
|7

C HIGH RESOLUTION GRAPHICS
O MACHINE LANGUAGE
O MEMORY MAPS
O SCHEMATICS AND PARTS LIST

PRTCE 19.95

PFIclTEGTct
ENTERPRIZES
BOX 550, BARRINGTON, ILLINOIS 6001O

Phone 312/382-52M

APF'*

PROGRAMMING AND TECHNICAL
ASSISTANCE MANUAL

TABLE OF CONTENTS

Chapter

I ntro duc t ion

I The MP 1000

2 The MPA-IO

3 l4emo rY MaP s

4 Memory Useage for Programs and Variables

5 Entering and Using Machine Language

6 Some Useful Routines

7 The TaPe SYstem

8 High Resolution GraPhi-cs

9 Saving Time and SPace

APP ENDI CE S

A MC6800 Instruction Set SummarY

B Machine Language Reference Mod'e

C Schematics and Parts LaYout

D ASCII Character Se:u/Screen Codes

INTRODUCTION

This APF rmagination Machine Technical Reference Manual is
written for those of you who woul-d like to "know" more about the
inner workings of the Imagination Maehine. It assumes the
reader is a technical person who has some general understanding
of microcomputers (hardware, software, or both).

Chapters L-2 and Appendix C supply aIt of the available el-ectrical
schenatics. A1so, d brief operations description is given. The
rest of the manual goes into areas such as memory maps, details
of machine language programming, and high resolution graphics mode.

The book is filled with detai]s of information. Read through
it all- or just the sections that interest you, and then get
ready to experiment with your imagination.

Note: Pleasb do not infer from this manual that APF can or will
make available design engineers for your circuits or
ideas. we present this information so you can enhance
your uses and fun of the Imagination Machine. Once you
open the cabinets you void the warranties and are on vour
own.

A11 information presented in this manual is bel_ieved to
be accurate and correct.

CHAPTER 1

THE MPlOOO DESCRIPTION

Figure I-2 shows a block diagram of the MP1000.
contains the following sections:

The MPl000

1. The Microprocessor Unit (The MPU)
2. The Video Display Generator (The VDG)
3. The T.V. Driver (The MCL372)
4. The Internal ROM

5. The Peripheral Interface Driver (PIA)
6. The IK Read Write Memory for Screen Image
7. Power Supply

THE MPU

The brains of the system is the microprocessing unit (MPU) .

The MPl000 uses an I bit microprocessor - the MC6800. FuIler
details of this are available from several semiconductor sup-
pliers. The MPU gets its instructions f rom the Read Only I'lemory,
processes these instructionS and data, stores codes in the read
write memory for the VDG to interpret and puL out screen patterns
and sends and reads codes from the PIA.

Alt data is transferred over an 8 bit bidirectional data bus
Addresses are sent out from the MPU on a 16 bit bus
(65 , 5 36 unique addresses) .

The rate at which instructions are executed and data is trans-
ferred is set by a biphase clock input to the CPU. These are
d1 , and 62. The Mp1000 has a clock rate of 894,886 KHZ or a cycle
time of 1.1174605 microseconds. This clock is derived by
dividing the 3.579545 mhz xtal frequency by 4

MPIOOO CLOCK TIMING

r sTARr 0F CYCLE

Vcc - 0.3V
0.3v 0.3v

t,, - 5ns min
\ 50ns mqx_

g1

flz

3. 579545

w

w

Vcc - 0.3V

min 50ns mox

Figure 1-1

UJ
-(J
oa
u.l
(9
o
E.

DATA BUSS

(/)
t/)
fo
F

o

D.ATA BU55

DATA IN/OU
MEM ORY

lKx I
MUX ADDREAS

ADDRESS BUSS

LN
t,
:)
cD

8t!
Eoo

GRAPHICS MODE

DATA IN/OUT

PIA

OUT IN

ADDRESS DATA IN/OUT

VDG

APF ELECTRONICS INC.
BLOCK DIAGRAM - MP1OOO

E
o
o)
o

cr i5
I

-J
E!
JO
C"

iIoo
9
o.
E

Chapter 1
Page 2

During operation of the MPU, instructions are fetched from
memory, executed, and the next instruction is fetched. The
sequence of which instructions are fetched is d.etermined by
the program flow. There are 2 exceptions to this

Power Up or Reset

Whenever power is turned on or the Reset button is depressed,
PIN 40 of the l4PU receives a signal which directs it to start
a reset or initialization sequence. The starting address of
this sequence is stored in ROM memory at locations Hex FFFF and
FFFE. The MPU always goes to these locations to find its reset
program starting address.

Interrupts

The other time the sequence of instructions can be changed is
if an interrupt request is granted. The MPU stops what it is
doing and finds the address of the interrupt routines which is
stored at Hex FFFS and FFF9.

VIDEO D]SPLAY GENERATOR (VDG)

The VDG is a large scale integrated circuit that scans memory
to produce a composite video signal and generates alphanumeric
or graphics displays. It always scans memory during Phase I so
as to not interfere with the MPU. Although the VDG can have up
to 14 modes of operation, it is implemented, in the MP1000 to
have a maximum capability with minimum parts counL. A descrJ-p-
tion of the input/output signals is:

Address Output Lines (DA0-DA12) - Thirteen address Iines are used
by the VDG to scan the display memory. The startj-ng address of
the display memory corresponds to the upper left corner of the
display screen. As the television signal sweeps from the left to
right and top to bottom, the VDG incre.ments the RAM display address.

Data lnputs (DDO-DD7) - Eight data Iines are used to input data
from RAM to be processed by the VDG. The data is interpreted and
transformed into luminance Y (pfn 28) and color outputs dA and 68
(PIN I1 and PIN 10).

Power Inputs - VCC requires +5 voIts. VgS requires zeto volts
and is grounded.

Video Outputs (dA,68, Y, CHB) - These four analog outputs are
used to transfer luminance and color information to a standard
NTSC color television receiver via the MCL372 RF modulator.

LUMINANCE (Y) - This six 1eve1 analog output contains composite
sync., blanking and four 1evels of video luminance.

6A - This three level analog output is used in combination with
dB and Y outputs to specify one of eight colors.

Chapter 1
Page 3

d B - This four level analog output is used in combination with
6A and Y outputs to specify one of eight colors. Additionally,
one analog level is used to specify the time of the color burst
reference signal.

CHROMA BIAS (CHe) - This pin is an analog output and provides a
D.C. reference corresponding to the quiescent value of dA and dB.
cHB is used to quarantee good thermal tracking and minimize the
variation between 1372 and 6847.

Synchron !zing Inputs (i'lS, Cf,f)

Three-State Control - tlasl is a TTL compatible input which, when
low, forces the VDG address lines into a high impedance state.

Clock (cLK) - The VDG clock input (CLK) uses a 3.579545 rv|Hz
(standard) TV crystal freguency square wave. The duty cycle of
this clock must be between 45 and 55 percent since it controls
the width of alternate dots on the television screen. The
MCL372 RF modulator supplies the 3.579545 MHz clock and has
provisi-ons f or a duty cycle ad justment.

synchronizing outputs (F3,EE, nF) - Three TTL compatible outputs
provide circuits, exterior to the VDG, with tining references
to the followinq internal VDG states:

FIELD SYNC - trsl - The high to low transition of the rS out-
put coincides with the end of active display area. Duringr
this time interval an MPU may have total access to the
display RAM without causing undesired flicker on the screen.
The Low to Hiqh transition of FS coincides with the trailing
edge of the vertical synchronization pulse.

HORTZONTAL SYNC - tHS I - The EF pulse coincides wit.h rhe
horizontal synchronization pulse furnished to the television
receiver by the VDG. The high to 1ow transition of the HS
outputs coincides with the leading edge of the horizontal
synchronization pulse.

ROw PRESET - (RP) - An external character generator ROM may
be used with the VDG. An external four bit counter must
be added to supply row selection. The counter is clocked
by the nS signal and cleared by the nF "ignal.

Mode control Lines (rnput) (i/c,E/s,rNtText,GMo,GML,cllt2,css,
INV) - Eight TTL compatible inputs are used to control the
operating mode of the VDG. CSS and INV are changed on a char-
acter by character basis. The CSS pin is used to select between
two possible alphanumeric colors; when the VDG is in the alpha-
numeric mode and between two color sets when the VDG is in and
ful1 Graphic mode.

rNT/EXT

TABLE OF MODE CONTROL

Chapter I
Page 4

LINES (lNPUTS)

ALPHA/GRAPHIC MODE SELECTTONlNV GM2 GT41 GMOA/G

0

0

0

0

0

0

I

I

I

I

1

1

1

I

t/s
0

0

0

I

1

X

x

X

x

x

x

x

X

0

0

I

1

I

x

x

x

x

x

x

x

x

0

1

0

1

x

x

X

x

x

x

X

X

X

x

x

x

x

x

x

x

0

n

0

I

I

I

t

X

X

x

x

x

0

0

t

I

n

n

I

I

x

x

x

X

x

x

0

1

I

n

I

0

I

L2 dot character matrix box,
boxes per TV frame. This mode

Internal Alphanumerics

Internal Alphanumerics Inverted

External Alphanumerics (not used)

External Alphanumerics Inverted
(not used)

Semigraphics 4

Semigraphics 5 (not used)

64 x 64 Color Graphics (not used)

L2e x 64 Graphics (not used)

128 x 64 Color Graphics(not used)

L28 x 96 Graphics (not used)

I28 x 96 Color Graphics (not used)

I28 x J-92 Graphics (not used)

L28 x L92 Color Graphics

256 x L92 Graphics

[= DONrt CARE

Basically, the MPU places 8 bit codes into the screen memory area.
As the vDG outputs the composite video signal, it fetches from.
memory the appropriate 8 bit code for where it is up to on
outputting to the screen (like an X,Y coordinate) and interprets
the code based upon the selected VDG mode.

The details of each mode as implemented in the MP1000 are as
follows:

Ivla j or Mode I

Alphanrrmeri c/Semigraphics Mode

These modes always occupy an 8 x
and there are 32 x 16 character

Chapte r
P age

1

I2

is entered by changing frle to alphamode. Then all submodes are
selectable on a character by character basis.

Alphanumeric - internal ROM of VDG generates one of 64 ASCII
displays characters in a 5 x 7 box. One of two colors can be
selected with an inverse mode.

Semigraphics - I x L2 dot box is broken into 4 small boxes, each
of which are 4 dots wide by 6 dots high. The 8 x 12 box is
given a color and each of the 4 small boxes can be on (luminance)
or off (no Iuminance) with that color.

Alphanumeric Box - 5 x 7 ASCII character in an 8 x L2
box.

Semigraphics Box 4 small boxes (B0-B3), each 4 dots
by 6 dots.

Interpretation of
Semigraphics Mode

Alphanumeric

8 Bit S creen lv1ap Word in Alphanume ric/

Semi graphi c

I l
l_

For
Semi
Mode

I
Colo r
For
Large
Box

0
For
AIpha
Mode

Color

fnverse
and
CoIor
Se lect

8

H
ffiL2

6 Bir
Code for
ASCII Character

Luminance on (1)
or off (0) for
each Smal1 Box

Codes for Semigraphics

0
0
0
0
I
I
1
1

0
0
I
1
0
o
I
I

0
I
0
1
0
1
0
1

Dark Green
Ye I Iow
Blue
Red
Whi te
Cyan
Purple
Orange

Chapter]
P agre 6

Major Mode 2

High Resolution Graphics (128 x L92 or 256 x I92\

This mode is implemented similar to the alphanumeric mode except
the character shapes are not predefined in ROM like the ASCII
eharacters are. lnstead they are defined in RAM by the program.
The screen is mapped to have 32 x L2 character boxes. Each box
is 8 dots or 4 dots wide by 16 dots high.

The object shapes are defined in one section of memory, and the
imacre map in anothe r.

The system is forced to do 2 fetches from memory before sending
data to the VDG for interpretation. The first fetch gets the
object number, and the second gets the details of the particular
row of the obiect.

VDG TIMING (a. sus-s.r us) | |
t651 (63.5ps)

t {7.5ps-8.3ps) taV
(4.5ps -5

Y

ACTIVE VIDEO

COL. B

COL. A

VERT

-s
FIELD SYNC torsr

6-s
600ns)

2.0v

For more details in programming in
LEFT BORDER

this mode, see Chapter VIII
RIGHT BORDER

t ne I l(7.5tts - 8.3Ps)

t HBrur (1'l.6ps)

HORtZ. BI.ANK

MAGENTA

IoRANGE

6t

VDG
ADDRESS

DATA

STROBE

2.71ts- 3.2ps)

Chapter 1
Page 7

MCL37 2

The 1,1c1372 color TV video modurator is used to generate an RF TV
signal from baseband coror-difference and luminance siqnal
supplied by the VDG.

The MCl372 also supplies the system 3.579545 NrHz c1ock. The
device contains a chroma subcarrj-er oscirlator, lead and lag
networks, suppressed carrier DSB chroma modulator; and RF
oscillator and modulator.

rn the MPl000 the luminance, chroma and sound carrier signars
are inputted to the MCL372. The output is a modulated RF signal
whose carrier frequency is set by the LC tank circuit.

ROM

The ROM contains sequences of 1"1C6800 instruction codes and data.
It tells the MPU what to do, how to do it, and where to put it
when it's done.

The ROI'I contains basically 2 groups of programs. One is the
internal rocket patrol game and the other are known as house-
keeping routines. The housekeeping routines are a reset or
startup routines, keyboard strobing routines, interrupt servicing
routines, screen creation routines, sound generator routines,

The ROM used in the MP1000 is a 2K x 8 ROI{ but capability for
up to 8K x 8 is provided.

PIA

The PIA (MC6821) is a universal peripheral interfacing d.evice.
On one side it has bus signals to interface with the l4PU. On
the other it has two I bit ports which can be programmed as
inputs or outputs, plus 4 control/interrupt 1ines.

In the MP1000 it is used as follows

1) 4 lines are used to drive the MP1000 controller matrix
(keyboard and joystick) . The I lines of the PA Register are
the inputs from these keyboard lines. This is the same way
that calculator kevboards are read.

Alt keyboard decoding and debouncing is performed by the
software routines. The MPU sets the 4 PB lines so I of them
is logic level zero and the other 3 are logic level high.
Then it looks at the PA inputs. If any are low, then one of
the keys on the driver PB line is closed. ft then performs

Chapter I
Page I

decoding and debouncing of that key. If not, it changes the
4 pB lines so the next one is low with the other 3 high and,
again, looks at the PA inPuts -

2) PB6 - drives the Gl4O input of the VDG.

3) PB7 - selects alphanumeric or graphics mode.

4) CAz - controls the object latch register.

5) CB2 - generates a sounC oscillator

6) CBl - inputs field sync from the VDG and passes it to the
MPU as an interruPt signal.

Register controf of the PIA is given in Table 1-I.

},IEMORY AND ADDRESS MULTIPLEXING

The screen memory consists of lK x 8 bytes. It is comprised of
2 x 2LL4 (lK x 4) memory chips. Access time on these parts is
2OO Ns which is very critical.

Only the MPU can write data to memory, but there are 4 possible
addressing modes for reading. These are

Mode lilemory Address Input +A9 A8 A7 A6 A5 A4 A3 A2 Al A0
l

I MPU Address Bits A9 - A0

1 VA8 VA7 VA6 VA5 VA4 VA3 VA2 VA]. VAO

O VAI2 VAI1 VAIO VA9 VA4 VA3 VA2 VAI VAO

1 VD4 VD3 VD2 VDl VDO VA8 VA7 VA6 VA5

AN - Address bit from CPU

VAN - Address bit from VDG

VDN - Address bit from object latch

Mode 1 - Occurs during phase 2 always, and is the MPU time slot
to address memory. The cPU can read or write to memory.

Mode 2 - This is the VDG access during alphanumerics,/semigraphics
mode. This occurs during a Phase 1.

Ivlode 3 - This is the first access on graphics mode of the screen
memory map. The object number is latched halfway from
the start of phase 1 so it. can be used during the 2nd
half of phase 1. Data fetched during this mode does not
go into the VDG.

Chrnl.ar

P age
I
9

Determine Active CA1 (CB1) Transition for Setting

-lrt".rrpt ft"g IRO

b1 = 0; IROA(B)1 set by high-to-low transition on
cA1 {CB1).

b1 = i : IROA(B)1 set by low-to-high transition on
cA1 (CB1).

IROA(Bl 1 Interrupt Flag (bit b7l

Goes high on active transition of CA I (CB'l); Automatically
cleared by MPU Read of Output Register A(B). May also be
cleared by hardware Fieset,

CA1 (CB1) Interrupt Request Enable/Disable

Disables IROA(B) MPU
active transition. l

by CA1 (CB1)

Enable IROA(B) MPU
active transition.

by CAI

1. IROA(B) will occur on next (MPU generated)
transition of bO if CAI (CBl)active transition
while interrupt was disabled.

b7 b6 b5 b4 b3 b2 b1 bc)

rRoA(B)1
F tag

rRoA(B)2
F tag

cA2(CB2)
Control

DDR
Access

cA 1(CBl)

Control

IROA(B)2 Interrupt Flag (bit b6)

CA'2 (CB2) Established as Input {b5 = O) : Goes high on active
transition of C42 (CA2); ALttomatically cleared by MPU Read
of Output Register A(B). May also be cleared by hardware

CA2 (CB2l Established as Output (b5 - 1): IFOA{B)2
not affected bv CA2 (CB2) transitions.

O: Data Direction Register selected

Register selected

CA2 (CB2l Established as Output by b5 = 1

(Note that operation of CA2 and CB2
output functions are not identical)

cA2

b3 = O : Read Strobe With cA1 Restore

CA2 goes low on first high-to-
low E transition following an
MPU Read of Output Register
A; returned high by next
active CA1 transition,

Read Strobe with E Restore

CA2 goes low on first high-to-
low E transition following an
MPU Fead of Output Register
A; returned high by next
hi gh-lo-low E transition.

b3 = O : Write Strobe With CB i Restore

CB2 goes on low on first low-
to high E transition following
an MPU Write into Output
Register B; returned high by
the next active CB1 transition.

b3 = 'l : Write Strobe With E Restore

CB2 goes low on first low-to-
high E transition following an
MPU Write into Output
Register B; returned high by the
next low-to-high E transition,

Set/Reset CA2 (CB2)

CA2 (CB2) goes low as MPU writes
b3 = O into Control Register.

CA2 (CB2) goes high as MPU writes
b3 = 1 into Control Register.

CA2 (CB2l Established as Input by b5 = 0

CA2 (CB2) Interru uest E nable/

b3 = O: Disables IROA(B) MPU
Interrupt bv CA2 (CB2)
active transition.l

b3= 1: EnableslROA(B) MPU
Interrupt by CA2 (CB2)

- active transition.

1. IROA(B) will occur on next (MPU
generated) positive transition o{ b3
if CA2 (CB2) active transition
occurred while interrupt was
disabled.

Determines Active CA2 (CB2) Transition
lor Setting t;ierupr Fiag tRoa(BIZ-
(br 1 b6l-

b4 = 0 : IROA(B)2 set by high-to-tow
transition on CA2 (CB2).

b4 = 1 : IROA(B)2 set by low-ro-high
transition on CA2 (CB2).

Table t-
PIA Control Register

I

Format

ah a n J- a r Tvr^er ev -

Page 10

Mode 4 - This is the 2nd access in graphics mode. The row number
is determined by VA5-VAB (f of 16) and the object #
(f rom the latch) are sent to memory. The res.r.rLtingr data
is clocked. into the vDG. This mode occurs durinq the
2nd half of phase 1 during graphics mode.

MODE SELECTION

Depending upon whether the vDG is in graphics or alphanumericsmode, the memory i-s mapped differently. The two *.p" are shownin figure 3-2 in Chapter 3.

POWER SUPPLY

The power supply consists of an external A.c. adaptor and.
internal- circuit,s.

The A.C. input (approximately 9.6 volts) is rectified, filtered
and regulated to provide a D.C. voltage of 5 volts +/- 58.
This is used to supply all of the semiconductors in the MpISOO.
Maximum current capability is approximately 1 amp.

CARTRTDGE SOCKET

The cartridge socket provides all of the signats to the outside
world.

These pinouts are as follows
o o

Top View
a O

Pin I

Pin 2

Pin Signal

1D0
2A0
3 Dl
4Al-
5D2
5A2
7 cround
8A3
9D7

10 A4
11 D6
12 A5
13 D5
L4 46
15 D4

Pin 29

Pin 30

SignaI

t?

D3
A15
Re adrlWri t e
A8
Phase 2

A14_
EN 89
A:'
VMA
A13
+5 Volts
A10
A11
A12

Pin

1A

L7
18
l9
ZU
2L
22
23
z+
25
26
27
z6
29
30

Chapter I
Page 11

SYSTEM TII,lING

WRITE DATA IN MEMORY OR PERIPHERALS

Addrs3s
From MPU

Data
From MPU

2.4 V
0.4 v

N Data Not vatid

tacc =
IDSR =
tAH =
tH=
LDDW =

27O ns
530 ns
100 ns
20 ns
20 ns

165 ns

maximum
maxirnurn
maximun\
maxirnum
maximum
maxi-num

READ DATA FROM MEMORY OR PERIPHERALS

E

atfr

Addross
From MPU

VMA

Data
From MPU
or Periph€rals

N\\IN Dats Not varid

Chapter I
Page L2

ADJUSTMENTS AND TUNING

Inside the MP1000 there are several adjustments that can be
made

OUTF' TO ruE'TV SWIICH
'.Y. Sffi lEFril| ts

Al tC1

t""*ll
++.$--s
Vt-lh: ^z

l.r.g

L-J.fr;'l

SECTION

swc

IB
I REF

:-fl1
.,*f*.s'ifu"'.
R5 d-:-zc ^rc14

-JRl6-
R.t? GND

Chapter I
Page t3

R. F. O:UTPU.T

A. 1. The R.F. Output Frequency is set by L1 and C5. Ll is an
air core coil and will allow approximately a +6 MHZ adjust-
ment from the factory set frequency of 6L.25 MHZ (with
c5 = 39 PF). By changing c5 to 27 PF, the resonant
frequency becomes approximately 67 MHz (u.s. Channef 4).

2. The R.F. output goes through a sideband filter whose
bandwidth is approximately 6 MH?'. It can be adjusted by
tuning L2 to give a peak outpuL of the upper sideband.

B. Tuning Procedure for R.F. output (Channel 3)

1. Connect R.F. output cable of i4P1000 to spectrum analyzer
or calibrated f iel-d strength meter.

2. Switch MPl000 power on.

3. Adjust coil L1 to read 6I.25 MHZ (Tv Channel 3).

4. Adjust coit- L2 to get maximum output signal strength then
adjust the tuning point of L2 to I MHZ higher than TV
Channel 3 signal (ie, 62.25 MHz) or tuning of L2 to reduce
maximum output signal level by about 1 db. This also
gives a tuning point cl-ose to 62 .2 5 MHz .

CRYSTAL OSCIL],ATOR

A. Vcl is a variable capacitor to allow adjustment of the xtal
oscillator frequency.

This clock should be adjusted to give exactly 3.579545 MHz.

B. VRI allows an adjustment of the duty cycle. It should be
adjusted to give a duty cycle between 45 and 55%.

SOUND OSCILLATOR

The sound subcarrier frequency can be adjusted by tuning L3.
It should be adjusted to give an unmodulated frequency of 4.500
MHZ.

CHAPTER TT

THE MPA-IO

The l,lPA-IO base unit adds the followinq to the MP1000

1. An interconnection (ttre J Connector)
2. A main unit with 8K of RAM and keyboard
3. A power supply for the MPA-10 circuits and expansion
4. A tape deck for both audio and digital recording/pLayback
5. A cartridge with a Basic interpretor
5. Provision for expansion

J CONNECT,OR

The MP1000 and MPA-10 are electrically joined by the J Connector
(this is so named because its physical configuration looks like
the letter J).

Besides connecting the signals between the 2 units, it buffers
the address and data lines.

MAIN UNIT

The main unit of the MPA-10 has the followinq subsecti-ons

1. A memory section
2. A PIA
3. A decoding section

Thq memory is comprised of I - 8K x I dynamic memory chips.

The MC3242 chips multiplexes the 13 addresses to the memory as
7 row addresses, and 7 column addresses. The control of these
is determined by ROWEN. The MC3242 also performs the task of
memory refresh during Phase l- when the MPU is not addressing
memory. The rest of the memory section is comprised of timing
and control implemented using a TTL delay line to develop RAS
(row address strobe), CAS (column address st.robe) and ROVilEN.

Memory timing is in Figure 2-2.

The PIA is used to strobe the keyboard lines (similar to the
MP1000 strobing) and to control the tape system. A 3-bit code
is put into PB0-P82, and decoded by a 74LSI45 (1 of I decoders).
These become the strobe lines and are looked at by the PAO-PA7
inputs of the PfA. As in the I4P1000, all decoding and debounc-
ing of the keyboard is performed by the software. To deal with
tape are the following signals:

Chapter II
Page 2

PB3 - AUDEN - Enables or disables audio section of tape deck
PB4 - MOTEN - Enables or disables tape deck motor. This can be

overridden by the fast forward or rewind buttons
PB5 - WREN - Indicate to tape whether to read or write to digital

track.
PB6 - WRDATA - Digital data to tape deck from the MPU
PB7 - READDATA - Dicrital data from tape deck to the MPU

Decoding Section - The rest of the MPA-I0 base unit has address
decoding and expansion bus signal generation.

Keyboard - The keyboard consists of 53 keys. It is set up as
a'7 x 8 matrix. Atl reading of keyboard, decoding and debounc-
ing is performed in software.

Tape Deck/Power Supply

The MPA-10 has its own power supply. The supply receives an
A.C. input from the A.C. adaptor. 4 D.C. voltages are developed

+ 5 volts +58
+ L2 volts t5t
- L2 volts
- 5 volts

These supplies feed all the circuits of the MPA-10 plus go to
the expansion bus.

The tape circuits are comprised of 2 parts

Audio Section - This is for monural record or playback of audio
signals. The 2 changes from standard designs are :

a) A half track erase head that only erases the audio portion
of the tape.

b) An enable or disable to the aud.io section (from the MPA-10
PIA). This enables/d.Lsables both recording of audio or
playback.

Digital Section - Saturated recording is used to write digital
data. Sufficient current is driven through the record head to
fully polarize the tape in one direction or the other. A11
encoding of digital ones and zeros is performed in software.
The digital recovery circuits take the magnetic field from the
tape and recover them into logic levels which then go back to
the PIA. AII decoding of digital data is performed by the
software.

DATA BUSS

aa
f
dl

F

o

DATA BUSS

U.)(n
f
(D

F

o

DAIA.BUSS

M P1000
BUFFER

DATA IN / OUT

SKXSRAM

CONTROL
(n
u)
f
cD

aa
LrJ
E,oo

POWER
SUPPLY

TAPE

ADDRESS BUSS

DATA IN/OUT

PERIPHERAL
INTERFACE
ADAPTOR

KEYBOARD

+5V
+12V

-5V
GND

APF ELECTRONICS INC.
BLOCK DIAGRAM - MPA1O

E
o
o)

-oti5
et
5o
.98
lLo

I

r<

Chapter II
Page 3

THE ROM CARTRIDGE

This consists of a total of 12 kilo bytes of memory (comprised of
an 8K x 8 and 4K x I ROM chips). It contains the Basic inter-
preter as weIl as certain f/O driver routines. It plugs into
the ROM cartridqe socket of the MPA-10.

THE EXPANSION BUS

Provision is made to expand the system further. There is a
50 Pin bus that comes out through the expansion ports. Its
pinouts are shown in Figure D-3.

M EMORY TIMING

6z

r50

200

250

m

FTs

FF

Foffi

tl
fllsons Ifllsons I

| : i-| !_J_l
l200rd I

r

| 250ns | |

I

t 25Ons I

ltFrson' i

Figure 2-2

Addre s s

Hex

0000-o3FF 0-1023

CHAPTER TII

THE IMAGINATION I"IACHINE IIEMORY MAP

De cimal

0400-IFFF

2000-2003

2004- 3FFF

4000-5FFF

6000-6003

6004-63FF

6400-67FF

6800-77F'F'

7800- 7FFF

8000-9FFF

AO O O.BFFF

COO O- DFFF

EO O O- FFEF

FFF O- FFFF

LO24- 8 19 I

8L92-8195

8196-16383

15384-24575

2457 6- 2457 9

24580-25599

25600-26623

26624-30719

307 20- 327 67

32768-40959

40960-49151

49L52-57 343

57 344-655L9

65520-65535

Description/Useage

MP1000 internal memory. IK of memory
is used. See Figure 3'2 for details
of useage.

Each IK block is same as 00O0-03FF.

Peripheral interface adaPtor
(t"totorola I"lC6821) used in MPI000.
See Figure 3-3 for details.

Each 4 consecutive adress same as
2000-2003.

Internal RoM of MP1000
$:

Peripheral interface adaptor used in
MPA-10 section.

Each 4 consecutive address same as
6000-6003.

For external I/o devices.

Basic interpretor ROM cartridge (4K) .

For ROM expansion

Basic interpretor RoM cartridge (8K) .

Read/Write memory. See Chapter IV for
details.

Expansion read/write memorY

Not used

MC6800 reseE/rnterrupt vectors - ROM.

Figure 3-1

t

lK Internal Mp1000 Useage

$ = Hexadecimal; Otherwise Decimal

$0000
0000

384 Bytes

0383
0 17F

384
L2S Bytes

s11
snIFF

$0200
5]-2

512 Bytes

102 3

$03FF

Chapter III
Page 2

Graphics Mode - used. for
screen map.

AlPhar/Semi Mode - not used.

Not used by Basic inter-
pre to r

Used only by ROM cartridge
games as scratch pad and
stack area.

Not used by Basic inter-
pretor.

Alpha,/Semi Mode - used.
for screen image

Graphics Mode - used for
object shape definitions.

Figure 3-2

MP1000 Peripheral Interface Adaptor Addressing (Addresses in Hex)

$2000 - Data Register A

$2001 - Control Register A

$20C2 - Data Register B

92003 - Control Register B

*

I'igure 3- 3

CHAPTER

MEMORY USED

rV

AND ALLOCATED

The 8L92
is used
follows:

De cimal

HOW IS

bytes of memory from A0O0-BFFF (decimal 40960-49I51)
for aII storage except screen maps. It is allocated as

Hex

40960
V

4L7 27

4r7 28
V

41983

4L944
I
I

I
I

I
I

I
49151

SYSTEM VARIABI,ES, LABEL TABLES, SI}'IPLE VARIABLES

T/O BUFFER

PROGRAM TEXT
Y

COMPLEX VARIABLE STORAGE
V

FREE MEI4ORY
l

STACKS

PROGRA},I STORAGE

Program steps are stored in the following format:

First 2 bytes are for the line # (in packed BCD Code).

Then ASCfI and token code for statement with aIl spaces removed
except those in quotes, print using definitions or remarks.
Note all keywords are stored as a I byte token code. see
Appendix D for the comPlete 1ist.

Fi-naIIy, carriage return symbol (Hex OD)-

A4OO and A4OI are used t,o point to the next locations to store
a statement (ttrey start off upon initialization set with Hex A4O2)
Actual program storage starts at A4O2.

As an example of Program Storage, Ietrs enter the following
pro9ram:

10 PRINT L23

A000
Y

A2 FF

A300
V

A3FF

A400
I
I

I

I
I

t
BFFF

To look at memory
language monitor
cursor.

, do ^ W_28672. This enters the machine
mode. You now should get an * instead of the

._*

Chapter IV
Page 2

Using the M Command (Examine/Change l"temory) type:
r- You type these* M A400 of ona """ the contents of A4oo

The contents of A400 and A4or are A409. This is the next free
location. rf we went back to Basic and entered another state-
ment, its storage wourd start at A409. Before returning to
Basic, let's look at the next g memory rocations. Just keeppressing the slash Key. you will see the followincr:

Hex Hex
Address Data

Next, press / (Don,t press
This command will show the
contents.

A401 09

Return after the 44 is shown.) .
next memory address and its

Line Number - This is packed BCD Code
Line Number is 0010.

Token for print Command

ASCII Codes for 123

Carriage return end of statement Line d.elimiter

A402
A403

A4 04

A405
A406
A407

A'408
A409

00/
to/
er/

3r/
32/
33/

oD/
00

l0BcD digi
with most

VARI AB LE S

The variabre list or labe1 table (for 26 variable names) is
stored starting at hexadecimar Aoc3. Eachlrabel or name takes
9 bytes as follows:

First 2 bytes are for variable name. Variable names can be
Ionger, but only the first 2 characters are stored.

Then 7 bytes:

ff non subscript numeric variable (such as I), they are 7
byte value in packed BCD.

ts for integer part
significant digit as sign

4 BCD digits for
fractional part

*

Tf the vari.able is
the 9 bytes are as

First 2 Bytes of

subscripted type (dimensioned) , thenof the
fo Ilows

N arne Always 00

00 If Numeric
FF If String0A for single

0B for double
subscript
subscript Addre s s

Array i
in RAM Where

s Stored

Let's try an example

IOI_L4
20 Drr't A(6), B$(7,4)
30 J = L2345674.99
40 DrM C(1,I)

Clear the machine and enter the followinq:

If we go examine
The label table
using variables

Type RUN
Now leL's go to
cALL 28672
As opposed to examining single memory bytes at a time, we will
use the D Command to display 16 bytes at a time. we get

*DAoC3 49 00 00 00 00 00 I4 00 00
4L 00 DA A4 36 00 00
Examing the first 9 bytes only
The first 2 are 49 00. The 49 is ASCIf for the Letter I and
00 is nul1. So, the first entry in the table is the variable
I. The next 7 bytes are the value in packed BCD form. They
are ,00 00 00 00 14,, p0 99

T l

-

4 digits to right of
9 digits to the left L Decimal point decimal point
of decimal point is here

Let's continue with the next entry in the table. Its entry
starts at A0CC (A0C3+9).

Using the D Command again (DAOCG), Iet's look at the 9 bytes
starting at A0CC

the label table now, we will find it empty.
wiIl only contain entries when statements
are executed, not when they are keyed in.

the examine memorv mode

ASCII
is rrArr single

dimens i on

Add re s s
in memory
whe re
values are
stored

Indi c ate s
numeric
type

Chapter IV
Page 4

Continuing in the table, the next entry is at A0D5. The 9
bytes will be

42 00 0B A468 FF 00 00 00lllllrlASCII code-l ppal
-l

Add.ress L String type
for name is Dimension where variable
B value is

stored

If you continue on your own, you will find the entries for J
and then C.

MEMORY A}4OUNT USED BY VARIABLES

The pointers for where to store dimension variables are at
41009, 4I010 (Hex A031, A032). As dimension statemen!s are
executed, the pointers direct the interpreter where to allocate
space and are updated with each allocation.

A RUN command initialLzes 41009,41010 to have the same num-
bers as 4l-984 and 41985 respectively.

For all dimensioned variabl-es there are always 4 bytes pre-
ced.ing the actual stored values. These bytes contain the
actual dimens.ions of the array and are called the overhead.

Simple (numeric non subscript) - 9 bytes in name table only

String (single dimension) - 1 byte per character dimensioned
plus 4 bytes for overhead.

Numeric Array-single subscript - 7 bytes per dimension plus
4 bytes for overhead

Numeric Array-two subscripts - 7 bytes each element plus

String-two subscripts

4 bytes overhead. Ex: DIlil (5,4)
is 6 x 5 - 30 elements x 7 bytes
= 2LO ptr-us 4 overhead = 2!4 bytes

- I byte per character dimensioned
plus 4 bytes overhead.

CHAPTER V

ENTERING AND USING MACHINE LANGUAGE PROGRAMS

Machine Language Programs (those written in MC6800 code) can
be entered and used as Part of a Basic program. They also can
be saved on tape with a Basic program.

l,tachine Language Programs are useful where speed is essential
(and a program written in Basic is too slow) or to implement
routines that are not available in the Basic language.

ASSEMBLING AND

MC6800 programs
hand. assembled.
.EOl_EOr.

ENTERING I4ACHINE LANGUAGE PROGRAT4S

for machines with a cassette only have to be
Units with disks can use the APF Ass'embler/

Appendix A gives a table of MC6800 machine code. For more
details refer to a MC68O0 programming reference manual. Once
a program is assembled, it can be entered into the machine in
hexadecimal forrnat by using the machine Language Reference
t"Iode. This is entered by a Call Statement (See Appendix B

for details) .

METHOD 1 - THIS METHOD IS FOR AN ENTIRELY WRITTEN MACHINE LAN-
GUAGE PROGRAM.

Statement #10 wiIl always be CALL 42200 (422OO is Hex A4DB).
Then the machine program is entered starting at A4D8.

A problem that must be overcome is that a RUN command wiII
clear to "00'r alI memory]ocations from the end of program
storage to the end of memory. If we just type in statement
10 as above, then key in our machine language program, a RUN

command will wipe out the program slnce the Basic Interpretor
only knows about line 10 in the program and clears everything
after it to 0. The solution is very simple. After entering
the machine language codes, we change the end of Program
pointer so it points past our machine language program. The
end of program pointer is 2 bytes contained at 4400 and A401.
They must be set to BF and F0 respectively before giving a
RUN command. They also are saved to tape so once changed
they will stay changed.

As an example - to write a program to fiII the screen with a1
blue. This, of course, could be done with HLIN, but Machine
Code will be faster and serves as a simple example.

First reset the system and key in

10 CALL 42200
15 STOP

Chapter V
Page 2

This will be the entire Basic program and a Run Command will
execute it. (Don't type RUN yet since we havenrt entered. the
program at 422O0.)

Now enter the machine language mode (car,f, 28672) . The machine
program wiIl start at Hex A4D8 (decimal 422OO). The program
is:

ADDRESS CONTENTS INSTRUCTION COMMENT

A4DB CE LDX #$200 Load X reg with starting
screen address

.A4D9

A4 DA

A4DB

02

00

86 LDAA +$DF Load A reg with code for
blue square

A4DC DF

A4DD A7 STAA OrX Store A indexed

A4DE OO

A4DF 08 INX Increment X register

A4E0 8C CPX #$400 Is X equat to end screen
address yet

A4E1 04

A4E2 00

A4E 3 26 BNE -8 If not, do next address

A4E4 F8

A4E 5 7E JMP #$8e94 Jump back to Basic

A4E6 88

A4E7 94

Enter the machine language program by using the M Command.
See Appendix B if you are unclear on how to use this mode.

Before returni-ng to Basic, chanqe A4OO/AAOL to BF and F0
respectively so a RUN command doesn't wipe out your program.

MA40O BF /
A401 F0 Return Key

Chapte r
Page

Next return to Basic with G8894

Now run the program and then save it to tape if you want.

Note: If you try to list the program now, you will get gar-
bage on the screen. The List command will go from
beginning of program memory to end of program memory
(and we changed the end pointer) and interpret every-
thing as an ASCfI Code or Token.

METHOD 2 - YOU CAN USE A MACHINE LANGUAGE ROUTINE AS PART OF
A BASTC PROGRAM. YOU CAN ENTER ONE OR MORE MACHINE LANGUAGE
ROUTINES, ACCESS THEM FROM A BASIC PROGRAM AND PASS VARIABLES
BETWEEN THEM.

The way this is done is to enter "dummy" Remark Statements
in the program. In the comment field of the Remark State-
ment type in enough characters to allow space for the machine
program (it is suggested you use a single letter, repeated
in the Remark Statement so it is easy to find exactly where
in memory it is stored).

\7

1.

As an example, letts do
I single character code
screen will be found in
locationOwithacode.)

cE 0200 LDX# $0200

96 OO LDAA O

A7 00 STAA 0,X

08 INX

8C 0400 cPx #$400

26 F8 BNE -8

39 RTS

Adding up the number of
get L4.

a program to set the screen to have
fill it up. The code we put to the
memory location 0000. (We can POKE

The steps are:

so we can geE a
up. Donrt try
where it will 90
in first. The

Start of screen adding

Character to be put to screen
is stored at Location 0.

Store A indexed

Increment index register

Is X equal to. end screen address
yet

If not, do next address

Return from subroutine

bytes for the above routine, we

Write the machine language routine first
count of the number of bytes it will use
to figure the actual addresses in memory
since we have to put the "Basic" program
machine Ianguage program will be:

Chapter V
Page 4

2. Next we enter the Basic program

1O REM AAAAAAAAAAAAAA
20 POKE O,223
30 CALL 11111

Line I0 is the Dummy Remark Statement. It is in the space
occupied by Line 10 in memory that we will put in the
machine language program. We put in the Remark Statement
L4 letter A's (you could put in 14 of anything) - Line 20
pokes to Location O ,223. Location 0 is used by our machine
program to contain the value to be stored to the screen
(223 is Hex DF, which is a blue square). Line 30 is the
Call to machine language routine. Right now we have called
1flfl. We don't know yet exactly where in memory the
routine will be located, so again we use a temporary num-
ber (it will be a five-digit address).

3. We are now read.y to enter the machine language routine.
Type CALL 28672 then press Return Key. We enter the monitor
mode now to find where the Remark Statement of Line 10 is
stored.

Do a D A400 and you see

* A400 A4 27 00 10 94 20 20 41 4l
4L 4T 4L 4L 4L 4L 4L

These numbers are the 16 bytes of memory starting at A400.
The first 2 (A427) are the end of program storage pointers.

The next 2 (OO10) are the first line number in packed BcD
Code.

The 94 20 20 is the token code for a remark command (A
remark uses 3 bytes for token storage) .

Next we see a series of 4I. This is the AscIr Code for the
Ietter A, and it is here we want to put our machine routine.
Since the first 4l is the 8th byte in the display, its
address is A4O7. Going back to our machine language rou-
tine, we can now fill in address

ADDRESS CODE

A407 CE 0200
A40A 96 00
A40C A7 00
A40E 08
A40F 8C 0400
A4L2 26 F8
A4L4 39

Chapter V
Page 5

Press Return and type

M A407 You see the data is 4I. Change it to CE and hit
/. You will see the next line.

A408 4l Change this to 02 and hit /.

Continue wit,h this til1 you enter the 14 bytes of program.

After keying in the program, it is a good idea to check it.

Type DA407 CE 02 00 96 00 A7 00 08 8c
04 00 26 F8 39 0D 00

If the memory matches the above, press Return. If not,
go to the incorrect address (use the M Command) and correct
it.

Letrs return to Basic.

G8894

4. We are almost ready. We just have to change the Cal-I
Address in line 30. Our program starts at A4O7 which is
4L99I in decimal.

Change Line 30 to be

30 cALr, 41991

5. If you followed everythJ-ng OK, then let's give a Run
Command.

RUN Return

The screen should have turned blue almost instantly, and
the cursor is back. (ftre cursor is blue, so press Return
a couple of times to clear the screen.)

6. You have now successfully done a machine language routine.
It can be saved on tape with the rest of the program (just
give a CSAVE).

You can add to the program. Just don't add anything in front
of Line I0. That, would shif t Line 10's code in memory r drrd
the CALL address in Line 30 would become wrons.

Some Guidelines on Writing Machine Language Routines

I. When writing a program in both Basic and CALLS to Machine
routines, the most important thing is to PLAN IT Ot T VERY
CAREFULLY. It can be very difficult to make changes later

Chapter V
Page 6

on. Once a Remark Statement is put in and then replaced by
a machine routine, do not put in any "Basic" Statements
with lower line numbers than the Remark Statement. An
insert of a "Basic" Statement will shift all memory con-
tents upward, and you will have to change your CAIJL State-
menc.

2. Leave ext,ra places in a Remark Statement (at least 3). If
you later find you have to add something in machine code,
you can do a junp to subroutine if you leave room.

3. The end of your routines should be an RTs (Return from
Subroutine) and not a jump to 8894

4. If you want to access dimensioned variables in machine
language, FORCE them to be located where you want them.
By Poking 41009 and 41010 prior to a Dimension Statement,
you can force where a variable is located.

5. The next 3 chapters have lists of several machine language
routines that rnight be usef ul .

CHAPTER VI

SOME USEFUL ROUTINES

You might find that there are some routines or functions not
built into the Basic interpreter that you need. Most can be
implemented using either PEEKS/P}KI'S/CALLS in machine language
or with subroutines written in Basic.

I'PRINT AT''

If you want to print anywhere on the screen, use a routine
that changes the cursor pointer and do a GOSUB to it before
doing a Print Statement. The screen resides at locations 512-
1023. Remember, you can print anywhere in memory, but only
5L2- 1023 appears on the screen.

The cursor is stored as 2 bytes in memory focations 40960 and
40961 (Hex A000/A001).

10 GOTO 100
20 REM: ROUTINE TO MOVE CURSOR POS
25 PoKE 4O960, INT (Cu/256) : PoKE

I00 FOR I = 1 TO 32: PRINT: NEXT:
lIO INPUT ''LINE AND COLUMN TO START
120 cu = 5I2 + L * 32 * C: GOSUB 25
L25 INPUT "MORE", K: GOTO 100

Line 100 - wi.l 1 clear the screen to

ITION TO VALUE OF CU.
4O961, CU: RETURN

REM CLEAR SCREEN TO GREEN
PRrNT"r L, C

: PRINT I'HI II

aIl green.

Line 110 - asks for a horizontal line
vertical column number (C) where you
at. It converts these to the actual
screen. 5L2 is the top corner of the
the number of Iines (L) times 32 (32
add the column

number (L) , and a
want to start printing
memory location on the

screen so we add to it
characters per line), and

various numbers for L (between 0

and 3I) . After their entry you wiI
on the screen. The program next

Return to run again.

Line 25 - we enter line 25 with the variable CU having the
memory location we want to change the cursor pointers to have
Since the cursor pointer is a double byte location (it takes
2 bytes to point to a memory location between 0 and 65536),
we have to break CU into 2 numbers. The most significant
number (into 40960) is the number of 256's contained in CU.
we get this by taking the integer portion of CV/256. Into
4096I we have to POKE the remainder of dividing 256 into CU.
The POKE instruction automatically does this. So, into 4096I
effectively goes CU - INT(Cu/256) r, 256

Run the program and enter
and 15), and C (between 0

see the word rrHIrr printed
says MORE?, and just press

Chapter VI
Page 2

HOW MUCH MEI4ORY IS LEFT FOR PROGRAMS AND VARIABLES

Program storage starts at 4L986. Dimensioned vari-able storage
usually occurs after the Iast statement.

4L984, 41985 point to next location to store a step
41009, 41010 point to next location to store dimensioned variables

Using the Above:

Amount of space used for program and variable storage is
AMT = (pnnr (41009) *256 + PEEK (41010)) - 41986

Amount of program space only is
AMT = PEEK (41984) x 256 + PEEK (41985) - 41986

Amount of free space left is
AMT = 49151 - (pner (41009) rc256 + PEEK (41010))

t
End of memory for an 8K system

USING KEY $(O) FUNCTION

The purpose of KEY$(0) is to get an input from the keyboard.
without waiting for a Return Key (which is needed in an input
statement). KEY$ does not debounce a key, nor does it put
the depress-ed. Key's code to screen. Below is a program uti-
lizing KEY$(0) and does the following:

t. Will wait in a loop for a key to be pressed.

2. Will put the character code to the screen. If it is a
Return, the program will stop.

10 Drl4 A$ (1)
20 coTo 100
30 A$ = KEY$ (0) : IF A$ = tt rr THEN 30
40 [= ASC(A$): RETURN

100 GOSUB 30: IF [= 13 THEN STOP
IIO PRINT A$
120 IF KEY$ (0) rr rr THEN 120
130 GOTO 100

Line 10 - dimensions a strincr variable A-

Line 30-40 - The function KEY$(0) is cafled and its value is
assigned to A$. If A$ i-s \IULL (empty) , then no key is pressed,
and we remain at Line 30.

Chapter VI
Page 3

When a key is pressed, the program moves from Line 30 to 40
- where the ASCfI value of the key pressed is assigned to

variable A. Then the subroutine returns.

Line 100 - goes to subroutine 30 to get a key input. If A
(tfre ASCII value of the key pressed) is I3, then it was a
Return Key, and we stop the program.

Line lI0 - prints the value of A$ (ttre key pressed) . Note
the use of the semicolon so we will print on the same line
each time a key is pressed.

Line 120 - checks that the key has been released.. Without
Line L2O you will find it very difficult to press a key and
get only one entry (try the program without Line 120).

Line 130 - goes to Line 100 and repeats the process.

TRIG FUNCTIONS

Although Trig Functions are not part of APF Basic, they can
be easily implemented as subroutines utilizLng series approx-
imations.

The series approximations are

S s3 c5 S7sIN(s)=i-!1+---

r a s2 s4 s6 s8uub(5,,=r-21*4r-6!*gt

e3 l*s5 i:*q7rAN(s)=s*;-*?*ffi

The angle S is in radians and less than or equal to Il/2 (9Oo).

A simplified implementation is as follows:

10 coro 100
20 Y = S - S*S*S/6 + S*S*S*S*S/l-20 - S*S*S*S*S*S*S/5040:

RETURN: REI"I

lOO INPUT ''ANGLE '" S1
ftO IF 51(= 90 THEN IF S1) = O THEN 130
I2O PRTNT '' ILLEGAL ANGLE '' : GOTO lOO
130 g = 3.L428 * S1,/I80
140 GOSUB 20
150 PRINT "ANGLE" ; S1, "SIN" ; Y: GOTO 100

Chapter VI
Page 4

Line 20 - does the SIN calculation of the Angle S (in radians).
For a speedier calculation, the vafues of 3!r 5! and ! have
been put in instead of calculating them each time.

Line 100 - inputs the angle (in degrees).

Line 110 - checks that angle is in range of O to 9Oo. This
line could be replaced by a calculation that converts the
angle to the first quadrant (O - 9Oo).

Line 130 - converts the Angle SL which is in degrees to an
Angle S in radians.

Line 140 - goes to subroutine at Line 20 and returns with Y

as the SIN(S) .

MOVING THE DIMENSTON POINTER

The pointer that directs Basic where to allocate space for
dimensioned varj-abLes is contained in 2 bytes at Locations
41009 and 41010. By using POKES, these pointers can be
changed.

One use of this is there are 5I2 bytes of memory (Locations
0-511) that are not normally used by Basic. You can force
dimensioned variables to be stored here and gain 5L2 bytes of
memory space. Example:

5 cosuB 50
10 POKE 41009, 0: POKE 4I010, 0.
20 Drrvt A (10), B$(99).
25 GOSUB 50
3O STOP
50 pRrNT PEEK (4]-984) , pEEK(41009), pEEK(41985) , pEEK(41010) :

RETURN

When a RUN Command is given, the dimension pointers are set
equal to the end of program storage pointers.

(41009) = (41984)
(41010) = (41985)

Line 5 - goes to subroutine at 50 and prints these values.

Line 10 - changes the dimension pointers, and Line 20 uses
these new values for the Dimension Statements.

Line 25 - goes to subroutine 5O again. You can see the
dimension pointers have allocated space for A, and B$.

Chapter VI
Page 5

STRINGS

There are several features of APF's Strings that might differ
from some other Basics.

1. AII Strings must be dimensioned before useage. Otherwise
the error message "ILLEGAL VARIABLE" will occur.

20 INPUT AS

Running the above will produce an error message. You must
add Line 10 as follows

10 DIM A$ (X)

Where X is the number of characters plus I that you want
to allocate space for A$. x must be a number (not a

variabl-e) and be less than 100.

2. You can dimension an array of Strings

10 Drlvl B$ (3,10) - This dimension is 4 Strings, each with
eleven characters.

3. You can designate the starting position of a String variabl-e
in a statement.

Ex:

10 DrM A$ (tO): REI'I Dimensions A$ as 1l characters.

20 rNPUT A$(4): REM - This means to get an input from the
keyboard and place it in A$ starting at
the 5th character position.

30 INPUT a$ (O) : REI,I start inputting to the f irst character
po s it ion

40 INPUT A$: REM - This is a default condition to start
at the first character Position

4, A String always has some valu'e assigned to each of its
character positions. The values are what is contained in
memory where the String is dimensioned at. Usually the
Dimension Statement places the storage area in memory that
has been cleared to 0. A zexo is a nuIl character and is
non-printable. When assignments of values are made into
the String, they remain until another assignment is made.
This means that Strings are not cleared to null automati-
calLv.

Chapter VI
Page 6

Ex:

10 DIM A$(5): PRINT A$
20 A$ = "ABCDEF": PRINT A$
30 A$ = "GHI": PRINT A$

Line 10 Dimensions A$ and the Print will show nothing (nul1s
are non-printable characters).

Line 2O sets each character position of Ag and prints it

Line 30 will change only the first 3 characters of Ag.
The Print Statement will print GHIDEF.

If you want to clear out a string variable, then assign
it to a clear or null string.

Add Line 15

15 DIM NULL$(5): REM nul1 is dimensioned and contains nu1ls.
I f we never set it egual to anythi-ng, it
will remain with nu11s.

Add Line 25

25 A$ = NULL$: REM - This causes A$ to be cleared to nulls.

5. STRING CONCATENATION AND DISSECTION

String concatenation can be implemented by using the
IJ-E;N .U UnCE. IOn

10 DrM A$ (5), B$ (5) , C$ (11) , NULL$ (11)

20 A$ = NULL$: B$ = NULL$: C$ = NULL$

30 INPUT A$, B$

40 C$ = A$: C$(LEN(A$)-1) = B$

50 PRINT A$, B$, C$: GOTO 20

Dissection (right part, left part, etc) can be done in a
similar manner.

MACHINE LANGUAGE ROUTINES

There are a number of built-in subroutines in the Basic ROMS
which can be accessed. Most of these cannot be calIed. d.irectly
from Basic since they either require the A, B, or X register
of the MC680O to be set up with a certain value, or return
with a result in the A, B or X register. Therefore, routines

Chapter VI
Page 7

have to be written to deal with these registers and make their
inputs and outputs accessible to Basic. For the purposes of
this manual we wiII keep these accesses very general purPoses
(to enter the machine language routine, CALL 28672') .

Note: AII addresses are in hexadecimal.

1. MOVE MEMORY BLOCK

USE: to move a block of d.ata from one section of memory
to another.

LIMITS: block of data is less than or equal to 256 bytes

SETUP: A Register - none
B Register - number of bytes to be moved
x Register - none

Memory AO29/AO2A - first address to move to
Memory A02B/AO2C - first address to move from

CALL: JSR 77OO (sex)

RETURNS: none

EXAMPLE: will move block of 10 bytes stored starting at
Location Hex 50 to screen at Location Hex 0300.

first enter the data - we will use the ASCII Codes for the
first 10 letters of the aIPhabet.

*005O 4L/ (nnu ASCII for 'A')
o051 42/
0053 43/

etc.

Now the program - we will locate the Program starting at
Address 0000.

0000 c6 LDAB#OA 10 bytes to be moved
0001 0A
0002 BD JSR 7700 go to move routine
0003 77
0004 00
0005 7E JMP 7000 Jump back to monitor mode
0006 70
0007 00

Next setup AO29 - A02C

A029 03 To Address
A02A 00
A02B 00 From Address
A02C 50

Run the program by typing

c0000

Chapter VI
P ag'e I

Instantly you will see the first 10 alphabet characters
appear on the screen in reverse video, and. the program
junps back to the monitor mode.

2. CLEAR SCREEN TO BLACK

USE: to clear screen to all black
LII,IITS: none
SETUP: none
CALL: JSR. 4296
RETURNS t r6n-f

3. SET SCREEN TO HAVE ALL ONE CODE

USE: similar to 2, but instead of Hex 80 (black character) ,
can fill screen with any character code.

LIIvII TS - none

SETUP: A Register - code to be put to screen.

CALL:. 4298

RETURNS: none

Ex:

*M0000 86 LDAA #s8F
0001 8F
0002 BD JSR $429e
0003 42
0004 98
0005 7E JMP to monitor
0006 70
0007 00

4. INPUT FROM CONTROLLERS

USE: to check if a key is pressed on either hand controller

LIMITS: none

SETUP: none

CALL: JSR$4IBE - left hand controller
JSR$4ID9 - right. hand controller

RETURNS: carry flag of statgs register
If cIear, no key pressed.
If set, key pressed and ASCII code for key is contained.

in memory Hex 01F2

Chapter VI
Page 9

5. INPUT FROM KEYBOARD

USE: to get key input from main keyboard

LIMITS: will not return a shifted keyword (CTRL Key and
top 2 rows).

SETUP: none

CALL: JSR S80CF

RETURNS: ASCII Code for key pressed in A register
If (A) = 0, then no key pressed

6. o:o ro rNDEX REGTSTER

usE: alrows a number to be added to the index reqister

Lf MITS: number to be added is 256 or l_ess

SETUPXReg-setup
\ A Reg - value t.o be added

CALL: JSR S7718

RETURNS: A Register added to X and result in X

7. OUTPUT TO SCREEN

usE: will take a code from the A Register and output it
to the screen.

A. rf token code, it wil-l decompress it to actual token
word (ex $94 will go to screen as REM) .

B. If scroll_ing necessary, wilI scroll screen.

C. If backspace code, wiIl do a backspace.

D. If carriage return, d.oes a return and scroIl if necessary.

SETUP: A Register - code to output
BrX - none

$A000/9A001 - screen address

CALL: JSR S8473

CHAPTER VII

THE TAPE SYSTEM

The Imagination Machine tape system was designed to be simple
reIiable, fast, and versatile. This chapter will give some

more explanations and some further possible uses of the tape
system.

First the Basic commands and what they do

CSAVE - This is the save to tape command and the sequence of
events is

1. The motor and audio are enabled. With the audio enabled,
you can hear the digital data through the speaker when it is
recorded. you can also do audio/recording through the mike
jack at this time-

2. The message to REWIND TAPE, PRESS PLAY THEN RETURN is put
up. There is a 2 second delay before this occurs to aIlow
the motor to get up to fu1l speed. The computer will now

wait ti11 the RETURN KEY is pressed before continuing.

There will now be approximately 1I seconds of "Header" put
out to the tape. This is to al1ow during the read sequence
of syncing uP with the data.

After the header, 5l-2 bytes will be put out. Depending upon
the mode flag (location 4L452) , these 5I2 bytes will come

from O-511 (f1d9=non 6 number) or from 5L2-1023 (flag=91 '

The next block of data put out will be the contents of user
RAM in the system. The computer witl start with the byte at
41984 (Hex A40o), and send out consecutive bytes tiIl it
reaches the indicated end of memory. The end of memory
pointer is contained in locations 4L446-4L447. This means
that program storagfe as well as data storage is saved to
tape.

As data has been sent out, a check sum has been calculated'
This check sum byte is next written'

The tape motor and audio are disabled, and the computer
returns to the keYboard mode.

cLoAD - This is the opposite of csAVE and will bring daLa/
information back to the comPuter'

1. The motor and audio are enabled. Any recorded audio can
heard during ptayback through the built-in speaker.

4.

be

2.

3.

The message to REWIND TAPE, PRESS PLAY THEN RETURN is put
up. Again there is a 2 second delay from motor enable tilt
this message occurs. The computer now waits for the return
key.

Chapter VfI
Page 2

l_nThe computer will now wait 6
sync. This is to allow the
head as there is a chance of
start from the leader.

seconds before trying to get
tape leader to fully pass the
the computer getting a false

q

Next the computer syncs up with the tape data and puts the
first 512 bytes to the screen. This gives the picture you
see loaded to the screen from APF made tapes.

After the screen is fi}led, the computer will read data and
put it in memory starting at 4L984. It will keep looking
for data until it has fi1led up all available user memory
(indicated by 4L446/41447) .

Finally it looks for a checksum byte. White it has been
reading it has recalculated a checksum and then compares
the read and calculated checksum. If they match, it prints
ttoK. tt

The motor and audio are turned off.

CALL ROUTINES

There are several routines that can be called to
instead of using CSAVE and CLOAD.

use the tape

second delayCALL 34040 -

CALL 3406I .

CALL 34138 -

CALL 34225 -

Motor and audio are enabled with a 2

No message is put to screen.

Motor and audio are turned off.

will put out header, 5J-2 bytes from either 0-51I
or 5J-2-1023, memory data, and checksum.

Will read from tape. First 5L2 bytes go to screen,
then data goes to memory. The checksum is checked.

SAVING THOSE FRONT PICTURES

A11 APF prerecorded programs have a front picture that is loaded
to screen. There are several ways that this can be done.

A. A picture can be created in memory 0-511 by a program. By
moving the cursor pointer, all print statements can be print

Chapter VII
Page 3

in 0-511. Using POKES, colors and shapes can be added. Once
the picture is placed there r you can load a tape with your
program (it wonrt d,estroy memory in 0-511) . Next change
47452 (the flag) to non-O (such as 255), then do a CSAVE.

As example (remarks are not necessary to type in)

I0 CU=O: GOSUB 500: REIvI MOVE CURSOR TO O

20 FoR r=1 to 16: PRrNT sPc(32) i i NEXT r: REM ALL GREEN scREEN
30 CU=256: cOSUB 500
40 PRINT SPC(9); "THIS IS A TEST"
50 FOR I=0 TO 31: POKE I I t9l: NEXT I : REIvI RED SQUARE
60 FoR r=478 to 5rr: POKE r, 255t NExr r: REM ORANGE seuARE
70 CU=512: GOSUB 500: REM MOVE CURSOR BACK TO SCREEN
80 END

500 PoKE 40960, INT (cv/256)z PoKE 4096Lt cU-(INT(cu/256)*256)
5 10 RETURN

Run the program

Now
POKE 4L452,255 - change the flag
Do CSAVE, then try a CLOAD

B- Many of APFts front screens have been created using our
Artists & Easel program. After ARTrsrs AND EASEL is used to
create a picture, it is rel-ocatedin memory from O-511 (using
a machine language move routine) . Then the tape with tlr.e
program that goes with that screen is loaded, 4L452 is changed
and then CSAVE is done.

USING THE TAPE TO LOAD NEW SCREEN FROM A PROGRAM

rt is possibre to have a program running and periodically load
a new front screen from tape and then have the program-continue.
(with a little imagination other things can be selectivery
loaded.)

since t'he tape system saves and loads the screen plus only
TNDTCATED PROGRAM IvlEMoRY, we can change.d TNDTCATED pRocRAM
MEMORY.

End of memory is contained in 2 bytes at 41446 and. 41447.

rt's best to illustrate this in an example. we wirl create a
picture, save j-E, create a second picture and aLso save it.
Then we will read the picture in, wait for a return key, and
then read the 2nd picture in.

Chapter VfI
Page 4

TO CREATE AND SAVE THE PICTURE

10 CALL L7O46z REM CLEAR SCREEN
20 SHAPE=15, REM CREATE SCREEN THAT IS COLORED HLIN
30 FOR I=0 TO 15
40 COLOR=I: HLIN 0, 31, I : NEXT I
50 GOSUB 5OO: REM GOTO ROUTINE To SAVE
7O CALL L7046. REM CLEAR SCREEN
80 FOR I=O TO 3I: REM CREATE SCREEN THAT IS COLORED VLIN
90 CO.LOR=I: VLIN O, 15, T: NEXT I

100 cosuB 500
110 END: REI'I END
500 POKE 4L446t 164: POKE 4L447,1: REM TO CHANGE END OF MEMORy

, POINTER To 41985 (Hex A40t)
510 CALL 34040: CALL 34138: CALL 34061: REM MOTOR ON, SAVE,

MOTOR OFF END MEMORY POINTER
52O POKE 41446, 191: POKE 4l-447, 2552 REM CORRECT END OF MEMORY

POINTER
530 RETURN

Enter the program, place a tape in the deck, rewind it and press
pfay (it won't start without a motor enable). Now run the
p ro gr am.

The second part is to load the screen back in. clear the
machine (press reset), then

10 GOSUB 500: REM GOTO ROUTINE TO READ FIRST SCREEN
-- 20 POKE 40960,0: INPUT R: REM MOVE CURSOR AND WAIT FOR RETURN

KEY
30 GOSUB 500: REM GO READ SECOND SCREEN
40 END

500 POKE 4L446, 164: POKE 4L447, L: REM CHANGE END MEMORy
POINTER

5I0 A=PEEK (41984): B=PEEK (41985): REM SAVE TRUE END OF
PROGRAM
IT WILL BE CHANGED WITH LOAD

52O CALL 340402 CALL 342252 CALL 34061-: REM: READ TApE
530 POKE 41446, 191: POKE 4L447 , 255 REIvI: CHANGE MEMORv END

POINTER BACK
540 POKE 4L9841 A: POKE 41985, B: REM: CHANGE END PROGRAM PQII{TER
550 RETURN

Enter the program, then place the tape in deck, rewind and press
play.

Now run the program. After the first screen is loaded press
Return to get the 2nd picture.

Chapter VII
Page 5

TO SAVE PROGRAM DATA ON TAPE

When a CSAVE command is given, all of user memory is saved. This
means all program statements as well as dimensioned variables.
You can enter data into a program, and it can be saved on tape
with the program for future use. One problem that has to be
overcome is that a RUN command clears all memory from the last
statement to the end of memory. Norma1ly a RUN command clears
all variable space to zero. There are several ways to get around
t.his.

A. Using a GOTO statement instead of a RUN command to start a
program will not clear the variable area. If the first state-
ment of your program is 10, then start the program htith GOTO

t0 instead of RUN.

The only thing else to note is that after a system reset, a
RUN command must be executed to perform system initialization,
otherwise erroneous messages occur. Onee a RUN conmand has
been executed, a GOTO may be given as a direct command..
Several of APF| s program tapes use this method to save and
retrieve data.

B. An alternate and more general way to save d'ata is to

I. Determine amount of memory required f or d,imenirioned
variables.

2. Have the first statement of the program do:
PoKE 41009, PEEK (4L984) - X: POKE 41010' PEEK (41985) - Y

where x t 256 + Y = amount of memory required for variables

3. Before the first RUN of the program
POKE 4L984, PEEK (41984) + X: POKE 41985, PEEK (41985) + Y

41984, 4L985 - points to end of program storage
41009, 41010 - points to where next variable is stored

As an example

10 POKE 41009, PEEK (41984) - I
20 Drl,r NA$ (30)
30 rF NA$ < > "' THEN 100
4O rNPUT TtNAME "., NA$
50 CSAVE: STOP

100 PRINT 'TNAME "; NA$
110 STOP
KEY IN THE PROGRAM

POKE 4I9e4, PEEK (41984 + 1)
RUN THE PROGRAIVI

Chapter VIr
Page 6

The first time you RUN, NA$ is not set to anything and the pro-
gram asks for an input. Then it saves the program and data to
tape.

To see that data was retained:

Reset the system, type CLOAD and l_oad the tape.
RUN the program (type RUN). your entry for NA$ was saved and
is printed.

Chapter VII
Page 7

SAVING AND RETRIEVING SELECTED AREAS OF MEMORY

Using CALLS, PEEKS and POKES it is possible to save and retrieve
selected segments of memory. (A program can bring into memory
more data or statements from tape.) To do this, the foIlowJ-ng
CALLS and PEEKS are needed.

Hex Decimal Ope ration

$84F9 34040 CALL - Enable motor and audio. Wait 2 seconds,
then returns.

9850D 34061 CALL - Shuts off motor and audio.

$8550 34141 CALL - Puts out 11 second header. Then saves -
memory contents to tape. Memory area
saved is indicated by "High," "Low."
A1 so mem end must equal the same as ttHigh. "

$854e 34228 CALL - Reads from tape to memory. Where it goes
in memory is set by "Lowr" "High."

$A007 40967 Low - 2 bytes indicating lowest byte of memory
to save or read to tape.

$4009 40969 Hiqh - 2 bytes indicating highest byte of memory
to save/read to tape.

$A1F6 41446 Mem End - 2 bytes indicating end of rnemory

Letrs illustrate this in an example (It's not necessary to key
in Remarks)

10 Drr{ A(5) Rem set up array space

f5 Print "Place tape in deck and engage" Rem print tape message

20ForJ=Ito3 Rem will do loop 3 times

30 For t = O TO 5: Input A(I): Next 1 Rem get inputs for 6 elements
of Array A.

35 GOSUB 2OO

40 CALI, 34l4]-z CALL 34061

Rem: Go set up high, Iow,
mem end.

Rem: CALL save routine,
then stop motor

50 GOSUB 300 Rem restore mem end value

60 Next J Rem: get 6 more values
for A

g0ForJ=lTO3

90 GOSUB 200

100 cALL 34228

I10 CALL 34061

L2OForI=0TO5

I30 Print A(r); " ";

140 Next I

150 Next J

160 End

2OO POKE 40967 , PEEK (4\984
2L0 POKE 4O968, PEEK(41985
220 POKE 40969, PEEK(4I009
23O POKE 4097O, PEEK(41010
240 POKE 4L446, PEEK(41009
25O POKE 41447, PEEK(41010
260 CALL 34O4O: Return

300 PoKE 41446, 191
310 POKE 4L447, 255
32O Return

P1ace a blank taPe in the
for A(I) when asked. The
values each to use for Arr
will save them to tape.

When the 3 groups are ente
and you will see the Progr
groups and disPlaY them.

Chapter VfI
Page 8

Rem: wait for rewind

will read back 3 groups
of data

Go set high/lowlmem end

Go read from tape

Stop motor

Print out values of A

Go get next group of
d.ata from tape

Rem set low pointers to end
of program memory
Rem set high pointer to
end of variable storage
Rem set memend to same

L.i -1^dJ IrI9rr

Rem start motor and return

Rem: restore mem end

deck and RUN the program. Enter values
program will ask for 3 grouPs of 6

ay A. After you enter each grouP it

red and saved, follow the directions
am retrieve from tape each of the 3

7O Input "Rewind tape, Press play, then return key ", K

CHAPTER VIII

HIGH RESOLUTION GRAPHICS

The Imagination Machine has two modes of high resolution graphics

MODE I - L28 x l.92 dots of resolution with
with 4 colors per set.

MODE 2 - 256 x l-92 dots of resolution with
with 2 colors per set.

2 color sets, each

2 coLox sets, each

These are, in addition to the regular alphanumerics/semigraphics
mode, used by the 'rBASICrr operating system. Both graphics modes
are implemented as an "OBJECT DEFINED SYSTEM." An object or
shape is d.efined, and then the screen map shows which object.
shape is placed in object boxes of the screen. This is analogous
to the regular alphanumeric mode where the object shapes - the
alphanumeric character seE - is pred.efined in ROM as the AScII
character set. You place the object number (tne AscII code)
in the screen map and the VDG decodes the object number into
the appropriate video signal. The main difference in the graphics
mode is the object shape is defined by the programmer in read./
write memory. Therefore we need 2 sections of memory - one for
object shape definitions, the other for a screen map.

In either Mode 1 or Mode 2 the screen map is divided into
32 x L2 boxes (384 total). Any one of the defined object shapes
can be selected to be placed in any of these 384 boxes, and each
box must have an object number assigned to it.

Each box is subdivided into 16 rows, each row with either 4 dots
wide (mode 1) or 8 dots wide (mode 2) .

Each object shape will require 16 bytes for its definition (1
byte for each of the 16 rows, and each byte is interpreted as
4 dots wide or 8 dots wide depending on which mode is used) .

There are 5J-2 bytes of memory allocated for object shape defi-
nition. Since each object shape requires I6 bytes for its defi-
nition, there can be a maximum of 32 objects that are defined at
any one time. Since they are in RAM, they can be redefined.

THE I4AP AREAS

The object shape definitions are stored in memory from Hex
2OO - 3FF. The first 16 bytes are the definition for object,
number O, the next 16 bytes for object #1, etc. Figure 8-1
shows the object shape map.

Chapter VIlI
Page 2

Figure 8-1 OBJECT SHAPE MAP

Ad.dresses are in hexadecimal

*Ob ject 0:

object 1:

Object 2z

Object 3:

Object 4z

ob ject 5:

Object 6z

Object 7 z

object 8:

Obj ect 9 :

Object A:

Object B:

Object C:

Object D:

Object E:

ob ject F:

*Addres s

200

2LO

220

230

240

250

260

270

2AO

290

2A0

28O

2CO

2D0

2EO

2F0

20F

2LF

22F

23F

243'

25F

26F'

27F

28F

29F'

2AF

2BF

2CF

2DF

2EF

2FF

2OO is byte

2OL is byte

202 is byte

2OE is byte

Object 10:

object 11:

Object L2 z

Object 13:

Object L4 z

object l5:

ob ject 16:

Object L7 z

ob ject 18:

object rP,

object 1A:

object 18:

object IC:

Object ID:

Object IE:

Obj ect IF:

300 - 30F

310 31F

320 - 32r'

330 - 33F

340 - 34F

350 - 35F

360 - 36F

370 - 37F

380 - 38F

390 - 39F

3AO - 3AF

3BO - 3BF

3C0 - 3CF

3DO - 3DF

3EO - 3EF

3FO - 3FF

to define top row of Object 0

to define next row down of object

to d,efine next row down of Object

to define bottom row of object 0

0

0

Chapter VIII
Page 3

The Object Number Map (screen map) is located at Hex 0000-017F.
It looks as follows in FIGURE 8-2.

003F

005F

007F

009F

O OBF

O ODF

OOFF

011r

013F

015 r

L2 character row

bottom right corner of 5"t""r, t

-32

character column
Fiqure 8-2

S'ince there are only 32 def inable ob jects, we require only 5
bits in the screen map word to select which object is selected.
One more bit of this vrord is used to select which color set is
used. This means an objects color set is selectable on a
character by character basis. The screen can actually show each
of the 32 objects in both color sets. The final 2 bits of the
word are not used.

87-86l85l84-80
Al

Color 5 bits for
set object number

.-\
J

.-......

l- toP left corner of screen
I

0000 0001 0002 001E 00tF

0020

0040

006 0

0080

00A0

00c0

0080

0I0 0

012 0

014 0

Chapter VIII
Page 4

COLORS OF AN OBJECT SHAPE DEFINITION

Mode I - In Mode I each byte of a definition is interpreted as
4 bit pairs. Each bit pair selects I of 4 colors as
follows:

Bit Pair Color Set 0 Color Set I

00

01

10

11

Borde r

Green

Ye I low

Blue

Red

Green

White

Green

P urp 1e

Orange

White

BORDER COLOR - The border color (screen that is visible outside
of the 384 character boxes) takes the color of
gtreen or white depending upon the color set used
in the right most character box of a line. If
Box 001F has color set 0, then the border on
those 16 rows is green. If it has color set 1
selected, then its border is white. The top and
bottom borders take the color set from the bottom
right charact€r (eox 0f7F) .

Mode 2 - In this mode each bit of the object shape definition
byte is interpreted as 1 of 2 colors.

Border color is determined like Mode I

Color

BI ack Black

Gre en White

Border White

Chapter VIII
Page 5

WRITING PROGRAMS IN HIGH RESOLUTION GRAPHICS

USING BASIC

HighresolutionscreenscanbecreatedbyusingjustBasic
program statements '

Switching Between Modes

To go from alphanumeric to graphics rnode' 2 POKES are required

PoKE8193,60-Thisenablestheobjectlatch.lt'alsoa}lows
orange color set in alphanumeric mode' From

thls point on, thrs address does not. havg [o bg
changed. In inverted alphanumeric mode you wiIl
get oranse/bIack l-etters instead of green. If
you want to disable thisr then PoKE 8193, 52.

POKE 8194, 158 - This will set the display to graphics (I28 x L92)
mode. Sets E/e =1, GMO=O. lfhen this is done
you will no longer see alphanumeric characters.
Also, 8I93 must be set to 60 prevj.ously.

POKE 8194,222 - This will set the disptay to graphic (256 x 192)
mode. Sets A/G=I and GMO=I
POKE with 30 to return to ALPHA/SEMI

SETTING UP SHAPES

Object shapes can be set up by using POKE instructions.

The codes to POKE can be stored as data statements, as arraysr oE
as absolute statements.

As an exanple:

To create a high:lesolution graphics screen where the objects
are verr--ical and horizontal Iines.

,The object will be a green box with yellow lines for \ the screen
and a white box with green lines for the other t. Both will be
in L28 x L92 mode.

This will be 3rd pair from leftt-
H* sth & eth rowsI Il

The L6 bytes for the shape will be
4 r4 r4 r4 r4 r4 r4 rg5r 95, 4 r4,4 r4 r4 r4 14

Chapter VIII
page 6

10 POKE 8193, 60: poKE 8194, r5g: Rem set up graphics mode20 For f = 5L2 to 5r8: Rem set up object definition
30 PO-KE I, 4t POKE I + g| 4
40 Next I
50 POKE 519, 85: POKE 52O, B5
60 For f = 0 to r91: Rem set ob j ect nurnbers to screen map70 POKE I, 0: POKE I + Lg2, 64t Next I
80 POKE 40960, r: poKE 40961, L29? Rem Move cursor off screen90 fnput K: POKE 40960, 2; Rem Wait for return key

100 POKE 8194, 30; Rem Return to alphanumeric mode

rt is a good idea before trying to do graphic programs to sit
down and carefully sketch out on paper the picture you want tocreate. Define the various objects and where they are to beplaced.

WRITING PROGRAMS IN HIGH RESOLUTION GRAPHICS USING MACHINE LANGUAGE

Theexamplesshowndonotgivespecificaddresseswhereto
locatebutaregeneralrelocatableprograms.

ExamPle I

Entering into the Various Modes

ro enrer Mode I or z, the PIA in the !'lPI000 nust bg Chanqeili
There are 3 signals that control graphics mode.

T/e - Alphanumeric or Graphic select - must be logic " I,' for
graphi cs

GMO - Logic 'r0" - Mode 1 (128 x I92)
Logic rrlrr - Mode 2 (256 x L92,

CtR - Must be l, to enable objects codes

The program to enter from semigraphics to graphics mode is

HEX CODE INSTRUCTION COMMENTS

86 LDAA i2OO2 Load trArr with pIA Data Register B

20

o2

84 ANDA #$:r Set frze high and cMo low

3F

8A ORAA #$80 If ORAA with $C0, will set GMO high
and go into Graphics l,lode 2. ORAA
with $AO goes into Graphics lrtode I.

80

97 STAA #$2002

20

o2

86 LDAA $2OOl Load. r'A'|r with pIA control Regj-ster A

20

01

84 ANDA #$C7 Will set CA2=1 (which is Cr.n Signal) .

Chapter VIII
Page 7

Chapter VI II
Page 8

HEX CODE TNSTRUCTION

wt

8A ORAA #$38

38

87 STAA $2001

20

n1

COiUMENTS

EXAMPLE 2 Routine to set same value to a consecutive group of
addresses.

Routine is at 5477C (in internal ROl4)

Enter routine with

X REGfSTER < start address in memory to get set

B REGISTER < number of consecutive bytes -, from x regJ-ster
- \-- ad'dresses that ctet set

A REGISTER < value to be stored

As a simple example, set the top of screen to aLl have object 3

in them. First set Obiect 3 to have all bvtes at $AA.

HEX CODE INSTRUCTION COMMENTS
t

CE LDx #$0230 Load x with first address
Object #3 starts at $0230

o2

30

C6 LDAB #$I0 Load B with count

l0

86 LDAA #$AA Load A with value

AA

BD JSR $471C Jump to subroutine

unapcer vl--1 1
Page 9

HEX CODE INSTRUCTION

7C

COMMENTS

cE LDX #$0000 Load x with top of screen address in
graphics mode

00

00

C6 LDAB #$20 Load B with count (32)

zv

86 LDAA #$03 Load. A with value. value is object
3 code number.

o?

BD JSR $477C Jump to subroutine

47

7C

Chapter VIII
Page 10

I NTE RRUP TS

The Imagination t"lachine has a built-in ffi fnt.rrupt Servicing
Routine. This can only be used during a machine language
program. Never allow the interrupts to be enabled while
Basic statements are being executed. (The system initial-
ization routine disables the interrupt mask of the 6800 status
register.)

'i'ft" interrupt system is driven by the field sync output of
the VDc. This occurs every I/60 of a second. It is fed to

-. the MC58O0 IRQ input via the I\'1P1O0O PIA.

INTERRUPT ENABLING/DISABLING

1. TO ENABLE THE INTERRUPTS

A. CBI of the PIA must be programmed to accept and input.
CBI Mode is set by the CONTROL REGISTER SB which is
Hex Address 2003.

2003 (- Hex 35 - IRQ set by high to low transition of
field svnc

2003 (- Hex 37 - IRQ set by low to high transition of
field svnc

B. A CLI instruction must be given (clear interrupt mask
bit in status register) .

2. TO DISABLE THE INTERRUPTS

A. Set 2QO3 with Hex $34

B. Give an SEI instruction

INTERRUPT SERVICING ROUTINE

The built-in interrupt servicing routine does the following

l. AlIows jumps to subroutines whose addresses are set by the
user.

2. Keeps count of number of interrupts as well as seconds and
minutes.

There are several flags and counters used by the Interrupt
Rogtine as follows

I60 - ($01-FC) - if non zero, causes an j-mmediate JSR f rom
interrupt routine. The JSR address is contained in I60J.
Both 160 and I60J are user set.

I60J - ($01C5-0IC6) - JSR address if I60 is

rsEc - ($0lFD) - if IsEc is non zero, then every
(1 second) a JSR witl occur. JSR add.ress i
ISECJ. Both ISEC and ISECJ are user set.

ISECJ - (0IC7-01C9) - JSR address if ISEC is non
second counter overflows.

Chapter VrIf
Page 11

non zeYo.

60 interrupts
s contained in

zero and I/60

T60 - (01F8) - incremented by each interrupt. Clears to zero
when overflows (at 256th interrupt) and starts count again

TIME - (0lFB) - keeps count of l/60 of seconds. Clears when
reaches 60 and then causes sEcoND to be incremented.

SECOND - (0IF9) - j-ncremented every SECOND. Clears when reaches
60 and increments MINUTE.

MINUTE - (01FA) - increment every 60 SECONDS.
reaches 60.

CLears when

THEN CONTINUE

+_ INCREMENT INTERRUPT COUNTER

Below is a flowchart of the interrupt servicing routine

<- CLEAR TNTERRUPT REQUEST

<-- IS 160 FLAG ZERO

YES

JUMP TO
SUBROUTINE-
INDI CATE D
BY I6OJ

x<(r60J)
JSR X,O

YES

+- urr.FiAK 'l'bu tI = 25c^

+- INCREMENT I/60 COUNTER

YES 1 SECOND PASSED

SECONDS
F LAGJUMP TO

SUBROUTINE
r\TUT(T \

S E COND
ROUT I NE

<_

YES

TEST
J UMP

A <(PBDR)

TS? I6 O

INC T6

CLR T6O

INC TIME

TST ISEC

X . (I SECJ)

Chapter VfII
Page 12

EXAMPLE OF INTERRUPT USEAGE

As an example Lo show how to use the interrupts

1. Each 60th of a second rte will add a character to the screen.

2. After 5 seconds we will clear the screen and return to the
monitor routine.

SOLUTT ON

I. First we need 2 routines for the interrupts.

A. L/60 interrupt - put character to screen

0010 DE 00 LDx(00) SCREEN POTNTER

0012 96 02 LDAA (OZ1 CODE TO SCREEN

0014 A7 00 STAA, 0, x STORE rT

0015 08 INX INCREMENT SCREEN POINTER

0017 DF 00 sTx 00

'--\ 0019 4C

001A 97 02 STAA 02

001c 39 RTS RETURN

B. The 1 second interrupt routine

OO2O 86 O1F9 LDAA SECOND

0023 Bt 04 CMPA #4

0025 2C 01 BGE +L

oo27 39 RTS

0028 0F sEr

oo29 BD 4296 JSR 4296

OO2C 7E TOOO JMP MONITOR

2. The initialization and main routine

OO3O CE OO1O LDX# OO1O SET UP JSR ADDRESSES

I NCA INCRE},TENT CODE

OO33 FF OIC5 STX O1C5 FOR INTERRUPT ROUTINES

Chapter Vrrr
. Page 13

0036 cE 0020 LDX# 0020

0039 FF O1C7 STX OICT

OO3C 86 35 LDAA 35 SET UP PIA

003E B7 2003 STAA 2003

0041 4F CLRA CLEAR COUNTERS

oo42 B7 01F8 STAA T60

OO45 87 OIFB STAA TIIVIE

OO48 97 O1F9 STAA SECOND

OO4B 97 02 STAA 02 SET CHARACTER CODE

OO4D 4C INCA

OO4E 87 O1FC STAA 160 CLEAR FLASS FOR INTERRUPT

OO51 B7 OIFD STAA ISEC ROUTINE

OO54 CE O2OO LDX# O2OO SET SCREEN ADDRESS

0057 DF 00 STX 00

0059 0E

005A 3E

CLI

WAI

ENABLE INTERRUPT

WAIT, FOR INTERRUPT

OO5B 20 FD BRA -3

' rf you have everything loaded in correctly, type G0030.

You will see the screen fill up with characters. Since it is
putting up 1 character every 60th of a second , for 5 seconds,
there will be 300 characters and then the screen clears and
goes back to the monitor.

CHAPTER IX

SAVING SPACE AND TIME

There are severar things that can be done in a program to save
memory space and speed up programs.

SAVING SPACE

1. After a section of a program j-s running, all Remark statements
should be removed to save space.

2. Use multistatements per line. Each new tine takes 3 extra
bytes. A line can have up to LzA characters, and al-l keywords
are only I character.

3. Using subroutines can save space instead of retyping a common
used routine.

4. Do not over-dimension strings and arrays.

SPEEDING UP PROGRAMS

1. Place all subroutines at the beginning of a program (lowest
step numbers). A11 statements are stored in ascending order
of statement number and when a GOSUB is executed, it starts
at the beginning of the program looking for the correct line
number. This means a subroutine at step 9000 is found. only
after the machine Iooks at all- line numbers preceding 9000.

2. Remove Remark statements if possible.

3. Try to use nonsubscripted variables in for/next toops or in
frequent calcuLations. It takes about 3 times as long to
find a subscripted variable's value as opposed to a non-

. subscripted variable.

4. Use multistatements per line.

5. Use and define frequently used variables early in program
execution. The machine develops variable lists. Those first
used are first on the list and are found quickest.

6. Dontt over-dimension strings and arrays.

7. Use machine Ianguage routines if possible. Remember Basic is
an interpreted language and not compiled.

Appendix A

MC6800 Instruction Set

A00RESS|IG t0DES COID. CODE BEG.
sOOI.EAT/ARITHMETIC OPERAIIOT

ACCUTUTATOR AilO TEUORY IrtE0 OIRECI tx 0Ex EXTIO IXHER {All lr|irlrr hbdr

.rh. to conilntd

5 a 3 2 I 0

rlrEf{0t{lcOPERATIOTIS OP 0? OP OP 0? tl I t{ z v c

Add AOOA

A008

Add Acmltrt ABA

Add with C.rry AoCA

ADCs

And Al{0A

A-l{0 I
Bit Test gtfA

8rT8

Clear CLR

CLSA

CLfi8

Compare CMPA

CMPB

Compare Acmltrs CBA

Complement, l's CoM

COMA

c0M8

Conplement,2's NEG

(Nesre) NEGA

NEGE

oecim.l Adjusl, A DAA

Decrement oEC

OECA

O ECB

Exclusive 0R €ORA

E088

Increment INC

INCA

I NCB

Load Acmltr LoAA

LO A8

0r, Inclu5ive oRAA

0 8A8

Purh D.ta PSHA

PSHB

Pull oata PULA

PU L8

Rotate Lelt RoL

ROLA

80 L8

Rorare Right RoR

RO RA

RO RB

Shift Lefr. Arilhmeric ASL

ASLA

ASLS

Shilr Right, Arithmetic ASR

ASRA

ASBS

Shilt Righl, Logi€. LSR

LSRA

LSHB

Store Acmltr. STAA

STAE

Subt.act , SUBA

su88

Subnct Acmlt.r. SBA

Subtr. with CarV SBCA

s8c8

Tranitsr Acmltrs TAB

T8A

Tgrt.Zero or Minus TST

TSTA

TSTE

88

c8

89

c9

u
c4

85

LI

8l

LI

88

c8

86

c6

8A

CA

80

c0

82

c2

2

2

2

2

z

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

gB

OB

99

09

94

04

s5

U'

gl

0l

98

D8

96

06

9A

OA

97

D7

90

00

92

D2

J

3

3

3

3

3

3

3

3

3

3

3

4

3

3

3

2

2

2

2

?

2

2

2

2

2

2

2

2

2

2

2

2

2

2

A8

E8

A9

E9

A4

A5

E5

6F

AI

63

60

A8

E8

6C

E6

6A

EA

69

66

68

64

A7

E1

AO

E()

A2

5

5

q

q

5

5

J

1

7

1

I

5

5

7

c

1

6

6

5

5

5

2

7

2

2

2

2

2

2

2

2

2

?

z

2

2

2

2

2

2

2

2

2

2

2

2

2

B8

FB

89

F9

B4

F4

B5

rt
1F

BI

FI

73

i0

7A

88

F8

1C

B6

F6

8A

FA

79

76

78

11

14

87

F7

BO

FO

82

F2

70

4

4

4

4

4

4

6

4

4

6

6

6

6

6

6

6

4

4

6

1

3

J

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

l8

4F

5F

ll

43

53

40

50

l9

4A

5A

4C

5C

36

37

32

33

49

59

46

56

48

58

41

57

44

54

t6

l7

40

5D

t0

2

2

2

2

2

2

2

2

2

2

2

I

2

2

2

2

2

2

2

2

2

2

2

2

I

I

I

I

I

I

I

I

I

I

A+M-A
8+MrB.
A+8+A
A+M+C+A
B+lr+C+g
A.M+A
8. M *B

A. M

8rM
00 +M

00 +A

00 *8
A_M
8-M
A-8
ttt -M
A*n
S -e
00 - M'M
00 -A-A
00 -8*8

t
f

+

t
a

a

a

a

o

c
o

a

a

a

a

o

o

a

a

a

a

a

a

a

a

a

a

o

a

o

a

a

a

a

o

a

a

a

o

a

o

a

a

a

a

a

a

a

a

a

o

o

I
a

a

a

a

a

a

a

a

o

a

a

o

a

o

o

o

a

a

o

o

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

+

a

a

a

I

a

a

a

a

o

o

a

a

a

a

o

a

a

a

a

a

o

a

a

a

a

a

a

I
t

T

t

t
t
t
R

R

R

I
1

I
t
i
t
t
I
I

t

I
t
I

I

t
I

I

I
t
1

t
t
a

a

o

@

I
I

T

I
I
t
t
t
I
t
I
I
I
B

I
I
I
t
t
I

1

t
t
t
t

t

t

t
i
t

t
t
t
i
c

s

t
t
t
t
I
I

I
t
I

I

t
I
t
t
I
I
I
t
I
I

t
a

a

t

I

I
t
1

I

t
I
t
t
I
t
t
1

t
I
t
t
t
1

f
t
t
I
T

I

t

t

t

I

f
+

R

R

R

n

R

R

R

I

t

t
R

R

R

c

t

o
(3)

@
ff

B

(51

@
(9
R

R

R

R

a

o

o

@

6

h

h

t
+

+

t
H

R

R

R

i
t

t

a

a

o

R

B

n

t
I
t
5

into 8C0 Format

M-l-M
A - I -A
B-l*B

BOM*8
M + ITM
A+I+A
B +l*B
M+A
M-B

8+M -S
A-Msp,sP-l'SP
8-MSp,SP l*SP
SP+ I -SP, MSp+A

SP+l+-SP,MSp-B
M I r---alt-c * 611rrrmJ
^ | c or - bo
b,
MII I----
Al L'-tr. - rfIT-rrrT-F]
^l

C bz + bo
ol
Ml

IAl D * rrrrrrrn-0
^l

c b? bo
bl

Ml_
tt IAlLfrrrrrrn * o
lbrbOC

B)
Ml,
Al 0*fIIItI]n - C
-l 07 %
6)

A'M
B*M
A'M'A
I - M'B
A _ 8 +A

A-M-C"A
B-M-CrB
A*8
B*A
ir-00
A-00
8-00

t

a

t

a

a

a

a

a

a

I

R

I

a

a

o

R

Compar! Index Rog CPX

olcr?ment Index 8sg oEX

oecrrment Stack Pntr oES

lncremsnl Inder Reg ll'lx
Increment Stack Pntr INS

Load Indu Reg LoX

Lo.d St.ck Pntr LoS

Store Index Beg STX

Slore Slack Pntr STS

Indx Feg -Stack Pntr TXS

St.ck Pntr - Indx Reg TSX

{XH/XI)-(M/M+1)
X - I +X

SP - I +SP

X + I +X
SP+ 1 -5P
M +XH, {M + l)+xL
M -SPH, (M + l)*SPL
XH+M,XL+(M+1)
SPH +M, SPL +{M + l}
X-lrSP
SP+l-X

IITOEX REGISTER ATtO STACK

POIIITTF OPERATIOTS MIIEMOIIIC

LEG EfII D:

0P operation Code {Hexadecrmal)

- Number of MPu Cycler;

s [,lumbe. of Program Eytes;

+ Arithm€tic Plur:

- Arilhmelic Manui;

. Eoolean Al'10;

MSp Coolonls ol memory location
pornted to b€ Stack Poinle.;

Boolean Inclurive 0 R;

Soolean Exclusiva 0R

Conplemenr ol M;

Tran:fer Into;

8it . Zero;

+
o

M

n

MII EMOI{IC

00 EVle -- Zero;

H Hall cany from bil 3;

I Inlerrupl mask

N Negalive (rign brtl

Z Zero lbyte)

V overflow,2'scomplement

C Carry trom bil 7

R Seiet Alwayt

S Sel Always

I Teit and rqt if true, cleared otherwite

t Nor Allecred

CCn Condirion Code Register

LS Leasl Significant

MS Molt Signiticant

EOOTEATI/ARITHMETIC OPERATIOI{

EBANCH TTST

CONOITION COOE REGISTER IIIOTES:

(8it sel rt test is lrue and cleared otherwire)

O (Bitv) Tesr Besulr= 10000000?

@ {Bir C) Tesr: Resulr = 00000000?

O lBitC) Test0ecimalvalueo{mostiignificantBC0Characlergreaterlhannine?
(Not cl€ared il prevrously sel.)

@ (Bit V) T€sr: 0perand . 10000000 prior to execurion?

O iEit Vl Tesr 0perand = 0l11l1ll prior to execuiion?

@ lEir V) Terr: Sel equal ro resulr ol N {' C after shilt has 0ccurred.

O (8tr N) Test: Stgn bit 0l most signitrcant {MS} byte ol resolt = l?

@ {Bit V) Test: 2's c0mplemenl overllow lrom !ubtraclio0 0l LS byles?

O {8ir N) Tesr: Resulr less rhan rero? (Bit 1 5 = I }

@ lAll) Load Condilion Code Begister lrom Stack. (See Special 0perationsl

O (8il l) S€t when inle.rupt occurs. lf previou!ly 5€t, a Nof, Ma5kable Interfupl rs

required lo exil the wail slate.

@ tnllt Set according r0 rhe conrenls of Accumulalor A.

Eranch Always

Branch lf Carry Clear

Eranch ll Carry Set

Sranch ll = Z€ro

Branch ll > Zero

Sranch ll > Zero

Eranch lf Higher

Eranch ll < Zero

Bianch ll Lower 0r Same

Branch lf < Zero

Sranch lf Minus

Eranch lf Nol Equal Zero

Eranch ll 0verllow Clear

Eranch ll 0verllow Set

Branch It Plus

Sranch To Subrouline

Jump

Jump To Subroutine

No 0peralion

Relurn From lnlerrupt

Belurn From Subroutrne

Soltware Interrupt

Wait lor Inlerrupl

88A

BCC

8CS

BEO

BGE

BGT

BHI

BLE

8LS

8LT

8Ml

BNE

8VC

BVS

BPt

8SR

JI\4P

JSR

NOP

fiTl

8TS

swl

None

C=0

Nav=0
Z+(Niv) =0

c+2.0
Z +lN'rV) = I

c+z=l
Nd'V= I

z=0
V=0

N.0
l
I

I See Specral 0peratrons
I
)

Advances Prog. Cotl

1
I

I Se€ rpecral 0perations
I

.l.l.l.lala

.lal.l.l.l.

.l.lal.l.l.

.l.l.l.l.l.

.l.l.lal.l.

.l.lal.l.la
al.lalal.l.
.l.l.l.l.l.
.lalal.l.la
.l.l.lalal.
.l.l.l.lola
.l.lal.l.l.
.l.l.l.l.l.
.l.l.l.lala
.l.l.lal.l.
.l.lal.l.l.
.l.l.l.l.l.
.lal.l.l.l.
.l.l.l.l.l.

-@-.l.lalalal.
.lSl.l.l.l.
.lfr)l .l.l.l.

Clear Carry CLC

Clear Inle(upl Mask Ctl

Clear overllow CIV

Sel Carfy S€ C

Set Interrupt l\4ask SEI

Set 0verllow SEV

AcmluA-CCR TAP

CCR -Acmlrr A TPA

. l. l. l.l. lR

. lR I.l.l. l.

. lo l.l.lR l.

.l.l.l.l. lS

. ls l.lr lo le

. l. l.l.lS l.

. l. la l.l a la

Hexadecimal Values of Machine Codes

00
01 NOP
02
03
04
05
06 TAP
07 TPA
08 INX
09 DEX
OA CLV
OB SEV
0c clc
OD SEC
OE CLI
OF SEI
10 SBA
11 CBA
12
1?

14
15
16 TAB
17 TBA
18
19 DAA

18 ABA
1C
1D
1E
1F
20 BRA
21

REL

22 BHI REL
23 BLS REL
24 BCC REL
25 BCS REI
26 BNE REL
27 BEO REL
28 BVC REL
29 BVS REL
2A BPL REI
28 BMI REL
2C BGE REL
2D BLT REL
2E BGT REL
2F BLE REL
30 TSX
31 rNS
32 PUL A
33 PUL B
34 DES
35 TXS
36 PSH A
37 PSH B
JO

39 RTS

38 RTI
3C
3D
3E WAI
3F SWI

40 NEG
41

42
43 COM
44 LSR
45
46 ROR
47 ASR
48 ASL
49 ROt_
4A DEC
4B
4c tNc
4D TST

4F CLR
50 NEG
51

3Z
53 COM
54 LSR

56 ROR
57 ASR
58 ASL
59 FIOL
5A DEC
5B
5C tNC
5D TST
5E
5F CLR
60 NEG
61
oz
63 COM
64 LSR
o3
66 ROR
67 ASR
68 ASL
69 ROL
64 DEC
6B
6C rNC
6D TST
6E JMP
6F CLR
70 NEG
71

72
73 coM
74 LSR
T3

76 ROR
77 ASR
78 ASL
79 ROL
7A DEC
t6
7C INC
7D TST
7E JMP
7F CLR

A

A
A
A
A

A
A

B
E'

B

B
B
B
B

B
B

B
IND

A
tst

IND
IND

IND
IND
IND
IND
IND

IND
IND
IND
IND
EXT

EXT
EXT

EXT
EXT
EXT
EXT
EXT

EXT
EXT
EXT
trAl

BO SUB
81 CMP
82 SBC
a.l
84 AND
85 BIT
86 LDA
87
BB EOR
89 ADC
BA ORA
BB ADD
8C CPX
8D BSR
8E LDS
8F
90 SUB
91 CMP
92 SBC
93
94 AND
95 BIT
96 LDA
97 STA
98 EOR
99 ADC
9A ORA
98 ADD
9C CPX
on
9E LDS
9F STS
AO SUB
41 CMP
A2 SBC
A3
A4 AND
A5 BIT
A6 LDA
A7 STA
A8 EOR
A9 ADC
AA ORA
AB ADD
AC CPX
AD JSR
AE LDS
AF STS
BO SUB
81 CMP
82 SBC
clJ
84 AND
85 BIT
86 LDA
87 STA
88 EOR
89 ADC
BA ORA
BB ADD
BC CPX
BD JSR
BE LDS
BF STS

A IMM
A IMM
A IMM

A IMM
A IMM
A IMM

A IMM
A IMM
A IMM
A IMM
A IMM

BEL
IMM

A DIR
A DIR
A DIR

A DIR
A DIR
A DIR
A DIR
A DIR
A DIR
A DIB
A DIR

DIB

DIR
DIR

A IND
A IND
A IND

A IND
A IND
A IND
A IND
A IND
A IND
A IND
A IND

IND
IND
IND
IND

A EXT
A EXT
A EXT

A EXT
A EXT
A EXT
A EXT
A EXT
A EXT
A EXT
A EXT

EXT
EXT
EXT
EXT

CO SUB B IMM
C1 CMP B IMM
C2 SBC B IMM
c3
C4 AND B IMM
C5 BIT B IMM
C6 LDA B IMM
c7
C8 EOR B IMM
C9 ADC B IMM
CA ORA B IMM
CB ADD B IMM
cc
CD
CE LDX IMM

DO SUB B DIR
D1 CMP B DIB
D2 SBC B DIR
UJ
D4 AND B DIR
D5 BIT B DIR
D6 LDA B DIR
D7 STA B DIR
D8 EOR B DIR
D9 ADC B DIR
DA ORA B DIR
DB ADD B DIR
DC
DD
DE LDX DIR
DF STX DIR
EO SUB B IND
E1 CMP B IND
E2 SBC B IND
trJ
E4 AND B IND
E5 BIT B IND
E6 LDA B IND
E7 STA B IND
E8 EOR B IND
E9 ADC B IND
EA ORA B IND
EB ADD B IND
EU
ED
EE LDX IND
EF STX IND
FO SUB B EXT
F1 CMP B EXT
F2 SBC B EXT
F3
F4 AND B EXT
F5 BIT B EXT
F6 LDA B EXT
F7 STA B EXT
F8 ADC B EXT
F9 ADC B EXT
FA ORA B EXT
FB ADD B EXT
FC
FD
FE LDX EXT
FF STX EXT

Notes: 1. Addressing Modes: A .. Accumulator A IMM = lmmediate
B =AccumulatorB DIR =Direct
REL : Belative
IND = Indexed

2. Unassigned code indicated by ''"

APPENDIX B

- MACH]NE LANGUAGE REFERENCE

The Imagination Machine contains a machine language reference

mode. You can use this to create. d,isp1ay, change, and execute

macnane l.anguage programs.

To use this appendix, you must be able to write programs in 6800

machine language. You must also have a working knowledge of

hexadecimal notation.

CALL 28672

This BASIC statement takes you out of BASIC. You are now talking

to the lmagination },lachine Monitor. The monitor puts a " * " at

the beginning of each line on the screen. When you see the rr*'r,

you can enter one of the three monitor commands:

D nnnn where nnnn is a hexadecimal address
G nnnn where nnnn is a hexadecimal address
M nnnn where nnnn is a hexadecimal address

D NNnn - DISPLAY MEMORY

This command will display the 16 bytes of memory beginning at

address nnnn. To display the next 16 bytes, press the "/" key.

To end the command.r pr€sS the RETURN key.

Example: * D 9B3C
* 9B3C 20 E0 86 A0 58 BD 9A 86 CE

A0 9c 7E 9A 28 7c a)l
* 9B4C AA 20 D4 86 04 CE A0 AA OC

69 00 09 8C 80 9c 26 (Rerurn)
*

G nnnn - GOTO I4EMORY ADDRESS

This command acts much like tire BASIC GOTO statement except tire

value NNNN is a four digit hexadecimal memory address. The

Appendix B
Page 2

computer immediatety begins executing the. machine language

program at that a,ldress.

*G 8894

Address 8894 is the start of the Imagination Machiners BASIC.

This is how you reenter BASIC. If you had a BASIC program

in memory when you called the rnonitor, it should still be there.

M nnnn.- MODIFY MEMORY

This command immediately displays the contents at memory address

nnnn. You can do one of four things:

reply with the n/ttt key and the command proceeds by
displaying the next position in memory.

reply with rr rr key and the command proceeds to display
the previous memory position.

reply with the RETURN key and the command is ended.

reply with a two-digit hexadecimal number and the RETURN
key and the command stores this new number in the current
memory position. Then you can press Return, /, or with
the results as above.

If the M command cannot change the memory location, it will

respond with a "?."

APPENDIX C

Schemati cs/P arts Layouts

*

rIG

D-1

D-2

D-3

D-4

D-5

D-6

D-7

D-8

D-9

D. IO

D- 11

D- 12

l4PI0O0 Schematic

MPI000 Parts Layout

MPA-10 Schematic

MPA-10 Parts Layout

J Connector Schematic

J Connector Parts Layout

ROM Cartridge Schematic

ROIVI Cartridge Parts Layout

Tape-Power Board Schematic

Tape-Power Board Parts Layout

Keyboard l,latrix

Keyboard Layout

I9 8 8 9 A 8 3 tB: a. t i I it I i: i:

89S88889 !.rAtttrBE

Figure D- |
MP IOOO Schematic

El^-{'#H#.t#ff"l -
RTl

JACK

+
;;l fiTl ot2 3 isai ot z g

,,,m*|ffi11

IlllV==.ffi*
Ca3O-

GND

6817

VDG

v12

r-/
--PwR Sw ;ND +

TO H'VR

(rC45
Ir c46

- Cttj

^".,*fr;l lllr I lllll I I'E

ilHl llltlllnlll"
ttr

A21

[illl'-;;-;,,ru,60,,-*2s L7 Ls
lI Ll_ R2Byffis'oF_t-c_"

(-)Llt:":'f 5,1^rruJ'P:1 ff:

VCC (+5V) F- gag
LSB

C37 n
Ll.l

t
o

c{g
IJo
eb)o.
.9
L

-ooo
o
=

/r Q nsr s,v

6821

PIA

I
LsI

c42
I

-{-I
c36

c34

c32
I

c33
:

-R31
-

R32

-
L12

I
110

rc'os ',[*llE A7

'139

5800

.#i:-,.r Ra^(ll oz
Flli

-\-vc-t^1,
rr4OtC

-
R17 GND

REV.7A

9>
(m
>-
=m|,
zO
=2
'A:-"z

I

__.1

€lrrnwN-e

zl ^'

::;x j6;;

rl ?t-l{-+---" 3l
I loq

H

V: |J'- J
13 | lrtif
4+ril |l;!t It--ll

{: n

a

IF

t;,
l.lt-'
.
;-

il

2

Figure D-3
MPA-10 Main Board Schematic

-ll-

-l

0*'__G
.,oQ'

*'0 -'+

c39

o-
Q"+-'c33

(-)rctr

u6 I

'l--_-ltllle

L]
n

30 PrN r0 rttt

t-t
L_l

r-t
L__l

, fr 05'loh r-i+;r fl i---rl ll ll ll ll ll r r l ..ill l

L_J Lj LJ t__J L_l L_J L__i t___l
"t

? * czs<>e .'{ O.* $.,, .o,C tr.* $.ou -€J-'g0"0":j=i

''' "* - tl
1+ ---1-R2 Cl7-"o-12

ulo R8-Rl5 Ll - L7
----G-RJ C18+-

1+ R8-Rt5 Ll - L7

Figure D - 4
MPA'10 Main Board Parts Layout

I ++++++++ +++++++

{ { {'{ i''+ o + { {'{ i'o { o

8765/.321 87654321

t|l

{'*

+ 5v

?a

lLl

(71t5214t241)
8 1 1595

BRiW
Bg2

5 GND

DBfN 8 R/W

N OTE

1 USING PCB ?31-0010-03 J-2/,/. FOR 7r,L52/,1. aR 1113211,
PIN 19 I5 CONNECTED TO GND FOR 24l. OR CONNECTED
TO VCC FOR 241 SELECTED BY JUMPER LEAD.

+5v

IK

tc4
7/.ts3 6 7

2 USING PCB 231 -0010-03 l-8195 FOR 811595
PIN 19 15 CONNECTED TO GND.

3 NUMBERS IN O ARE PIN NUI'1BERS FOR

7r,L52r./" AND 'lr.l.S2l,1 . DP 83048N.

g2

30 PrN TO 1096 3O PIN IO MPA1O

(11) 12 t] (9)

(8) I 902)

03)14 13(7)
(6) 6 '|QLJ

0s) 16 rs(s)
(t,) t 5(t6)
(r7) l8 l7(3)
(2) 2 308)

19 1

tc?*:" (Tt Lszht,tzt1)
20 81 LS95

(8) I 9(12)
(6) 6 7 (1t)

(t)I 5(16)
(2) 2 3 (18)

(r7)r8 17 (3)

(r5) 15 15 (5)

(r3)14 13(7)
(1r) t) 1r (9)

19 1 ,

r8 2

173
16 t

1 r (19) (1) 9

12 lC3 8

8 71t5215
7

roP83048t{)5
15 5

r9(9) (1r)1

1/. 13

12 1l

r0 9

1 15

I
t)

.9

o
E
ot

lo()
ao
oL

oOrL(Jto
ottr
E5

o
a

i>
>!
IA

_r
D8
<Y
<8
Ezo!.)

i

Izn
!

F.......1 II n ll n
I1r......{ 1..........1

r;.-_- -l | -=.=-l| 3 ll s I1..........1 l'........ {

*.rJ.-'
-lF f .. t......_-_j_'_:-J

A

-

F;;. -;;;;;;-1b.............1

Figure D-6
J Connector Parts LaYout

.9

o
E
o
.C,
o
o

o
o

=
G

C)

=o
G.

I

o
o
f
ctt

iI

I
7

6

3

2

1

23

22

19

IE
2t ICI

64K ROM

cN 22068

J

t0
l1

l3

l5
16

l7

11

20

I
7

5

5

3

2

1

t3

22

19

tc2
32K ROM

cN 1 9266

9

10

ll
IJ

15

l5
11

2t

20

APF ELECTROI.{ICS INC.
SCHEMATIC- MPA 1O (ROM)

3
o
o

@J
lo

Lr ctl
tt

Or
:'Lgro
Eo

=o
E

aa
aa
aa
aa
r lCt r
aa
aa
aa
aa
aa

I

aa
aa
aa
.1C2.
aa
aa
aa
aa
aa
aa

APF ELECTRONICS INC.
PARTS LAYOUT-MPAlO (ROM)

DI. D4
l00v 3A

AC

CT

srb
ON / OFF

1000ui rn,r
zs" _[lioli
C2 D6 - 20v

l00ir/25v 1N4001 3 Vpp RtpPtf

'5v9
108,

RG ti 6.8v
470 | | 5'/.
---- l IlJ_{ nrr

100

Tq1

2SA505

t55
alalq

cl3
l00p

MOTOR
ENABLE

l3

22P

WRITE DATA

LOWER TRACX

c6 Rlo
I tj toK

il Rr3
r0x

ct2
'l0n

Figure D-9

c14
lop

J-Cs9

f ror

!1" i;'i
REAo r
DATA D9

5,1v

Rr9
t5K

er

r-
ERASE HEAD

c7l
l0n

o

RECORO / PLAY

UPPER TRACK

ARilN .r2v
8E0 , 5V

onacE .l2v
YELL& . 5V

_lt

lo!
t0v

PI. IHNS PIUG

aLACX UOIO lXroUT

6REEN AUOIO ENASL€

ALUE GNO

WHII€ GNO

P2 4 qNS PLUG

SUCX RAD OAIA

SRWN MOIOR ENABLE

F€o WRII€ EF

OWG€ WRITE UIA

R35
560

c45
l0n

o
I DU

tN4t4C

T55

ct815

c60
l0u

3.t' +,*ilru" '^'.0 tu?1"

h rcl z1

*r oott
x

c20
l00l/10v

,aO

R25x21 t00K

Tape - Power Board Schematic

2SA5o5

c

2
o
-c I
^ttt -!

I
ox

o

mu
(im

rr
o

*e
F6 gf,

-*
FB

Y2til c*
92
Fd

E5'
Edhr',

2

Figure D- lO
Tape-Power Board Parts LaYout

-otsj)
}J
ox

TO PIA A SIDE INPUTS

PAO PA1 PAz PA3 PA4 PAs PA6 PA7

FROM 7t{51t 5

.5

APF ELECTRONICS INC.
MATRIX - MPA1O (KEYBOARD)

X 7 o 2 A 1 w 5

c V R 3 F 4 E D

N B T 6 G 5 Y H

M) I 7 K I U J

a o 0 I
L I P o

)

;PACE
a
a

RE-
TURN

LINE

FEED

RUB

OUT

SHIFI ESC CTRL REPT ItrtrAt/
HERE

IS

-x
lr
^G-=
o)

io
.9b
l!O

ll

o
Y

sl#
ro

cl>
o

o
fp
.96uo

.ct

ov

tt
2

#
3

$t
olo

5
&
6

,
7

(

8
)
9 0

It
a
a

HERE

IS

E5C o w E R T Y U I o
@
P

LINE
FEED IEruRN

CTRL A S D F G H J
t
K L

+
a
)

RUB
OUT REPT BRK

SHIFT z X c V B
A

N
l
M a

?
SHIFT

SPACE

APF ELECTRONICS INC.
KEYS LAYOUT-MPAIO (KEYBOARD)

1.

2.

APPENDIX D

ASCII CODES AND IMAGINATION MACHINE INTERNAL STORAGE

Although the Imagination Machine uses an 8-bit word (1 byte)
for aIl memory storage, different interpretaLion by the machine
of these codes occurs. This appendix will clarify how and.
when a code is interpreted.

For aIl program storage the statement is stored in standard
7-bit ASCII Code. There are L28 standard ASCII Codes (Codes
O-L27). Since an 8-bit word is used in memory, there are
256 possible codes. The codes between L28 and 255 are used
as "tokens" for the keywords used by Basic. (This means
the words PRINT or NEXT each are represented by a single
8-bit code cal1ed their token.)

Since the Imagination Machine uses a color T.V. for its
output and has capability for colored graphics as well as
reverse video, it is the codes stored. in the screen maps
that have to be interpreted differently from the standard
ASCII Codes. Screen Codes 0-L27 will produce only 64 of
the ASCII characters in I of 2 video modes (normal or reverse)
Codes L28-255 will produce "semigraphics characters."

PRINT Statements

The Print Statement deals only with ASCII Codes. When the
word PRINT is executed, it goes through a specia.l routine.
You can't use the word PRINT to get a semigraphics shape on
the screen. Typing PRINT 123 puts the codes for I, 2, and
3 to the screen. Typing PRINT CHR$(132) causes the print
routines to recognize the code (I32) as a token code, and
it expands it to its keyword. (PRINT CHR$(I32) will cause
DIM to be put on the screen.)

POKE Statements

Since Poke Statements sinply take the value and place it
in memory (regardless of whether it is screen memory, Pro-
gram memory, or even a peripheral address), codes poked to
screen memory are not interpreted as in a Print Statement.
POKE 512, 132 will cause a green sguare with a shape of 8

to be put in the top of the screen.

Reserved Word

RESERVED WORDS AND

Token Code (Decirnal)

Appendix D

Pag:e 2

IHEIR TOKEN CODES

Reserved Word. Token Code (Decimal)

ABS

ASC

CALL

cHR$

CLOAD

CLOSE

COLOR

CSAVE

DATA

DIM

DTR

EDI T

END

FOR

GOSUB

GOTO

HLIN

IF

INTT

INPUT

INT

KEY $

LEN

LET

I,IST

r70

17s

165

L74

151

163

156

150

r30

132

166

158

r46

133

128

137

t54

140

160

131

169

r77

L76

LZJ

L47

MUS TC

NEXT

ON

OPEN

PEEK

PLOT

POKE

P RINT

READ

REM

RESTORE

RETURN

RND

RUN

SAVE

SGN

SHAPE

sPc

STEP

STOP

TAB

THEN

TO

US TNG

VLIN

l-64

L44

136

L62

L73

15 3

L52

145

143

148

r39

134

Li6

161

159

L7L

L57

168

141

L42

l-67

135

138

L49

155

Appendix D

Page 3

ASCII CHARACTER SET O-BIT CODE)

M.S.
CHAR

L.S.
CHAR

0
000

I
001

)
010

3
011

4
100

5
101

6
110

7
111

0
0000

I
0001

2
00r0

3

001 I
-,v!)4 _.-

ilrt,,OSOO:':
.,:i,.,,,5,;:r.

:,,o!0I1. ..
':$.,.
0110

7
;,:s$ 1

8

1000

9
l00l

A
l0l0

B
l0l1

NUL

SOH

STX

ETX

ffi,

s.:.;

DLE

DCI

DC2

DC3

qry

NAK

SYNt
-1-l;: .l

'.lIB:,

CAN

EM

SUB

ESC

K..'.-.

G$.

KS-,,,

.Y*

SP

I

#
:rii.ii'.:..

,tt$.'
' :)':':t :

a . ..,,
;%;;..,

..&..:
' ,;::.,:.

....::,i.i. i

,l ,,"r'
r::'i

-r.-:i'
:

(

)

>F

-r

.-,).,.'

''t..

.:... .:1

a.:
: :)'''' ta.

...$:,

0

I

2

3

.;*

. ',,' 1

'5

1,,6

:..

',;n

8

9

'.ii<

>
'.i,.

.t'-t.'.il'r:ia ..,:

tt':;:tr.
':i;

@

A

B

C

ip'
:..,:.'

:ir,r:.r i':

P

a

R

S

::T:::
.:.rr.:i-..

',.Y.:
. , lrt.r

..

-,,,t.1v
:i:t:i:rit

::w.r.
:i.j'.i::ttr,,

X

Y

Z

t

\

,''l.'"

t
r,,,,,

,:)'i,:,', ,.., .,'

.*!.

,:i.f

1..',;
a',$,

h

j

k

,I

I|l .

t.

. :..'$.
:',.:::'.' . .

,i.. : .i "' .

-r%:.1:ll

ASCII CODE

SUION

StrTON

SgJON

SgION

SgTON

SgION

