for any nonzero vector with Hamming weight not
exceeding m. This criterion is easy to prove making use of property (2.8) of the
Walsh transform. Indeed, Sf (α) = 0 for any α ∈ GF(2)n with 1 ≤ wt(α) ≤ m
if and only if for any set of indices i1, . . . , im with 1 ≤ i1 < · · · < im ≤ n Walsh
coefficients Sf (θ1), . . . , Sf (θ2m−1) are all equal to zero. By (2.8), this is equivalent
to Sw(β) = 0 for any β 6= 0 (using the notation introduced in Sect. 2.2). From
(2.6) it follows that the only function having zero Walsh coefficients for all nonzero
arguments is the constant function and thus, for any (y1, . . . , ym) ∈ GF(2)m

w(y1, . . . , ym) = wt
(
fy1,...,ym

i1,...,im

) ≡ 1
2m

Sw(0) =
wt(f)
2m

.

Now, by (2.20), this is equivalent to function f being mth-order correlation immune.
In particular, this criterion implies that for m > 1, any mth-order correlation im-
mune function is also (m− 1)st-order correlation immune.

Proposition 2.6 A Boolean function f of n variables is mth-order correlation im-
mune for 1 ≤ m ≤ n, if and only if for every k ∈ {1, . . . ,m} and any set of indices
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i1, . . . , ik with 1 ≤ i1 < · · · < ik ≤ n, there exists at least one k-bit tuple (β1, . . . , βk),
such that correlation coefficient cβ1,...,βk

i1,...,ik
is equal to 1/2k.

Proof: By Note 2.5, if function f is mth-order correlation immune then it is
kth-order correlation immune for any k ∈ {1, . . . , m}. This means that for any such
a k all kth-order correlation coefficients of f are equal to 1/2k. Thus, the condition
stated in the proposition is necessary for a function to be mth-order correlation
immune. To show that this condition is also sufficient, we apply induction on m.

Let m = 1 and assume that for any i with 1 ≤ i ≤ n there exists some βi, such
that the corresponding correlation coefficient cβi

i is equal to 1/2. Then, by (2.20),
wt(fβi

i ) = wt(f)/2. Therefore,

wt
(
fβi⊕1

i

)
= wt(f)− wt(fβi

i ) =
wt(f)

2

and
cβi⊕1
i =

1
2n − wt(f)

(
2n−1 − wt

(
fβi⊕1

i

))
=

1
2

.

Thus, function f is 1st-order correlation immune.
Now, assuming that the proposition is true for m = l− 1, we prove it for m = l.

The conditions imposed above imply that for any set of indices i1, . . . , il with 1 ≤
i1 < · · · < il ≤ n, there exists an l-bit tuple (β1, . . . , βl), such that cβ1,...,βl

i1,...,il
is equal

to 1/2l. According to the induction hypothesis, the imposed conditions are sufficient
for f to be (l − 1)st-order correlation immune and thus c

β1,...,βl−1
i1,...,il−1

= 1/2l−1. Then,

by (2.20), wt
(
fβ1,...,βl

i1,...,il

)
= wt(f)/2l and wt

(
f

β1,...,βl−1
i1,...,il−1

)
= wt(f)/2l−1. Therefore,

wt
(
f

β1,...,βl−1,βl⊕1
i1,...,il

)
= wt

(
f

β1,...,βl−1
i1,...,il−1

)
− wt

(
f

β1,...,βl−1,βl

i1,...,il

)
=

wt(f)
2l

and c
β1,...,βl−1,βl⊕1
i1,...,il

= 1/2l. Any l-bit tuple can be obtained by consecutive inverting
of required coordinates in the fixed tuple (β1, . . . , βl). This way it follows that
for any m-bit tuple (γ1, . . . , γl), the correlation coefficient cγ1,...,γl

i1,...,il
is equal to 1/2l.

Thus, function f is lth-order correlation immune. ut

A Boolean function f cannot be considered cryptographically secure if there
exists a function, having low algebraic degree or depending on small number of
variables, that coincides with f on a larger half of the domain or, in other words, that
approximates f (see [Can02]). Indeed, the existence of a relatively accurate, low-
dimensional approximation for a cipher transformation could reduce the complexity
of the exhaustive search to the dimension of the domain of this approximation.
The following proposition shows that an m-resilient Boolean function cannot be
approximated by any function depending on m variables only.

Proposition 2.7 Any balanced Boolean function f of n variables is m-resilient for
1 ≤ m < n, if and only if there are no approximations of f depending on m variables.
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Proof: Suppose that function f(x1, . . . , xn) is m-resilient for some 1 ≤ m < n and
that there exists a function g(xi1 , . . . , xim

) approximating f . Then

Pr(f(X) 6= g(Xi1 , . . . , Xim
)) =

wt(f(x)⊕ g(xi1 , . . . , xim
))

2n
=

=

∑
(βi1 ,...,βim )∈GF(2)m wt

(
f

βi1 ,...,βim

i1,...,im
⊕ g(βi1 , . . . , βim

)
)

2n
=

=
2m2n−m−1

2n
=

1
2

.

Thus, g(xi1 , . . . , xim
) does not approximate f .

Suppose now that there are no approximations of f , depending on m variables.
In particular, there are no linear approximations, depending on m variables, meaning
that for any n-bit vector β = (β1, . . . , βn) such that 0 < wt(β) ≤ m, Pr(f(X) =
(β1X1 ⊕ · · · ⊕ βnXn)) = 1/2. On the other hand, for any nonzero β the following
known [Rue86, p. 121] identity holds

Pr(f(X) = (β1X1 ⊕ · · · ⊕ βnXn)) =
1
2
− Sf (β)

2n
, (2.21)

where Sf (β) is the Walsh transform of f evaluated in β. Thus, Sf (β) = 0 and by
Note 2.5, function f is mth-order correlation immune. ut

For any Boolean function f of n variables let Sm(f) denote the number of sub-
functions obtained by fixing m variables of f with zero values and having an even
weight. Let also Dn−m(f) denote the total number of (n − m)th-order product
terms, contained in the ANF of f . The following proposition, which easily follows
from (2.18), establishes a relation between the values of Sm(f) and Dn−m(f).

Proposition 2.8 For any Boolean function f of n variables and any positive integer
m ≤ n,

Sm(f) + Dn−m(f) =
(

n

m

)
.

Further, let Cm(f) denote the number of mth-order correlation coefficient vectors
of f with coordinate c0,...,0

i1,...,im
equal to 1/2m. From (2.20) it is clear that an nth-order

correlation coefficient of a nonconstant Boolean function of n variables cannot be
equal to 1/2n and thus for such a function Cn(f) = 0.

Corollary 2.9 For any balanced Boolean function f of n variables and any positive
integer m < n− 1,

Cm(f) + Dn−m(f) ≤
(

n

m

)
.

Moreover, equality holds if function f is such that

2n−m−1 − 1
2n−1

≤ c0,...,0
i1,...,im

≤ 2n−m−1 + 1
2n−1

(2.22)
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for all index values i1, . . . , im with 1 ≤ i1 < · · · < im ≤ n.

Proof: By (2.20), coordinate c0,...,0
i1,...,im

of the mth-order correlation coefficient
vector of f , evaluated for the input subset (i1, . . . , im), is equal to 1/2m if and
only if wt

(
f0,...,0

i1,...,im

)
= 2n−m−1, that is an even value for any m < n − 1. Thus,

Cm(f) ≤ Sm(f) and the claimed inequality directly follows from Proposition 2.8.
Suppose now that condition (2.22) holds for all index values i1, . . . , im with

1 ≤ i1 < · · · < im ≤ n. Then, by (2.20),

2n−m−1 − 1 ≤ wt
(
f0,...,0

i1,...,im

)
≤ 2n−m−1 + 1 .

Suppose also that the ANF of function f does not contain the (n − m)th-order
product term

∏
j=1,...,n: j /∈{i1,...,im} xj . Then, by (2.18), the subfunction f0,...,0

i1,...,im
has

an even weight, equal to 2n−m−1. Then, by (2.20),

c0,...,0
i1,...,im

=
1

2n−1

(
2n−m − wt

(
f0,...,0

i1,...,im

))
=

1
2m

.

So, if condition (2.22) holds then every missing (n−m)th-order product term in the
ANF of f gives rise to a 1/2m valued coordinate of the corresponding correlation
vector and thus

Cm(f) ≥
(

n

m

)
−Dn−m(f) .

Now the last inequality combined with the one argued in the first part of the corollary
results in the claimed equality. ut

From Corollary 2.9 and Note 2.5 it easily follows, that for m < n − 1 and any
m-resilient Boolean function f of n variables, Dn−k(f) = 0 for all k = 1, . . . , m
(since Ck(f) =

(
n
k

)
). The maximal order product term x1 · · · · · xn is missing in the

ANF of f since function f has an even weight. Therefore, the algebraic degree of
f does not exceed (n −m − 1). So, it can be concluded that if k is the attainable
algebraic degree and m is the attainable degree of resiliency for a balanced Boolean
function of n variables then k + m ≤ n − 1 (that is Siegenthaler’s inequality for a
balanced function).

2.4 Tensor Transform of Functions over Finite Fields

With the development of computer technology, multivalued logical functions become
more and more important in cryptography, particularly in the design of stream
ciphers. Therefore, efficient tools for analyzing the security of these functions are
needed. Such a tool, the tensor transform, was developed in Sect. 2.2 for the pseudo-
Boolean case. The objective of this section is to generalize this approach to the case
of functions over GF(q).
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In this section we continue to use the notation introduced in Sect. 2.2 except
that binary values are replaced by q-ary ones. For a matrix A ∈ Mqn(P ) we use
notation A = (g0, . . . , gqn−1), where gi (i = 0, . . . , qn − 1) denotes the ith column
of A and the coordinates of gi are indexed lexicographically by the elements in
{0, . . . , q − 1}n, so

gi =




gi(0, . . . , 0)
gi(0, . . . , 1)

...
gi(q − 1, . . . , q − 1)


 .

Let αi = (α1
i , . . . , α

n
i ) (i = 0, . . . , qn − 1) denote the n-digit q-ary expansion of i,

where the leftmost bit is the most significant. Then gi = (gi(α0), . . . , gi(αqn−1))T .

Lemma 2.10 Let A = (g0, . . . , gqn−1) ∈ Mqn(P ) and A′ = (g′0, . . . , g
′
qn−1−1) ∈

Mqn−1(P ). Suppose that A = B ⊗ A′ for some matrix B = (bm,k)q×q (m, k =
0, . . . , q − 1). Then for any i ∈ {0, . . . , qn − 1}

gi(x1, . . . , xn) =

(
q−1∑
m=0

Im(x1)bm,k

)
g′i′(x2, . . . , xn) if αi = (k, αi′) ,

where αi′ is the (n−1)-digit vector, q-ary expansion of i′ and Im(x1) is the indicator
function of the event {x1 = m}.
Proof: By the definition of the Kronecker product, A = (bm,kA′)qn×qn (m, k =
0, . . . , q − 1). Therefore, the entry gi(x1, . . . , xn) of matrix A lies in the cell bm,kA′

of size qn−1 × qn−1, where m = x1 and k is equal to the most significant digit of
αi. Local coordinates of gi(x1, . . . , xn) in this cell are equal to (x2, . . . , xn) and αi′ .
Thus, for any m = 0, . . . , q − 1

gi(m,x2, . . . , xn) = bm,kg′i′(x2, . . . , xn) if αi = (k, αi′) .

This proves the claimed identity. ut

The following proposition easily follows from Lemma 2.10.

Proposition 2.11 Let A = B1⊗· · ·⊗Bn, where Bj =
(
b
(j)
m,k

)
q×q

(m, k = 0, . . . , q−
1) for j = 1, . . . , n, and A = (g0, . . . , gqn−1). Then for any i ∈ {0, . . . , qn − 1}

gi(x1, . . . , xn) =
n∏

j=1

(
q−1∑

k=0

q−1∑
m=0

Ik(αj
i )Im(xj)b

(j)
m,k

)
.

In this section we consider functions of n variables over GF(q). In order to
define the string of values for such a function we need to order the elements in
GF(q)n. Let ξ denote a primitive element of GF(q). Then all nonzero elements of
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the field are exactly {ξ, ξ2, . . . , ξq−1}. We can define a one-to-one correspondence
between GF(q) and the set of integers in the range 0, . . . , q − 1 in such a way that
0 corresponds to the zero-element of the field and i ∈ {1, . . . , q − 1} corresponds
to ξi. With this correspondence, any element in GF(q)n has unique counterpart αi

for some i ∈ {0, . . . , qn − 1} and, therefore, the elements in GF(q)n can be ordered
lexicographically.

Let function f(x1, . . . , xn), mapping GF(q)n to P , be defined by its string of
values T f = (f(α0), . . . , f(αqn−1))T ∈ P qn

. Here, xi denotes the variable taking on
its values in GF(q). However, using the above described correspondence, xi can be
also seen as an integer in the range 0, . . . , q−1. Similarly, (x1, . . . , xn) can either be
an element of GF(q)n or an integer in the range 0, . . . , qn− 1 in its q-ary expansion.
In the rest of this section we will use the same notation to denote both the elements
of the field and the corresponding integers hoping that any ambiguity can easily be
resolved by the reader in each specific case.

Further, let A ∈ Mqn(P ) be an invertible matrix, A = (g0, . . . , gqn−1), and
let function F (x1, . . . , xn) be defined by the string TF = A−1T f = (F (α0), . . . ,
F (αqn−1))T ∈ P qn

. Vectors T f and TF are considered further as column-vectors.
Then T f = ATF ,

T f =
qn−1∑

i=0

giF (αi) and f(x1, . . . , xn) =
qn−1∑

i=0

gi(x1, . . . , xn)F (αi) (2.23)

for any (x1, . . . , xn) ∈ GF(q)n. Equations (2.23) represent the decomposition of
function f in the basis vector set (g0, . . . , gqn−1).

Proposition 2.11 can now be used to generalize some tensor transforms of pseudo-
Boolean functions from Sect. 2.2 to the case of functions over GF(q).

The Identity Transform.

Let P be an arbitrary field and set B = Eq - the identity matrix of size q, and
A = B[n] = Eqn . Then, by Proposition 2.11,

gi(x1, . . . , xn) =
n∏

j=1

(
q−1∑

k=0

Ik(αj
i )Ik(xj)

)
=

{
1, if αi = (x1, . . . , xn),
0, otherwise

and

f(x1, . . . , xn)
(2.23)
=

qn−1∑

i=0

gi(x1, . . . , xn)F (αi) = F (x1, . . . , xn) .
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The Algebraic Normal Transform.

Take P = GF(q) and set

B =




1 0 0 . . . 0 0
1 ξ ξ2 . . . ξq−2 1
1 ξ2 ξ4 . . . ξ2(q−2) 1
...

...
...

...
...

1 ξq−2 ξ(q−2)2 . . . ξ(q−2)(q−2) 1
1 1 1 . . . 1 1




(2.24)

and A = B[n]. Then, by Proposition 2.11,

gi(x1, . . . , xn) =
n∏

j=1

bxj ,αj
i

=
∏

j=1,...,n: αj
i 6=0

(xj)αj
i ,

where xj on the right hand side of the last identity denotes the element of GF(q).
Therefore,

f(x1, . . . , xn)
(2.23)
=

qn−1∑

i=0

gi(x1, . . . , xn)F (αi) =
qn−1∑

i=0


 ∏

j=1,...,n: αj
i 6=0

(xj)αj
i


F (αi) .

One can easily recognize the ANF of function f over GF(q) on the right hand side
of the last identity, where F (αi) (i = 0, . . . , qn − 1) are the coefficients of the ANF
polynomial. Denote matrix (2.24) as Rq and define Rqn = R

[n]
q . If P f is the

coefficient vector of the ANF polynomial for function f then

T f = RqnP f and P f = R−1
qn T f ,

where R−1
qn = (R−1

q )[n] and

R−1
q =




1 0 0 . . . 0 0
0 −ξq−2 −ξ(q−2)2 . . . −ξ(q−2)(q−2) −1
...

...
...

...
...

0 −ξ2 −ξ4 . . . −ξ2(q−2) −1
0 −ξ −ξ2 . . . −ξq−2 −1
−1 −1 1 . . . −1 −1




.

The algebraic normal transform over GF(q) was introduced in [Jan89, Sect. 4.5]
where it also was proved that R−1

q has the specific form stated above.

The Walsh Transform.

The Walsh transform of a complex-valued function f of n variables over GF(q) can
be defined as the n-dimensional discrete Fourier transform over the complex field
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C (see [CC99, Sect. 2.2]). Let χ1 denote the canonical additive character of GF(q)
(so χ1(a) = e2πiTr(a)/p for a ∈ GF(q), where p is the characteristic of GF(q) and
Tr : GF(q) → GF(p) is the absolute trace function) and χ1 denote its complex
conjugate [LN83, p. 190]. Accordingly, direct and inverse transform operations are
defined in a point by the respective identities

Sf (α) =
∑

x∈GF(q)n

f(x)χ1(〈α, x〉) and f(x) =
1
qn

∑

α∈GF(q)n

Sf (α)χ1(〈α, x〉) ,

(2.25)
where x = (x1, . . . , xn), α = (α1, . . . , αn) and 〈α, x〉 = α1x1 + · · · + αnxn is the
standard inner product over GF(q). This extends the older definition of the Walsh
transform for pseudo-Boolean functions given in Sect. 2.2. The vector consisting
of Walsh coefficients Sf (α) that are ordered lexicographically along the values of
α ∈ GF(q)n is denoted as Sf and called the Walsh transform of function f .

Assume that P = C and set

B =




1 1 1 . . . 1
1 χ1(ξ2) χ1(ξ3) . . . χ1(ξq)
1 χ1(ξ3) χ1(ξ4) . . . χ1(ξq+1)
...

...
...

...
1 χ1(ξq) χ1(ξq+1) . . . χ1(ξ2q−2)




(2.26)

and A = B[n]. Then, by Proposition 2.11,

gi(x1, . . . , xn) =
n∏

j=1

bxj ,αj
i

=
n∏

j=1

χ1(xjα
j
i ) = χ1(〈αi, x〉) ,

where xj and αj
i on the left hand side of the last identity denote elements of GF(q).

Therefore,

f(x1, . . . , xn)
(2.23)
=

qn−1∑

i=0

gi(x1, . . . , xn)F (αi) =
qn−1∑

i=0

F (αi)χ1(〈αi, x〉) .

This identity corresponds to the inverse Walsh transform (2.25) but without the
multiplicative coefficient. Thus, in this case F (αi) = 1/qnSf (αi), where Sf (αi) is
the Walsh transform of f evaluated in αi. Denote matrix (2.26) as Hq and define
Hqn = H

[n]
q . Then

T f =
1
qn
HqnSf and Sf = qnH−1

qn T f , (2.27)

where qnH−1
qn = (qH−1

q )[n] and the inverse matrix qH−1
q is of the same type as (2.26)

but without conjugation of characters. Indeed, the element of the product matrix
HqH

−1
q with coordinates (a, c) ∈ Z2

q is equal to

∑

b∈GF(q)

χ1(ab)χ1(bc) =
∑

b∈GF(q)

χ1(b(c− a)) =
{

q, if a = c ,∑
b∈GF(q) χ1(b) = 0, otherwise .
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Note 2.12 Matrix identities (2.27) can be presented in a more general form based
on the Walsh transform of complex-valued functions that in the binary case (when
P = GF(2)) are equal to the weight function. Let r be an integer in the range
1 ≤ r ≤ n and let i1, . . . , ir be a set of indices with 1 ≤ i1 < · · · < ir ≤ n.
Let k1, . . . , kn−r with 1 ≤ k1 < · · · < kn−r ≤ n denote the indices comple-
menting i1, . . . , ir with respect to {1, . . . , n}. Also let the complex-valued function
w(y1, . . . , yr) of r variables be defined by

w(y1, . . . , yr) =
∑

(xk1 ,...,xkn−r
)∈GF(q)n−r

fy1,...,yr

i1,...,ir
(xk1 , . . . , xkn−r ) ,

where yi ∈ GF(q) for i = 1, . . . , r. Now, using the matrix notation for the direct
Walsh transform of function w and by means of (2.27), we have the identity Sw =
qrH−1

qr Tw. On the other hand, for any α ∈ GF(q)r

Sw(α)
(2.25)
=

∑

y∈GF(q)r

w(y)χ1(〈α, y〉) =
∑

y∈GF(q)r

∑

z∈GF(q)n−r

fy1,...,yr

i1,...,ir
(z)χ1(〈α, y〉) =

=
∑

x∈GF(q)n

f(x)χ1(〈x, θα〉) (2.25)
= Sf (θα) ,

where y = {y1, . . . , yr}, z = {z1, . . . , zn−r} and θα is the n-digit vector whose
coordinates at the index positions i1, . . . , ir are equal to α1, . . . , αr respectively
(where (α1, . . . , αr) = α) and the remaining (n − r) coordinates are set to zero.
Thus,

qrH−1
qr Tw = (Sf (θ0), . . . , Sf (θqr−1))T , (2.28)

where the θ’s are indexed with integer values in the range 0, . . . , qr−1 corresponding
to the elements of GF(q)r. Identity (2.28) is the generalization of (2.8). If r is set
equal to n then w(y) = f(y), θα = α and (2.28) transforms into (2.27).

Consider now a function f that takes on its values in an arbitrary finite field
P . In order to define the Walsh transform for such a function we need to estimate
the complex image of f(x) under a nontrivial additive character of P (that will
be denoted by χ). By (2.25), the pair of Walsh transform operations on f are the
following:

Sf̂ (α) =
∑

x∈GF(q)n

χ(f(x))χ1(〈α, x〉) and

χ(f(x)) =
1
qn

∑

α∈GF(q)n

Sf̂ (α)χ1(〈α, x〉) ,

Notation Sf̂ is used here since this transform is similar the the Walsh transform of
the real-valued counterpart of a Boolean function (see Sect. 2.2). Both Sf and Sf̂

transforms can be computed using the nth-order fast Fourier transform algorithm
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with the complexity equivalent to O(nqn) arithmetic operations in C. A more
efficient algorithm that allows faster computation of S f̂ requiring just n(p− 1)pn+1

integer additions was devised in [ZCG99] for the particular case of functions over a
prime field GF(p) that take on its values in P = GF(p). The Walsh transform of
functions over GF(q) appears to be a useful tool when analyzing their cryptographic
properties. In particular, the best linear approximation of f over a prime field can
be easily obtained from the Sf̂ transform (see [ZCG99]). The Sf̂ transform also
provides the following characterization of correlation immune functions over GF(q)
with all definitions and proof presented in [CC99]. This characterization generalizes
the Xiao-Massey criterion [XM88] to the case of functions over finite fields. By the
weight of a vector α over GF(q) (denoted as wt(α)) we mean the number of nonzero
coordinates in α. The proof provided below is built along novel lines and is different
from the one in [CC99].

Theorem 2.13 The function f of n variables over GF(q) taking on its values in a
finite field P is mth-order correlation immune for 1 ≤ m ≤ n if and only if for any
nontrivial additive character χ of P and all α ∈ GF(q)n such that 1 ≤ wt(α) ≤ m
the Walsh transform of f satisfies the identity Sf̂ (α) = 0. Moreover, f is m-resilient
if and only if it additionally satisfies Sf̂ (0) = 0 for any nontrivial additive character
χ of P .

Proof: In a similar way as in Note 2.5 and using (2.28) one can prove that
Sf̂ (α) = 0 for any nontrivial additive character χ of P (remember that χ is used in

the definition of the Sf̂ transform) and for any α ∈ GF(q)n with 1 ≤ wt(α) ≤ m if
and only if for any set of indices i1, . . . , im with 1 ≤ i1 < · · · < im ≤ n and for any
nontrivial additive character χ of P

w(y) =
∑

z∈GF(q)n−m

χ
(
fy1,...,ym

i1,...,im
(z)

) ≡ Sw(0)
qm

=
1

qm

∑

x∈GF(q)n

χ(f(x)) (2.29)

for any y = (y1, . . . , ym) ∈ GF(q)m. Note that for the trivial additive character χ0

of P obviously

∑

z∈GF(q)n−m

χ0

(
fy1,...,ym

i1,...,im
(z)

)
=

1
qm

∑

x∈GF(q)n

χ0(f(x)) = qn−m .

Now we need the following basic identity for additive characters (see [LN83, eq. 5.4]).
For any g, h ∈ P holds

1
|P |

∑

χ∈P∧
χ(g)χ(h) =

{
1, if g = h ,
0, otherwise ,

(2.30)

where P∧ denotes the group of additive characters of P . Also note that the linear
system of |P | equations

∑
χ∈P∧ χ(p)xχ = d (p ∈ P ) has a unique solution in C,
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namely xχ0 = d and xχ = 0 for χ 6= χ0 (the system matrix is invertible with the
same argument as was used to prove the invertibility of (2.26)). Therefore, (2.29)
holds if and only if for any indices i1, . . . , im, any (y1, . . . , ym) ∈ GF(q)m and p ∈ P
the corresponding correlation coefficient is equal to

Pr(Xi1 = y1, . . . , Xim
= ym | f(X) = p) =

=
#{z ∈ GF(q)n−m : fy1,...,ym

i1,...,im
(z) = p}

#{x ∈ GF(q)n : f(x) = p}
(2.30)
=

=

∑
z∈GF(q)n−m

∑
χ∈P∧ χ

(
fy1,...,ym

i1,...,im
(z)

)
χ(p)∑

x∈GF(q)n

∑
χ∈P∧ χ(f(x))χ(p)

(2.29)
=

1
qm

and this is equivalent to function f being mth-order correlation immune.
Finally, for any nontrivial additive character χ of P holds

Sf̂ (0) =
∑

x∈GF(q)n

χ(f(x)) = 0

if and only if for any p ∈ P

#{x ∈ GF(q)n : f(x) = p} (2.30)
=

1
|P |

∑

x∈GF(q)n

∑

χ∈P∧
χ(f(x))χ(p) =

qn

|P |

and this is equivalent to function f being balanced. ut

2.5 Probabilistic Function of a Boolean Function

Consider a nonlinear combination generator with random inputs. This is the ar-
rangement where n sequences, each one consisting of nonuniform (i.e., biased), in-
dependent and identically distributed random binary variables, are combined with
a Boolean function. Random variables in the sequences are distributed identically,
although the bias may be different for each of the sequences. The objective of such
an arrangement is to produce an output sequence having better, compared to the
input sequences, algebraic and statistical characteristics relevant to a key stream.

In this section we provide an efficient method for estimating the bias of the out-
put sequence if the biases of the input sequences are known. Of course, the output
bias also depends on the combining function that is used in the arrangement. There-
fore, is seems reasonable to introduce a characteristic that would allow to compare
Boolean functions against their ability for compensating a biased distribution of the
input bits. Here we show that the appropriately chosen combining function can pro-
duce the output distributed with the bias that by the order of magnitude is smaller
than the biases of the inputs.

Definition 2.14 Let f(x1, . . . , xn) be a Boolean function of n variables. Assume
that X = (X1, . . . , Xn) is an n-tuple consisting of independent random binary vari-
ables with Pr(Xi = 1) = pi for i = 1, . . . , n. Then function Ff (p1, . . . , pn) =
Pr(f(X) = 1) is called the probabilistic function of f .
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Until recently, the problems related to the probabilistic function of a Boolean
function were studied mostly in the area of random testing of digital circuits [KB81]
but not in cryptography. The only paper posing these problems in a cryptographic
context is [Mir02], where estimates of the maximum bias of the distribution of
the output bits were made. Our approach allows to obtain an explicit polynomial
expression for this bias.

From Definition 2.14 it follows that Ff (p1, . . . , pn) =
∑

β: f(β)=1 Pr(X = β) and

if β = (β1, . . . , βn) then Pr(X = β) =
∏n

i=1 pβi

i (1− pi)1−βi . Thus, Ff (p1, . . . , pn) is
a polynomial of n variables p1, . . . , pn with integer coefficients.

Further, let Df (x1, . . . , xn) denote the NNF of f , i.e., the real-valued, exponent-
free (in variables) polynomial of n variables with integer coefficients such that

Df (x1, . . . , xn) = f(x1, . . . , xn) for any (x1, . . . , xn) ∈ GF(2)n . (2.31)

Polynomial Df can be expressed in the following canonical form

Df (x1, . . . , xn) =
2n−1∑

i=0

ai


 ∏

j=1,...,n: αj
i=1

xj


 ,

where αi = (α1
i , . . . , α

n
i ) is the n-bit binary expansion of i and ai ∈ Z. Then, since

(2.31) holds, the integer coefficients ai form a solution of the following system of
linear equations

M(a0, . . . , a2n−1)T = (f(0, . . . , 0), . . . , f(1, . . . , 1))T ,

where M = (mi,j)2n×2n (i, j = 0, . . . , 2n − 1) is a nondegenerate triangular {0, 1}-
matrix with mi,j = 1 if and only if the positions of ones in the n-bit binary expansion
of j are a subset of those in the binary expansion of i (in particular, it is necessary
that j ≤ i). Therefore, this system has a unique solution and that proves the
uniqueness of the NNF polynomial Df (see [CG99, Proposition 1]). Moreover, the
coefficient vector of Df can be obtained by means of the arithmetic transform of f
(see Sect. 2.2).

Identities x = 1−x, x1∧x2 = x1x2, x1∨x2 = x1 +x2−x1x2 and x1⊕x2 = x1 +
x2 − 2x1x2 convert elementary Boolean operations into integer expressions. Thus,
using these identities any formula representing f(x1, . . . , xn) in the basis {−,∧,∨,⊕}
(for instance, the ANF) can be transformed into the real-valued polynomial of n
variables with integer coefficients that satisfies (2.31). Moreover, if we assume that
x2

i ≡ xi (i = 1, . . . , n) then every variable in the constructed polynomial has degree
at most 1 and, therefore, by the uniqueness, the polynomial is equal to Df . That
provides an alternative way for constructing the NNF polynomial Df starting from
a formula representing the Boolean function. The following proposition is similar
to [KB81, Theorem 7].
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Proposition 2.15 For any Boolean function f(x1, . . . , xn) and arbitrary values
p1, . . . , pn with 0 ≤ pi ≤ 1 for all i = 1, . . . , n

Ff (p1, . . . , pn) = Df (p1, . . . , pn) .

Proof: To prove this identity we apply induction on n.
Let n = 1. Then function f is one of the following four functions of a single

variable
f0 ≡ 0, f1 = x1, f2 = x1, f3 ≡ 1 .

But

Pr(f0 = 1) = 0 = Df0

Pr(f1 = 1) = Pr(X1 = 1) = p1 = Df1(p1)
Pr(f2 = 1) = Pr(X1 = 0) = 1− p1 = Df2(p1)
Pr(f3 = 1) = 1 = Df3 .

Now, supposing that the proposition is true for n = l − 1, we prove it for n = l.
It is easy to see that the following decomposition of function f into subfunctions
holds:

f(x1, . . . , xl) = x1f
0
1 (x2, . . . , xl)⊕ x1f

1
1 (x2, . . . , xl) .

According to the induction hypothesis, Ffi
1
(p2, . . . , pl) = Dfi

1
(p2, . . . , pl) for i = 0, 1.

Also note that

Df (x1, . . . , xl) = (1− x1)Df0
1
(x2, . . . , xl) + x1Df1

1
(x2, . . . , xl)

since x1f
0
1 (x2, . . . , xl)x1f

1
1 (x2, . . . , xl) ≡ 0 on GF(2)n. On the other hand, by the

rule of total probability

Ff (p1, . . . , pl) = (1− p1)Ff0
1
(p2, . . . , pl) + p1Ff1

1
(p2, . . . , pl) .

Thus, Ff (p1, . . . , pl) = Df (p1, . . . , pl) for any p1, . . . , pn with 0 ≤ pi ≤ 1 for all
i = 1, . . . , n. ut

Let wi (i = 0, . . . , n) denote the number of vectors having weight i that are also
the members of the support of a Boolean function f of n variables. Then vector
(w0, . . . , wn) is called the weight distribution of function f .

Assume first that p1 = · · · = pn = p = 1/2 + δ, where δ ∈ (−1/2, 1/2) is
the bias of the distribution of the random variable xi (i = 1, . . . , n). Then, since∑n

i=0 wi = wt(f),

Ff (p) =
n∑

i=0

wip
i(1− p)n−i =

n∑

i=0

wi

(
1
2

+ δ

)i (
1
2
− δ

)n−i

=

= d1δ + d2δ
2 + · · ·+ dnδn +

1
2n

wt(f) ,



2.5 Probabilistic Function of a Boolean Function 37

where d1, . . . , dn are some real values. Let ∆f (δ) = Ff (1/2+δ)−1/2 denote the bias
of the distribution of the function f output. In particular, if function f is balanced
then ∆f (δ) = d1δ + d2δ

2 + · · ·+ dnδn.
In case when the values of p1, . . . , pn are different let pi = 1/2+δi (i = 1, . . . , n).

The bias of the distribution of the function f output is defined in a similar way as
the polynomial of n variables

∆f (δ1, . . . , δn) = Ff

(
1
2

+ δ1, . . . ,
1
2

+ δn

)
− 1

2
. (2.32)

If function f is balanced then the constant term of polynomial ∆f (δ1, . . . , δn) is
equal to

∆f (0, . . . , 0) = Ff

(
1
2
, . . . ,

1
2

)
− 1

2
=

wt(f)
2n

− 1
2

= 0 .

And the other way around: if the constant term of polynomial ∆f (δ1, . . . , δn) is
equal to zero then function f is balanced. We will call polynomial ∆f (δ1, . . . , δn)
the bias polynomial of function f .

The coefficient vector of the bias polynomial is equal to the probabilistic trans-
form of function f (see Sect. 2.2) except for the initial coordinate of ∆f that has
to be corrected by subtracting 1/2. On the other hand, combining (2.9) and (2.14),

the coefficient vector can be expressed as − 1
2n+1

(
1 0
0 −2

)[n]

Sf̂ . Coefficients of the

bias polynomial can also be estimated using identities (2.15) that are equivalent to
[Mir02, Theorem 3.1].

Definition 2.16 For k ∈ {1, . . . , n} a Boolean function f is called k-compensating
if the bias polynomial of f does not contain product terms having degree lower than k.

Note that any balanced Boolean function is 1-compensating. For the particular
case when p1 = · · · = pn, Definition 2.16 means that function f is k-compensating
if it is balanced and d1 = · · · = dk−1 = 0. In other words, if the input of a
k-compensating Boolean function is nonuniform with bias δ then the bias on its
output by the order of magnitude is at most δk. The following proposition provides
a method for constructing k-compensating functions.

Proposition 2.17 Let f(x1, . . . , xn) = f1(x1, . . . , xk)⊕f2(xk+1, . . . , xn), where k ∈
{1, . . . , n− 1}. Then

Ff (p1, . . . , pn)− 1
2

= −2
(

Ff1(p1, . . . , pk)− 1
2

)(
Ff2(pk+1, . . . , pn)− 1

2

)
,

and thus ∆f (δ1, . . . , δn) = −2∆f1(δ1, . . . , δk)∆f2(δk+1, . . . , δn).

Proof: Since f1 ⊕ f2 = f1 + f2 − 2f1f2,

Df (x1, . . . , xn) = Df1(x1, . . . , xk) + Df2(xk+1, . . . , xn)−
− 2Df1(x1, . . . , xk)Df2(xk+1, . . . , xn) .
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Therefore, by Proposition 2.15,

Ff (p1, . . . , pn) = Ff1(p1, . . . , pk) + Ff2(pk+1, . . . , pn)−
− 2Ff1(p1, . . . , pk)Ff2(pk+1, . . . , pn) ,

that is equivalent to the statement of the proposition. ut

The following corollary is obvious.

Corollary 2.18 Let f(x1, . . . , xn) be a Boolean function of n variables.

(i) If f(x1, . . . , xn) = f1(x1, . . . , xk) ⊕ f2(xk+1, . . . , xn), function f1 is k1-com-
pensating and function f2 is k2-compensating then function f is (k1 + k2)-
compensating;

(ii) if f(x1, . . . , xn) = xi1 ⊕ · · · ⊕ xik
⊕ a0 then

Ff (p1, . . . , pn)− 1
2

= (−1)a0(−2)k−1δi1 · · · · · δik
.

In other words, an affine function consisting of k linear terms is k-compen-
sating.

The following proposition, which is similar to [Mir02, Theorem 3.2], easily follows
from (2.14) and Note 2.5. The proof provided below is not based on the previous
results and is given to keep this section self-contained.

Proposition 2.19 A Boolean function f(x1, . . . , xn) is k-resilient if and only if it
is (k + 1)-compensating.

Proof: For k = 0 the statement is obvious since a 0-resilient function is balanced
by the definition and, therefore, it is 1-compensating. Now let k > 0.

Let Pr(Xi = 1) = pi = 1/2 + δi (i = 1, . . . , n). By Definition 2.14,

Ff (p1, . . . , pn) = Pr(f(X) = 1) =

=
∑

(β1,...,βk)∈GF(2)k

pβ1
1 · · · · · pβk

k Pr(f(β1, . . . , βk, Xk+1, . . . , Xn) = 1) =

=
∑

(β1,...,βk)∈GF(2)k

pβ1
1 · · · · · pβk

k Ff (β1, . . . , βk, pk+1, . . . , pn) , (2.33)

where pβi

i =
{

pi, if βi = 1,
1− pi, if βi = 0 (i = 1, . . . , n).

Function Ff (β1, . . . , βk, pk+1, . . . , pn) is a probabilistic function of subfunction
fβ = fβ1,...,βk

1,...,k (xk+1, . . . , xn), where β = (β1, . . . , βk), and

Ff (β1, . . . , βk, pk+1, . . . , pn) = ∆fβ (δk+1, . . . , δn) +
1
2

. (2.34)
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Therefore,

Ff

(
1
2

+ δ1, . . . ,
1
2

+ δn

)
(2.33,2.34)

=

=
1
2

∑

(β1,...,βk)∈GF(2)k

(
1
2

+ δ1

)β1

· · · · ·
(

1
2

+ δk

)βk

+

+
∑

(β1,...,βk)∈GF(2)k

(
1
2

+ δ1

)β1

· · · · ·
(

1
2

+ δk

)βk

∆fβ (δk+1, . . . , δn) =

=
1
2

+
∑

(β1,...,βk)∈GF(2)k

(
1
2

+ δ1

)β1

· · · · ·
(

1
2

+ δk

)βk

∆fβ (δk+1, . . . , δn) .(2.35)

Assume that function f is k-resilient. Then, by (2.20), its subfunction fβ is
balanced for any (β1, . . . , βk) ∈ GF(2)k and for the probabilistic function of fβ

Ff (β1, . . . , βk, 1/2, . . . , 1/2) = 1/2 .

Now, by (2.34), ∆fβ (0, . . . , 0) = Ff (β1, . . . , βk, 1/2, . . . , 1/2)− 1/2 = 0 and thus the
constant term of bias polynomial ∆fβ(δk+1, . . . , δn) is equal to zero. If we look at
function Ff (1/2 + δ1, . . . , 1/2 + δn) as a polynomial of n variables then it is clear
that all its product terms depend on at least one of the variables δk+1, . . . , δn and
its constant term is equal to 1/2.

Further, by (2.20), for a k-resilient function f any subfunction f
βi1 ,...,βik
i1,...,ik

with
1 ≤ i1 < · · · < ik ≤ n and any (βi1 , . . . , βik

) ∈ GF(2)k is balanced. In a similar way
it can be proved that all product terms in Ff depend on at least one of the variables
contained in the subset {δ1, . . . , δn} \ {δi1 , . . . , δik

}. The minimal set containing
representatives from all these subsets contains k+1 elements. Therefore, all product
terms in Ff depend on at least k + 1 variables. Thus, by (2.32), bias polynomial
∆f (δ1, . . . , δn) does not contain product terms having degree lower than k + 1.

Now assume that function f is (k + 1)-compensating. Then, in particular, all
product terms of polynomial ∆f (δ1, . . . , δn) depend on at least one of the variables
δk+1, . . . , δn and its constant term is equal to zero. Therefore,

∆f (δ1, . . . , δk, 0, . . . , 0) = Ff

(
1
2

+ δ1, . . . ,
1
2

+ δk,
1
2
, . . . ,

1
2

)
− 1

2
(2.35)
=

=
∑

(β1,...,βk)∈GF(2)k

(
1
2

+ δ1

)β1

· · · · ·
(

1
2

+ δk

)βk

∆fβ(0, . . . , 0) ≡ 0

and polynomial ∆f (δ1, . . . , δk, 0, . . . , 0) is identical to zero. It is easy to see that the
coefficient of the multiple term δi1 · · · · · δit in the canonical form of this polynomial
is equal to

1
2k−t

∑

(β1,...,βk)∈GF(2)k

(−1)t−(βi1+···+βit )∆fβ (0, . . . , 0) = 0
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and this holds for any 0 ≤ t ≤ k and 0 ≤ i1 < · · · < it ≤ k. Thus, we have a
system of 2k linear equations in 2k unknowns ∆fβ(0, . . . , 0) for β ∈ GF(2)k with
the matrix consisting of elements mi,j = (−1)wt(αi)−〈αi,αj〉 for i, j = 0, . . . , 2k − 1,
where αi and αj are k-bit binary expansions of i and j respectively. This matrix
is a Hadamard matrix [MS96, p. 44] and is nondegenerate. Therefore, this system
has a unique solution, namely, ∆fβ(0, . . . , 0) = 0 for any (β1, . . . , βk) ∈ GF(2)k.
Thus, subfunctions fβ are balanced. In a similar way it can be proved that any
subfunction f

βi1 ,...,βik
i1,...,ik

with 1 ≤ i1 < · · · < ik ≤ n and any (βi1 , . . . , βik
) ∈ GF(2)k

is balanced. Then, by (2.20), function f is k-resilient. ut

Concluding this section let us stress again that the nonuniformity (i.e., the bias)
of the output of a Boolean function is equal to the value of the corresponding
bias polynomial when the biases of the inputs are taken as the arguments of this
polynomial. The coefficients of the bias polynomial can be efficiently estimated by
the probabilistic transform of the function. If a Boolean function is k-compensating
(or (k − 1)-resilient equivalently) then the order of magnitude of the output bias
is at least the kth-order product of the input biases. On the other hand, due to
Siegenthaler’s inequality, Proposition 2.19 means that Boolean functions with high
algebraic degree have low compensating degree and vice versa. This fact underlines
again the need for optimizing the algebraic degree with correlation and compensating
properties when constructing secure Boolean functions.

2.6 Analyzing Cryptographic Properties of Boolean Func-
tions Using Equivalence Relations

Consider a cipher system containing a building block that uses Boolean functions,
concrete form of which constitutes the long-term key. Example of such a system is
GOST block cipher with key-dependent S-boxes (see [Sch96, pp. 331-334]). When
generating these long-term keys one has to chose them from the set of cryptographi-
cally secure transformations and, at the same time, it is necessary to guarantee that
the key space is large enough to prevent the exhaustive search. Thus, we have to
estimate the number of Boolean functions that fulfil some relevant cryptographic
criteria. Searching the set of all Boolean functions of n variables can be a compu-
tationally infeasible task even if the number of variables is relatively small (starting
from 6) since the total number of Boolean functions of n variables is superexponen-
tial in n. One of the ways to surmount this difficulty is to define an equivalence
relation on Boolean functions under which the cryptographic criterion being consid-
ered remains invariant. Then it would be sufficient just to estimate the cardinality
of the equivalence class that contains “good” functions. On the other hand, a useful
criterion should remain invariant under some equivalences and this will be discussed
further in this section.

Let Fn denote the set of all Boolean functions of n variables and Sm denote the
symmetric group of order m. By a transformation group of GF(2)n we mean the
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group consisting of bijections of GF(2)n to itself.

Definition 2.20 Let f and h be Boolean functions of n variables and G be a trans-
formation group of GF(2)n. Then function f is said to be equivalent to h under the
group G (or f is G-equivalent to h) if there exists a pair (g, σ) ∈ G× S2 such that
h(x) = σ(f(g(x))) for all x ∈ GF(2)n.

Note also that if σ ∈ S2 is not the identity permutation then applying σ results
in inverting the values of f(g(x)). Therefore, by Definition 2.20, any functions being
the inverses of each other are always G-equivalent.

Definition 2.21 If f is a Boolean functions of n variables and G is a transforma-
tion group of GF(2)n then the set

IG(f) = {(g, σ) ∈ G× S2 | σ(f(g(x))) = f(x) ∀x ∈ GF(2)n}

is called the inertia group of function f in the group G.

It is easy to see that the relation defined is a true equivalence relation and the set
IG(f) is a group. Thus, the set Fn is partitioned into disjoint classes of G-equivalent
elements. Let [f ]G denote the class of G-equivalent functions containing f .

Let G = G× S2 and let φ be the isomorphic imbedding of the group G into the
symmetrical group of Fn defined as φ(g, σ) = Ag

σ, where Ag
σ(f(x)) = σ(f(g(x))).

Then an inertia group IG(f) is actually the stabilizer of the element f in the group
φ(G) and [f ]G is the orbit of f under the group φ(G). Thus,

|G| = |φ(G)| = |[f ]G| · |IG(f)| . (2.36)

Extreme cases occur when |[f ]G| = 1 or |[f ]G| = |G|. In the first case, when the
inertia group of function f in the group G coincides with the whole group G, function
f is said to be invariant under the group G. In the second case function f is said
to have the trivial inertia group in the group G. It is easy to see that invariant
functions do not exist. Indeed, take the group identity of G for g and bit inversion
for σ, then for an invariant function f the identity σ(f(g(x))) = f(x) ⊕ 1 ≡ f(x)
should hold, which is impossible.

The group φ(G) is the transformation group of Fn isomorphic to G and all pairs
of G-equivalent functions are exactly the pairs equivalent under the group φ(G) if
equivalence is defined like in [KN63]. Therefore, Definitions 2.20 and 2.21 naturally
follow from the more general ones given in [KN63] for an arbitrary transformation
group of Fn. Any transformation Ag

σ can be presented as a product of two transfor-
mations: function domain permutation defined by g and function range permutation
defined by σ. Permutations of the range are limited to the identity transformation
and complementation. Transformations of Fn having the type of Ag

σ are called
substitutional.

In Sect. 2.1 we stated the number of necessary criteria for secure Boolean func-
tions to be used in key-stream generators. According to [MS89], a useful criterion
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should remain invariant under simple transformation groups. This is motivated by
the fact that a function is considered insecure if it does not satisfy this minimal set
of criteria or it is G-equivalent to a cryptographically insecure function, where G is
some simple transformation group (e.g., the group of linear/affine transformations).
This is the reason why simple transformations of the domain are also called crypto-
graphically weak. The attacks on cryptosystems that use Boolean functions often
work with the same complexity when the functions are replaced by their equiva-
lents under weak transformations. For instance, if a function being the building
block of a cipher has an affine equivalent then the cipher can be attacked with
the same complexity as if it was using this affine equivalent instead of the origi-
nal function. When considering nonlinearity criteria for secure Boolean functions,
the general affine group and its following subgroups are usually regarded as weak
transformations:

(a) the symmetric group Sn of order n! containing all permutations acting on the
variables {x1, . . . , xn}, i.e.,

Sn = {gi1,...,in | gi1,...,in(x1, . . . , xn) = (xi1 , . . . , xin), (i1, . . . , in) ∈ Πn)} ,

where Πn is the set of all permutations of degree n;

(b) the offset group Σn of order 2n containing all complementations of the variables
{x1, . . . , xn}, i.e.,

Σn = {gα | gα(x1, . . . , xn) =
(
xα1

1 , . . . , xαn
n

)
, α = (α1, . . . , αn) ∈ GF(2)n} ;

(c) the Jevons group Qn of order 2nn! containing all permutations and comple-
mentations of the variables {x1, . . . , xn}, i.e.,

Qn = {gα
i1,...,in

| gα
i1,...,in

(x1, . . . , xn) =
(
x

αi1
i1

, . . . , x
αin
in

)
, (i1, . . . , in) ∈ Πn,

α = (α1, . . . , αn) ∈ GF(2)n} ;

(d) the general linear group GLn(2) of all linear transformations from GF(2)n into
itself, i.e.,

GLn(2) = {gA | gA(x1, . . . , xn) = (x1, . . . , xn)A, A ∈ M∗
n(2)} ,

where M∗
n(2) is the set of n-dimensional invertible square matrices over GF(2);

(e) the general affine group AGLn(2) of all affine transformations from GF(2)n

into itself, i.e.,

AGLn(2) = {gA,α | gA,α(x1, . . . , xn) = (x1, . . . , xn)A⊕ α, A ∈ M∗
n(2),

α ∈ GF(2)n} .
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The general formulae for estimating the number of equivalence classes under
the groups Sn, Σn and Qn were derived in [Har63] and for the groups GLn(2) and
AGLn(2) the relevant formulae were derived in [Har64].

The general affine group contains all the other transformation groups that have
been defined above, as subgroups. The lattice of these subgroups is shown in Fig. 2.1.
In general, if a transformation group G′ is the subgroup in a transformation group
G then G′-equivalence classes are decompositions of G-equivalence classes.

Q
n

S n

G L
n
( 2 )

A G L
n
( 2 )

§
n

Figure 2.1: The lattice of subgroups in AGLn(2)

By the generalized weight of a Boolean function of n variables we will mean the
unordered couple (wt(f), 2n − wt(f)). Since G is a permutation group on GF(2)n,
it is obvious that G-equivalent functions have the same generalized weight.

If equivalence transformations are limited just by domain permutations defined
by the group G then the set of Boolean functions of n variables, invariant under the
group G, corresponds to the set of functions being constant on each of the orbits of
the group G. Thus, if m is the number of orbits of G then the number of invariant
functions is equal to 2m. The general linear group GLn(2) has two orbits, namely
D0 containing only the zero-vector and D1 containing the remaining (2n − 1) n-bit
nonzero vectors. Thus, there exist four functions invariant under GLn(2) and two
of these are constant-functions. Groups Σn, Qn and AGLn(2) are transitive and,
therefore, only constant-functions are invariant under these groups. The symmetric
group Sn has n+1 orbits D0, . . . , Dn, where Dk is the set of all n-bit vectors having
weight k. Thus, the number of functions invariant under Sn is equal to 2n+1. These
functions are also called symmetric functions of n variables.

Proposition 2.22 If G is any of the above-defined transformation groups then G-
equivalent functions have the same algebraic degree and nonlinearity. Moreover, the
Walsh transforms of their real-valued counterparts are equal up to a permutation of
the coefficients and the sign of the coefficients.

Proof: It is sufficient to prove the claimed proposition only for the general affine
group since this group contains all the other transformation groups that have been
defined above, as subgroups. Also we may consider just two cases separately: per-
mutations of the domain defined by AGLn(2) and complementation of the function
range.

Let gA,α ∈ AGLn(2), f(x) be a Boolean function of n variables and h(x) =
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f(xA⊕ α). Then for any nonzero β ∈ GF(2)n

Sh(βAT )
(2.21)
= wt

(
h(x)⊕ 〈βAT , x〉)− 2n−1 = wt(h(x)⊕ 〈β, xA〉)− 2n−1 =

= wt(f(xA⊕ α)⊕ 〈β, xA〉)− 2n−1 =
= wt(f(y)⊕ 〈β, y ⊕ α〉)− 2n−1 =

=
{

wt(f(y)⊕ 〈β, y〉)− 2n−1, if 〈α, β〉 = 0,
2n − wt(f(y)⊕ 〈β, y〉)− 2n−1, if 〈α, β〉 = 1 =

= (−1)〈α,β〉Sf (β) , (2.37)

where y = xA⊕ α. If β = 0 then Sh(0) = wt(h) = wt(f) = Sf (0). Using (2.9) it is
easy to see that Sĥ(βAT ) = (−1)〈α,β〉Sf̂ (β) for all β ∈ GF(2)n.

Thus, multiplication by the invertible matrix AT defines a permutation of the
coefficients mapping the Walsh transform of f to the Walsh transform of h. Some
coefficients change their sign depending on the value of the scalar product 〈α, β〉.

Finally, we have to check the case when h(x) = f(x) ⊕ 1, i.e., when function f
is complemented. Then for any nonzero β ∈ GF(2)n

Sh(β)
(2.21)
= wt(h(x)⊕ 〈β, x〉)− 2n−1 = (2n − wt(f(x)⊕ 〈β, x〉))− 2n−1 =

= 2n−1 − wt(f(x)⊕ 〈β, x〉) (2.21)
= −Sf (β) . (2.38)

If β = 0 then Sh(0) = wt(h) = 2n − wt(f) = 2n − Sf (0). Using (2.9) it is easy to
see that Sĥ(β) = −Sf̂ (β) for all β ∈ GF(2)n. Thus, a Walsh transform coefficient
of the real-valued counterpart of h is equal to minus the respective Walsh transform
coefficient of f .

To prove the claimed equality of algebraic degrees we first notice that when
applying an equivalence transformation to f its degree cannot increase since terms
of some degree k in the ANF of f(x) cannot produce terms of degree higher than
k in the ANF of h(x) = f(xA⊕ α). But the equivalence relation is symmetric and
thus the degrees of f(x) and h(x) are equal (see [MS89, Theorem 2.4]). The case
when h(x) = f(x)⊕ 1 is obvious.

Let us recall that the nonlinearity of Boolean function f of n variables (denoted
as nl(f)) is defined as the minimum Hamming distance between f and the set of
all affine functions of n variables. The nonlinearity of f can be estimated from its
Walsh transform using the well-known identity

nl(f) = 2n−1 − 1
2

max
α∈GF(q)n

|Sf̂ (α)| . (2.39)

Therefore, AGLn(2)-equivalent functions have the same nonlinearity since their
Walsh transforms consist of the same set of coefficients (assuming that values are
taken in absolute magnitude). ut

It easy to see that if G is any of the groups Sn, Σn and Qn then G-equivalent
functions have the same number of variables on which they are nondegenerate. As
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for the weight transform of G-equivalent functions, for any g ∈ Qn, if h(x) = f(g(x))
then Θf

β = Θh
g(β) and if h(x) = f(x) ⊕ 1 then Θh

β = 2n − Θf
β for all β ∈ GF(2)n.

Moreover, Qn-equivalent functions have the same degree of correlation immunity
(see [MS89, Theorem 2.5]) and by virtue of Proposition 2.19, they have the same
compensating degree. Indeed, if function h(x) is Qn-equivalent to f(x) then there
exists a permutational matrix A and α ∈ GF(2)n such that h(x) = f(xA ⊕ α) or
h(x) = f(xA⊕ α)⊕ 1. Then, by (2.37) and (2.38), for any nonzero β ∈ GF(2)n

Sh(βAT ) =
{

(−1)〈α,β〉Sf (β), if h(x) = f(xA⊕ α),
(−1)〈α,β〉+1Sf (β), if h(x) = f(xA⊕ α)⊕ 1 .

(2.40)

Since AT is a permutational matrix, vectors β and βAT have the same weight and
the criterion for the mth-order correlation immunity from Note 2.5 can be applied.

There is another important cryptographic property of Boolean functions that is
worth mentioning in respect to equivalent transformations - the property to fulfil
the Strict Avalanche Criterion (SAC). In [For89, Theorem 1] it was shown that a
Boolean function f(x) fulfils the SAC if and only if for any i = 1, . . . , n Walsh
coefficients Sf̂ (w) satisfy the identity

∑

ω∈GF(2)n

(−1)ωiS2
f̂
(w) = 0 , (2.41)

where ω = {ω1, . . . , ωn}. Note that the proof of Proposition 2.22, similarly to
(2.40), also suggests that S2

ĥ
(βAT ) = S2

f̂
(β) for any β ∈ GF(2)n and Qn-equivalent

functions f(x) and h(x). Thus, using (2.41), it is easy to see that the property to
fulfil the SAC remains invariant under G-equivalent transformations for any of the
transformation groups Sn, Σn or Qn (see [For89, Theorem 3, Lemma 3]).

Now, when the appropriate equivalence relation preserving the relevant crypto-
graphic property is defined, we need to obtain representatives from all G-equivalence
classes. Let ν denote the number of G-equivalence classes that is assumed to be un-
known, and f (1), . . . , f (ν) be the functions representing each of the classes. Let us
enumerate the functions in Fn in an arbitrary way so that Fn = {f1, . . . , f22n}. The
following is the straightforward but highly impractical algorithm, based on (2.36),
for finding f (1), . . . , f (ν):

1. initialize the counters i and j with 1, set f (1) = f1 and estimate |IG(f (1))|;
2. if function fi+1 is not G-equivalent to any of the functions f (1), . . . , f (j) then

set f (j+1) = fi+1, estimate |IG(f (j+1))| and increment j, else goto Step 3;

3. if
∑j

k=1
|G|

|IG(f(k))| = 22n

then finish, else increment i and goto Step 2.

Step 2 of the algorithm implies the checking on the equivalence of Boolean functions
and this turns out to be a hard computational problem. For Boolean functions
presented in formula/circuit notation, in [BRS98] it was proved that the problems
whether two functions are G-equivalent for any of the above-defined transformation
groups are co-NP-hard members of Σp

2. Moreover, these problems are neither in
co-NP nor Σp

2-complete unless the Polynomial Time Hierarchy collapses.
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2.7 Examples and Conclusion

The selection of logical functions fulfilling secure design criteria of key-stream gen-
erators turns out to be the art of finding trade-offs between all the relevant cryp-
tographic properties of the functions. This will be demonstrated in the following
example, where the various tensor transforms and the equivalence relation, discussed
above in this chapter, are used in the analysis of the cryptographic characteristics
of Boolean functions of four variables.

Example 2.23 We shall analyze balanced Boolean functions of n = 4 variables.
Take the general affine group AGL4(2) as transformation group G and consider the
equivalence of Boolean functions under this group. By Proposition 2.22, functions,
equivalent under this group, have the same algebraic degree and nonlinearity; the
Walsh transforms of their real-valued counterparts are equal up to a permutation and
the sign of the coefficients. Using a brute force computation we find that all balanced
Boolean functions of four variables fall into four classes of AGL4(2)-equivalence and
the following functions can be taken as representatives of these classes:

f (1)(x) = x1; f (2)(x) = x1x2 ⊕ x3;
f (3)(x) = x1x2x3 ⊕ x4; f (4)(x) = x1x2x3 ⊕ x1x4 ⊕ x2 .

Let us compute the Walsh transform Sf̂ of these representatives. It turns out
that

Sf̂(1)
= {0, 0, 0, 0, 0, 0, 0, 0, 16, 0, 0, 0, 0, 0, 0, 0},

Sf̂(2)
= {0, 0, 8, 0, 0, 0, 8, 0, 0, 0, 8, 0, 0, 0, −8, 0},

Sf̂(3)
= {0, 12, 0, 4, 0, 4, 0, −4, 0, 4, 0, −4, 0, −4, 0, 4},

Sf̂(4)
= {0, 4, 0, −4, 8, 4, 0, 4, 0, −4, 0, 4, 8, −4, 0, −4}.

By Proposition 2.22 and (2.39), the nonlinearity of the functions equivalent to f (1)

is equal to zero (all the functions in this class are linear) and the nonlinearity of the
functions equivalent to f (3) is equal to two. All the other functions have nonlinearity
equal to four.

We shall now analyze the correlation properties of these functions. The maximal
order of resiliency for these functions is equal to n − 1 = 3. Using the spectral
characterization of high-order resilient Boolean functions (see Note 2.5), we find
the total of two hundred twenty two 1-resilient functions, ten 2-resilient and two 3-
resilient. All linear functions that have at least two nonzero-order terms in the ANF
are 1-resilient and there are twenty two functions of this type. By Siegenthaler’s
inequality, the remaining two hundred 1-resilient functions have algebraic degree
equal to two (and thus are equivalent to f (3)) and nonlinearity equal to four. Also
by Siegenthaler’s inequality and Note 2.5, 2-resilient functions are precisely the
linear functions having at least three nonzero-order terms in their ANF. The only
two 3-resilient functions are x1 ⊕ x2 ⊕ x3 ⊕ x4 and its inverse.
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Since all 1-resilient functions have algebraic degree equal to one or two which is
rather low, in some cryptographic applications it might be preferable to use a non-
resilient function of degree three that has the lowest possible 1st and 2nd-order cor-
relation dependencies. The value of the correlation coefficients (see Definition 2.4)
can be calculated using (2.20) and provides a clear numerical estimate for this de-
pendence. Function f is 1-resilient if and only if for any integer i with 1 ≤ i ≤ 4
and any bit value of β one has wt

(
fβ

i

)
= 2−1wt(f) = 4. Function f is 2-resilient

if and only if for any integers i1, i2 with 1 ≤ i1 < i2 ≤ 4 and any bit values of
β1, β2 one has wt

(
fβ1,β2

i1,i2

)
= 2−2wt(f) = 2. The minimal bias of the weight of

these subfunctions from the ideal value gives three possible values for the 1st-order
correlation coefficients, namely: 3/8, 4/8 (corresponds to the ideal value) and 5/8
and three possible values for the 2nd-order correlation coefficients, namely: 1/8, 2/8
and 3/8. Using the weight transform, we can find 3154 functions whose 1st-order
correlation coefficients lie in the closed interval [3/8; 5/8] and 2nd-order correlation
coefficients lie in [1/8; 3/8]. Out of these, 200 functions have nonlinearity equal to
four and algebraic degree equal to two (apparently, these are 1-resilient functions)
and 2304 functions have the same nonlinearity and degree equal to three.

Using the algebraic normal transform, we find that 1536 functions out of these
2304, have at least two 3rd-order terms in their ANF. This means that the algebraic
degree for each individual variable in such a function is also equal to three. Finally,
these functions can be screened further using the probabilistic transform. This
transform provides the coefficients for the bias polynomial and, thereafter, the bias
of the output distribution can be estimated if biases δi (i = 1, . . . , n) are known.
The screening is done with the objective to minimize the output bias.

We conclude from the previous sections and the above example that various
representations of logical functions can be constructed taking the tensor transform as
a basis. These representations facilitate the study of their cryptographic properties
and different representations enable different characterizations.

More precisely, the classical algebraic normal, arithmetic and Walsh transforms
turn out to be a special case of the tensor transform just as two newly defined
transforms, namely, probabilistic and weight transforms. The new transforms are
cryptographically important since they relate a Boolean function directly to its
bias polynomial and to the weights of its subfunctions. Easy proofs for some known
properties of algebraic normal, arithmetic and Walsh transforms have been given and
some new relations have been established using the general properties of the tensor
transform. Any tensor transform is based on the Kronecker product of appropriate
elementary cells. This fact allows to use fast Fourier and Walsh transform algorithms
for efficient estimation of the relevant tensor transform and easy transition from one
transform to another.

The requirement for a cryptographically secure Boolean function to be corre-
lation immune can be weakened without undermining the security if only a slight
dependence between input bits and the output is allowed. Correlation coefficients
provide an estimate for correlation dependencies and can be obtained from the



48 Tools for Analyzing the Security of Logical Functions

weight transform of a Boolean function. The number of (n − m)th-order product
terms in the ANF of a Boolean function f is directly related to the number of sub-
functions obtained by fixing m variables of f with zero values and having an even
weight. Highly resilient Boolean functions cannot be approximated with a function
that is nondegenerate on few number of variables.

The bias polynomial estimates the bias for the distribution of the value of a
Boolean function if the biases of the arguments of the function are known. The
compensating degree of a Boolean function is a new notion defined here. This char-
acteristic allows to compare the functions against their ability for compensating a
nonuniform distribution of the input bits. The coefficients of the bias polynomial
and the compensating degree of a function can be efficiently estimated by the prob-
abilistic transform of this function. Highly resilient Boolean functions significantly
increase the order of magnitude for the bias of the distribution of the output bits
compared to the bias of the inputs. However, correlation and compensating prop-
erties need to be optimized with respect to the algebraic degree when constructing
secure Boolean functions. An important problem that concerns k-compensating
functions is whether these are “better” than (k − 1)-compensating functions not
only asymptotically but also in an “absolute” sense. We conjecture that for any
k-compensating function f and (k − 1)-compensating function g

max
|δi|≤δ, i=1,...,n

|∆f (δ1, . . . , δn)| ≤ max
|δi|≤δ, i=1,...,n

|∆g(δ1, . . . , δn)|

for any δ ∈ (0, 1/2). We were not able to find counterexamples for this inequality
among the Boolean functions of five variables or less.

Equivalence relations of Boolean functions under transformation groups can be
used to facilitate estimation of the number of functions that fulfil a relevant set
of security criteria. This approach is also helpful when checking whether a design
criterion remains invariant under weak transformations. Some important crypto-
graphic characteristics of Boolean functions are proved to be invariant under weak
transformations.



Chapter 3

Clock-Controlled Shift Registers
for Key-Stream Generation

3.1 Introduction

Linear feedback shift registers (LFSR) are known to allow fast implementation and
produce sequences with large period and good statistical properties (if the feedback
polynomial is chosen appropriately). But inherent linearity of these sequences results
in susceptibility to algebraic attacks. That is the prime reason why LFSR’s are not
used directly for key-stream generation. A well-known method for increasing the
linear complexity preserving at the same time a large period and good statistical
properties, is a nonlinear transformation applied to several phases of the same LFSR
(the nonlinear filter generator) or to the outputs of several independent LFSR’s (the
nonlinear combination generator) (see Fig. 1.4 and [Rue86, Rue92]). An alternative
way to achieve the same goal is to control the LFSR clock. On the other hand, key-
stream generators based on regularly clocked LFSR’s are susceptible to basic and
fast correlation attacks. Using irregular clocking reduces the danger from correlation
attacks and provides practical immunity against fast correlation attacks.

The basic building block that we want to use for constructing a key-stream
generator, consists of a control register CR and a clock-controlled generating register
GR. A control register generates a sequence of nonnegative integers a = {ai}i≥0 and
cycles periodically with period π. Hereafter in this chapter by period we mean the
least period of a sequence, as opposed to multiple period. A generating register
is an LFSR over P = GF(q) with irreducible feedback polynomial f(x) of degree
m > 1 and order M (the order is the least positive integer M for which f(x) divides
xM − 1). Let b = {b(i)}i≥0 denote the output sequence from the GR when clocked
regularly and let α be a root of f(x) in the splitting field of f(x). In some cases,
further in this chapter, primitiveness of f(x) will be required. It is well known that
M divides λ = qm − 1 and that M = λ if and only if f is primitive. Let also S
denote

∑π−1
k=0 ak.

In the clock-controlled mode, the output sequence u = {u(t)}t≥0 is generated in

49
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the following way (see Fig. 3.1). The initial output is u(0) = b(a0). Further, after
output u(t − 1) has been generated, the CR specifies the nonnegative integer at,
the GR is shifted at times and then produces the next output u(t). After that, the
CR is shifted once to be ready for the next iteration. Thus, the general form of an
output sequence element is

u(t) = b

(
t∑

i=0

ai

)
for t ≥ 0 . (3.1)

In the sequel, by irregular clocking we will mean the above type of clock control
applied to the GR. According to the classification in [Rue92, p. 101], the described
clock control technique is a forward clock control (as opposed to feedback clock
control). A comprehensive survey on clock-controlled shift registers can be found in
[GC89].

C R G R ua

C l o c k

Figure 3.1: Clock-controlled arrangement

In order to ensure the security of a key-stream generator against the Berlekamp-
Massey algorithm [Mas69, vT00], its output sequence should have large period and
high linear complexity. On the other hand, good statistical properties of the output
sequence prevent the reconstruction of statistically redundant plaintext from the
known ciphertext. That is the reason why these characteristics are discussed in
detail further in this chapter.

Section 3.2 contains some results about uniform decimation of linear recurring
sequences in the field P = GF(q). These results are used in Sect. 3.3. Certain
properties of sequences obtained by uniform decimation, are formulated, and a proof
along novel lines is given. This theorem is a slight generalization of known results.
We also derive some new conditions for sequences obtained by uniform decimation,
to reach their maximum linear complexity.

The period of the output sequence generated by an arbitrary clock-controlled
LFSR with an irreducible feedback polynomial and an arbitrary structure of the
control sequence is estimated in Sect. 3.3. A sufficient condition for this period to
reach its maximal value is formulated. Results from Sect. 3.2 are used in finding
some specific configurations of clock-controlled arrangements with a maximal period
of the output sequence. The special case when degree m of f(x) is a prime number
is studied in detail. Relevant recommendations for estimating the linear complexity
are also given. The extended abstract of Sects. 3.2 and 3.3 appeared in [Kho01].
These results extend the ones earlier published in [Kho98b].

In Sect. 3.4, we discuss randomness properties of clock-controlled LFSR output
sequences. The deviation of the number of occurrences of elements in a full period
of u from the “ideal” value is estimated when gcd(S,M) = 1. Also we estimate the
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autocorrelation function of the output sequence for the special case that the GR is
an m-LFSR and gcd(S, λ) = 1.

In Sect. 3.5 we construct a key-stream generator based on the one suggested by
Geffe in [Gef73]. Unlike the Geffe generator that has three binary input m-sequences,
this generator runs over the field P = GF(q) and combines multiple inputs having
arbitrary periods. In particular, this implies that clock-controlled shift registers can
be used as inputs. The original Geffe generator cannot be used for key-stream gener-
ation since its combining function is zero-order correlation immune and correlation
attacks can easily be launched [Sie85]. Using clock-controlled registers and multiple
inputs makes the new generator immune against fast correlation attacks and less
susceptible to basic attacks. We analyze some relevant algebraic properties of the
suggested generator. Results presented in this section were published in [Kho01].

Clock-controlled registers and their memoryless combiners are susceptible to cer-
tain types of correlation attacks, of which the complexity depends on the parameters
chosen for the control register and the generating register, and on the correlation
characteristics of the combining function. Section 3.6 contains a survey of correla-
tion attacks published so far and provides relevant recommendations for selecting
secure parameters of clock-controlled arrangements. Still, one can notice a general
lack of empirical data on the practical efficiency of these attacks. Furthermore, these
attacks can be defeated by adding a uniform noise to the key stream.

3.2 Decimation of Linear Recurring Sequences

In this section some results are presented about sequences obtained by uniform
decimation of linear recurring sequences with irreducible characteristic polynomial.
These results will be used further to estimate the period of a sequence generated by
a clock-controlled LFSR.

Definition 3.1 Let l and k be arbitrary nonnegative integers and k > 0. Then
sequence v = {v(i)}i≥0 defined by v(i) = u(l + ki) for i ≥ 0 is called the uniform
(l, k)-decimation of sequence u = {u(i)}i≥0. One also says that v is obtained by
uniform (l, k)-decimation of u.

Let f(x) be an irreducible polynomial of degree m > 0 and order M over P =
GF(q). Further, taking into account the fact that Q = GF(qm) is the splitting field
of f(x), let α be a root of f(x) in an extension field Q = GF(qm) of P . Let m(k)
denote the degree of Rk = P (αk) over P . Finally, let fk(x) denote the minimal
polynomial of αk over P . Note that fk(x) is irreducible in P [x]. Then it follows
directly from the definition of extension degree that deg fk(x) = m(k) and evidently
m(k) divides m = m(1).

We denote the set of all homogeneous linear recurring sequences over P with
characteristic polynomial f(x) by LP (f). If degree of f(x) is m then LP (f) is an
m-dimensional vector space over P . Item (i) of the following theorem is a particular
case of [Gol95a, Proposition] and has also been partially proved in [Rue86, pp. 144-
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147] and [LN86, pp. 285-287]. Item (ii) generalizes [Zie59, Lemma 17] and has
relation to [HK99, Sect. 8.2]. We shall present a proof of the theorem along novel
lines.

Theorem 3.2 Under the conditions imposed above, let l and k be arbitrary non-
negative integers and k > 0, then:

(i) The uniform (l, k)-decimation defines a homomorphism of the vector space
LP (f) onto LP (fk) (also called epimorphism or surjective homomorphism).
This epimorphism is an isomorphism if and only if m(k) = m.

(ii) If f(x) is a primitive polynomial and if u is a nonzero sequence belonging to
LP (f) then every nonzero sequence w ∈ LP (fk) can be obtained as a uniform
(l, k)-decimation of u using exactly qm−m(k) different values of l ∈ {0, . . . , λ−
1}, and the zero sequence can be obtained similarly using exactly qm−m(k) − 1
different values of l ∈ {0, . . . , λ− 1}.

Proof:

(i) We use the representation of linear recurring sequences in finite fields in terms
of trace function. By [LN83, p. 406, Theorem 8.24] if f(x) is irreducible
then for any u ∈ LP (f) there is a unique θ ∈ Q = GF(qm) such that
u(i) = TrQ/P (θαi) (i = 0, 1, 2, . . . ). Since αk ∈ Rk, applying uniform (l, k)-
decimation to u we get

v(i) = u(l + ki) = TrQ/P (θαl(αk)i) = TrRk/P

(
TrQ/Rk

(θαl(αk)i)
)

=

= TrRk/P

((
TrQ/Rk

(θαl)
)
(αk)i

)
= TrRk/P (bl(αk)i) (i = 0, 1, 2, . . . ) ,

where bl = TrQ/Rk
(θαl) ∈ Rk. Thus, v ∈ LP (fk).

It is obvious that uniform (l, k)-decimation of a sum of sequences from LP (f) is
a sum of corresponding uniform (l, k)-decimation sequences in LP (fk). Thus,
uniform decimation defines a homomorphism of LP (f) in LP (fk).

Now we have to prove that this homomorphism is a surjective map. For any
w ∈ LP (fk) there exists a uniquely determined η ∈ Rk such that w(i) =
TrRk/P (η(αk)i) (i = 0, 1, 2, . . . ). Thus, w can be obtained by uniform (l, k)-
decimation of a sequence from LP (f) if and only if η = TrQ/Rk

(θαl) for some
θ ∈ Q. The number of such θ is equal to the number of solutions of the equation
TrQ/Rk

(x) = η in the field Q. This number is equal to | ker(TrQ/Rk
)| =

qm−m(k) ≥ 1 since function TrQ/Rk
is a nonzero linear mapping of the field Q

to the field Rk.

The final statement of Item (i) follows from the fact that a homomorphism of
a finite-dimensional vector space onto another vector space is an isomorphism
if and only if their dimensions are equal.
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(ii) Fix an arbitrary positive integer k. For any w ∈ LP (fk) there exists a uniquely
determined η ∈ Rk such that w(i) = TrRk/P (η(αk)i) for i = 0, 1, 2, . . . . From
the proof of Item (i) is follows that w = v if and only if η = bl = TrQ/Rk

(θαl).
Sequence u is nonzero thus θ 6= 0.

Since f(x) is a primitive polynomial, α has order λ = qm − 1. It follows that
the set of elements {θαl | l ∈ 0, . . . , λ − 1} is equal to Q∗, the multiplicative
group of the field Q. Function TrQ/Rk

is a linear map of the field Q to the
field Rk. The number of l ∈ 0, . . . , λ − 1 such that η = bl is equal to the
number of nonzero solutions of the equation TrQ/Rk

(x) = η in the field Q.
The total number of solutions is equal to | ker(TrQ/Rk

)| = qm−m(k). If η 6= 0,
all solutions of the equation TrQ/Rk

(x) = η are nonzero and the number we
are looking for is equal to qm−m(k). If η = 0 then x = 0 is also a solution and
the number we are looking for is equal to qm−m(k) − 1. ut

Note 3.3 Polynomial fk(x) is the minimal polynomial of αk, so it is irreducible.
Since the order of αk (that is equal to the order of fk(x)) is given by ord α

gcd(k,ord α) =
M

gcd(k,M) , we conclude that fk(x) has order M if and only if k is relatively prime
to M . Further, if gcd(k,M) = 1 then fk(x) has degree m. Indeed, the degree of
fk(x) is equal to the least value of t (t > 0) for which (αk)qt

= αk or equivalently
αk(qt−1) = 1. But ord α = M and gcd(k, M) = 1. It follows that M | qt − 1 and
thus that t = m.

Corollary 3.4 Let gcd(k, M) = 1. Then every uniform (l, k)-decimation sequence
of any nonzero sequence u ∈ LP (f) is equal to a nonzero sequence belonging to
LP (fk) and for those nonzero sequences in LP (fk) that can be obtained as a uniform
(l, k)-decimation of u, the value of l ∈ {0, . . . , M − 1} is determined uniquely.

Proof: When applying the uniform decimation with parameters l ≥ 0 and k > 0
to sequences in LP (f) we can assume that l < M since all these sequences have the
multiple period M . Moreover, if we fix some arbitrary value of 0 ≤ l̃ < M then for
any l > 0, the uniform (l, k)-decimation of any nonzero sequence from LP (f) is equal
to the uniform (l̃, k)-decimation of some other nonzero sequence from LP (f). Thus,
for any fixed value of l̃ (0 ≤ l̃ < M), the set containing uniform (l, k)-decimation
sequences of any nonzero sequence u ∈ LP (f), when k > 0 is fixed and l takes on all
possible nonnegative values, is equal to the set containing uniform (l̃, k)-decimation
sequences of some subset having cardinality M of nonzero sequences in LP (f). Now
since m = m(k), the statement easily follows from Item (i) of Theorem 3.2. ut

Corollary 3.5 If degree m of polynomial f(x) is a prime number then m(k) = m
if and only if k is not a multiple of M

gcd(M,q−1) . Moreover, if M
gcd(M,q−1) - k then

every uniform (l, k)-decimation sequence of any nonzero sequence u ∈ LP (f) is
equal to a nonzero sequence belonging to LP (fk) and for those nonzero sequences
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in LP (fk) that can be obtained as a uniform (l, k)-decimation of u, the value of
l ∈ {0, . . . , M − 1} is determined uniquely.

Proof: Since m(k) | m and m is prime, only two alternatives are possible: either
m(k) = m or m(k) = 1, in which case (αk)q = αk. So, m(k) = 1 if and only if M
divides k(q − 1), i.e.,

M

gcd(M, q − 1)

∣∣∣∣ k .

The rest of the proof goes the same way as in Corollary 3.4. ut

Corollary 3.6 If f(x) is a primitive polynomial and k ≤ qm/2 then m(k) = m.
Moreover, under these conditions, every uniform (l, k)-decimation sequence of any
nonzero sequence u ∈ LP (f) is equal to a nonzero sequence belonging to LP (fk) and
every nonzero sequence w ∈ LP (fk) can be obtained as a uniform (l, k)-decimation
of u using a unique value of l ∈ {0, . . . , λ− 1}.

Proof: By virtue of Theorem 3.2, Item (i), all uniform (l, k)-decimation sequences
of u belong to LP (fk). We have to prove that m(k) = m.

By definition, ord αk = λ
gcd(k,λ) | (qm(k) − 1) and m(k) | m, as was noted

before. Hence, if m(k) < m then m(k) ≤ m
2 and therefore λ

gcd(k,λ) ≤ qm/2 − 1, i.e.,
gcd(k, λ) ≥ qm/2 + 1. In particular, k ≥ qm/2 + 1 which contradicts the condition
imposed.

Therefore, m(k) = m and by Theorem 3.2, Item (ii), the zero sequence can be
obtained as a uniform (l, k)-decimation of u using exactly qm−m(k)− 1 = 0 different
values of l ∈ {0, . . . , λ − 1}. So, all uniform (l, k)-decimation sequences of u are
nonzero. Every nonzero sequence w ∈ LP (fk) can be obtained as a uniform (l, k)-
decimation of u using exactly qm−m(k) = 1 value of l ∈ {0, . . . , λ− 1}. ut

3.3 Period and Linear Complexity of Clock-Controlled LFSR

The period and the linear complexity profile [Rue86] constitute the basic algebraic
properties of a key stream. The value of these parameters needs to be large enough
to provide security against linear attacks [DXS91]. In this section we are going to
estimate the period of the output sequence generated by a clock-controlled LFSR
and find configurations of control and generating registers when the value of the
period reaches its maximum. In this section we continue to use the terminology and
notation introduced in Sect. 3.1.

As a generalization of Definition 3.1 of a uniform decimation, we can consider the
output sequence u obtained from (3.1) as a nonuniform decimation of b according
to the control sequence a as follows:

u(i + jπ) = b(σ(i) + jS) for 0 ≤ i < π, j ≥ 0 , (3.2)
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where S =
∑π−1

k=0 ak and σ(i) =
∑i

k=0 ak. Hence, any uniform (i, π)-decimation of
u is a uniform (σ(i), S)-decimation of b. By Theorem 3.2, Item (i), the latter deci-
mation belongs to LP (fS(x)). The output sequence u consists of π such sequences
interleaved and belongs to LP (fS(xπ)).

Since the period of the sequence b divides the order M of f(x), we conclude
that all elements of a can be reduced modulo M without any effect on the output
sequence u. So, from now on we assume without loss of generality that all elements
of a are nonnegative integers less than M .

It is obvious that the minimum of the degrees of irreducible factors of fS(xπ)
provides a lower bound for the linear complexity of the output sequence u and the
lowest possible order of any irreducible factor of fS(xπ) gives a lower bound for the
period of u.

In [GŽ88] for P = GF(2) and primitive GR feedback it was shown that the
maximum linear complexity πm of an output sequence u can be obtained only if
the multiplicative order of 2 modulo λ

gcd(S,λ) is equal to m. Furthermore, when
the control sequence a and initial state vector of the GR are chosen at random and
uniformly, a lower bound on the probability that the output sequence has maximum
linear complexity is established. By appropriate choice of π and m this bound can
be made arbitrary close to 1 with πm arbitrarily large, provided that π ≤ 2m.

Since ord fS(x) = ord αS = M
gcd(S,M) and u consists of π interleaved sequences

belonging to LP (fS(x)), it easily follows from (3.2) that the period of u divides
πM

gcd(S,M) . From [Gol98, Lemma 1] it follows for a nonzero u that its period is a

multiple of π′M
gcd(S,M) where π′ is the product of all prime factors of π, not necessarily

distinct, which are also factors of M
gcd(S,M) . This provides the lower bound for the

period. In particular, if every prime factor of π also divides M
gcd(S,M) then the period

of u reaches the maximal value πM
gcd(S,M) . We also note that zero output sequences

can be generated even if the initial state of the GR is nonzero and f(x) is primitive.
This will be illustrated in Example 3.13.

By Note 3.3, if S is relatively prime to M then fS(x) is irreducible of degree m
and order M . For P = GF(2), odd π and such an fS(x), Theorem 2 in [Cha88]
provides an exact lower bound for the degree of any irreducible factor of fS(xπ).
Namely, let d = 2m−1

M , πd = π
gcd(π,d) and π′ be the product of all prime factors of

πd, not necessarily distinct, which are also factors of M . Then the lowest possible
degree of any irreducible factor of fS(xπ) is π′m; moreover, there is at least one
irreducible factor of this degree. In particular, if f(x) is primitive, gcd(S, λ) = 1
and every prime factor of π also divides λ then fS(xπ) is irreducible. In this case
the linear complexity of u reaches its maximal possible value πm (this is equal to
the degree of fS(xπ)).

In many cases the period of sequence u can be determined more precisely. The
following theorem, that was earlier published in [Kho98b], extends [GC89, Theo-
rem 4]. Later, in [Gol98, Theorem 2] Golić generalized this result for an arbitrary
GR having an LFSR structure. We provide the proof here for its simplicity and
universality of some techniques used.
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Theorem 3.7 The output sequence u defined by (3.1) is periodic. Moreover, if for
l ∈ {0, . . . , M − 1} the uniform (l, S)-decimation sequences of b are all distinct then
the period of u is equal to

τ(π, M, S) =
πM

gcd(S,M)
.

Proof: Put τ = πM
gcd(S,M) . We shall first prove that τ is a multiple period of u.

As was noted before, the output sequence u is a homogeneous linear recurring
sequence with characteristic polynomial fS(xπ) and consists of π interleaved se-
quences belonging to LP (fS(x)), where fS(x) is the minimal polynomial of element
αS over P . Thus, the period of any such nonzero uniform S-decimation is equal to

M
gcd(S,M) which is the multiplicative order of element αS in P ∗. Hence, the sequence
u is periodic and τ(π,M, S) | π M

gcd(S,M) = τ .
Consider two uniform π-decimation sequences of the output u, the first one

starting from u(0) and the second from u(τ(π, M, S)). These decimation sequences
are equal since τ(π, M, S) is the period of u. On the other hand, according to
(3.2) the same sequences are uniform (k0, S) and (t0, S)-decimation sequences of
b for some k0 = a0 ≥ 0 and t0 ≥ k0. Then, by the hypothesis of the theorem,
k0 ≡ t0 (mod M).

Further, consider two uniform π-decimation sequences of u where the first one
starts from u(1) and the second from u(τ(π, M, S)+1). These decimation sequences
are equal and they are uniform (k1, S) and (t1, S)-decimation sequences of b for some
k1 ≥ k0 and t1 ≥ t0. Thus, k1 ≡ t1 ( mod M). Proceeding in a similar way, consider
pairs of uniform π-decimation sequences that start from u(2) and u(τ(π,M, S)+2),
from u(3) and u(τ(π, M, S) + 3) and so on. The corresponding values of ki and ti
satisfy the equivalence

ki ≡ ti (mod M) (i = 0, 1, 2, . . . ) , (3.3)

where ki+1 ≥ ki and ti+1 ≥ ti.
From (3.1) we have ki+1 − ki = ai+1 and ti+1 − ti = aτ(π,M,S)+i+1. It follows

from the congruence relations in (3.3) and from the assumption that 0 ≤ ai < M ,
that ki+1 − ki = ti+1 − ti and thus that ai+1 = aτ(π,M,S)+i+1 (i = 0, 1, 2, . . . ). This
shows that

π | τ(π, M, S) . (3.4)

It is clear that ti − ki (i = 0, 1, 2, . . . ) is equal to the number of regular steps
(with no clock control) the GR is making each time when the whole automaton
generates τ(π, M, S) output elements. By virtue of (3.4), ti − ki = τ(π,M,S)

π S since
if the CR makes a full period then the GR makes S steps. Thus, according to (3.3),
M | τ(π,M,S)

π S, from which it directly follows that

M

gcd(S,M)

∣∣∣∣
τ(π,M, S)

π
and τ | τ(π,M, S) .
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This proves the theorem. ut

Assume that b is a nonzero sequence. Then, by Theorem 3.2, Item (i), all
the uniform (l, S)-decimation sequences of b for l ∈ {0, . . . ,M − 1} are distinct
if m(k) = m (see [Gol98, Proposition 2], where a similar fact was proved for an
arbitrary GR having LFSR structure).

Proposition 3.8 Let f(x) be a primitive polynomial of degree m (so it has the
maximal possible order λ = qm − 1). Then all uniform (l, S)-decimation sequences
of b are distinct for l ∈ {0, . . . , λ − 1} if and only if for any l ∈ {0, . . . , λ − 1} the
uniform (l, gcd(S, λ))-decimation of b is nonzero.

Proof: We first consider the congruence xS ≡ y gcd(S, λ) (mod λ) where x ≥ 0
and y ≥ 0. It is evident that for any fixed value of x = 0, 1, 2, . . . this congruence is
solvable with respect to y and for any fixed value of y = 0, 1, 2, . . . it is solvable with
respect to x. Thus, for any l ≥ 0 a uniform (l, S)-decimation of b contains exactly
the same elements as a uniform (l, gcd(S, λ))-decimation.

Suppose now that for some k, t ∈ {0, . . . , λ − 1} with k 6= t, the uniform (k, S)
and (t, S)-decimation sequences of b are equal. By Theorem 3.2, Item (ii), they
can be equal if and only if qm−m(S) ≥ 2 and this is so if and only if for some
l ∈ {0, . . . , λ − 1} the uniform (l, S)-decimation of b is zero. But then the uniform
(l, gcd(S, λ))-decimation is zero too. ut

Corollary 3.9 Let b be a nonzero sequence and suppose that one of the following
two conditions holds

(i) degree m of f(x) is prime and S is not a multiple of M
gcd(M,q−1) ,

(ii) f(x) is a primitive polynomial and gcd(S, λ) ≤ qm/2.

Then the period of u is equal to τ(π, M, S) = πM
gcd(S,M) .

Proof: If condition (i) holds, we can apply Corollary 3.5 and if condition (ii)
holds, we can apply Corollary 3.6. In case (ii) we additionally need Proposition 3.8
to show that for l ∈ {0, . . . , M − 1} all uniform (l, S)-decimation sequences of b are
distinct. The proof is finished by applying Theorem 3.7. ut

Note that if f(x) is primitive then one has M = λ = qm−1. Some other sufficient
conditions to apply Theorem 3.7 can be found in [Gol98, Proposition 4].

Note 3.10 We shall now consider the case when m, the degree of f(x), is a prime
number and M

gcd(M,q−1) | S. Then M
gcd(M,S) | q − 1 and hence τ(π, M, S) | π(q − 1)

since τ(π,M, S) | π M
gcd(M,S) .

By Corollary 3.5, m(gcd(S, M)) = m(S) = 1 (since ord αgcd(S,M) = ordαS)
and fS(x) = x − αS . Let p denote the element αS in P . Thus, the output se-
quence u is a homogeneous linear recurring sequence with characteristic polynomial
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fS(xπ) = xπ − p and consists of π interleaved sequences having the form of a geo-
metric progression with ratio p and initial element u(i) = b(σ(i)) (i = 0, . . . , π− 1).
We can get the πM

gcd(M,S) -long period of u by taking the elements of the following
array in a row-by-row order

u(0) u(1) . . . u(π − 1)
u(0)p u(1)p . . . u(π − 1)p

...
...

...
u(0)pj u(1)pj . . . u(π − 1)pj

...
...

...
u(0)pξ−1 u(1)pξ−1 . . . u(π − 1)pξ−1

, (3.5)

where ξ = M
gcd(M,S) . If b(σ(i)) = 0 for all i ∈ {0, . . . , π−1} then u is a zero sequence.

Further we assume that b(σ(i)) 6= 0 for some i.
If π | τ(π, M, S) then τ(π,M, S) = πj where j is the smallest integer in {1, . . . ,
M

gcd(M,S)} with the property that b(σ(i)) = αSjb(σ(i)) for all i ∈ {0, . . . π − 1}.
Since not all of b(σ(i)) are zero, the smallest j with this property is in fact equal to

M
gcd(M,S) . Thus, τ(π, M, S) = πM

gcd(M,S) .
Suppose now that τ(π, M, S) is not a multiple of π. Since u is periodic and

its period has the pattern of (3.5), there exist some j ∈ {0, . . . , M
gcd(M,S) − 1} and

i ∈ {1, . . . , π − 1} such that



1 0 . . . 0 −pj . . . 0
. . . . . . . . . . . .

0 0 −pj

−pj+1 0 0

0
. . . . . . . . .

...
...

. . . . . . . . . 0
0 . . . 0 −pj+1 0 1







u(0)
...
...
...
...

u(π − 1)




=




0
...
...
...
...
0




, (3.6)

where the ones lie on the main diagonal, the entry −pj lying in the first row has the
column coordinate i + 1 and the entry −pj+1 lying in the first column has the row
coordinate (π − i) + 1. Let D(π,−pj ,−pj+1, π − i) denote the determinant of this
π × π matrix (π − i of its entries are equal to −pj). It is not difficult to see that

D(π,−pj ,−pj+1, π − i) =





D(i,−p2j+1,−pj+1, π − i), if i > π/2,
D(π − i,−pj ,−p2j+1, π − 2i), if i < π/2,
(1− p2j+1)π/2, if i = π/2

.

We can apply this rule repeatedly to prove that D(π,−pj ,−pj+1, π − i) = (1 ±
pkj+t(j+1))l for some k, t, l > 0 such that (k + t)l = π. Thus, if D(π,−pj ,−pj+1,
π − i) = 0 then pkj+t(j+1) = ±1 and so M

gcd(S,M) | 2(kj + t(j + 1)).
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If integers j ∈ {0, . . . , M
gcd(M,S) − 1} and i ∈ {1, . . . , π − 1} exist such that

D(π,−pj ,−pj+1, π − i) = 0 then (3.6) has nonzero solutions. If, in this case, one
can find a control sequence with parameters π and S and an initial state vector for
the GR such that (b(σ(0)), . . . , b(σ(π − 1))) is a nonzero solution of (3.6) then the
multiple period of u is equal to πj + i. This number is less than πM

gcd(M,S) .

Note 3.11 If S is relatively prime to M , it follows from Corollary 3.4 and Theo-
rem 3.7 that the period of u reaches the maximal value πM (this is Theorem 4 in
[GC89]).

If conditions of Theorem 3.7, Proposition 3.8 and Corollary 3.9 do not hold then
the period of the decimated sequence may be equal to or less than πM

gcd(S,M) . This
can be seen in the following examples.

Example 3.12 Let f(x) = x4+x+1 (a primitive polynomial over P = GF(2)) and
a = (2, 3)∞ = {2, 3, 2, 3, . . . } be the control sequence with period π = 2. If we set the
initial state vector of the GR equal to (1, 1, 1, 1) then b = (1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1,
0, 1, 0)∞ which has period 15. The output sequence u for this clock-controlled
arrangement is equal to (1, 0, 1)∞ with period 3.

In our case S = 5 and gcd(S, λ) = gcd(5, 15) = 5 and this exceeds qm/2 = 4.
Thus, condition (ii) of Corollary 3.9 does not hold (if the condition held, the period
of u would be equal to 6). Condition (i) of Corollary 3.9 is not applicable either
since m = 4 is not prime (although S is not a multiple of λ

q−1 = 15). Proposition 3.8
cannot be used either since the uniform (4, 5)-decimation sequence of b is zero. The
uniform (0, 5)-decimation sequence and (1, 5)-decimation sequence of b are equal, so
Theorem 3.7 is not applicable too.

On the other hand, if the control sequence is equal to (3, 2)∞ with the same value
of S = 5 then u = (1, 0, 0, 1, 1, 1)∞. In this case the period is maximal although
conditions of Theorem 3.7, Proposition 3.8 and Corollary 3.9 do not hold.

Finally, if we take the control sequence equal to (1, 2)∞ then gcd(S, λ) = gcd(3,
15) = 3 and condition (ii) of Corollary 3.9 holds. In this case, the output sequence
is (1, 1, 0, 0, 1, 0, 1, 0, 1, 1)∞. So, the period of u is 10 and that is equal to πλ

gcd(S,λ) .

Example 3.13 Let P = GF(3) and f(x) = x3 + 2x + 1, so f(x) is a primitive
polynomial over P . Let a = (2, 5, 6)∞ with period π = 3 be the control se-
quence. If we set the initial state vector of the GR equal to (2, 0, 1) then b =
(2, 0, 1, 1, 1, 0, 0, 2, 0, 2, 1, 2, 2, 1, 0, 2, 2, 2, 0, 0, 1, 0, 1, 2, 1, 1)∞. The output sequence
u for this clock-controlled arrangement is equal to (1, 2)∞ with period 2. But if the
initial state vector of the GR is equal to (0, 1, 1) and the control sequence is equal to
(4, 1, 2, 6)∞ then the output sequence is zero. In both cases S = 13 and S is equal
to λ

q−1 . Thus, condition (i) of Corollary 3.9 does not hold. Indeed, if that condition
would hold, the period would be equal to 6 for the first case and 8 for the second.

On the other hand, if the initial state vector of the GR is set to (2, 0, 1) and
the control sequence is equal to (7, 6)∞ with the same value of S = 13 then u =
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(2, 1, 1, 2)∞. In this case the period is maximal although condition of Corollary 3.9,
Item (i), does not hold.

If CR-outputs ai take on only bit values 0 and 1 then the arrangement is called
a stop-and-go generator and is described in [BP85]. In our notation, S for this type
of generator is equal to the number of ones in the full period of a. In particular, if
the CR is an m-LFSR over GF(2) with a primitive feedback polynomial of degree
n and order π = 2n − 1 then CR-outputs take on the value one 2n−1 times over
the period and S = 2n−1. Thus, if q = 2 and f(x) is primitive then gcd(S, λ) =
gcd(2n−1, 2m − 1) = 1 and by Corollary 3.9 τ(π, λ, S) = πλ. For the particular
case when n = m, we get that π = λ and by [Cha88, Theorem 2] the polynomial
fS(xπ) is irreducible. In this case the linear complexity of the output sequence has
its greatest possible value n(2n − 1) equal to the degree of fS(xπ). Due to these
features of the output sequence, it is reasonable to use it further for clock controlling
another m-LFSR. It turns out to be possible to extend this system further to an
arbitrary number of LFSR’s. Such an arrangement is called an m-sequence cascade
and has been considered in [GC89]. Many other types of cascades were suggested in
the literature (see [GC89] for the review) but they are not the subject of this thesis.

3.4 Randomness Properties of Clock-Controlled LFSR’s

The discussion presented in Sect. 3.3 leads to the conclusion that the control se-
quence a plays only a secondary role when the period and linear complexity of
clock-controlled LFSR’s are concerned. By that we mean that by using different
clock sequences one can generate different output sequences having the same period
and linear complexity. However, the clocking procedure has a major influence on
randomness properties of the output sequence. It is obvious that if the GR gen-
erates a sequence, containing all elements of GF(q) (for instance, this holds when
f(x) is primitive and the GR has nonzero initial state vector) then by selecting an
appropriate control sequence one can get any periodic sequence over GF(q) as the
output sequence. Thus, when choosing a control sequence one should pay attention
not only to the period and linear complexity of the output but one should also take
randomness properties into account.

The objective of this section is finding the conditions that should be imposed
upon the parameters of the clock-controlled arrangement in order to provide close-
to-uniform element distribution in the output sequence and good autocorrelation
properties. Hereafter we continue to use the terminology and notation introduced
in Sects. 3.1 and 3.3.

As was noted above, the output sequence u consists of π interleaved sequences,
all members of LP (fS(x)). If S is relatively prime to M then by virtue of Note 3.3,
fS(x) is also irreducible of degree m and order M . If h is the least common multiple
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of M and q − 1 then according to [LN83, p. 450],
∣∣∣∣Z(0)− (qm−1 − 1)M

qm − 1

∣∣∣∣ ≤
(

1− 1
q

)(
M

h
− M

qm − 1

)
qm/2

∣∣∣∣Z(b)− qm−1M

qm − 1

∣∣∣∣ ≤
(

M

h
− M

qm − 1
+

h−M

h
q1/2

)
q(m/2)−1 for b 6= 0 ,

where Z(b) is the number of occurrences of element b ∈ P in the M -long period of
a linear recurring sequence belonging to LP (fS(x)). Now if we multiply the right
hand parts of both inequalities by π we can estimate the deviation between the
actual number of occurrences of elements b ∈ P in the πM -long period of u (see
Note 3.11) and the ideal value. If h ≈ M and M is sufficiently large compared to
qm − 1 then this deviation is comparatively small.

In particular, if f(x) is primitive and gcd(S, λ) = 1 then polynomial fS(x) is
also primitive. Thus, any sequence belonging to LP (fS(x)) is an m-sequence. So,
any nonzero element of P appears qm−1 times in its λ-long period and 0 appears
qm−1−1 times. As a consequence, any nonzero element of P appears πqm−1 times in
the πλ-long period of the output sequence u and 0 appears π(qm−1− 1) times (note
that by Corollary 3.9, Item (ii), the period of u is equal to πλ). Note that the period
of u should be large enough not to allow the attacker to guess the next element in
the sequence by keeping track on counts and using the fact that all nonzero elements
appear equally often in the whole period.

If CR-outputs ai take on only the values 1 or 2 and P = GF(2) then all l-tuples
of length l ≤ (m + 1)/2 appear in the output sequence with the same frequency as
in the original m-sequence b (as pointed out in [Rue92, p. 103]).

We shall further estimate the autocorrelation function of the output sequence
of the clock-controlled LFSR. The autocorrelation function provides an important
randomness test since it measures the degree of dependence between a sequence and
its various phase shifts. A requirement concerning the autocorrelation is included
in Golomb’s randomness postulates for pseudo random sequences [Gol67, p. 25]. It
thus can be adopted as a quality measure for pseudo random sequences.

According to [LN83, pp. 463-464], if s = {si}i≥0 is a sequence over GF(q) of
period r and χ is a nontrivial additive character of GF(q) [LN83, p. 190] then the
corresponding autocorrelation function of s is defined by

C(h) =
r−1∑

i=0

χ(si)χ(si+h) for h = 0, 1, . . . , r − 1 ,

where χ denotes the complex conjugate of χ. Golomb’s randomness postulate for
the autocorrelation function of s requires it to be two-valued:

C(h) =
{

r, for h = 0,
K, for 0 < h < r

. (3.7)

Then the normalized autocorrelation C(h)/r is equal to one for h = 0 and close to
zero for 0 < h < r if K is small compared to r.
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Assume that f(x) is primitive and gcd(S, λ) = 1. Then the autocorrelation
function of the output sequence u (with period τ = πλ) can be expressed as follows:

C(h) =
τ−1∑

i=0

χ(u(i))χ(u(i + h)) =
π−1∑

i=0

λ−1∑

j=0

χ(u(i + jπ))χ(u(i + jπ + h))
(3.2)
=

(3.2)
=

π−1∑

i=0

λ−1∑

j=0

χ(b(jS + σ(i)))χ(b(jS + σ(i + h))) =

=
π−1∑

i=0

A(σ(i + h)− σ(i)) =

{ ∑π−1
i=0 A

(∑i+h
k=i+1 ak

)
, for h > 0,

πA(0), for h = 0
,

where A(h) is the autocorrelation function of an m-sequence over GF(q) of period
λ = qm − 1 which can be estimated using the following proposition due to Zierler
[Zie59, p. 45].

Proposition 3.14 If h is not a multiple of t = λ/(q − 1) then

A(h) = −1 + qm−2
∑

a,b∈GF(q)

χ(a)χ(b) .

Further, there exists a primitive element ξ of GF(q) such that for j = 0, 1, 2, . . .

A(jt) = −1 + qm−1
∑

a∈GF(q)

χ(a)χ(ξja) .

Example 3.15 Let q = p be a prime. The canonical additive character of GF(p)
is of the form χ(a) = e2πia/p, a ∈ GF(p). Now

∑

a,b∈GF(p)

χ(a)χ(b) =
p−1∑

j,k=0

e2πij/pe−2πik/p =
p−1∑

j=0

e2πij/p

p−1∑

k=0

e−2πik/p = 0 .

This implies that if h is not a multiple of t then, by Proposition 3.14, A(h) = −1.
If h is a multiple of t and h = jt, let µ = ξj . Then

∑

a∈GF(q)

χ(a)χ(µa) =
p−1∑

k=0

e2πik/pe−2πiµk/p =
p−1∑

k=0

e2πik(1−µ)/p = 0 ,

provided µ 6= 1 (i.e., h 6= 0 (mod λ)). Thus, A(0) = λ while A(h) = −1 if h is not
a multiple of λ.

We conclude from the above that if the generating register in a clock-controlled
arrangement is an m-LFSR over GF(p) (where p is prime) and gcd(S, λ) = 1 then
the autocorrelation function C(h) of u is equal to −π for all the values of h > 0 for
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which
∑i+h

k=i+1 ak is not a multiple of λ for all i = 0, 1, . . . , π − 1. Thus, for such h
the autocorrelation fulfils Golomb’s postulate (3.7). The normalized autocorrelation
in this case is equal to −λ−1 and for large values of λ that is close to 0.

In particular, for the stop-and-go generator, when the control register is a binary
m-LFSR of period π = 2n − 1 and if q = 2 then

C(1) =
π−1∑

i=0

A(ai+1) = 2n−1A(1) + (2n−1 − 1)A(0) =

= (2n−1 − 1)(2m − 1)− 2n−1 ∼ 2n+m−1 .

This fact reveals strong intersymbol dependence between the output sequence u and
its 1-step phase shift. That is easily accounted for since the previous key-stream
symbol is copied to the next position every time when the control register generates
0. A dependence on the key-stream symbols of the preceding symbols constitutes a
considerable weakness of a key-stream generator.

3.5 Generalized Geffe Generator

Combining linear feedback shift registers with a memoryless nonlinear function F is
a well-known way to increase the period and the linear complexity of the key stream,
as well as to reduce the correlation between the key-stream sequence and the LFSR
sequences that are used as input of F (see [Rue86, Rue92]). The key-stream genera-
tor discussed in this section is a memoryless combiner based on a specific combining
function that implements a nonuniform decimation of input sequences. The key-
stream sequence is obtained by irregularly interleaving the decimated sequences.
Both decimation and interleaving operations are controlled by the same sequence
being one of combining function inputs. This construction can be seen as a gener-
alization of the Geffe generator from [Gef73].

First, we need to define and fix an ordering in the finite field P = GF(q) by
numbering the elements from 0 to q − 1. Thus, P = {p0, . . . , pq−1}. Let the
combining function F from P q+1 to P be defined by F (pj , x0, . . . , xq−1) = xj for
j = 0, . . . , q − 1. Thus, the first argument of F selects which of the remaining q
arguments is taken as an output of the function. Assume that a periodic sequence
a = {ai}i≥0 over P (we will also call it the control sequence of F ) with period π

and linear complexity L̂ is fed to the first argument of F and that q periodic se-
quences bj = {bj

i}i≥0 (j = 0, . . . , q− 1) over P with period λj and linear complexity
Lj respectively are fed to the remaining q arguments. Let u = {ui}i≥0 denote the
output sequence generated by function F (see Fig. 3.2).

It is clear that the output sequence u is an irregularly interleaved set of q nonuni-
form decimation sequences of bj (j = 0, . . . , q − 1), when both the decimation and
the interleaving operations are controlled by the sequence a. When q = 2, the
nonuniform decimation is equivalent to the shrinking operation [CKM94] controlled
by {ai}i≥0 and {ai⊕ 1}i≥0, applied to sequences b1 and b0 respectively. The period
and linear complexity of u will be estimated further in this section.
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Figure 3.2: Generalized Geffe generator

Before we can continue, we need some preliminary lemmas. The first one is
a special case of a fundamental result on the period of nonuniformly decimated
sequences, as established in [BP81, Theorem 3].

Lemma 3.16 Let c = {ci}i≥0 be a periodic sequence with the period T and let
sequence c′ = {c′i}i≥0 be a uniform d-decimation of c for some integer d > 0. Then
c′ is periodic and if T ′ denotes its period then

(i) T ′
∣∣∣ T

gcd(T,d) ;

(ii) if gcd(T, d) = 1 then T ′ = T .

Let K denote the least common multiple of the periods of the sequences bj (j =
0, . . . , q − 1), so K = lcm(λ0, . . . , λq−1) and let d denote gcd(π, K). It is obvious
that K is equal to the period of the sequence of q-grams B = {(b0

i , . . . , b
q−1
i )}i≥0.

Lemma 3.17 Suppose that sequence a contains all elements of P and that the q-
gram sequence B with the period K contains a q-tuple that is equal to P in the sense
of set equality. Suppose moreover that gcd(π, K) = 1. Then τ = πK.

Proof: Under the hypothesis of the lemma, we can list a set of integers tj ≥
0 (j = 0, . . . , q − 1) such that atj = pj . Consider q uniform (tj , π)-decimation
sequences of the output u by taking j = 0, . . . , q − 1. Since π is the period of the
control sequence a, the (tj , π)-decimation of u is equal to the (tj , π)-decimation of
bj . But the hypothesis of the lemma claims that gcd(π,K) = 1 whence it follows
that gcd(π, λj) = 1 for j = 0, . . . , q− 1. Hence by Lemma 3.16, Item (ii), the period
of the (tj , π)-decimation of bj is λj for j = 0, . . . , q − 1. But since these decimation
sequences are decimation sequences of u as well, by Lemma 3.16, Item (i), λj | τ for
j = 0, . . . , q − 1 and thus K | τ .

Under the hypothesis of the lemma, there exists an integer t ≥ 0 such that the q-
tuple (b0

t , . . . , b
q−1
t ) can be obtained by permutating the elements in (p0, . . . , pq−1).

We now consider the uniform (t,K)-decimation of the output sequence u. Since
K is the period of the q-gram sequence B, this decimation is equal to the (t,K)-
decimation of a whose elements are substituted afterwards according to the rule
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defined by the permutation transforming (p0, . . . , pq−1) into (b0
t , . . . , b

q−1
t ). A one-

to-one mapping applied to the elements of a sequence does not affect its period.
Since gcd(π,K) = 1, by Lemma 3.16, Item (ii), the period of the (t,K)-decimation
of a is π. But since this decimation is a decimation of u as well, by Lemma 3.16,
Item (i), π | τ .

Now since K | τ , π | τ and gcd(π, K) = 1, we can conclude that πK | τ . On the
other hand, it is obvious that τ | πK and thus τ = πK. ut

Theorem 3.18 Sequence u is periodic. Let τ denote the period of u. Then τ |
lcm(π,K). Moreover, if sequence a is such that each of its uniform d-decimation
sequences contains all the elements of P and the q-gram sequence B is such that all
its uniform d-decimation sequences contain a q-tuple that is equal to P in the sense
of set equality then

πK

gcd(π,K)2

∣∣∣∣ τ .

Proof: It is obvious that in every lcm(π, K) = lcm(π, λ0, . . . , λq−1) steps all input
sequences complete their full cycle. Since function F is memoryless, the output
sequence u completes a full cycle as well in lcm(π, K) steps. Thus, u is periodic and
τ | lcm(π, K).

Consider the q-gram sequence B. Since all sequences bj (j = 0, . . . , q − 1) are
periodic with period equal to λj respectively, it is obvious that the q-gram sequence
B is periodic as well with period equal to lcm(λ0, . . . , λq−1) = K.

Now we fix an arbitrary t ∈ {0, . . . , d−1} and consider uniform (t, d)-decimation
sequences of a, u and B. Let πt, τt and Kt denote the respective periods of these
decimation sequences. Then, by Lemma 3.16, Item (i),

πt

∣∣∣∣
π

gcd(π, d)
=

π

d
, τt | τ and Kt

∣∣∣∣
K

gcd(K, d)
=

K

d
. (3.8)

Since gcd(π
d , K

d ) = 1, it follows that gcd(πt,Kt) = 1.
We shall now consider the memoryless combiner described above when uniform

(t, d)-decimation sequences of the respective original sequences are fed into the argu-
ments of F . Thus, the control sequence of F has period πt and the q-gram sequence,
feeding the rest of the arguments of F , has period Kt satisfying gcd(πt,Kt) = 1.
We note that the output sequence of F has period τt since it is a uniform (t, d)-
decimation of sequence u. So, the conditions of Lemma 3.17 are met and thus it
follows that

τt = πtKt , (3.9)

for all t ∈ {0, . . . , d− 1}.
By (3.8), πt divides π

d for t = 0, . . . , d − 1 and therefore lcm(π0, . . . , πd−1)
∣∣ π

d .
Sequence a can be reconstructed by interleaving d sequences obtained by (t, d)-
decimating of a for t = 0, . . . , d − 1 and thus d · lcm(π0, . . . , πd−1) is a multiple
period of a, that is π | d lcm(π0, . . . , πd−1). Hence, lcm(π0, . . . , πd−1) = π

d . In the
same way it is easy to show that lcm(K0, . . . , Kd−1) = K

d .
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From (3.8) it also follows that gcd(πi, Kj) = 1 (i, j = 0, . . . , d− 1). Thus,

lcm(τ0, . . . , τd−1)
(3.9)
= lcm(π0K0, . . . , πd−1Kd−1) =
= lcm(lcm(π0, K0), . . . , lcm(πd−1,Kd−1)) =
= lcm(π0, . . . , πd−1,K0, . . . , Kd−1) =
= lcm(lcm(π0, . . . , πd−1), lcm(K0, . . . , Kd−1)) =

= lcm(π0, . . . , πd−1) · lcm(K0, . . . , Kd−1) =
πK

d2
.

By (3.8), τt divides τ for t = 0, . . . , d−1. Therefore, lcm(τ0, . . . , τd−1) = πK
d2 | τ . ut

The following lemma, which easily follows from [Gol95a, Proposition], will be
needed to estimate the linear complexity of u.

Lemma 3.19 Let c = {ci}i≥0 be a periodic sequence having linear complexity L.
Then for any integer d > 0 there exists a polynomial f(d)(·) of degree at most L such
that f(d) is a characteristic polynomial for any d-decimation sequence of c.

Proposition 3.20 Let L denote the linear complexity of an output sequence u.
Then L ≤ π(L0 + · · ·+Lq−1). If q = 2, the sequences b0 and b1 are nonzero, and the
respective periods π, λ0, and λ1 are pairwise coprime then L ≥ (L̂−1)(L0 +L1−2).

Proof: To prove the claimed upper bound on the linear complexity of the sequence
u it is sufficient to present a polynomial P (·) of degree at most π(L0+· · ·+Lq−1), for
which P (u) = 0 (i.e., the coefficients of P represent a linear relation satisfied by the
elements of u, we will call any such P an annihilating polynomial of u). Consider an
arbitrary uniform π-decimation of u. Since π is the period of the control sequence
a, this decimation is equal to the (tj , π)-decimation of bj for some j ∈ {0, . . . , q− 1}
and tj ∈ {0, . . . , λj − 1}. Then, by Lemma 3.19, there exists a polynomial Qj(·) of
degree at most Lj annihilating this decimation as well as all the other π-decimation
sequences of bj . The polynomial Qj(·) also annihilates the uniform π-decimation of
u that we consider.

Now let Q(·) be the least common multiple of polynomials Q0(·), . . . , Qq−1(·)
where Qj(·) is the polynomial annihilating any π-decimation of bj . Then Q(·) an-
nihilates any π-decimation of u and thus polynomial P (x) = Q(xπ) of degree at
most π(L0 + · · ·+ Lq−1) annihilates u. Thus, the linear complexity of u is at most
π(L0 + · · ·+ Lq−1).

The second part of the proposition follows from [Gol89, Theorem 6] since the
algebraic normal form of the combining function for q = 2 is F (a, x0, x1) = a(x0 ⊕
x1)⊕ x0. Condition q = 2 is required since only then the algebraic normal form of
F is free from powers. ut

It remains an open problem how to estimate a nontrivial lower bound for the
linear complexity of the output sequence u when q > 2.
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If we assume that input sequences of the combining function F are sequences
of uniform, independent and identically distributed random variables (i.e., purely
random sequences) then its output sequence is purely random as well, since the
combining function of the generator is balanced. Thus, the balancedness property
of the combining function ensures good statistical properties of the key stream.

Sequences produced by linear feedback shift registers (clocked regularly or ir-
regularly) could be used as inputs for function F in practical implementations of
the above type of key-stream generator. Note that the combining function F of the
generator is memoryless, balanced and zero-order correlation immune (its output
is correlated to inputs x0, . . . , xq−1 and this correlation decreases if q is increased).
Thus, when all shift registers are clocked regularly, it is possible to apply the basic
[Sie85] or fast [Jö02] correlation attack in order to reconstruct the initial state of shift
registers that produce sequences bj (j = 0, . . . , q− 1). Therefore, it is reasonable to
use large q and/or clock-controlled LFSR’s to generate sequences bj (j = 0, . . . , q−1).
Using large q however does not seem very practical. We note that knowing the peri-
ods of the control and the generating registers, one can easily verify the condition of
coprimality in Proposition 3.20. Memoryless combiners of clock-controlled LFSR’s
can also be susceptible to certain types of correlation attacks. This will be discussed
further in Sect. 3.6. But the essential benefit of these combiners consists in their
immunity against fast correlation attacks.

For practical implementation of the suggested generator it may be reasonable to
select q as a power of 2, and to generate binary sequences a and bj (j = 0, . . . , q−1),
to feed them as input to the (q + 1)-input combining function F . The control
sequence is split into log2 q-long tuples that are used to index sequences bj (j =
0, . . . , q − 1). Following the first half of the proof of Lemma 3.17, it can be readily
shown that if the control sequence splits into log2 q-tuples consisting of all q possible
values and if gcd(π, K) = 1 then K | τ .

3.6 Correlation Attacks on Clock-Controlled Shift Registers
and their Memoryless Combiners

We start by defining a statistical model for a correlation attack. In this section,
we continue to use the notation introduced in Sect. 3.1. Assume that b is a purely
random sequence over P = GF(2), i.e., it is a sequence of uniform, independent
and identically distributed (i.i.d.) random variables, rather than the output of an
LFSR. Also assume that the control sequence a consists of i.i.d. positive, integer
valued, random variables that is independent of b. The random sequences a and b
are combined according to (3.1) to generate the output random sequence u. Since
the sequence a contains only positive elements, it is clear that u is a purely random
sequence over P itself (for instance, this is not true for the output of the stop-and-go
generator).

Irregular clocking is called constrained if the range of elements in a is limited by
some value and unconstrained otherwise. The secret key is assumed to control the
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initial state of the generating register. The objective of a correlation attack is defined
here as the reconstruction of the initial state of the GR from a given segment of the
output sequence u, thereby knowing the GR length and the feedback polynomial
(that can be arbitrary; so it is not necessarily linear and irreducible). The control
sequence is unknown except for the probability distribution of the random variable
ai, i ≥ 0. If a is the mean value of ai then pd = 1− 1/a is called the deletion rate.
The model for unconstrained clocking assumes independent deletions from b with
probability pd.

Let D be an arbitrary subset of the set of positive integers Z+. Then we say
that a given string Y n = {yi}n−1

i=0 of length n can be D-embedded into a given string
Xm = {xi}m−1

i=0 of length m ≥ n if there exists a string Dn = {di}n−1
i=0 of length n

such that all di’s lie in D and yi = x
(∑i

j=0 di

)
, 0 ≤ i < n. The embedding is called

constrained if D 6= Z+ and unconstrained otherwise.
Let Un = {u(t)}n−1

t=0 be an observed segment of the output sequence (an observed
random value). We guess the initial state of the GR, and starting from this state,
under regular clocking, generate an m-long segment Xm where m ≥ n. The following
hypothesis H0 has to be tested against alternative H1:

H0: Xm and Un are independent (initial state of the GR is guessed incorrectly).

H1: Xm and Un are correlated (initial state of the GR is guessed correctly and Un

can be obtained from Xm by the above-described statistical model).

It follows from our assumption of the statistical model that each initial state of
the GR gives rise to a conditional probability distribution on the set of all output
sequences. Thus, hypothesis H0 corresponds to a uniform distribution of Un and
alternative H1 to a conditional distribution. Given an observed segment Un, the
optimal decision strategy (minimizing the probability of decision error) is to de-
cide on the initial state that leads to the maximum posterior probability of Un or,
equivalently, the initial state whose corresponding sequence Xm has the maximum
correlation with Un.

Thus, for a correlation attack on irregularly clocked shift register, a measure
for correlation between the output string produced by irregular clocking and the
output of the GR, when clocked regularly, is required. Some possibilities have been
suggested in the literature: the ‘edit distance’ [GM91], the ‘embedding property’
[GO95, GO96, Gol96, CG00], and the ‘joint probability’ [GP93a, GO95].

The basis for the edit distance correlation attack is a distance measure between
two sequences of different lengths, suitably defined to reflect the transformation of
the GR output sequence b to the output u according to the assumed statistical
model. Thus, such distance measure should allow statistical discrimination between
hypothesis H0 and alternative H1. Hypothesis H0 is accepted if the distance between
Xm and Un is greater than a threshold that is defined by the given probabilities
of the statistical decision errors. The ‘constrained Levenshtein distance’ (when the
only edit operation is element deletion) was suggested in [GM91] as a possible dis-
tance measure for constrained clocking, although no analytical estimation of relevant
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probability distributions was given. It is also not clear how close the decision rule
based on edit distance is to the one based on the maximum posterior probability
(which is optimal for the given statistical model). The edit distance correlation
attack does not seem to be very practical since its basic tool, the edit distance, is
too general.

In the embedding correlation attack the objective is to find all possible initial
states for the GR, such that for some m ≥ n a given segment {u(t)}n−1

t=0 can be
D-embedded into the m-long output sequence of the GR produced under regular
clocking, where D is the range of elements in a. The attack is successful if there are
only few of such initial states. To check whether embedding is possible, one can use
the direct matching algorithm for constrained embedding [CG00], that has computa-
tional complexity O(nm), or one can use algorithms for calculating the Levenshtein
distance [GM91, Mih93] for constrained and unconstrained clocking, respectively,
that have computational complexity O(n(m − n)). Embedding is possible if and
only if the distance is equal to m− n.

In [GO95] the unconstrained embedding attack is proved to be successful if and
only if the deletion rate is smaller than 1/2 and the length of the observed output
sequence is greater than a value that is linear in the length of the GR (where
m = m(n) is chosen in such a way that na ≤ m(n) and limn→∞ n/m(n) = 1/a).
According to [GO96], if d = maxD and the length of Xm is chosen to be maximum
possible, so equal to dn (if a0 = 0), then the constrained embedding attack is
successful if the length of the observed output sequence is greater than a value linear
in the GR length and superexponential in d, and is not successful if this length is
smaller than a value linear in the GR length and exponential in d. This proves that,
by making d sufficiently large, one cannot achieve the theoretical security against
the embedding attack but one can significantly improve the practical security. To
determine the constrained embedding probability analytically appears to be a very
difficult combinatorial problem. This problem has only been solved in [Gol96] for
the specific case when maxD = 2.

It is obvious that embedding attacks are not optimal in general since they make
no use of the probability distribution of the control sequence. The statistically
optimal decision rule for distinguishing H0 and H1 has to be based on the joint
probability and that is exactly the basis for the probabilistic correlation attack.
In this attack, one decides on the initial state with maximum joint probability of
Xm and Un. The problem of efficiently computing this probability for constrained
clocking is solved in [GP93a] with computational complexity O(n(m − n)). The
recursive algorithm, presented in [GO95], allows to estimate the joint probability
for unconstrained clocking if the distribution of the control sequence is geometric
with average 1/p. The computational complexity of this algorithm is O(n(m− n)).
The length m(n) should be chosen in such a way that limn→∞ n/m(n) = p. Then
it can be proved that the unconstrained probabilistic attack is successful for any
0 ≤ p < 1 provided that

n > r
1− p

C
, where C ≈

(
1− p

2

)
log(2− p) +

p

2
log p .



70 Clock-Controlled Shift Registers for Key-Stream Generation

The correlation attack on the Shrinking Generator [CKM94], proposed by Jo-
hansson in [Joh98], is based on a maximum a posteriori (MAP) decoding algorithm
for the deletion channel. This approach can as well be readily applied to the gen-
eral model of a shift register under unconstrained clocking. A deletion rate pd is
used to define the deletion channel characteristics. If pd = 1/2 then the model for
unconstrained clocking is equivalent to the one of the Shrinking Generator. The
suboptimal MAP decoding algorithm proposed in [Joh98] is likely also to work for
deletion rate values different from 1/2 but that should be further examined by sim-
ulating the attack (since part of the suboptimal MAP decoding algorithm is based
on simulation results).

All above-mentioned correlation attacks on the initial state of the GR imply an
exhaustive search over all possible initial states. Thus, their computational complex-
ity remains exponential. A more efficient fast correlation attack having polynomial
complexity was suggested in [Gol95b]. The primary objective of this attack is to
reconstruct a segment of the control sequence a and then, when having obtained
enough (little more than the length of the GR) consecutive terms of a at any point
of time, it is possible to determine the initial state of the GR uniquely or almost
uniquely. The feedback polynomial of the GR is now assumed to be linear. The
algorithm devised in [Gol95b] consists of iterative recomputation of posterior prob-
abilities for unknown elements of the control sequence. The convergence condition
that has to hold for successful reconstruction is the following:

∑
ω

Nd,ω(1− p)ω > 1

for all d ∈ D whose probability is not very close to zero, where D is the range of
elements in a, p is the deletion rate and Nd,ω denotes the number of polynomials
having weight ω + 1 that are multiples of the GR feedback polynomial and which
have the additional property that the distance between at least one pair of adjacent
feedback connections (taps) is equal to d + 1. Unfortunately, the theoretical basis
for the fast correlation attack devised in [Gol95b] is rather tentative and is not
supported by experimental results.

We shall finally consider memoryless combiners of clock-controlled shift registers.
Assume that the combining function is zero-order correlation immune and is known
to the cryptanalyst. This means that the key stream s is correlated to at least
one of the inputs to the combining function. Let u denote such an input sequence
generated by the corresponding GR under irregular clocking. Thus, the known
key-stream segment can be seen as the result of transmitting u through the binary
symmetric channel (BSC) with known error probability equal to the correlation
between u and s due to the combining function. The goal of correlation attacks is
to reconstruct the initial state of the corresponding GR from the known segment of
the key stream.

Embedding correlation attacks are infeasible in this case but edit distance and
joint probability attacks are still applicable although less efficient. The idea of these
attacks was described earlier in this section. The edit distance attack for the con-
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strained clocking case can be based on the Levenshtein distance, as suggested in
[GM91]. Except element deletion, an extra edit operation, namely element substi-
tution, should be considered due to the BSC noise. The attack based on the joint
probability for constrained clocking case was devised in [GP93a].

The idea of the decimation attack on combination generators from [Fil00] can
also be extended to mount the correlation attack on the combiner of clock-controlled
registers. For the pair ‘CR plus GR’ that generates sequence u assume that the
feedback polynomial f(x) of the GR is irreducible, the period π of the CR and the
sum S of the control sequence a over the period are known and consider the uniform
(0, π)-decimation of the key stream s. According to (3.2), this decimation of s is
equal to the additively noised uniform (a0, S)-decimation of sequence b generated
by the GR under regular clocking. By Theorem 3.2, Item (i), the latter decimation
belongs to LP (fS). Thus, applying the original correlation attack [Sie85] we can
reconstruct m bits in the (a0, S)-decimation of b (the value for a0 has to be searched
exhaustively). The initial state of the GR can be obtained then by solving a system
of m linear equations.

Nonlinear combiners of clock-controlled shift registers have been extensively
studied for a long while but no possibility for a fast correlation attack has been
reported. Therefore, it is reasonable to assume that these schemes provide sufficient
level of security.

If the combining function of clock-controlled registers is correlation immune or
has memory then correlation attacks based on many-to-one string edit distance
and joint probability are still feasible (see [Gol01]). The efficiency of these attacks
depends on an available pair of mutually correlated feedforward linear transforms of
the output sequence and input sequences respectively, in the same but now regularly
clocked combiner. A large correlation coefficient, a small memory size and a small
number of input sequences to the linear transform of the input increase the efficiency
of the attack. A theoretical estimation of the conditions for these attacks to be
successful seems to be a difficult, yet unsolved problem.

3.7 Conclusion and Open Problems

The period of the output sequence generated by a clock-controlled LFSR with an
irreducible feedback polynomial and an arbitrary structure of the control sequence
was estimated. A sufficient condition for this period to reach its maximal value was
formulated and some specific configurations of clock-controlled arrangements where
the output sequence has maximal period were described. An interesting problem is
to find other sufficient conditions for the period of the output sequence to reach its
maximum.

Our investigation of randomness properties of clock-controlled LFSR’s brings to
the conclusion that in order to provide a close-to-uniform element distribution in
the output sequence, the following rules have to be observed:

• Ensure that the feedback polynomial f(x) of the GR is irreducible over GF(q),
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has degree m and order M with M sufficiently large compared to qm − 1.

• The least common multiple of M and q−1 is equal by the order of magnitude
to M .

• Generate the control sequence with S being relatively prime to M .

Note that if f(x) is primitive then the first two requirements are met automatically.
Moreover, if

• f(x) is primitive over a prime field GF(p),

• the control sequence is such that S is relatively prime to λ = pm − 1,

• ∑i+h
k=i+1 ak is not a multiple of λ for all i = 0, 1, . . . , π − 1

then for such values of h > 0 the autocorrelation function C(h) of the output
sequence fulfils the Golomb’s postulate (see the notation in Sect. 3.1).

The classical Geffe generator is characterized by strong correlation dependencies
inherent to the key stream and, therefore, is susceptible to the basic and fast corre-
lation attacks. The suggested generalized generator combines multiple inputs taken
from arbitrary periodical sources over a finite field. The number of inputs can be
varied. In particular, we imply that clock-controlled shift registers can be used for
generating the input sequences, which will make the generator immune against fast
correlation attacks. Using the optimal number of inputs allows to reduce correlation
dependencies to the level when basic attacks become impractical, at the same time
ensuring efficiency of the generator. Upper and lower bounds were estimated for
the period and the linear complexity of the output sequence of the generalized Geffe
generator. It remains an open problem to estimate a nontrivial lower bound for the
linear complexity of the output sequence in the non-binary case.



Chapter 4

Some Statistical Attacks on Stream
Ciphers

4.1 Introduction

The study of different theoretical aspects of the design and analysis of key-stream
generators has two major directions. The first one is focused on investigating prop-
erties of the building blocks (e.g., feedback shift registers, logical functions, modulo
N arithmetic, etc.) that constitute the generator, and on estimating the related
number-theoretical characteristics of the key stream. Doing this, the main objective
is to find methods for generating key-stream sequences with characteristics that
provide security against algebraic attacks [DXS91]. This approach is followed in
Chaps. 2 and 3 of this thesis.

The second direction is focused on statistical properties of a key stream and
uses various statistical tests for goodness of fit, when a hypothesis specifies the
distribution in the key stream. In this case, the principle hypothesis is that the
key stream is a sequence of independent random variables uniformly distributed
on a finite set. Yet, in practice it is almost impossible to detect minor departures
from the principle hypothesis. We can only reliably detect the most unwanted
deviations of statistical characteristics of the key stream from these of the purely
random sequence. The characteristics critical for the security of a key stream are
uniformity, statistical homogeneity and absence of substantial dependence between
the key-stream elements. This is due to the fact that any statistical irregularities of
this kind, present in a key stream, can be used in the algorithms for attacking the
corresponding stream cipher [Jö02]. In this chapter we develop several attacks that
exploit statistical weakness in the key stream.

The problem of testing a key stream for a linear recurrence perturbed with a
nonuniform additive noise is studied in Sect. 4.2. Efficient solution of this problem
allows to run a distinguishing attack on the corresponding stream cipher. The goal
of this attack is to distinguish the black box containing the cipher from the one
producing a purely random output. If any statistical irregularities are present in
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the key stream then, due to the plaintext redundancy, these can be also found
in the ciphertext. Therefore, both known plaintext (attack on the key stream) and
ciphertext-only scenarios are possible for the distinguishing attack. The background
here is similar to the one that the cryptanalyst faces when developing algorithms
for fast correlation attacks on combination generators. To solve the problem, we
construct the maximal invariant statistic and the invariant test. However, high
computational complexity makes use of this test impractical. For the particular
case of trinomial feedback we construct a couple of invariant statistics that allow
construction of computationally feasible tests.

In Sect. 4.3 we construct statistical tests to distinguish families of ciphertexts
obtained from different plaintexts but using the same key-stream segment (so called,
overlapping families). This problem was not widely discussed in the literature but
definitively has both theoretical and practical importance. Our nonrandomized and
randomized most powerful tests efficiently distinguish overlapping families in the
case that they contain at most four ciphertexts of different length. Moreover, we
provide explicit algorithms for constructing parameter intervals where these tests
are uniformly most powerful.

New statistical procedures for selecting the most probable outcomes from the
multinomial population are developed in Sect. 4.4. These procedures are based on
the calculation of the reduced frequencies. This makes them more efficient in the
case that the total number of outcomes is big compared to the amount of memory
available. Useful applications can be found in frequency analysis, namely, where it
is a part of a dictionary attack on block ciphers and various other attacks on codes.
We prove the limit theorem for the distribution of reduced frequencies. These results
appeared in [Kho98a].

4.2 Testing a Key Stream for a Noisy Linear Recurrence

Consider a binary, nonlinear combination generator with zero-order correlation im-
mune combining function. This implies that some LFSR sequence a = {ai}i≥0,
being one of the inputs to the combining function, is correlated to the key-stream
sequence z = {zi}i≥0. In the statistical model we assume that z is the sequence
of independent and identically distributed (i.i.d.) random variables. According to
this model, we can consider sequence z as a sequence a with noise added to it, i.e.,
zi = ai ⊕ ei (i = 0, 1, 2, . . . ), where e = {ei}i≥0 is a binary sequence of i.i.d. ran-
dom variables. In order to distinguish between random variables and their values
we will further denote random variables by the corresponding capital letters. Thus,
in this notation for some δ ∈ {(−1, 1) \ 0} holds

Pr(Zi = ai) = Pr(Ei = 0) =
1− δ

2
(i = 0, 1, 2, . . . ) .

The situation is illustrated in Fig. 4.1.
The characteristic polynomial of the n-bit long LFSR, correlated to the key

stream, is assumed to be known to the cryptanalyst but the initial state vector
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Figure 4.1: Statistical model of a combination generator

constitutes the unknown secret key of the generator. Let Γ denote the set of 2n

linear recurring sequences a in GF(2) satisfying this known recurrence

ai+n = ai+kt−1 ⊕ · · · ⊕ ai+k1 ⊕ ai+k0 (i = 0, 1, 2, . . . ) (4.1)

but limited by their initial L elements for some L À 0. Assume that 0 = k0 < k1 <
· · · < kt−1 < n ≤ L. Assume also that a segment (z0, . . . , zL−1) of L key-stream
digits is being observed. The problem of the cryptanalyst is to distinguish the key
stream that is the noisy output of the LFSR, from the sequence of uniform, i.i.d.
random variables. Further by a, z and e we will denote the initial L-long segments
of the respective sequences.

The formulation of the problem above implicitly assumes that a segment of the
plaintext is known to the cryptanalyst so that he could estimate the corresponding
key-stream segment. However, a similar cryptanalytic method is also feasible in a
ciphertext-only attack. In this case the correlation probability between an LFSR
sequence and the ciphertext is defined by correlation properties of the combining
function and the redundancy of the plaintext. Specific statistical characteristics of
the plaintext depend on the system chosen for coding the plaintext. The plain-
text distribution may differ from the uniform distribution on particular bits of the
codewords (e.g., this holds for seven-bit ASCII and five-bit International Telegraph
Code). In this case we need to decimate the ciphertext by the code length and
consider the decimated ciphertext as the sum of the decimated LFSR sequence and
the noise that results both from the combining function and the plaintext.

Consider the parameter space Ω = {θ = (a, δ) | a ∈ Γ, δ ∈ (−1, 1)} and
corresponding family of parameterized distributions over the sample space GF(2)L

of binary L-tuples as follows

P = {Pθ | θ ∈ Ω} ,

where

Pθ(Z = z) =
(

1 + δ

2

)wt(z⊕a) (
1− δ

2

)L−wt(z⊕a)

, z ∈ GF(2)L (4.2)

and wt(z ⊕ a) denotes the Hamming weight of binary string z ⊕ a.
Let us identify the following two subsets in the parameter space Ω

ΩH = {(a, δ1) | a ∈ Γ} and ΩK = {(a, 0) | a ∈ Γ} ,
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where δ1 is a fixed nonzero value from the interval (−1, 1). Then our distinguishing
problem amounts to testing hypothesis H against alternative K, where

H = {Pθ | θ ∈ ΩH} and K = {Pθ | θ ∈ ΩK} . (4.3)

Let G be the group of transformations of the sample space GF(2)L such that
G = {a(z) | a ∈ Γ}, where a(z) is defined by a(z) = a⊕z for all z ∈ GF(2)L. Taking
the definition of invariance as in [Leh97, pp. 282-284], it is not difficult to prove the
following proposition.

Proposition 4.1 The problem of testing hypothesis H against alternative K re-
mains invariant under the group of transformations G.

Proof: By (4.2), P(a,δ)(Z = z) = P(a⊕a′,δ)(Z = z ⊕ a′) for every a, a′ ∈ Γ and
any δ ∈ (−1, 1). It means that a random L-tuple Z has distribution P(a,δ) ∈ P if
and only if the L-tuple a′(Z) = Z ⊕ a′ has distribution P(a⊕a′,δ) ∈ P. Thus, the
family of distributions P remains invariant under the group G. The induced group
of transformations G of the parameter space Ω contains the elements of the form
a′(a, δ) = (a⊕a′, δ). Thus, subsets ΩH and ΩK remain invariant under the group G
meaning that for any a ∈ G the equations a(ΩH) = ΩH and a(ΩK) = ΩK hold. ut

If a hypothesis testing problem is invariant under a group of transformations
then it is natural to restrict attention to the tests invariant under this group. Test
φ is invariant under the defined above group G if φ(a(z)) = φ(z) for any a ∈ Γ
and z ∈ GF(2)L (see the definition of invariance in [Leh97, p. 284]). Thus, tests
invariant under G are free of the nuisance parameter a. This allows us to reduce
the parameter space Ω and switch from the original problem (4.3) to the problem
of testing hypothesis H ′ against alternative K ′, where

H ′ = {δ = δ1} and K ′ = {δ = 0} . (4.4)

According to [Leh97, Theorem 1 on p. 285], a test φ is invariant under a trans-
formation group G if and only if there exists a function h for which φ(z) = h(M(z))
for all z, where M(z) is a maximal invariant with respect to G. Note that a func-
tion is said to be maximal invariant if it is constant on the orbits of G but takes
on a different value on each orbit. The maximal invariant function (or statistic) is
constructed in the following proposition.

Proposition 4.2 Let s = (s0, . . . , sL−1) be an arbitrary L-tuple from GF(2)L. As-
sume that (s0, . . . , sn−1) is the initial state vector of a linear recurring sequence and
extend this sequence, according to (4.1), up to the length L, denoting the result by
a(s). Then the function T (s) = s⊕ a(s) is maximal invariant under group G.

Proof: Consider two points in GF(2)L equivalent under G (denote this by z(1) ∼
z(2) (mod G)) if there exists a transformation a(z) ∈ G for which a(z(1)) = z(2).
This is a true equivalence relation since G is a group.
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By the definition of group G,

z(1) ∼ z(2) (mod G) ⇐⇒ ∃ a ∈ Γ : z(1) ⊕ a = z(2)

and thus
z(1) ∼ z(2) (mod G) ⇐⇒ z(1) ⊕ z(2) ∈ Γ .

Therefore, this equivalence relation is the congruence relation modulo the sub-
group Γ. Equivalence classes are cosets of GF(2)L modulo Γ and have the form
z ⊕ Γ. Therefore, these classes are all equal in size and their cardinality is given by
the cardinality of Γ.

Consider z = (z0, . . . , zL−1) ∈ GF(2)L and a(z), the L-tuple from Γ having the
initial state vector equal to (z0, . . . , zn−1). It is obvious that for any vector a ∈ Γ
coset a⊕ Γ is equal to Γ. Thus,

z ⊕ Γ = z ⊕ (Γ⊕ a(z)) = (z ⊕ a(z))⊕ Γ = z0 ⊕ Γ

and the initial n coordinates of vector z0 are zero. Such a vector z0 is called the
basic vector of the coset and it is unique. Therefore, we may assume the n initial
coordinates of an arbitrary vector s ∈ GF(2)L to be equal to the initial state vector
of the added recurring sequence. Now if we extend this initial state vector, according
to (4.1), up to the length L and add the obtained vector a(s) to the original vector s
then we will get a maximal invariant, that is the basic vector z0 of the coset z0 ⊕ Γ
which contains vector s. ut

Practical usage of invariant tests depending on maximal invariant statistic T (s),
constructed in Proposition 4.2, is complicated by the need to compute the following
enormous sums that define the distribution of this maximal invariant

∑

a∈Γ

(
1 + δ

2

)wt(z⊕a) (
1− δ

2

)L−wt(z⊕a)

=
∑

a∈Γ

P(a,δ)(Z = z) .

The computational complexity of this task is equivalent to |Γ| = 2n and for practical
systems with appropriate values of L and n (say n = 64 and L = 1500) this amount
of operations cannot be completed within a reasonable time period. Further, we
will construct an invariant statistic that is not maximal invariant but for which it
is feasible to estimate this distribution.

In the following discussion we need the LFSR feedback to be trinomial. This
assumption does not impose extremely strict limitations compared to the general
case since we can always find a trinomial multiple of the characteristic polynomial.
The only thing we need from such a multiple is to be of a relatively low, compared to
L, degree (see, e.g., [GM01, Roy02] for theoretical and algorithmic details of finding
low-weight multiples of primitive polynomials over GF(2)). Thus, let recurrence
(4.1) be trinomial, i.e., let t = 2 and

ai+n = ai+k ⊕ ai (i = 0, 1, 2, . . . ) (4.5)
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for some 0 < k < n ≤ L, and consider the following ordered 10-tuple of nonnegative
integers

C4(k, n) = (0, k, 2k, 3k, n, n + k, n + 2k, 2n, 2n + k, 3n) .

We will refer further to this sequence as to the 4-scheme. Longer schemes can be
constructed in a similar way, although only the 4-scheme and the 5-scheme, which are
the shortest ones, pose computational tasks having reasonable complexity. Longer
schemes are computationally infeasible.

Let us index the elements in the tuple C4(k, n) starting from 1 and let [j] denote
the jth element in C4(k, n). It is obvious that for a linear recurring sequence {ai}i≥0

satisfying (4.5) the following identities hold

a[1] ⊕ a[2] ⊕ a[5] = 0
a[2] ⊕ a[3] ⊕ a[6] = 0
a[3] ⊕ a[4] ⊕ a[7] = 0 (4.6)
a[5] ⊕ a[6] ⊕ a[8] = 0
a[6] ⊕ a[7] ⊕ a[9] = 0
a[8] ⊕ a[9] ⊕ a[10] = 0 .

We will further assume that the elements in the tuple C4(k, n) are all distinct. This
assumption is reasonable since that is the case for most of the recurring sequences
used in practice.

Consider the following homomorphism of linear vector spaces over GF(2):

Ψk,n : GF(2)10 → GF(2)6 and Ψk,n(h) = (u1, . . . , u6) = u

for any h = (h1, . . . , h10) ∈ GF(2)10, where u1 = h1⊕h2⊕h5, u2 = h2⊕h3⊕h6 and
so on according to (4.6). Note that if k(u) is a pre-image of an element u ∈ GF(2)6

then k(u) = h ⊕ k(0) for any h with Ψk,n(h) = u, where 0 denotes the zero-vector
in GF(2)6. Thus, k(u) is the coset of GF(2)10 under the kernel of Ψk,n.

Let us use the homomorphism Ψk,n to associate an L-tuple z = {ai⊕ei}0≤i≤L−1

with the sequence U = {u(i)}0≤i<L−3n of vectors from GF(2)6, where u(i) =
Ψk,n(zi+[1], . . . , zi+[10]). We will denote this fact as Ψk,n(z) = U . By virtue of
(4.6), Ψk,n(z) = Ψk,n(e) and moreover, for any u ∈ GF(2)6

Pr
(
Ψk,n(Zi+[1], . . . , Zi+[10]) = u

)
= Pr

{
(Ei+[1], . . . , Ei+[10]) ∈ k(u)

}
=

= Pr(k(u)) =
∑

h∈k(u)

(
1 + δ

2

)wt(h) (
1− δ

2

)10−wt(h)

, (4.7)

where Zi = Ei ⊕ ai. It is not difficult to estimate the mean and the variance of
random vector u(i) and to show that

Eu(i) =
(

1 + δ3

2
, . . . ,

1 + δ3

2

)
; Du(i) =

(
1− δ6

2
, . . . ,

1− δ6

2

)
.
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It is easy to see that the initial four coordinates h1, . . . , h4 of a vector h ∈
GF(2)10 and vector u ∈ GF(2)6 uniquely determine the remaining coordinates of
h if h ∈ k(u). Thus, the cardinality of k(u) is equal to 24 in the 4-scheme. In the
5-scheme the cardinality of a corresponding coset of GF(2)15 is equal to 25 and the
number of cosets is equal to 210 which is computationally feasible as well.

The constructed statistic U is invariant under the group G, although, it is not
maximal invariant. With neglect of the inter-element dependence in the sequence
{u(i)}0≤i<L−3n, we can consider U to be a random sample from the distribution
given in (4.7). Then, in order to test hypothesis (4.4) we can apply sequential
analysis. It allows to minimize the number of observations, i.e., the sample size,
and thus decreases the inter-element dependence in U . For the same reason it is
preferable to use the 5-scheme. For instance, for the recurrence ai+31 = ai+18 ⊕ ai

(i.e., when n = 31 and k = 18) C4(18, 31) = (0, 18, 36, 54, 31, 49, 67, 62, 80, 93) and
C5(18, 31) = (0, 18, 36, 54, 31, 49, 67, 62, 80, 93). Thus, both for the 4-scheme and
5-scheme, only five initial elements in U compose an independent sample. Practical
distinguishing attacks on stream ciphers can be run using invariant tests that depend
on the constructed statistics.

4.3 Testing a Ciphertext for Key-Stream Reuse

Consider a binary stream cipher that encrypts plaintext sequence t = {ti}i≥0 into
ciphertext sequence c = {ci}i≥0 by coordinate-wise adding bits of key stream z =
{zi}i≥0, i.e., ci = ti ⊕ zi (i = 0, 1, 2, . . . ). For a periodic stream cipher the key
stream repeats after d characters for some fixed d and a secure design of a key-stream
generator implies a large value of d. However, both periodic and non-periodic stream
ciphers generate the same key stream if the initial state of a key-stream generator
turns out to be the same in different encrypting sessions. Such a situation, when
different ciphertext messages are obtained using the same key-stream sequence is
called key-stream reuse. Ciphertexts that reuse the same key stream are further
denominated overlapping. Key-stream reuse results in a serious security breach for
a stream cipher since, given the plaintext redundancy, overlapping ciphertexts can
be decrypted using many classical techniques such as frequency analysis, dragging
cribs, the probable word method, etc. [Bir99, Sin99]. In this section we will consider
key-stream reuse for a family containing at most four ciphertexts of different lengths.
Occurrence of larger overlapping families is very unlikely in practice.

4.3.1 Statistical Model

Assume that the following statistical model adequately describes the plaintext. Here
we continue denoting random variables by the corresponding capital letters. Se-
quence t is regarded as a binary sequence of independent and identically distributed
(i.i.d.) random variables with

Pr(Ti = 0) =
1− δ

2
(i = 0, 1, 2, . . . ) for some δ ∈ {(−1, 1) \ 0} .
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Our assumption makes sense since encoding of a book-style English text with some
common codes like seven-bit ASCII or five-bit International Telegraph Code, results
in a bit stream having a biased distribution of particular bits in the codewords.
Then, decimating the encoded plaintext by the code length we get the sequence
that corresponds to our statistical model.

Let {c(1), c(2), c(3), c(4)} be a quartet of overlapping ciphertexts in the sense that
c
(j)
i = t

(j)
i ⊕ zi (i = 0, 1, 2, . . . ; j = 1, 2, 3, 4). Then

Pr(C(j1)
i = C

(j2)
i ) = Pr(T (j1)

i = T
(j2)
i ) =

1 + δ2

2

Pr(C(j1)
i = C

(j2)
i = C

(j3)
i ) = Pr(T (j1)

i = T
(j2)
i = T

(j3)
i ) =

1 + 3δ2

4
(4.8)

Pr(C(1)
i = C

(2)
i = C

(3)
i = C

(4)
i ) = Pr(T (1)

i = T
(2)
i = T

(3)
i = T

(4)
i ) =

1 + 6δ2 + δ4

8

Pr(C(j1)
i = C

(j2)
i = C

(j3)
i )− Pr(C(1)

i = C
(2)
i = C

(3)
i = C

(4)
i ) =

1− δ4

8
,

where i = 0, 1, 2, . . . and 1 ≤ j1 < j2 < j3 ≤ 4. Here we assume that plaintexts
t(1), t(2), t(3), t(4) are independent. If some n ciphertexts, members of an overlap-
ping family, have the ith symbol identical then this family is said to have a zero
vertical n-gram at position i. Probabilities (4.8) result in the following set of three
distributions:
(

x1 x2
1+δ2

2
1−δ2

2

) (
y1 y2

1+3δ2

4
3(1−δ2)

4

) (
z1 z2 z3

1+6δ2+δ4

8
1−δ4

2
3(1−δ2)2

8

)
, (4.9)

where simple events correspond to the occurrence of

x1 – a zero vertical bigram in a pair of overlapping ciphertexts;

y1 – zero vertical trigram in a triple of overlapping ciphertexts;

z1 – a zero vertical tetragram in a quartet of overlapping ciphertexts;

z2 – a zero vertical trigram in a triple of ciphertexts that belong to the overlapping
quartet but with no vertical tetragram at this position;

and x2, y2, z3 are complementary events. The bottom rows contain the corres-
ponding probabilities. The probability of z2 is equal to the last probability in
(4.8) multiplied by 4 since the subset {j1, j2, j3} can be chosen arbitrarily from
{1, 2, 3, 4}. Note that the complementary event y2 corresponds to the occurrence
of a zero vertical bigram in a pair of ciphertexts that belong to the overlapping
triple but with no vertical trigram at this position and complementary event z3

corresponds to the occurrence of a zero vertical bigram in a pair of ciphertexts that
belong to the overlapping quartet but with no vertical trigram or tetragram at this
position.
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The cryptanalytic problem that we are going to address in this section is how
to distinguish a family of overlapping ciphertexts from a family containing cipher-
texts that were obtained using not correlated segments of the key-stream. Assume
that the family contains four ciphertexts with the shortest three ciphertexts having
the lengths N4, N4 + N3 and N4 + N3 + N2 respectively. Therefore, N4 vertical
tetragrams, N3 vertical trigrams and N2 vertical bigrams are available. From a
statistical point of view, we have a random sample of size N2 + N3 + N4, where N2

elements of the sample are distributed according to the first distribution in (4.9),
N3 elements according to the second distribution and N4 elements according to the
third if the family really contains overlapping ciphertexts. The opposite case is ad-
equately described by the statistical model where all ciphertexts consist of uniform
i.i.d. random variables. This is equivalent to the plaintext being the sequence of
uniform i.i.d. random variables (i.e., δ = 0). Thus, our distinguishing problem
amounts to testing hypothesis H about the distribution of a random sample against
alternative K with

H = {δ = 0} and K = {δ = δ1} ,

where δ1 is a fixed nonzero value from the interval (−1, 1). If hypothesis H is true
then distributions (4.9) are of the form

(
x1 x2
1
2

1
2

) (
y1 y2
1
4

3
4

) (
z1 z2 z3
1
8

1
2

3
8

)
.

4.3.2 Most Powerful Tests

For the case of testing a simple hypothesis against a simple alternative the power
of a test is defined being equal to the probability of rejecting the hypothesis if
alternative is true. Using the fundamental lemma of Neyman and Pearson [Leh97,
p. 74], let us construct a most powerful (MP) test for testing hypothesis H against
simple alternative K. Note that a hypothesis (alternative) is called simple if it
specifies only a single distribution, and otherwise it is said to be composite. Let
the distributions under hypothesis H and alternative K be denoted P0 and P1

respectively. Then the likelihood ratio for a point x of the sample space is equal to

P1(x)
P0(x)

=

(
1−δ2

1
2

)n(x2) (
1+δ2

1
2

)N2−n(x2) (
3(1−δ2

1)
4

)n(y2) (
1+3δ2

1
4

)N3−n(y2)

(
1
2

)N2
(

3
4

)n(y2) (
1
4

)N3−n(y2)
×

×

(
1−δ4

1
2

)n(z2) (
3(1−δ2

1)2

8

)n(z3) (
1+6δ2

1+δ4
1

8

)N4−n(z2)−n(z3)

(
1
2

)n(z2) (
3
8

)n(z3) (
1
8

)N4−n(z2)−n(z3)
=

=
(

1− δ2
1

1 + δ2
1

)n(x2) (
1− δ2

1

1 + 3δ2
1

)n(y2) (
1− δ4

1

1 + 6δ2
1 + δ4

1

)n(z2)

×

×
( (

1− δ2
1

)2

1 + 6δ2
1 + δ4

1

)n(z3) (
1 + δ2

1

)N2 (
1 + 3δ2

1

)N3 (
1 + 6δ2

1 + δ4
1

)N4
,
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where n(x2), n(y2), n(z2) and n(z3) denote the number of occurrences of x2, y2, z2

and z3 respectively in the random sample x.
Let us select and fix the level of significance α. The MP test for testing H against

K at level α is (see [Leh97, p. 74])

φ(x) =





1, when P1(x) > CP0(x),
γ, when P1(x) = CP0(x),
0, when P1(x) < CP0(x),

(4.10)

where C and γ are selected to satisfy the identity

P0

{
P1(X)
P0(X)

> C

}
+ γP0

{
P1(X)
P0(X)

= C

}
= α .

Let us explain that according to the MP test φ, the hypothesis is accepted if a simple
event x with φ(x) = 0 occurs, rejected if φ(x) = 1 and rejected with probability γ
if φ(x) = γ. In the last case we will say that such an event x requires an additional
trial.

Let us rewrite inequalities P1(x)
P0(x) ≶ C in the form

(
1− δ2

1

1 + δ2
1

)n(x2) (
1− δ2

1

1 + 3δ2
1

)n(y2) (
1− δ4

1

1 + 6δ2
1 + δ4

1

)n(z2)
( (

1− δ2
1

)2

1 + 6δ2
1 + δ4

1

)n(z3)

≶ C̃ ,

(4.11)
where

C̃ = C
(
1 + δ2

1

)−N2 (
1 + 3δ2

1

)−N3 (
1 + 6δ2

1 + δ4
1

)−N4
. (4.12)

As a function of n(x2), n(y2), n(z2) and n(z3), the value on the left hand side of
(4.11) varies within the closed interval

[(
1− δ2

1

1 + δ2
1

)N2 (
1− δ2

1

1 + 3δ2
1

)N3 (
1− δ4

1

1 + 6δ2
1 + δ4

1

)N4

, 1

]
. (4.13)

Therefore, if

C̃ <

(
1− δ2

1

1 + δ2
1

)N2 (
1− δ2

1

1 + 3δ2
1

)N3 (
1− δ4

1

1 + 6δ2
1 + δ4

1

)N4

then the critical region of the MP test coincides with the whole sample space and
α = 1. If C̃ > 1 then the critical region of the MP test is empty and α = 0. Thus,
depending upon α, the constant C̃ can vary its value within the closed interval
(4.13).

We introduce the following notation

L(n(x2), n(y2), n(z2), n(z3); δ) =

=
(

1− δ2

1 + δ2

)n(x2) (
1− δ2

1 + 3δ2

)n(y2) (
1− δ4

1 + 6δ2 + δ4

)n(z2)
( (

1− δ2
)2

1 + 6δ2 + δ4

)n(z3)
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and also denote ∆ = 1+δ2

1−δ2 . Note that with δ ∈ (−1, 1) the value of ∆ varies within
the interval (1, +∞) and ∆, as a function of δ, strictly increases when the absolute
value of δ goes from 0 to 1. Inequalities (4.11) can be rewritten in the following
form:

∆−n(x2)
1 (2∆1 − 1)−n(y2)(2∆2

1 − 1)−n(z3)

(
2∆2

1 − 1
∆1

)−n(z2)

≶ C̃ , (4.14)

where ∆1 = 1+δ2
1

1−δ2
1
.

The sample space of our random experiment is contained within the four-dimen-
sional rectangular parallelepiped spanned by the vectors (N2, 0, 0, 0), (0, N3, 0, 0),
(0, 0, N4, 0) and (0, 0, 0, N4) and each simple event (n(x2), n(y2), n(z2), n(z3)) be-
longs to the rectangular full-dimensional lattice that passes through the origin of
the coordinate system. For instance, projection of the sample space onto the three-
dimensional space in coordinates (n(x2), n(y2), n(z2)) corresponds to all points of
the lattice contained in the parallelepiped of size N2×N3×N4, and projection onto
the three-dimensional space in coordinates (n(x2), n(z2), n(z3)) is shown in Fig. 4.2.

n ( z 2 )

n ( z 3 )

n ( x 2 )

N 3

N 2

0

N 3

Figure 4.2: Sample space projected onto coordinates (n(x2), n(z2), n(z3))

By taking the logarithm of inequalities (4.14) we obtain

−n(x2) ln ∆1 − n(y2) ln(2∆1 − 1)− n(z3) ln(2∆2
1 − 1)− n(z2) ln

2∆2
1 − 1
∆1

≶ ln C̃ .

According to (4.10), the critical region of an MP test consists of the points of the
sample space that in the four-dimensional space lie “under” the hyperplane described
by the following equation in coordinates (n(x2), n(y2), n(z2), n(z3)):

n(x2) ln∆1 + n(y2) ln(2∆1 − 1) + n(z3) ln(2∆2
1 − 1) + n(z2) ln

2∆2
1 − 1
∆1

= − ln C̃ .

(4.15)
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In particular, if the critical region is not empty then it always contains the origin of
the coordinate system. A contra, the region of acceptance lies “above” the plane.
This hyperplane intersects the axes n(x2), n(y2), n(z2), n(z3) in the respective points
having coordinates

(
− ln C̃

ln ∆1
, 0, 0, 0

)
;

(
0,− ln C̃

ln(2∆1−1) , 0, 0
)

;(
0, 0,−

(
ln 2∆2

1−1
∆1

)−1

ln C̃, 0
)

;
(
0, 0, 0,− ln C̃

ln(2∆2
1−1)

)
.

(4.16)

The results in the next sections substantially depend on whether the MP test
determined by (4.10) is randomized or nonrandomized. According to the definition,
this test is nonrandomized if under distribution P0 (i.e., when hypothesis H is true)
the probability of the event P1(X) = CP0(X) is equal to zero, otherwise, the MP
test is randomized. If the same test is most powerful for all distributions contained
in a composite alternative then such a test is called Uniformly Most Powerful (UMP)
(see [Leh97, p. 72]). The rest of Sect. 4.3 will be focused on the construction of UMP
tests.

4.3.3 Nonrandomized Most Powerful Tests

Consider first a nonrandomized test, i.e., we assume that P0{P1(X) = CP0(X)} = 0.
In this case hyperplane (4.15), dividing the sample space, does not contain any points
of the sample space and the MP test for testing H against K is of the form

φ(x) =

{
1, when L(n(x2), n(y2), n(z2), n(z3); δ1) > C̃,

0, when L(n(x2), n(y2), n(z2), n(z3); δ1) < C̃.
(4.17)

We will further assume threshold C̃, defined by (4.12), to be a constant not de-
pending on δ1 and taking on its value within interval (4.13). We can also assume
that C̃ 6= 1 since if C̃ = 1 then L(0, 0, 0, 0; δ1) = 1 = C̃ and test (4.17) will be
randomized.

Theorem 4.3 There exists an interval
(
δ, δ

)
containing δ1, such that the MP test

determined by (4.17) is UMP for testing hypothesis H against composite alternative
K∗ =

{
δ ∈ (

δ, δ
)}

.

Proof: The proof is based on the construction of an interval
(
δ, δ

)
for a given

value of δ1.
Note that the functions

(
ln

1 + δ2

1− δ2

)−1

;
(

ln
1 + 3δ2

1− δ2

)−1

;
(

ln
1 + 6δ2

1 + δ4

1− δ4

)−1

;
(

ln
1 + 6δ2

1 + δ4

(1− δ2)2

)−1

involved in a nonzero coordinate of intersection points (4.16), strictly decrease from
+∞ to 0 when the absolute value of δ goes from 0 to 1. Also recall that C̃ is positive,
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less than 1 and thus − ln C̃ > 0. Therefore, intersection points of plane (4.15) with
the axes contract to the origin of the coordinate system when the absolute value
of δ goes from 0 to 1. Thus, the critical region does not become bigger when the
absolute value of δ increases and does not reduce in size if it decreases.

Let us construct a set σ containing points of the region of acceptance that are
the closest in the Euclidean metric to dividing hyperplane (4.15). This set can be
defined in a following way:

σ =
{

A(b, c, d) = (x, b, c, d) | b ∈ 0, N3; c, d ∈ 0, N4; c + d ≤ N4; x ∈ 0, N2;

x =
⌈(
− ln C̃ − b ln(2∆1 − 1)− d ln(2∆2

1 − 1)− c ln
2∆2

1 − 1
∆1

)
(ln∆1)−1

⌉}
,

where halved square brackets denote the ceiling function. If the value of x calculated
using the above formula, turns out to be greater than N2 then the point (x, b, c, d)
is not included into σ. The cardinality of the constructed set σ does not exceed
N4(N4+1)(N3+1)

2 .
Now, if for some δ′ ∈ (−1, 1) such that |δ′| < |δ1| the region of acceptance of the

following test

φ′(x) =

{
1, when L(n(x2), n(y2), n(z2), n(z3); δ′) > C̃,

0, when L(n(x2), n(y2), n(z2), n(z3); δ′) < C̃
(4.18)

for testing hypothesis H against simple alternative K ′ = {δ = δ′} contains all
elements of σ then the regions of acceptance of tests φ′ and (4.17) coincide, i.e., tests
φ and φ′ are equal and have the same level of significance. Moreover, if we construct
the MP test for any alternative δ ∈ (δ′, δ1) (or δ ∈ (δ1, δ

′)) the corresponding MP
test has the form of (4.18) (δ′) and is equal to φ.

Note that the test determined by (4.18) is most powerful for testing H against
K ′. The presented arguments result in the following algorithm for finding the upper
bound δ for a given value of δ1 ∈ (−1, 0) (lower bound δ for δ1 ∈ (0, 1)):

1. construct set σ;

2. for each element A = (a, b, c, d) ∈ σ find the corresponding value of δA > 0
such that dividing hyperplane (4.15) contains the point having coordinates A;
the corresponding value of ∆A = 1+δ2

A

1−δ2
A

is the root of the equation

a ln x + b ln(2x− 1) + d ln(2x2 − 1) + c ln
2x2 − 1

x
= − ln C̃ (4.19)

for the unknown x > 1; if δ1 ∈ (−1, 0) then take δA = −
√

∆A−1
∆A+1 and if

δ1 ∈ (0, 1) then take δA =
√

∆A−1
∆A+1 ;

3. set δ equal to min{δA | A ∈ σ} (δ equal to max{δA | A ∈ σ}).
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The derivative of the left-hand side of (4.19) is positive for x > 1 unless a =
b = c = d = 0. Therefore, the corresponding function strictly increases from 0 to
+∞ for x > 1 and equation (4.19) has a unique solution for any 0 < C̃ ≤ 1. If
(0, 0, 0, 0) ∈ σ, equation (4.19) is solvable if and only if C̃ = 1. But if C̃ = 1 then
dividing hyperplane (4.15) contains the point (0, 0, 0, 0) of the sample space which
means that the test is randomized. Thus, necessarily C̃ > 1 and if A = (0, 0, 0, 0) ∈ σ
then the root of (4.19) is assumed to be +∞ and the corresponding δA = ±1.

In order to find the lower bound δ for a given value of δ1 ∈ (−1, 0) (upper bound
δ for δ1 ∈ (0, 1)) it is sufficient to take the floor function instead of the ceiling
function in the definition of σ and take the maximum (resp. minimum) in Step 3 of
the algorithm. ut

Note 4.4 A set containing points of the region of acceptance that are the closest
in the Euclidean metric to dividing hyperplane (4.15) can be constructed in a way
different from the one used for constructing σ. For instance, we can use

σ1 =

{
A(a, b, d) = (a, b, x, d) | a ∈ 0, N2; b ∈ 0, N3; x, d ∈ 0, N4; x + d ≤ N4;

x =

⌈(
− ln C̃ − a ln∆1 − b ln(2∆1 − 1)− d ln(2∆2

1 − 1)
) (

ln
2∆2

1 − 1
∆1

)−1
⌉}

.

The cardinality of this σ1 does not exceed (N2+1)(N3+1)(N4+1). Or, alternatively,
we can take

σ2 =
{

A(a, c, d) = (a, x, c, d) | a ∈ 0, N2; c, d ∈ 0, N4; c + d ≤ N4; x ∈ 0, N3;

x =
⌈(
− ln C̃ − a ln∆1 − d ln(2∆2

1 − 1)− c ln
2∆2

1 − 1
∆1

)
(ln(2∆1 − 1))−1

⌉}
.

Its cardinality will not exceed N4(N2+1)(N4+1)
2 .

Note 4.5 If a family, analyzed for key-stream reuse, contains only three ciphertexts
then N4 = 0 in our statistical model and the algorithm for finding the upper and
lower bounds from Theorem 4.3 can be substantially simplified. In this case the
sample space corresponds to all points of the flat rectangular lattice contained in
the parallelepiped of size N2 ×N3. Dividing hyperplane (4.15) is a line

n(x2) ln ∆1 + n(y2) ln(2∆1 − 1) = − ln C̃ .

The situation is illustrated in Fig. 4.3. Note that the angle ψ < π/4 since ln ∆1 <
ln(2∆1 − 1) when ∆1 > 1.

Step 2 of the algorithm requires solving equations of the form

a ln x + b ln(2x− 1) = − ln C̃ (4.20)
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Figure 4.3: The sample space when N4 = 0

for x > 1, where (a, b) ∈ σ. In fact, the particular roots of these equations are not
relevant to the algorithm, it is sufficient to be able to compare the roots for different
values of (a, b) ∈ σ. Only the equation, which root is maximal (or minimal), has to
be solved. The following statement will be needed below.

Lemma 4.6 The inequality (2x− 1)α ≶ xβ with α, β ∈ N, x > 1

(i) takes on the sign ‘>’ if β ≤ α;

(ii) takes on the sign ‘<’ if β ≥ 2α;

(iii) takes on the sign ‘>’ for x ∈ (1, Q) and sign ‘<’ for x ∈ (Q, +∞) if α < β <
2α, where Q > 1 is uniquely determined by (2Q− 1)α = Qβ.

Proof: Item (i) is obvious since 2x− 1 > x for x > 1.
Assume now that β > α. Let us analyze the function f(x) that is the difference

of the logarithms taken of both sides in inequality (2x − 1)α ≶ xβ , so f(x) =
α ln(2x− 1)− β ln x. Now we take the derivative of f(x) and put it equal to zero:

f ′(x) = α
2

2x− 1
− β

1
x

= 0 so x =
β

2(β − α)
.

Since x = β
2(β−α) > 1 if and only if β < 2α, the derivative f ′(x) is negative for x > 1

if β ≥ 2α and, therefore, function f(x) strictly decreases in this case. But f(1) = 0
and thus f(x) < 0 when x > 1 if β ≥ 2α. This proves Item (ii).

Now, if β < 2α then β
2(β−α) > 1 and

f ′(x) > 0 for x ∈
(

1,
β

2(β − α)

)
= I1

f ′(x) < 0 for x ∈
(

β

2(β − α)
,+∞

)
= I2 ,
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meaning that f(x) strictly increases in the interval I1 and strictly decreases to −∞
on I2. Therefore, since f(1) = 0, there exists the point Q > 1 such that f(Q) = 0
and f(x) > 0 when x ∈ (1, Q) and f(x) < 0 when x ∈ (Q, +∞). ut

We have to compare the roots of the following two equations having the form of
(4.20)

xa(2x− 1)b = C̃−1 and xc(2x− 1)d = C̃−1 , (4.21)

where (a, b), (c, d) ∈ σ and x > 1. Without loss of generality it can be assumed that
c ≥ a.

Proposition 4.7 Let ∆1 and ∆2 be the respective roots of equations (4.21) and
c ≥ a. Then

(i) ∆1 ≥ ∆2 if d ≥ b;

(ii) ∆1 < ∆2 if d < b and c− a ≤ b− d;

(iii) if d < b and c−a > b−d then ∆1 ≥ ∆2 if and only if T a(2T−1)b ≤ T c(2T−1)d,
where T =

c−a
√

C̃−1.

Proof: Item (i) is obvious since c ≥ a. If c = a then Item (ii) is obvious too.
Assume now that d < b, c − a > b − d and consider functions y = xa(2x − 1)b

and y = xc(2x − 1)d. Both of these functions strictly increase for x > 1 and their
plots intersect in the points that are the roots of the equation xc−a = (2x− 1)b−d.
From Lemma 4.6 it follows that this equation has a root Q > 1 if and only if
b−d < c−a < 2(b−d) and this root is unique. This case is illustrated in Fig. 4.4(b)
(see Lemma 4.6 Item (iii)), the case when c−a ≤ b−d is illustrated in Fig. 4.4(a) (see
Lemma 4.6 Item (i)) and the case when c− a ≥ 2(b− d) is illustrated in Fig. 4.4(c)
(see Lemma 4.6 Item (ii)). In the latter two cases we assume that Q = 1.

Finally, if 0 < c − a ≤ b − d then ∆1 < ∆2 (this concludes the proof for Item
(ii)) and if c− a > b− d then

∆1 ≥ ∆2 ⇐⇒ C̃−1 ≥ Qc−a = (2Q− 1)b−d ⇐⇒
⇐⇒ T

def.=
c−a

√
C̃−1 ≥ Q ⇐⇒ T a(2T − 1)b ≤ T c(2T − 1)d .

This proves Item (iii). ut

4.3.4 Randomized Most Powerful Tests

Consider now a randomized test. In that case the surface, dividing the sample space
into the critical region and the region of acceptance, contains some points of the
sample space and the existence of a UMP test depends on the number of points
contained in this surface.
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Figure 4.4: Functions y = xa(2x− 1)b (solid line) and y = xc(2x− 1)d (dotted line)

Proposition 4.8 A randomized test φ(x) for testing hypothesis H against compos-
ite alternative K∗ =

{
δ ∈ (

δ, δ
)}

cannot be UMP if

#{x |φ(x) /∈ {0, 1}} ≥ 2 . (4.22)

Proof: Suppose that test φ is UMP for testing H against K∗. Then for any
δ1 ∈

(
δ, δ

)
it is most powerful for testing hypothesis H against simple alternative

K = {δ = δ1}. By the fundamental lemma of Neyman and Pearson, an MP test
has the form of (4.10) and, by condition (4.22), there exist two simple events x and
y such that

P1(x)
P0(x)

=
P1(y)
P0(y)

= C(δ1) . (4.23)

Moreover, this identity should hold for all δ1 ∈
(
δ, δ

)
. By (4.11),

P1(x)
P0(x)

=
P1(y)
P0(y)

⇐⇒ ∆−a1
1 (2∆1 − 1)−b1(2∆2

1 − 1)−d1

(
2∆2

1 − 1
∆1

)−c1

=

= ∆−a2
1 (2∆1 − 1)−b2(2∆2

1 − 1)−d2

(
2∆2

1 − 1
∆1

)−c2

,

where x = (a1, b1, c1, d1) and y = (a2, b2, c2, d2). The above identity should hold for
all ∆1 ∈

(
∆, ∆

)
but that is impossible since this identity, considered as an algebraic

equation in the unknown ∆1, has a finite number of roots. Therefore, we arrived at
a contradiction. ut
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Note 4.9 Identity (4.23) is possible in principle. Take, for instance, x = (a1, b1, 0,
0), y = (a2, b2, 0, 0). Then identity (4.23) is of the following form:

P1(X1)
P0(X1)

= ∆−a1
1 (2∆1 − 1)−b1 = ∆−a2

1 (2∆1 − 1)−b2 =
P1(X2)
P0(X2)

.

Assume that a1 > a2 and b1 < b2. Then, as follows from Lemma 4.6, equation
∆a1−a2

1 = (2∆1 − 1)b2−b1 has a root Q > 1 if b2 − b1 < a1 − a2 < 2(b2 − b1).

From Proposition 4.8 it follows that in a UMP test for testing hypothesis H
against composite alternative K∗ there will be at most one simple event requiring
an additional trial.

Proposition 4.10 If for some nonzero δ1 ∈ (−1, 1) there are no simple events
having the same likelihood ratio then there exists an interval

(
δ, δ

)
containing δ1,

such that for any fixed level of significance, corresponding MP test (4.10) is UMP
for testing hypothesis H against composite alternative K∗ =

{
δ ∈ (

δ, δ
)}

.

Proof: If for some level of significance corresponding MP test (4.10) is nonran-
domized then the claimed result immediately follows from Theorem 4.3. Therefore,
it suffices to consider only randomized tests having a single point that requires the
additional trial. If this point (simple event) has coordinates (A,B, C,D) then, by
(4.11), L(A,B, C,D; δ1) = C̃.

For any nonzero δ′ ∈ (−1, 1) the following hyperplane

L(n(x2), n(y2), n(z2), n(z3); δ′) = L(A,B, C, D; δ′) (4.24)

divides the sample space and defines a randomized MP test for testing hypothesis
H against simple alternative {δ = δ′}. Such a test requires the additional trial for
simple event (A,B,C, D). In order to prove the proposition, it is sufficient to find
an interval

(
δ, δ

)
containing δ1 such that for every δ′ ∈ (

δ, δ
)

the critical region of
an MP test defined by (4.24) is the same and simple event (A, B,C, D) is the only
one requiring the additional trial in each of the tests.

For an arbitrary pair of simple events (a1, b1, c1, d1) and (a2, b2, c2, d2) consider
the following equation in the unknown ∆ > 1

L(a1, b1, c1, d1;∆) = L(a2, b2, c2, d2;∆) ,

where

L(a, b, c, d;∆) = ∆−a(2∆− 1)−b(2∆2 − 1)−d

(
2∆2 − 1

∆

)−c

for any (a, b, c, d) with a ∈ 0, . . . , N2; b ∈ 0, . . . , N3; c, d ∈ 0, . . . , N4 and c + d ≤ N4.
By (4.11), these simple events have identical likelihood ratio for some ∆ if and only
if this ∆ belongs to the roots. An algebraic equation of this form has a finite number
of roots. Moreover, since the total number of simple events is finite, there are only



4.4 Multinomial Selection Procedures Built on Reduced Frequencies 91

finitely many values of ∆ that are the root of an equation of this type. Let us refer
to these values as to the special points in the interval (1, +∞).

By the hypothesis of the proposition, value ∆1 = 1+δ2
1

1−δ2
1

is not the root of any
equation defined by a pair of simple events (i.e., ∆1 is not a special point). There-
fore, there exists an interval that contains ∆1 but none of the special points. The
corresponding interval around δ1 can be taken for the interval

(
δ, δ

)
that we are

looking for. ut

By Proposition 4.10, for any nonzero δ1 ∈ (−1, 1) there exists an interval
(
δ, δ

)
containing δ1, such that any randomized MP test determined by (4.10) for test-
ing hypothesis H against simple alternative K = {δ = δ1} that has only a single
point x with P1(x) = CP0(x), is UMP for testing hypothesis H against composite
alternative K∗ =

{
δ ∈ (

δ, δ
)}

.

4.4 Multinomial Selection Procedures Built on Reduced Fre-
quencies

In many practical situations the cryptanalyst faces the problem of comparing a
number of alternatives with the intention to select the most probable among them.
In particular, these may be key-stream blocks, ciphertext blocks or codewords. For
some concrete instances of this general problem the number of possible alternatives
may be relatively small but the opposite may also be true, i.e., an enormous amount
of alternatives may be present. Among the latter we can name frequency analysis
in dictionary attacks on block ciphers with a large block size and frequency anal-
ysis of codes with a large number of codewords (see [Bir99]). In these attacks the
cryptanalyst collects many blocks (or codewords) and analyzes their frequencies. In
all cases of this kind we are dealing with multinomial populations with an objective
to select the most probable outcomes. These problems are commonly known in the
selection and ranking theory in statistics as multinomial selection problems.

4.4.1 Multinomial Selection Problems

Let us now define the selection problem rigorously. Consider a multinomial distri-
bution on N outcomes with probabilities p1, . . . , pN , i.e.,

Pr(Ej) = pj (j = 1, . . . , N) and
N∑

j=1

pj = 1 . (4.25)

Let the ranked multinomial probabilities pi be denoted as p[1] ≤ · · · ≤ p[N ]. It
is assumed that the probabilities pi are known but there is no prior knowledge
regarding the correspondence between outcomes and probabilities.

The general case of the multinomial selection problem is formulated as developing
a statistical procedure that observes a multinomial sample and selects a subset of
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the most probable outcomes. The selection is deemed correct if the subset contains
at least a preassigned number c from t outcomes having the largest probabilities
(ties broken arbitrarily). The size of the selected subset can either be specified
in the selection procedure or be random and determined by the sample. On the
other hand, we can distinguish between fixed sample-size and sequential procedures
according to whether the sample size varies or not. In particular, the objective
for selection procedures with the predetermined subset size equal to s and having
c = s = t is to select t of the most probable outcomes, and if c = s = t = 1 to select
the most probable outcome (i.e., an outcome with the highest probability p[N ]).

The major characteristic of any selection procedure is the Probability of Correct
Selection (PCS). This probability is not readily computable since it depends on
the true configuration of the multinomial distribution which is unknown. For any
selection procedure an important question is what should be the sample size for
the PCS to be at least P ∗ (0 < P ∗ < 1), where P ∗ is specified in advance by
the experimenter (so called P ∗-requirement). Therefore, for any sensible selection
procedure PCS should be ultimately monotone and nondecreasing in n because only
in this case the value of the smallest n that fulfils the P ∗-requirement can be found
(see [Hwa86]).

Surveys of the results dealing with multinomial selection problems are presented
in [GP85, CH86] and [GP93b, Section 4]. To the references cited in these arti-
cles we can add paper [Ivc93, Subsection 5.6] where the inverse sampling procedure
with fixed subset size (i.e., sampling is continued until the frequency of some s out-
comes goes over a fixed threshold) is further evaluated and paper [Amb95] where
consistency of the maximum likelihood method for establishing the complete corre-
spondence between the outcomes and their probabilities, i.e., ranking the outcomes,
is analyzed.

All previously suggested selection procedures require the estimation of the val-
ues of frequencies for all the outcomes. On the other hand, in the cryptographic
applications mentioned earlier the total number of possible outcomes can be so large
that it becomes infeasible to store all frequency counters in the computer’s internal
memory. We suggest new selection procedures that do not store frequencies for rare
events and, due to that, these procedures can be implemented with reduced memory
requirements. Moreover, by adjusting the value for the parameter of the procedures
one can find a tradeoff between the amount of memory available and the required
probability of correct selection.

4.4.2 Reduced Frequencies

Our procedures for selecting the most probable outcomes from a multinomial popu-
lation are based on estimation of so called reduced frequencies and will be described
and analyzed further is this section. Let ξ1, . . . , ξn be a sequence of n independent
observations of the multinomial random variable distributed according to (4.25).
Let us also fix an arbitrary positive integer T ≤ n − 1, which will be a parameter
of the procedure and will be further referred to as the thinning parameter. When
estimating reduced frequencies, the outcome ξi = Ej (i = i, . . . , n; j = 1, . . . , N) is
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accounted for in the reduced frequency of the outcome Ej if and only if the next
T outcomes ξi+1, . . . , ξi+T contain Ej at least once (for those i with i + T > n
we consider the segment ξi+1, . . . , ξn). The last occurrence in the sequence of any
outcome is never accounted for since there are no the same outcomes that follow it.
Otherwise, the outcome ξi does not change the values of reduced frequencies. Fur-
ther, reduced frequencies are accumulated in the same manner as if we were dealing
with the original frequencies, that will be called absolute frequencies from now on.
Reduced frequencies can be used instead of absolute frequencies in various selection
procedures (see [CH86] for examples of such procedures). Let νi denote the reduced
frequency of outcome Ei (i = 1, . . . , N) and hi denote its absolute frequency.

For instance, let T = 3, N = 2, n = 10, and the observed sequence is 0111001000.
In this case, if E1 = 0 and E2 = 1 then ν1 = 4 and ν2 = 3 because the first and the
last 0’s are discarded as is the last 1. On the other hand the corresponding values
of absolute frequencies are h1 = 6 and h2 = 4.

Note that always νi ≤ hi − 1 (i = 1, . . . , N), that reduced frequencies cannot
decrease if the value of T increases, and that for the maximal value of T = n −
1 reduced frequencies reach their maximum hi − 1. The family of distributions
PT (t1, . . . , tN ) = PT (ν1 = t1, . . . , νN = tN ) provides the complete probabilistic
characterization for reduced frequencies. Unfortunately, we were not able to find
the type of the distribution in this general form but succeeded in estimating the
limit distribution for the random variable

√
n

n− T

(
νi − npi

(
1− (1− pi)T

))
(i = 1, . . . , N) as n →∞ .

Let us fix an arbitrary outcome Ei (i = 1, . . . , N) of multinomial distribution
(4.25) and set q = pi, p = 1 − q =

∑
j 6=i pj . By associating the outcome Ei with

the zero-event and the complement of Ei with the one-event, multinomial scheme
(4.25) is reduced to the Bernoulli distribution on two outcomes with probabilities
Pr(0) = q and Pr(1) = p.

Consider the set of random variables

Φ(ξi, . . . , ξi+T ) =
T∑

j=1

I(01j−10)(ξi, . . . , ξi+j) (i = 1, . . . , n− T − 1) ,

where I(l1,...,lt)(ξi, . . . , ξi+t−1) denotes the indicator function of the event {ξi =
l1, . . . , ξi+t−1 = lt} and 01j−10 denotes the vector of length j + 1 with the ini-
tial and the last coordinates equal to zero and the rest equal to one. When the
summation index j in the above sum is equal to 1 the indicator function is assumed
to be I(00)(ξi, ξi+1). Since events specified by the indicator functions in the defini-
tion of Φ are pairwise disjoint, random variables Φ(ξi, . . . , ξi+T ) will only take on
values 0 or 1 for i = 1, . . . , n− T − 1. Let us also define

Φ(ξn−T , . . . , ξn) =
T∑

j=1

T−j∑

i=0

I(01j−10)(ξn−T+i, . . . , ξn−T+i+j) .
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When the summation index j in the above sum is equal to 1 the indicator function
is assumed to be I(00)(ξn−T+i, ξn−T+i+1). It is easy to see that

∑n−T
i=1 Φ(ξi, . . . ,

ξi+T ) = ν0. Let us now estimate the mean of random variables Φ(ξi, . . . , ξi+T )
(i = 1, . . . , n− T ) and center them.

EΦ(ξi, . . . , ξi+T ) =
T∑

j=1

q2pj−1 = q(1− pT ) (i = 1, . . . , n− T − 1) ,

EΦ(ξn−T , . . . , ξn) =
T∑

j=1

T−j∑

i=0

q2pj−1 = Tq − p + pT+1 .

Let Φ̃(ξi, . . . , ξi+T ) denote the centered version of Φ(ξi, . . . , ξi+T ) (i = 1, . . . , n−T ),
namely,

Φ̃(ξi, . . . , ξi+T ) = Φ(ξi, . . . , ξi+T )− q(1− pT ) (i = 1, . . . , n− T − 1) ,

Φ̃(ξn−T , . . . , ξn) = Φ(ξn−T , . . . , ξn)− Tq + p− pT+1 .

Finding the limit distribution for the following U -statistic constitutes the pri-
mary objective for the remaining part of this subsection:

Un =
1

n− T

n−T∑

i=1

Φ̃(ξi, . . . , ξi+T ) . (4.26)

This statistic will be analyzed using the general technique for U -statistics developed
in [Ron79]. First, we need to introduce some notions and notation.

Following [Ron79], a system (X, B), where X is a finite set and B = (B1, . . . , Br)
is a family of subsets of X such that

⋃r
i=1 Bi = X, is called a finite hypergraph. The

elements of X are called vertices and the subsets Bi edges. The fact that B is a
family means that the same subset Bi ⊆ X can appear in B several times. By a
chain of length l connecting the vertices xi1 , xil+1 ∈ X we mean any sequence of the
form

xi1 , Bi1 , xi2 , Bi2 , . . . , Bil
, xil+1 ,

where the vertices xi1 , . . . , xil
are all distinct, among the edges Bi1 , . . . , Bil

there are
no repetitions (if these are considered as members of the family B), and xik

, xik+1 ∈
Bik

for each k = 1, . . . , l. A hypergraph is said to be connected if each pair of its
vertices is connected by some chain. Connectivity components are defined as usual.

Let m be an integer greater than 1. Further, let I0 = ∅, In = {1, . . . , n} and for
n ≥ m define set of m-tuples Jn ⊆ Zm by

Jn =
{(

ε(1), . . . , ε(m)
)
| ε(ν) ∈ In (ν = 1, . . . , m); 1 ≤ ε(1) < · · · < ε(m) ≤ n

}
.

If i1, . . . , ik are arbitrary k elements in Jn and iν (ν = 1, . . . , k) is the m-tuple(
ε
(1)
ν , . . . , ε

(m)
ν

)
then also define

C{i1, . . . , ik} =
k⋃

ν=1

{
ε(1)
ν , . . . , ε(m)

ν

}
.
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Let Kn be an arbitrary nonempty subset of Jn and let Mn,k denote the set of
all connected hypergraphs with k edges that lie in Kn. The concrete form of the
U -statistic whose limit distribution is analyzed defines which elements of Jn are
included into Kn.

We shall now analyze collections Θn (n = m,m + 1, . . . ) consisting of random
variables θi with i ∈ Kn that fulfil the following conditions:

(a) if i1, . . . , ik, j1, . . . , jt ∈ Kn for some k, t > 0 are such that C{i1, . . . , ik} ∩
C{j1, . . . , jt} = ∅ then random variables {θi1 , . . . , θik

}, {θj1 , . . . , θjt} are inde-
pendent;

(b) for any integer k ≥ 1 there exists some positive constant Ck such that

sup
n≥m

max
i∈Kn

E|θi|k < Ck < +∞ ;

(c) Eθi = 0 for all i ∈ Kn.

Theorem 4.11 ([Ron79]) Assume that collections Θn and sets Kn (n = m,m +
1, . . . ) satisfy (a), (b), (c) and additionally fulfil the following conditions

(i) |Mn,k| = O
(|Kn|kn1−k

)
(k = 1, 2, . . . );

(ii) the limit of n|Kn|−2
∑

(i1,i2)∈Mn,2
Eθi1θi2 with n → ∞, where the summation

is carried out over all pairs of edges i1, i2 ∈ Kn that make up a connected
hypergraph, exists and is positive (let σ2 > 0 be equal to the value of this
limit).

Then random variable
√

n
|Kn|

∑
i∈Kn

θi is asymptotically normal when n → ∞ with
mean equal to 0 and variance equal to σ2.

Theorem 4.12 Let Ei (i ∈ {1, . . . , n}) be an arbitrary outcome of multinomial
distribution (4.25), q = pi and p = 1 − q =

∑
j 6=i pj. Further, let ν0 be the reduced

frequency of outcome Ei after n observations estimated with thinning parameter T ,
and put µn = nq(1− pT ). Then random variable

√
n

n− T
(ν0 − µn)

is asymptotically normal when n →∞ with mean equal to 0 and variance equal to

σ2 = 2Tq2(1− pT )pT + q(1− pT )(1− q + qpT ) .

Proof: First, we shall use Theorem 4.11 to analyze the convergence of the distribu-
tion of U -statistic (4.26). To that end, we have to check if the U -statistic fulfils the
conditions of this theorem. In our case Kn = {(1, . . . , T +1), (2, . . . , T +2), . . . , (n−
T, . . . , n)}. For notational simplicity we will write Kn = {1, . . . , n− T} so that the
edges be ordered like integers. Then |Kn| = n − T , m = T + 1, and Kn ⊂ Jn.
Define the random variable θi = Φ̃(ξi, . . . , ξi+T ) for i ∈ Kn. We make the following
observations.
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(a) Let i1, . . . , ik, j1, . . . , jt ∈ Kn for some positive integers k and t. Random
variables {θi1 , . . . , θik

} and {θj1 , . . . , θjt
} are functions of random variables ξi

for i ∈ C{i1, . . . , ik} and i ∈ C{j1, . . . , jt} respectively. If C{i1, . . . , ik} ∩
C{j1, . . . , jt} = ∅ then {θi1 , . . . , θik

} and {θj1 , . . . , θjt
} are independent since

ξ1, . . . , ξn is a sequence of independent observations.

(b) From the definition of Φ(ξi, . . . , ξi+T ) it follows that Φ(ξi, . . . , ξi+T ) ∈ {0, 1}
for (i = 1, . . . , n − T − 1) and Φ(ξn−T , . . . , ξn) ∈ {0, . . . , T}. Therefore,
Φ(ξi, . . . , ξi+T ) ≤ T for all i ∈ Kn. Then EΦ(ξi, . . . , ξi+T )j ≤ T j for any
integer j ≥ 0 and all i ∈ Kn, and

E
∣∣∣Φ̃(ξi, . . . , ξi+T )

∣∣∣
k

= E|Φ(ξi, . . . , ξi+T )−EΦ(ξi, . . . , ξi+T )|k ≤
≤ E(Φ(ξi, . . . , ξi+T ) + EΦ(ξi, . . . , ξi+T ))k =

=
k∑

j=0

(
k

j

)
EΦ(ξi, . . . , ξi+T )j(EΦ(ξi, . . . , ξi+T ))k−j ≤

≤
k∑

j=0

(
k

j

)
T j(EΦ(ξi, . . . , ξi+T ))k−j =

=

{ (
T + q(1− pT )

)k
, for i = 1, . . . , n− T − 1 ,(

T + Tq − p + pT+1
)k

, for i = n− T .

Thus, for any integer k ≥ 1 there exists some positive constant Ck such that

supn≥m maxi∈Kn E
∣∣∣Φ̃(ξi, . . . , ξi+T )

∣∣∣
k

< Ck < +∞.

(c) Random variables Φ̃(ξi, . . . , ξi+T ) are centered for i ∈ Kn.

This proves that conditions (a), (b) and (c) formulated above are fulfilled for the
collection of random variables

{
Φ̃(ξi, . . . , ξi+T )

}
with i ∈ {1, . . . , n − T}. Let us

now check conditions (i) and (ii) of Theorem 4.11.

(i) Consider an arbitrary, connected hypergraph with k edges α1, . . . , αk that
belongs to Mn,k. We will assume that αi ≤ αi+1 for i = 1, . . . , k−1. Therefore,
such a hypergraph is completely defined by the value of α1 ∈ Kn and the
set of difference values δi = αi+1 − αi (i = 1, . . . , k − 1) such that identity
δ1 + · · ·+δk−1 = αk−α1 = d holds. Thus, the number of hypergraphs in Mn,k

with αk−α1 = d that contain some fixed edge α1 ∈ {1, . . . , n−T −d} is equal
to the number of compositions of d into k− 1 parts with no part exceeding T ,
i.e., the number of partitions having the form of δ1 + · · ·+δk−1 = d, where the
order of the parts is taken into account and 0 ≤ δi ≤ T (the upper bound T
guarantees connectivity of the hypergraph). Let this number of compositions
be denoted by c(d, k − 1, T ). Then

|Mn,k| =
T (k−1)∑

d=0

(n− T − d)c(d, k − 1, T ) and
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|Mn,k|
|Kn|kn1−k

=
|Mn,k|

(n− T )kn1−k
∼ |Mn,k|

n

n→∞−→
T (k−1)∑

d=0

c(d, k − 1, T ) > 0 ,

which proves that condition (i) is fulfilled.

(ii) We shall now estimate limn→∞ n|Kn|−2
∑

(i1,i2)∈Mn,2
Eθi1θi2 . Note that for

any pair of edges (i1, i2) ∈ Mn,2, i.e., edges that make up a connected hyper-
graph, one has C{i1} ∩ C{i2} 6= ∅.
Denote vector (ξi, . . . , ξi+T ) by ξi. Then, considering the internal structure of
set Kn, the limit that we want to find can be rewritten in the following way:

lim
n→∞

n

(n− T )2




∑

i1,i2∈1,n−T−1
C{i1}∩C{i2}6=∅

EΦ̃(ξi1)Φ̃(ξi2) +
n−T∑

i=n−2T

EΦ̃(ξn−T )Φ̃(ξi)


 =

= lim
n→∞

n

(n− T )2
∑

i1,i2∈1,n−T−1
C{i1}∩C{i2}6=∅

EΦ̃(ξi1)Φ̃(ξi2) .

Note that for any i, j ∈ {1, . . . , n− T − 1}

EΦ̃(ξi)Φ̃(ξj) = E
(
Φ(ξi)− q(1− pT )

) (
Φ(ξj)− q(1− pT )

)
=

= EΦ(ξi)Φ(ξj)− q2(1− pT )2 . (4.27)

We shall now estimate mean EΦ(ξi)Φ(ξj) for i, j ∈ {1, . . . , n−T−1} such that
C{i} ∩ C{j} 6= ∅. Note that vectors ξi and ξj can overlap on k coordinates
for k ∈ {1, . . . , T + 1}.

• If k ∈ {1, . . . , T} then EΦ(ξi)Φ(ξj) is equal to the total probability of
vectors having the following pattern

(0, i2, . . . , iT−k+1, 0, 1, . . . , 1, 0, iT−k+t+4, . . . , i2T−k+2)

for any t = 0, . . . , T−1 and where coordinates ij can be arbitrary. There-
fore, EΦ(ξi)Φ(ξj) =

∑T−1
t=0 q3pt = q2(1− pT ) and, by (4.27),

EΦ̃(ξi)Φ̃(ξj) = q2(1− pT )pT .

• If k = T + 1 then EΦ(ξi)Φ(ξj) = EΦ(ξi) = q(1− pT ) and, by (4.27),

EΦ̃(ξi)Φ̃(ξj) = q(1− pT )(1− q + qpT ) .
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Therefore,

n

(n− T )2
∑

i1,i2∈1,n−T−1
C{i1}∩C{i2}6=∅

EΦ̃(ξi1)Φ̃(ξi2) =
n

(n− T )2

(
2q2(1− pT )pT ×

×
T∑

k=1

(n− 2T + k − 1) + (n− T − 1)q(1− pT )(1− q + qpT )

)
→

→ 2Tq2(1− pT )pT + q(1− pT )(1− q + qpT ) = σ2 > 0 as n →∞ .

Thus, all conditions of Theorem 4.11 are fulfilled and, therefore,
√

nUn →
N(0, σ2) as n →∞. We conclude the proof by noting that

Un =
1

n− T

n−T∑

i=1

Φ̃(ξi, . . . , ξi+T ) =

=
1

n− T

(
n−T∑

i=1

Φ(ξi, . . . , ξi+T )− (n− T − 1)q(1− pT )− Tq + p− pT+1

)
=

=
1

n− T
(ν0 − µn + (T + 1)q(1− pT )− Tq + p− pT+1)

and √
n

n− T

(
(T + 1)q(1− pT )− Tq + p− pT+1

) → 0 as n →∞ ,

that gives us the claimed result. ut

Various procedures for selecting the most probable outcomes, instead of absolute
frequencies, can use reduced frequencies. Obviously, the PCS of such procedures is
defined by the probability distribution of reduced frequencies. Therefore, the limit
distribution that we found in this section can be used for estimating the efficiency
of the procedures. Selection procedures built on reduced frequencies are useful
when running statistical attacks on block and stream ciphers. They help to detect
possible statistical irregularities in a generated sequence of key-stream or ciphertext
blocks. If such an irregularity is detected then this can be used as a basis for the
distinguishing attack on the cipher that is considered as a black box. It is also
reasonable to assume that any deviation in the distribution from the uniformity
can be used to run a key-recovery attack but concrete implementation of the attack
essentially depends on the system that comes under the cryptanalysis.



Chapter 5

Conclusion

Cryptographic algorithms provide mathematical tools for achieving several impor-
tant security objectives in electronic communications. Among the most important
of these objectives is ensuring privacy of the message exchange. Privacy can be
achieved by using both symmetric and asymmetric techniques. Though, in the
areas where the highest level of security, high throughput capacity and low imple-
mentation costs are of the utmost importance, there is no alternative to symmetric
systems and to stream ciphers, in particular. Stream ciphers withstood the test of
time that allowed to develop the comprehensive theory of the design and analysis
of these cipher systems. In the thesis we made our own contribution to the theory
of synchronous stream ciphers.

The principle part of any synchronous stream cipher is a key-stream generator. In
order to satisfy the basic security requirements of long period, large linear complexity
and uniform distribution properties for a key stream, the vast majority of key-stream
generators are built following few basic design principles. The long period and
uniformity are achieved due to the use of linear feedback shift registers (LFSR’s).
Nonlinearity is introduced either explicitly by applying nonlinear functions (e.g.,
combination and filter generators) or implicitly by controlling the clock of an LFSR.
In the thesis we contribute both to the study of nonlinear cryptographic functions
and to the theory of clock-controlled LFSR’s.

The first part of the research was inspired by the fact that several well-known
transforms (namely, Walsh, algebraic normal and arithmetic) that proved to be ex-
tremely helpful when analyzing cryptographic properties of Boolean functions, are
all based on the Kronecker power of some relevant elementary cells. This allows to
use fast transform algorithms for efficient estimation of the important representa-
tions of Boolean functions and easy transition from one representation to another.
Our objective was to find some other useful Kronecker-type transforms. As a result,
we were able to build a general approach to the transforms of the said type that
allowed to define two new, probabilistic and weight, transforms.

In particular, the probabilistic transform provides an efficient way for estimating
the bias for the distribution of the value of a Boolean function if the biases of
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the arguments are known. The newly introduced characteristic allows to compare
Boolean functions against their ability for compensating a biased distribution of the
input bits. It turned out that highly resilient Boolean functions significantly increase
the order of magnitude for the bias of the distribution of the output bits compared
to the bias of the inputs. The weight transform relates a Boolean function to the
weights of its subfunctions which is helpful for estimating correlation dependencies
of the function. The general approach to Kronecker-type transforms turned out also
to be particularly helpful in proving relations between different transforms.

Our contribution to the theory of clock-controlled generators consists in esti-
mating the period of the output sequence generated by a clock-controlled LFSR
with an irreducible feedback polynomial and an arbitrary structure of the control
sequence. These results allowed to enlarge the class of generators qualified for secure
applications. We also described some specific configurations of the clock-controlled
arrangement producing the output sequence with maximal period, close-to-uniform
element distribution, and the two-valued autocorrelation function.

Further, we analyzed the generalized Geffe generator. Unlike the original gener-
ator by Geffe, that has three binary input m-sequences, the generalized generator
runs over a finite field and combines multiple inputs having arbitrary periods. In
particular, this implies that clock-controlled shift registers can be used as inputs.
The original Geffe generator cannot be used for secure key-stream generation since
its combining function is zero-order correlation immune and correlation attacks can
easily be launched. Using clock-controlled registers and multiple inputs makes the
new generator immune against fast correlation attacks and less susceptible to basic
attacks. We proved some relevant algebraic properties of this generator.

In the last part of the thesis we developed cryptanalytic attacks that exploit
statistical irregularities in a key stream. The primary purpose of these attacks is
to build a distinguisher that would be able to tell the difference between the black
box containing the cipher and the one producing a purely random output. The first
distinguishing attack suggested here is statistically optimal (although, not efficient)
for testing a key stream for a linear recurrence perturbed with a nonuniform additive
noise. We also constructed a couple of not optimal, but computationally feasible
tests. Other distinguishing attacks can be built using new procedures for selecting
the most probable outcomes which use reduced frequencies. These procedures can
handle large key-stream or ciphertext blocks. The whole investigation brings us to
the conclusion that ensuring statistical uniformity of a key stream is not the less
important task than taking care of good algebraic characteristics. Finally, we sug-
gested an algorithm for testing a ciphertext for key-stream reuse. The constructed
nonrandomized and randomized most powerful tests can efficiently distinguish fam-
ilies consisting of up to four ciphertexts obtained from different plaintexts but using
the same key-stream segment.
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Samenvatting

In deze thesis behandelen we een aantal belangrijke problemen bij het ontwerpen en
analyseren van sleutelstroom generatoren voor stroomvercijfering. Historisch gezien
valt al het onderzoek op dit gebied uiteen in twee richtingen.

De eerste richting is gericht op building blocks (bijv. feedback schuifregisters,
logische functies, rekenen modulo N , etc.) die de generator vormen, en op het schat-
ten van de gerelateerde getaltheoretische karakteristieken van de sleutelstroom. Bij
deze schatting is het belangrijkste doel het vinden van methoden om sleutelstroom-
rijen te genereren met karakteristieken die beveiliging tegen algebräısche aanvallen
bieden. Deze aanpak volgend, analyseren we combinerende functies en filter functies
in Hoofdstuk 2 en clock-controlled LFSR’s in Hoofdstuk 3.

Een tensor transformatie zoals gëıntroduceerd in Hoofdstuk 2 blijkt handig te zijn
bij het analyseren van de veiligheid van boolean en meerwaardige logische functies in
cryptografische toepassingen. Speciale gevallen van deze aanpak bieden niet alleen
makkelijke bewijzen voor bekende relaties in de theorie van algebräısche, normaal-,
en Walsh transformaties, maar leiden ook naar een aantal nieuwe eigenschappen van
deze transformaties. We doen ook een voorstel betreffende een nieuw type tensor
transformatie, de zogenaamde gewicht transformatie. Deze relateert een boolean
functie aan de gewichten van zijn subfuncties.

In Hoofdstuk 2 bestuderen we ook de correlatie eigenschappen van boolean func-
ties. We laten zien hoe de correlatie coëfficiënten, die een schatting bieden voor de
correlatie afhankelijkheden van een boolean functie, verkregen kunnen worden van
de gewicht transformatie. We laten zien dat het aantal producttermen van vaste
orde in de algebräısche normaalvorm van een gebalanceerde boolean functie (met
evenveel nullen als enen) afhangt van zijn correlatie coëfficiënten. We bewijzen dat
sterk robuuste boolean functies niet benaderd kunnen worden door een functie die
niet gedegenereerd is op een paar variabelen. Ook introduceren we in dit hoofdstuk
een polynoom dat de bias van de output distributie als een functie van de input
biases schat. De coëfficiënten van dit polynoom kunnen verkregen worden door
middel van de probabilistische transformatie. Verder doen we een suggestie voor
een karakteristiek voor gebalanceerde boolean functies dat hun vermogen om een
niet uniforme distributie van de inputs te compenseren meet. Van robuuste functies
is bewezen dat ze goede compenserende kwaliteiten hebben.

Het andere building block dat geanalyseerd wordt in de context van de eerste
richting is een clock-controlled LFSR. In Hoofdstuk 3 schatten we de periode van
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zijn output rij wanneer het feedback polynoom irreducibel is en de structuur van de
control sequence willekeurig is. Een voldoende voorwaarde voor het maximaal zijn
van deze periode wordt geformuleerd. Een aantal specifieke configuraties van clock-
controlled arrangementen met maximale output rij periode worden beschreven. Re-
levante aanbevelingen voor het schatten van de lineaire complexiteit worden gegeven.
Ook formuleren we de regels die in acht genomen moeten worden bij het construeren
van een clock-controlled arrangement om een bijna- uniforme distributie van ele-
menten in de output rij te geven.

Ons enigszins verplaatsend van de building blocks, construeren we in Hoofd-
stuk 3 ook een sleutelstroom generator gebaseerd op degene voorgesteld door Geffe.
Anders dan de Geffe generator, die drie binaire input m-rijen heeft, werkt deze gen-
erator over het lichaam GF(q) en combineert het meerdere inputs van willekeurige
perioden. In het bijzonder impliceert dit dat clock-controlled schuifregisters ge-
bruikt kunnen worden als inputs. De originele Geffe generator kan niet gebruikt
worden voor sleutelstroom generatie omdat zijn combinerende functie nulde orde
correlatie immuun is en correlatie aanvallen gemakkelijk te lanceren zijn. Het ge-
bruik van clock-controlled registers en meerdere inputs maakt de nieuwe generator
immuun voor snelle correlatie aanvallen en minder gevoelig voor primaire aanvallen.
We analyseren een aantal relevante algebräısche eigenschappen van de voorgestelde
generator.

De tweede richting in het ontwerpen en analyseren van sleutelstroom genera-
toren waar we ons op concentreren zijn de statistische eigenschappen van een sleutel-
stroom. Deze aanpak volgend, ontwikkelen we in Hoofdstuk 4 verscheidene aanvallen
die profiteren van statistische zwakheid in de sleutelstroom. Onze eerste algoritme
gebruikt statistische tests gebaseerd op invariante statistieken. Het test een sleutel-
stroom op lineaire recurrentie verstoord door niet uniforme additieve ruis. Voor het
geval van trinomiale feedback construeren we een aantal invariante statistieken die
de constructie van computationeel uitvoerbare tests mogelijk maken.

Onze tweede algoritme test een vercijferde tekst op hergebruik van sleutelstroom.
We construeren de sterkste niet gerandomizeerde en gerandomizeerde tests die effi-
cient onderscheid kunnen maken tussen families, bestaande uit maximaal vier ver-
cijferde teksten, verkregen van verschillende originele teksten, maar gebruik makend
van hetzelfde sleutelstroom segment. Bovendien geven we expliciete algoritmen
voor het construeren van parameter intervallen, waar deze tests uniform het meest
krachtig zijn.

Als de cryptoanalist te maken heeft met blokken sleutelstroom of cijferschrift
kan het nuttig zijn statistische procedures te gebruiken voor het selecteren van de
meest waarschijnlijke uitkomsten van de multinomiale populatie. We construeren
nieuwe procedures die gebaseerd zijn op de berekening van gereduceerde frequenties.
Dat maakt ze meer efficient als het totale aantal uitkomsten groot is vergeleken met
de hoeveelheid geheugen dat beschikbaar is. Nuttige toepassingen kunnen gevonden
worden in frequentie analyse, bijvoorbeeld waar het een deel is van een woorden-
boek aanval op cijfers en verscheidene andere aanvallen op codes. We bewijzen de
limietstelling voor de distributie van gereduceerde frequenties.
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