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The relationship between the algebraic formulation of quantum mechanics, algebraic
geometry and pre-space, a notion that arises in Bohm's implicate order, is discussed with

particular reference to Schönberg's contributions in this area. The Heisenberg algebra is
examined and it is shown that Dirac's standard ket can be considered as a primitive
idempotent, which needs to be introduced into the Heisenberg algebra in order to

complete its structure. We discuss the relationship between this idempotent and the
vacuum state of the boson algebra. A fermion algebra based on the method of Cartan is
presented. These a1gebras enab1e us to generalise the ordinary notions of functions and

of Grassmann functions together with their differentials without reference to a continuous
space-time manifold. The implications of the algebraic structure to the study of pre-space
are discussed.

1. INTRODUCTION

In a series of papers Mario Schönberg, [1,2] has suggested that there is a deep
relationship between quantum theory and geometry. To bring out this relationship, it is
necessary to indicate first how the formalism of quantum mechanics and of quantum field

theory can be interpreted as special kinds of geometric algebras. Schönberg has already
investigated this matter and has shown that underlying these algebras are extensions of
the commutative and the anti-commutative Grassmann algebras which have the same

structure as the boson and the fermion algebras of the annihilation and creation operators.
The former have been shown to lead to a symplectic algebra which is the quantum
version of the symplectic geometry for the classical phase space, while the latter is
related to the Clifford algebras. The symplectic algebra is the algebra of symmetric

tensors while the Clifford algebra is the algebra of anti-symmetric tensors. A combination
of these two kinds of algebra therefore leads to the possibility of a complete algebraic
description of geometry in a way that incorporates quantum mechanics in a fundamental

way.



While Schönberg has presented some very suggestive mathematica1 ideas, he has stated
that a fuller development of quantum physics will probably require a deep revision of our
intuitive picture of space and time. In recent years there has been a considerable increase

in the investigations into the foundations of quantum mechanics particularly centring
around the question of non-locality or non-separability that appears to be basic to
quantum theory. This non-locality presents deep problems when contrasted with the usual

view that physics is concerned with a local reality in space-time, a view that Einstein
repeatedly stressed. However, there is another area of investigation where this basic
space-time outlook is called into question, namely the problems of quantising general

relativity. Both areas suggest that there is a real need to reconsider our basic notion of
space-time.

One of the fundamental problems that lie behind all attempts to develop insights into the
problems connected with quantum mechanics stems from the fact that while we know in
general how to use its well defined mathematical formalism it is still regarded as a

"mysterious, confusing discipline, which none of us really understand" (Gell-Mann [3] ).
In recent years, David Bohm in particular has given a great deal of thought to the subject
and has proposed a very general new outlook which he calls the implicate order.

Briefly, to explain the ideas that are involved in this radically new form of description, it
is helpful first to contrast the traditional Cartesian approach to physics with the view

developed by Bohr [5] in response to quantum mechanics. In the traditional view, it is
assumed that there exists a reality in space-time and that this reality is a given thing, all of
whose aspects can be viewed or articulated at any given moment. Bohr was the first to

point out that quantum mechanics called this traditional outlook into question. To him the
"indivisibility of the quantum of action'', which was his way of describing the uncertainty
principle, implied that not all aspects of a system can be viewed simultaneously. By using

one particular piece of apparatus only certain features could be made manifest at the
expense of others, while with a different piece of apparatus another complementary
aspect could be made manifest in such a way that the original set became non-manifest,

that is, the original attributes were no longer well defined. For Bohr, this was an
indication that the principle of complementarity, a principle that he had previously known
to appear extensively in other intellectual disciplines but which did not appear in classical
physics, should be adopted as a universal principle. The Cartesian view was thus limited

and had to be replaced by a very different outlook which was to be justified by the
principle of complementarity in which complementary views, which at a classical level
are contradictory, enter the description of nature in a necessary and essential way.



For many, this implied a limitation to any further intuitive development in physics. But

for Bohm, such a view seemed too restrictive and the introduction of the implicate order
suggested a way forward without the need for classically contradictory statements. For
him the manifestation of outward appearances involved forming explicate orders so that

these orders emerged from the implicate order in a well defined way. What then becomes
a fundamental form of description is the relation between the implicate and the explicate
orders. In this view, space-time itself must be part of an explicate order. When this order

is in its implicate form, it is called pre-space (Bohm and Hi1ey [6]). In this view, the
space-time manifold is not a priori given. Rather it is to be abstracted from a deeper pre-
space. In this pre-space, the notion of locality is not primary but is a relationship in pre-

space which, in an appropriate explicate order, becomes a local order in the explicate
space-time. Exactly what links this explicate order with our classical view of space-time
is not complete1y understood yet, but working from the S-matrix approach, Chew [7] and

Stapp [8] have suggested that the soft photons are to play an essential role. Whatever the
precise nature of these processes we see that the appearance of non-locality arises from
the implicate pre-space through relationships that cannot be made local. Thus we see the

possibility of the non-locality in quantum mechanics arising in a new and subtle way.

Clearly a description of the implicate order cannot be based upon particles or fields acting

locally in an a priori given space-time. We prefer to consider a view more akin to that of
Whitehead, which regards process as the primary form. He used the more neutral term
activity. In this view, an object will arise as an abstraction from a quasi-stable relatively

invariant feature of the basic underlying activity.

But how are we to describe this activity mathematically? Following Bohm's [9] original

suggestion, Frescura and Hiley [10] have already given a detailed account of how we are
led to the conclusion that activity could best be described in terms of an algebra. Here the
binary relation of the addition of two processes gives rise to the possibility of a

qualitatively new process. For example, at the mechanical level, the addition of two
harmonic processes acting at right angles to each other can give rise to a circular process.
The product relation describes the order of succession. With such an algebraic structure,

any automorphism, inner or outer, can produce a new description of the same overall
properties. In other words the laws of physics are invariant to these inner automorphisms.
It is this feature that Bohm interprets as forming different explicate orders from the same
implicate order. Furthermore, quantum mechanics can be regarded as being essentially

algebraic and it is this feature that will be exploited in the implicate order. Of course, it is
also this algebraic aspect that lies behind the work of Schönberg [1,2] and which itself
opens up new possibilities.



The present formu1ation of quantum mechanics in the Schrödinger picture with its state

vectors in Hilbert space and operators acting on these vectors hides the essential
a1gebraic features. The Heisenberg picture comes closer to a complete algebrisation, but
lacks certain features, which we will bring out as in a later section. Furthermore, the

Schrödinger approach makes a sharp separation between the operator and operand.
However, such a separation is not necessary. Indeed exp1oiting a suggestion of Riesz [11,
12], we have already shown how the spinor can be regarded as part of the Clifford

algebra, namely a minimal left ideal in the algebra.

We have also shown how within the Heisenberg algebra the “state functions” too can be

regarded as minimal left ideals in the Heisenberg algebra. Of course, this is exactly what
Schönberg was exploiting in his work on Quantum Theory and Geometry. For us, the
importance of his method lies in the fact that there was no longer any distinction between

operator and operand. The operand (an element of the minimal left ideal) was merely a
distinguished element in the algebra. Furthermore, these ideals can be regarded as
quasistab1e and semi-autonomous forms with in the algebra, which suggests its

appropriateness for the description of particle-like or even geometric-like features that
arise from the implicate order. The algebra carries the implicate order while the explicate
order is contained in the various representations.

2. THE IMPLICATE ORDER PARADIGM.

Here we want to motivate directly the algebraic approach by recalling Bohm's [4]
beautiful illustration of the type of process that Is typical of the implicate order. Consider
two transparent concentric cylinders with a gap between them containing glycerol. If a

spot of dye is placed in the glycerol and the inner cylinder rotated a few times, the dye
becomes mixed with the glycerol and can no longer be seen. If the inner cylinder is now
turned back the same number of turns, the spot of dye will actually reappear in its

original form, provided of course that the diffusion is small. The dye can thus be regarded
as being enfolded into the glycero1. That is the spot of dye is imp1icit in the glycerol. In
order to make it visible again, i.e. manifest, we must unfold it, or explicate it, by turning

the inner cylinder.

Suppose now that we put a series of spots of dye into the glycerol. The first is put In at xl,
then after turning the cylinder n times the second is put in at x2 and so on up to r dots,

say. Then turning the inner cylinder in the opposite direction will produce a series of dots
appearing and then disappearing at the points x r, xr-1, . . . . xl.  This then gives the
impression of an object moving across the field of view.



Symbolically, this kind of enfolding can be described in terms of multiplications within

some algebraic structure.  Suppose M1 is an enfoldment that transforms some explicate
point e1 of our space into the implicate structure e'1.  We shall adopt the convention that
enfoldments are produced by a left multiplication.   Then we can write

e'1  = M1 e1 (1)

or, in matrix form

e'1 (i , k ) = j M1 (i, j) e1 (j, k) (2)

Notice that when e and e are regarded as elements of the same minimal left ideal of our

algebra, then in the continuous limit equation (2) becomes analogous to a Green's
function:

(x') =  G (x x') (x) d3 x (3)

Suppose the enfolded point e'1 is now unfolded by right multiplication with M2 to produce
e2

e2  =  e '1 M2

The relation of e1 to e2 is

e2  = M1 e1 M2 
-1 (4)

In order to illustrate how quantum mechanics might emerge from such a description of
successive enfoldings each followed by an unfolding, let us make two assumptions.

First consider the special case in which M2 =M1
-1, i.e. the unfolding is simply the

reciprocal of the enfolding, so that

e2  = M1 e1 M1 
-1 (5)

This form is already reminiscent of the kind of relation that features so prominently in the

transformation theory of quantum mechanics. Now let us suppose that the transformation
in question is in fact an infinitesimal transformation. This means that M1 can be written in
the form

M1  =  1 +  K



If for convenience we assume also that the infinitesimal matrix K depends on a single
parameter  , say, so that the transformed point e2 traces out some trajectory as  varies,

then K can be written in the form

K  =   iH 

where the factor i has been introduced only to ensure that H is Hermitian, in accordance

with the usual form of the theory. The equation of motion (5) then becomes

e2  =  (1 + iH  ) e1 (1 - H e1 + i[H, e1]

i.e. (e2 - e1 )/   = i[H,  e1]

In the limit as   0  we can write symbolically

de/d =  i [H , e] (6)

which is, of course, just Heisenberg's equation of motion. A finite transformation is

evidently then generated by

M1  =  exp[iH

so that

e2  =  exp[iH ]e1 exp[-iH ]

Schrödinger's equation can be obtained from (6) simply by assuming that the e1 can be

considered as a product of an element o f a minimal 1eft ideal with an e1ement of a
minimal right ideal. This assumption is equivalent in the quantum theory to the
requirement that the state in question be a pure state. In terms of the Dirac notation, the

minimal left ideals correspond to the kets while the minimal right ideals correspond to the
bras, as we shall indicate later.



3. THE RELATIONSHIP BETWEEN THE MINIMAL IDEALS AND THE BRAS

AND KETS OF DIRAC

In the previous section we intimated that the minimal left (right) ideals of some suitable

dynamical algebra could be identified with the kets (bras) of quantum mechanics. Since
this identification is not well known we outline a justification for this c1aim.

In the Dirac formalism sets of objects, (|  〉〈  |) define the set of dynamical operators.

Under addition and multiplication, these form a full matrix algebra over the complex
field. Choosing a complete set of orthonormal eigenkets  (|ai 〉) of some operator

A, we can define a set of operators eij  =   |ai 〉〈 aj| such that any operator can then be

written as
B   =  ij Bij eij (7)

where the coefficients Bij  are complex numbers. The completeness relation can then be

written as
1    =  i eii ,

The eii here are primitive idempotents and are usually identified with the projection
operators. In this way then, the algebra of dynamical operators can be given a complete

representation in terms of the bras and kets. According to this approach, it is the bras and
kets, which are given the primary status. All else is defined in terms of them.

A different approach however is possible. The algebra itself can be taken as the
fundamental entity, with all else defined in terms of it. Indeed, if the concept of the
quantum process be taken as basic, then such an approach is not only possible, but also

necessary (Bohm [9, 13]).  This leads us to propose therefore that the algebra itself be
elevated to the primary status and be given fundamental relevance. The bras and kets
must then be regarded as special or secondary features within the algebra, to be

abstracted from the algebraic structure through some relevant discriminating
characteristic.

But how can this be done? The prominence given in quantum mechanics to the
irreducible representations of the dynamical operators supplies the clue. Consider a
simple algebra, which has exactly one irreducible representation over the complex

numbers. Th is irreducible representation must necessarily appear as an irreducible
component within the regular representation of the algebra. But the representation of any
matric algebra A is irreducible if and only if it is obtained from the regular representation



of A on a minimal invariant subspace I of A as representation space. We thus expect these

minimal invariant subspaces to be important. Now, an invariant subspace I of A is
minimal if and only if it is generated by some primitive idempotent element in A.  These
spaces in fact can be generated in two ways from given primitive idempotent elements e,

namely by multiplication from the left or by multiplication from the right. Spaces of the
type IL  = Ae, generated by left multiplication, are called minimal left ideals. Those of
type IR = eA, generated by right multiplication, are called minimal right ideals. The

primitivity requirement on e then gives

IR IL =  eAAe = Ze

where Z is the centre of A. Thus, for given e , IR can be regarded as the vector space dual

to IL . It is evident now from the way that representations are constructed on the spaces IR

and IL that these play a role in the theory of algebras entirely analogous to that of the bra
and ket spaces in quantum theory. We can therefore regard the bra space and the ket

space respectively as minimum right or left ideals in some suitable algebra.

This structure is more easily appreciated when expressed in terms of a particular
representation. Suppose  is an element of the minimal left ideal generated by the

primitive idempotent e.  Then since  is in Ae , there must exist some element B in A

such that
  =  Be

Now introduce a matric basis eij of the simple algebra A. Since the idempotent e is

primitive, we can always choose the basis eij in such a way that e = ekk (no sum on k) for
some fixed k.  So from (7) and (8) , we have

  ( jj Bijeij) ekk  =  i Bik eik =  i i eik (9)

which is recognised immediately as having the form of a quantum state vector. In the
case when i and j range over a continuously infinite index set, the coefficients i become

the familiar wave functions (x). It is also immediately evident that every ket space in

the algebra constructed in this way will automatically contain a complete set of

eigenvectors for each observable B. Further, this construction automatically guarantees
the completeness relation, which is equivalent to the requirement

1 =  k ekk



(This observation in fact provides an explanation of the completeness requirement in
quantum theory.) In this way, therefore, all the vector space properties associated with the
ket space are completely reproduced in their algebraic counterpart.

Similar observations apply to the identification of the Bra space with a minimal right
ideal of the algebra. Choosing IR = eA, where e is the same idempotent that is used to

generate IL ensure that IL and IR are dual vector spaces .

Quantum theory deals principally with two kinds of dynamical variables: those related to

'extrinsic' properties such as position, momentum, orbital angular momentum, etc, and
those representing internal degrees of freedom, such as the intrinsic spin, isospin, and the
various internal quantum numbers of the elementary particles. The method we have

outlined is easily implemented for this last kind of variable.  A detailed treatment of some
particular cases involving the Pauli and the Dirac, Clifford algebras have been given in
Frescura and Hiley [10]. However, technical difficulties are encountered with variables of

the former type. These difficulties are related to the infinite dimensionality of the
dynamical algebras involved and to the closely related problem of defining their
'boundaries', or ‘limits’. We now indicate briefly in a particular case how some of these

difficulties may be overcome.

Consider the polynomial Heisenberg algebraLq(1), which is the (associative) algebra

generated by the Heisenberg position and moment um operators , Q and P , satisfying the
usual commutation relations. For convenience, we shall use the operator D  = 2 iP/h in

place of P.  Lq(1) may then be regarded as generated from the set {1, Q, D} subject to the
relation

{D , Q}  =  1 (10)

It is not difficult to show that this algebra contains no non-trivial primitive idempotents.

It thus contains no non-trivial minimal left or right ideals. If we are to carry out the
program outlined above therefore, the algebra Lq(1) will have to be extended to
incorporate suitable idempotent operators. How this can be done may be gleaned from an

examination of the Dirac version of the quantum theory. Of particular relevance is the
concept of the ‘standard ket’.



Suppose (Aj) is some given complete set of dynamical variables. Let the corresponding
eigenket basis spanning the ket space be (|aij〉).   We can then associate a complex

function with every ket |P〉 in the usual manner

(aij)  =   〈 aij P

This means that in the basis (|aij〉), each function uniquely defines  P and vice versa,

so that we may write

P  =  , {Ar}〉 . (11)

Suppose now that f(Ar) is any function of the observables (Ar).  Then f (Ar) is itself an
operator in its own right and we have

〈 aij|f(Aj)  ,{Ar}〉 =   f(aij) 〈 ai  , {A} 〉

      =  f(aij) (aij)  =  f. (aij)

or f(Aj)  ,(Ar) 〉  =    (f. ) {Ar}〉,

for all  , {Ar}〉.  In particular, for  = 1, we have

f(Aj) {Ar}〉  =  f,{Aj}〉

which we can write as

f (Aj)   = f〉 (12)

The ket , which Dirac writes as  〉 , is called the standard ket for the complete set {Aj}.

It is c1ear that the standard ket corresponding to different complete sets will, in general,

be different so that there exists a multiplicity of standard kets. Thus, in the Dirac
formalism, every ket can be expressed uniquely as a product

 〉  =  (Aj) ,

where  is some well defined complex function.  Conversely also, each complex function

uniquely defines a ket (Ar) .  Similarly, every bra can be written as a product



〈   (Ar) where 〈   is the standard bra for the complete set {Ar} of dynamical operators

for the system.  Hermitian conjugation then gives

† : (A)  * (A†)

    : → 〈   and     : 〈  →  

so that for a Hermitian operator

  † : ψ(A) →  (ψ(A) )†   =  〈 ψ*(A).

It is evident from the above that the existence of the space in the Dirac theory is
guaranteed by t he existence of single element . For, given the element , every ket

in the space Sk is generated from  by some element ψ(A) of DA' where DA is the non-

denumerably infinite quasi-algebra of the dynamical variables proposed by Dirac. Thus
we must have

DA    =   Sk

In the Dirac theory then, the possibility of constructing a space rests crucially on the

existence of the fundamental .

To see how this helps in the case of the Heisenberg algebra, we note that the action of the

derivative d on follows from

d  〉  =   d (q) /dq 〉   =  ’(q) 

so that
d  = (d/dq)  = 0   =  0

i. e.

d  =  0

In the dual bra space we find

〈  d  =  0 .

Introduce now an element e in Dq which projects every element in the ket space Sk into
the standard ket so that



e  〉  =   (0) 

forψ 〉  in Sk .  It is not difficult to verify that e is idempotent. Consider now the effect of

the product de on each ket ψ 〉 in Sk :

(de)  〉 =  d(e 〉) =  d( (0) ) = (0) d  =  0

or

de  =  0 .

Also

(eq)   〉  =  e (q  (q) )  =  e  =  (0) 

where (q)  =  q (q) , so that   (0) = 0. Hence

de  =  0 .

The products qe and ed are well defined algebraic elements in Dq, which are neither zero

nor scalars.  However, rather than expanding them in terms of some basis of Dq, we shall
retain this product notation for them as it relates them directly to the quasi-algebra
generated by the set {1, d, q, e}. It should be noted here that the element e cannot be

expressed as a polynomial function of the operators d and q and so is not an element of
the sub quasi - algebra generated by {l, d, q}.

Returning to the polynomial Heisenberg algebra Lq(1), it is now evident how Lq(1) must
be extended if it is to contain ket and bra spaces within its own structure: we must include
among the generators of the algebra an idempotent element analogous to the element e of

the above discussion. We thus arrive at the quasi-algebra B(1), a generalisation of the
Heisenberg algebra, which is the algebra generated over the complex field from the set
{1, D, Q, E} with

[D , Q]  = 1 , E2 = E , DE = 0,  EQ = 0 (14)

This is in fact one of the algebras introduced by Schönberg [1].  Details can be found in
Schönberg [1,2] and in Frescura and Hiley [14].  We here list only some of its more
important features.  First, define a set of elements Emn by



Emn = (m!n!)-1/2 Qm EDn. (15)

We follow the usual convention of defining Q0 = 1 = D0 , so that E00 = E . It can then
be shown that

Eij Emn  = jm Ein . (16)

It follows from this relation that the Emn are linearly independent. It can further be shown
that

1  = r Err (17)

a n d

Q  =  n (n + 1)1/2 E n+1, n , D = n (n +1)1/2 En, n+1. (18)

All the generators of B(1) can thus be written in terms of the Emn . The elements Emn thus

constitute a basis for B(1) .  In fact, relation (16) is the defining relation for a matric basis
in a full matric algebra. We have shown therefore that B(1) is a fullmatric algebra.

It also follows from (16) that E = E00 is a primitive idempotent and so can be used to
generate the bra and ket spaces for B(1).  In fact, any element of the form

  =  n an E0n (19)

can be taken as the fundamental ket. The left ideal it generates then consists of elements

of the form

  〉   =  m,p m0 ap  Emp  =   (Q) 

where (Q) is the polynomial m (1/m!) m0Q
m .

The algebra B(1) allows only for a single degree of freedom.  Generalisation to a larger
number is straightforward.  For every independent degree of freedom i introduce a set

{ 1i , Di , Qi , Ei } of dynamical operators satisfying

Ei
2  =  Ei Di Ei  =  0  =   Ei Qi .



Operators corresponding to independent degrees of freedom all commute with each other.

The algebra B(n) generated in this way is thus the direct product of the sub-algebras Bi(1)
corresponding to the independent degrees of freedom. The element E  =   n

i=1 Ei is then

idempotent and primitive and can be used to generate the bra and ket spaces. Any
element of the form

  =  n
i=1 i .

where  i is a fundamental ket in Bi(1), can be taken as the fundamental ket of B(n).

4. THE QUASI ALGEBRA B(1) AS A THEORY OF BOSONS

From (15) it is evident that Q and D may be represented as

Q =

0 0 0 0 . . .

1 0 0 0 . . .

0 2 0 0 . . .

0 0 3 0 . . .

. . . . . . .

. . . . . . .

. . . . . . .

 

 

 
 
 
 
 
 

 

 

 
 
 
 
 
 

; D =

0 1 0 0 . . .

0 0 2 0 . . .

0 0 0 3 . . .

0 0 0 0 . . .

. . . . . . .

. . . . . . .

. . . . . . .

 

 

 
 
 
 
 
 

 

 

 
 
 
 
 
 

This is immediately recognised as the rep representation of the creation and annihilation
operators a† and a of the second quantization formalism for an harmonic oscillator with a
single degree of freedom. This is not surprising, of course, since the commutator

[a , a†]  = 1 is formally identical to that introduced in (10). The quasi-algebra of second
quantization is thus formally identical to the quasi-algebra B(1).  Since the harmonic
oscillator provides a theory of bosons, the quasi-algebra B(1) can be said also to be a

theory of bosons.
If we write

a†  =    21/2 (Q – D) (20)
a   =    21/2 (Q+D)

and introduce the idempotent operator V to play a role analogous to E then it is easy to
show that the vacuum state takes the form

0 〉  =  n n V0n (21)



where

Vmn  = (m!n!)-1/2 (a†)m V an (22)

and
a†   =  n (n + 1)1/2 Vn=1, n (23)

a    =   n (n+l)1/2 Vn,n+1

Hence we obtain a representation of a and a†  identica1 to (19).
From the property

V  0 〉   =  0 〉, V  n 〉  =  0 (24)

where
n 〉  =  (n!)–1/2 (a†)n  0 〉 ,

the operator V is recognised as the vacuum projection operator.

In the quantum theory, the fundamental bra 〈 0 is related to the fundamental ket 0 〉
through

〈 0   =   0 〉† .

Thus put

〈 0   = 0 〉†  =  r a
r V (a†)r =  r (a

†)r V ar     (25)

We shall further assume that V is itself Hermitian, that is

  V† =  V (26)

Then

  〉     =  (a†)  〉 (27)

= r (r!)-1/2 r (a†)r  0 〉

and from (25) and (26) we have



〈    =   〈 0  Er (r!) -1/2 *r a
r  =   〈 0  *(a).

The scalar product is then

〈   〉  =   〈 0  *(a) (a†) 0 〉

=  〈  〉 〈 0 0 〉.

As in the case of the algebraic theory of spinors the scalar product of a bra with a ket
appears as the coefficient of the algebraic element 〈 0  0 〉.

5. THE RELATION OF E TO V AND OF THE STANDARD KET TO THE

VACUUM STATE | 0 〉

The idempotent elements E and V can be related in the following way. Put

V =  ij ij Eij =  ( i iQ
i ) E ( j j D

j) (28)

=   E 

for some Λ and Π . But  aV  =  0,  and so

0 =  (D + Q) ij i j Q
i E Dj

=  ij i j (j!)
1/2[i{(i+1)!}1/2 i

n+1 
j
m +{(i+l)!}1/2 i 

n-1 
j
m]

for each m and n.  In particular, putting  n= 0  we find

   1 =  0

and for each  n > 0,  since not all the m are zero, we have

n+l  =  n-1 /(n+l)

from which it follows that

2n   =   (-1/2)n 0 /n! and 2n+1  =   0.

Hence



  =  n n Q
n =  n 0 (-1)n (Q2 /2)n / n!

so  that
  0 exp(-Q2/2) .

Similarly, we find
=  0 exp(D2 /2) .

 and  are clearly invertible, so that we have

V =  0 0 exp(-Q2 /2) E  exp(D2 /2) (29)

a n d
E =  ( 0 0)

-1 exp(Q2 /2) V exp(-D2 /2) (30)

We now use (30) to define E†.  Assuming that  V†  =  V  then it can be shown that

E†  = ( 0 0 / * 0*)  exp(-D2/2)exp(-Q2/2) E  exp (D2/2 )exp (Q2/2)

and
 E†D =  0  =  QE†

This then enables us to define the bra space in B(1) in terms of the standard ket via

〈    =   〉†  =  m m* (-1)m (m!)-1/2 Dm ( 0 0 / * 0*)

 exp (-D2/2 ) exp (-Q2/2) E  exp (D2/2) exp (Q2/2) (31)

The bra corresponding to the ket

  〉 =  (Q) 

will be
〈   =  〈   *(Q)

so that

      〈   〉 =  〈    〉 〈  (32)

which is analogous to equation (28).

The elements  =  0 exp(-Q2/2)  a n d    =  0 exp (D2/2) which relate E and V in (28),

(29) and (30), strictly speaking, are not elements of B(1) . They belong to a larger



algebra Bc(1), which is the topological closure of B(1). This means that B(1), though

isomorphic to the algebra B*(1) generated from {1, a†, a,V}, is not identical to it. In fact,
from (20), it is evident that B(1) and B*(1) coincide only on the sub-algebra generated
from {1, Q, D} or {1, a†, a}, i. e. B(1)  B* (1)  =  Lq(1) .

We are now in a position to relate the ket spaces B(1)| 〉 and B*(1)|0 〉. Consider the

relation between | 〉 and |0 〉. Equation (18) and equation (21) can be written in the form

   | 〉 = E r (r!)–1/2 r D
r  =  E A

   |0 〉 =  V r (r!)–1/2 r a
r  =  V B

where A and B are elements of B(1) and B*(1) respectively.  But from equation (29)

|0 〉 =  V B =  0 0 exp(-Q2/2 ) E exp (D2/2) B.

Now, as the right ideal EB(1) is minimal, so also is the right ideal exp(-Q2/2)EB(1).

Hence the elements

0 0 exp(-Q2/2) E exp (D2/2) B and -1/4  exp(-Q2/2) EA

are each elements of some minimal right ideal and for some element T of Bc(1) we can

thus write

0 0 exp (-Q2/2) E exp (D2/2) B  =  exp(-Q2/2) EAT

that is

0 〉 =   -1/4 exp (-Q2/2)  〉 T . (33)

It can be shown similarly

  〉 = -1/4  exp (Q2/2) 0 〉 S (34)

for some S in Bc(1) .

The ket space B(1)   〉  and the Fock space B*(1) 0 〉 a r e distinct spaces. This is

evident from the fact that their generating elements  〉 a n d 0 〉 are not elements of the

common portion  B(1) I B*(1) of the algebras B(1) and B*(1) , and so they generate



distinct though isomorphic structures. Even if we embed B(1) and B*(1) in their common
closure Bc(1), the spaces B(1)  〉 and B* (1) 0〉 remain distinct.

The ket space generated by  〉 can be identified with the Fock space generated

from 0 〉  only if we widen our considerations to include the larger algebra Bc(1) . In this

larger system we have

     Bc(1) 0 〉  =  Bc(1)   〉 T .

Here also, the ket space Bc(1)  〉 and the Fock space Bc(1) 0 〉 a r e in general distinct

though isomorphic ideals of Bc(1) , but with this difference, that the elements  and 

which relate the two fundamental kets are now contained within our algebra, Bc(1) . It is
always possible therefore, in this case, by a special choice of standard ket to make the
space Bc(1)  〉 coincide with the Fock space Bc(1) 0 〉. We need only replace  〉 above

by  〉T-1.  T h e n

      Bc(1)  〉  =  Bc(1) 0 〉 .

Alternatively, given some  〉, it is always possible to find some 0 〉 in Bc(1) so as to

ensure the identity of the ideals  they generate.

Returning to the algebras B(1) and B* (1) , the left ideals B(1)  〉 and B(1) 0 〉 can be

related to the state spaces of the usual quantum mechanics as follows.  It is well known
that the eigenstates of the number operator a†a can be written in the form

|n 〉 = (n!)-1/2  (a†)n 0 〉

which we regard as an element of the left ideal B*(1)  0 〉 of B*(1).

Now consider the left ideal B(1)  〉 of B(1) with its basis vectors Qn  〉 ,  n = 0, 1 , 2 .  . .

Since
a†a Qn  〉    Qn  〉

the representation matrix for  a† a in this basis will not assume diagonal form. But the
vectors

 n 〉 =  (n!)–1/2 (a†)n  0 〉 S

in B(1)  〉 are in one to one correspondence with the basis  n 〉 of the isomorphic vector

space B*(1) 0 〉. Thus



n 〉 =  (n!)-1/2 (a†)n i 0 〉 S

= (n!)-1/2 (2)n (Q - D)n 1/4 exp (-Q2/2)  〉

where we have used equation (34). But

exp(-Q2/2) (D-Q)  = D exp(-Q2/2)
so that

n 〉 =  (n!2n)-1/2 -1/4 (-1)n exp(Q2/2) Dn exp(-Q2)  〉

=  (n!2n)–1/2 -1/4 exp(-Q2/2) Hn(Q)  〉

where  Hn(Q)  〉 =  (-1)n exp(Q2) Dn exp(-Q2)  〉 is the algebraic analogue of the nth

Hermite polynomial Hn(x) introduced by Schönberg 1 . Denoting the normalized nth

Hermite polynomial by hn(x) we then have

n 〉 =  exp(-Q2/2) hn(Q)  〉

so that the general element of the ideal B(1)  〉 takes the form

  〉 =  exp (-Q2/2 ) r r hr(Q)   〉

which is already well known from the quantum account of the one dimensional oscillator.

6. THE QUASI ALGEBRA B(1) AS A THEORY OF FUNCTIONS AND

DIFFERENTIATION

In the purely algebraic approach, no restriction of square integrability need be imposed

on the elements of the algebraic ket space. This means that the probability interpretation
no longer has universal application, though it nevertheless remains valid for a wide
variety of problems. The essentially new feature in this approach is that the 'state

function' becomes a self-referent process for which the probability interpretation is not
essential. Dirac[15] has shown that this new feature does not change the results of QED
but avoids some of the difficulties. However he points out also that this generalisation

lacks a physical interpretation. The approach outlined here opens up the possibility of
providing an understanding of this generalisation by developing a larger framework
within which new questions can be raised.



For the moment, we content ourselves with pointing out some important features of this
generalisation. Consider first the algebraic approach in relation to the theory of functions.
Suppose that W is the subalgebra of B(1) generated from {1,Q }and that K is some ket

space of B(1).  Suppose also that Bc(1) is the closure of B(1),  W' the closure of W , and K'
the closure of K.   We have shown that each function f uniquely defines the ket vector f 〉
in Bc(1) through the relation

f 〉 =  f (Q)   〉 ,  (35)

The correspondence between f and the ket vectors f 〉 is injective since f 〉 = g 〉 if and

only if f = g.  Also f + g 〉 = f  〉 − g 〉 so that the correspondence is seen to be an

injective vector space isomorphism from the space of functions f into the ket space K' of
Bc(1) . The fact that this isomorphism is injective and not surjective on K' means that K'
contains elements which have no counterpart in classical analysis. A theory of functions

based on the space K' can thus be considered to be a generalisation of the classical
analysis.

Consider the product, in the algebra, of two ket vectors f 〉 and g 〉. Then

f 〉 g 〉  =  g(0) f 〉 +  fg 〉

so that a satisfactory account of all the properties  associated classically with functions is
not possible in terms of the space K' alone. We note however that there is a one to one
correspondence between the elements f 〉 of K' and the elements f(q) of Bc(1), this

correspondence being uniquely defined for given fundamental ket  〉 by relation (35). It

is easily demonstrated that the set {f(q)} of all such elements forms a sub quasi-algebra
W' of Bc(1). It follows then that for given  〉 there exists an uniquely defined injective

isomorphism from the space of classical functions f into the sub quasi-algebra W' of Bc(1)
and that this isomorphism is algebraic in the sense that if f and g are functions, then

  f(q) + g (q) =  (f+g ) (q) and    f (q ) g (q) =   fg (q).

Through this injective isomorphism, the quasi-algebras W' and Bc(1) provide a basis for

an account of the algebraic properties of the functions of classical analysis.
It is clear that through the above isomorphism the quasi-algebra W' will contain

the space of classical functions as a proper subset. W' thus contains elements which have

no classical counterpart. Hence W ' (and also Bc(1)) can be said to be a generalisation of



the classical theory of functions. In particular, it is well known that W' contains elements

corresponding to the Dirac delta function, and so provides also an account of the
Schwartz distributions.

Turning now to differentiation, suppose that f(Q) is in the sub-algebra W of B(1). Then
f(Q) = n fnQ

n

a n d

      D f (Q) =  n fn (DQn)  =  n fn (Q
nD + nQn–1)

=  f(Q) D + f'(Q)

where f'(Q) =  n fn nQ n-1 is in W and corresponds to the differentiated polynomial

function df/dx  whenever the element f(Q) of W corresponds to some classical polynomial
function f(x). Thus if f(Q) is some element of the closure W' of W , then

D f(Q)  =  f (Q ) D + f ' (Q)

where f' corresponds to the differentiated function df/dx of f.  Also, for each element f 〉
of a ket space K of B(1) we have

D f 〉 =   Df(Q)  〉 = f(Q) D 〉 + f'(Q)  〉   =   f'  〉.

The effect of D on the closure K' of K can be similarly defined.  It is evident that the
maps D: K  K  and  D: W W  defined respectively according to the requirements

D: f 〉  Df 〉 and D:f(Q)  Df(Q)

induce among those elements of K and of W which correspond to the classical polynomial
functions (regarded as operators and as operands respectively) an operation analogous to
the Newton−Leibnitz operation of differentiation, D  playing the role of the operator d/dx.

We can thus interpret D as the algebraic generalisation of classical differentiation. This

allows the immediate extension of the concepts of the differential calculus to a larger
class of functions than is permitted by the classical theory. In particular, it supplies
immediately a theory of differentiation for the distributions. In this sense, B(1) and Bc(1)

can be said to constitute a theory of differentiation.



As theories of differentiation, neither Bc(1) nor B(1) are equivalent to the classical theory,

even in those regions where they may be considered to overlap. They are conceptually
quite distinct.

7. THE FERMION ALGEBRA

We have shown how the Boson algebra B(n) leads to an algebraic generalization of
classical functions and of their differentiation. Since this algebra can be realised through
the Boson creation and annihilation operators, it is natural to ask whether the re exists an

analogous structure underlying the Fermionic creation and annihilation operators. As this
would involve the use of anti-commutators in place of the commutators defining B(n) ,
we anticipate that we shall have to introduce Grassmann variables, and functions of these

variables, in the place of the ordinary variables and functions.

Introduce a set of Grassmann variables i, i = 1, 2, …..n, such that

      { j } =     (36)

It is well known that the algebra generated by i.  In this way is just the algebra of

exterior forms in n variables. Its dimension  is 2n . We can form polynomial functions of
these variables by taking linear combinations of the generated monomial exterior forms.
Because of the finite dimension of this algebra, every polynomial function of them can be

expressed in terms of a finite sum of basic monomial elements. No problems of the kind
encountered in the case of B(n) when defining functions of the Qi are thus encountered
here. The general function of the variables i is therefore just the general element of the

space of exterior forms.

Following Cartan, we now define a new kind of differential operator i to operate on

these exterior forms. We shall require these operators to be the analogue of the ordinary

differential operators Di which were used in the construction of the algebra B(n). They
are therefore to operate on exterior monomial forms of order r, to produce an exterior
monomial form of order r  1 . We shall define the action of the i first on the exterior

two forms. Suppose

F =  ij a
ij i j

where aij  = - aji  is an anti-symmetric tensor for the n dimensional space. The derivative
of this form will be defined to be



i F =  / i F    =    ij a
ij i j. (37)

So that
j ( i F)  =   aji  =  - aij    =    - i ( j F)

On the space of exterior two forms therefore we have

{ i,  j }  =  0. (38)

The rules for differentiating these monomials of order two are.
1 . if the variable i does not occur in the monomial, then differentiation with respect to i

gives 0, and
2. if the variable i occurs in the monomial, bring it into the first position using anti-

commutation relations (36) and then differentiate as in (37).

These rules can now be extended to forms of order p the derivative of

i1 i2 ………… ip

with respect to i is zero if i  ip  for some r = 1,2,……p; it is

i2 i3 ………… ip

if  i  = i1.  If  i = ir  for some r  1 , then bring the factor  ip into the first position by the

anti-commutation relations (36) and then proceed as above. Scalars and one forms are to
be differentiated in the ordinary way. It is not difficult to show that these rules can be

applied consistently to exterior forms of all orders and that the anti-commutation relations
(38) are then valid on the entire space of exterior forms.

How do the operators i behave relative to the i ?  Suppose P is a homogeneous exterior

form of order p. Form the exterior product i P of  with P.   Then it can be shown that

j ( i P)  =  j
 i P  -  i(

j P)

This result is independent of p and so is true for forms P of all orders p.  It is true

therefore for the general exterior form.  On the whole space of exterior forms then, we
have

      { i, j} =      i
j (39)



We have thus arrived at the algebra that we are seeking Take as generators the 2n
variables i ,  i  satisfying

{θi, θj}  =  0 , {∆i, ∆j}  =  0 , {∆i, θj}  =  δi
j (40)

and generate from them the algebra F(n). The anti-commutation relations (40) are
directly the analogue of the commutation relations

[Qi, Qj]  =  0 , [Di, Dj]  =  0 , [Di, Qj]  =  i
j

which define the algebra Lq(n)  in the case of bosons.  Our algebra F(n) is therefore

entirely analogous to the boson algebra B(n).  In fact, this is just the algebra introduced
by Schönberg [1] from different considerations to complement the Heisenberg algebra of
quantum theory . The derivation that we have given of it here shows that it can be

regarded as a generalisation of the algebra of differential exterior forms introduced into
the classical differential geometry by Cartan. We regard F(n) therefore as the complete
algebra of differential forms. In fact it has very deep connections with all aspects of the

theory of differential forms, including the dual forms, homology, harmonic integrals, and
also spinors. We hope to show in detail these connections in a later publication. Here we
shall only outline some important features.

This algebra also has very deep connections with the physics of grand unification and of
quantum gravity.  This is just the algebra introduced in connection with supersymmetry

recently (see Rocek [17]). It is a great credit to Schönberg that he was able to foresee
even in the 1950's that this structure would necessarily have an important part to play in
the foundations of physics and especially in the theory of space.

The theory of F(n) can be developed in complete analogy to the theory of B(n) though, of
course, with certain important differences. It is well known from the work of Schönberg

[1,2] and of Cartan [18] that F(n) is in fact a Clifford algebra for the 2n dimensional
phase space spanned by the operators i , 

i .  It can therefore be represented faithfully by

a full set of matrices of order 2n. This structure contains its own idempotents so that,
unlike the algebra B(n) where the idempotents Ei or Vi had to be imported from the
outside, there is no need to enlarge the algebra further.  The fermionic ket spaces are

already contained within it.  In fact, it is not difficult to show that, for each i, t h e
element

   Pi
i =    i i



(no sum on the i)  is idempotent .  Each Pr
r is primitive in the sub-algebra generated from

the two operators  r , 
r  corresponding to the rth fermionic degree of freedom.  It can be

shown that the element

    P =   r i=1 Pi
i

is primitive in F(n). It is clear from its form that Pplays a distinguished role in the
theory, and so we shall refer to it as the principal primitive idempotent for the operators

i , 
i.  P satisfies the relations

P2   =  P , i P  =  0 , P i =  0

Its role in P(n) is clearly analogous to E or V in B(n) and can be thought of as the

fermionic vacuum state.

The connection of this algebra with the Fermions blecomes very clear if it is noted that it

can be represented by Fermionic creation and annihilation operators according to the
scheme

i  ai ,
i  ai

† , Pi
i  a†a

The relation of F (n)  to the exterior differential forms of Cartan can be seen as follows.

The minimal left ideal IL =  F(n) P generated by P is a vector space of dimension 2n its
general element can be written in the form

F( i) P  (41)

where F( i) is the general exterior form of the n variables i.  The space IL therefore can

be identified with the space of exterior forms in the same way that B(n)| > could be

identified withthe space of ordinary functions. The analogy is made still clearer if
we write |F > for the general element of IL and | >F for P.  Then (41) becomes

|F > =     F( i) | >F

The right ideal  IR = PF(n) is then the space of dual forms. The affine invariants
associated with these forms and their duals can be found by forming products of the type
< G | |F >  =  < G |F > P.  In this way, forms in n variables and their duals may be

regarded as the spinors of the Clifford algebra for a 2n dimensional space.



In the context of homology, IL is the space of chains and IR the space of co-chains.  i  and
i  a re related to the boundary and co-boundary operators.

The fact that F(n) may be regarded as a generalisation of the theory of exterior forms is
interesting in its own right .  It means that the notion of differentiation can now be raised

in a purely algebraic context and is no longer tied to the notion of tangent and cotangent
vectors of a differential manifold. This algebra together with the Boson algebra
considered as an algebrisation of the theory of ordinary functions and their differentials

now becomes independent of the differential manifold which has the notion of locality
built in as a basic feature of the descriptive form. By freeing the mathematics from the
continuous manifold we have opened up the possibility of being able to use these

structures to discuss the notion of pre-space which lies at the heart of the description of
physics through the implicate order.

In order to demonstrate in what ways the purely algebraic approach can be used to throw
new light into the geometric aspects of these algebras, consider an affine space An of
dimension n together with its dual An

D.  Rather than use the second quantised notation, we

shall follow Schönberg [1] and denote the "annihilation operators" by (Ij) and the
"creation operators'' by (Ii).  Now consider the algebra generated over some field in which
the basis elements (Ij) (Ij)  satisfy

        {Ii, Ik}+ =   0, {Ij, Ik}+     =   0
and

        {Ij, Ik}+    =     1     =    < Ij, Ik > 1

where < Ij, Ik >  is an inner product defined in the algebra. The elements  of F(n) can

then be written in the form

Λ = ( p!q!)−1

p, q
∑ k1 ..........kq

j1........... jp I j1
.....I j p

PI k1 .....I
kq

where P = n i=1 P i.  If we make an affine transformation of the space An together with

the corresponding dual transformation on An
D the coefficients k1 ...kq

j1 ...j p  of  will transform

as anti-symmetric tensors of An . The 22n dimensional vector space underlying the
Fermion algebra F(n) can thus be decomposed into the direct sum

F(n) =        p, q A(p , q)



The symmetric tensors of the affine space can be obtained by considering the quasi

algebra generated over a field from the set {Ij, I
k} of generators satisfying the relations

(Ii, Ik) =   0, (Ij, Ik)    =   0

and
        (Ij, Ik)   =     1     =    < Ij, Ik > 1

This algebra is formally identical to the quasi algebra Lq(n) defined in section 3, the Ij

corresponding to the Dj and the Ij to the Qj .  Affine transformation of the space An

together with the corresponding dual transformation of An
D leaves the above defining

relations invariant, demonstrating that Lq(n) is a geometric algebra of the geometry of n
dimensions.

If Lq(n) is extended to B(n) as discussed above, and the idempotent element V is taken to
transform as a scalar under affine transformation, then B(n) will also be a geometric
algebra for the affine geometry of n dimensions.

The elements  of Lq(n)  can then be written uniquely in the form

Γ = a 1!... an !b 1!...bn !
p!q!

p, q
∑ k1 ...kq

j1... j p I j1
...I jp

VI k1 ...I
k q

where a  is the number of j s equal to r and bt is the number of k s equa1 to t .  It is not

difficult to see that the vector space underlying the quasi algebra Lq(n) can be
decomposed into the direct sum

Lq(n) =   p,q S(p, q)

where S(p, q) are the spaces of the symmetric tensors.

What these results show is that every geometric object commonly associated with an

affine space of n dimensions can be regarded as either an element of the fermion algebra
F(n) or of the boson quasi algebra B(n).  Although this example provides no new content,
it opens up a radically new view on the relation between geometry and quantum

mechanics that Schönberg was the first to stress.  A complete understanding of this new
approach will require extensive work, but we can al ready see some essential features
emerging.

The above discussion shows a correspondence between the not ions of "creation" and
"annihilation" on the one hand and their geometric counterparts of ''cogredience" and



"contragredience" on the other.  However the properties of their generating elements

relative to one another are contained totally in their multiplicative properties. Indeed the
whole content of these algebras is latent intrinsically in the essential algebraic properties
ascribed to the generating set through the commutation relations. Furthermore, there is a

complete lack of participation of the tensor indices ascribed to the generating elements.
These indices appear in the algebraic context as no more than label s for the generating
set.  Similarly it follows that the quantum concept of creation and annihilation is also

absent as a fundamental concept in the definition of F(n) and B(n) the distinction of
creation and annihilation not being involved in any essential way.

The basic indifference of the boson and fermion algebras both to tensor indices and to
creation and annihilation suggest that these notions are inessential. They should be
regarded as secondary, subordinate to the primary notion of algebraic structure.  This

suggests that we must think of these algebras in a new way. Since we have 2n distinct
generating elements {Ij, I

k} and their relations with D and Q , or  and , this suggests

that a phase space may be more important than the current interpretation through the
configuration space. This is already implicit in the work of Schönberg 1,2 and has also
been extended by Bohm and Hiley both in the non relativistic case [19] and the

relativistic case [20].

In the usual quantum mechanics much emphasis is placed on group structures which lie at

the basis of the symmetry properties of the Lagrangian. For the two basic algebras that
we are considering, the respective groups arise in the following manner.  Put  i  = I i + fij

Ij , where fij is an anti-symmetric tensor . Then it can easily be shown that

( i, j) =  2fij .

B(n) can thus be regarded as the full matric extension of the symplectic quasi algebra K2n

of the phase space. If on the other hand we put  i  =  Ii  + gijI
j ,where gij is a symmetric

tensor, then we find

      { i , j} =     2 gij

so that F(n) is intimately related to the Clifford algebras.

It should be noted that this view of the boson and fermion algebras is more natural than
regarding them merely as geometric algebras for the affine space, the groups contained in
these algebras being larger than the affine group for the n-dimensional space. Regarding



F(n) as a Clifford algebra for the phase space, the quantum field theory of fermions is

seen to be essentially the theory of spinors of the phase space. Similarly, the quantum
theory of bosons is seen to be essentially that of the symplectic spinors for the phase
space. In both cases, by spinors we mean the elements of the minimal left ideals of the

respective algebras.
It is of interest to note that the group of transformations on the phase space

leaving invariant the form fij has n(2n+l) parameters and for the invariance of gij we need

n(2n-1) parameters . Thus our algebras carry the translations and rotations of spacetime.
These two groups intersect in the central affine group for the n dimensional space.  It
would seem from this that the forms f and g together, rather than individually, fully

determine the configuration space for a system. This feature is one that is taken up in the
study of supersymmetries where the orthosymplectic groups leave invariant a bilinear
form that is a combination of the symmetric and the anti-symmetric forms f and g. The

proposed approach is thus rich enough to carry not only the symmetries of space time, but
also supersymmetries.

8. CONCLUSION

If the boson and fermion algebras are given a prominence in our conceptual framework
commensurate with that suggested by the quantum theory , then the geometry of space
and time will appear as a higher level abstraction from the more fundamental notion of

algebraic structure. Regarding B(n) and F(n) as "pre-geometries", in the sense that they
are geometric algebraic structures of more fundamental importance than the geometry of
space and time. Indeed the algebraic approach is devoid of all reference to any underlying

space time structure. The algebraic "wave function" provides no notion of the extension
of a system in space and time nor does it give a "point to point" account of a particular
property of the system. The algebraic quantum theory can only support an interpretation

through the implicate order. In this sense it can be regarded as neither a "local" theory nor
a "non local'' theory. It would be appropriate to regard it as an ''a-local'' theory, with the
notion of locality being abstracted from a distinguished relationship in the implicate order

as discussed by Bohm, Hiley and Davies [21].

Thus in the pre-geometry, the first level of abstraction through the isolation of a set of
generators for these two algebras B(n) and P(n) defines a 2n dimensional vector space

identifiable as a phase space for the system. The algebras B(n) and F(n) Individually
define the metric and symplectic geometries respectively for the phase space from which,
as a second order abstraction, the configuration space is distinguished. This allows the

concepts of geometric covariance and contravariance, or of quantum creation and



annihilation, to be defined. The geometry of spacetime is then obtained from that of the

configuration space as a third order abstraction.
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