
OpenVIDIA: Parallel GPU Computer Vision

James Fung, Steve Mann, Chris Aimone
Dept. of Electrical and Computer Engineering

University of Toronto
Toronto, Ontario, Canada

{fungja,mann}@eecg.toronto.edu, aimone@eyetap.org

ABSTRACT
Graphics and vision are approximate inverses of each other:
ordinarily Graphics Processing Units (GPUs) are used to
convert “numbers into pictures” (i.e. computer graphics).
In this paper, we propose using GPUs in approximately the
reverse way: to assist in “converting pictures into numbers”
(i.e. computer vision). The OpenVIDIA project uses single
or multiple graphics cards to accelerate image analysis and
computer vision. It is a library and API aimed at provid-
ing a graphics hardware accelerated processing framework
for image processing and computer vision. OpenVIDIA ex-
plores the creation of a parallel computer architecture con-
sisting of multiple Graphics Processing Units (GPUs) built
entirely from commodity hardware. OpenVIDIA uses mul-
tiple Graphics Processing Units in parallel to operate as a
general-purpose parallel computer architecture. It provides
a simple API which implements some common computer vi-
sion algorithms. Many components can be used immediately
and because the project is Open Source, the code is intended
to serve as templates and examples for how similar algo-
rithms are mapped onto graphics hardware. Implemented
are image processing techniques (Canny edge detection, fil-
tering), image feature handling (identifying and matching
features) and image registration, to name a few.

Categories and Subject Descriptors
C.3 [Computer Systems Organization]: Special–Purpose
and Applications–Based Systems—signal processing systems;
I.4.0 [Image Processing and Computer Vision]: Gen-
eral

General Terms
Algorithms, Performance, Design

Keywords
Computer vision, GPU, hardware accelerated computer vi-
sion, computer graphics, computer architecture, Radon Trans-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MM’05, November 6–11, 2005, Singapore.
Copyright 2005 ACM 1-59593-044-2/05/0011 ...$5.00.

Figure 1: A computer vision machine with 6 PCI
graphics cards, and 1 AGP graphics card. Each
graphics card runs pattern recognition and com-
puter vision tasks in parallel, creating a cheap, pow-
erful, and easily constructible parallel architecture
well suited for pattern recognition and computer vi-
sion.

form, OpenVIDIA, chirplet transform, mediated reality

1. INTRODUCTION
OpenVIDIA is a programming framework that uses single

or multiple graphics cards to operate as a general-purpose
parallel computer architecture for fast computer vision and
image processing. Realtime image processing and computer
vision algorithms can be computationally intensive, exceed-
ing the capabilities of the CPU. OpenVIDIA utilizes the
GPU that is present on modern graphics hardware to ex-
pand the computational resources that are available to these
algorithms. Furthermore, the design of the GPU architec-
ture provides higher performance for many vision algorithms
than the CPU.

One may consider computer graphics and computer vision
to be, in some way, “inverses” of one another since the task
of graphics is the task of image synthesis whereas image
processing can be considered the task of image analysis.

The OpenVIDIA project explores the notion of using com-
puter graphics hardware “in reverse” to accelerate the com-
puter vision task of image analysis even though graphics
hardware was initially designed for rendering images, or im-
age synthesis. Furthermore, OpenVIDIA explores a parallel
“graphics for vision” architecture created by placing multi-

849

ple computer graphics cards on a single motherboard. This
creates a low cost, commodity, architecture for hardware
accelerated computer vision and signal processing.

The GPU has been applied to other calculations beyond
graphics. A survey of applications is given by Owens et
al [7]1. This paper will discuss the OpenVIDIA design and
API and show some techniques OpenVIDIA uses for GPU
computer vision.

2. OPENVIDIA
2.1 Design and Intent

OpenVIDIA is designed as a library that is called from
within user written OpenGL programs. OpenVIDIA pro-
vides an API that implements the OpenGL calls that are
needed for vision processing. Essentially, this API is imple-
menting a set of mappings of computer vision algorithms
onto graphics hardware. For instance, the OpenVIDIA API
provides an interface for creating and applying image filters
that use fragment shading hardware on the GPU, resulting
in hardware accelerated image filtering operations. This pa-
per will discuss both the API of OpenVIDIA as well as the
methods it uses to perform some common computer vision
tasks on graphics hardware.

OpenVIDIA is built with C/C++ and OpenGL. Addition-
ally, it interfaces with libraries common to computer vision
tasks. For example, it interfaces with an IEEE 1394 cam-
era interface library, allowing video to be brought into an
OpenGL vision processing framework in a simple fashion.

The API provides some function calls to run common vi-
sion processing algorithms. These can be used “as is” when
they suit the application. Alternately, as the project is Open
Source, the implementations can serve as template exam-
ples, which can then be altered to create similar but more
specific functions as needed by users. Included in the Open-
VIDIA package are image filtering operations (many vision
algorithms include sequences of image filtering operations),
feature detection and tracking, image registration, stereo vi-
sion, and Hough transformations to name a few.

3. APPLICATIONS AND USAGE
3.1 Image Processing and Filtering

Many computer vision operations can be considered se-
quences of filtering operations. Fragment programs can be
considered short programs run on each pixel of an image
that implement the desired filter. The architecture of the
GPU allows many pixels to be processed in a parallel fash-
ion, providing significant hardware acceleration.

OpenVIDIA provides an interface for filtering with se-
quences of fragment shader programs. To apply these frag-
ment programs to input images, the input images are initial-
ized as textures and then mapped onto quadrilaterals. These
quadrilaterals are displayed in appropriately sized windows,
to ensure that there is a one-to-one correspondence of im-
age pixel to output fragment. When the textured quadrilat-
eral is displayed, the fragment program then runs, operating
identically on each pixel of the image. Filters are written
in Cg [6], a simple C-like program executed at each pixel in
the image.

The results of a filtering pass are saved as a texture, which
can then be used as the input to a next pass. Complete

1also see http://www.gpgpu.org for and active listing

computer vision algorithms can be created by implementing
sequences of these filtering operations.

3.2 A GPU Hough Transform: An example of
using the full graphics pipeline for Vision

OpenVIDIA also demonstrates a mapping of a computer
vision algorithm that uses the vertex processor, rasterizer,
and fragment processor on the GPU. Figure 2 shows a GPU
accelerated Hough line detection program. The GPU im-
plementation of the Hough Transform is used to detect lines
and curves in images, following the common formulation as:
(θ, ρ) = x0 cos(θ) + y0 sin(θ) which takes an image point
(x0, y0) and maps it to a set of points (θ, ρ) (for some given
θ), which are the parameters of the equation of a line given
by its perpendicular angle to the origin, θ and distance of
its normal to the origin, ρ. The set of points (θ, ρ), θ ∈ [0, π]
describes a family of lines passing through (x0, y0).

First, an edge detection is performed using filtering oper-
ations on the GPU. A Canny filter implementation Open-
VIDIA is discussed in [2]. The resulting edge pixels (edgels)
are read back to the CPU. The image coordinates of the
edge pixels are noted and then sent as an array of vertices
(geometric points) to the GPU.

The GPU Hough Transform is performed on this set of in-
put coordinates (vertices) by setting the graphics hardware
projection matrix to perform a Hough Transform on this set
of input coordinates for a particular angle according to equa-
tion 1. Equation 1 includes scaling and translation to utilize
the full drawing area provided by the graphics pipeline. In
the graphics processing pipeline, the output of vertex pro-
cessing is typically the vertex position in a Normalized De-
vice Coordinate System (NDCS). NDCS coordinates range
in (xndcs, yndcs) ∈ [−1, 1], and the sides of this area are then
mapped to sides of the graphics window drawing area.

0

B

B

@

0 0 2θ/π −1
2 cos(θ) 2 sin(θ) 0 −1

0 0 1 0
0 0 0 1

1

C

C

A

0

B

B

@

x
y
1
1

1

C

C

A

=

0

B

B

@

θs

ρs

1
1

1

C

C

A

(1)
The rasterizer then quantizes the result to lie at the nearest
pixel location.

Each edgel contributes a continuous sinusoidal curve in
Hough space. For computation, the Hough space is dis-
cretized and these continuous curves are approximated. We
do this by approximating the curve as line segments between
quantized values of θ. Thus, for each input vertex, we would
like to calculate its mapping at θi and the next increment,
θi+1, and use these as the two vertex endpoints of a line
to be drawn. The rasterization hardware will then draw a
line which interpolates positions for θ ∈ (θi, θi+1), creating
a contiguous mapping.

This is easily achieved by creating an array of vertices on
the CPU, doubling up the coordinates. Equation 1 gives us
the transformed location of one end of the line segment at
θ = θi, and we can send a similar transformation matrix
for θ = θi+1. When a vertex arrives for transformation, the
vertex processor determines which endpoint θi or θi+1 the
vertex corresponds to and chooses the appropriate matrix.
To do this, the input vertices are sent twice each a and 1
or 0 is placed in the z coordinate to act as a “flag” field
informing the vertex processor which transformation to use.
This method makes use of the programmability of the vertex

850

Figure 2: Screen grab of a GPU Accelerated
Radon/Hough transform that uses the vertex (ge-
ometry) processing, rasterizer (line/primitive draw-
ing) and fragment processing (per-pixel operations)
accelerated by the GPU pipeline.

processing stage to examine this flag and determine which
transformation to use. While vertex processing supports
branching on current hardware, it is a costly operation. It
was found that a better solution was to avoid branching and
implement a method whereby the vertex program calculates
one endpoint and an increment to the next is calculated.
Then the flag bit is used as a multiplicative mask and the
increment added to the first endpoint.

It is also possible to create an equivalent Hough image by
performing the transformation at each quantized θ and ρ.
However, this would run the vertex program once for each
point on the approximated curve. Instead, by using the line
method, we only run a vertex program for each segment
endpoint and the remaining points are interpolated by the
rasterizer. Line segment GPU processing is also preferable
to GPU point processing because it can be conducted with
more parallelism due to the nature of the hardware. Our ex-
perience was that line vertices were processed roughly three
times faster than and equivalent number of point vertices.
The line method allows the quantization resolution to be
changed by scaling the resolution of the rendering area and
then issuing the exact same commands.

3.3 Realtime Chirplet Transform
The chirplet transform [5] is a signal representation that

uses a family of localized chirp functions. A chirp is a signal
that changes in frequency, as a function of time (or changes
in time as a function of frequency), such as the sound made
by a bird, bat, or slide whistle (changing the length of the
resonant column while blowing into the whistle). When
chirp functions are windowed (localized in time) the result
is a chirplet (analogous to wavelets which are time-localized
waves).

The chirplet transform is widely used in applications such
as radar, medical signal processing (e.g. processing of heart
sounds), analyzing bird and bat sounds, and processing EEG
(brainwave) signals [1].

The one major problem that has kept the chirplet trans-
form from being widely used in many different industries,
is the computational complexity required. Although there

//create the feature tracking object. give it
//the size of the images it will operate on.
ft = new featureTrack(sourcewidth, sourceheight);
glGenTextures(1, &tex); // make a texture
glBindTexture(GL_TEXTURE_RECTANGLE_NV, tex);
glTexImage2D(GL_TEXTURE_RECTANGLE_NV, 0, GL_RGBA,

sourcewidth, sourceheight, 0, GL_RGB,
GL_UNSIGNED_BYTE,NULL);

while(1) { //rendering loop
//update the image frame...
glTexSubImage2D(GL_TEXTURE_RECTANGLE_NV, 0, 0,0,

sourcewidth, sourceheight, GL_RGB,
GL_UNSIGNED_BYTE, sourcedata);

// retrieve features from the image in tex.
Scene *s = ft->getScene(tex);

}

Figure 3: OpenVIDIA API performs a GPU feature
detection and vector calculation. A simple API in-
corporates it into an OpenGL program.

exist Fast Chirplet Transforms (FCTs) based on FFTs (Fast
Fourier Transforms) as well as some based on Hough’s im-
plementation of the Radon Transform, the FCT is still com-
putationally intensive.

Within the OpenVIDIA project, there are two implemen-
tations of the Chirplet Transform (CT):

1. Direct implementation of the CT.

2. FCT by way of first computing the Wigner Ville Distri-
bution (WVD), and then computing the Radon Trans-
form (by way of Hough’s fast implementation).

3.4 Image Registration on the GPU
We have also developed algorithms to estimate the pro-

jective coordinate transformation between successive pairs
of images in a video sequence, in order to “stitch together”
multiple pictures of the same subject matter. (See for ex-
ample, http://wearcam.org/orbits as well as
http://comparametric.sourceforge.net.) The OpenVIDIA li-
brary is particularly well-suited to this kind of computer
vision and image processing task [3].

3.5 Locating and Tracking Features
OpenVIDIA provides an algorithm that performs image

feature detection on the GPU. This algorithm also calcu-
lates unique appearance based feature vectors computed on
the GPU. These vectors can then be re-calculated for each
video image, and matched to track features in video. Fig-
ure 3 shows how to use the OpenVIDIA API calls which
create the library tracker object, and match features in se-
quential frames of video. Feature detection in OpenVIDIA
also provides an example of how to use the GPU for lo-
cal histogramming and to create multiple outputs for single
points.

Feature detection in OpenVIDIA begins using a Harris
corner detector, implemented using the filtering pipeline tech-
nique discussed in section 3.1. The result of the feature
detection stage is essentially a binary image, with feature
points flagged. This is then read back to the CPU which
places the locations into a 1-D array which is sent back to
the GPU as a 1-D texture. The unique feature vectors are
then calculated.

3.5.1 One-to-Many Outputs on the GPU
The feature vectors which uniquely identify features are

an array holding 128 floating point values which identify the

851

feature. This requires that for a single feature point, 128
output elements be appropriately calculated on the GPU.
Thus far, the filtering methods discussed produce a single
output pixel per input pixel. OpenVIDIA employs a method
whereby the coordinates of feature points are placed in a
texture to be used as a lookup-table by a fragment shader
which calculates the feature vector. A line holding 128 ele-
ments is drawn for each feature point, and the lookup table
is textured onto it, along with appropriate neighbourhood
offsets used in the feature computation. The feature calcu-
lation in OpenVIDIA can be used as one example of how to
do such calculations where multiple outputs are needed for
point inputs. This is a slight variation on the point method
discussed in [2] which can be referenced for more details.

3.5.2 Histogramming in Fragment Programs
OpenVIDIA also provides an example of how to create

small, local histograms using the fragment shaders on the
GPU. This is of interest, since many fragment programs
do not support data dependent array indexing nor pointer
arithmetic, which are methods typically used to create his-
tograms on the CPU. While an exhaustive “if else” type
structure can be used to determine a given value’s place-
ment in a histogram, this does not necessarily lead to effi-
cient fragment programs across all architectures, especially
those that do not support true logical branching. A bet-
ter solution is to carry out histogramming through a vector
operation.

In order to accomplish this, we use the cosine function
provided by fragment shaders. In our application, we are in-
terested in histogramming into gradient directions in a small
region into eight bins. To create the histogram, each gradi-
ent in question (a number lying in [0, 7]), is subtracted from
a vector containing sequence of integer numbers [0, 7]. This
places a ‘0’ in the location corresponding to the observed
direction and numbers of increasing absolute value on either
side. Recalling that cos(0) = 1, we see that taking a cos()
of the values yields a cos() function centered at the desired
location. Adding an offset then squaring it yields a well cen-
tered impulse around the bin location. The original gradient
magnitude scalar is then multiplied by this cosine function
and accumulated by vector addition to a histogram. The
cos() function can be squared repeatedly to yield a more lo-
calized impulse. Furthermore, the spread is actually benefi-
cial since it distributes gradient directions which lie between
quantized bins, reducing quantization noise.

3.6 Mediated Reality
Part of our research includes implementing the Open-

VIDIA project on a battery-powered body-borne computer
connected to an EyeTap (http://eyetap.org) device, that
basically causes the eye itself to, in effect, simultaneously
function as both a camera and a display. In particular we
designed and built a wearable OpenVIDIA computer sys-
tem and EyeTap system around an nVIDIA 5200 system.
Once we have scene understanding, camera egomotion, and
the like, implemented in OpenVIDIA, we can begin to con-
struct a real-time system for computer-mediated reality.

Mediated reality can be used for augmented reality and
virtual reality as well as some new capabilities, such as im-
plementing a visual filter to assist the visually impaired (di-
minished reality through scene simplification).

4. HISTORICAL CONTEXT: OUR FIRST
APPLICATION

Originally, we had a hexagonal column shower that we
wished to automate for water savings, so we outfitted it
with a six-channel computer vision system to automate the
control of the six shower nozzles around the column. The
idea was to construct a three dimensional volume of each of
the six or fewer users, and have the sensor operated nozzles
only come on when the frustum of the cone of water inter-
sected entirely with the body of a user. The goal was to not
waste even a single drop of water. We also implemented a
fuzzy data bus, using analog video input/output capabilities
of the six graphics cards, to pass approximate quantities as
image arrays between GPUs or graphics cards.

5. CONCLUSION
OpenVIDIA provides a library and API for using single

or multiple graphics processing units to accelerate computer
vision and image processing. Full source code and documen-
tation on OpenVIDIA are available through the project web
page at http://openvidia.sourceforge.net.

6. ACKNOWLEDGMENTS
Thanks to NSERC, SSHRC, Canada Council for the Arts,

Ontario Arts Council, Toronto Arts Council, and Ontario
Graduate Scholarships, and Nikon Canada for support. Thanks
to nVIDIA, ATI, and Viewcast for equipment donations.
Also thank you to all our past/present contributors and
users.

7. REFERENCES
[1] J. Cui, W. Wong, and S. Mann. Time-frequency

analysis of visual evoked potentials using chirplet
transform. IEEE Electronics Letters, 41(4):217–218,
2005.

[2] J. Fung. Chapter 40: Computer vision on the gpu. In
GPU Gems 2: Programming Techniques for
High-Performance Graphics and General Purpose
Computation, pages 649–665. Addison-Wesley, 2005.

[3] J. Fung and S. Mann. Computer vision signal
processing on graphics processing units. In Proceedings
of the IEEE International Conference on Acoustics,
Speech, and Signal Processing (ICASSP 2004), pages
83–89, Montreal, Quebec, Canada, May 17–21 2004.

[4] E. Lindholm, M. J. Kilgard, and H. Moreton. A
user–programmable vertex engine. In Computer
Graphics, Proc. of SIGGRAPH 2001, pages 149–158,
2001.

[5] S. Mann and S. Haykin. The chirplet transform: A
generalization of Gabor’s logon transform. Vision
Interface ’91, pages 205–212, June 3-7 1991. ISSN
0843-803X.

[6] W. Mark, R. Glanville, K. Akeley, and M. Kilgard. Cg:
A system for programming graphics hardware in a
c–like language. In Proceedings of ACM SIGGRAPH.
ACM Press, 2003, volume 22, July 2003.

[7] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris,
J. Krger, A. E. Lefohn, and T. J. Purcell. A survey of
general-purpose computation on graphics hardware. In
Eurographics 2005, State of the Art Reports, pages
21–51, Aug. 2005.

852

