
 i 

 
        
 

 
 
 
 
 
 

My Adventures with Dwarfs: 

 

A Personal History in Mainframe Computers 

 

 

by 

 

Russell C. McGee 
 
 
 
 
 



 ii 

 
 

 

 

 

 

To Nelma 

For her never-ending 

Love, loyalty and support 

 

 

 

 

 

 

 

 

 

 

 

 

© Copyright 2003, 2004 by Russell C. McGee 



 iii 

 Table of Contents 

PREFACE ............................................................................................................V 

INTRODUCTION.................................................................................................. 1 

GETTING STARTED.......................................................................................... 12 

COMPUTER CONTROL COMPANY................................................................. 31 

HANFORD—GETTING STARTED .................................................................... 40 

GETTING TO WORK AT HANFORD................................................................. 47 

THE 709 AND SHARE....................................................................................... 58 

GETTING STARTED AT GENERAL ELECTRIC............................................... 73 

GE-625/35 .......................................................................................................... 81 

GE-645............................................................................................................... 87 

WEYCOS ........................................................................................................... 99 

VMM................................................................................................................. 110 

WELLMADE..................................................................................................... 120 

SUMMING UP .................................................................................................. 126 

EPILOG............................................................................................................ 128 

ACKNOWLEDGEMENTS ................................................................................ 134 

APPENDIX A—SOME COMPUTER FUNDAMENTALS ................................. 136 

APPENDIX B—REPRESENTATION OF COMPUTER INFORMATION ......... 141 

APPENDIX C—COMPUTER MEMORIES ....................................................... 154 



 iv 

APPENDIX D—COMPUTER INTERIOR DECOR............................................ 160 

APPENDIX E—COMPUTER PROGRAMMING LANGUAGES....................... 167 

APPENDIX F—RAYDAC PROGRAMMING .................................................... 172 

APPENDIX G—RAYDAC ASSEMBLY PROGRAM........................................ 176 

APPENDIX H.  MULTI-PROGRAMMING ........................................................ 178 

APPENDIX I. BLOCKING AND BUFFERING.................................................. 181 

APPENDIX J—GE-645 ADDRESSING ........................................................... 186 

APPENDIX K—UTILITY PROGRAMS ............................................................ 191 

APPENDIX L.  PERSONAL BACKGROUND.................................................. 194 

APPENDIX M. EVOLUTION OF COMPUTER TECHNOLOGY....................... 200 

GLOSSARY ..................................................................................................... 211 

NOTES............................................................................................................. 217 

INDEX .............................................................................................................. 227 



 v 

 

Preface 
 

“The dazzling capabilities of modern personal computers are based upon 
the work and experiences gained from many years of use of mainframe 
computers.”  This statement is the theme of this book.  The book is a slice 
through the history of those mainframe machines as experienced by the 
author.   It gives one view of what was happening “in the trenches” as 
programming languages, information codes, subroutine libraries, 
debugging tools, operating systems and input/output techniques were 
being invented.  It describes where programmers came from before 
colleges and universities had Computer Science Departments or gave 
courses that involved the use of computers.  It tells how programs and 
data got into computers and results were delivered to users before an 
Internet and video terminals were widely available. 

 
 “The universe of mainframe computers is inhabited by IBM and the Seven 
Dwarfs”.  I don’t know its origin, but this statement was often made during 
the early days of the computer industry and was recorded for posterity by 
Homer Oldfield in the title of his book GE: King of the Seven Dwarfs.  I 
always worked for one or another of the seven dwarfs.  One might say 
that this is a dwarf’s-eye view of the mainframe computer industry; hence, 
the title. 

That is not to derogate the efforts of the dwarfs.  I believe the average 
dwarf employee was more involved in activities important to his or her 
employer than the average IBM employee. 

Mainframe computers were giants that occupied fractional acres of floor 
space.  They were housed in special rooms with customized electrical 
service to supply them with thousands of watts of power and large 
refrigeration plants to carry off the heat generated as a byproduct of their 
operation. 

These machines had large staffs to operate them and other personnel to 
prepare the programs to control what they did.   Mainframe computers 
have now been replaced for many purposes by personal computers that 
sit on one’s desk and do one’s bidding with a few keystrokes and/or a few 
mouse clicks.  Most personal computers are faster, more reliable and 
equipped with more effective software support than any of the 
mainframe computers with which I was involved.  Yet it comforts me to 



 vi 

think that all of the experiences we had and the lessons we learned 
during the early days of the mainframe machines set the stage and 
established the fundamentals upon which all of this modern achievement 
has been based. 

If computers have not been well understood until recently, then the light is 
yet to dawn in many peoples’ minds about what computer software is, 
why it exists and how it is created.  A historical discourse on computers 
may provide a way to clarify how software came to be, when it started to 
be an integral part of the computer-related panoply of capabilities and 
some examples of modern software with which most people are probably 
acquainted. 

I have recorded some of the technical facts I have learned both as a 
historical record and to connect my activities with the state of the 
computer industry at the time.  Most of the text is derived from my own 
recollections of what I did for many years.  The historical background of 
the computer industry prior to my personal involvement is contained in the 
Introduction.  I have interspersed references to additional remarks about 
technological advancements within the body of the text and in the 
epilog. Each reference is given an alphabetical designation to distinguish 
it from other endnotes.  Each reference is placed in the text at about the 
time I would have become aware of the particular advance(s) cited.  
These occur at intervals of one to several years and may be distractions 
from the flow of the story just as they were distractions to us as we 
conducted our jobs.  It should be understood that we were always 
“shooting at a moving target”.  In spite of our best efforts to stay ahead of 
the competition, we were often kept off balance by technical advances 
affecting the entire industry. 

Various people have different levels of acquaintance with computer 
techniques and technology.  I have not wanted to make this a computer 
primer or a teaching tool; at the same time I am not able to present my 
story without using some technical terms and engaging in some technical 
reasoning.  As a compromise, I have presented the main body of the text 
using terms and terminology I believe most computer literate persons of 
the twenty-first century will understand.  For those who are insecure about 
their level of familiarity, I have provided appendices I believe will equip 
them with what they will need, to understand the main body of the text.  
In particular, Appendices A through C are intended to prepare the 
uninitiated reader with the knowledge needed to better enjoy reading 
the rest of the text.  I recommend that readers who have questions about 
their computer background read these appendices before they read 
much beyond about page 26.  As an additional aid to the uninitiated 
reader, I have included a Glossary of terms at the end of the book. 



 vii 

Also, some appendices could be skipped if they are not of interest.  These 
are Appendices F and G that give some details about the RAYDAC 
computer.  Appendices H through K are provided so the reader may, if he 
or she chooses, understand in greater detail some of the information 
included in the text.  Hence, although I think they might be found to be 
interesting, reading them is optional.  Finally, Appendix L gives a summary 
of my life before I became involved with computers. 



 1 

Introduction 
Before I became involved with computers in a really serious way and for 
several centuries before, various faltering efforts to develop them had 
occurred.  These efforts can be grouped into the three separate types of 
devices that evolved.  I refer to these three as calculators, automatic 
calculators and computers.  The primary subject of this book is computers; 
however, the other devices deserve recognition because calculators are 
familiar to most readers and because calculators and automatic 
calculators played an important role in the early evolution of computers. 
 
By a calculator, I mean a device a human can use to perform single 
arithmetic operations—usually, add, subtract, multiply and divide—upon 
numbers manually entered into the machine at the time the operations 
are to be performed.  The most familiar modern manifestation of this 
object is the hand-held device many of us own singly or in multiples and 
can be purchased for a few dollars and powered either by batteries or by 
an attached solar cell. 
 
The architecture of a calculator is extremely simple and is illustrated  

  
in Figure 1.  The display in a modern calculator is usually a Liquid Crystal 
Panel.  It has been various other devices in the past including rotating 
wheels with numerals painted on them.  The numeric input is now usually a 
small ten-key keyboard.  In the past, large arrays of keys were often used 
for numeric input.  If the precision of the machine were 10 decimal digits, 
then a 10 by 10 keyboard would be provided: ten digits vertically to 
permit entry of each of the possible decimal digits and ten columns 
horizontally to permit the entry of the ten different digits of the number.  If 
the machine had only 8 digits of precision then a 10 by 8 keyboard would 
be provided: again ten rows to represent the digits zero through 9 and 
eight columns to represent the eight possible digits of each number.  
However, some machines used other input devices such as, but not 
limited to, rotary switches in electric or electronic calculators or rotary 
selectors in mechanical ones.  Instruction input is usually an array of 



 2 

buttons, one for each executable operation. In the simplest case one 
button each for addition, subtraction, multiplication and division.  Also, a 
“Clear” button usually exists to reset all of the machine’s contents to zeros 
and an “Equals” button to direct the machine to complete a previously 
designated instruction.  The Arithmetic Unit performs the instructions 
directed by the Instruction Input.  A single result is stored in the Arithmetic 
Unit and displayed on the display device.  In some modern calculators an 
additional storage space is provided within the Arithmetic Unit, called a 
memory, in which a single additional number may be stored. 
 
The ability of a calculator to perform arithmetic is limited by the speed 
with which the human operator can enter data and record results.  
Human operations are generally slow and error-prone.  Hence, various 
automatic calculators were developed that permitted streams of 
calculations to be preformed at relatively high speed and, in some cases, 
after verification of inputs.  Figure 2 shows the architecture of an 
automatic calculator. 
 

 
 
The similarity to a straight calculator is obvious, but the memory now has 
been made visible because it typically is capable of containing more 
than one data entry.  Each entry (or word) in the memory could be 
distinguished from the others by the use of a number called an address.  
Just as the house number distinguishes the houses on a street, the memory 
address distinguishes the cells in a computer memory.  These cells are 
generally called words—each with its own address.  The data-type inputs 
can now in some cases be alphabetic as well as numeric, so the term 
“Data Input” is used instead of “Numeric Input”.  Also, more than one 
input device may be provided—cards and paper tape readers, or 



 3 

multiple paper tape readers, for example.  Instructions are read from input 
devices (usually) distinct from the data input devices.  Although only one 
instruction input is generally provided, such as a paper tape reader, in 
some machines multiple, alternate instruction inputs are provided.  
Because the outputs now come out in a stream, it is necessary to provide 
an output device such as a printer or cardpunch to accept the output 
stream.  Multiple output streams might be provided, each one of which 
will accept part of the entire output stream.  Finally, the Arithmetic Unit is 
renamed the Arithmetic and Logic Unit (or ALU) because in some 
machines, this unit could perform logical decisions that could cause the 
instruction input to switch from one input device to another. 
 
Finally, we come to the computer, also known as the Stored Program 
Computer or the Von Neumann Computer.  Its architecture is the 
architecture of all modern computers.  It is illustrated in Figure 3. 

 
The big change that occurs when moving from the Automatic Calculator 
to the Computer is that both data and instructions share the memory in 
the Computer whereas they do not in the Automatic Calculator.  This 
change has a profound affect upon the capabilities of the resulting 
machines.  A Central Control Unit is now at the heart of the system.  This 
unit controls and directs the operation of all other units in the system as 
specified by instructions stored in the Internal Memory.  (These control 
functions were buried in the Instruction Input Unit in Automatic 
Calculators.)  More importantly, the Arithmetic and Logic Unit is able to 
perform operations on the instructions contained in the memory, and the 
Central Control Unit is capable of retrieving instructions from any location 
(address) in the Internal Memory.  These flexibilities give this architecture a 
vast superiority over its predecessors. 
 



 4 

As before, the Arithmetic and Logic Unit performs all actual 
computational tasks, but, in addition, it can perform logical operations 
that permit programs to be made intricate and complex to a degree 
limited only by the imagination of the programmer and the need to be 
able to maintain and adjust the programs in the future.  A Peripheral 
Controller is now introduced that instructs the peripheral devices and 
controls the flow of data between the devices and the Internal Memory.  
In some systems the Peripheral Controller functions are included within the 
Arithmetic and Logic Unit or the Central Control Unit.  The 
advantages/disadvantages of these arrangements will be discussed in 
following chapters. 
 
All three of these architectures were employed at various times during the 
evolution of computers.  Table 1 shows the names of a collection of these 
progenitors and the dates upon which they appeared. 
 

Table 1.  Computer Evolution to 1952[1] 

Originator  Device Name  Device 
Type 

Year(s
) 

Wilhelm Schickard Calculating Clock Calc 1623 
Blaise Pascal Pascaline Calc 1644 
Sir Samuel Morland Monetary Adding Machine Calc 1668 
Gottfried Wilhelm von Leibnitz Stepped Reckoner Calc 1674 
Charles, 3rd Earl of Stanhope Multiplying Calculator Calc 1775 
Mathieus Hahn Hahn Multiplying Calculator Calc 1770-

1776 
J. H. Mueller Mueller Difference Engine Calc 1786 
Charles Xavier Thomas de 
Colmar 

Arithmometer Calc 1820 

Charles Babbage Babbage Difference Engine Auto 1822-
1832 

George Scheutz Scheutz Difference Engine Auto 1834 
Charles Babbage Analytical Engine Design Auto 1834 
George and Edward Scheutz Printing Difference Engine Auto 1843 
George and Edward Scheutz Tabulating Machine Auto 1853 
Charles Babbage Prototype Analytical Engine Auto 1871 
Ramon Verea Multiplying Calculator Calc 1878 
Anonymous Mass Produced Calculator Calc 1885 
Dorr E. Felt Comptometer Calc 1886 
Dorr E. Felt Printing Desk Calculator Calc 1889 
Herman Hollerith Punch Card Tabulator Auto 1890 
William Burroughs Office Calculator Calc 1892 
IBM IBM-601 Auto 1935 
Konrad Zuse Z1 Auto 1939 
Bell Telephone Labs Complex Number Calculator Auto 1940 



 5 

John V. Atanasoff and Clifford 
Berry 

ABC Auto 1941 

Howard H. Aiken Harvard Mark I Auto 1943 
Max Newman and Wynn 
Williams 

Heath Robinson Auto 1943 

Wynn Williams and George 
Stibitz 

Relay Interpolator Auto 1943 

Tommy Flowers Collosus Auto 1943 
John W. Mauchly and J. Presper 
Eckert 

ENIAC Auto 1945 

Howard H. Aiken Harvard Mark II Auto 1947 
Wallace Eckert IBM-SSEC Auto 1948 
Max Newman and Freddie C. 
Williams 

Manchester Mark I Comp 1948 

IBM IBM-604 Auto 1948 
Maurice Wilkes EDSAC Comp 1949 
Presper Eckert and John W. 
Mauchly 

BINAC Comp 1949 

Howard H. Aiken Harvard Mark III Auto 1949 
National Physical Laboratory, 
Teddington, England 

Pilot ACE Comp 1950 

Jay W. Forrester, MIT Whirlwind Comp 1950 
U. S. National Bureau of 
Standards 

SEAC Comp 1950 

U. S. National Bureau of 
Standards 

SWAC Comp 1951 

University of Pennsylvania EDVAC Comp 1951 
Engineering Research 
Associates 

ERA 1101 Comp 1951 

Ferranti, Ltd. Manchester Mark II Comp 1951 
Lyons Company LEO I Comp 1951 
Remington Rand UNIVAC I Comp 1951 

 
Of the 45 entries in Table 1, 13 are calculators (device type Calc), 20 are 
automatic calculators (device type Auto) and 12 are computers (device 
type Comp).  The calculators range from the crude Calculating Clock in 
1623 to the Burroughs Office Calculator in 1892.  Of the 13 calculators 
listed, three were successfully marketed commercially—ten to fifteen 
Pascalines dating from 1644 were sold by Pascal and additional ones by 
others (no patent laws existed then), Arithmometers dating from 1820 
were sold for 90 years, Comptometers dating from 1886 were sold well into 
the 20th century and William Burroughs started the office calculator 
industry in 1892. 
 



 6 

Of the 20 automatic calculators, two Scheutz Tabulating Machines dating 
from 1853 were sold; the Hollerith Punched Card Tabulator was used to 
tabulate the 1890 census.  (Hollerith formed the Tabulating Machine 
Company in 1896, which merged with the Computer Scale of America 
Company and the International Time Recording Company in 1911 to form 
the Computing-Tabulating-Recording Company.  It was renamed 
International Business Machines (IBM) in 1924.)  IBM-601s through 604s were 
widely used starting in 1935 and continuing into the 1950’s and beyond.  
Several of the automatic calculators were special purpose in nature: the 
Complex Number Calculator, the Heath Robinson and the Collosus, for 
example.  The latter two were built at Blechley Park in England to be used 
in breaking enemy codes during World War II.  Ten Collossi were built 
during this period and their use was instrumental in breaking the Nazi 
Enigma code that the Germans thought unbreakable.   
 
The only machines in this early evolution that could be considered 
commercially successful on a scale comparable to modern computers 
would be the automatic calculators by IBM—the 601 through 604.  
However, by the time those IBM machines were available, the true 
computers were beginning to appear in the commercial market.  The last 
four entries in Table 1 were commercial ventures and all of them were true 
stored-program computers.  Eight Manchester Mark II’s were sold.  The 
Lyons Company had originally supported the development of the EDSAC 
with the intension of using it within the company; however, they soon 
found themselves in the computer business in addition to their earlier 
enterprises.  (For anyone who is interested, an EDSAC Simulator is available 
on the Web at http:www.dcs.warwick.ac.uk-~edsac-Software-
EdsacTG.pdf.  You must use Adobe Acrobat to read the document and 
receive further instructions.  The simulator has an option that permits you 
to slow it down to the speed at which the EDSAC would have run.)  The 
UNIVAC I was the work of the Eckert and Mauchly Corporation, which by 
1951 had been bought out by Remington Rand.  It was the beginning of 
what would become the Sperry Rand Corporation and would survive for 
many years to come.  Engineering Research Associates also later merged 
with Sperry Rand and survived for several years. 
 
Significant progress in computer technology had been achieved and a 
common vision of modern computer architecture had occurred during 
the early evolution of the computer.  Starting with gears and chains to 
perform calculations, then relays, the evolution had ended with the 
exclusive use of electronic components.  Table 2 shows some of the major 
hardware technological milestones reached in this period. 



 7 

  
Table 2. Evolution of Computer Hardware Technology to 1952 

  
Originator Item Year(s) 
Herman Hollerith Punched Card 1890 
W. H. Eccles and 
F. W. Jordan 

Flip-flop circuit design 1919 

E. Wynn-Williams Binary digital counter using thyratrons 1931-2 
George Stibitz 1-bit binary adder using relays 1937 
Alan M. Turing The Turing Machine 1937 
Claude E. Shannon Implementation of symbolic logic using 

relays 
1938 

John V. Atanasoff 
and Clifford Berry 

16-bit adder using vacuum tubes 1939 

Schreyer 10-bit adder using vacuum tubes and 
memory using neon lamps. 

1939-40 

Atanasoff and 
Berry 

Regenerative memory using capacitors 
mounted to revolving drums 

1941 

Max Newman and 
E. Wynn-Williams 

High-speed Paper Tape Reader—2000 
characters per second 

1943 

John von Neumann Stored program computer architecture. 1945 
Frederick Viehe Magnetic core memory 1947 
Various 
Independently 

Magnetic drum memories. 1947 

Freddie C. 
Williams 

Cathode Ray Tube Memory 1948 

An Wang Magnetic core memory as a serial delay-
line memory. 

1949 

William Shockley 
and Presper Eckert 

Delay line memory. 1949 

Remington Rand Magnetic Tape 1951 
Jay Forrester Magnetic core memory as it is to become 

commonly used (as random access store). 
1951 

 
Herman Hollerith introduced the punched card into the computer 
industry, but it was not a new and unique invention.  Punched cards had 
been used previously for control of the Jacquard Loom.  Hollerith’s cards 
had 80 columns.  Remington-Rand also used cards, but theirs were 90-
columns wide.  Flip-flop circuits are notable because they were the first 
electronic bi-stable devices; switches and relays preceded them.   
 
Alan Turing’s machine introduced in 1937 is not a real computing 
machine, but a theoretical, simplified computer used as a mathematical 
device in problem solving.  It was introduced in a paper [2] on 



 8 

“computable numbers” and has since been a cornerstone of computer 
science. 
 
Some of the contributions to technology turned out to be dead ends, 
such as the neon lamp memory and the capacitor memory.  However, 
regenerative memories have been and are still in frequent use.  The paper 
tape reading speeds achieved with the Blechley Park machines were 
indeed impressive.  They were reading at 5000 characters per second by 
1945, but magnetic media have superseded paper tape in modern 
computers. 
 
The von Neumann computer architecture might be the most significant 
item contained in Table 2; however, von Neumann’s claim to credit for 
that breakthrough was challenged.  Various people felt von Neumann 
had given insufficient credit to others in introducing the stored-program 
idea.  In addition to the objections of Eckert and Mauchly, some [3] 

thought the original thinking was due to Turing in the form of the Universal 
Turing Machine described in his landmark paper of 1936. 
 
Without question, magnetic cores won the battle in the 1950s for best 
internal memory.  The three contenders are listed as the last three entries 
in Table 2.  Having used all three at one time or another, I can assure the 
reader, my colleagues and I preferred magnetic cores without 
reservation.  Williams Tubes  were said to be inexpensive, but Whirlwind 
converted from Williams Tubes  to Magnet Core Memory in the 1952-3 
time frame because, among other things, they were spending $32,000 per 
month in replacement CRT tubes.  Delay lines, being serial memories, were 
just too slow to be competitive. 
 
In the area of peripheral storage, the introduction of magnetic tapes on 
the UNIVAC I was a major breakthrough.  That along with magnetic drums 
would be the paramount bulk storage media for several decades to 
come.  However, the tapes used by Eckert and Mauchly were not the 
plastic tapes with which most of us are familiar.  Their tapes were nickel-
coated bronze with a recording density of 128 characters per inch. 
 
Because the von Neumann Computer is so important to us, its first 
conceptualization and the immediate consequences it had upon the 
evolution of computer technology is worth reviewing.  It all started with 
the ENIAC [4], developed under contract to the U. S. Army’s Ballistic 
Research Laboratory at Aberdeen Maryland and was the first all 
electronic computer.  Ballistic Research Laboratory, also known as BRL, 
and previously known as APG, the Aberdeen Proving Ground, was 



 9 

responsible for providing the Army with “firing tables” used in artillery 
aiming. 
 
During the early days of World War II, these tables were calculated with 
the assistance of mathematicians at the Moore School of the University of 
Pennsylvania.  Women who operated hand calculators had originally 
performed the necessary calculations and a single 60-second projectile 
trajectory took about 20 hours to complete.  The university had a digital 
differential analyzer that was put into use, but it too took about 15 minutes 
to complete a 60-second trajectory.  The demand, in 1943, for the 
computation of new cases was greater than the computational 
capabilities could accommodate. 
 
In response to this need, BRL issued a contract in June 1943 to build a 
computer called ENIAC, for Electronic Numerical Integrator And 
Computer.  The ENIAC, which was actually an Automatic Calculator, was 
completed in 1945, too late to make any impact during the war.  
(However, it could calculate a 60-second trajectory in 15 seconds—a 
shorter time than a shell would be in the air.)  It was then moved to 
Aberdeen and again put into operation and continued in use until 1955, 
when it was permanently shut down.  In the intervening period, it was 
modified several times including the addition of a 100-core magnetic 
core memory provided by the Burroughs Corporation.  (It was also later 
modified to permit instructions to be stored and retrieved from its memory.  
Based upon this fact, some people claim that ENIAC was the first stored-
program digital computer.  However, the machine that resulted was 
rather different from modern computers and I, for one, prefer not to 
include it in the class with other von Neumann machines.) 
 
However, the greatest reward resulting from the ENIAC development 
wasn’t the machine itself, but rather the gathering together of the best 
minds of the free world on the subject of automatic computation.  The 
cross fertilization of thoughts and ideas that resulted from this gathering 
resulted in a previously unprecedented explosion of innovation in the 
computer field.  J. Presper Eckert was the principal engineer on the 
project and John W. Mauchly was the prime consultant on the ENIAC.  
The staff was of the highest quality; most of them were well known for 
personal accomplishments in related fields.  John von Neumann, then of 
the Institute for Advanced Study at Princeton became affiliated with the 
project in 1944.  He was a member of the BRL Scientific Advisory Board.  
On August 29, 1944, that board recommended funding of EDVAC, 
Electronic Discreet Variable Automatic Computer. 
 



 10 

In June 1945, von Neumann produced a paper entitled “First Draft of a 
Report on the EDVAC”.  The stored-program concept was first 
documented in this paper.       
 
In July and August of 1946, a series of 48 lectures were given at the Moore 
School entitled “Theory and Techniques for Design of Electronic Digital 
Computers”.  Although only 28 persons attended all of the lectures, 
several others attended one or more of them.  Most importantly, the 
biggest names and most influential persons in what would become the 
computer industry were in attendance. 
 
Construction of the EDVAC at BRL began immediately after it was 
recommended.  Shortly after the conference, the EDSAC was started at 
Cambridge University in England as was the Manchester Mark I at the 
University of Manchester.  The SEAC, Standards Eastern Automatic 
Computer, was started in the U. S.  Also, Eckert and Mauchly had formed 
their own company by the time of the Moore School lectures and had 
begun construction of the BINAC for the U.S. Air Force.  All of these 
machines were based upon the EDVAC Report, were influenced by the 
lectures at the Moore School and represented the true beginning of the 
“Computer Industry”. 
 
Whereas electronic technology and the other devices needed to 
complete physical computer systems advanced rapidly in the period 
preceding 1952, the same cannot be said for the art of programming.  
Some people say Ada Byron Lovelace [5] was the first computer 
programmer.  That may or may not be true, but even if it is, it is probably 
irrelevant because the Babbage Analytical Engine upon which she was 
said to have done the programming was in no significant way similar to 
modern computers and the machine was never built.  Hence, Ada’s 
experiences are not in any way applicable to the work performed by 
modern programmers.  She did recognize the importance of subroutines 
and program loops, but these are concepts that can be taught in a few 
minutes to neophyte programmers so they are not major intellectual 
resources. 
 
In 1945, a remarkable German named Zuse, who had by then invented 
several automatic calculators, invented a programming language 
named Plankalkul [6].  Commentary on the language on the World Wide 
Web is very complimentary; however, it was never implemented as far as I 
have been able to determine.  Furthermore, the accomplishments of Zuse 
were unknown (or unrecognized) until long after World War II, so even if 
the language had been implemented, it could not have influenced 
programming in the U. S. and the U. K. 



 11 

 
The Web site referenced in Note [1] says under the heading “Jun 1948”, 
“Turing joins the team [at the University of Manchester] and devises a 
primitive form of assembly language, one of several developed at about 
the same time in different places.”  The only other reference in this time 
period to any programming aid appeared in a book entitled The 
Preparation of Programs for an Electronic Digital Computer, by Wilkes, 
Wheeler and Gill [7] of the EDSAC computational laboratory at Cambridge 
University in England.  This is a complete description of the EDSAC 
Assembly Program along with a description of its use of a subroutine 
library.  It was, no doubt, one of the assemblers referred to in the Note [1] 
reference.  (See Appendix E for a brief description of various computer 
languages including assembly language.) 
 
In 1951, Grace Hopper of Remington Rand (which had bought out Eckert 
and Mauchly), invented the modern concept of the compiler and the A0 
programming language.  These were, no doubt, major contributions, but 
they were baby steps in the long road to the achievement of useful and 
well-accepted high-level languages.  In the same year Betty Holberton, 
recipient of the 1997 Ada Lovelace Award [8], introduced a sort-merge 
generator for the UNIVAC I.  This was the germ of what would be some 
very important future developments. 
 
Other accomplishments surely occurred in the programming field in this 
time period, but references to them are unavailable.  It is clear that these 
machines needed to have loaders to load their programs, subroutine 
libraries for calculation of mathematical functions and debugging aids 
such as memory dumps and program trace routines.  Of all these needs, 
only the book by the EDSAC group provided any description.  The use of 
flow diagrams also arose in this period and was of assistance in the design 
and planning of programs.  Their original use is attributed to John von 
Neumann [9]. 



 12 

Getting Started 
 
I was born and raised in Stockton, California and received my early 
education there in the public schools.  As with many others, my education 
was interrupted by World War II.  I spent a short time, while in the Army at 
the University of Idaho, in Moscow, Idaho, but shortly thereafter was 
trained to be a Cryptographic Technician and was sent to Greenland 
and the Azores where I spent the remainder of my Army career.  [A more 
complete personal history may be found in Appendix L.] 
 
After discharge from the Army, I received a baccalaureate in Physics from 
the University of California at Berkeley.  I was married during my 
sophomore year of college and our first daughter was born during my 
junior year.  During my senior year, I received an offer from the U. S Naval 
Air Missile Test Center at Point Mugu, California to go to work after 
graduation.  The salary was to be $2,475 per year and I accepted it. 
 
When our little family arrived at Oxnard in June of 1950 to report for work 
at Point Mugu, our first challenge was to find housing.  It was still close 
enough to World War II that housing was at a premium and it seemed our 
only choices were to buy a new house, which we were financially unable 
to do, or rent.  The problem with renting was that the only things available 
that we could afford were units in government-built housing 
developments left over from the war.  Since these rentals were our only 
choice, we moved in. 
 
All of the units were located in long, narrow quadraplexes.  The area was 
referred to as “Kerosene City” because all the appliances—stoves, space 
heaters, water heaters and refrigerators—were fueled with kerosene.  No 
electric or gas appliances were available during the war, so these were 
the substitutes.  However, our unit suited us very well and though it was 
quite humble, the rent fit our salary. 
 
When I reported to work, I discovered I had been assigned to the 
Computational Branch of the Mathematical Services Division of the 
Range Instrumentation Department of NAMTC (Naval Air Missile Test 
Center).  Of course, all of these organizational names meant nothing to 
me, but on the first day, I was asked if I would be interested in working with 
an electronic digital computer.  Several other recent graduates and I 
were very interested.  Hence, we all accepted our assignments to the 
Computational Branch. 
 



 13 

I was now beginning to meet the people, locations and organizations with 
whom and within which I would be working.  Some of the people who 
started when I did were Norman Potter, Jim Tupac, Chuck Aronson and 
Bob Causey.  Our immediate supervisor was Don Dufford and his boss was 
Margaret Swanson.  She reported to a man named Ed Ring (I think).  
Others already on board when I arrived were Shirley Colton and Phyllis 
Mastracola.  All of these people had degrees in mathematics except 
Norm Potter, who had a degree in engineering of some sort.  The idea 
then was that computers had something to do with mathematics, which 
was only somewhat true. 
 
Later, but while I was still reporting to Don Dufford, Max Eaton joined our 
staff.  He was one of the greatest characters I ever met.  He was a 
statistician who had been trained at the University of Kansas and all of his 
examples involved Pigs and bushels of wheat, etc.  He had also been a 
Major in the Army and was about fifty years old, which to me at the time 
seemed ancient.  He had opinions about everything that he shared 
spontaneously.  He invested in the stock market, played poker in Gardena 
and loved to play chess.  We used to play chess at lunchtime and he was 
extremely good at it.  I don’t think I ever beat him.  He was always eager 
to learn and always enrolled in the UCLA courses many of us took.  
Knowing Max was one of the great positive experiences of my life. 
 
When I first arrived at Point Mugu, all of the buildings were leftover, one-
story World War II barracks-type structures.  Ours was located right across 
the street from a large diesel-electric generator that was started at about 
8:15 every morning and ran all day until 4:45, fifteen minutes to quitting 
time.  At first it was annoying, but soon we didn’t hear it at all during the 
day.  The entire Mathematics Branch, including Don Dufford had desks in 
one room of this building.  There was no privacy; nowhere to go to think 
without possible interruption. 
 
Since I had first heard of computers, I had learned that most of them were 
named after either a wind and/or had a name ending in “ac” for 
“automatic computer”.  Our machine was to be called the RAYDAC or 
the Hurricane Computer.  In 1949, the EDSAC and BINAC; in 1950 the Pilot 
ACE, Whirlwind and SEAC; and in 1951 the SWAC, EDVAC, ERA1101, 
Manchester Mark-II, LEO-I and UNIVAC-I had first been brought into 
operation. In 1952, [10] the MANIAC-I, ORDVAC, ILLIAC, RAYDAC and 
ELECOM 100 joined this list. There were a variety of less well-known 
computers introduced so that RAYDAC was actually the 33rd [11] computer 
ever built.  It is also one of those that came into being during the highly 
productive period following the building of the ENIAC. 
 



 14 

Most of these early machines were unique in their designs and 
configurations and were built to satisfy rather specific application 
objectives.  It is not surprising that few companies wanted to get into the 
“general purpose” computer market.  Such sages as Howard Aiken of 
Harvard had predicted only six computers would be needed to fulfill the 
computational needs of the United States for the foreseeable future, so 
who would buy these machines? 
 
The problem was that these “sages” were thinking of computers in terms 
of their own backgrounds in which automatic calculators were used 
simply to print page after page of tables.  These would then be published 
for others to use manually.  Examples of these tables were the “firing 
tables” the ENIAC was created to produce and the mathematical tables, 
such as tables of logarithms produced by the Bureau of Standards.  
However, a few people, such as Eckert and Mauchly and the people who 
built the ELECOM 100, were able to see beyond this limited horizon and 
went into the general-purpose computer business. 
 
In any case, our computer was to be the RAYDAC, built by the Raytheon 
Manufacturing Company under contract with the Special Devices Center 
of the Office of Naval Research.  (I discovered while writing this book that 
the head of the RAYDAC development at Raytheon was Richard M. 
Bloch, a person that would enter this story again much later.)  RAYDAC 
was a little different from some other computers in that it was one piece of 
a larger real-time data reduction system.  The system was known as the 
“Hurricane System” and hence the computer was called the Hurricane 
Computer.  The system was said to have a price tag of four million dollars, 
so it is hard to say how much the computer cost.  Hence, we were the 
employees who were to work on a non-existent computer for which the 
manuals had not yet been written.  In the meantime, until the computer 
became a reality, we were given other jobs to do that would relate (it was 
supposed) roughly to our work when the computer was ready. 
 
The work we did usually involved using mechanical calculators such as 
those made by the Friden or Marchant Corporations.  These usually 
occupied about a sixteen by sixteen inch square on a desk and stood 
about 10 inches high at the back and slanted downward toward the 
front.  They had a keyboard of 100 keys in a 10 by 10 array for data entry 
and additional keys for controlling the machine.  A carriage at the top of 
the machine displayed operands and results.  Their capabilities were 
somewhat less than the pocket calculators that have been commonly 
available since the advent of the transistor.  They could add, subtract, 
multiply and divide; but could not compute the square root of a number.  



 15 

(I believe a “Square-root Friden” came out during the 1950’s, but it cost 
about $4000 compared to about $400 for a standard Friden). 
 
The assignments we executed using these machines varied.  Often 
someone would have created a form describing a particular sequence of 
calculations.  Our task consisted of filling out page after page of such 
forms based upon the calculations they specified.  After a while, though, 
most of us were assigned to help someone else in performing his or her 
job.  In my case, I was assigned to work with Harold Gumble, who was a 
member of the Aerodynamics Branch, working on what was called “The 
Sparrow Flutter Problem”. 
 
Flutter is a phenomenon that occurs when the physical bending of an 
airframe becomes coupled with the lift of the control surfaces.  If a control 
surface causes the airframe (in this case a Sparrow Missile) to climb, this 
can cause the airframe to be bent in such a way that an additional 
displacement of the control surface occurs causing additional climbing 
that causes additional bending of the airframe, etc.  This can result in loss 
of control, or, in extreme cases, destruction of the airframe.  Gumble’s 
problem was to examine the degree to which flutter could occur with the 
Sparrow Missile and the conditions that would cause varying degrees of 
flutter to occur. 
 
Gumble was pursuing the problem using a Digital Differential Analyzer at 
California Institute of Technology in Pasadena and also by manual 
calculations.  I got involved in the manual calculations and also made 
several trips to Cal Tech with him.  Of course, the Differential Analyzer 
could produce results much more rapidly than I could.  My job was to 
compare the Differential Analyzer results with my manual calculations and 
try to explain any differences. 
 
It should be understood that a great debate [12] was going on in the early 
1950’s about what kind of computers were to become dominant: digital 
or analog?  Of course, most of the “ac’s” and “winds” were digital 
computers.  They performed ordinary arithmetic and logic at very high 
speed and under control of a program prepared in advance.  While 
digital computers were beginning to be used and recognized as 
valuable, analog computers were also being used and were producing 
useful results.  These were computers that used the values of voltages 
and/or currents in electrical circuits or mechanical parameters in 
mechanical systems to represent the values of the parameters in a 
problem as the dynamics of the problem system were carried out. 
 



 16 

People who preferred analog computers argued that analog computers 
were easier to program, and much less expensive than digital computers.  
Digital computer proponents argued that analog computers provide 
insufficient precision and flexibility for many uses and digital computers 
could do any computation whatsoever.  They said that with the 
development of better programming techniques and methods digital 
computers would win the day. 
 
Hybrids such as Digital Differential Analyzers existed that performed the 
same mathematical functions as the components of analog computers, 
but did these things digitally.  This provided the ease of use of an analog 
computer with the precision of a digital computer.  It is clear today that 
digital was the way to go; analog computers and Differential Analyzers 
are now hardly ever even mentioned. 
 
In addition to providing a job with a small income, working at Point Mugu 
provided some other benefits.  For example, we had the chance to 
watch the launch of some of the navy’s most advanced missiles.  It was a 
short walk from where our offices were located to the launch pads from 
which the tests, which were the bread and butter of Point Mugu, 
originated.  We often took this short walk to the beach to “watch the 
show”.  I am sorry to report that the “show” was usually a flop.  Very 
frequently, the missiles just plopped into the surf.  The most interesting ones 
to watch were the Loons that were U. S. manufactured copies of the 
German V-1s.  They usually made it off their launching rails and actually 
flew.  Only once while I was there did a missile (it was a Sparrow) leave 
the pad, fly about five miles out to sea and demolish a B-17 drone.  From 
where we stood, it looked more like the drone ran into the missile than the 
other way around, but we were happy to see it nevertheless. 
 
A substantial benefit of being at Point Mugu was proximity to UCLA.  The U. 
S. Bureau of Standards, Institute for Numerical Analysis (referred to as INA) 
was located there.  During the same time we were awaiting the RAYDAC, 
the people at INA were awaiting their computer, the SWAC (Standards 
Western Automatic Computer) or Zephyr.  They had weekly symposia to 
which we were always invited.  Because of its location on the university 
campus and its connection with the Bureau of Standard, the speakers at 
the symposia were often people of note in the field at the time.  Hence, 
we had an opportunity to listen to and rub elbows with some outstanding 
authorities at a time when we were totally uninitiated neophytes.   
 
To understand the function of the Institute for Numerical Analysis, it is 
necessary to understand that prior to the advent of modern computers 
and their associated software, Scientists of all sorts—Astronomers, 



 17 

Physicists, Statisticians, for example—had to look up the values of 
mathematical functions in books of tables.  (Slide rules provided some 
functions, but only at low precision; high precision values had to be found 
in tables.)  Where did they get these tables of functions?  Universities and 
the Bureau of Standards supplied them.  Hence, the art and science of 
Numerical Analysis was an important area of expertise for the Bureau. 
 
It turned out some of the employees of INA were computresses who had 
worked for the bureau for many years.  They were all experts in numerical 
analysis and were exceptionally skilled at the use of desk calculators.  
Each of them had contributed to the creation of many volumes of 
mathematical tables.  They were generally kindly, elderly, spinsters that 
knew more about how to calculate mathematical functions to any 
degree of precision desired than almost anyone.  They were another 
valuable resource to which we had access. 
 
The other advantage of being close to UCLA was they offered courses at 
Point Mugu in which we could enroll.  During the time I was there, I took 21 
semester hours of graduate mathematics via this program.  The courses 
were fascinating and I think I got A’s in all of them.  I could have gotten a 
Masters Degree in Mathematics if I had completed an additional 3 units, 
fulfilled a residence requirement and written some sort of thesis.  Because 
of the residence requirement and the thesis, I didn’t complete the 
degree, a fact I have often regretted. 
 
During the fall of 1950, the U. S. Government let a contract to the 
Raytheon Corporation to provide two courses of study on the RAYDAC 
Computer to certain Civil Service Employees.  The courses were to: first, 
prepare a group of engineers to maintain the computer after delivery 
and second, to train a group of programmers to program the new 
machine.  The courses were to be conducted at the Raytheon Factory in 
Waltham, Massachusetts starting in January and continuing until the spring 
of 1951.  The hardware types (engineers) chosen to go were Harold 
Baugh, Sigmund Yelen, Matt Gibson, Bob Waller, one Point Mugu 
employee whose name I forget and one man from NSA (National Security 
Agency); the programmers were Norman Potter, Jim Tupac, Don Dufford, 
Bob Causey, Chuck Aronson, a person named Pederson from NSA and 
myself.  The Navy paid our transportation to and from the factory and 
gave each of us $900 to cover our other expenses including rent.  To us, 
this seemed like a lavish stipend, but, in truth, it was just about right. 
 
The decision to participate in the class created the very serious problem 
of separating me from my little family.  By the time we were to leave, we 
had moved to a little rented house in Oxnard.  We were very happy in 



 18 

Oxnard and the prospect of being separated for three months was not at 
all a joyous one.  However, the career enhancement aspect of taking 
part in the training could not be ignored, so, in her usual supportive and 
good-natured manner, my wife went along with the decision to have me 
participate. 
 



 19 

My Introduction to Computers  
 
Norman Potter, Jim Tupac and I were together most of the time during our 
educational journey to Waltham, Massachusetts.  The three of us left the 
Oxnard Airport aboard a DC-3 on a very rainy night in January 1951.  
Because of the storm, the airline put us up overnight in Los Angeles.  We 
completed our flight the next day on a TWA Constellation—a four-engine 
airplane that was the height of luxury in its day.  When we arrived in the 
Boston area, we arranged to find a place to stay in a private residence. 
 
The residence was the home of an elderly lady and her daughter who 
was probably in her thirties.  It was a pleasant, two-story house with three 
bedrooms and a bathroom upstairs.  The daughter occupied one of the 
bedrooms and the three of us shared the other two.  We took turns 
occupying the single room, so we each had an opportunity for some 
complete privacy from time-to-time.  The house was within walking 
distance of the Raytheon Plant and a diner where we usually ate.  It was 
also within walking distance of Watertown Square where we could get a 
trolley that connected with the subway to Boston. 
 

 
Image 1.  The RAYDAC Class, Waltham Mass., 1951 



 20 

 
Of course, we had had a bit of an introduction to computers from our 
visits to INA in Los Angeles and from informative meetings we had at Point 
Mugu.  However, the assumption of our course at Raytheon was that we 
knew nothing about computers and so our training started us out from 
scratch.  That was a reasonable assumption and, for practical purposes, it 
was true.  The first part of the course was called logical design and was 
taken with the hardware and the programming personnel all in 
attendance.  In the second part of the course, the two groups had 
separate classes according to the needs of their separate technical 
specialties.  Each of the classes was taught in the morning and the 
afternoons were free to do homework and to study the material. 
 
The attendees and instructors at the RAYDAC course are shown in Image 
1.  The instructors are all standing; the students are seated.  There are only 
two of the teachers that I remember: Emma Cummerford, the only 
woman, and Robert Brooks, standing at the right rear of the room.  Seated 
from front to back are: front row, Unknown #1, Norman Potter, Jim Tupac; 
second row, Don Dufford, Bob Waller, myself; third row, Unknown #2, 
Sigmund Yelen, Jim Harvey, Jim Pedersen; fourth row, Hal Baugh, Matt 
Gibson and Bob Causey.  Unknown #1 was an engineer from Point Mugu, 
but I don’t remember his name.  Unknown #2 was also an engineer, but 
he was from the National Security Agency (NSA).  I don’t think I ever knew 
his name.  All of the students were from Point Mugu, except for Unknown 
#2 and Jim Pedersen.  Both of them were from NSA.  According to Jim 
Tupac, there was another student from Point Mugu, not in the picture.  His 
name was Chuck Aronson. 
  
Robert Brooks of Raytheon taught the Logical Design course.  Some of the 
general and introductory material he covered is described in Appendix 
A—Some Computer Fundamentals.  [This would be a good place for 
readers unfamiliar with computers to read appendices A through C.]  
During one of the first days of the course, he handed each of us a copy of 
huge blueprints.  These were the logical design of the RAYDAC.  They did 
not consist of electrical circuit diagrams, but logical circuit diagrams.  The 
elements of the logical diagrams were flip-flops, logical and gates, logical 
or gates, delay lines, one-shot multi-vibrators and probably other things I 
have forgotten.  Corresponding to each of these logical elements, 
electrical or electronic elements existed.  So if one had the logical design 
and the electrical design of the logical elements, one could, in theory, 
build the computer. 
 
We were to spend many hours, both at the Raytheon Plant and at our 
rented quarters, pouring over the logical design blueprints of the RAYDAC.  



 21 

In the end, we really knew what the RAYDAC was, how it worked and why 
it worked the way it did.  I have long since forgotten much of the detail 
we learned, but the general knowledge was to serve me well for many 
years.  I believe the Logical Design Course lasted for 5 or 6 weeks.  We 
had a test at the end of that period and I got the highest grade in the 
class; Jim Tupac got the next highest. 
 
After the Logical Design Course was completed, the Engineers and the 
Programmers were divided into separate classes.  Our class was, of 
course, RAYDAC Programming.  The class was taught by the only woman 
from Raytheon we had any contact with during our stay.  She was Emma 
Cummerford—a young woman, age 30 or so, who was very bright.  Some 
of the material she taught us, as I can recall it, is given in Appendix F—
RAYDAC Programming.  Emma was an excellent teacher and was well 
liked by the class. 
 
It should be understood that learning to program, or teaching 
programming, in those days was a different task than learning to use a 
modern computer.  We had nothing to work with except the bare 
computer.  The manufacturer provided no programs except a loader—a 
program to move other programs from an external medium into the 
computer’s memory.  No compilers or assemblers or subroutine libraries 
were supplied.  Many, if not most of these things had yet to be invented.  
No books or journals or manuals on RAYDAC or any other computer or the 
general principals being used, were available.  So Emma Cummerford 
had the task of teaching us about programming the RAYDAC, but also to 
suggest to us the mountain of other programs and capabilities we would 
need to make this machine a useful and useable tool. 
 
One important area of knowledge we needed to give life to RAYDAC was 
numerical analysis.  This brought us back to our seminars at INA and to 
some extent also to the courses we had taken at Point Mugu.  Many of 
the ideas our west coast experiences had introduced were now 
becoming tools of our trade and not just abstract ideas floated by us in 
lectures.  Ms. Cummerford had a good feel for these skills and passed 
along much of her knowledge to those of us in her class. 
 
At the end of the class, we had another test.  Again, Jim Tupac and I got 
the top two scores in the same relation to each other. 
 
Whereas most of us had flown to the Boston area, Don Dufford had driven 
his car.  On several occasions, he took Norm and Jim and I on excursions 
around the area.  Once we went to the Harvard Computation Laboratory 
in Cambridge.  Here we toured the facility of the Mark IV, the fourth in the 



 22 

series that started with the Mark I.  Howard Aiken was the director of the 
laboratory and was a well-known name in the computer industry at the 
time.  The facility was very attractive and glossy, but I didn’t get much out 
of the tour.  The Mark’s were not stored-program computers—their 
programs were stored on long strips of punched paper card stock and 
were separate from their data.  As such they represented a less 
advanced version of computer technology than the RAYDAC.  They also 
had things called “magnetic buckets” that were used for data storage.  I 
never did understand what they were or how they worked. 
 
On another occasion, we visited the Whirlwind Computer Laboratory at 
Massachusetts Institute of Technology, MIT.  This was more to my liking and 
understanding.  The Whirlwind was a 16-bit stored-program machine that 
had been built at MIT and bore many characteristics that were similar to 
RAYDAC.  It was built on vertical racks exposed to view.  As I recall, they 
were arranged in two parallel rows.   It, unlike RAYDAC, was air cooled, so 
the room air was re-circulated and refrigerated, hence it was noisy but 
temperate in the computer room.  It had Williams Tube Memory (later 
replaced by magnetic cores).  It had magnetic tape handlers and 
Teletype input and output devices.  It also had a very advanced library of 
program subroutines. 
 
When we got back to Point Mugu, RAYDAC was still in Waltham and was 
not in operation.  That was okay, though, because no building existed to 
put it in, but one was under construction—Building 50, the Range 
Instrumentation Building.  We watched as it was being built and we were 
very anxious to occupy it in lieu of our old wooden hovels. 
 
Building 50 was a concrete structure with many windows.  In general, the 
front of the building contained offices and the rear contained laboratories 
and workspaces with a hallway down the middle most of the length of the 
building.  Entry to the building was by way of a lobby connected with this 
hall.  The lobby was bare except for a doorway on its left (east) wall that 
led to a nice conference room convenient for meetings of up to 40 
people.  As you entered the hall from the lobby the opposite wall was 
bare except for two doors.  The first one, to your left, was large and heavy.  
This was the door to the RAYDAC computer room. 
 
At the end of hall past the computer room door to the right was a snack 
bar where you could buy beverages and small food items.  To the left was 
a double door that entered into a large bay, where our offices would be, 
including the office of our manager and his small staff. 
 



 23 

The other door in the wall opposite the lobby entrance was to the right as 
you entered.  It was a standard door that entered a room that contained 
the RAYDAC peripheral equipment—the Problem Preparation Unit (PPU) 
and Output Printer.  This was called the PPU Room.  The PPU Room had a 
back door that led to a laboratory area where our engineers worked.  
There was another door to the computer room just inside of this lab on the 
east wall in the northeast corner.  
 
Down the hall to the west, past the PPU Room, offices were located on 
the right and labs on the left.  One of the first labs you would encounter 
was the one containing IBM punched card equipment.  That is all I recall 
about the layout of Building 50. 
  
The evolution from the EDVAC to the RAYDAC is not clear, except 
RAYDAC was part of the explosion of machines developed after the 
publication of the EDVAC report mentioned in the Introduction.  However, 
RAYDAC had several features that were unique or, at least, new in relation 
to some of the others in the group.  First, it was self-checking.  Unlike the 
BINAC that performed checking by having two complete computers, 
which checked on one another, the RAYDAC used mathematical 
algorithms similar to the method of “casting out nines” in decimal 
arithmetic to check each arithmetic operation.  (Actually, RAYDAC 
performed its checking in base 32 and cast out 31’s.)  It also checked all 
internal information transfers with parity checking that would catch most 
errors of movement of data within the machine.  It also had four magnetic 
tape handlers that used a unique method of searching for information, 
which involved the optical sensing of block numbers printed on the back 
(non-magnetic) side of the tape. 
 



 24 

 
Image 2.  RAYDAC without its skins in the Raytheon factory. 

 
Contrary to most other computers of its day, the RAYDAC was Freon 
cooled.  Most others were air cooled and had their cooled air delivered 
to them through a false floor upon which the computer equipment sat.  
The RAYDAC electronics were mounted on racks that were two feet wide 
and eight feet tall.  These racks had plumbing along each side that 
carried liquefied Freon gas, to carry off the heat from each rack to be 
exchanged with the outside atmosphere.  Each rack had studs screwed 
into it on each side that accepted aluminum blocks drilled with holes to 
accommodate heat-generating electronic components, such as vacuum 
tubes.  These blocks carried the heat from the heat-generating 
components to the Freon in the racks to which they were attached.  
These details can be seen in Image 2.  The upshot of all this was the 
RAYDAC computer room didn’t have a false floor nor was the room 
plagued with the constant noise of rushing air as were most computer 
rooms of the time. 



 25 

 
The external appearance of Building 50 was unique because it had a 
tower.  This was right above the RAYDAC computer room.  It contained 
the air conditioning equipment that supplied the RAYDAC with liquid 
Freon and contained the heat exchangers, which disposed of the heat 
removed from the computer. 
 
The RAYDAC computer room was a 40x40x12-foot box enclosed in a 
double wall of quarter-inch copper.  The two copper walls were about six 
inches apart and the floor was covered with interlocking rubber tiles.    The 
reason for the copper enclosure was to shield the computer from bursts of 
radar energy that were frequent, powerful and abundant around the 
missile range in which we were located.  The computer room contained 
two large doors: one on the north, near the northeast corner of the room; 
the other on the west, near the southwest corner.  The north door was the 
one visible from the front hall; the west door opened onto a laboratory 
and workshop area described above. 
 
The RAYDAC did finally arrive and we did finally move into Building 50.  
Our offices were in the large bay at the east end of the building.  The bay 
was filled with perhaps 16 desks.  Two enclosed offices opened off of the 
south wall of the bay.  The one that shared the windows on the east end 
of the building with the bay in which we sat was for our manager and the 
other was unoccupied.  A secretary’s desk and some file cabinets sat 
outside the manager’s office.  Our manager turned out to be Lt. 
Commander J. C. Aller, a Naval Officer who knew very little about 
computers.  Hence, the RAYDAC and its associated needs had had a 
building built for it but the people who were to provide it with its life’s 
blood—programs—were still housed in what was referred to as a “bull 
pen”.  However, we knew of no other arrangement, so we proceeded 
ahead happily. 
 
I remember when we found out who our boss was going to be; the big 
topic of conversation was how to address him.  Finally, Jim Tupac asked 
him how we should handle this important issue and he said, “Just call me 
Jim”.  He turned out to be a really nice person and we all liked him.  By 
now, I must explain that “all” meant those of us who had been in the 
Waltham programming class less Don Dufford, who went on to other 
endeavors, Chuck Aronson, who left to attend graduate school and the 
NSA person.  Also, a few new people who had not gone to Waltham 
joined our group: George Kendrick, who along with his wife Barbara had 
just graduated from the University of Kentucky and Walt Soden and 
another man named Lloyd Hines.  Walt Soden and Lloyd Hines either were 
not selected to go to Waltham or elected not to go.  So the whole staff 



 26 

consisted of George Kendrick, Norm Potter, Jim Tupac, Bob Causey, Walt 
Soden, Lloyd Hines, myself and our boss, Jim Aller.  Shortly after we moved 
into Building 50 Jim Aller hired a secretary whose name I don’t remember.  
 
After the RAYDAC arrived and was reassembled in the waiting computer 
room and PPU room, another major hurdle needed to be crossed before it 
would be ours to use as we saw fit—the machine had to pass its 
acceptance tests.  This involved execution of extensive programs 
(prepared and debugged at the Waltham plant) in the presence of a 
host of critical dignitaries.  While we waited for this momentous occasion, 
we busied ourselves programming utilities (see Appendix K—Utility 
Programs) we knew we would need when the machine was turned over 
to us. 
 
It would have been 1952 before we seriously got down to RAYDAC 
programming.  First, we all worked on writing a better program loader 
than the one supplied by Raytheon.  It was like a contest—each person 
trying to make a faster and/or smaller version.  We finally arrived at several 
loaders both faster and smaller than the starting version.  The other set of 
programs we knew we would need were those for converting between 
binary and BCD and binary and six-bit numeric code.  We used the same 
approach on these with the same results. 
 
I don’t remember any other programs of significance we worked on prior 
to acceptance tests, but one memorable event did occur.  Our old friend 
Don Dufford had made contact with a man from England who worked in 
the EDSAC Computation Laboratory.  The EDSAC was one of the premier 
early computers and the group at the laboratory had performed some 
excellent programming including the writing of (as far as I know) the 
world’s first assembly program. (More about this below).   We had all seen 
and read the book they had written about their assembler and were 
greatly impressed. 
 
This English visitor was in the U. S. (I think at INA) and paid us a call.  We 
were all expecting to talk shop with him, but instead he regaled us with 
the story of the Lady Lovelace who was the daughter of Lord Byron and a 
protégé of Charles Babbage the creator of the world’s first computer (so 
some people say).  Lady Lovelace, whose given name was Ada, was said 
to be the world’s first programmer.  His presentation was entirely 
fascinating and we all enjoyed it and had reason to remember it in the 
years to come when Ada’s name was given to a very famous 
programming language touted for use as an international standard. [A][13] 
 



 27 

In due course, the RAYDAC acceptance tests were successfully run and 
the machine was turned over to the Navy for use.  The only item of note in 
that connection is one person on the acceptance committee.  He 
seemed determined to find cause for not accepting the machine.  He 
created no end of troubles during the tests, being an obstructionist all the 
way.  I don’t remember his name, but he was to turn up later as a Vice 
President of Honeywell. 
  
At long last, we had the opportunity we had been waiting for—to run our 
own programs on the real RAYDAC hardware.  What a shock!  Every 
programmer has, no doubt, experienced it: the realization that a program 
must be PERFECT in order to run correctly and nearly perfect in order to 
run at all.  We learned to debug—to strive to find every single bit in our 
programs that was not correct.  This is a difficult process that no one really 
enjoys.  However, we survived it and lived with it forever more. 
 
The step-by-step process we went through to get a program in operation 
was as follows: 

1. The programmer wrote the code for the program to be created on 
two forms: a programming form that described the instructions and 
a data form that described the data.  The code on these two forms 
constituted the program.  These were both written in octal and the 
octal address into which each word was to be loaded for 
execution was assigned as the programming proceeded. 

2. After making the hand-written code as perfect as possible, it was 
taken to the PPU Operator, who copied the hand-written code to 
punched paper tape with a paper hard copy using a teletype 
machine with tape punch.  The hard copy was then returned to the 
programmer for inspection. 

3. If the paper tape represented what the programmer wanted, he or 
she would go to step 4, else he or she would return it to the PPU 
Operator for corrections. 

4. The PPU Operator would process the paper tape through the 
Problem Preparation Unit (PPU), which would read the paper tape 
and transfer its contents to RAYDAC magnetic tape.  The tape on its 
reel would be returned to the programmer. 

5. The programmer would schedule a block of machine time to test 
the program. 

6. When the machine time came up, the programmer would go to 
the computer room with the magnetic tape and hard copy.  When 
the programmer gained access to the machine, the tape reel 
would be mounted on the tape handler designated as number 2; a 
tape containing the program loader would be mounted on the 
handler designated as number 1 and any other tapes needed 



 28 

would be mounted on the other two handlers.  At this point the test 
could have begun. 

7. The programmer would set the start selector to 1 (for tape handler 
1) and press the Start Button on the console. 

8. This would cause the first block of 32 words, which contained the 
loader, to be read into the memory buffer associated with tape 
handler 1 and would instruct the computer to begin executing 
instructions beginning with the first word in the buffer.  Having done 
this, the instructions of the loader would load the instructions of the 
program that (by convention) were on the tape on handler 2 into 
main memory and would command the computer to begin 
executing the instructions just loaded. 

9. When this point was reached, the programmer had in mind a 
certain sequence of events that would transpire as the program 
executed with perfection.  What usually happened was something 
entirely different, which often involved the display of some sort of 
error condition.  In the unlikely event that the program ran as 
expected, the process jumps to step 12 otherwise it continues at 
step 10. 

10. When an error was detected, it was the programmer’s responsibility 
to determine if the error was caused by the program or by a 
malfunction of the computer.  If a malfunction had occurred, an 
engineer would be called and the programmer would restart the 
process at step 8 after corrective action had been taken.  
Otherwise, he would use the CRT display on the console to look at 
various words in memory in binary to try to determine why his 
program caused the error to occur.  Having determined this, the 
programmer would relinquish the machine to the next user. 

11. The programmer would now return to his or her desk and find a way 
to repair the error in the program.  Having done so, he or she would 
correct the hand-written version of the program and return it to the 
PPU Operator for correction on magnetic tape.  This would return 
the process to step 2. 

12. At this point there was some hope that the program was working 
correctly, however this hypothesis would need to be checked 
further.  If it ran successfully, it would have produced some output, 
most likely on one or more magnetic tape handlers, so the 
programmer proceeded to step 13. 

13. The programmer delivered the magnetic tape(s) produced to the 
PPU Operator who mounted it(them) on the output-printing unit and 
converted the results on magnetic tape to hard copy on a Teletype 
printer. 

14. The programmer then took all of the results from the “successful” run 
to his or her desk and analyzed the results in detail.  There was still a 



 29 

great likelihood that some error would be found, in which case the 
programmer would return to step 11.  Finally, everything would be 
correct including the final output answers and the job would be 
complete. 

 
Of course, at this time, we had no programming aids of any kind.  We had 
no assembler and no assembly language and no debugging aids 
whatsoever.  We had to write our programs in octal and perform octal 
hand calculations to help determine if the programs were working 
correctly. 
 
We soon became dissatisfied with writing programs in octal and sought 
better ways of getting our jobs done.  The assembly program produced 
by the EDSAC group inspired us, but it seemed like a huge challenge for 
us to undertake, so the group considered various suggestions.  After much 
discussion and debate the choices came down to two: a program to 
create complete programs from a collection of subprograms written with 
relative addresses and a modification of the EDSAC assembler.  I had 
introduced the first choice and Bob Causey the second.  The selection of 
which one was to be implemented was left to our boss, Jim Aller. 
 
He chose in favor of my simplified version.  I suspect he did so because he 
had very limited discretionary funds available.  I will admit I was very 
positively impressed by Bob Causey’s proposal and would not have been 
greatly disappointed if the choice had gone to it.  But as it turned out, this 
was one of the first, if not the first real programming assignment I received.  
A brief description of the result is contained in Appendix F—The RAYDAC 
Assembly Program.  (I would discover some time later that what I had 
created would more appropriately be referred to as a relocatable loader, 
not an assembly program.) 
 
The other major contribution to our programming productivity came to us 
as if “out of the blue”.  Any mathematical function (such as a logarithm or 
a sine or a cosine) used in a calculation had to be derived by use of a 
numerical approximation.  The determination of the exact algorithm to be 
used to approximate each function to a desired degree of precision is a 
difficult problem in itself.  Those of us at Point Mugu had no particular 
background or experience to guide us in dealing with such problems. 
 
Then we became aware of the algorithms published by Cecil Hastings of 
the Rand Corporation.  These were published in loose-leaf form, one sheet 
per function and were distributed for the asking by Rand.  This was like a 
programmer’s cookbook.  If you needed to program the calculation of a 
function to a given degree of precision, you could look up the Hastings 



 30 

sheet and it would tell you exactly how to do the necessary 
approximation.  We were greatly indebted to him as I suspect were most 
programmers throughout the country.  This was one of the really valuable 
contributions to programming made in the early days of the profession. 
 
At this time, Northrup Aeronautical Institute personnel were being hired 
under contract to perform manual data reduction tasks at Point Mugu.  A 
freeze on civil service employment was making this advantageous.  This 
suggested that a similar contract could be let to obtain personnel for the 
operation, programming and maintenance of the RAYDAC.  In due 
course, that is what happened. The contract was with Computer Control 
Company of Framingham, Massachusetts—a brand new company 
composed of former Raytheon employees, mainly the engineers that had 
built the RAYDAC. 



 31 

Computer Control Company 
 
Before the new contractor took charge of RAYDAC, some of the group 
that had been trained to program for it decided they had had enough. 
Norm Potter was the first to leave.  He went to Douglas Aircraft in the Los 
Angeles Area.  They were paying high salaries and found his experience 
very attractive.  Then Jim Tupac accepted an offer from The Rand 
Corporation.  He, too, was pleased with the opportunity the move 
provided.  I’m sure they were both excellent employees in their new 
environments.  They had always been valuable contributors at Point 
Mugu. 
 
After the decision had been made to contract the operation and 
maintenance of RAYDAC to Computer Control Company, all of us still 
present who had previously worked on the machine were offered 
employment with the contractor.  We all accepted except Lloyd Hines, 
who stayed with civil service and who seemed only marginally interested 
anyway.  The transfer to the new employer was effective in December 
1953.  I was given number 16 on the company pay roll.  The first few 
numbers on the payroll went to the President of the Company, Louis Fein, 
and his engineers that transferred out from the east. 
 
I don’t remember the names of any of the engineers Lou brought with 
him, but I got to know him fairly well.  He had a PhD in electronic 
engineering and was looked up to by everyone in the company.  He had 
been the principal designer of the magnetic tape handlers of the 
RAYDAC.  Lou had a pleasant personality and was generally well liked. 
 
While Jim Aller had been our leader, he had delegated to me the 
keeping of records in regard to what jobs we had, who the customers 
were and who was working on which job.  Hence, it was natural for Lou to 
ask me to fill him in on this information when he arrived.  This was not a big 
deal because not many jobs or customers existed then.  Lou also 
suggested a better way to keep track of such things than the informal 
notes I had kept.  He introduced me to Gantt Charts.  These permitted us 
to keep the same information in a much more concise form and also 
provided for visibility of the expected future progress of each job.  Other 
than this change, I did not notice much change in my day-to-day 
activities, nor, I think, did any of the others of us that made the change of 
employer. 
 



 32 

However, our personnel picture changed in a big way.  Lou, of course, 
replaced Jim Aller in the manager’s office and Lou hired an accountant- 
type person named Bill Murphy (or something like that) who shared the 
office with him.  Jim Aller’s secretary went with him and was replaced by 
a young, blond woman named Doris Hermanson.  He also hired a dear 
middle-aged (she looked old to me at the time) lady to run the 
equipment in the PPU Room.  Her name was Christine and everyone liked 
her.  She did her job well and seemed to want to be everyone’s mother. 
 
Our programming staff also began to grow.  Lou hired Joseph 
Weizenbaum who had just finished his PhD at Wayne State University.  In 
addition to having a more elegant degree than the rest of us, Joe was a 
very bright person and a good programmer. 
 
Lou also hired Kay and Frank Stockmal—a wife and husband team.  They 
both had previous programming experience, I believe on a UNIVAC I. 
 
Bruce Blasdell joined us at some point.  He was about Christine’s age and 
at some point had gained some management experience.  Bruce 
seemed to feel he had a special role to play in advising me, as the acting 
supervisor of the programming group.  That was okay with me.  I needed 
all the help I could get. 
 
Jack Anchagno (I’m sure of the name; not of the spelling.) was a local 
boy that joined us.  His family had been the recipients of a Spanish land 
grant out east of Ventura towards Ojai, California during earlier 
generations.  Jack had lived in the area all his life.  He was a really nice 
person and everyone liked him.  He had contracted polio as a child and 
had the use of only one arm.  John Hanson, who was a very sharp person 
with a strong math background, was one of the last persons I remember 
joining the programming group. 
  
I don’t remember the names of all the engineers we came in contact 
with.  However two deserve mention: Roger Sisson and Dick Canning.  
Roger was a young electronics engineer with a brand new Master’s 
Degree from MIT and Dick was an electronics engineer that lived in the 
Point Mugu area in the hills above Camarillo.  They went on to form 
Canning Sisson and Associates, a well-known consulting firm, and several 
other ventures that were influential in the industry for many years to come.  
 
One Navy Seaman had been assigned to work on the RAYDAC in 
addition to these engineers.  He was John Haanstra and he had a 
Master’s Degree from MIT in electronics engineering and had been 



 33 

drafted into the Navy during the Korean Conflict.  John was exceptionally 
bright, and everyone liked him.  His name will reoccur within this story. 
 
Finally, Computer Control hired another person to help Christine in the PPU 
Room.  She was Sandy Dennin, the very pretty wife of a navy pilot on the 
base.  I’m not sure how much help she was to Christine, but I do know she 
spent lots of time in the computer room and the adjoining laboratory 
frequented by our engineers, and they did not complain about her 
presence. 
 
I have trouble remembering much about the jobs we had on the 
RAYDAC.  I do remember a few, mostly because they were more 
spectacular than others or because I had a more personal involvement 
with them.  We called one the Missile Matricide Study.  This was a program 
that simulated the firing of air-to-air missiles from an aircraft and 
computed the probability the missile would miss its target and lock onto 
the aircraft that had fired it.  I don’t remember the details of the problem, 
but I always liked the name. 
 
Walt Soden worked on a similar program related to range safety.  This 
program determined the safety of the ships and boats traveling through 
the ocean within the test range.  The problem was to determine the 
probability that one of these vessels would be struck accidentally by one 
of our missiles.  The result was that the probability was negligibly small.  
Hence, clearing the range before a launch was not required. 
 
At some point, Lou Fein asked me to write a program to keep track of the 
company’s checking account.  I did this with no difficulty and described 
my resulting program to one of Lou’s friends during a visit to INA.  His friend 
criticized my program for not using a sort program to order the information 
about checks by check number.  This was, no doubt, a valid criticism, but 
we didn’t have a sort program and it was not my assignment to create 
one.  In any case, the program did what Lou wanted, so I was satisfied.  
He later asked me to write a payroll program, which I did, but it was kind 
of a bust because we had no way to print checks.  Hence, all it did was 
create some accounting inputs based upon the payroll expenses. 
 
At the time we were creating these programs, there was an IBM-CPC (an 
automatic calculator, not a computer) in use down the hall.  CPC stands 
for Card Programmed Calculator and that is what it was.  The program 
that it executed was stored on cards and some of the data it worked on 
were stored in units called “Iceboxes” because they looked like little short, 
gray refrigerators.  Each icebox stored about thirty words, and I think the 
CPC at Point Mugu had three of four of them.  A CPC consisted of a set of 



 34 

separate units cabled together.  The one in our building had a card 
reader, a calculator called a 604, a parallel printer and some number of 
iceboxes.  Typically a set of auxiliary equipment went with the CPC such 
as a card sorter, a reproducing cardpunch, one or more keypunch 
machines and perhaps a card collator.  All of this equipment had to be 
leased from IBM—it could not be purchased. 
 
A man named Chuck Wimberley ran the IBM facility.  I don’t remember 
whether he was a Northrup contract employee or a civil servant.  In any 
case, he was very loyal to his job and what and how it was being done.  
He constantly argued that the RAYDAC was a big waste and that he 
could do anything we were doing faster and cheaper.  In retrospect, I 
think he was probably right because he had access to programming aids, 
tools and techniques developed by and shared among all of the CPC 
customers in the Greater Los Angeles Ares to use to leverage his small 
programming tasks.  We had to develop everything we used from scratch, 
so we were always at a disadvantage. 
 
Reliability was our other problem.  Ours was very poor and his was very 
good.  The RAYDAC was a self-checking machine, which meant it fully 
checked everything it did and if it found any error, it would stop.  It was 
nice that it didn’t create errors at electronic speeds, but it was not so nice 
to be stopping for errors all the time.  In Wimberley’s case, the machine 
continued with the (correct or incorrect) assumption the results were 
correct.  This made his life much easier than ours though his customers 
were not necessarily being better served. 
 
Because the running of the CPC was pretty straight forward, it was 
possible for Wimberley to utilize semi-skilled operators to run his programs.  
The need to analyze each error and go through a careful and often 
complex procedure to restart the machine, made it necessary for a 
programmer (usually the one who created the program) to act as the 
RAYDAC machine operator.  This was inconvenient and a serious drain on 
our already skimpy resources.  So, all in all, I think Wimberley had a pretty 
good argument. 
 



 35 

We did everything imaginable to improve RAYDAC reliability.  At one 
point, closing the door to the computer room was found to cause 

 
 

Image 3.  The Engineers’ View of RAYDAC 



 36 

acoustical shock waves to be propagated into the mercury of the delay-
line memory.  These shock waves were causing memory errors.  The 
memory was in a separate rack located about 10 feet inside the back 
door of the computer room.  Because the doors were quite heavy, it was 
customary to close them with a bang; hence the problem.  So everyone 
was cautioned to close the door easily or use the other door if possible.  
This helped some, but errors continued to occur too frequently. 
 
At one point, the thousands of solder joints that held the circuits of the 
machine together were suspected of being faulty.  Hence, all of us 
including the programming staff were brought in after hours and given 
dental mirrors to observe each and every solder joint.  We were all given 
instructions on identifying faulty or cold solder joints.  The scene we 
confronted in performing this job is shown in Image 3.  Some bad solder 
joints were found, and improvement in reliability may have occurred, but 
the bottom line was the RAYDAC was NOT a reliable machine. 
 
In August of 1954, a man named Don Cambellic reported for work as the 
supervisor of the RAYDAC programming staff.  This was kind of a shock to 
me because I had performed that function since the group was formed 
and, though I was never given the formal title, I knew of no reason for me 
to be replaced.  I don’t remember how Lou Fein handled the thing, but 
however it was, it didn’t set well with me.  Furthermore, Cambellic was not 
a person I particularly liked or admired.  He was given a large private 
office and I did what was expected of me—tried to teach him what we 
were doing as an organization and as a group of individuals. 
 
The arrival of Cambellic had the advantage of permitting me to do some 
things I would not otherwise have had the chance to do.  Chief among 
these was the opportunity to work with Joe Weizenbaum on the solution 
of a set of 65 simultaneous differential equations we had gotten from the 
Chance-Vaught Company.  They described the flying characteristics of 
one of their missiles.  Differential equations are mathematical expressions 
that describe how each variable in a system changes as a result of a small 
change in some other variable.  It is not, in general, possible to obtain a 
closed-form solution to an arbitrary set of simultaneous differential 
equations, but it is possible using the differential equations to examine 
how a system will respond to a change in certain of its variables when 
changes are applied to other variables of the system.  This is done using 
numerical integration. 
 
Joe had been working on various methods of numerical integration and 
he and I discussed his results and challenges as he proceeded.  This 
permitted me the opportunity to understand what he was doing and to 



 37 

act as a sounding board for him as he achieved results.  The Chance-
Vaught problem came along when Joe had implemented what we 
concluded was the best method of numerical integration for our 
purposes.  Hence, he implemented the solution of that problem and 
started running cases. 
 
However, the cases took a VERY long time to run.  We usually scheduled 
the daytime hours for program debugging and tried to do whatever 
production runs we had at night.  So Joe was stuck with working nights, 
but progress was slower than anyone wanted.  So I volunteered to work a 
second night shift.  We took turns working swing and graveyard shifts and 
we gradually worked through all the required cases. 
 

 
Image 4.  RAYDAC Magnetic Tape Handler 

 
Even with two shifts per day, the progress was much slower than anyone 
wanted.  As a result, Joe came up with an improvement that was a credit 
to him and his ingenuity.  To explain what it was, I should explain that Joe 
had implemented the Runge-Kutta integrator by placing the program on 
magnetic tape in 32-word blocks each of which would issue a command 
to read in its successor after it had been exhausted.  In this way, most of 



 38 

the main memory of the computer was available for storage of the 
problem data and this speeded up the calculations.  Each block of code 
was read into the 32-word delay line associated with the magnetic tape 
handler upon which the tape containing the program instructions was 
mounted.  The instructions were executed from where they were stored in 
the delay line without any need to be moved into the main memory.  
However, after the computation sequence was completed, the tape had 
to be repositioned to the beginning.  This repositioning took about the 
same amount of time as the whole calculation, so if it could be 
eliminated, we would have doubled the computation speed. 
 
The idea dawned on Joe that if we had a tape loop instead of a tape 
reel, we could adjust the length of the loop so that the next block after 
the last block of the loop would be the first block of the next rotation of 
the loop.  (The general configuration of a RAYDAC Magnetic Tape 
Handler is shown in Image 4.)  To implement this idea, he first got some 
scrap magnetic tape and made a loop of the right length.  Then he got 
an idler from one of the engineers.  (An idler is a little nylon pulley over 
which the tape normally passes while it is being handled by the tape 
drive.)  He used a paper clip as an axle for the idler, connected the paper 
clip to a rubber band, then connected the other end of the rubber band 
with a paper clip to an overhead fluorescent light fixture.  The gadget 
worked by running the tape handler with its door open to permit Joe’s 
contraption to reach the light fixture.  One end of the loop passed over 
the read/write head of the tape handler.  The idler assembly supported 
the other end.  The fluorescent light fixture, in turn, supported the idler 
assembly.  After the blocks of code had been written to the tape loop, he 
tried it out and it worked. 
 
The expected doubling of the calculation speed took place and we were 
off and running, well, at least walking a little faster.  The only problem was 
the tension provided by the rubber bands varied from time to time, 
presumably due to changes in temperature and humidity.  So the first 
challenge of getting the program to work was to select the rubber band, 
which would work for that night.  Whenever we changed shifts, we would 
have a little powwow about which rubber bands had worked and which 
ones had failed in case we had to make adjustments during the night. 
 
In spite of good experiences like this one it was difficult to remain positive 
about the RAYDAC.  I decided that I might like to make a change myself, 
but I didn’t want to be part of the Aircraft Industry and I didn’t want to live 
in the LA area.  So I tuned up my resume and sent it out to various 
potential employers.  The ones that responded and offered me interviews 
were Convair Aircraft in San Diego and General Electric at Richland, 



 39 

Washington.  The Convair offer was very attractive even though it was in 
the industry I had vowed not to join.  However, they were working on the 
Atlas ICBM and they had a computer that looked very attractive to me (I 
think it was an Electronic Research Associates 1103).  But after the trip to 
the Hanford Atomic Products Operation at Richland, I was hooked.  
Hanford had an IBM-702.  IBM had introduced the 702 in 1954, but when I 
arrived in Richland for an interview, the Hanford organization already had 
theirs installed.  The general environment and the interview with Harry 
Tellier, the manager of the computer center, made the decision for me.  I 
wanted to go to work for General Electric. 
 
I cannot leave the discussion of my experiences at Point Mugu without 
mentioning some of the background we were experiencing.  It was at the 
height of the McCarthy era.  Joe McCarthy was the senator that was 
getting everybody stirred up about our government and society being 
infiltrated with communists.  All of us at Point Mugu had security 
clearances and often worked on classified projects and dealt with 
classified materials, so the normal paranoia associated with security was 
whipped into a fever pitch by the senator’s ramblings. 
 
This tension came too close for comfort in two instances: one was the 
accusation that a female employee who many of us knew was a 
communist; the other was the lock out from the base of an employee Lou 
Fein had hired because of a security problem.  The female employee was 
one of those people who had clear and distinct political ideas and liked 
to express them.  I remember she used to hold forth about the evils of 
Chang Kai Chek and the Kuomintang Party.  This seemed strange to me 
because, as far as I was concerned, Chang was a hero of WWII to be 
honored and respected.  (That error was clarified for me by reading I did 
later in life.)  My wife and I had attended a cocktail party at her home.  In 
any case, she was suddenly on administrative leave because of a security 
problem.  Then some FBI agents showed up and interviewed various 
people, including me.  She was gone for a couple of months and then she 
returned. 
 
In the other instance, Lou Fein had hired a man from the east and moved 
him out to California.  He was ready to report, but base security would not 
allow him to enter.  He claimed he was not accused of any specific 
activity or association but was simply denied entry.  He showed up every 
few days and someone would go out and talk to him.  I was chosen to 
meet with him on one or two occasions.  He seemed like a regular guy, 
but he finally gave up and left.  This was the unhealthy climate in which 
we lived for longer than we should have. 



 40 

Hanford—Getting Started 
 
Our family had grown while we were at point Mugu.  By the time we 
moved to the Richland, Washington area, we had two daughters and 
one son.  We arrived in time for me to report to work on September 1, 
1955. 
 
The Hanford Atomic Products Operation had been started during World 
War II for the production of Plutonium for use in atomic bombs.  The 
Columbia River makes a big loop to the east just north of Kennewick and 
five nuclear reactors, a chemical separation plant and a new city, 
Richland, were built where before nothing but desert and a tiny village 
called Hanford had existed.  Richland contained the offices for the whole 
operation and the living quarters for many of the employees.  For security 
reasons, the office areas were off-limits for non-employees, but Richland 
was an almost regular civilian community.  All of the rest of the reservation 
was off-limits except for employees with appropriate security clearances. 
 
Actually, some aspects of Richland were not at all regular.  For one thing, 
most of the houses in the community belonged to the government.  The 
assortment of house designs was limited; each one was given a letter.  So 
when you met someone, you might ask, “Do you live in an A-house or a C-
house?”  Having gotten the answer you would immediately know the floor 
plan of the house because all of the houses of a given letter were 
identical.  So a certain military-like uniformity existed in the town, but the 
residents generally exhibited pride of ownership that led to a good 
appearance. 
 
The other unusual thing was that many of the employees worked in an 
environment where exposure to radiation was a danger.  For this reason, 
many employees wore film badges when they were on the job and 
exercised other precautions with which I am not particularly familiar.  The 
most unusual thing was that every employee, including myself, was given 
a urinalysis on a periodic basis to check for any signs of excessive 
radiation exposure.  To facilitate this, a truck would drive around the area 
distributing metal cases containing two large flasks.  When the flasks 
arrived at your house, you were expected to fill them within a time period, 
I think it was a week, at which time the truck would return and pick up the 
case containing the now filled flasks.  All of the residents knew when each 
of their neighbors was going to have a urinalysis because the metal cases 
were very unique and recognizable on front door steps. 
 



 41 

DuPont built the Hanford reservation during World War II.  They ran it for a 
number of years and then General Electric became the prime contractor 
to the Atomic Energy Commission.  The big attraction of the area was its 
remoteness and the large supply of cold river water that was supplied to 
cool the reactors.  A pear orchard had been planted near the village of 
Hanford at one time, but had been left to die away.  Other than that and 
the production facilities, the area was a barren desert.  It got quite hot in 
the summer and cold in the winter and we often had wind throughout the 
year.  The old-timers spoke of “termination winds” that were the normal 
winds, which blew regularly.  However, before the town built up and 
became vegetated, the winds were always accompanied by dust and 
sand storms.  This prompted many employees to want to terminate and 
apparently many did just that during these events. 
 
The main office complex was in the middle of Richland, in the business 
district such as it was.  The office complex consisted of a thirty or forty-acre 
fenced-in area with two entrances: a north gate for pedestrians and 
vehicles and a southeast entrance through two different pedestrian doors 
of the main administrative building, the 703 building.  The administrative 
building was quite large and was really a series of interconnected 
wooden barracks-type buildings typical of World War II construction.  In 
addition to the administrative building, the compound contained many 
large warehouses and shops.  The computer center was located in one of 
these warehouse-type buildings, the 713 building. 
 
Harry Tellier, the boss of the computer center, often said, “The great 
advantage of our building is no one else wants it”.  It was, indeed, 
humble, but I must say I rarely noticed its limitations while carrying out my 
duties.  The front third of the building consisted of offices in the form of 
cubicles containing two to three people each.  A total of about twenty of 
these were arrayed on each side of a U-shaped hall.  This was a pleasant 
change from the bullpen arrangement at Point Mugu. 
 
The two-to-three-persons-per-cubicle rule was violated in some instances:  
one supervisor and his secretary occupied one of them and Anna Mae 
Nielson occupied another.  Anna Mae was a long-time veteran of 
Hanford and kept us supplied with the supplies and services we needed.  
She had an office of her own chock full of things we all needed and we 
were all glad for her to have the space because she always knew how to 
get things and get things done. 
 
The open end of the U of the U-shaped hallway opened onto another 
hallway that led into the next third of the building.  The outside of this 
connecting hallway contained one-man offices for supervisors and 



 42 

consultants, a conference room and Harry Tellier’s office including the 
space for his secretary.  The far end of the connecting hallway led to the 
second third of the building.  Most of this middle part of the building 
contained punched card equipment gradually becoming obsolete and 
being replaced by the IBM-702 that occupied the third part of the 
building.  The remainder of the middle part of the building contained the 
Control organization whose function shall be described below. 
 
The walls of the whole building were painted a light green.  Some one 
had done a study that showed light green was the best choice for worker 
morale.  Except for the false floor in the computer room that 
accommodated the air conditioning needs of the 702, all of the floors 
were concrete.  Evaporative coolers on the roof handled the space 
cooling and overhead space heaters provided heat when it was needed.  
Once again the 702-area was the exception.  It had 55 tons of 
refrigeration at the far end of the building.  It was very nice to have an 
excuse to go to the computer room on a hot, humid day. 
 
When I arrived, the organization reporting to Harry consisted of four units: 
Computer Operations, Application Control, Business Programming and 
Scientific Programming.  In addition, he had a consultant reporting to him.  
His direct reports were Clarence Poland, Computer Operations; Pop 
Vought, Control; Chuck Thompson, consultant; Bill McGee, Scientific 
Programming; and. Kendall Wright, Business Programming.  I’m unsure of 
the academic backgrounds of any of these people except I know that Bill 
McGee has a master’s degree in Physics from Columbia. 
 
Clarence had a very sharp mind.  He was a wiz of a computer operator 
and could imagine sequences of details better than anyone I have 
known. 
  
Pop Vought was the eldest of the staff, probably approaching sixty.  I 
don’t know what his given name was.  Everyone just called him Pop.  He 
had a reputation for being a hardnosed supervisor, but was, in fact, a very 
kindly gentleman.  Today, we would have called his function Quality 
Control, but I never heard anyone refer to it as anything but Control.  It 
was his responsibility to schedule all of the financial work, to make sure it 
was run and to make general checks of the results to ensure that they 
made sense.  He was the real world, practical replacement for the self-
checking of the RAYDAC.  I had never before been exposed to a function 
such as his, but I soon became a real fan of the idea. 
 
Chuck Thompson was the son of a Seattle-area auto dealership owner.  
He always made a good appearance and was very pleasant in his social 



 43 

mannerisms.  He was very kind to me while we were both at Hanford.  We 
were about the same age. 
 
Bill McGee was also about my age.  He was a “clean-desk” man—always 
cleaning up and filing one task before starting another.  His father was a 
judge in a county east of Stockton, and he was raised in the California 
Mother Lode country.  He was usually reserved and dignified. 
 
Kendall Wright, like Clarence was probably in his thirties.  He was a 
Mormon and at some future time he accepted a job with the Mormon 
Church placing their genealogical files on computers.  Kendall, Clarence 
and Harry all had extensive punched card backgrounds, which had a 
profound influence on our work. 
 
Finally, Harry was perhaps in his early forties.  He was the person that 
made everything work harmoniously within the computer center and 
controlled our relationships with outside organizations to our benefit.  He 
had worked for the State of Washington at Olympia, for the Kaiser Steel 
Works at Fontana and others.  I don’t think he had a degree, but he had 
very distinct ideas about how computers should and should not be used.  
He was dead set against the decentralized use of computers—believing 
this led only to duplication of effort and disagreements over results from 
different sources.  He also felt quality control suffered in the absence of 
centralization.  Harry’s view of the ideal system was a single powerful 
computer upon which all data for the organization (company, country, 
factory, etc.) was stored and available for reporting and processing.  He 
was a great manager of people and knew how to apply his ideas without 
any heavy-handed tactics. 
 
When I first arrived, I was put in an office with Fred Gruenberger.  We were 
in the office right next to Anna Mae Nielsen who was in the office right 
next to the connecting hallway.  Fred had a Master’s Degree in 
Mathematics from the University of Wisconsin at Madison and was very 
interested in many things including games, movies and Number Theory.  
He also loved to write [14].  He and his wife published one of the very early 
news magazines about computers.  It was called Computing News and it 
came out monthly.  It contained articles by anyone he could get to write 
one and other news clips about events around the industry he collected 
from a vast network of friends.  Fred and his wife made the magazine look 
bigger and more imposing than it actually was by each having many 
names and many functions.  Their masthead looked as if the company 
had twenty or thirty employees when, in fact, it had only two.  They had a 
circulation of three or four hundred in the U. S. and up to twelve foreign 
countries. 



 44 

 
At one point, Fred cajoled me into writing an article for Computing News.  
It was on flow diagrams or flow charts as we came to call them.  Fred 
loved it and built an entire issue around it.  To help fill it out, he included a 
short humorous piece by Jackson Granholm.  Jackson was a friend of 
Fred’s who lived in the Seattle area—I think he worked for Boeing--and he 
had this act in which he was a German Professor named Dr. Stoerben von 
Hunger.  In this persona, he would carry on in pigeon German.  As a 
sample, “Wenn man, jemand Nincombpoopen beim cottenpicken Hanz, 
die ganze library Tape erased hat, es gibt no verdammte use!” 
 
Dan McCracken had worked at Hanford until shortly before my arrival.  He 
wrote a book [15] on programming in the late fifties and included my 
Computing News article (including all of its errors) as Chapter 6. 
 
Like many of our employees, Fred had extensive experience with 
punched card equipment.  He loved to do his own keypunching, sort his 
own card decks and be his own computer operator.  This was great for 
me because I was short on knowledge about card technology.  When it 
came time for me to wire my first control panel, Fred was there, ready and 
eager to be my teacher.  On the other hand, he was eager to learn from 
me about my experience with the RAYDAC.  We soon became fast 
friends—a friendship I always treasured. 
 
After just a short time, Sarah Saco joined us in our cubicle.  
(Coincidentally, Sarah and her husband and little son had moved into the 
house we temporarily rented from the company in Richland.)  We were a 
very compatible trio.  Sarah had a degree (I don’t remember from what 
school) and was a pretty, blond girl in her twenties.  She was very bright 
and a good worker; her greatest interest seemed to be her husband and 
her little boy Gus.  She was a good office mate—always good-natured 
and mostly down to business.  To Fred’s delight, she was always willing to 
join in at lunchtime playing the weird games he liked to play.  I don’t know 
where he got them, but he knew a whole galaxy of variants on well-
known games from three-dimensional chess to bizarre card games. 
 
The IBM-702 had been installed less than a year when I arrived.  It had 
10,000 characters of Williams Tube Memory, a 60,000 character magnetic 
drum and about 12 Magnetic Tape Handlers.  The computer performed its 
arithmetic in decimal and the memory addresses were also in decimal.  
The card reader read about 200 cards per minute and the console output 
device was an IBM Typewriter instead of the Teletype machine I was 
accustomed to.  I don’t believe it was equipped with an on-line printer, 



 45 

but if it had one, it would have printed 150 lines per minute.  Most input 
and output was done by way of magnetic tape. 
 
Separate peripheral subsystems were required to copy information from 
cards to magnetic tape (200 cards per minute), lines of print from 
magnetic tape to printed page (150 lines per minute) or card images from 
magnetic tape to punched cards (100 cards per minute).  These 
subsystems were a major step forward from the puny Teletype output and 
PPU input we had on RAYDAC.  (Chuck Wimberley would have cheered!) 
 
The reliability of the machine was not spectacular, but it was worlds better 
than RAYDAC.  The Williams Tubes  failed fairly often (a few times a shift) 
and magnetic tape errors were very frequent.  Much time was spent 
recovering from memory failures and adjusting gains on tape handlers 
while a tape block was reread time after time trying to glean its 
information in an error-free form. 
 
Sometimes, the engineers would do what they called “develop the tape” 
to try to see on which track the unit was failing or to see if the tape was 
dirty.  This process consisted of removing the tape from the handler and 
swabbing its magnetic surface in the failing region with a fluid containing 
iron powder.  The iron would collect around the magnetic spots on the 
tape rendering them visible.  The engineer could then read the binary 
encoded information and determine which character or track, if any, was 
failing the parity check.  Dirt was often the reason for a failure even 
though it was standard procedure for everyone to wear white lab coats in 
the computer room and to maintain very strict cleanliness. 
 
The greatest failing of the 702 was lack of adequate software.  IBM 
supplied a simple assembly program and a sort routine.  That was it!  The 
assembly program was comparable to that of the EDSAC I had been 
introduced to at Point Mugu several years previously.  While it was 
certainly much better than the assembler I created for RAYDAC, it was not 
then state-of-the-art and had one extreme shortcoming for use at 
Hanford—it supplied no capability to perform floating-point arithmetic.  
Although the majority of the work on the 702 was of the business variety, 
many scientists and engineers at Hanford wanted to use a computer in 
connection with their work.  Hence, floating point arithmetic and a full 
library of mathematical subroutines was needed. 
 
The Hanford organization satisfied this need in the form of its own 
homegrown assembler.  It was called SCRIPT and Chuck Thompson and 
an IBM employee named John Jackson developed it.  They had it written 
and working before the arrival of the 702.  It encompassed all of the 



 46 

features of a conventional assembler of the time plus the needed 
floating-point arithmetic and a subroutine library. 
 



 47 

 

Getting to Work at Hanford 
 
I was assigned to Bill McGee’s Scientific Programming Unit when I first 
arrived at Hanford.  The unit consisted of perhaps 8 of us.  I don’t 
remember many of my assignments, but I do remember one.  It was the 
calculation of neutron flux densities in various cross sections of a reactor.  I 
wrote it in SCRIPT and it was pretty straightforward, but I remember trouble 
getting it debugged thoroughly.  The work was done for a physicist at one 
of the reactors who was a friend of Bill’s.  He would come around just 
when I thought everything was working fine and look at the results for a 
few minutes and then point to a number and say to me, “That doesn’t 
look right.”  I would then go back to the code and pore over it and look 
for a mistake.  I would always find one or more and then we would go 
through the process again. 
 
I had enough other assignments that in a short time I became very familiar 
with 702 programming and how to get around in the Hanford Computer 
Center.  I was soon to find that the programmer at Hanford had a great 
deal more support provided in getting his job done that had been the 
norm at Point Mugu.  Because the primary medium for supplying raw input 
to the 702 was cards, we didn’t need to deal with paper tapes and 
special equipment for converting it to magnetic tape.  We could supply 
cards that were read by the computer itself and we even had keypunch 
operators that, if we wished, would punch our program decks for us 
including verification for correctness of the punching. 
 
We employed what was called “closed-shop debugging”.  That meant 
that a program to be tested would be submitted to the computer room 
with operating instructions and a computer operator would run the test.  
For training purposes we all had the opportunity to run our own programs 
and, of course, when the circumstances warranted one could make 
arrangements to do their own debugging.  In case of any failure during a 
normal test, the complete state of the computer registers and a memory 
dump of all the cells of memory would be recorded and printed out for 
the perusal of the programmer. This information along with any output 
that was created would be delivered to the programmer after the test. 
 
The procedure a programmer would normally use at Hanford to create a 
SCRIPT program was as follows: 

1. The programmer wrote the program on forms created for the 
purpose.  Each line of the form consisted of a location, an 



 48 

operation, an operand address and a comment—that is, it was in 
one-address format with a comment.  This was like the RAYDAC 
instruction form except, of course, the RAYDAC form was in four-
address format.  It also differed in that the location, the operation, 
and the operand address were given in more or less symbolic form.  
That is, the operation was written as some mneumonic triad, such as 
ADD for add, or SUB for subtract.  The location and operand address 
(both of which are addresses) were written as eight-digit sequences 
of the form xx.yy.zz, where xx is the number of a block of code, yy 
is the number of a line within the block xx and zz is a sub-line within 
the line xx.yy .  This was not entirely symbolic but it was a vast 
improvement over the use of octal for all instructions and addresses 
as in the RAYDAC.  The sub-line numbers would initially be all zeros. 

2. The programmer would send the hand-written program to the 
keypunch room to be transferred to punched cards and verified.  
He or she would receive the hand-written program and a deck of 
cards in return. 

3. The programmer would prepare a run request form describing how 
the program was to be run and submit the program deck and the 
run request to Computer Operations for execution.  He or she would 
receive the program and any printed or punched results the run 
created and, if the run was unsuccessful, notations on the run 
request form by the computer operator who ran the program and a 
memory dump.  If a memory dump was created, it would show the 
entire contents of memory at the time the program terminated. 

4. If the run were successful, the programmer would exit this 
procedure and enter the celebration procedure.  Otherwise, he or 
she would analyze the operator comments and memory dump to 
find the reason for the failure.   

5. The programmer would construct a modified version of the code 
excluding the error.  At this point, sub-line numbers could be used to 
insert new lines between previous ones, or previously used line 
numbers could be abandoned.  Either or both of these methods of 
creating modified code could be used without starting over from 
scratch. 

6. The programmer would create new cards corresponding to lines 
added to the erroneous code.  Because the number of new cards 
was frequently small, the programmer often punched the cards 
corresponding to new lines instead of having them punched to 
shorten the time needed to get a new run submitted.  Once the 
new cards were available he or she would modify the deck 
containing the program to conform to the corrected code.  Printing 
the contents of the cards on a tabulating machine could produce 



 49 

a listing of the modified code, if desired.  The process would 
continue at step 3. 

 
Although I was never a great advocate for the use of punched cards, 
they were a great improvement for use by programmers as compared to 
the paper-tape machinations we had to employ on the RAYDAC.  In 
addition to being convenient to use as described above, it was possible 
to sort a deck if it was dropped and shuffled, or make copies of it using a 
card reproducer or carry out a whole array of other operations that were 
the specialties of a wide variety of punched-card machines. 
 
Within three months of my arrival, the memory of the 702 was upgraded to 
20,000 characters of magnetic core.  This not only doubled our memory 
size, but also increased our reliability.  Magnetic cores were a big step 
forward in memory technology, as anyone who witnessed this transition 
will testify. 
 
As a result of the new memory on the Hanford 702 we experienced an 
increase in capacity.  However, in spite of this improvement, we were 
short of machine resources.  We were running a four-shift operation, three 
shifts every day around the clock plus weekends.  A few idle spots 
occurred, but not very many.  Debugging was scheduled in the daytime if 
possible, but the needs of the business often didn’t permit this and if the 
programmer’s presence was required, as was sometimes the case, we 
ended up coming in at odd hours to get some machine time.  Only rarely 
did idle time occur. 
 
In fact, idle time never occurred because my good friend and office 
mate, Fred Gruenberger, had written a program to calculate prime 
numbers and was in the process of calculating all of the prime numbers in 
the 40,000,000-range.  He had made a deal with the computer operators 
that whenever idle time was about to occur, they would start up his 
program.  (Even though this time was usefully utilized, it was nevertheless 
charged to idle time.  This was done with the knowledge and support of 
IBM and simply permitted the use of time that would otherwise have gone 
unused.)  Fred’s program was written so that it would start up from where it 
had last stopped and continually added the new results to those 
previously calculated.  Why was he doing this, you ask?  It was never quite 
clear to me except Fred had a burning desire to be published and this 
was an easy way to get his name in print.  Apparently, having this large 
supply of prime numbers was of some possible value to number theorists. 
 
In any case, the scientific users of the computer were being deprived of 
computer time just like the rest of us.  Harry knew they would get a 



 50 

machine of their own if he didn’t provide them with what they needed, 
and he didn’t want that to happen.  Hence, to provide for the needs of 
this group he arranged for an IBM-650 to be ordered. [B] 
 
The IBM-650 at Hanford was to be for the exclusive use of the scientists 
and engineers and it appeared it would be well able to take care of the 
need.  The only problem was that, like most machines of its day, no easy-
to-use programming language existed.  Hence, on a day in mid-1956, I 
was called into Chuck Thompson’s office and he showed me the manuals 
for an assortment of different programming languages he had studied.  
He wanted me to look them over and recommend one I thought would 
be appropriate for the use of our scientific customers.  The idea was if IBM 
didn’t provide us with the language our customers needed to get their 
work done, we would provide one for them. 
 
After doing the required study, I found that none of the samples provided 
what seemed like it would suit our needs.  The most promising candidate 
would have been something similar to Fortran that was a brand new 
language then and was being implemented for the IBM-704.  However, as 
attractive as that may have been, it didn’t exist for the IBM-650.  Hence, I 
suggested a language of our own that would be in part algebraic and in 
part English-language-like.  After some discussion, I was given the task of 
completing the language and implementing a processor for the 702 that 
would produce code to run on the 650—in modern parlance, a cross-
compiler.  By taking this approach, we could utilize the convenient 
variable word-length capabilities of the 702 to get the compiler 
implemented quickly and provide a powerful tool for our scientific users to 
use to their hearts content on the 650. 
 
That was a turning point in my career.  I was never again a programmer 
who wrote application programs, but was always involved in the 
computer system or what we would come to call (much later) system 
software.  I invented the language, and implemented the cross-compiler.  
It was not an easy assignment and I spent many late nights in the 
computer center getting the last persistent bugs out of the code.  After 
the implementation was complete, I wrote the manual and designed a 
class to teach the scientists how to use it.  When the compiler was finished, 
Chuck insisted it needed a name.  His wife came up with the name 
OMNICODE.  I had help from a summer intern during the summer of 1956 
and from Ralph Eichenberry of IBM, but I think I did most of this work 
myself. 
 
As I was about to finish OMNICODE, I was again summoned to Chuck 
Thompson’s office.  This time he had an announcement for a conference 



 51 

to be held at the Franklin Institute in Philadelphia on January 24-5, 1957.  
He suggested I should prepare a paper for presentation to the 
conference and see if it would be accepted.  I told him I thought it was 
very nice of him to think of me in that context but I had this problem with 
a tremor, which got very extreme and out-of-control when I tried to 
appear before a large gathering.  I didn’t think I should embarrass myself 
and/or General Electric Hanford by making a spectacle of myself.  He 
said he was aware of my problem and he thought I should do it anyway—
it would help me learn to control the problem and it would be very good 
for me professionally.  Well, he was not a car salesman’s son for nothing.  I 
accepted the challenge and did the presentation at the Franklin Institute. 
 
As I look back on that experience, I realize Chuck was very correct and I 
shall always be grateful to him for having insisted.  He also suggested 
professional help was available at Hanford to get my materials ready in 
an artful and upscale fashion.  I followed up on this suggestion and got 
the help of an artist to prepare some cartoon-like slides for me that were 
interesting and eye-catching.  All in all it went very well.  I got the shakes, 
as expected, but after a few minutes at the podium, I began to get into 
the subject and forgot myself and settled down very nicely. 
 
The conference was entitled Symposium on Automatic Coding.  About 
260 people were in attendance.  I was very flattered at the banquet held 
the first night.  The people running the conference made a point of 
having me seated next to Grace Hopper.  She was a well-known 
personality in the industry and was one of the panel moderators.  She also 
had the title Manager, Automatic Coding at Remington Rand 
Corporation.  She was the author of several programming languages 
starting with the A-0 language, then the A-1 and A-2 and was now 
working on the B-0 language.  These were all English-like languages for 
UNIVAC machines and were the progenitors of COBOL—a language that 
became somewhat of an industry standard for business programmers.  
Grace Hopper later became the first female admiral in the Navy and was 
very influential in guiding the future of data processing and computing 
within the military services. 
 
Other people on the program were Richard M. Petersen of General 
Electric, Louisville, where a UNIVAC was in operation, and who would later 
transfer to the General Electric Computer Department; Charles Katz who 
worked for Grace Hopper and would be my first boss at the General 
Electric Computer Department in Phoenix; Robert W. Bemer whose name I 
had known from the LA Area and who would work for Honeywell when I 
did and Alan J. Perlis who was the Director of the Computation Center at 
Carnegie Institute of Technology and who would become well-known in 



 52 

artificial intelligence and throughout the industry.  Panel moderators in 
addition to Grace Hopper included John W. Backus of IBM, the developer 
of FORTRAN; and John W. Carr of the University of Michigan. 
 
I must have finished work on OMNICODE by the end of April 1957 because 
in May 1957, I became the supervisor of the computer room.  I believe 
Chuck Thompson and Clarence Poland swapped positions at about the 
time I started the work on OMNICODE—that is, Chuck became the 
Operations Manager and Clarence became a consultant reporting to 
Harry.  I know I took over the machine room from Chuck and Clarence 
was still around as a consultant.  When I became machine room 
supervisor, Chuck took Kendall Wright’s place and Kendall took a 
consultant position reporting to Harry. 
 
Supervising the computer room was a whole new experience for me.  It 
involved directing the work of a large crew of non-exempt employees, 
scheduling their activities, the shifts they would work and appraising their 
performance.  It also involved scheduling the work to be done on the 
computers and the associated peripheral equipment.  Finally, it involved 
negotiating with IBM to keep the equipment up and running and to 
provide the IBM engineers adequate machine time to perform their 
preventive maintenance. 
 
Before I arrived on the scene, Chuck Thompson had installed a set of 
procedures for the scheduling of work and the retention of files on 
magnetic tape that were efficient and effective.  All I had to do was use 
them.  I found working with the computer operators to be pleasant and 
learned to have a deep respect for their ingenuity and persistence in 
dealing with problem situations.  By far my greatest challenge was dealing 
with hardware failures. 
 
The IBM management tried to avoid calling their engineers out in the 
middle of the night to effect repairs.  They wanted to make sure all efforts 
had been exhausted before the engineers were called.  To make certain 
of this, they insisted all calls to them come from me.  As a consequence, I 
was personally involved with every computer outage that occurred no 
matter the time of day or night.  I was expected to quiz the operators if 
they had done this or that corrective measure or workaround and make 
sure all that could be done had been done before I would call the IBM 
engineer. 
 
I played the game as expected, but it was often very exhausting not only 
for me but also for my wife.  On the other hand, it was inevitable that I 
would become involved, because when an outage occurred, it meant 



 53 

work would be behind schedule and many customers would need to be 
informed and much work would need to be rescheduled. 
 
The problems weren’t limited to the computers either.  The air conditioning 
often gave us problems.  Failure of an air conditioning unit could shut us 
down just as completely as a memory failure.  And also, the computer 
failures were not limited to the mainframe—the peripherals could shut us 
down also.  If a card reader died, input from cards could not get to the 
machine—it would die of starvation.  If a printer was down, we could 
have all of the desired answers on magnetic tape with no way to get 
them to hard copy.  We had a printer that could print at 500 lines per 
minute, but its reliability was terrible.  Fortunately, we had two 150 line per 
minute printers we could use instead, but all of these problems had to be 
dealt with. 
 
On the plus side, I had, for the first time, the opportunity to be a member 
of Harry Tellier’s staff.  This was the first time I had been a member of a 
manager’s staff and I enjoyed it very much.  Not that Harry’s staff was like 
many others.  I would learn to my great regret I had been in a rare and 
unusual environment then and often wished other managers could have 
half the skill and talent of Harry in carrying out their jobs.  But at the time I 
found the experience stimulating and enjoyable and I, for one, think we 
did a great job. 
 
I held the machine room supervisory position for only four months.  It was a 
valuable experience for me because I had learned the solutions to a 
whole new set of problems.  I had gained a new respect for the 
importance of reliability.  I had learned how to deal with employees and 
customers in tense situations.  I was involved with checking the billing from 
IBM, which taught me where we were paying too much for too little 
service.  I gained a sharpened awareness of how programs should display 
their status to operators so the operators could respond as intended. 
 
While I was gaining all of this valuable experience, various other important 
developments were taking place that must be explained. SCRIPT was 
used for most of the programming done by Harry’s organization in the 
early days of the 702.  This permitted the installation to get started in its use 
of the new machine and replace some of the great mass of punched 
card equipment it had formerly consisted of, but an assembler is not an 
efficient programming tool and Harry and his staff knew it. 
 
What they wanted was a way to create magnetic tape files to take the 
place of the huge card files they had previously used.  They would call 
these magnetic tape files “source files”.  In addition, they wanted the 



 54 

ability to quickly and efficiently extract, format and report information 
from these source files and perform processing on their contents when 
needed.  Instead of control panels to define the processing and reporting 
their applications required, (as they would have done using punched 
card equipment) they visualized a programmed counterpart that could 
be created and maintained without the inflexibility and inscrutability from 
which control panels suffered. 
 
Parameterized sort programs had been in use for several years by this 
time.  These permitted files stored on magnetic tape to be sorted into any 
desired sequence under control of a set of parameter cards fed to the 
sort at the beginning of its execution.  In this way a user could specify the 
result desired of the sort program and the program would achieve this 
result without the user being involved in the programming details.  If only 
they could perform the remainder of their tasks in a similar manner, their 
lives would have been very much simplified and their customers served in 
a much better fashion.  They would call the programs that would achieve 
these goals “Generalized Routines” and this is what they developed[16]. 
  
The first of these was the 702 Report Generator.  The best way to describe 
it is to use the words of its co-inventor, (along with Chuck Thompson) Ed 
Roddy.  He said [17],  
 

“During the summer of 1957, I was transferred from 702 Computer 
Operations to work for Charles E. Thompson as a programmer.  
About that time, he recognized the need for management and 
staff to be able to obtain special reports to supplement the reports 
already being produced for Payroll, Work Order Cost, and other key 
projects.  To accomplish this I would obtain a definition of the 
required reports and then write the code [in SCRIPT] and produce 
their reports.  This process was repeated again and again over a 
period of several weeks.  This led to a discussion with Chuck to 
determine if the process could be made more efficient.  Several 
approaches were studied including the use of canned routines to 
prepare the headings, detail, and total lines but the variable 
formats would still require special code to be written for each report 
line.  [After] Another look at the information that was being 
provided for each report, that is a definition of each print line and 
of the fields to be inserted in the lines, it became apparent that if 
the format data were input to a program that the code could be 
generated to produce the report.  I was allowed to develop this 
concept and within 10 weeks (early November 1957) we had a fully 
operational Report Program Generator.” 

 



 55 

The Report Program Generator mentioned by Ed Roddy was referred to 
internally as the RG.  It was the first of our generalized routines.  It was used 
to extract reports from source files.  Two key inputs to the RG were 
required for each report to be generated: a description of the records 
included in the source file—referred to as the source file dictionary--and a 
description of how the report was to appear, provided by the person 
requesting the report.  The source file dictionary was the first file on the first 
reel of every source file and was unique for each version of the source file.  
That is, the format of the source file could be changed from one update 
to the next and the dictionary at the front of each version of the source 
file would define the format of the data contained in that version of the 
source file.  Hence, the source file format and content were not frozen in 
time but could vary with the needs of the business and the wants of the 
customers. 
 
The appearance of each report was recorded on a form consisting of two 
parts: a pictorial representation of the appearance of the desired report 
and a set of expressions specifying the origin of each report entry.  The 
pictorial representation consisted of an example of each line that was to 
appear in the desired report shown as a sequence of characters.  For 
example, a fixed-point numeric entry might be shown as xx.xxxx where 
each of the x’s (representing a digit) and the “.” would be shown on the 
form in the columns they were to appear in the final report.  This example 
would indicate a six-digit numeric entry with four decimal places.  
Different codes, in place of the “x” in the example, were used for each 
possible different type of entry.  Each report line was given a label that 
identified the type of line it was: heading, detail or total.  The entries on 
the second part of the form specified where the data for each report 
entry was to be obtained.  This would often be from some field of the 
source file, but could also be a literal value or a calculated value 
involving various fields from the source file or the sum of various values 
from a lower level line in the report. 
 
The content of each of these forms was punched into cards.  The card 
deck corresponding to each report was referred to as a packet.  No 
programming in the usual sense was involved in creating a packet and 
only a packet and its corresponding source file was needed to create a 
report. 
 
When it was time to process a particular source file, all of the report 
packets available, referring to that source file, were placed in the card 
reader and the RG would read the packets and the dictionary from the 
source file.  The RG would then generate a program to create the 
specified reports.  During execution of the generated program, all of the 



 56 

reports would be stacked, one after another, on an output tape with a 
single pass over the source file.  This tape would then be printed to create 
the final outputs.  The format of the source file and the particular selection 
of reports to be created were variable from one RG execution to the next. 
  
The source files tended to become quite voluminous.  For example, I think 
the Personnel Source File contained 2000 characters of information about 
each employee.  These large source files would be passed over once or 
twice a day so many customers could have their routine or spontaneous 
needs satisfied with a reasonably short turnaround time. 
 
The second generalized routine was a modification of the sort program 
supplied by IBM to use parameters specified in terms of the names of fields 
defined in the source file dictionary instead of the physical locations of 
fields in the source file.  The reason for this was to make the sort 
parameters largely invariant to changes in source file format and content.  
As long as the fields upon which the sort was performed were in the 
source file dictionary, the sort routine could always locate them even if 
they changed location from one sort execution to the next.  I have been 
unable to determine who performed the changes that came up with this 
version of the sort. 
 
The third generalized routine was the file maintenance generator.  With 
this tool we were able to feed data arising from the normal running of the 
business into the file maintenance program so it could update the 
appropriate source file to contain the latest values of these data.  So, for 
example, time cards, changes in grade or level, changes in marital status 
and a plethora of other information that needed to be reflected in the 
Personnel Source File each week were placed there by the generalized 
file maintenance program.  These changes were needed in order to 
properly run the Payroll and other Personnel Accounting applications.  
Having performed these source file updates, most Personnel Accounting 
reports could be obtained by an appropriate set of RG packets being 
inserted in the card reader on the next passage of the Personnel Source 
File following the execution of the file maintenance run that provided the 
needed data. 
 
The file maintenance generator was also the tool that was used to make 
changes to the format of a source file and to perform corresponding 
changes to the source file dictionary.  It was possible on a single file 
maintenance run to change the format of the source file and incorporate 
any data changes that were then available.  Joan Cannon created the 
original file maintenance generator, but I have been unable contact 
Joan to gain any further information about its development.   



 57 

 
This approach permitted us to provide a wide variety of services to our 
customers in an efficient and rapid-response manner.  However to take 
maximum advantage of what we had, it was necessary to inform our 
customers how they might use these new tools.  As soon as the first 
generalized routines were operational, Chuck Thompson, Ed Roddy and 
George Gillette put together what was referred to as a “dog and pony 
show” to inform our customers around the Hanford reservation of the new 
capability and to encourage them to use it. 
 
Chuck had some large displays made on pressed board panels showing 
the approach being used by the generalized routines.  These were hung 
in the hallways of our building and used in the customer presentations.  
The customers were introduced to the generalized approach and then 
asked to create a report of their choosing from a sample source file that 
had been created.  The customers could ask for anything they wanted 
and the RG forms to express their desire would be created by them during 
the presentation.  These would then be quickly keypunched and taken to 
the computer room for execution.  The resulting report would be 
presented to them while they were still in attendance.   
 
For a time when it took months to get a modification to an existing report 
or to cause a new one to be prepared, this was a very spectacular 
demonstration.  Our customers responded as expected and we were off 
and running.  I had no part in any of this development, but it would be 
critical to some of my later activities. 
 
Ed Roddy and George Gillette developed a second version of the Report 
Generator [18] in 1958 that included: 

• The ability to create reports ordered in different sequences than 
that of the source file. 

• The ability to include calculations utilizing source file data in a 
report definition. 

• The ability to refer in Report Generator calculations to source file 
data in terms of their source file field designations. 

These were capabilities that were omitted from the original version but 
significantly enhanced the overall capabilities of the programs—often 
resulting in improved performance by permitting repeated file 
maintenance runs to be eliminated. 
 



 58 

The 709 and SHARE 
 
In September of 1957, I was made a consultant to Harry, and Jim Marshall 
became the machine room supervisor.  I think this occurred when or near 
to the time Clarence Poland left to accept a job with IBM.  Kendall Wright 
continued as a consultant reporting to Harry and I became his second 
consultant.  Both Kendall and I had the title Representative, Electronic 
Data Processing.  In general, we were expected to amplify Harry’s 
capabilities by taking on specific tasks he would otherwise have needed 
to perform.  Kendall spent most of his time working on new applications 
with the business customers.  My area was the evaluation of equipment 
and programming systems for potential use at Hanford.  Clarence had 
started the work I inherited and I expanded the job from there. 
 
I believe I got my first private office and secretary with this promotion.  The 
office I got was, in my opinion, the best in the building.  It was in the 
northeast corner and had its own outside door.  It was also very spacious 
compared to my previous quarters.  I also inherited a set of partially filled 
file cabinets that had been Clarence’s.  They had a good start on data 
about computer-related equipment that seemed interesting for use at 
Hanford.   
 
We were constantly running low on machine time because of the high 
productivity of our programming staff and the pressure from our customers 
to get more and more work on our equipment.  IBM had often applied 
pressure to convert to a 705, but our studies showed the increased cost of 
the hardware would not produce a sufficient boost in productivity to 
justify the upheaval of a conversion.  It was at about the time of my 
change in duties to consultant that IBM announced the 709.  Evaluating it 
was my responsibility.  It was a fixed word-length binary machine like the 
704, but it had some features supposed to make it useful for business 
applications.  It had the added advantage that it would be a perfect tool 
for use by our scientists and engineers who were in the process of 
overloading the 650.  I went through all of the calculations and arguments 
and came up with a recommendation to replace the 702 with a 709. 
 
Other possibilities had to be looked at though they were never serious 
contenders because they didn’t have the programming support we 
needed and no conceivable means of achieving it.  Among these was 
the ERA 1103A, an upgrade of the machine Convair had when I 
interviewed with them.  Its most attractive feature was it had an interrupt 



 59 

[19] capability that could be (and in the future would be) used to improve 
system efficiency.  
 
Some other alternatives were the supercomputers--probably too 
expensive for us in addition to their deficit in program support.  The first 
was the IBM-STRETCH introduced in 1955.  It was to have been ten times 
faster then any machine in use in 1955.  (It never made the target.)  The 
other two were introduced in 1956.  They were the UNIVAC-LARC (for 
Livermore Automatic Research Computer--to be used at the Lawrence 
Livermore National Research Laboratory in California) and the Ferranti-
ATLAS.  Although these were out of our reach, they had some interesting 
features.  Among these was virtual memory--a new concept for the 
management of memory.  This and other capabilities were introduced on 
the Ferranti-ATLAS and would be of great importance in the future.  
 
Other alternatives that came out in 1957 were the Datamatic-1000 from 
Honeywell and the Philco-2000 from Philco-Ford.  They both seemed like 
reasonable machines, but had the same lack of programming support 
the others suffered.  (The AN/FSQ 7s and 8s also came out in 1957.  I was 
interested in them because they were also known as Whirlwind IIs.  
Whirlwind had acted as the prototype computer in the Sage system and 
these were its replacements.  Also the Lincoln-TX0 was interesting because 
it was the first fully transistorized computer.) 
 
Also in 1957, IBM introduced the 305  RAMAC, which stood for Random 
Access Memory Accounting and Control.  (I found out while writing this 
book that the RAMAC had been the work of John Haanstra—the young 
man who had been a Navy seaman when we both worked at Point 
Mugu.)  This was the first magnetic disk memory system and used the first 
commercially available magnetic disk storage units.  The disk memory 
consisted of 50 magnetic disk surfaces, each 24 inches in diameter.  Their 
total storage capacity was about 25 mega-characters.  Also in 1957, the 
first FORTRAN compiler was delivered after three years in development.  
The RAMAC was not anything we could have used in its original form; 
however, it alerted us to be on the lookout for the future use of this 
technology.  However, the completion of FORTRAN was a distinct 
advantage for us because it was something our scientists and engineers 
could use immediately, if and when we got a 709. 
 
Only the generalized routines made recommendation of the 709 feasible.  
The plan was to re-implement the generalized routines for the 709 and the 
same source files and packets could be used on the new machine as on 
the old.  However, execution times would be reduced because of the 
increased speed of the processor and increased simultaneity between 



 60 

the processor and the Input/output equipment.  Simultaneity 
improvements occurred because in many instances two tape handlers 
and the computer could be in concurrent operation on the 709 while 
each of these took place at separate times on the 702. 
 
That was the plan and the recommendation and it was provisionally 
accepted by our management and by the AEC, which was paying the 
bill.  But where were the generalized routines for the 709 going to come 
from?  That was the big question.  Based upon the provisional 
acceptance of our plan, a letter of intent was issued to IBM.  The 
management of IBM was contacted and petitioned to pick up the 
generalized routines for general use, but they were not interested.  This 
was a radical new idea and besides, it was not their idea so they were not 
interested.  The other avenue we could pursue other than implementing 
the programs for ourselves at Hanford was the SHARE Organization. [C] On 
the strength of our letter of intent, we were eligible to become members 
of SHARE and we might be able to get help from SHARE in undertaking 
the development. 
 
SHARE was an organization of users who had banded together in their 
own self-interests to try to make up for the serious deficiencies in 
programming and other support from IBM.  The organization held 
meetings twice per year.  The SHARE members were from some of the 
biggest and most influential companies, universities and governmental 
institutions in the country and these organizations had sent some of their 
best people to attend SHARE.  SHARE used various means to deal with or 
in some cases to circumvent IBM.  They exerted pressure on IBM by 
adopting resolutions representing the consensus of SHARE, they provided 
opinions and feedback to IBM about the acceptability or lack thereof of 
the proposed designs of upcoming programs and in worst case, they 
would muster SHARE personnel to perform development on behalf of the 
membership. 
 
I don’t remember more than two or three of us from Hanford attending 
SHARE meetings, but many organizations would send up to a dozen 
people.  As a result, the general sessions of SHARE were usually held in the 
Grand Ballroom of some large Hotel in a large city.  Fortunately, general 
sessions were infrequent.  Much smaller committee and subcommittee 
meetings in decent sized rooms with twenty or thirty people in attendance 
carried out most of the business and work of the organization. 
 
I was to discover the creation and dissolution of these committees and 
subcommittees were accomplished by simple word-of-mouth agreements 
between the chairpersons and the SHARE Officers.  The Officers were the 



 61 

President, the Vice President and the Secretary.  The President ran the 
general sessions, approved or disapproved the committee/subcommittee 
structure and represented SHARE in communications with other 
organizations.  I don’t remember the Vice President doing anything 
except being there in case something happened to the President.  The 
secretary was the one that did the most work, and the institution to which 
he belonged accepted a financial burden when it permitted him to take 
the position.  He collected and published the minutes of all the general 
sessions and distributed them to the entire membership.  These distributions 
would typically be about three inches thick because they included the 
entire transcript of the general sessions along with a written report from 
each committee and subcommittee chairperson. 
 
SHARE was one of several vendor-specific organizations that existed at the 
time.  I am only familiar with two: SHARE and GUIDE.  They were the two 
users’ organizations for the IBM-701/704/709 computer family and the IBM-
702/705 computer family respectively.  The 701/4/9 family was the set of 
36-bit, binary IBM machines and the 702/5 family was the set of variable 
word-length decimal IBM machines.  We at Hanford would have been 
eligible to belong to both organizations, but past experience had 
indicated the GUIDE organization was not particularly productive, so we 
never participated in it. 
 
Harry was the first to attend a SHARE meeting.  He attended SHARE IX in 
San Diego at the end of September in 1957[20].  This must have been 
before our order for a 709 was approved.  However, on that occasion, he 
met Charlie Bachman, the Chairman of the Data Processing Committee, 
from Dow Chemical and we were in touch with Charlie from that time on.  
I attended SHARE X in Washington, D. C. in February of 1958 and gave a 
presentation on the Generalized Routines.  I presume Harry had arranged 
with Charlie for me to be on the agenda but I remember I had never met 
Charlie face-to-face as of the time of the presentation.  In any case, I 
recall presenting to an audience of about fifty people in a very large, 
mostly empty meeting hall or grand ballroom.  The presentation went very 
well and the audience was extremely attentive.  Many questions were 
asked and, at the end, people stayed around to talk to me.  I remember 
one of the very interested people was Fernando Corbató of MIT.  I believe 
he was the President of SHARE at the time because I recognized him.  
Another interested person I finally got to meet in person was Charlie 
Bachman of Dow Chemical Company in Midland Michigan. 
 
The Data Processing Committee of SHARE of which Charlie was Chairman, 
was mostly a group of 709 users who, like we at Hanford, had significant 
amounts of business data processing (as opposed to scientific 



 62 

calculations) to do.  They had no agenda other than to commiserate with 
one another about what they might do to solve their (not so easy) 
problems.  Of course, Charlie and most of his committee members were 
very interested in what I had to say.  I hardly had to say it might be a good 
idea for us to band together to produce generalized routines for the 709—
it occurred to all of them simultaneously.  Needless to say, that was the 
beginning of a long and, I think, fruitful friendship with Charlie and several 
other SHARE members. 
 
Either at that SHARE meeting or at the very next one, the idea of a 
combined effort had spread like wildfire.  The product of the effort had 
been named 9PAC and a responsible subcommittee had been created, 
the 9PAC Subcommittee, with me as chairman, to work on its creation.  Of 
course, this all required the approval of my management in Richland, but 
they were overjoyed to have this opportunity to solve the big hitch in their 
plan to upgrade to a 709.  Many of the committee members expressed 
interest in working on the project, but they too needed to receive 
approval from their managements. 
 
This eventually led to me making frequent trips to various companies to tell 
my story to the brass who would, we hoped, be supplying free manpower 
to achieve the programming support we needed.  I must have 
succeeded because we had plenty of manpower.  In addition to 
manpower, Union Carbide Corporation contributed office space for us to 
use for the 9PAC Report Generator effort in Long Island City, a short 
subway ride from Manhattan. 
 
Actually, the SHARE effort was limited to creating the Report Generator of 
9PAC.  The 9Sort, as the 9PAC sorting program was called, was a 
modification of the one being supplied by IBM and was done completely 
at Hanford.  The new 9PAC File Maintenance Program was developed at 
Hanford with Hanford manpower. 
 
After my first SHARE meeting, Harry and I both attended regularly.  We 
both made many good friends among the membership and spread 
Harry’s data processing gospel at every opportunity.  It was helpful to me 
to have his support.  When I first started conducting subcommittee 
meetings, I brushed up on Robert’s Rules of Order and tried to proceed in 
a very formal way, but some of my good friends took me aside and said, 
“This is SHARE, we do things in an informal way.”  From then on, we just 
had nice chatty, though organized discussions. 
 
In addition to the business I was involved with at SHARE meetings, the 
General Electric attendees usually succeeded in getting together a 



 63 

General Electric caucus to take advantage of being physically together.  
The meetings would simply be a dinner together where we could meet 
one another and chat about what we were doing at our different 
departments.  It was at one of these that I met Fred Banan, Harry Cantrell 
and Jane King all of whom I worked with later. 
 
Also, during this period, I had the opportunity to visit a variety of General 
Electric and IBM sites.  The General Electric sites that I remember were 
Appliance Park in Louisville, Kentucky where I had a chance to get 
reacquainted with Dick Petersen, Power Transformer Department in 
Pittsfield, Massachusetts where I met Stan Williams, Large Steam Turbine in 
Schenectady where I had a chance to visit with Jane King and Harry 
Cantrell and General Electric Corporate Headquarters in New York where 
I had a chance to use the executive washroom. 
 
I also visited the IBM Homestead in Endicott, New York and the factory 
where the 700-series machines were manufactured in Poughkeepsie.  I 
don’t remember whom I saw or why I went to these IBM sites, but they 
treated me very well.  I also visited IBM World Headquarters (Fred 
Gruenberger always called it Galaxy Headquarters) at 570 Madison 
Avenue in Manhattan.  I was trying to get them to divvy up support for 
9PAC.  As in an earlier meeting that Harry and I had made there for the 
same purpose, they didn’t treat me very well. 
 
I met many people during my SHARE days.  One worthy of note was 
Fletcher Jones.  He worked for North American Aviation and his office was 
in Columbus, Ohio.  Paul Tani worked for him and Paul was a great friend 
of Harry Tellier’s.  On one occasion, I was invited to visit them in Columbus.  
I had been in New York so I took a sleeper on the train to get to 
Columbus.  I arrived there in the morning and Paul met me at the train 
station. 
 
My recollection is that Fletcher headed up the Surge project in SHARE.  
Surge was a compiler for the 704 and its language was supposed to do 
wonderful things for data processing users.  Many SHARE members viewed 
us as rivals and I thought Fletcher wanted to meet to discuss this rivalry.  I 
was wrong.  He wanted to talk about nothing except his plan to form a 
company along with Roy Nutt (another SHARE acquaintance) and he was 
looking for people who he could hire as managers.  I guess he was fishing 
to get Harry or me or both to volunteer, but neither of us was interested at 
the time. 
 
Anyway, he took Paul and me to lunch. We had to go in separate cars 
because he had just bought a new Carmen Ghia sports car and it was a 



 64 

two-seater.  Well, we finished lunch and I left and he formed his company.  
Its name was and is Computer Science Corporation and it has had many 
years of success and has been listed on the New York Stock Exchange for 
many decades. [D] 

 
The development of 9PAC proceeded apace and the product was put 
into use in May of 1959.  I can’t remember the names of all the 
participants in the 9PAC Report Generator development.  Some of the 
companies were Dow Chemical, Union Carbide, Chrysler, Lockheed 
Missile and Space Division, North American Aviation, Northern States 
Power, Phillips Petroleum, Thompson Ramo Woodridge and Space 
Technology Laboratories .  The Thompson Ramo Wooldridge and Space 
Technology Laboratories contributions were in the area of user 
documentation.  Although IBM had one or another observers present 
during the development, I don’t think that either of them contributed a 
single idea or line of code.  However, by the summer of 1960, IBM Applied 
Programming had taken over maintenance of 9PAC.  University of 
California at Los Angeles was also on the list of contributors. [21] I think that 
was in the form of computer time at the Western Data Processing Center, 
which was a joint venture between IBM and UCLA. 
 
The person who did most of the programming work was Ed Roddy.  Ed not 
only worked very hard, he provided the leadership I could not provide 
because I was back at Hanford or running around the country keeping 
various contributing companies happy with their participation.  Harry used 
to recall Ed when he first came to work at Hanford.  He was not a 
complete stranger because his father had been a long-time Hanford 
employee.  Ed was hired as a computer operator when Hanford had 
nothing but punched card equipment.  Whatever his job, Ed was an 
outstanding employee.  He had quickly become one of the outstanding 
702 operators and was given a programming assignment that rapidly led 
to the development of the 702 report generator as described above.  He 
was chosen to work with us on 9PAC because of his report generator 
background and his high level of ability. 
 
While the 9PAC Report Generator development proceeded, I had 
George Gillette, Joan Cannon, Ron Pulfer and Glen Otterbein working for 
me at Hanford on the 9PAC File Maintenance Generator.  This and the 
9PAC sort rounded out the 9PAC system.  (I don’t remember who did the 
sort.  Perhaps Ed Roddy whipped it out after dinner one night.)  In any 
case, one big difference existed between the 702 generalized routines 
and those for the 709—the latter permitted a more complex file structure.  
This was a concession to those involved in the project that felt the need to 



 65 

economize on storage space by tailoring their file structures as a way of 
reducing file size (and consequently processing time). 
 
The source files of the 702 generalized routines, were required to consist of 
records of a single length and format.  In the 9PAC-generalized routines, 
the source files could contain multiple record types in a hierarchical 
organization.  In this way, redundant information could be eliminated. 
 
For example, suppose your company had three divisions and the data to 
be processed in each of the divisions was unique in some respects but 
common in others.  In the 702 source files, it would have been necessary 
to have each record contain data common to all three divisions plus data 
unique to each of the three divisions.  Then two out of three division-
unique areas would have been left null in each record. 
 
In 9PAC source files you could define one record type to contain the 
information common to all three divisions and a separate record type for 
each division to contain its unique data.  The three non-common data 
types would then each be defined as subordinate to the common record 
type and the system would adjust itself to operate on all four of these as 
appropriate.  With this capability, two records would exist in the file for 
each item: one containing common data and one containing data 
unique to the division to which the item pertained. 
 
This change in design came at some costs: it made preparation of 9PAC 
packets more complex than preparation of their 702 counterparts, it 
destroyed the upward compatibility of 702 packets with the 9PAC 
generalized routines, and it complicated the development of the 9PAC 
generalized routines compared to their 702 counterparts.  By providing this 
added capability, the programmer productivity was negatively impacted 
and the labor-free conversion from the 702 at Hanford was no longer 
going to be possible.  Nevertheless, the trade-off was judged acceptable, 
so as to gain the “free” manpower that would accrue from SHARE 
participation. 
 
One of the functions SHARE performed for the users was to keep track of 
the performance of the various member installations.  During each 
meeting, the SHARE secretary gathered the data and then consolidated it 
for incorporation into the minutes of the meeting.  The key data were 
reported on the mainframe and each of the peripheral controllers.  The 
data were production time, preventive maintenance time, unscheduled 
maintenance time (down time), red tape time and idle time.  Red tape 
time occurred when the unit was unable to proceed while it waited for 



 66 

some manual operation to be completed such as mounting or 
dismounting a magnetic tape or reloading the card reader. 
 
I believe the secretary published only the summary information so no 
installation got paranoid about where it stood in relation to the whole.  
However, knowing its own information, each installation could compare 
itself to the whole.  I found the data to be very valuable in the planning of 
our own installation.  Where should we concentrate our effort to get more 
productivity for the large sums of money we were spending?  We, of 
course, wanted to maximize the production time and minimize the red 
tape time and down time.  It also made good and fruitful conversation for 
Share meetings where we could have private conversations with people 
from other installations.  We could see how they were or were not 
performing and what techniques they were finding useful in their quest for 
higher productivity and lower down time. 
  
As I had discovered when I was the machine room supervisor, we were 
paying many dollars for off-line peripheral equipment.  Each of these 
pieces of equipment was a device combination consisting of a controller, 
an input/output device and a magnetic tape handler.  Each triplet would 
perform one of the three conversions: card-to-tape, tape-to-card or tape-
to-printer.  We needed two or three tape-to-printer converters at times 
and hardly ever needed the tape-to-punch one.  The use of the card-to-
tape combination was moderately busy. 
 
I found a peripheral device controller being built in Southern California 
capable of converting between several pairs of devices of the types: 
magnetic tape handler, card reader, cardpunch and printer.  (I don’t 
remember the name of the company).  It could do little else, but that was 
not my concern.  I reasoned that if we could get one of these controllers 
and if it could perform the various conversions we needed done 
simultaneously, we could save the cost of several IBM-supplied controllers 
and a couple of tape handlers.  I contacted the company and we 
decided their device would do our job.  Hence, I justified the purchase 
and got it into the paper mill at Hanford for approval. 
 
I was convinced this would have been an improvement in our productivity 
and a reduction in our costs and was able to show this.  However, before 
the approval was complete, IBM came out with the IBM-1401.  This was a 
small variable word-length computer.  It would do all of the same things 
and more than the gadget I had proposed to purchase for even less 
money.  The 1401 was able to accomplish this feat because it utilized 
multiprogramming.  (See Appendix H for a description of multi-



 67 

programming.)  Reluctantly, I withdrew the proposal and we obtained a 
1401 as a replacement for our multiple off-line controllers. [E] 

 
We at Hanford and others kept a sharp eye on red tape time reported by 
SHARE.  This was time that could be reduced substantially by a good staff 
of operators.  We did pretty well in keeping it down, but the variation from 
one crew of operators to the next was substantial.  We hoped to be able 
to do something about it. 
 
This was a problem not only with Hanford but also with all the SHARE 
members.  As a reaction to this problem, several installations developed 
job monitors.  These were programs that remained in memory at all times 
and at the termination of one user program started the next.  In 
conjunction with this job-to-job control, a file was provided, usually called 
SYSOUT, upon which the running programs could record their printer 
outputs.  The outputs would be stacked on the output file and converted 
to hard copy on peripheral equipment after the monitor run. 
 
This was a good solution for installations that predominantly ran purely 
computational programs that were well checked out and involved the 
use of few, if any, magnetic tapes.  In this case, many programs could be 
run one after another with no red-tape time, with no operator intervention 
and with no lost time between jobs.  This was ideal, but the circumstances 
that permitted it to happen were rather rare, especially at Hanford. 
 
IBM attempted to provide a more general solution to this problem with 
IBSYS.  This was a monitor that tried to deal with the problems of 
mounting/dismounting magnetic tapes.  Instructions to the operator were 
given during the current run to mount tapes for jobs that were not yet in 
execution—a procedure that good computer operators followed 
anyway.  In this way the tapes would be ready to use when their job(s) 
was(were) ready to run.  Similarly, IBSYS would issue instructions to 
operators to dismount tapes no longer needed on-line after their jobs had 
finished execution.  With this approach, the operator involvement at the 
outset of execution of a job was (hopefully) limited to adjusting the 
identification of tape handlers between jobs, which was accomplished by 
simply turning a knob. 
 
I had no experience using any of these.  They didn’t seem to meet our 
needs and our statistics were pretty good without the use of monitors 
(probably because of the high quality of our operators).  Furthermore, if 
any program in a sequence of programs being controlled by a monitor 
had a bug in it, it would probably crash in a way that would destroy the 
monitor in memory.  In this case, the operator would need to restart the 



 68 

monitor and execute a complex recovery procedure that could easily eat 
up the hoped for timesaving.  However, this experience pointed to the 
need for further improvements in the management of large systems.  I 
would have the opportunity to deal with that need in the future. 
 
Some other efficiency problems that had nothing to do with SHARE 
statistics needed attention.  Many magnetic tape files utilized only about 
half of the tape—the rest was entirely blank.  Also, even though the 
hardware of a computer was capable of executing programs with the 
central processor and simultaneously performing input and output, it 
didn’t mean this would always happen.  Both of these problems are 
solved by use of Blocking and Buffering.  These techniques are explained 
in Appendix H.  Both of them and various other developments with which I 
would be involved in the future were incorporated into 9PAC to the extent 
possible. 
 
At some time in 1959, I received a letter from Bernie Galler of the University 
of Michigan (a coworker of my Franklin Institute panel moderator) inviting 
me to teach a one-week class on 9PAC.  This would occur at the summer 
program on computers held at Michigan every year.  He apologized that 
he would be unable to offer me a salary for this job, but offered an 
honorarium of $800.  I, of course, wanted to do it and, in particular, I 
wanted to combine it with some vacation time and to take the family 
along.  I think I offered to take the time off without pay so no one could 
accuse me of “double dipping”.  I’m not sure how that turned out, but I 
did get permission, and I did do the class. 
 
By this time, SHARE XI had taken place, and Charlie Bachman and I both 
brought our wives to the meeting in San Francisco.  The wives had gotten 
along famously and had a great time in the big city.  So when we went on 
the trip to Michigan, Charlie invited us to stop by at their house in Midland, 
and to drop by their cabin in northern Michigan on the way for a swim.  
We did both of these things and much more.  I remember Charlie and me 
sitting in his back yard in the evening and talking with pride about our 
9PAC accomplishments. 
 
Not long before that conversation, IBM had announced the 305 RAMAC.  
The idea of RAMAC was you didn’t need to do your processing using rows 
of magnetic tape handlers but could instead put your data on magnetic 
disks and update the data in place as the need presented itself.  Having 
done so, you could access any particular piece of data directly on the 
magnetic disk, or you could start a program to create a report containing 
sequences of data just as you had done with magnetic tape.  Charlie and 
I felt this new mode of processing would have a large impact on the 



 69 

future of data processing.  We, as the keepers of that domain within 
SHARE, decided we should try to do something to help our companies 
and our fellow users be prepared to use this advanced technology.  What 
we didn’t know at the time was that the capacity and reliability of disk 
storage were not going to be as great as one would have liked for yet a 
couple of decades.   Also, the networks and remote workstations 
permitting users to have easy access to these data stores were even 
further away.  Nevertheless, we both resolved to try to prepare ourselves 
for this new era. 
 
Soon after this Charlie accepted a job with the General Electric 
Production Control Service in New York.  I was made chairman of the 
SHARE Data Processing Committee to replace him and Charlie became a 
friend less frequently heard from for Harry and I.  However, Charlie did not 
let any grass grow under his feet.  He developed Integrated Data Store 
(called IDS), which was (and perhaps still is) a generalized program for the 
storage and retrieval of data on magnetic disk files.  The original IDS 
development took place in 1962, but underwent an evolutionary 
sequence of improvements after that. 
 
To describe my contribution to this issue, I need to say a bit more about 
the organization at Hanford, because some of these elements were 
involved in what I did.  Harry Tellier reported to the Manager of Finance at 
Hanford, as did Lou Hereford, who was Manager, Business Systems and 
Procedures.  The Manager of Finance was named Ken Robertson.  I knew 
Ken, and he was always very good and friendly to me both at Hanford 
and after we had both left there.  However, he and Harry didn’t get along 
particularly well, and their disagreements seemed often to involve Lou 
Hereford and/or his organization. 
 
Lou was an ex-marine and it showed.  He was very aggressive and terse in 
his communications.  He was very bright and sharp and had opinions on 
most things.  Though they often locked horns at work, Lou and Harry were 
fairly friendly in a social setting, especially if a chance existed to have a 
few drinks.  (I found out years later Lou had been a young marine on 
board the Battleship Nevada during the attack on Pearl Harbor.  It was 
the Battleship saved as a result of being beached after it had been 
severely damaged thereby avoiding blockage of the harbor entrance by 
the sunken hulk.) 
 
At a time after the main pressure of 9PAC had settled down, I had an 
opportunity to meet one of Lou’s employees, Jim Fichten, and we hit it off 
very well.  Our favorite topic of conversation was what kind of business 
systems we would like to see at Hanford, and what hardware system we 



 70 

would like to see to support them.  Since we were just “blowing smoke”, 
we didn’t limit ourselves to presently available hardware, but imagined 
things we would like to have that were perhaps some distance into the 
future.  We enjoyed these sessions, and apparently Jim discussed them 
with Lou, because after a short time, Lou came up with the idea that we 
should prepare a five-year plan for Systems Support at Hanford.  Of 
course, Lou didn’t limit the scope to business systems but also included 
data collection and processing at the reactors and chemical plants and 
data and voice transmission between all of the components on the 
reservation.  (semper fi !) 
 
Lou assigned Jim Fichten and Chuck Buchanan and perhaps some others 
to the project, and I supplied the data processing projections.  In a couple 
of months, we came out with a dandy piece of science fiction.  In my 
own words written at the time, the plan was for, “… an integrated 
information system fed by automatic and semi-automatic data 
acquisition equipment, a microwave communication network with 
satellite computers and a central ‘super data processor’”.  It was all 
probably achievable, but who knew when?  We didn’t propose a 
schedule or submit any justification to proceed with implementation (it 
was impossible).  It was an interesting exercise, but sterile.  It led to 
nothing--at least not immediately, but in the future . . .? 
 
By this time, Kendall Wright had left to accept a job with IBM and Chuck 
Thompson had gone to the General Electric Computer Department in 
Phoenix.  Also, IBM had announced the successor to the 709, the 7090.  It 
was my responsibility to evaluate the 7090 and recommend its 
acceptance or rejection.  It really was a no-brainer.  The 7090 was almost 
totally program compatible with the 709 and its cost, though higher than 
the 709, was much smaller per unit of data processing than the unit cost 
on the 709.  Of course, our workload had increased and we needed the 
increase in productivity.  I recommended and justified the conversion.  
The IBM-7090 was to be installed in October of 1960. [F] 
 
During 1960, Harry and I started to talk about my next assignment.  He 
opined that I might be able to get a job at the General Electric Computer 
Department in Phoenix.  This was fairly appealing to me.  I was very loyal 
to General Electric, and the company was not doing particularly well in 
the computer business.  I thought I might be able to make a real 
contribution to the success of the department.  On the other hand, I 
realized I would be moving from a situation where I was usually working on 
the biggest, latest and fastest computers available to some much smaller 
and limited equipment. 
 



 71 

The prospect was not strong in either direction, but Harry arranged for me 
to be interviewed and I made the trip to Phoenix.  I talked to many 
people while I was there, and many of them did not impress me, but one 
prospect was dangled before me that really sparked my imagination.  
General Electric was designing a new line of computers including a small 
machine called the X and a large one called the Y.  I was offered the 
opportunity to work on the programming for the Y. 
 
The General Electric Computer Department had a definite appeal for me, 
but I also appreciated (and grew to appreciate very much more) that the 
working environment at Hanford was exceptional.  (I came to view it as 
the Camelot of electronic data processing.)  It became more and more 
apparent that throughout the universe of computer vendors and 
computer users, programmers were second-class citizens.  They were 
looked upon as some sort of clerks who did something only marginally 
necessary and as a result caused cost and schedule overruns and 
generally mucked up the works.  They also had an aura of being 
impractical, pointy-headed intellectuals in some cases.  By contrast, 
hardware engineers were awarded great respect and dignity.  This 
dichotomy showed up in public attitudes and the salaries the two groups 
received—the programmers were always at the low end.  The idea was 
even put forward that programmers should be classified as semi-skilled 
workers whereas hardware engineers were always accepted as high-level 
professionals. 
 
None of this dichotomy showed itself at Hanford.  We were sheltered from 
it by Harry Tellier.  Part of his personal philosophy was that it was the 
programmers that made the computer liked or disliked by the customers; 
the hardware didn’t matter so long as it had enough capacity and 
availability.  I hesitated to turn my back on this, yet this issue was probably 
not in as sharp focus to me then as it is today. 
 
After much debate, I decided to accept the offer from the General 
Electric Computer Department.  I made the decision to join one of the 
real product producing departments of my company.  My father had 
always been a big fan of General Electric, and I think my opinion was 
influenced by the idea it would please him if I stayed with the company.  
Furthermore, during my employment at Hanford, IBM had earned in my 
mind the characterization of the enemy.  By accepting this offer I had, for 
the first time, the opportunity to face this enemy head on.  In any case, 
the decision was made.  My wife and I went to Phoenix over the 1960 
Christmas Holiday and bought a house, and I was to report to work in 
Phoenix on March 1, 1961. 
 



 72 

I attended one more SHARE meeting.  While there Harry Husky 
approached me.  (He was the President of the Association for Computing 
Machinery (the ACM), and had an incredible history in the industry.  He 
had worked on the development of the ENIAC and the Pilot Ace, and 
had been in charge of the development of the SWAC, Bendix G15 and 
Maniac I.)  He said he had been trying to get a data processing activity 
going in the ACM and in looking for someone to head it up, many people 
had suggested my name.  I was, of course, flattered. 
 
The ACM was and is the umbrella organization of computer organizations 
in the U. S.  It is not affiliated with any particular vendor and attempts to 
address problems and solutions that pertain to the entire industry.  I was 
forced to tell him I didn’t think it would be appropriate for me to take on 
that position while I was employed by a computer vendor and told him of 
my forthcoming move.  He reluctantly agreed. 



 73 

 

Getting Started at General Electric 
 
One could say General Electric got into the computer business by 
accident [22].  In the early 1950s IBM was General Electric’s second largest 
customer after the U. S. Government.  The General Electric President and 
CEO, Ralph Cordiner, had made it clear that no one was to do anything 
to perturb this excellent market for vacuum tubes, motors, transformers, 
switches, etc.  However, several in the company thought the company 
should enter the field.  Dr. W. R. G. (Doc) Baker, Vice President and 
General Manager of the Electronics Division in Syracuse, was one of these, 
but he was limited to producing special-purpose computers.  In no case 
was any General Electric organization to compete in the general-purpose 
computer market. 
 
Homer R. (Barney) Oldfield ran the General Electric Microwave Laboratory 
on the campus of Stanford University in Palo Alto, California.  A 
representative of Doc Baker approached him in 1955 to study a 
solicitation to bid on a contract from the Bank of America.  The contract 
was to produce a special-purpose computer to automate the paper 
processing throughout the many locations of the Bank of America in 
California.  It was the largest bank in the state and, at the time, no 
computer vendor provided the systems it needed.  However, Stanford 
Research Institute (SRI) located nearby had studied the problem and had 
created a moderately successful prototype.  The system was called ERMA 
for Electronic Recording Method—Accounting. 
 
Doc Baker thought his Division would be able to respond to the bid 
because of its special-purpose nature.  Resistance from the executive 
office of General Electric was diminished because all of Cordiner’s direct 
reports insisted IBM would win the award, so no need to oppose it 
internally was indicated.  As a result, Barney Oldfield’s laboratory, 
responded to the bid request. 
 
As it turned out, three responses to the solicitation were received that the 
bank considered seriously: those from Texas Instruments, RCA and General 
Electric.  General Electric ended up winning the contract.  They were to 
deliver thirty-one ERMA systems to the bank beginning in 1958 at a cost to 
the bank of $31 million.  Oldfield proceeded to assemble a staff in Palo 
Alto to get the job done (including Joe Weizenbaum and George 
Kendrick, my friends and colleagues from Point Mugu). 
 



 74 

As the project proceeded, General Electric Headquarters informed 
Oldfield that for a manufacturing job as big as his, it would be necessary 
for a production site to be selected meeting certain company standards.  
As a result of this, six sites were selected as candidates: Berkeley, CA; 
Austin, TX; Phoenix, AZ; Urbana, IL; Nashville, TN and Richmond, VA.  
Phoenix was selected. 
 
Phoenix office space was initially rented in the KTAR radio building.  Then 
space was acquired on Peoria Avenue in Phoenix and on the Black 
Canyon Highway north of town.  In addition, a service center was opened 
on the campus of Arizona State University (at the time called Arizona State 
College).  These facilities along with the Palo Alto laboratory became the 
domain of Barney Oldfield as General Manager of the General Electric 
Computer Department. 
 
While ERMA was in development and the facilities in Phoenix were being 
acquired, Barney Oldfield arranged to obtain a contract to manufacture 
the NCR-304 computer for National Cash Register.  For a company not in 
the computer business, General Electric was beginning to look very much 
like a company in the computer business.  Unfortunately, shortly after the 
move to Phoenix, Barney had to leave the company because of the 
illness of his wife.  He was replaced as General Manager by a man named 
Clair Lasher. 
 
In 1956, Arnold Spielberg left RCA to join General Electric.  He had worked 
on the development of the BIZMAC while at RCA.  He was not assigned to 
work on the ERMA project, but instead worked on process control 
computers.  This was considered as non-competitive with the business 
machines market so was seen by the General Electric executive office as 
an acceptable undertaking for a General Electric Department.  In fact, 
process control was something the company considered to be its natural 
area of endeavor. 
 
In a short time, Arnold had organized a small group, and they had 
developed a small computer called the GE-312.  It was sold initially to 
Jones and Laughlin Steel and McClouth Steel.  So now General Electric 
was really in the computer business, but only the process control part of it.  
This development was to have important repercussions in a few years. 
 
In the meantime, the ERMA development proceeded apace and was 
accepted by the bank at the end of 1958.  The acceptance was marked 
by a large celebration attended by many dignitaries (including Ronald 
Reagan who was then working for General Electric) and high-level 
management from both Bank of America and General Electric, but 



 75 

excluding Ralph Cordiner.  Also, shortly thereafter, orders from other banks 
began to pour in.  A message arrived at the Computer Department from 
the executive office signed by Ralph Cordiner stating that no banking 
systems were to be sold beyond those contracted for as part of the ERMA 
project. 
 
This was a severe blow to the Computer Department and to those who 
had worked so hard to bring the system to reality.  However, an interesting 
thing happened.  Within a short time, President Cordiner began receiving 
congratulatory messages from all over the country regarding the ERMA 
success.  Apparently the volume of these was so great that he saw fit to 
retract his earlier edict and merely stated the Computer Department was 
not to go “head-to-head” with IBM in competing for computer business.  
That restriction remained for the remainder of his tenure as CEO and 
beyond.  It is a good thing this restriction was not known to the working 
level people of the department who were trying to get a job done.  The 
plant and offices would have been vacated quickly if they all knew their 
greatest competition was located in the executive levels of their own 
company. 
 
By 1959, General Electric seemed to be in the computer business but had 
no general-purpose product to offer.  At this point Arnold Spielberg came 
up with the idea of providing a general-purpose product by adding 
general-purpose peripheral devices (card readers and card punches, 
printers and magnetic tape handlers) to the GE-312 and renaming it.  This 
is what was done and the production prototype was completed in five 
months.  The new product was named the GE-225 and it was the main 
product for several years to come. 
 
The development of the GE-225 was an important stopgap.  It now added 
to the profits coming in from the ERMA, the GE-210 (ERMA systems sold to 
banks different from Bank of America), NCR-304s and the GE-312s to make 
the financial impact on the company more positive than it would 
otherwise have been.  However, what was really needed for success was 
a product line salable to customers requiring capacity ranging from small 
computers to the largest then in existence and beyond.  It should, in 
addition, have been possible for customers to change from the smaller 
members of this family to the larger ones without needing to reprogram 
their applications.  The event that permitted progress to be made toward 
this objective occurred in mid 1960 when Ralph Cordiner, for the first time 
in history, approved the business plan of the General Electric Computer 
Department. 
 



 76 

The product line that was to provide all of these necessary capabilities 
was visualized and was called the w, x, y, z product line.  (It is said that it 
was also called the mosaic, but I do not ever remember hearing that 
name while I had any contact with the product line.)  At some point, the 
w was renamed the s (for small) because of the similarity of w to the 
Westinghouse W.  The S systems were to sell for about $30,000 and the 
large Z systems would cost about $2.5 million. 
 
All of these events and ideas occurred before my arrival in Phoenix.  We 
drove in at the end of February 1961.  It had been a cold trip through 
Idaho and northern Arizona, and we were pleased as we approached 
Phoenix because the atmosphere warmed and was sweet with the smell 
of citrus blossoms.  We took the time to drive by our house before renting 
rooms in a motel.  We stopped in front of the house and walked around 
the yard.  The swimming pool was empty, and the bottom of the pool was 
full of grapefruit from the 13 trees in the yard.  We walked through the 
house to the back and looked out the back window.  A red cardinal 
perched on the grapefruit tree just in front of the window like a beautiful 
picture.  Our welcome to Phoenix couldn’t have been better. 
 
When I reported to work, I discovered I was to report to Charlie Katz, my 
fellow presenter at the Franklin Institute and one of Charlie’s direct reports 
was George Kendrick, my old friend from Point Mugu.  I didn’t know any 
others who reported to Charlie Katz, but they seemed a reasonable group 
to work with.  I also discovered that both Charlie and George lived within 
three blocks of our new house. [G] 
 
The organization of the General Electric Computer Department had 
several sections in the standard GE format reporting to Clair Lasher, the 
General Manager.  The sections were responsible for Manufacturing, 
Hardware Engineering, Programming, Marketing, Finance and Personnel.  
The Manager of Programming to whom Charlie Katz reported was Helmut 
Sassenfeld.  Helmut was a German (surprise!) who had worked at 
Pienamunde during World War II and had been hired in the U. S. after the 
war as one of the group that immigrated with Werner von Braun to 
Huntsville, Alabama.  He spoke English with a German-Alabama accent.  I 
was to later become very close to Helmut. 
 
As a company, GE had two well-known philosophies that hadn’t affected 
us much at Hanford because of the close supervision of the AEC: 
decentralization and professional management.  The idea of 
decentralization was that each General Electric department was a 
separate, autonomous profit center and it was to be run by its General 
Manager with complete authority.  The General Manager could do 



 77 

whatever he needed to do to achieve the success of the department’s 
products including competing with other General Electric departments.  If 
a department was not successful, then its General Manager would be 
replaced, or the department would be sold or shut down.  This always 
seemed practical to me, especially when viewed from the standpoint of 
managing an enterprise as large as the General Electric Corporation. 
 
The other idea was not so obviously a good one.  It was that 
management was a profession in itself and regardless of the product of 
the department; any manager could manage it whether or not he knew 
anything about the product.  In my opinion, this philosophy caused us 
great grief at the General Electric Computer Department.  We were in a 
difficult business with many startup woes and the company was expecting 
it to turn a profit in a short time.  Many of these woes were caused by poor 
business decisions at the top.  The wrong products were often produced 
at the wrong times, and the markets served by them were not as lucrative 
as those that could have been served including General Electric itself.  
Also, not knowing the product and not having worked in the industry, the 
General Managers didn’t know whom to hire to lead the workers, nor did 
they have a good understanding of the competition, it strengths and 
weaknesses.  Of course, the General Manager can’t do everything and is 
not expected to, but experience in a field gives a manager intuition and 
insight he would not otherwise have. 
 
I have no idea how many General Managers we had while I worked 
under the management of the plant in Phoenix, but I don’t think I have 
enough fingers to count them.  At one time one of our executives had just 
come from the Outdoor Lighting Department.  Each time we got a new 
General Manager, one or more of several things would happen for sure: 
we would reorganize and/or we would rearrange and redecorate the 
offices and/or rearrange the factory.  These were mostly annoyances, but 
they had very little to do with achieving success and diverted our 
attention from our major problems.  I think if our General Managers had 
known more about the business we were in, they would have spent more 
time and other resources on things that mattered much more.  I don’t 
intend to dwell on this, but the reader might look for signs of these 
weaknesses while reading the text. 
 
It turns out the strategy being employed to develop the S, X, Y, Z product 
line was to start with the X and the Y and later build down to the S and up 
to the Z.  Arnold Speilberg was heading up the X development and a man 
named Art Critchlow who had recently been hired from IBM had 
responsibility for the Y development.  I naturally gravitated toward the Y, 
because most of my background involved large computers.  At some 



 78 

point, shortly after my arrival in Phoenix, I was assigned to Y programming 
development.  What this meant was I was assigned to help create a 
proposal describing the programming support that would be developed 
for delivery to the customers of Y computers.  This was very similar to the 
work I had been doing at Hanford, but it was for a new computer that 
was still a figment of our collective imaginations. 
 
During my days at Hanford, an interest grew in what was called Operating 
Systems.  Operating Systems are a set of programs generally supplied by 
the vendor, always available to users and to other programs and 
performing services for them. 
 
By using an Operating System, one hopes to achieve an uninterrupted 
flow of jobs through a computer system and to simplify users’ applications 
by permitting them to use the Operating System’s versions of frequently 
needed programs instead of supplying their own.  Each job in those days 
was represented by a deck of cards (similar to a 9PAC packet but usually 
larger) that would supply the program to be run, its identification and 
each of the resources to be used in running it.  The Operating System 
would use the information in this deck to facilitate the performance of 
services, to provide the resources the program would or might need and 
would place the program in execution when all of its needs could be 
satisfied. 
 
For example, one would expect an operating system to perform some if 
not all of the following: accept a queue of programs (jobs) to be 
executed, schedule these jobs for execution, allocate resources (memory, 
magnetic tapes and disk space) to the jobs, begin execution of jobs as 
resources become available, issue messages to operators to perform 
support functions as needed (i. e. mount/dismount magnetic tapes, 
replace printer paper as needed, remove cards from full cardpunch 
hoppers, etc.), monitor execution of input/output so that one job does not 
interfere with another in use of I/O devices, recover from hardware errors if 
possible, queue printer outputs on a system output device (SYSOUT),  
cause SYSOUT  to be printed when appropriate, provide blocking and 
buffering support for applications and keep careful measurements of the 
resource utilization of each job for billing and analysis purposes.  No 
Operating System had yet been built including all of these capabilities—
the hardware to support them had not been available—but it seemed 
feasible to create a system including them all plus others. 
 
My job on the Y computer was to define the Operating System and the 
input/output system contained therein.  The Operating System everyone 
imagined supported multiprogramming.  That meant the hardware 



 79 

needed to be able to isolate system programs—those like the operating 
system that were omnipresent in the machine—from user programs—
those that were executed under control of the Operating System.  It also 
needed to isolate user programs from one another so as to prevent one 
user program from damaging any other or the Operating System. 
 
The hardware also had to have an interrupt system to permit the 
Operating System to gain control before the start of any input/output 
operation to ensure its execution would not be harmful to the Operating 
System or any other user program.  Interrupts also had to give control to 
the Operating System at the end of every I/O operation to inform the 
system and the user program the operation was complete.  If an I/O 
operation completed successfully the system would start a new I/O 
operation using the resource released by the completed operation.  If the 
I/O operation completed unsuccessfully, the Operating System would 
initiate a recovery procedure that would either cause the operation to be 
successfully executed on retry or would turn the problem over to an 
operator.  Other capabilities of a more detailed nature existed that would 
have been nice to have, but which were negotiable.  The Y computer 
was to have had all of these (since it was a “paper tiger”—it existed only 
on paper, not in reality). 
 
My work on the Y computer kept me busy until January of 1962.  This 
involved many meetings with Product Planning, Systems Engineering and 
Hardware Engineering.  These meetings gave me an opportunity to find 
out how things worked in Phoenix and to meet many people with whom I 
would work into the future.  It also involved writing down some of our ideas 
and negotiating with various people to try to achieve what I thought 
would lead to the best product.  This was all interesting and useful for my 
education, but it was all for naught because the Y computer was 
cancelled.  However, the X computer survived and became the GE 400- 
line. [H] 
 
After the demise of the Y computer, I was given a unit called Operational 
Programming to manage.  This unit was responsible for creating and 
maintaining I/O and utility programs (Blocking and buffering, card-to-
tape, etc.) for the GE 200-line.  (By now a new member of the line 
existed—the GE-235.)  The unit had had a previous manager from whom I 
took over.  I don’t remember what happened to my predecessor, but 
much of the work was ongoing and I just took over the day-to-day 
management of the work and the personnel.  However, we had just 
begun offering magnetic disk storage on the 200-line and we had to 
implement the input/output for that device type.  This was a substantial 
challenge and we were able to handle it on time and within budget. 



 80 

 
At about this time a new employee appeared upon the scene.  He was 
Dave Latimore and he had come from the General Electric site (in Idaho I 
think) where they were trying to implement a nuclear propulsion system 
for aircraft.  That endeavor had folded after a several-year effort to come 
up with a feasible design and Dave had become available to us.  Dave 
was an ex-marine and it showed in his demeanor.  As soon as he joined 
us, he became productive and I was more than glad to have him on our 
team. 
 
He soon became aware of the problems and opportunities of our 
department.  He had had some experience using job monitors in his 
previous work and was unhappy we didn’t have that capability, in a form 
our customers would use, on the 225/35.  One day he came to my office 
with a plan.  It was a plan to implement an Operating System on the 200-
line.  He had done his homework and presented a very tempting case to 
proceed.  It was not my decision to make, but I supported him in getting 
his plan to the right people.  The Operating System, Bridge II, was created 
under his leadership just as he had planned.  (A Bridge I had existed, but 
was under-used by our customers.) 
  
As far as I am concerned, Bridge II and the disk I/O were the most useful 
things done in my unit while I was its manager.  Nothing else that was 
innovative or had a significant impact on the business of the department 
took place during my tenure. 



 81 

GE-625/35 
 
In early 1963, we began to hear about a computer—the M236--being built 
on contract for the Defense Department by the Military Systems 
Department in Syracuse, New York.  It was a machine very much like the 
709/7090 machines—had a 36-bit word length and a similar interior décor.  
It was being developed for some secret project and the computer inputs 
and outputs were apparently all real-time in nature.  Hence, the machine 
had no conventional input/output for devices such as card-readers, 
cardpunches, magnetic tape handlers, printers or magnetic disk handlers.  
Quite a few people in the company were saying, “We pay IBM many 
dollars each month to lease their computers…the computers our own 
Computer Department builds don’t do most of the jobs the company 
needs to get done, so why don’t we manufacture this IBM look-alike and 
keep the profits in the company?” 
 
This argument was difficult to ignore and, in the end, it won the day.  The 
decision to build the General Electric 600-line, which was our version of 
the machine originally built in Syracuse, came in May of 1963.  I was 
transferred immediately to work on the new product. [I] 
 
I very much wanted to become the manager of software for the new line; 
however, that was not to be.  [By this time, the term “software” was 
coming into common use, so I will also use it here.  However, one General 
Electric manager found it objectionable, saying when people said it he 
thought they were talking about baby diapers.]  Our general 
management had hired a Ph D physicist, John Weil, to take charge of the 
600-line.  John Weil had run the Philco-2000 computer installation in San 
Jose, where the company had a Department called Nuclear Products or 
some such name.  In any case, Ed Vance had managed programming 
for John Weil in San Jose, and John made sure Vance got the software 
management job.  I thought this was an odd choice, since Philco-2000 
software bore very little relationship to that which the General Electric 
users had been employing.  Our users were accustomed to IBM 700-series 
software and that was my paramount area of expertise.  However, Weil 
was the boss and he made the decision in favor of Ed Vance.  I doubt if I 
was even considered. 
 
However, I did get a good job on the team: Manager, 600-line Operating 
Systems.  This was the area of my most intense interest at the time, and 
creating the Operating System for this series of machines was going to be 
a real challenge. 



 82 

 
Ed Vance was younger than I and had gotten some kind of degree in 
education from Redlands College in California.  Whenever I was with him I 
had the feeling I had been sent to the principal’s office.  He was very 
demanding and offered praise in small doses. However, he was very smart 
and knew computers in general and software in particular quite well.  He 
had been active and influential in the Philco-2000 users’ group as I had 
been in SHARE. 
 
Early in the life of the 600-line, perhaps before its birth, Ed and I and a few 
others went to Syracuse to meet the engineers that had built the M236.    
As far as I was concerned, the main topic of discussion was how we were 
going to make up for the absence of an I/O system to handle 
conventional peripheral devises.  On this trip we met John Couleur who 
had been the main designer of the machine.  He was a likeable person, 
and shared our desire to come up with a useful computer for our 
company.  We had a general conversation about what we would need in 
terms of a general purpose I/O Controller and he seemed to think what 
we were asking for was achievable.  On the same trip, Ed Vance met with 
John Couleur’s boss, a man named Walker Dix, with whom Ed was very 
impressed. 
 
As we recruited for our 600-line workforce, I was able to hire Fred Banan, 
my old friend from SHARE meetings.  He had been working for the Jet 
Engine Department in Cincinnati and was glad to move to Phoenix.  Fred 
was a little older than I and had been a cryptanalyst during the war.  
Cryptanalysts are the “top drawer” of cryptography, the ones who break 
enemy codes.  Furthermore, Fred had worked at the “top drawer” 
cryptographic facility of World War II: Blechley Park in England, where the 
Nazi Enigma code was broken.  While in England, he had married his wife 
Betty who was just as pleasant to be with as was Fred. 
 
Fred and I worked with John Couleur over the telephone to flesh out the 
600-line I/O Controller (called the IOC).  This involved designing the 
interrupt logic of the 600 computers as well as the interior décor of the 
IOC itself. 
 
The initial 600-line products were the GE-625 and the GE-635.  The only 
difference between them was the GE-635 had a faster memory than the 
GE-625. 
 
The 600-line machines evolved as being memory oriented.  That is, the 
memory was viewed as a passive unit at the center of the machine, and 
other active devices would cluster around it.  The active devices were 



 83 

CPU’s and IOC’s (Central Processing Units and Input Output Controllers)—
they caused data to be processed or moved; passive devices merely 
stored or retrieved data when instructed to do so.  In this way, it was 
possible to build systems with multiple CPU’s and multiple IOC’s; hence, it 
was possible to expand a system by the simple expedient of adding CPU’s 
and IOC’s.  The memory size, though, for a single processor or IOC was 
limited to 256k (=262,144) words (equivalent in modern terms to 1 
megabyte, which at the time seemed enormous). 
 
In any case, we finished the design of the IOC, and Fred and I later shared 
a patent for its creation.  Getting patents was very much encouraged 
within General Electric.  The company paid for all of the legal work 
involved and owned the resulting patents.  They paid each of us a 
hundred dollars (or some such amount) when the patent was awarded. 
 
After finalizing the design of the IOC, we had what looked like a good 
commercial product.  It would be a multiprogramming, multiprocessor 
system with a state-of-the-art Operating System and language processors 
for several languages: COBOL, FORTRAN and GAP, where GAP stood for 
General Assembly Program.  It would also provide a complete library of 
mathematical functions in a subroutine library.  Other utility functions were 
provided including input/output blocking and buffering.  The operating 
system would schedule jobs, allocate resources to jobs before their 
execution, manage execution of input and output commands and the 
resulting interrupts during execution and provide for recovery procedures 
to be automatically executed in the event of I/O errors. 
 
The hardware provided fences in the address space so no user program 
could encroach upon an Operating System Program or another user 
program.  The Operating System would control the location and setting of 
these fences.  A SYSOUT file would be provided by the Operating System 
for collection and stacking of printer and punch output.  The SYSOUT files 
would be printed and punched by the Operating System at appropriate 
times.  The Operating System would also direct the computer operators in 
the mounting and dismounting of tape reels and dismountable disk packs, 
changing of printer paper, supplying additional paper to empty printers 
and loading and unloading of card stackers and hoppers. 
 
With this computer hardware and Operating System it was unnecessary to 
have separate peripheral hardware to execute card-to-tape, tape-to-
card and tape-to-printer transpositions.  These were just additional jobs 
executed concurrently with other jobs on the main system. 
 



 84 

Having gotten the core of a development staff together, it was time to 
specify the 600-line software in detail.  To do this, it was thought useful to 
get away from the office and the telephones and the regular interruptions 
of every-day business.  The idea was to go to a place where we could 
concentrate our efforts exclusively on the software definition.  To this end, 
a design group went to the town of Skokie, Illinois, on the outskirts of 
Chicago, and lived in a motel with many nice meeting rooms for a week 
or two and worked on the design.  (Why we couldn’t have done this in 
Phoenix with the chance to see our families every evening I’ll never know.  
I guess some people didn’t want to see their families.)  Some of the 
people I remember there were: Ed Vance, manager; Leroy Ellison, SORT; 
Ed Somers, COBOL; Bill Heffner, FORTRAN; Jim Porter, GAP; Morgan 
Goldberg, Subroutine Library, others whose names I cannot recall and 
myself, Operating System. 
 
My main recollection of the meeting is sitting in my room all alone trying to 
imagine the perfect Operating System.  I wrote things down, I made 
charts and I presented my ideas to the group.  We would all get together 
in a meeting room to present our ideas and criticize those of others.  After 
a group meeting it would be back to solitude to modify what had been 
done and to make more charts for more presentations.  At the end of the 
trip we had a close approximation to what the software package would 
be to a reasonable level of detail. 
 
Some of the things decided at the meeting were the names of things.  The 
Operating System was to be called GECOS for General Comprehensive 
Operating System.  Most people thought this stood for General Electric 
Comprehensive Operating System, but some legal reason prevented us 
from calling it that. 
 
So now we stayed home and worked on the implementation of the 
design.  For me this meant hiring more people and getting them trained 
and put to work. 
 
It should be understood that from the beginning of the industry, there 
were no colleges of universities training candidates for employment in the 
computer industry.  The people who were hired to do programming 
generally had educations in other fields—engineering, mathematics, 
psychology, theology, all sorts of things.  Sometimes especially promising 
secretaries or clerks or computer operators were offered programming 
positions and some of them were very successful, but we had to search 
far and wide for qualified employees.  For example, Ed Vance and I took 
a trip to IT&T in Paramus, New Jersey where they were having layoffs and 
hired Bob Hobbs and Dick Foster.  At some point Jane King and Dave 



 85 

O’Connor joined the group, both from within General Electric.  Lois 
Kinneberg joined us thanks to being recommended by George Kendrick, 
who was by then working for General Electric in Virginia. 
 
The product was announced in 1964 and the salesmen began talking to 
customers and potential customers.  GECOS was one of the most unique 
and visible aspects of the system and the salesmen were poorly equipped 
to talk about it, so they often asked me to tell the hot prospects, either in 
Phoenix or at the customer’s site, about our new Operating System.  I had 
a one-hour presentation that had evolved from our debates during the 
design period and I adjusted this for use with customers.  It informed the 
customers, and the salesmen loved it.  Hence, I frequently visited 
customer sites and potential customer sites all around the country and 
talked to customers who visited the plant in Phoenix. 
 
At some time, I was asked to estimate how much memory the GECOS 
operating system would occupy.  The users viewed this as space they 
were paying for but would be deprived of using, which was true.  They 
took no account of the capabilities this use would give them.  However, I 
was happy to respond.  I reasoned that the GE-635 was about like a 7090 
as far as interior décor was concerned and many 7090 installations of the 
day got along with 8k (= 8 * 1024) words of memory in total, so it was 
reasonable that the Operating System, just a bunch of little programs, 
would be able to fit in 8k of storage. 
 
I was to live to regret that estimate.  As the development proceeded, a 
continuous stream of small changes was added to GECOS.  These were 
little features of “great importance” to various people.  In the end, the 
estimate was quite a bit under the real figure.  (I don’t know what the real 
number turned out to be.)   
 
In any case, the “8k” number had been told to customers so the 
company felt they had to (in some way) stand by it.  Before this issue had 
arisen, the smallest memory size had been 32k (=32,768) words.  This was 
for the so-called “low ball” system.  Now these “low ball” customers were 
screaming they were getting less than 24k of memory, though they were 
paying for 32k, because GECOS was using over 8k.  To respond to this 
problem, the company decided to offer a 40k memory to their “low ball” 
customers at the cost of a 32k memory. 
 
This was a real blooper!  Who ever heard of a 40k memory?  No one!  This 
became an industry joke and who was the butt of the joke?  You know 
who—the author. 
 



 86 

Yet the development of GECOS proceeded.  However, not fast enough.  
A program had been prepared so the bare hardware of the prototype 
could be used without any Operating System in uniprogramming mode.  
This meant the machine was entirely under the control of the human 
operator and had none of the “bells and whistles” of GECOS available for 
running multiple jobs.  This permitted testing to proceed on the various 
pieces of the software.  It also meant, though, GECOS developers faced 
great competition for the small amount of available test time on the 
prototype machine.  As a result the testing proceeded at a slow pace. 
 
At some point, Dave O’Connor came to me with a proposal to scrap the 
present implementation and replace it with a new one, which could more 
easily be achieved.  I don’t remember what the details were, but he 
convinced me it would be a good thing to do.  So I went to Ed Vance 
and conveyed O’connor’s proposal and offered to step down in favor of 
O’connor so the new version could move ahead with maximum haste.  
He accepted and I was out of a job except that the salesmen still liked to 
have me help on customer presentations from time to time. 



 87 

GE-645 
 
After I gave up responsibility for GECOS development, I was not out of a 
job after all.  For some time, John Couleur (who had by now moved to 
Phoenix or was about to do so) had been working on an upgrade to the 
GE-635.  It was in response to a need of MIT for a computer system to 
support what they called an Information Utility.  MIT had created a 
timesharing system in the 1960s using IBM 700-series hardware.  (There is 
dispute whether the MIT system or the GE-235 system at Dartmouth 
College was the first timesharing system.  They both occurred at about the 
same time.)  This system was called CTSS for Compatible Time Sharing 
System and had been quite successful.  On the basis of this success, they 
had formed Project MAC (Machine Aided Cognition).  They had access 
to funds from ARPA to carry out the development of a prototype 
Information Utility.  They were looking for a computer vendor able to 
support them in the execution of the project. 
 
An Information Utility was to be a central information store to which users 
could gain access from remote terminals and/or remote computers—in 
other words, a very advanced timesharing system.  It was similar to what 
we call an intranet today.  At some point, Bell Telephone Laboratories 
joined into the project. [J] 
 
I was assigned to work on the project as soon as my GECOS responsibilities 
ended.  Our initial efforts concentrated on a meeting scheduled for the 
near future at which we would attempt to convince the combined team 
from MIT and Bell Labs we were the vendor that had the competency to 
provide them with what they needed.  Some of our participants likened 
the event to a Ph D candidate taking oral exams. 
 
The meeting took place as planned.  Two of the participants were 
Fernando Corbató and Doug Eastwood—people I had known during my 
SHARE participation.  The visiting evaluation team consisted of a total of 
about ten people.  I presented the GECOS design as an illustration of our 
competency in the Operating System area, John Couleur presented some 
of his ideas about CPU’s that would suit the needs of the project and a 
Manufacturing representative dazzled them with our ability to produce 
what the engineers had designed.  It went very well.  The audience was 
very polite and responsive and it was really a very pleasant experience 
after we got into it. 
 



 88 

We won the competition at some time in the fall of 1964.  The product was 
to be called the GE-645 and the Operating System was to be called 
MULTICS [23][24] standing for MULTiplexed Information and Computing 
Service.  While I had been working on GECOS, Helmut Sassenfeld had 
been reorganized out of his former job and was now also assigned to work 
on the GE-645.  The GE-645 and MULTICS were the heart of the system and 
everyone at MIT and Bell Labs having anything to do with the project was 
focusing on these two items. 
 
The big question was, what is MULTICS?  An idea of what it might be like 
existed because of the continued use of CTSS on a daily basis in 
Cambridge.  CTSS was the point of departure for MULTICS.  Everyone who 
was to be involved in the MULTICS design either had already had some 
experience using CTSS or, like myself, was invited to use it to gain some 
familiarity with its capabilities and feel. 
 
To answer the question, “What is MULTICS?” a design team was formed 
consisting of members from the three organizations: MIT, Bell Labs and 
General Electric.  The membership of the team consisted of Fernando 
Corbató, Bob Graham, and Ted Glazer (and Butch), from MIT; Vic 
Vissotsky plus others from Bell Labs and Ed Vance, Helmut Sassenfelt and 
myself from General Electric. In addition to the design team, a group 
called the “triumvirate” existed consisting of the managers of Corbató, 
Vissotsky and Vance: their names were Robert Fanno of MIT, Ed David of 
Ball Labs and John Weil of General Electric.  All members of both groups 
were Ph Ds except Vance and myself. 
 
The CTSS system had been documented in the form of two books, each 
two to three inches thick. The first described the general purposes, 
structure and use of the system and the second gave a complete 
description of each command provided to users of the system.  The 
second was in loose-leaf form so that it could be easily updated and re-
alphabetized.  The objective of the design team was to get a good start 
on developing a similar pair of books for MULTICS.  One caveat became 
clear: nothing went into the books unless Bob Graham had written it.  That 
was a bit of a bone of contention at times, but we lived with it.  It was 
necessary for a certain critical mass of the content of these two books to 
be completed before MULTICS could be put into use. 
 
The design team met about once a month for a week to hammer out 
concepts and problems.  As with the GECOS design team meetings, these 
all took place at locations remote from our regular work sites.  Corby, as 
Fernando Corbató was called, was a good leader and kept things on 
track.  Bob Graham’s contribution I have already mentioned. 



 89 

 
Ted Glazer was the most astonishing member of the team.  He was totally 
blind and was never separated from his guide dog, Butch.  He had an 
incredible range of knowledge in both hardware and software and was 
only slightly slowed down at times by his impairment.  On occasions, say 
when someone was writing on the blackboard, he would say something 
like, ”I am visualizing, from what you have said, a rectangle in the center 
of the blackboard, and within the rectangle are two squares representing 
page tables.  From each of these an arrow points to the words in memory 
that are to be addressed.  Is that correct?”  In other words, he was able to 
construct in his mind a picture of what was happening in the meeting and 
would ask for verification that his picture was correct.  Sometimes he 
would describe what he was visualizing so that it could be written and/or 
drawn on the blackboard by one of the sighted members of the team.  
He always made a positive contribution and we all admired him. 
 
Vic Vissotsky was one of many remarkable people at Bell Labs.  It was one 
of the outstanding experiences of my life to have worked with them.  They 
were uniformly bright and stimulating.  It was said that even the janitors at 
Bell Labs had Ph D degrees.  Of course, it was an exaggeration, but not by 
far.  As I recall, though, the only member of the design team from Bell Labs 
that always attended was Vic.  I remember Peter Neumann having been 
there and Doug Eastwood and I think Joe Ossana, but I don’t think they 
attended every meeting. 
 
The geography of the project gave me a problem.  The center of gravity 
of the participants was definitely on the east coast.  The headquarters of 
the activity was clearly at MIT.  Corby and his staff were located in a high-
rise building at 545 Technology Square in Cambridge, just across the street 
from the MIT campus.  Helmut Sassenfeld leased offices in the basement 
of the same building.  He had a small staff.  The people on his staff whose 
names I can remember were Braxton Ratcliff and Mauro Pacelli at MIT 
and Dave Levinson and myself at Bell Labs.  The difficulty with this 
arrangement was I lived in Phoenix.  Helmut relocated, but I had no 
intention of doing so.  It ended up that I stayed most of the time in a motel 
in Union City, New Jersey, a few miles from Bell Labs in Murray Hill, and 
went home every week or two for a week. 
 
However, as it turned out, I wasn’t continuously at Murray Hill.  The 
meetings of the MULTICS design team took place at various places in the 
East and often reasons arose to go up to Cambridge to meet with Helmut 
and his staff and/or the people at MIT.  So, one way or another, I spent a 
great deal of time living out of a suitcase. [K] 
 



 90 

I had become well versed in the GE-645 hardware early in the history of 
the project.  I had made presentations on the subject to various interested 
people within the Computer Department and to our new employees.  It 
turned out that the interior décor of the GE-645 was only slightly 
understood at Murray Hill, so one of my first duties was to give my 
presentation there.  It was very successful and appreciated by the people 
in attendance.  As with every other customer site I had visited, a large 
group at Murray Hill would have preferred if their company had been 
working with IBM, so those in this Bell Labs group had been making many 
waves internally about “riding the wrong horse”.  One can hardly blame 
them.  No one had told them what the General Electric horse had to 
offer. 
 
This was very good for our image with that important customer and 
partner, but it also set me up as the patsy to talk to other prospective 
customer sites after the GE-645 had been announced.  These customer 
presentations added even more to my “away’ time.  However, I was glad 
to do it because, especially after the MULTICS plans began to develop, 
we had an increasingly attractive story to tell. 

The GE-645 was different from any processor I had ever encountered at 
the time and much like those that followed it.  The other 600-line machines 
were all limited to memories of 256k (=262,144) words.  This was because 
the addresses in the instructions were only 18 bits in length and eighteen 
bits can describe only 218 = 256k unique values (k = 1024).  The GE-645 got 
around this limitation and was able to directly address many times 256k 
unique locations.  It accomplished this by using “virtual memory”.   
 
The idea of virtual memory had been introduced in 1962 when the Ferranti 
Atlas [26] Computer introduced the use of paging.  This permitted an 
address space larger than the available high-speed memory to be 
directly addressed.  While only part of the storage corresponding to the 
address space would be resident in the available memory—the 
remainder would be resident on a backing store, usually a magnetic 
drum.  The address space was divided into “pages” which were blocks of 
storage that might or might not be resident in the high-speed memory.  If 
a word not in high-speed memory was addressed, it would cause the 
processor to stop running the program it had been running.  This 
automatically removal of a program from execution was called a “page 
fault”.  When a page fault occurred, it would cause the processor to 
automatically run an operating system program that did the following: [L] 
 

• Find a low-use page in memory that could be replaced. 



 91 

• Start a read operation from backing store to replace the found 
page with the page containing the data at the sought address. 

• Give control of the processor to another program for which all 
needed memory is available while the read operation is 
completed. 

 
The GE-645 and MULTICS created virtual memory by a combination of 
segmentation and paging [26][27].  The hardware provided the ability for 
each user to have up to 256k segments each containing up to 256k 
words.  Each segment was a separate address space of 256k words.  Only 
pages of segments currently in use were kept in the high-speed memory 
of the system the remaining pages were stored on magnetic disk or drum.  
This swapping process between high-speed memory and backing store 
was carried out by MULTICS and the GE-645 hardware without the user 
being aware of its occurrence.  (Special hardware support to facilitate 
this is described in Appendix J--GE 645 Addressing.) [M] 
 
The design team made an early decision to implement MULTICS in a high-
level language.  Most operating systems were written in assembly 
language.  That is, one or more lines of code existed for every machine 
instruction of which the operating system consisted.  Use of a high-level 
language could reduce this amount of writing substantially and had other 
benefits for easy maintenance and debugging.  Some vendors had 
experimented with this approach—primarily Burroughs.  As I recall they 
attempted to use Algol and mixed stories circulated about how successful 
they had been.  However, PL-1 was the latest language with everyone’s 
attention and it was at some preliminary stage of availability.  In any case, 
it was not available on any General Electric machine, so MIT proposed to 
develop an MIT version, for our equipment.  It was called EPL, for Early PL-
1, and was used successfully throughout the development until a 
complete PL-1 could be created. 
 
The user interface of MULTICS was largely specified by CTSS.  The modern 
reader should imagine an Intranet constrained to the limitations of the 
1960s.  The most obvious limitation was the types of terminals available.  
They were, with few exceptions, typewriter-like devices—Teletypes or the 
like.  However, the full upper and lower case capability was utilized in 
MULTICS.  I don’t remember what character set we used.  That was never 
a big issue.  Of course, no color display or variation in fonts was possible.  
The font was what was molded into the print mechanism of the printer 
with underlining as the only embellishment—no bold face or italics. 
 
A user would log on and log off as in a modern system with asterisks 
printing as the user entered his password.  Once logged on, the user could 



 92 

send or receive email, chat with other users, access bulletin boards, write 
programs in EPL or various other languages, run his own programs or look 
at his own files or, with proper permissions the files of others.  A file system 
was provided that allowed the user to create a directory/file structure just 
as in today’s systems where we have folder/file structures.  A general 
objective of MULTICS was to make the entire machine available to each 
user and it came close to doing just that within resource and security 
constraints. 
 
A word processor was provided but not like those of today.  Because 
video monitors were not the norm, the word processors of the day used 
little short commands to instruct the system how to assemble the text the 
user typed.  To look at the new version of the text, one had to ask to print 
the section in question on the paper in his terminal.  This worked and one 
could develop a fair amount of skill in using the tool, but it lacked the get-
what-you-see feature of modern word processors.  A capability called 
“runoff” was also provided allowing the user to format documents utilizing 
the maximum abilities available at the users’ terminals or the system’s 
printers.  To use runoff, one had to embed formatting commands in the 
text stream to direct the software in achieving the desired appearance. 
 
The MULTICS design that evolved was very elegant and beautiful, and, as 
it turned out, very durable.  As with any operating system, a part called 
the “Kernel” was always present in the core memory.  When a user logged 
onto the system, the Kernel would be present to administer or reject his or 
her access.  If the log on were successful, the kernel would provide the 
user with a command processor that would become part of what was 
called the user’s “process”.  The process was the entity on the system 
representing the user during his MULTICS session.  A process differed from a 
GECOS job in that it was a variable entity and it included only the MULTICS 
instructions and data the user activated.  As the user executed more and 
different commands, the process would expand and contract as needed. 
 
One advantage of this approach was that ways were provided to permit 
standard MULTICS parts to be replaced by alternatives of the user’s 
choice.  In this way, new versions of system modules (or commands) could 
be introduced at any time without shutting down the entire system and 
introducing a new version of the whole operating system.  This was a 
system programmer’s dream. 
 
Also, the MULTICS code was all constructed as “pure procedure”.  That 
meant none of the instructions in the code were ever changed in any 
way.  As a result many user processes could concurrently utilize a single 
copy of the code if each had a private copy of the data to which the 



 93 

code referred.  This, of course, lead to an economy of storage in a system 
where many users were executing the same code, for example, the 
central loops of a word processor.  Use of pure procedure also permitted 
code to be reentrant.  In this case the code could call upon itself to 
accomplish a task if, as was sometimes the case, this act would lead to an 
economical achievement of a result. 
 
Each time a MULTICS user typed a command, the command processor 
would parse it.  If the command contents were legitimate, the command 
processor would append the code for that command to the user’s 
process (if it was not already there) and place it in execution.  In doing 
these things, the command processor would utilize the File System 
containing the names and other attributes of all virtual memory segments 
available on the system.  When the code for a command began 
execution, the virtual memory pages of the command would be brought 
into core memory, as they were needed.  If a particular page were not in 
core when it was referenced, a “page fault” would occur and the desired 
page would be retrieved as described above. 
 
Of course, the virtual memory pages of a process that were in real 
memory didn’t need to be located in contiguous real memory addresses.  
The page tables, maintained current by the File System, indicated where 
each page of a segment was located.  The processor translated the 
effective address of each instruction to refer to the actual location of the 
word in question regardless of where it was in high-speed memory.  This 
made the process of memory management much easier than it would 
otherwise have been. 
 
One of the big problems of the File System was to develop algorithms for 
the removal and replacement of pages (page turning) in real memory so 
as to generate the minimum possible delay.  These algorithms interacted 
with the level of load on the machine at a given moment.  Failure to 
manage these variables effectively could have lead to a situation in 
which the computer was spending most of its time moving pages into and 
out of memory instead of servicing the needs of its users.  This is a 
phenomenon called “thrashing” that substantially reduces the throughput 
of a system by creating unwanted overhead. 
 
MULTICS was also sensitive to data and program integrity.  A 
comprehensive and automatic backup system ran as part of the File 
System.  Whenever a page was turned out of memory, a copy of it was 
written to magnetic tape along with its identification and time recorded.  
However, this recording would occur only if contents of the page had 
changed from the time it had been created or turned into memory.  The 



 94 

processor automatically kept a record in the page table of whether or not 
the page to be removed had been changed since it was read into real 
memory.  (See Appendix I).   If a system crash occurred, the system could 
be restored to its state at the time of the crash by restoring the File System 
from the magnetic tape records to the values it contained at the time of 
the crash. 
 
I am not aware of any MULTICS commands permitting a general user to 
utilize magnetic tapes, cardpunches, printers or similar peripherals.  
Commands were provided that would cause information to be 
transferred to/from cards and/or magnetic tape, but the actual 
commanding of the devices was done by MULTICS. 
 
The boundary was never really clear to me between which of these 
features had been present in CTSS and which were new in MULTICS.  
However, they were all eventually duly recorded in the MULTICS 
documentation. 
 
Quite a large portion of the designing of MULTICS occurred during the 
summer of 1965.  Before our children were on vacation from school, I went 
to Helmut and asked permission to rent a house and a car in the area for 
the summer.  The whole deal saved the company money, so he guided 
me through the procedure to get permission from Finance.  This all went 
off without a hitch and we rented for the summer a schoolteacher’s 
house in Berkeley Heights, New Jersey, conveniently located in relation to 
Bell Labs.  This was a great opportunity for the family because on most 
occasions when I had to travel, we arranged for them to go along.  Then 
while I was busy doing my job, they would go about being tourists.  In this 
way, the family got a chance to see the Boston Area, the New Jersey 
area and in one case we went down to DC.  Of course, we also took 
advantage of our proximity to New York City to visit there on a few 
occasions. 
 
By the time the MULTICS design was winding down the GE-645 prototype 
was well on its way and Helmut was hiring people to join with the MIT staff 
to begin the implementation.  The GE-625/35 and the 400-line were 
muddling along.  Neither of them was spectacularly successful and I don’t 
think the department had yet turned a profit.  I believe the 200-line had 
been pretty much phased out; at least as far as new sales were 
concerned.  Art Critchlow had long since left and Arnold Spielberg had 
accepted a job with Scientific Data Systems in the LA area (much to his 
son Steven Spielberg’s delight, I am sure). 
 



 95 

Throughout this time period, I continued to give presentations to potential 
customers.  IBM had announced a product competitive to the GE-645—
the IBM-360 model 67—and at every presentation, we were asked to 
compare ourselves to the IBM offering.  Their design was said to also be 
capable of supporting virtual memory and large numbers of concurrent 
timesharing users, but our engineers and our partners in MULTICS said our 
approach was more sound and practical.  They must have been correct 
because IBM eventually withdrew their offering.  I don’t remember the 
details now, but the debate went on and on.  In most cases I did the best I 
could and then went home.  However, one case occurred in which I took 
the consequences more seriously. 
 
I knew a man in Phoenix with whom I had worked frequently during the 
early days of the 600-line and perhaps also during our work on the Y-
computer.  I don’t remember his name, but I remember he was a little 
older than I, had a Ph D degree and was always pleasant and 
gentlemanly.  At some point, he left the company and accepted a 
tenure-track position at Washington State University, in Pullman, 
Washington.  At some point, he requested that I come to Pullman and 
present my story on the GE-645 and MULTICS.  The visit was approved and 
I went. 
 
I remember it was cold in Pullman and snow was on the ground.  I met my 
old friend and he welcomed me with great warmth.  He introduced me to 
several of his graduate students and we had a very pleasant reunion.  
When it came time for the presentation, I gave the one I had given many 
times and it went well until about halfway through the question and 
answer session.  One young lady in the audience kept insisting thrashing 
would be such a difficult problem that virtual memory wouldn’t work.  I 
gave her the best argument I had been taught to give but she persisted.  I 
finally just lost my patience and responded to her in a very ugly fashion.  
That cast a negative aura on the session and it ended shortly thereafter.  I 
never again heard from my former friend from Washington State 
University.  (I don’t think they were serious customers anyway, but I was 
sorry to see the termination of what I had considered a valuable 
friendship.) 
 
At some time after our summer in the east but still, I think in 1965, Bell Labs 
withdrew from the project.  I am not sure of the reasons.  Although 
squabbles had occurred between a few members of the MULTICS Design 
Team and individuals within the other organizations, I never witnessed 
anything that would have led to a rupture between the partners.  In any 
event, the Triumvirate became a Biumvirate and we continued on our 
way. 



 96 

 
However, this left me without a major focus.  At about this time, people 
began to think about what we were going to run on the prototype GE-645 
hardware whenever it was able to get up and running.  Of course, test 
and diagnostic programs would be written to exercise the machine as it 
was being assembled.  But what would be run after that?  MULTICS was 
not scheduled to be completed or in test until quite some time after the 
prototype was up and running.  Anyway, testing a machine and its 
operating system concurrently was not a pleasant prospect, as many of 
us knew.  Therefore, it was decided we would create a version of GECOS 
II, 645 GECOS, which would run on the GE-645 hardware.  The responsibility 
for doing this was given to me in Phoenix. 
 
I really don’t remember where this job was done, in Cambridge or Phoenix 
and I don’t remember who worked on it.  I think I continued to report to 
Helmut Sassenfeld, but I’m not sure.  It was really a small job, though to 
people not familiar with the GE-645 hardware it seemed quite difficult.  
What we did was use the same registers, descriptors and page tables 
intended to create virtual memory in MULTICS to simulate the address 
fences and relocation capabilities of the GE-625/35.  This required only a 
small amount of programming and the hardware did the rest.  For those 
who were not familiar with the GE-645 hardware in detail, it looked like 
magic. 
 
This job was completed by April of 1966.  That was the end of my 
connection with the GE-645 and MULTICS and, I am sorry to say, almost 
the end of my connection with Helmut Sassenfeld.  I believe our 
relationship had been mutually beneficial and satisfying.   The fact that his 
name occurs rarely in this history is emblematic of our relationship.  Our 
contacts were always friendly and positive.  His management style was 
always supportive and we discussed all subjects openly and without 
inhibition.  He ranked with Harry Tellier in terms of management skills if not 
in philosophical leadership. 
 
After GE-645 GECOS was completed, I again reported to Ed Vance.  I was 
given a unit to manage called 600-line System Support.  We were 
receiving and tracking customer problem reports, keeping the customers 
posted as their problems were addressed, distributing software 
corrections, as they became available and creating system 
documentation.  This was a challenge different from any I had previously 
had.  It was kind of a mess when I took it over. 
 
The easy part was documentation.  Ed Vance had hired a man named 
John Maynard who was a great writer and had in depth knowledge 



 97 

about computers.  He was a real pro and a very nice person and all I 
needed to do was give him responsibility and stand back.  He did a 
beautiful job. 
 
I don’t remember whether or not I had responsibility for the maintenance 
of the library of completed software versions.  This was a huge job and 
was undertaken very ably by Bob Jordan, a former employee of the Jet 
Engine department in Cincinnati.  Bob’s organization maintained the very 
extensive library of the piece parts from which each software release was 
made.  The people in his organization were the first users to assemble 
these parts and test them out as a whole before distribution.  They had to 
try to make sure each version of the software, as released, would work on 
all of the different hardware configurations in the field.  They then had to 
deliver the releases to all the installations.  They were also responsible for 
sending out what were called “patches” between releases.  If I was not 
responsible for this group, I worked very closely with them. 
 
I do remember I was responsible for processing all of the Ck-97s that came 
in for the 600-line.  A Ck-97 was a form upon which a customer would 
record a system error or malfunction—in other words, a complaint.  When I 
took over the unit, the procedure for handling the Ck-97s was kind of like a 
leaky bucket—some complaints would go unanswered, their receipt 
would often not be acknowledged and much customer dissatisfaction 
resulted.  The solution to the problem was to create a database of 
pending Ck-97s and a system that would prioritize their 
acknowledgements and responses and would report periodically on the 
progress in solving each one. 
  
The submitters of the complaints had to be kept informed throughout this 
process.  We were committed to provide a solution or a work-around in 
each case.  Unfortunately, it was necessary, in some cases, to tell the 
customers they would need to wait until the next release of the offending 
software to obtain a solution to their problem.  These were the cases 
requiring the greatest diplomacy in their communication. 
 
This job required a great deal of human relations skill because the 
customers were usually not in a good mood and our management was 
disappointed that our products were not perfect.  In addition, our 
developers didn’t want to spend their time and energy on that old stuff 
they thought they had completed and would never see again.  Yet every 
complaint had to be dealt with and answered with as little ruffling of 
feathers as possible.  The key was keeping up the level and quality of 
communication, but that required a great deal of discipline. 
 



 98 

During all of the time since Charlie Bachman had joined the company, I 
had seen him once in a while, but we were both very busy and had little 
time to socialize.  His IDS, Integrated Data Store, had become an integral 
part of our product offerings and was in regular use in many customer 
sites.  One of these was at the Weyerhaeuser Company in Tacoma, 
Washington.  They had had 200-line equipment for a number of years and 
were big IDS users.  They were about to convert to the 600-line in a big 
way and the GE Computer Department was looking for someone to 
manage the development of some special purpose software for them.  
Charlie threw my name into the hat as a candidate. 
 
I had had the System Support job for about ten months and had made 
some progress, but I wasn’t really happy in that line of work.  I put out 
feelers to Harry Tellier who was by then with IBM, Helmut Sassenfeld with 
RCA and Ken Robertson who by then was working for Douglas United 
Nuclear.  I interviewed and got an offer from Douglas Aeronautics and 
Space Division.  I even contacted Vic Vissotsky, thinking I might get a 
janitorial job at Bell Labs, but that lead to nothing.  However, I was really 
interested in what was being done at Weyerhaeuser, so I agreed to take 
a look at it.  But that is another story I shall tell in the next chapter. 



 99 

 

WEYCOS 
 
When I was a small boy, a big story appeared in the news shortly after the 
Lindberg kidnapping.  Another kidnapping had occurred:  the scion of the 
Weyerhaeuser family, George Weyerhaeuser, had been kidnapped.  The 
Weyerhaeusers ran and controlled the company that bore their name.  It 
was one of the largest forest products companies in the country and the 
family was thought of as being very rich.  As it turned out, a great deal of 
publicity and public anxiety was generated, but little George was safely 
recovered. 
 
Years later, George became the President of the company bearing his 
family’s name.  It happened that he and Lou Hereford sat next to one 
another on an airplane.  At the time, Lou worked for the GE Internal 
Automation Operation (IAO) in Schenectady.  Lou gave George the story 
of the dream system we had proposed for Hanford years before.  George 
was very interested and after more discussion and meetings, the 
Weyerhaeuser Company ordered a feasibility study to be performed by 
IAO.  Its mission was to investigate means whereby the order processing 
and inventory control in the Weyerhaeuser Wood Products Division might 
be streamlined.  Both the company headquarters and the headquarters 
of the Wood Products Division were then located in Tacoma, Washington. 
 
Lou and Bill Helgeson, also from IAO, carried out the feasibility study.  Bill 
Helgeson knew Charlie Bachman and was intimately knowledgeable 
about the General Electric data management product, IDS (Integrated 
Data Store), and its implementation.  I like to believe Lou and Bill dreamed 
an updated version of the old Hanford dream; this time it was not just a 
fantasy but also the beginnings of a plan to be implemented for the 
Weyerhaeuser Company. 
 
The Weyerhaeuser Company accepted the plan presented in the 
feasibility study and when that happened, Lou changed employers and 
took charge of Weyerhaeuser information and communication systems.  
A large GE-235 installation with a DATANET-30 communications computer 
(a combination known as the GE-265) was planned for installation in 
Tacoma.  This system would communicate with terminals throughout the 
Weyerhaeuser Company.  Any order taken anywhere in the company 
would come in to Tacoma via a torn-tape Teletype system and be 
recorded in an IDS database.  The filling of the order would be recorded 
and its delivery and billing would similarly be followed in the database.  In 



 100 

modern parlance, they planned to create an “intranet” for the running of 
the business of the Wood Products Division. 
 
By this time, IDS was a stable product but was designed to obtain its data 
in the form of punched cards.  It also lacked a recovery capability that 
would protect the data contained in the database from corruption or 
destruction.  Hence, modifications were required to support the on-line 
acquisition of data by way of the DATANET-30s.  Grayce Booth of 
Weyerhaeuser and Paul Kosct of GE (who also came from IAO) 
implemented these modifications in 1964 with some help from Bill 
Helgeson.  In addition, Grayce and Paul maintained the data integrity of 
the system after it was put into operation. They were on 24-hour call during 
the life of the system to restore the database and restart the computers in 
the event of any mishaps. 
 
The initial on-line application was limited to order entry, order 
acknowledgement, shipping and invoicing.  It was highly dependent on 
IDS.  Even the queuing of orders and their prioritizing and selection for 
processing was handled by a “Problem Controller” developed by Charlie 
Bachman for manufacturing control applications within GE, then re-
written for the on-line system by Grayce Booth of Weyerhaeuser. 
 
When put into operation in 1965, the system was very successful, but it had 
one problem—no one from computer operations could tell what it was 
doing.  As originally installed, its only operator interface was the set of 
switches on the computer console.  No output was available to the 
operators.  The system just sat in the corner, 24 hours a day, seven days a 
week and blinked its lights at the operators.  The operators were very 
nervous because they could not tell whether it was operating correctly or 
not.  So, to relieve the tension in the computer room, an electric typewriter 
was installed and set up for the Problem Controller to type out the length 
of the problem queue once an hour so that the operators could tell 
something was going on.  Additionally, a method was provided of 
suspending on-line processing in the evening hours for Batch Processing 
Applications requiring the IDS database. 
 
 
At one point in time, according to Allen Smith, Vice President of 
Operations, Weyerhaeuser [28] encountered a big influx of orders.  Orders 
flowed in faster than they could be processed.  They were stored in the 
IDS database.  All week long, the order-processing backlog would build 
up.  However, over the weekend, the order inflow stopped and the system 
kept running, 24 hours a day, and the order backlog was worked off 
before Monday morning.  He said what amazed him, was the higher-



 101 

priority problem classes, such as assigning customer numbers to new 
customers, were returning new customer numbers in less than a minute 
when one was requested by the sales offices.  This was excellent 
performance when one considers that telecommunication was being 
handled with Teletype machines in the sales and shipping offices. 
 
The original Weyerhaeuser system was later referred to as WEYCOS I.  It 
was quite successful but stories such as the preceding made it clear the 
system lacked the capacity to continue to perform the job if any 
workload increase occurred.  However, the company was pleased with 
the technological path it was pursuing and was anxious to look for a way 
to expand the system’s capacity to give better service to more users 
within the company.  This led to the plan to develop WEYCOS II, a large 
GE 600-line installation with modified software that would continue and 
expand the capabilities of WEYCOS I. 
 
As the plan evolved, the computer system in Tacoma would continue to 
serve the Wood Products Division as with WEYCOS I, but with additional 
capabilities.  There was also an expectation that enough capacity would 
be available to serve some of the other divisions of the company in a 
similar manner.   
 
By the time anyone had talked to me about this project, the idea was 
already implanted in the minds of the Weyerhaeuser personnel and the 
affected GE personnel.  My old friend from Hanford, Jim Fichten, was now 
working for Lou Hereford in Tacoma and Chuck Buchanan was working 
for Weyerhaeuser in their Chicago office.  A preliminary plan for the GE-
635 system involved the sale of many (I’ve forgotten how many) millions of 
dollars worth of equipment.  However, the standard software was not up 
to doing the job the customer wanted to do, so a special version of 
GECOS was to be developed that would fill the bill.  This modified version 
of GECOS would be WEYCOS II to support just the Weyerhaeuser 
requirements.  Agreement between the two companies was achieved 
during July of 1966 when Stan Williams, representing GE Marketing, and 
Joe Handros, GE Computer Department Legal Counsel, met with their 
Weyerhaeuser counterparts in Tacoma.  The agreement to proceed with 
a joint development between the two companies was reached and 
signed into being during this visit. 
 
Some recruitment of staff took place in 1966 both within GE and within 
Weyerhaeuser.  Of course, Grayce Booth and Paul Kosct continued on 
the project but now on different hardware and a different final system 
target.  Bill Conlen , Jim Everett and Don Faul were team members on the 
Weyerhaeuser side.  On the GE side, my old friend Ed Roddy had been 



 102 

transferred from Phoenix, as was Bob Hobbs from early GECOS days.  Ron 
Pulfer was also there and Dick Carlyle had been transferred from Phoenix.  
I had met Dick in Phoenix, but we had never before worked together. 
 
These people all had their offices on the second floor of the building right 
across the street from the Weyerhaeuser Building in Tacoma.  Lou Hereford 
had his office there and the entire second floor was available except for 
a little tailor shop with which several of us did business.  Charlie Bachman, 
“Mr. IDS, himself” and Ron Pulfer came to Tacoma during the week each 
week starting with the signing of the joint agreement and Charlie and Ron 
Pulfer flew home to Phoenix on the weekends. [N] 
 
At some time early in 1967, I went to Tacoma on an interview—I should say 
a seduction.  They had my office already furnished with my name on the 
door.  Everyone gave me a hero’s welcome.  I was introduced to 
everyone and was told everything known at the time about the project.  It 
was very flattering and the project was extremely challenging.  I couldn’t 
turn it down. 
 
After I accepted the job, I learned it would result in a nice promotion for 
me.  I reported to work around the first of March in 1967.  It was no longer 
necessary for Charlie Bachman to commute to Tacoma every week. 
 
Ron Pulfer and I stayed during the week in the two-bedroom apartment in 
Tacoma he and Charlie had formerly occupied.  We batched there until 
my family came up in June after the end of the school year in Phoenix.  In 
the meantime, we sold our house in Phoenix and bought a new one in the 
suburb of Fircrest a few miles from downtown Tacoma.  We didn’t move 
into our house until after I brought my family up from Phoenix.  In the 
meantime, I spent the weekdays in Tacoma and the weekends in 
Phoenix.  Everyone told me a beautiful view of Mount Rainier could be 
enjoyed from Tacoma, but the weather was such that I had never seen it 
until the day my family and I rolled into the area.  Starting at Fort Lewis, 
which is just south of Tacoma, the mountain was dead ahead of us on the 
horizon—a gorgeous view we never tired of seeing. 
 
As soon as I arrived in Tacoma some key decisions had to be made.  But 
before I describe them, readers need to understand some things going on 
in Phoenix.  As computer technology proceeded, the demand for 
timesharing capability steadily increased.  More and more people 
wanted to do their work from a terminal even if that terminal was just a 
typewriter-like device.  The only facility GECOS II had to support that 
capability was a time-sharing supervisor executed just like a user job.  This 
really didn’t give the same level of service some of our competitors’ 



 103 

systems were able to achieve in the timesharing mode.  The development 
of GECOS III had been proposed to take care of this problem and several 
others.  A big debate was occurring in Phoenix as to whether it would be 
better to undertake a large revision to GECOS II or to start over with 
GECOS III.  George Gillette, a Hanford transplant, led the fight for revision 
of GECOS II, but, sadly, he and his followers lost. 
 
This issue was of great moment to us at Weyerhaeuser because we had 
no wish to remake an operating system from scratch.  It was our hope we 
could achieve our goals by modifications to GECOS II.  Indeed, no other 
practical alternative existed because GECOS III didn’t yet exist and 
waiting for it was not acceptable to the customer.  So one of our first tasks 
was to work through this issue and convince ourselves GECOS II was the 
base from which we would start. 
 
We also needed to delineate responsibilities between GE and 
Weyerhaeuser.  Since I had seen him last, Lou Hereford had become very 
involved in computer communications and had a staff of competent 
people working on that side of the problem.  Some discussion of me also 
assuming responsibility for computer communications took place, but I 
was not anxious to do so.  I had plenty to challenge me with WEYCOS.  
Hence, it was decided WEYCOS was my responsibility and the staff Lou 
already had on board would handle data communications and they and 
we would report to Lou. 
 
The next step, at least as far as I was concerned, was to make sure just 
what WEYCOS was going to be.  So we went about painting the picture of 
the system.  The primary issue to be addressed in WEYCOS II was system 
capacity.  To understand some of the issues relating to this problem it is 
necessary to know something about what is involved in performing a 
database access.  One can separate the time spent in performing a 
database access into four parts: 
 

1. Time spent by the CPU executing the logic of the program 
performing the access. 

2. Time spent waiting for the read/write heads of the disk to be 
positioned over the proper disk and track. 

3. Time spent waiting for the disk to rotate to the sector containing the 
sought-after data. 

4. Time spent transferring data between memory and the device 
where it is stored. 

 
 



 104 

Having made this separation, it is easy to show for most computers and 
disk handlers; the sum of parts 1 and 4 is much smaller than the sum of 
parts 2 and 3.  That is, the system spends most of its time waiting for 
mechanical devices to move and very little time deciding which device is 
to access what data and disposing of the sought-after data. 
 
In changing from a GE-235 system to a GE-635 system, the increase in CPU 
speed was greater than the increase in the speeds of the disk drives.  
Therefore, how were we going to gain a large increment in performance? 
 
The answer was the GE-235 system was uniprogrammed.  That is, with few 
exceptions, each of the tasks to be performed to achieve a database 
access was done in sequence.  By contrast, the GE-635 system was multi-
programmed.  Hence, while the CPU was waiting for a mechanical 
device to move, it could be dispatched to work on another program, 
when that program had to wait for a mechanical device to move, it 
could be dispatched to another program, etc.  In this way, the CPU could 
be more fully utilized, but, more importantly, several disk handlers could 
be set in motion in parallel looking for sought-after sectors.  This multiplicity 
of disk activity was the major factor in achieving the necessary 
improvement in throughput in WEYCOS. 
 
This meant the primary objective was within reach, but at the cost of some 
programming complication.  Take an airline reservation system as an 
example of why some of this complication was necessary.  Suppose you 
have a database with multi-programmed access and two customers 
looking for a seat on a plane with only one seat available.  The first 
customer asks to be reserved for the available seat and before the 
transaction is closed, the other customer asks for the same seat.  Because 
the transaction is not closed, the seat is still available, and, hence, it is sold 
to two customers.  Access to the “number of seats available” record must 
be locked whenever it is accessed with the possibility of being updated.  
This can be done (and was done in WEYCOS) but it leads to another 
problem.  It is possible that two programs each accessing the same 
database can lock records such that neither of them can proceed—they 
become deadlocked.  It was necessary to put “deadlock protection” into 
WEYCOS, to prevent this from happening. 
 
In addition to the increased throughput resulting from greater parallelism, 
the disk handlers used on the GE-635 system were larger and faster than 
those on the GE-235 system.  They were our newest and best disk 
handlers—the DSU-270s.  I don’t remember their specs, but they were 
considered quite large and fast for their time.  We at Weyerhaeuser had 
many of them. 



 105 

 
However, we needed to do more than just access a large database 
rapidly.  We also needed to be able to restore it in the event of a failure of 
any type.  The solution to the recovery problem involved both hardware 
and software.  In the hardware sphere, we created what was called a 
“multi-wing configuration”.  This took advantage of the memory 
orientation of the 600-line machines and permitted up to four GE-635 
machines in a configuration, all of which had access to a common 
module of 64k (=65,536) words of memory.  The in-memory buffer storage 
for the IDS database would be kept in this common area.  Hence, the 
processors and IOCs (input/output controllers) in the wings could be 
added and removed from the configuration and only rarely require 
disabling of the entire system.  Figure 4 shows the major components of 
the Multi-Wing WEYCOS hardware system.  Not shown are the 
input/output devices and their controllers. 
 
“P1” relates to the first processor.  “I1” relates to the first IOC.  The first 
processor and the first IOC have exclusive access to “Memory 1”, which 
represents three memory modules.  The “Common Memory” represents 
the single memory module addressable by all four processors and all four 
IOCs. 
 
 

 
This configuration could be supported with off-the-shelf hardware except 
for one small hardware feature.  A mechanism was needed to prevent 
interference between active devices accessing the Common Memory.  



 106 

This mechanism was designed but never installed on any of the 
equipment. 
 
The software also had to be able to withstand outages with a minimum of 
disruption and in a more automatic manner than in WEYCOS I.  Hence, an 
extensive Recovery and Restart (R & R) system was developed in the 
WEYCOS software. 
 
Unlike the MULTICS backup system that had hardware assistance, the 
WEYCOS R & R system was required to backup database content from 
copies of logical records stored in the IDS database.  Copies of records, 
both before and after modification were stored on magnetic tape and 
processed to permit a restart from any specified clean point.  A clean 
point was a point at which the database was known to be intact and 
without error.  A great many details of this process escape my memory, 
but I do remember four forms of recovery were provided, depending 
upon the severity of the failure.  Each of these was given a name: “normal 
recovery” that was essentially automatic; “emergency recovery” that 
required some human intervention; “penultimate recovery” that required 
substantial rollback and reprocessing; and “ultimate recovery” that was 
essentially whatever could be worked out if penultimate recovery didn’t 
work.  Each of these successive layers of R&R was engaged if the 
preceding layer had been unsuccessful; however, it was expected that 
the frequency of occurrence of the four layers would diminish substantially 
from normal recovery to ultimate recovery, so human intervention would 
be minimized. 
 
The project made progress as soon as we had our staff assembled.  
However, the progress was too slow.  It was too slow to suit the customer, 
too slow to suit the employees and too slow for me.  We tried everything 
we could think of to get it on a faster track, but nothing worked.  When 
adequate debug time was unavailable, another system was ordered to 
provide the time.  When insufficient visibility of project tasks and progress 
within tasks was suspected, we started using the critical path method for 
tracking progress and created an elaborate display for everyone to see in 
our hallway showing where every task stood at any time.  Weyerhaeuser 
hired psychologists and put all of their managers, including me, through 
multiple sessions of sensitivity training in the hope we would learn to more 
effectively deal with each other and/or our employees.  (Perhaps the fact 
that anyone associated with the project was referred to as one of 
“Hereford’s Raiders” suggested this approach.)  None of these things 
seemed to help. 
 



 107 

On the other hand, it should have been a surprise to no one that trying to 
fit an innovative development into a fixed time block is a fool’s errand.  
Plenty of history existed within the computer industry and other technical 
endeavors to make the folly of this practice apparent.  I blame myself for 
having been coerced into giving time targets in advance.  Of course, we 
were operating within business organizations operating on the basis of 
budgets set in advance and this was nothing new to me so I caved in to 
the pressure.  I can say, though, I have never seen such an effort made by 
any management team to keep on schedule. [O] 
 
After the project had been going for about a year, we had a visit from our 
GE Department General Manager—George Woodward.  Our project had 
always been unpopular in Phoenix because the working-level people and 
the low-level management viewed us as a “brain drain” and a drag on 
our department’s limited resources.  When George Woodward arrived, he 
seemed to be reflecting these same attitudes.  However, by lunchtime, 
we had had time to tell him our story and explain what we were doing.  By 
the time we had returned from our midday repast, it was clear we had a 
convert.  He began to smile frequently and actually became quite 
enthused about what we were doing.  This helped to bolster our position in 
Phoenix; however, of course, George didn’t last very long. 
 
As it turned out, his replacement was probably the best General Manager 
we ever had—John Haanstra.  Yes, the man who was the young seaman 
at Point Mugu was now our General Manager.  He had spent many of the 
intervening years with IBM and was an excellent choice for his new job.  
He too came to visit us at one point and although impressed, was not as 
much so as George had been.  Nevertheless, for the first time since I had 
worked for GE, I felt we had a man at the helm that really knew what was 
going on and what was important for our business and technical success.  
Unfortunately, shortly after he visited us he crashed his private airplane 
with his wife and child aboard and they were all killed.  I believe this 
happened in the summer of 1969.  
 
However, the worst blow to the project was to occur in late 1968 or 1969.  
The person who really kept everything going and was the thought leader 
of the entire endeavor, Lou Hereford, died.  I had found out during one of 
our sensitivity sessions that Lou had Hodgkin’s disease.  He had apparently 
had it since our days at Hanford.  He would often disappear for a few 
days or a week, but convenient cover stories were always provided.  We 
found out later, he had been in Seattle getting chemotherapy. 
 
Even while Lou was alive, some people were lobbying to shrink the project 
or to discontinue it.  People in Phoenix argued against the project as 



 108 

described above.  People at other Weyerhaeuser sites would have 
preferred to see a more decentralized way of running the business.  
Throughout the Weyerhaeuser Company, as with any customer, some 
people would have liked to see GE thrown out and replaced by IBM.  Lou 
always led the defense against these assaults and now we were getting 
pressure from within the sponsoring organizations to bring the project to a 
conclusion. 
 
The decision was made to complete single-wing WEYCOS and then 
discontinue the project.  That seemed to me to be a good practical 
decision given all of the negative pressure.  However, the decision didn’t 
change anything we were doing.  We had been viewing the 
achievement of single-wing WEYCOS, to be a first-stage target in leading 
to the more ambitious goal of multi-wing WEYCOS.  So we had simply 
redefined the definition of completion.  We continued in our efforts and 
WEYCOS gradually sputtered into life in 1969.  Of course, maintenance 
and bug fixing efforts would continue for some time to come, but it was 
opined the Weyerhaeuser employees that had reported to me during the 
development would be able to handle those needs. [P] 
 
As WEYCOS II was coming to life, talk of GE selling the Computer 
Department to Honeywell persisted.  That is what eventually happened 
and the transition was scheduled on October 1, 1970.  So most of us GE 
employees were expecting to have a new job in the fall and we were 
expecting it to be working for a new employer. 
 
As for the McGee family, we were not anxious to leave Tacoma.  We all 
liked our house, the two children still at home had a very good situation in 
their school and we all enjoyed living in the area.  Unfortunately, Boeing 
was going through layoffs at the time and it was a bad time to be looking 
for a job in the Seattle area.  I tried to find a job at Weyerhaeuser, but no 
one was interested.  So we put our very dearly loved house on the market 
and prepared to move back to Phoenix. 
 
At some time during 1969, I was asked to come to Hollywood, Florida to 
participate in a meeting on the proposed “new product line” for GE.  
None other than Richard M Block headed the new development—the 
man who led the development of RAYDAC in the 1950’s.  My first 
impression of the meeting was that this was undoubtedly the biggest 
boondoggle I had ever witnessed.  The approach being taken was more 
lavish than anything I had ever seen, yet I was shown very little evidence 
of progress toward a realistic design.  My main recollection of the 
meeting, which was called Shangri-La, is the hundreds of land crabs 
roaming around the grounds at night.  However, my opinion was not 



 109 

universally held.  Here is the description of one of those who took part in 
the meeting [29]:  
 

“The Shangri-La meeting was scheduled to last three months and 
had participants from GE Bull (France), GE Italia (Italy) and the GE 
Computer Department in Phoenix.  The meetings were held at the 
Diplomat Hotel, in Hollywood, Florida.  Participants came for the 
summer with their families while schools were not in session.  An 
extra fourth month was tacked on for the employees without their 
families to finish up the report. 

 
“Was that meeting a success?  Yes and No!  When the effort to 
build the new computer line was estimated and top GE 
management notified, they decided to bail out of the computer 
business itself.  The consequence was that GE sold its computer 
business the next year to Honeywell who went forward to 
implement the Shangri-La developed plans.” 

 
Early in 1968[30], Walker Dix and his entire organization had transferred to 
Phoenix.  Walker became the Manager of Engineering of our Department.  
I had reported to him since his arrival.  One day he gave me a call and 
said a job was available at the AMEX, American Stock Exchange, and 
would I be interested.  The job consisted of developing a new electronic 
trading system for the AMEX.  It would be something like the 
Weyerhaeuser project, and I was being looked at as its manager.  I was 
definitely interested.  So we moved to Phoenix with the prospect my future 
might be in another project, this time in New York. 



 110 

 
 

VMM 
 
As it turned out, neither General Electric nor Honeywell was awarded the 
AMEX contract.  But we did arrive in Phoenix in the summer of 1970 and 
moved into yet another new domicile.  At the time, I reported directly to 
Walker Dix, the Manager of Engineering.  I had the title Senior Consulting 
Engineer.  Two of us had this title and reporting relationship—the other was 
Jim Wilde, a man from England with a beautiful beard.  We had adjoining 
offices close to Walker’s and shared a secretary. 
 
My duties were rather vague.  When I arrived, Walker said something to 
me like, “I want you to do something about this software mess”.  As usual, 
the software types had a bad odor.  Everything was behind schedule and 
nothing was working the way people wanted.  I knew of nothing I could 
do to change what was going on in the software organizations, but 
agreed to try. 
 
To me the bigger problems were with the combined product line we had 
to try to manage and profit from.  We had the General Electric 400-line 
that still existed and was not particularly successful, the General Electric 
600-line consisting of the GE-615/625/635 (the 615 had been added) 
running partially under GECOS II and partially under GECOS III and the GE-
645 running under MULTICS.  We now also had inherited the Honeywell 800 
and the Honeywell New Product Line, NPL, specified at the GE Shangri-La 
meetings.  The Honeywell 800 seemed to be mature and not growing, but 
the NPL was a whole new universe. 
 
The GE-Bull participants from France were the main proponents of the NPL 
as it was conceived at Shangri-La but people from GE-Italia and our own 
people from the GE Computer Department in Phoenix contributed to its 
design.  We in Phoenix had always had an information exchange 
agreement with Toshiba in Japan and Honeywell had a similar 
arrangement with Nippon Electric.  I am not sure whether or not Toshiba 
had any interest in the NPL after the merger, but I do remember they had 
representatives in Phoenix then.  NEC also participated in NPL activities 
after the merger.  So now the parties to the NPL were people from France, 
Italy, Japan, Billerica (the principal Honeywell site in Massachusetts) and 
Phoenix. 
 



 111 

When I looked at the NPL, I found a brand new computer architecture 
and interior décor including many of the latest and most advanced 
concepts in the industry.  However, it existed mostly in the brains of the 
various participants and their individual conceptions were not identical in 
many instances.  Also, the software definition was very skimpy and 
ambitious.  The magnitude of the undertaking was frightening. 
 
The “party line” was that we would all learn about the NPL and we would 
pull together as a single company to create a unified product.  Ugo 
Gagliardi, Walker Dix’s counterpart in Billerica had directed the NPL 
development since the merger.  (In addition, he either was or had been a 
professor at Harvard.)  Phoenix software developers were expected to 
contribute to the NPL software, but just how the efforts in Phoenix, Billerica, 
France, Italy and Japan would be integrated was not clear. 
 
Walker suggested to me that I should spend some time in Billerica and get 
to know some of their people and participate in some of their NPL 
meetings (that included overseas participants).  He also arranged for Ugo 
and me to have lunch together during my visits.  I did as suggested and 
read everything I could get my hands on about the NPL so I could talk to 
these people.  I found their meetings interesting and productive.  They 
were generating what I considered to be useful documentation as a 
byproduct of their meetings.  I also found my meetings with Ugo to be 
pleasant, but it was not at all clear to me where all of this was leading and 
how Phoenix was going to get “plugged into” this process. 
 
At some point while I was making these trips and trying to get 
reestablished with the Phoenix organization, I had a visit from Richard 
Carlyle who had been with us in Tacoma.  We were just chatting about 
this entire morass of products and he said something like, “I don’t see why 
we couldn’t build a machine and a Virtual Machine Monitor that could 
run more than one of these systems.  Then we could run GECOS and 
MULTICS, or GECOS and NPL, or any combination we would like—each in 
its own virtual machine.  We could permit existing users who wanted to 
grow from GECOS to NPL, say, to continue using GECOS while they 
conducted a leisurely conversion to NPL.” 
 
On the face of it, this seems like a new complication, but I kept thinking 
about Harry Tellier emphasizing the terrible difficulty of performing a 
conversion.  In changing systems, high cost, dissatisfied customers and 
much confusion and frustration were inevitably involved.  Of course, the 
biggest hazard of introducing a new product line is “pulling the rug from 
beneath” the existing customer base.  If the Carlyle suggestion could be 



 112 

implemented, we could protect our existing customers and use the 
superior characteristics of the NPL to attract new ones. 
 
After my conversation with Dick Carlyle, I began to think about the 
experience we had implementing 645 GECOS.  It was a simple job.  We 
intercepted the execution of programs at a few critical points and, 
through the use of some carefully crafted programs, made the 
intercepted programs think they were operating within the interior décor 
for which they were written.  In fact, the programs were operating within a 
different interior décor and what they were experiencing was merely a 
simulation.  The important part was the programs worked; they worked 
correctly and efficiently.  In effect, we had created a virtual GE-635 
machine on a real GE-645 machine.  We could almost as easily have 
created multiple virtual GE-635 machines on a single real GE-645 machine 
with a virtual GE-645 thrown in for good measure. 
 
I thought this idea might sell well within the Honeywell environment 
because I remembered that at one point in their history; Honeywell had 
introduced a new machine with the interior décor of the IBM-1401.  This 
permitted them to attack the market of the 1401 users who had no growth 
path offered them by IBM.  Honeywell offered them growth without the 
cost of a conversion they would have had to make if they had moved to 
higher-powered IBM equipment. 
 
I put together a proposal describing a new machine including the interior 
decors of both the GE-615/625/635 and the NPL.  This proposal wouldn’t 
have been possible a decade before, because the cost of the dual 
personalities would have been prohibitive, but with the arrival of 
semiconductor technology, such limitations were rapidly falling away.  In 
any case, I submitted my proposal to Walker and he bought it.  It was 
known as the VMM (Virtual Machine Monitor) proposal because of the 
software that would exist at the heart of the system to control all of the 
hardware and the software it contained. 
 
After Walker had accepted my proposal, he did what people who knew 
him expected he would do.  He got in touch with his friends in Finance 
and evaluated the financial impact implementation of this proposal might 
have on the Corporation over the next several years.  All of this financial 
thought and analysis was distilled into a few spreadsheets Walker used as 
his focal point in selling the idea to everyone of importance.  The 
spreadsheets, of course, showed that our profits would be increased and 
our liabilities reduced.  If this had not been the case, the proposal would 
have been dropped. 
 



 113 

This is what Walker did; what he didn’t do was anything at all to get the 
project moving.  Talk of the project spread far and wide both in Phoenix 
and also in Billerica, Paris and (I assume) Tokyo, but not a stone was turned 
to get the project started.  Of course, strong resistance to the idea existed 
in many circles.  The Marketing people didn’t like it because it made them 
rethink all of their current plans.  Some of the Billerica and Paris people 
didn’t like it because it seemed to take some of the luster from the NPL.  
Some people didn’t like it because they didn’t understand it or because 
their brains were full of other thoughts and didn’t want be bothered with 
another one. [Q] 
 
It should be understood that at this time, the 600-line was the most 
successful computer product in the new company and protection of the 
600-line customer base was of great importance.  That issue had 
motivated my proposal from the start.  At the same time, we had a new 
product line coming along to which we would have liked to see many of 
these customers convert.  The big question was: How would the customers 
carry on their business while their programs were being rewritten for the 
NPL?  The VMM provided an answer to this question!  They needn’t 
convert if they didn’t want to; they could continue on the new equipment 
in 600 mode.  They could then write all of their new programs in the 
language of NPL and take advantage of its improved capabilities. 
 
This argument had one flaw.  If a user had a database on the old 
equipment he wanted to access from the NPL programs how was he to 
do this?  This is a very annoying problem, but it is not insurmountable.  I 
wrote a paper on methods by which this problem could be addressed 
and dealt with, and asked for comments.  The silence was deafening.  I 
doubt if many people read it and certainly no one replied to it. 
 
On a particular day while the acceptance of the VMM was still, to some 
extent, in doubt, a meeting was held at which Walker gave his 
presentation to a group of brass from Honeywell in the east.  Present at 
the meeting was a group of our Marketing foot-draggers, among whom I 
was sitting.  During Walker’s presentation, the Marketing people kept 
talking to me and making distracting remarks.  I tried to be off-hand about 
the whole thing and to keep a good humor.  At some point, Walker asked 
me a question that I missed because of the confusion caused by the 
Marketing group.  Instead of casting the blame upon them, on the spot, I 
responded in a flip manner by saying, “What was the question?”  Walker 
repeated the question and I answered it, but he was clearly annoyed with 
me.  I think our relationship ended right there--vacuous as it had been 
before. 
  



 114 

During these early days of the VMM project, I continued to go to Billerica 
and have lunch with Ugo and attend the NPL meetings.  Ugo was friendly 
towards the VMM proposal and as soon as he learned of it he arranged 
for me to meet two of his employees.  They had gotten their Ph D degrees 
under his tutelage.  They were Harold Schwenk and Robert Goldberg.  The 
subject of Bob’s Ph D dissertation was Virtual Machines.  We immediately 
became fast friends and allies.  It turned out Bob Goldberg was working 
on putting together a Symposium on Virtual Machines at just about the 
time I met him.  I, of course, attended, but didn’t have a paper to deliver. 
 
A new version of the 600-line was announced not long after the merger 
with Honeywell.  It was called the Honeywell 6000-line and was the old 
General Electric 600-line re-implemented in semiconductor technology.  In 
its new manifestation the 615/625/635 machines were known as the 
H6030, H6050 and H6070.  The old GE-645 became the H6180.  The 6000-
line machines sold like hotcakes and we began seeing success like none 
we had seen in the past. 
 
The Engineering Student Intern Program was started within General 
Electric and continued within Honeywell.  In this program, promising 
engineering students, in our case juniors and seniors in engineering at 
Arizona State University, were hired and worked part time until their 
graduation.  Most of them were then hired as full-time employees.  While 
they were in the program they underwent some special in-house training 
that acquainted them with our company and methods and also worked 
on three-month assignments with various organizations within our plant.  
These interns called themselves “Turkeys” for reasons I never understood.  
In any case, in the absence of Dix doing anything to get the VMM going, I 
hired some Turkeys (they were not charged to the hirer’s cost center) and 
started working on implementation of the 6180 VMM. 
 
At some point, I was given one regular employee to join in this effort.  So 
we had one actual VMM project in operation. 
 
During the summer in which this effort was going forward, we had some 
kind of conference in the Phoenix area attended by an important guest: 
Dr. Painter, from the Defense Department.  I was asked to come to the 
meeting and give a private presentation to Dr. Painter on the VMM.  I did 
so and he liked it very much.  The idea was the Department of Defense 
might be interested in the VMM for reasons not clear to me.  However, 
before I left the company of the good doctor, he emphasized he would 
want to see the VMM kept simple.  I don’t remember much else he said, 
but the “keep it simple” aspect stayed with me. [R] 

 



 115 

At some time in early 1972, Walker Dix was promoted to Vice President of 
Engineering.  I don’t remember the organization chart but I guess that 
meant he was the highest-ranking computer engineer in the company.  
Lee Wilkinson replaced him as Director of Engineering in our Phoenix 
Division and I ended up reporting to John Couleur who reported to Lee 
and had an organization called Special Projects Engineering.  This was a 
demotion for me because I now appeared two levels below the Director 
of Engineering in the organization chart whereas I had previously been a 
direct report.  The worst part of it was that, a short time thereafter, I lost my 
privilege of parking in front of the building and had to park in the mega 
parking lot surrounding the west and north of the factory.  However, these 
things did not give me great angst because I got a good performance 
appraisal in July of 1973 and my project was moving ahead well. 
 
Shortly after my 1973 performance appraisal, I was transferred to the 
Multics Development Project under Bob Montee, a person I hardly knew.  
Being part of the MULTICS world again certainly was no problem for me, 
and the move didn’t change my working situation in any important way.  I 
might have taken note, however, that Montee had come from FSO, the 
Federal Systems Operation whose sole function was to sell Honeywell 
Products to the Federal Government. 
 
At some time shortly after we got the VMM running on the H6180 
hardware in the factory, we received an order through our Federal 
Systems Operation in Washington, D. C. for a VMM for use by Grifiss Air 
Force Base in Rome, New York.  This order was duly filled and delivered at 
a cost to the customer of $100,000.  The VMM also became a required 
deliverable in a MULTICS System sold to the University of Southwest 
Louisiana in Lafayette. 
 
As I recall it, we received a contract for $25,000 shortly after the delivery 
to Griffis Air Force Base to perform a VMM Study.  The thrust of the study 
was for us to evaluate the VMM against a set of requirements.  The 
implication was if we were to come up with the correct set of answers, a 
prospect existed of selling several systems to the Department of Defense 
including the VMM.  In executing the study, we were to work with a 
consultant from Los Angeles. 
 
The consultant from Los Angeles was a man I had known in SHARE named 
Ascher Opler.  It was pleasant working with him and he was very sharp.  I 
was determined to go down the path of the VMM we had already 
installed and had in operation.  He wanted to add some hardware 
changes responsive to some security requirement.  I dragged my feet 



 116 

because I kept thinking of Dr. Painter’s mandate to “keep it simple”.  The 
consultant and I agreed to disagree on this subject, but he  
 

 
Image 5.  Monument proposed in jest for Griffis Air Force Base 

 



 117 

continued to stress this point until the time the final report had to be 
submitted.  It was my contract and I submitted the report in the way I 
wanted. 
 
If I had agreed with the consultant, it would have involved making 
hardware changes I was sure the engineers would resist.  At the time, we 
were under very tight budget constraints and I knew they were already 
strapped for manpower.  I thought we would lose the battle even if we 
had recommended the changes.  However, if the sale of enough systems 
had been involved . . .?  In retrospect, it is clear I made a mistake.  I should 
have gone along with the consultant, but I was sure I was responding the 
way that Dr. Painter wanted. 
 
Not long thereafter, I was called to a meeting in Washington.  I made the 
trip and discovered that some people from Federal Systems Operation 
and I were going to visit Dr. Painter at the Pentagon.  We arrived at his 
office and were admitted.  A fifteen or twenty minute lecture followed in 
which he let me have it up one side and down the other about what a 
worthless, low-down, cantankerous, back-biting, no-good person I was for 
not paying attention to the consultant.  That was the end of the meeting 
and the end of the trip. 
 
At some time before 1976, the “other shoe dropped” on the Dix 
promotion.  John Couleur had been working on a new hardware design 
based on the 6000-line hardware.  It was called NSA for New System 
Architecture.  I was generally aware that John was working on this, but 
thought it was just a hobby.  I was wrong.  The new design was 
announced as the wave of the future and the VMM and NPL were 
dropped.  This was a severe blow to many including myself.  It seemed to 
me like burning the future.  The 600-line was an ancient design when we 
adopted it over a decade before.  If it had not been for the peculiar 
situation within General Electric, it would not have made sense then.  Now 
we were going to prolong its life and jettison its successor?  It just didn’t 
make sense. 
 
The one good thing that could be said about the NSA was it was (at least 
partially) upward compatible with the existing 600/6000-hardware--
meaning one could upgrade to it without substantial reprogramming cost.  
However, it was not long before a clamor arose for GECOS IV—a brand 
new GECOS that would take full advantage of the NSA features.  Of 
course, GECOS IV would introduce a whole host of new problems 
including incompatibilities resulting from running existing user programs on 
the new operating system. 
 



 118 

Real effort in Phoenix on the development of an operating system for NSA 
was slow in getting started.  Toshiba didn’t show a similar tardiness in their 
efforts.  They developed ACOS-3 in a short time after the NSA design was 
made known.  When Phoenix people were finally assigned to the task, 
they were hungry for information.  What the Japanese had done in ACOS 
was of great interest.  A library of information in Japanese was being 
translated to English, but it was rather rough and available in limited 
copies.  I was aware of a government-subsidized program in which the 
company participated to help worthy but disadvantaged students by 
giving them jobs.  So I hired two of them to help me with the NPL 
documentation and get it into clean form with adequate copies. 
 
At the time this was going on, our building was in the throws of an 
enlargement. To make room for the renovators we had been squeezed 
into a small space adjacent to what had been the stage of the 
auditorium at the west end of the building.  When my two new hires 
arrived, we had no place to put them.  We searched and searched and 
the only thing we could come up with was a small closet a few feet from 
my tiny office.  We had to put them there.  Those two employees were 
Stephanie Knox and Edward Landrum and they would be with me for 
quite a long time.  They were each given a MULTICS terminal and were 
put to work entering the translated documents into a database from 
which we gleaned hard copies as needed by the developers.  This 
beginning grew into a staff of about eight young people who performed 
MULTICS input for this and other projects.  They were all female except for 
Edward Landrum. [S] 
 
Of course, our offices eventually returned to their normal configurations 
and I had gotten a proper terminal room for my MULTICS terminal 
operators.  They were a grand group and I enjoyed working with them.  I 
received some complaints about their work—it was neither polished nor 
perfect—but it was better than should have been expected for personnel 
with their levels of experience and pay.  They had all started out with no 
skill other than typing and had learned rapidly and worked consistently 
without any major discipline or absentee problems. 
  
Some of them said that they had trouble with arithmetic.  So I asked them 
if they would like to have a math class at lunchtime.  Four of them 
accepted.  They all bought books and we all brought lunches and we 
would eat our lunches and have math class every noon.  This went on for 
quite a while and they were apt students and made good progress.  At 
one point, the girls plus some of their friends and sisters took me to lunch at 
an upscale country club not far from the plant as an expression of 
appreciation.  I felt very honored and fussed over. 



 119 

 
I carried away one other good thing with me from the VMM experience.  
After we got the first one running in the factory, the Turkeys all went 
together and had a copy of the specification I had written bound.  They 
presented it to me in a little ceremony they got together in the factory.  It 
is one of the treasures I have carried along with me ever since. 
 
While all of this was going on, we began to hear stories out of the 
Pentagon about an approach to data processing and computing being 
fostered by my old acquaintance Grace Hopper.  Large computers were 
going to be replaced by networks of small ones capable of 
communicating with one another and with common databases that 
might be on computers of any size.  Any user at any node could 
communicate with any other user at any other node provided he or she 
had the proper clearance and permission to do so.  Also, any user at any 
node could access data on any database in the network with the same 
provisos. 
 
At the same time, personal computers were beginning to appear in their 
original primitive and relatively incapable versions.  Nevertheless, a new 
vision of how computing and data processing were going to be done 
seemed to be gathering momentum.  This would have been very much to 
Harry Tellier’s distaste, but it seemed to be on its way nevertheless. 



 120 

WELLMADE 
 
Almost immediately after I returned from Tacoma to Phoenix, I met Tony 
Pizzarello.  Tony was a new immigrant from Italy and was very friendly and 
interested in the work we had done at Weyerhaeuser.  He was also a very 
bright person and was well versed in the more advanced thinking in the 
field of computer science.  He was a Doctor of Engineering from a school 
in Milan, Italy and was clearly well educated though when I first met him, 
his English was still a bit rough. 
 
Many people were talking then about what was called Structured 
Programming.  The idea was to derive a set of techniques and 
approaches that would at the same time make software development 
more manageable, efficient and economical and would lead to error-
free, readable, maintainable and flexible software products.  These were 
all easy-to-sell goals and everyone was buying them.  Two general 
approaches to the problem were being considered: one was an informal 
set of techniques, procedures and attitudes; the other was a formal, 
mathematics-like method potentially involving proofs of correctness of 
programs.  The first of these approaches was being promoted and sold by 
a man named Yourdan and several others who went around the country 
giving seminars.  The other approach was by Professor Edsgar Djikstraa, 
from Denmark, who wrote many learned papers on the subject and also 
frequently read papers at computer conventions and symposia. 
 
Tony and I discussed the subject frequently and he studied the subject in 
depth and kept me apprised of his progress.  Both he and I were strongly 
attracted to the Djikstraa approach.  It suited our backgrounds in which 
one demonstrated that things were correct using mathematics.  We liked 
the conciseness and rigor of the method.  We also thought it was possible 
it could be made into a methodology that would result in all-inclusive 
designs.  Hence, if one followed the methodology in designing a program, 
errors would be impossible that in a less formal system would be caught 
only by careful scrutiny and close attention or, worse yet, disasters at a 
customer installation.  Yet the Djikstraa work was not yet in the form of a 
methodology but only in the form of a meta-language that he claimed 
could be used to design any program. 
 
The Djikstra meta-language looked much like a high-level programming 
language, yet that is not what it was.  Instead it was a set of language 
constructs each of which carried a set of input conditions into a set of 
output conditions.  These input and output conditions were described 



 121 

rigorously in logical statements as were their transformations by the various 
language constructs. 
 
Hence, I visualized a scheme similar to designing and constructing a 
computer where the design is described in the form of logical expressions.  
The implementation then consists of merely creating a physical 
component capable of performing the function of each of the logical 
elements and connecting many of these components together as 
specified. 
 
In the Djikstraa design, the logical design elements corresponding to the 
logical and and or gates and flip-flops and so forth of the computer 
design were the meta-language constructs.  The program design was a 
set of input states and output states written as logical statements and a 
set of meta-language constructs transforming the input states into the 
output states.  Implementation then consisted of converting the meta-
language statements into an implementation language and the program 
was complete. 
 
At some point, I went to his management and asked that Tony Pizzarello 
and his work be transferred to my organization.  This was done without 
difficulty—I don’t think they knew what to do with him.  He proceeded to 
create a complete methodology based upon the Djikstraa constructs and 
ideas.  I wrote a manual for it and we named the methodology 
WELLMADE, which stood for “HoneyWELL Method for Algorithmic 
DEvelopment”. 
 
Tony started making presentations to internal programming organizations 
and the idea got mixed reviews.  In the best case, the programmers said 
they were willing to try it; but the more normal response was this was just 
more unnecessary paperwork being piled on them that they didn’t need 
or want.  It certainly was more work.  However, it was our belief the 
additional work done at design time would more than be repaid by 
improved visibility of the product’s operation and huge reductions in 
debug and maintenance time that were the elements currently eating us 
alive. 
 
Word of WELLMADE spread rapidly throughout the company.  It was pretty 
much ignored or scoffed at in Billerica, but it was paid serious attention at 
the Corporate Computer Science Center (CCSC) in Minneapolis.  It was 
not long before Tony was invited to CCSC to give one of his presentations.  
It went over very well and established a relationship with one of the young 
Ph Ds there named Don Boyd.  Don was very positive about WELLMADE 
and arranged for Tony to spend an extended period in Minneapolis to 



 122 

work with them on its further development and use.  Tony did so and that 
resulted in a much closer relationship with CCSC though I’m not sure it 
contributed much to WELLMADE or its future or to the fortunes of CCSC. 
 
In the meantime, back in Phoenix, I was having my Turkeys use WELLMADE 
in their work as much as I could.  The results were not very encouraging.  
Its use was, indeed time-consuming.  Furthermore, the application of the 
Djikstraa constructs to the input states to obtain the output states was not 
a simple, straightforward process.  Many ways often existed to achieve 
the same transformation and some ways were much better than others.  
This could have been viewed as an advantage—find the “best” way to 
accomplish the job at design time—but the effort involved was really 
outlandish. 
 
I tried it myself and could not claim any better results than my employees.  
Still I tended to blame myself and continued to believe in the 
methodology.  One reason for this was whenever Tony was confronted 
with a problem, he would plow right through it and come up with a clean 
result.  However, he tended to be confronted with small sample problems 
and not with entire applications or systems to design, so I’m not sure his 
experience was particularly significant.  Worst of all, we would often get a 
design just the way we wanted it and then it would fail in implementation 
due to silly mistakes such as typographical errors on input or misspelling of 
the names of variables.  So we definitely didn’t have a panacea. 
 
Yet I continued to support WELLMADE with all of the political and 
persuasive capital at my disposal and I did so for a long time.  Finally, one 
day Tony came to me and said in essence WELLMADE was an idea that 
had no place in the world of practical program development and he 
recommended that we abandon it.  He had totally lost faith in the idea 
and recommended I do the same.  It took me a long time, but I came to 
realize much later that he was correct. 
 
At some point during VMM development, we had another change in 
leadership.  Ed Vance returned, after a multi-year absence, as Director, 
Software Engineering—his was a new organization reporting directly to 
Walker Dix.  This meant we software types no longer reported to Lee 
Wilkinson.  Ed was later promoted to Vice President of Software 
Engineering.  I suppose that I should have been happy about the change 
because it put us one notch higher in the reporting chain.  However, I 
don’t recall any tangible benefits. 
 
At about the same time, Honeywell acquired Xerox Data Systems.  I don’t 
remember the details, but we ended up with a software group in Los 



 123 

Angeles, not far from LAX, under the direction of George Gillette.  This 
group had some very talented people and had developed what they 
called a Software Factory for their development work.  This was a set of 
on-line programs and utilities the developers could utilize from timesharing 
terminals.  It was what is typically included with a modern compiler one 
purchases for his or her PC (like my Visual Basic package) only it was 
broader in the sense it served several programming languages employed 
in implementation. 
 
I was given the chance to visit the LA installation and observe what they 
were doing.  I was unimpressed.  I had the idea this was an expensive toy 
and it would be unnecessary if only people would use WELLMADE.  
However, Ed Vance thought it was grand and gave me the responsibility 
of implementing it on our equipment.   
 
I was really uninterested in the Software Factory but I was familiar with one 
problem I thought fell into that realm: the processing of Ck-97s.  I had 
obtained two employees, Bob Grimes and Bill Dibble, who were anxious to 
implement something in C-language.  I gave them the task of writing 
programs that would convert the existing Ck-97 processing programs to 
on-line versions running under GECOS timesharing and implemented in C.  
They tore into the task and got it done with little fanfare and very good 
results.  They were very impressed with C-language although they 
expressed some criticisms I don’t now remember.  I should have kept them 
going on other Software Factory tools, but I didn’t. 
 
After Tony had finished his tour at Corporate Computer Science Center 
and WELLMADE had settled into nothingness, an opening developed for 
the leadership of the CCSC.  I was asked to interview for it.  I made a trip 
to Minneapolis and had a meeting with the staff of CCSC and then with a 
Honeywell Vice President.  It turned out the Vice President was the great 
obstructionist on the RAYDAC acceptance tests.  The meeting with the 
staff went very well, I thought, though I was not particularly impressed with 
them, and so did the meeting with the VP until he noticed I had worked 
on RAYDAC.  He asked me if I had worked on RAYDAC and I replied 
affirmatively.  At that point, he glazed over; and, for practical purposes, 
the interview was over. 
 
I didn’t get the job, but I didn’t really expect to.  I wasn’t qualified to lead 
a staff of all Ph Ds most of whom had years of academic background in 
the computer science field.  On the other hand, they had little practical 
experience.  Also, it was not clear where they would get someone who 
was better qualified.  In any case, it was an interesting exercise and to this 
day I don’t know who got the job. 



 124 

 
One other high note comes to mind from this period and, again, it 
involved my students.  A girl named Sharon Marion who was attending 
Tuskegee University augmented our student staff temporarily for the 
summer.  She and Edward Landrum and I think Jackie Williams expressed 
dissatisfaction that they didn’t know how to swim, or how to swim well.  I 
asked them if they would like to come to my house after work some 
evenings and take swimming lessons.  They loved the idea and we duly 
started after hours swimming lessons.  Sharon and Edward attended every 
time and Jackie frequently, but she already knew how to swim and only 
needed some practice.  Well, of course, Edward and Sharon both learned 
and were doing pretty well by the end of the summer. 
 
To commemorate their success, we decided to have a party.  It was a 
swimming party, of course, and the high point was Sharon and Edward 
swimming the length of the pool.  All of the students attended and some 
of them brought friends.  In addition, Tony Pizzarello and his wife Sandra 
came because the students were all fond of Tony.  We had a grand time 
and at about 10:30 P. M. the students all pitched in and volunteered to 
clean up the debris of the party.  They were all gone before midnight and 
the house was spotless.  I sure liked those kids. [T] 
 
During July of 1977, I received a performance appraisal from Ed Vance.  
When I read it, I thought it must have been for someone else, because so 
many of the comments were so off target.  Also, it had been three months 
since it had been written before he had gotten around to reviewing it with 
me.  After I had a chance to read it and think about it I wrote him a note 
asking for clarification of the various points that mystified me.  We 
eventually had a private meeting to discuss it, but I learned very little as a 
result. 
 
That was bad enough, but things were to get even worse.  We had a new 
General Manager and he was from the Federal Systems Operation, FSO, 
in Washington.  FSO was something of a darling within the company 
because they had landed some very lucrative government business.  I’m 
sure that is why the particular General Manager was chosen.  Shortly after 
his appearance on the scene, he began bringing in his protégés to fill 
software management positions.  For the most part, these were brash 
young kids who knew very little except a few buzzwords.  I ended up 
reporting to a whole series of them and that was not enjoyable. 
 
One experience I endured during this period was typical.  Dave O’connor 
and I were in a meeting with one of the pipsqueak “leaders” one day and 
this one lectured to us about how GECOS was constructed.  Here we 



 125 

were, the inventors of the whole thing, and he was lecturing to us on that 
subject?  That was too much to take. 
 
I wanted to leave, but could not figure out how to get it done.  I had one 
interview in Los Angeles set up by the man who had been the Regional 
Sales Manager for General Electric when I was at Weyerhaeuser and had 
gone into the “headhunting” business.  The interview didn’t go well at all.  
I think I had begun to loose my confidence and it probably showed.  I got 
in touch with Harry Tellier, but nothing was available for me at IBM.  I had 
lost track of Helmut Sassenfeld.  I assume he had retired.  I had also lost 
track of Ken Robertson and anyway, I had turned down the offer his 
company had previously made to me. 
 
So when I had an opportunity to take early retirement in 1982, I jumped at 
it.  It was not a golden parachute as some people imagined, but it did 
continue me on full pay for six months during which it was imagined I 
would seek other employment.  I did a little seeking, but mostly I got into 
the idea of spending full time with my wife and didn’t wish that to 
change.  So then I really retired and I have never regretted it for more 
than about five minutes at a time or in the bizarre dreams I sometimes 
have. 
 



 126 

Summing Up 
 
As I look back on my career I have an overwhelmingly positive feeling.  
Although my colleagues of the time and I did not have the opportunity to 
contribute to the more modern aspects of the computer industry, I think 
the work we did, set the stage and made possible the giant leaps that 
have taken place. 
 
It is true that I encountered some disappointments during the period after 
I returned to Phoenix from Tacoma.  However, in the bigger picture, none 
of them mattered at all.  Because Honeywell and its followers never did 
get into the personal computer business, they probably wouldn’t have 
had a large impact in the industry as a whole.  As it evolved, they 
probably did about as well as they could have for the Honeywell 
stockholders. 
  
I also had some experiences few can equal.  The good feeling of 
delivering a useful tool for our scientists and engineers to use at Hanford 
was one of the early ones.  Carrying the message of Hanford Data 
Processing to SHARE and to various presentations around the country was 
heady and gratifying.  Helping to mold 9PAC into a tool that could be 
used by the contributors was exciting and rewarding.  The creation of the 
Five-Year Plan for Computing and Communications at Hanford was fun 
and satisfying. 
 
The creation of the original GECOS design during those lonely days 
outside of Chicago was an accomplishment of which I have always been 
proud.  It was entirely my own response to a great number of strong 
demands and it endured for the life of the 600 and 6000 lines.  New 
implementations and additions were made to GECOS, but the basic 
functionality and guiding concepts were the same in 1982 when I retired 
as they had been in 1962 when I specified them. 
 
My contributions to the MULTICS design were small, but I always enjoyed 
working on and with MULTICS.  I especially enjoyed the opportunity to 
work at Bell Labs and the opportunity to interact with that exceptional 
group of people.  I had fun creating 645 GECOS. 
 
Being one of “Hereford’s Raiders” was certainly an experience in a 
lifetime.  We took on a tough job, put everything into it and ended up with 
a good result, though not as ambitious as our starting goal. 
 



 127 

Although the outcome of the VMM effort did not lead to the consolidated 
product line that I had envisioned, defining it and specifying it and 
imagining the positive impact it would have were their own rewards.  It 
was good work and I knew it and that could not be taken away because 
someone decided not to use it. 
 
The WELLMADE problems were of my own making.  I became emotionally 
involved with the method and refused to see the proper balance 
between its beauty and its practicality.  This was a serious mistake that I 
came to regret. 
 
One occurrence of particular importance to me was the introduction to 
psychology resulting from the teaching efforts undertaken at the 
Weyerhaeuser Company.  I had never had a course in psychology and 
didn’t have any notion what it was about or what it could do for or to 
people.  In my view we were born with a certain personality and that was 
the way it was going to be.  Each human would get along with some 
people and not with others and nothing could be done to change 
interpersonal relationships.  Of course this was the exactly opposite 
message from the one the psychologists had to deliver. 
 
I was astonished and intrigued with what they had to say and the 
techniques and methods they had to teach us.  I started reading what my 
offspring referred to as “Pop Psychology”—I’m Okay, You’re Okay, The 
Games People Play, and so forth—and found it absolutely spellbinding.  I 
started studying Transactional Analysis and also reading some of the 
seminal works in the field like those of Abraham Maslow.   
 
The most rewarding part about the lessons these people had to teach 
was that they were useful not only at work but at home and in our social 
lives.  Thereafter, I took every opportunity to attend seminars or lectures or 
classes touching on interpersonal relations.  In one instance, I had a 
chance to attend a one-week seminar at the University of Wisconsin at 
Madison.  At a later time, I was able to convince our management to 
have the leader of The University of Wisconsin seminar to come to Phoenix 
and give a short course for our managers.  Of course, the usual thing 
happened: those who needed it the most derogated the course; those 
who needed it less, embraced it. 
  
Finally, I think I had an unparalleled opportunity to work with bright, young 
students—both Turkeys and my other young people.  They were all loyal 
and mostly supportive of what I was trying to do and I shall always be 
grateful to them for their efforts and attitudes. 
 



 128 

 

Epilog 
The various products I worked on and the installations and organizations 
with which I was associated came to diverse ends.  The RAYDAC was 
dismantled in the early 1960’s.[31]  Given its poor performance, it is 
remarkable that it lasted that long.  Apparently, the parts from which it 
was constructed were used to fabricate other electronic gear at Point 
Mugu.  Point Mugu never reached the heights of notoriety that have been 
attained by Vandenberg Air Force Base to the north near Lompoc, 
California or the Naval Ordinance Test Center at China Lake.  Its greatest 
notoriety came when President Reagan used it as a stop over on trips to 
his ranch near Refugio Beach to the north. 
 
Computer Control Company continued in business headquartered in 
Framingham, Massachusetts.  They developed a line of minicomputers 
called the DDP-series.  The company was sold to Honeywell in 1966 and 
played an important role in the early development of computers in that 
company.[32] 
 
Of course, Omnicode had a short, but I think successful life at Hanford.  
FORTRAN and the IBM-709 replaced it and the IBM-650 when the 709 was 
installed. 
 
The history of 9PAC is long and colorful.  Of course, it was put into service 
at Hanford in 1959 and continued in use until a Univac machine replaced 
the 7090 in 1965. [33] I know 9PAC was also used elsewhere, but I am not 
sure where.  Upgrades called 90PAC and 94PAC were created by SHARE 
and IBM continued to maintain and support them including the 
preparation and publication of manuals. [34] 
 
A potential 9PAC replacement was developed called COGENT for Cobol 
GENerator and Translator.[35][36]  The idea was to generate COBOL source 
programs from 9PAC packets and feed these into a COBOL compiler to 
produce executable programs.  For various detailed reasons, this was 
never particularly successful. 
 
However, other 9PAC descendents and look-alikes lived long and 
prosperously.  According to Fry and Sibley [37] (in 1976), “9PAC is the 
principal ancestor of most commercial report generators developed since 
1960.  Foremost among these is the Report Program Generator (RPG) 
developed for the 1401 in 1961; this has evolved into the RPG for the IBM 



 129 

System/360 and an enhanced RPG II for the IBM-System/3, System/360, 
and several other computers.” 
 
It is clear that IBM finally “got the message”.  Other comments [38] from 
Phillip L. Frana, Ph. D., of The Charles Babbage Institute added the 
following commentary based upon information in the CBI archives: 
 

‘RPG II was released in September 1970 by the Rochester, 
Minnesota, division of IBM for use in System/3.  While popularly 
considered a programming language, RPG II varies from the 
common definition of a language in that it involves solving 
problems by filling out preformatted forms rather than using 
problem-oriented notation.  Regardless, RPG II made the quick and 
flexible production of a wide variety of reports possible.  IBM 
described the product as the “highest-level language in data 
processing today,” and as “the easiest to learn, easiest to use, 
easiest to maintain, fastest to code, and most machine-
independent, problem-oriented language available.”  Because of 
these properties, RPG is arguably the second-most popular 
“programming language” of all time, behind only COBOL. 
 
‘IBM’s RPG II software was usually bundled with a compiler deck 
and library of subroutines, and made available for monthly lease.  
RPG II also worked on the IBM-1130, the IBM-1800, the RCA Spectra-
70, as well as on the UNIVAC 9200/9300-Series.  Its successor, RPG III, 
was developed for use on IBM’s popular AS/400 minicomputer 
system.  The development manager for RPG II was Tom Hoag, who 
also defined the original extensions for RPG III.’ 

 
In the early 1960’s John A. Postley began work on what Postley called File 
Management Systems.[39]  This lead to development of 9PAC-like systems 
called Mark I and Mark II to run on the IBM-1401 and Mark III to run on the 
IBM-360.  By 1965, he was working for Informatics and obtained 
sponsorship from outside companies of $500,000 to develop an improved 
version called Mark IV.  This was accomplished and the system was put 
into service in 1967.  After some lean startup years, the product became 
very successful. 
 
Informatics sold Mark IV for $30,000 per copy and at some point garnered 
additional profits for maintenance and updates.  Postley reported that in 
1979, when he retired, there were more than 4000 Mark IV installations in 
45 countries.  Mark IV was the first software product to have cumulative 
sales of $10 million and then $100 million.[40]  It was acquired by Sterling 
Software in 1985 and Sterling was acquired by Computer Associates in 



 130 

March of 2000[41].  Computer Associates renamed the product VISION: 
Builder.  It may still be in use. 
 
Postley did not acknowledge any relationship to previously existing 
software in any writing that I have seen.  I remember seeing a paper 
about Mark IV in the early 1970’s and thinking at the time that someone 
had reinvented 9PAC.  Whether or not it was done with knowledge of 
9PAC and its capabilities is impossible to tell.  Certainly, the founders of 
Informatics—Walt Bauer, Werner Frank, Richard Hill and Frank Wagner 
[42]—were well aware of 9PAC.  I met all of them while I was active in 
SHARE and I am sure that they knew about 9PAC, but whether or not they 
knew of it in enough detail to have influenced Mark IV is unknown to me.  I 
prefer to believe that these were parallel inventions based on a single set 
of good ideas. 
 
According to W. C. McGee, there were some 20 similar programs 
developed in the period following 9PAC development.  [43] I think the 
importance of the Hanford Generalized Routines as a “spark” to start the 
development of all of these has been established. 
 
During the 1960’s, the Hanford Plant was reorganized in a major way.  
Instead of being run by a single prime contractor, as it had been under 
Dupont and then General Electric, the operation of the plant was divided 
among a large group of contractors each of which was responsible for a 
single function.  The computer center became the responsibility of 
Computer Sciences Corporation and later of Boeing Computer Services.  
This change would have been a disaster in the eyes of Harry Tellier, if he 
were still there; however, I believe he accepted a job with IBM before the 
big change took place. 
 
Activities at Hanford continued along two general lines that involved a 
large group of contractors [44]: hazardous waste cleanup and general 
research and development.  The need for hazardous waste work is well 
known and results from decades of operation of the facility with a primary 
emphasis on production and little knowledge or concern for protection of 
the environment.   The general research and development activities may 
not be as well known. 
 
In 1965, the Battelle Memorial Institute entered into a contract with the 
Atomic Energy Commission to establish a laboratory adjoining the 
northern boundary of the City of Richland, Washington.  In this laboratory, 
they were to perform research and development on behalf of the AEC, 
but were also given the opportunity to sell their technical expertise to the 
general public.  They called the laboratory the Pacific Northwest 



 131 

Laboratory [45][46].  In the years since then, the laboratory has performed 
research in a wide variety of technical areas including Information 
Technology, Biotechnology and nanotechnology.  In 1995, they became 
one of nine national laboratories funded by the Department of Energy [47].  
At that time their name was changed to Pacific Northwest National 
Laboratory. 
 
In 1996, the laboratory ordered a Cray Supercomputer and recently that 
machine has been replaced by a supercomputer said to be the 5th fastest 
in the world [48].  It is a Hewlett-Packard machine capable of performing 11 
gigaflops per second.  (That is, 11 billion floating point operations per 
second.)  So the Hanford tradition of fostering advanced computational 
knowledge and techniques lives on. 
 
The plant that I went to each day in Phoenix is still there and, the last I 
heard; it is still a computer factory.  However, Honeywell no longer has any 
connection with it.  In 1986, Honeywell Bull was formed—a global venture 
with Compagnie des Machines Bull of France and NEC Corporation of 
Japan.  The ownership was originally 42.5% Bull, 42.5% Honeywell and 15% 
NEC, but the Honeywell portion diminished annually for five years until, in 
1991, Honeywell was no longer in the computer business. [49][50] 

 

Bull was nationalized during the 1980s, but then became involved in a 
dizzying set of negotiations for partnerships with other companies 
throughout the world, some of which were carried out.  Some of the 
companies involved were IBM, Packard-Bell, Motorola, Zenith Data 
Systems, and Processor Systems of India.  In 1987, Compagnie des 
Machines Bull changed its name to Bull.  It is still in operation. 
 
It is difficult to determine the extent to which the GECOS design that I 
developed in 1963 survived and influenced the various operating systems 
that followed it.  Certainly, its capabilities have been extended and 
expanded enormously.  Just how much of the original thinking is still 
present is probably impossible to determine. 
 
There has always been some confusion about the name.  When we 
originally named it, we intended the name to stand for General Electric 
Comprehensive Operating System, but the lawyers told us that we could 
not use the company’s name in that manner.  So we just said that it stood 
for GEneral Comprehensive Operating System.  That worked well until the 
merger with Honeywell, but they decided they wanted to break the 
(supposed) connection with the former product owner and changed the 
name to GCOS for General Comprehensive Operating System.  That 
name has endured into the twenty-first century.[51] 



 132 

 

Actually, the name GCOS has been used in conjunction with a vast array 
of products offered by Bull over the years.  Toshiba and then NEC 
developed an ACOS-6 operating system that was based on GCOS-3.  It 
utilized the features of the Honeywell New System Architecture (NSA).  In 
this sense, the GCOS influence was transmitted to Japan as well as 
Europe.  GCOS-8 (originally named GCOS-4) was developed to utilize NSA 
and used code acquired from Toshiba as a starting point. [52] 

 

There have been GCOS’s for small computers and GCOS’s for medium 
computers in addition to GCOS-8 for the large computers.  As the Bull 
products evolved, the Internet tells us, “GCOS-8 enterprise servers … 
process millions of transactions and hundreds of batch jobs and … bring 
together the advantages of mainframes and open systems.”[53] It also tells 
us, “DPS9000, which runs under the GCOS-8 operating system … can 
handle more than 1000 on-line transactions per second.”[54] 
 
My conclusion, from what I have been able to read, is that the DPS9000 
computers are the direct descendents of the old Honeywell, 36-bit, 
machines.  DPS7000 machines, which run under GCOS-7, are also offered 
that use 32-bit words.  In addition, there are smaller computers, many of 
which run under something named GCOS, and a full array of peripheral 
devices sold under the Bull logo. 
 
MULTICS Systems also had a long and colorful life. [55] A serious effort to 
increase MULTICS System sales took place in the mid 1980’s.  At one point 
there were 100 MULTICS  Systems in the field.  There were various efforts 
started to develop a more modern, better performing hardware base for 
the system, but Honeywell management never saw fit to provide the 
financial support needed to bring these efforts to fruition.  There were also 
several attempts to form MULTICS companies that might have supported 
a hardware upgrade, but none of these succeeded. 
 
Eventually, no maintenance was provided to keep the machines in 
operation and various companies rose to the occasion and provided the 
support that was needed.  These arrangements helped to keep the 
system alive, but throughout the 1990’s systems began to shut down—one 
after another.  Finally, on October 30, 2000, the last MULTICS System was 
shut down at the Canadian Department of National Defense in Halifax, 
Nova Scotia.  After thirty-six years, the dream of the Information Utility, as 
manifested in MULTICS, came to an end. 
 
WEYCOS had a shorter life than MULTICS; it ceased operation at 
Weyerhaeuser in the mid 1980’s. [56] It was replaced by IBM equipment.  I 



 133 

do not know what software was used to replace the transaction 
processing done by WEYCOS.  Knowing what we know today, it is 
regrettable that WEYCOS was not re-implemented on a GCOS-3 base 
with the full Multi-wing capability.  I could possibly have drummed up 
some interest in such a project, but this seemed an unlikely possibility with 
the WEYCOS project termination occurring as it did just as we were being 
taken over by Honeywell.  However, in later years, transaction processing 
became an important capability in the sale of Bull systems.  Nevertheless, 
a productive life of a decade and a half is not a bad “track record” for a 
system that was built for a single customer on an obsolete base (GCOS-2). 
 
Because the VMM and WELLMADE never went beyond infancy, there is 
nothing to report about their life cycles.  They were both more or less 
dead on arrival. 
 
I would like to be able to give a complete rundown of what happened to 
each of the good people mentioned in the body of this book, but I am 
not able to.  Suffice it to say that it was an interesting and exhilarating 
experience to have worked with them.  Several of them are still actively 
employed in Information Technology either as owners of their own 
companies or as employees. 
 



 134 

Acknowledgements 
 
I am deeply indebted to many people for helping me to recall the many 
activities and events that I have reported.  In particular, George Kendrick 
and Jim Tupac helped me to recall the people and events at Point Mugu 
both before and after Computer Control took over running the RAYDAC. 
 
Bill McGee and Ed Roddy were of great help in getting the story straight 
on the development of the Hanford Generalized Routines.  The 
Generalized Routines were an important “springboard” in my career, but I 
was not involved in their development, so getting the story straight was a 
challenge.  George Gillette and his wife Dorothy helped me to get the 
Hanford Atomic Products Operation organization straight in my mind and 
to remember the designations of some of the buildings within the 
“downtown” complex in Richland.  Glenn Otterbein and Fred Ouren were 
of enormous help in providing me with and directing me to information on 
the events at Hanford after my departure. 
 
I was able to benefit from some of the documents Charlie Bachman 
shared with me in recollecting the early days of 9PAC.  In addition, of 
course, Ed Roddy was of great assistance and I was able to remake 
contact with Art McCabe who was also a 9PAC contributor and provided 
important criticism of my early draft. 
 
Again, George Kendrick helped me to reminisce about our early days in 
Phoenix.  Lois Kinneberg and Jane King helped me to recall their roles in 
the development of GECOS I.   
 
In describing my involvement with the GE-645 and MULTICS, John Couleur 
helped me to reconstruct some of my prior knowledge about the 
hardware.  Also John Gintel who was a major contributor to MULTICS at 
MIT helped me in this regard. 
 
Grayce Booth and Paul Kosct were of invaluable assistance in helping me 
reconstruct a brief summary of the original WEYCOS system on the GE-265.  
Stan Williams provided information on the initial arrangements that led to 
the development of WEYCOS II.  Paul Kosct also provided me with 
historical information about the life of WEYCOS after the completion of the 
project.  Also, Paul, Grayce and Ed Roddy reviewed my manuscript of the 
WEYCOS Chapter and Grayce did a spectacular job of editing it, for 
which I am very grateful. 
 



 135 

Finally, profuse thanks are due the members of my immediate family and 
Dr. Bruce Mason for reading and criticizing the manuscript.  They found 
things that were invisible to me in spite of many rereadings. 



 136 

 
 
 

 

Appendix A—Some Computer Fundamentals 
 
The major components of a stored-program computer are discussed in 
this appendix.  Each of these is described briefly in sections A1 through A4.  
How they work with one another is then described in section A5—the 
General Organization of a Computer. 
 
A1. Internal Memory 
 
When one uses a hand-held calculator to perform complex calculations, 
it is necessary to use scratch paper to record intermediate results as the 
calculation proceeds.  (Some modern calculators have one or a few cells 
of memory that can be used to store intermediate results, but because 
there is no standard way in which these operate they will be ignored in 
this discussion.)  Computers have the same need to store intermediate 
results and other values as a calculation or sequence of calculations 
progresses.  To satisfy this need, computers have a major component 
referred to as Internal Memory (or just memory, if not otherwise qualified).  
The Internal Memory consists of an array of storage for fixed-length data 
strings called words each of which has a unique identifier called an 
address.   
 
When thinking of a computer memory, one should visualize a 
neighborhood filled with houses each having a mailbox.  Each mailbox 
has an address and any item of the type “mail”, be it letters from Mom or 
utility bills or advertisements or other junk, may be placed in the mailbox 
by the mail carrier and removed by the resident or vice versa.  In a similar 
manner, a computer memory has a set of cells (mailboxes) capable of 
holding anything of the type “word”, be it a number or a string of 
alphabetic characters and/or punctuation marks or a computer 
instruction.  Each of these cells has an address that the computer uses to 
specify which word is to be affected when it stores or retrieves words 
to/from memory.  The things stored would usually be the results of 
operations it has performed; the things retrieved would usually be 
operands upon which operations are to be performed or instructions that 
are to be executed. 
 



 137 

Again referring to hand-held calculators, you normally enter one number 
at a time, indicate an operation to be performed and then enter another 
number.  Each of the numbers you enter is a word.  It is the unit of 
information upon which the calculator operates.  Each calculator has a 
word length that is fixed.  For example, most popular hand-held 
calculators have a word length of eight digits.  That is, you may not enter 
a whole number larger than 99,999,999, or if you are working with dollars 
and cents, you may not enter an amount greater than $999,999.99.  Of 
course, some calculators have larger word lengths, such as 10 digits or 12 
digits, which permit entry of larger values.  But whatever the word length, 
that is the number of digits that the calculator uses in every one of its 
operations. 
 
It is generally possible to enter amounts shorter than the word length of 
the calculator, but when doing so, the missing digits are assumed to be 
zero in value.  For example, you may perform the operation 1 + 2 = 3.  In a 
calculator with an eight-digit word length, you would enter 1 and the 
calculator would assume this to be equal to 00000001.  You would then 
press the “+” key and then enter 2, which the calculator would assume 
equaled 00000002, and then you would press the “=” key which would 
cause the calculation to be performed and would cause the result 3 to 
be displayed.  The leading zeros in the result 00000003 would be replaced 
by blanks so that the result would appear the customary way.  
 
Most computers deal with numbers in the same way as calculators except 
they store the numbers upon which they operate in internal memory.  So, 
let us assume that we have a number whose value is 1 stored in internal 
memory address 1000 and we have another number whose value is 2 
stored in internal memory address 1001.  We want the computer (which 
we will assume has an eight-digit word length) to add the two numbers 
and store the result in internal memory address 1002. 
 
So, in our example, we are assuming that the value 00000001 has been 
stored in the mailbox at memory address 1000 and the value 00000002 
has been stored in the mailbox at memory address 1001.  We instruct the 
computer to add the contents of address 1000 to the contents of address 
1001 and store the result in memory address 1002.  (Notice: this sequence 
could be used to add any two numbers by simply placing the values to 
be added into addresses 1000 and 1001 before asking the computer to 
perform the addition.) 
 
However, computers are asked to perform more and different operations 
than the simple set (add, subtract, multiply and divide) found on most 
hand-held calculators.  For example, they perform operations on 



 138 

alphabetical and special characters like those that must be handled by 
word processors.  In that event, the words of the computer use some 
scheme for storing these non-numeric characters in the words of the 
internal memory.  For example, let us imagine that we have a computer 
that can store nine digit decimal numbers in each word or six non-numeric 
characters.  In this machine, the name “GEORGE WASHINGTON” would 
occupy three words.  It could be stored in memory, starting at address 
1100, as follows: 

Address Contents 
1100 GEORGE 
1101 sWASHI 
1102 NGTONs 

The small letter “s” in the above represents the space character.  Note 
that the space is used to separate the first and last names and also to fill 
out the unused last character of the word in address 1102. 
 
Each processing step a computer executes involves either retrieving or 
storing (or both) a value in internal memory.  In modern computers 
internal memory is used to store the instructions the computer executes, 
the data upon which the instructions operate and the results created.  
Hence, it is important for the memory to be rapid in its responses and for it 
to be large so it can accommodate voluminous programs along with all 
of their data. 
 
A2. Central Control Unit 
 
The Central Control Unit (CCU) does what its name suggests—it controls 
the other units of the system.  It does so according to the instructions it 
finds in the program it is executing.  For each instruction executed, the 
CCU does the following: 
 

• Retrieves operands from and/or stores results in Internal Memory at 
addresses specified in the instruction. 

• Sends the code for the operation to be performed to the unit that 
will perform it. 

• Retrieves the next instruction to be executed from Internal Memory. 
 

A3. Arithmetic and Logical Unit 
 
The Arithmetic and Logical Unit (ALU) performs all processing operations.  
That is, it carries out the following steps: 
 

• Accepts operands from the CCU. 



 139 

• Performs an operation upon these operands according to the 
operation code provided by the CCU. 

• Delivers results to the CCU for storage in Internal Memory. 
• Maintains internal triggers and values that carry over from one 

instruction to the next. 
 
A4. Peripheral Devices 
 
Peripheral Devices perform various other functions.  Many of these 
functions help to make computers usable by humans.  Some examples of 
these are given below: 
 

• Operator’s Console.  This gives a human operator an opportunity 
to start or stop programs and control devices manually instead 
of via the CCU. 

• Keyboard.  This gives a human the opportunity to provide key-
driven inputs. 

• Console Display.  A way for a human operator to view messages 
originating in programs in execution or to display specific words 
of Internal Memory. 

• Card Reader.  A device capable of reading punched cards to 
be used as program input. 

• Card Punch.  A device capable of punching cards as outputs 
from a program. 

• Printer.  A device capable of printing output from programs 
• Secondary Memory.  A memory larger, but slower than the 

Internal Memory.  Such memories are used to expand the 
apparent size of the Internal Memory by permitting large blocks 
of storage to be read into the Internal Memory when needed or 
large blocks to be written when completed.  In PC’s these are 
usually referred to as Hard Drives. 

• Magnetic Tape Handlers. 
• Magnetic Disc Handlers. 

 
The list of such devices is virtually endless.  Some peripheral devices have 
their own controllers that match their internal requirements with those of 
the CCU and others share a single controller among a group of devices.  
In many instances the controller has the ability to address memory 
independent of the CCU.  The CCU interprets instructions tailored to 
control each of these devices in the same way it interprets instructions for 
execution by the ALU. 

 
 



 140 

A5.  General Organization of a Computer 
 
The general organization of a stored-program computer is shown is Figure 
A1.  Each of the components described above is shown within a 
rectangular box.  A fine line shows the control flow of each component; a 
bold line shows data flow.  The CCU is at the center of the picture 
controlling everything and is getting its input from the internal memory.  
One or more I/O Controllers may be present depending upon the 
requirements of the devices being controlled.  It is also possible to build 
systems with more than one CCU/ALU pair, but that complication may be 
ignored here. 
 
In some computers, it is not possible for more than one component to 
access Internal Memory at once.  In these instances, it is necessary for the 
CCU to act as a traffic cop and inhibit the initiation of any new operation 
while a previous one is in progress.  This leads to slow processing because 
many components are often waiting to gain access to memory. 
 
In most machines, it is possible for the I/O controllers and the ALU to 
access memory simultaneously.  This simultaneity is depicted in Figure A1 
by the data flow lines being connected directly from each of these 
components to the Internal Memory.  In this arrangement, the CCU can 
start an operation on a peripheral device and then proceed executing 
ALU operations.  This is a great advantage because peripheral devices 
usually run much more slowly than the ALU, so that the ALU can perform 
many operations while a peripheral executes just one. 

 



 141 

Appendix B—Representation of Computer Information 
 
Information within a computer is, in most cases, represented as a string of 
binary digits or bits.  Depending upon the type of information to be 
represented, different combinations of bits may be used to represent 
different quantities or symbols. 
 
Each machine has its own number size referred to as its word length.  The 
word length is the quantity of information operated upon when the 
computer performs its fundamental operations.  For example, when two 
numbers are added together, it will add one word to another word.  If 
one or the other of the numbers being added is shorter than the word 
length, then it will be filled out with leading zeros. 
 
To illustrate this with a simple example, suppose we consider an ordinary 
hand-held calculator.  Most of these have a word length of 8 digits.  The 
display is eight digits wide and when you enter information or when results 
are obtained they must fit within this window.  When you enter data, they 
fill the display from the right (low-order) end and leave the unused leading 
digit positions blank (zero).  If some result is larger than the width of the 
display, an error is indicated, or some alternate procedure is initiated. 
 
In discussing how numbers are represented in computers, we shall deal 
mainly with whole numbers.  Similar methods exist for fractions and mixed 
numbers and may be studied and understood by the reader separate 
from this overview.  It is possible to describe number representation in two 
different ways: algebraically—described in B2 below—and non-
algebraically—described in B1 below.  The algebraic way leads to more 
complete and general results, but either way will accomplish what is 
needed for this book.  Readers who find the algebraic approach difficult 
should feel free to use the non-algebraic one; they are both described 
below. 
 
 B1.  Number Representation—non-algebraic 
 

The decimal number system uses ten characters called digits to 
represent any possible number.  The digits are the familiar 0, 1, 2, … 
8 and 9.  When we count, we run through this sequence and when 
we get to 9, we have run out of unique characters, so we add 1 to 
the column to the left of the previous digits (which was previously 
blank and interpreted to mean zero) making it 1 and repeat the 
sequence from 0 through 9.  When we wish to continue beyond 19, 



 142 

we add one to the digit in the preceding column making it 2 and 
then repeat the sequence from 0 through 9.  We are all familiar with 
the process.  When we get to 99, we add one to the column to the 
left of the first 9, which makes it 1 and resets both of the columns 
previously in use to 0.  When we get to 999, we add one to the 
column to the left of the first 9, which makes it 1 and reset all three 
of the columns previously in use to 0, and so on. 
 
This is called the Place-Value System and the Arabs invented it 
many centuries ago.  What may be a surprise to some people is 
that it works equally well for any whole-number base.  That is, if you 
have only eight characters to represent unique digits, a number 
system every bit as useful as the decimal number system can be 
devised along the very same lines.  This base-8 number system is 
called octal.  If you have twenty unique symbols, you can create a 
number system to the base twenty, as the ancient Mayans did.  If 
you have sixteen unique symbols, you can create a system called 
hexadecimal.  If you have only two unique symbols, you can create 
a binary number system.  We will look at some examples of octal, 
hexadecimal and binary numbers because they are all used in 
connection with computers. 
 
In octal, the characters 0, 1, 2, … 6, and 7 are available to represent 
individual digits.   Hence, we count 0, 1, 2, 3, 4, 5, 6, 7 and then we 
run out of digits just as we do in decimal when we get to 9.  To 
continue counting we again do just as we do in decimal; we add 
one to the digit in the column to the left of the column that has run 
out of digits and then continue in the original column with the value 
0.  So we count 0, 1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 15, 16, 17 and 
then we again run out of unique digits.  At that point we again add 
one to the column to the left, reset the exhausted column to 0 and 
continue, 20, 21, 22, etc.  When we got to 77 we continue 77, 100, 
101, 102, 103, 104, 105, 106, 107, 110, 111, etc.  In this manner we 
obtain an octal number to represent any possible whole quantity. 
 
In hexadecimal, we have sixteen unique digits which are usually 
represented by 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E and F.  
(Although A through F are conventionally used to represent the 
digits with decimal values 10, 11, 12, 13, 14 and 15, any other six 
unique characters could be used instead.)   Counting is very simple.  
It progresses 0, 1, 2, 3, … 8, 9, A, B, C, D, E, F, 10, 11, 12, 13, … 18, 19, 
1A, 1B, … 1E, 1F, 20, 21, 22, … 2E, 2F, 30, 31, 32, … 99, 9A, 9B, 9C, 9D, 
9E, 9F, A0, A1, A2, … AF, B0, B1, B2, … FA, FB, FC, FD, FE, FF, 100, 101, 
102, … FFA, FFB, FFC, FFD, FFE, FFF, 1000, 1001, ETC. 



 143 

 
In binary, we have only two unique digits: 0 and 1, but the scheme 
for representing numbers is just the same as with any other base.  
We count 0, 1, 10, 11, 100, 101, 110, 111, 1000, 1001, 1010, 1011, 
1100, 1101, 1110, 1111, 10000, 10001, 10010, 10011, etc.  Once 
again, we can count as high as we like and represent any possible 
quantity using binary numbers, and this is what computers do. 
 
A relationship exists that is utilized in the text of this book and needs 
to be understood.  It is often useful to know in decimal how many 
unique values can be expressed by a given number of digits in 
another number system.  So for, example, we might want to know 
how many different whole dollar amounts could be represented by 
a binary number containing ten bits.  To determine this, we multiply 
two by itself ten times.  Hence, the answer would be 
2x2x2x2x2x2x2x2x2x2 = 1024.   If we wanted to know the same thing 
for a four digit octal number, we would multiply eight by itself four 
times.  Hence, 8x8x8x8 = 4096.   If we wanted to know the same 
thing about a three digit hexadecimal number, we would multiply 
sixteen by itself three times.  Hence, 16x16x16 = 4096.  In general, a 
number to a certain base with a certain number of digits can 
represent a number of unique values equal to the base multiplied 
by itself a number of times equal to the number of digits. 
 
 

 B2.  Number Representation—Algebraic  
 

I shall refer to a number using the symbol N.  Each number will 
contain n digits.  So, for example, the decimal number 56924 would 
have n = 5 and N = 56924.  I shall refer to the digits of the number as 
dk, where k is a whole number greater than or equal to zero.  The 
digits are counted from the right to the left starting with zero, so that 
if N =56924, then d0 = 4, d1 = 2, d2 = 9, d3 = 6, d4 = 5.  Notice that the 
largest subscript, k, is equal to n – 1.  In our example, n = 5 and the 
largest value of k = n-1 = 4. 

 
In addition, I shall use the notation Bk to indicate the number B to 
the kth power.  (The number B is called the Base or, in this context, 
the radix; k is called the exponent.)  That is, if B = 5 and k = 3, then Bk 
= 5x5x5.  In other words B times itself k times.  So that, 37 = 
3x3x3x3x3x3x3.  The only case that is a bit troubling is that for which k 
= 0.  In this case the value is always equal to one.  Hence, for any 
value of B, B0 = 1.  The other case that may be a bit confusing is 
when k = 1.  Here B1 = B; so, for example, 91 = 9. 



 144 

 
Although numbers with bases different from 10 (decimal) seem 
daunting when first encountered, they are really quite easy to deal 
with after a little experience.  One must understand the meaning of 
any number in any base to obtain an idea of how the scheme 
works.  That is, any number used in modern calculations and 
processing, is represented in place-value notation invented by the 
Arabs many centuries ago.  In this notation, when we write the 
decimal number 2693 we mean 
 
2 x 103 + 6 x 102 + 9 x 101 + 3 x 100 = 2 x 1000 + 6 x 100 + 9 x 10 + 3 x 1 
= 2693. 
 
This illustrates the formation of decimal numbers.  In the general 
case of an n-digit number, N, in the base B, the notation is 
 
N = dn-1 x Bn-1 + dn-2 x Bn-2 + … + d1 x B1 + d0 x B0 (explanation follows), 

 

where dk is the  kth  digit of the number, and (for whole numbers) k = 
0 for the column that would contain the number with value one.  So 
in our example above (where N = 2693 and B = 10), 3 is in the zeroth 
(k = 0) column and d0 = 3.  The values of k are then increased as 
one proceeds to the left; so that for k = 1, d1 = 9; for k = 2, d2 = 6; 
and for k = 3, d3 = 2. 

One may construct the decimal place-value sum that defines the 
value of the number as follows.  First determine the value of n by 
simply counting the digits.  In our case, n = 4; therefore, n-1 = 3.  
Hence, the first term will be d3 x B3 = 2 x 103; the second term will be 
d2 x B2 = 6 x 102; the third term will be d1 x B1 = 9 x 101 and the final 
term will be d0 x B0.  These are the terms contained in the description 
above and are correct. 

Actually, after one goes through the description of the preceding 
paragraph as a means of understanding the notation, there is an 
easier way to write the same representation of a number.  Just start 
out by counting the number of digits, n.  This will tell you that the 
exponent of the first digit on the left will be n-1.  In our example, n-1 
= 3.  You can now immediately write the first term (dn-1 x Bn-1) in our 
example, 2 x 103.  The second term (dn-2 x Bn-2) will be 6 x 102.  
Continue in this manner until the exponent (superscript) of B equals 
zero.  That will give you the rightmost term (d0 X B0) equals, in our 
example, 3 x 1 = 3. 



 145 

 Some other examples that could be considered are the following: 

  In binary, 10011101 = 1 x 27 + 0 x 26 + 0 x 25 + 1 x 24 + 1 x 23 + 1 x 22 + 
                                           0 x 21 + 1 x 2o 
  In base 5, 3424 = 3 x 53 + 4 x 52 + 2 x 51+ 4 x 50 
  In base 8 (octal) 74635 = 7 x 84 + 4 x 83 + 6 x 82 + 3 x 81 + 5 x 80 

 
 
A distinction will be made between signed and unsigned numbers.   Most 
numbers such as temperatures, can take on both positive and negative 
values, notated by a “+” or a “-“sign.  These numbers are called signed 
numbers and are meaningless without their sign appended (unless a plus 
is implied by absence of sign as in temperature).  On the other hand, 
some numbers such as serial numbers or a person’s height have no sign 
and need none.  These are referred to as unsigned numbers. 
 
The word length of the RAYDAC was 30 bits (binary digits).  This meant that 
any RAYDAC word could represent any unsigned decimal number from 
zero to 1,073,741,824 (2 times itself 30 times) or a signed number from -
536,870,912 to +536,870,912 (plus or minus 2 times itself 29 times).  The 
reason the maximum magnitude of the signed numbers is smaller is that 
one of the thirty bits must be used to store the sign leaving only 29 bits to 
store the magnitude of the number. 
 
This binary mode of representing information has become rather well 
known, but at the time we were learning about RAYDAC, binary 
representation was not well understood by the public (even the well-
educated public) at large.  Of course, binary representation is important 
because each bit of a binary number (or word) can be represented by 
the on/off state of a switch or an electrical voltage changing from 0 to 1 
and back or from + to -.  Although binary mode is good for computers, it is 
not particularly convenient for humans.  For example, to represent the 
unsigned number equivalent to 1,073,741,824 in binary, one would write 
“111111111111111111111111111111”.  This is clearly not the kind of number 
one would hope to use in balancing a checkbook. 

 
However, such numbers can easily be represented in either octal or 
hexadecimal.  The conversions between these systems are very easy and 
that is why we like to use octal and hexadecimal when we are dealing 
with a binary computer.  To illustrate this, consider the following 
comparative values: 
 
 
 



 146 

 Binary   Octal  Hexadecimal Decimal 
   
  100101001010  4512   94A      2378 
  111111111111  7777   FFF      4095 
  001111000111  1707   3C7        967      
  001010011100  1234   29C        668 
  111110101001  7654   FA9      4009 
 
The first three digits of the first binary number are 100.  They have the same 
octal value as the octal digit 4—the value of the first octal digit in the 
same row.  The second three digits of the first binary number are 101.  They 
have the same octal value as the octal digit 5—the value of the second 
octal digit in the same row.  The third three digits of the first binary number 
are 001.  They have the same octal value as the octal digit 1—the value 
of the third octal digit in the same row.  Finally, the fourth three digits of 
the first binary number are 010.  They have the same octal value as the 
octal digit 2—the value of the fourth octal digit in the same row.  Hence, 
we could convert the binary number to octal by simply converting groups 
of three bits at a time to their octal equivalents and writing them down.  
We could perform the reverse procedure—conversion from octal to 
binary—by simply converting each octal digit to its binary equivalent in 
turn and writing it down.  The reader should perform the conversions both 
ways on the numbers in the remaining rows as an exercise. 
 
Now looking at the first four bits of the first binary number, we see 1001.  
This binary number has the same hexadecimal value as the hexadecimal 
digit 9—the first hexadecimal digit in the same row.  The second four digits 
of the first binary number are 0100.  This binary number has the same 
hexadecimal value as the hexadecimal number 4—the second 
hexadecimal digit in the same row.  The third four digits of the first binary 
number are 1010.  This binary number has the same hexadecimal value as 
the hexadecimal digit “A”—the third hexadecimal digit in the same row.    
Hence, we could convert the binary number to hexadecimal by simply 
converting groups of four bits to their hexadecimal equivalents and writing 
them down.  We could perform the reverse procedure—conversion from 
hexadecimal to binary—by simply converting each hexadecimal digit to 
its binary equivalent in turn and writing it down.  The reader should 
perform the conversions both ways on the numbers in the remaining rows 
as an exercise. 
 
Note that in the examples above, there is not a simple way to convert the 
binary, octal or hexadecimal numbers to their decimal equivalents.  
Indeed, these conversions involve a sizeable amount of multiplication, 
division and addition and are best done by computer programs.  Hence, 



 147 

programmers—especially in the early days—preferred to work with octal 
and hexadecimal. 
 
In the RAYDAC world, we always used octal because it was convenient 
and also, The Marchant Company marketed a calculator that operated 
in octal.  We had Marchant octal calculators and used them fairly often. 
 
Here are some various whole numbers in the decimal, binary, octal and 
hexadecimal systems: 
 
   Decimal                        Binary  Octal  Hexadecimal 
            0                               0                              0                        0 
  1                               1                              1                        1 
  2                             10                              2                                  2 
            3                             11                              3                          3 
            4       100                    4               4 
  5       101                5              5 
  6       110                6              6 
  7       111                7              7 
  8     1000             10              8 
  9     1001              11              9 
           10     1010             12              A 
           11     1011             13              B 
           12     1100             14              C  
           13     1101             15              D 
           14     1110             16              E 
           15     1111             17              F 
           16   10000                  20            10  
           17    10001             21            11 
           23                             10111                   27            17 
           31    11111             37            1F 
           32            100000       40            20 
           63            111111       77            3F 
           64          1000000     100            40 
         100          1100100     144            64 
         255        11111111     377            FF 
         256      100000000     400          100 
 
Note that in binary, in the absence of many symbols, you must use many 
places.  In octal, you have the symbols with which you are familiar in 
decimal except for 8 and 9.  Hence, you gain some economy in places 
over binary, but are still not as well off as in decimal.  But in Hexadecimal, 
you need more symbols than in decimal to represent the numbers.  You 



 148 

will note, though, fewer places are used to represent large numbers than 
in decimal. 
 
So, once the numbers upon which we wish to perform calculations are 
converted to binary within the computer, we can proceed with blinding 
speed.  However, how do we get the decimal numbers we are given with 
our problem into the computer and how do we present in decimal the 
results our customer is going to read?  A way to do this must be provided.  
The answer on the RAYDAC (and on many other machines) was to use 
BCD, which stands for Binary Coded Decimal.  In this scheme, each thirty-
bit word of the computer is divided into seven four-bit groups (with two 
bits unused) and each four-bit group represents a single decimal digit in 
binary code as follows: 
 
 Dec. Digit    BCD Representation       Dec. Digit    BCD Representation 
          0  0000        5         0101 
          1  0001        6         0110 
          2  0010        7         0111 
          3  0011        8         1000 
          4  0100        9         1001 
 
Expressed algebraically, 0000 in BCD = 0 x 23 + 0 x 22 + 0 x 21 + 0 x 20 = 0 
decimal; 0001 BCD =  0 x 23 + 0 x 22 + 0 x 21 + 1 x 20 = 1 decimal; …; 1000 
in BCD = 1 x 23 + 0 x 22 + 0 x 21 + 0 x 20 = 8 decimal; and 1001 in BCD = 1 x 23 
+ 0 x 22 + 0 x 21 + 1 x 20 = 9 decimal.  Ways are then provided for making 
these BCD words readable by the computer and for displaying them for 
external viewing.  These ways will be described elsewhere. 
 
The ability to perform fixed-point arithmetic had been possible on 
computers from the very first ones invented.  That is, the computer was 
capable of performing add, subtract, multiply and divide operations 
(actually some could not perform divides) on data all of which had the 
same decimal points (or binary points if they were binary machines).  That 
is, you could perform adds and subtracts on whole numbers (integers), or 
fractions or numbers of the form x.xxxx, where x represents a decimal digit 
and the decimal (binary) point could be anywhere in the number.  
However, early computers had no capability to operate on numbers in 
which the decimal (binary) points changed from one number to the next. 
 
For example, one could add words containing the values 125.33, 528.64 
and 987.12 because they all have the same decimal precision; however, 
one could not add words containing the values 125.33, 52.864 and 9871.2 
without performing auxiliary operations to align the decimal points.  (The 
problem is even more difficult with multiplication and division.)  Because 



 149 

this type of problem occurs frequently, a separate form of representation 
was invented to facilitate its solution.  This form of representation is called 
floating-point. 
 
A floating-point number is represented as a mantissa and an exponent.  It 
may be floating-binary or floating-octal or floating-decimal, but we will 
first discuss floating decimal.  A mantissa is a number within a specified 
range, which when multiplied or divided by 10 an appropriate number of 
times will equal the fixed-point number to be represented.  An exponent is 
the number of times the mantissa must be multiplied or divided by ten to 
obtain the fixed-point number.  The general form is eexxxxx, where ee is a 
signed exponent and xxxxx is a signed mantissa whose absolute value is in 
the range 0.1<=|xxxxx|<1.  (The range of the exponent depends on the 
particular computer.)  Some examples are as follows: 
 
           Fixed-Decimal     Floating-Decimal Mantissa Exponent  
     Number       Number 

     125.33       0312533   0.12533         3 

                 52.864       0252864   0.52864         2 

   9871.2       0498712   0.98712         4 

To convert a fixed-decimal number to floating-decimal one first 
determines the mantissa.  In the first example above, one examines the 
quantity 125.33 and notices that to make it fit into the required range, 
greater than or equal to 0.1 and less than 1, it will be necessary to move 
the decimal point to the left three places.  This will produce the mantissa, 
0.12533.  To recreate the original fixed-decimal number it will be necessary 
to multiply the mantissa by 10 three times, which will move the decimal 
point back to where it was originally.  Hence, the exponent of the floating-
decimal number is three.  The same process can be used to convert the 
remaining numbers in the table. 

 

Floating-decimal numbers such as those shown above are needed for 
accepting input and presenting output where the range of numbers 
involved is highly variable.  Note the similarity to scientific notation, which 
for the same numbers would be 1.2533 x 102, 5.2864 x 10 and 9.8712 x 103. 

 
However, for use in computations, one wants to deal with floating binary 
numbers of the form (in a thirty-bit word) 
seeeeeeeetmmmmmmmmmmmmmmmmmmmm, where s is the sign of 
the binary exponent, eeeeeeee is the binary exponent, t is the sign of the 
binary mantissa and mmmmmmmmmmmmmmmmmmmm is the binary 



 150 

mantissa.  In the case of floating binary, 0 <= eeeeeeee <512 and ½ <= 
mmmmmmmmmmmmmmmmmmmm < 1.0 in value.  In early computers, 
programs provided floating-binary (often packaged as reusable 
subroutines); in modern computers, floating binary arithmetic is built into 
the hardware. 
 
Some other scheme is required to deal with non-numeric information.  For 
purposes of this description, I shall assume the use of a computer with a 
36-bit word length.  With such a machine each word could store nine BCD 
numeric codes with no unused bits or six six-bit codes. 
 
Various machines have used various six-bit codes to represent what is 
called alphanumeric information, that is, a combination of decimal digits, 
alphabetic characters (26 of them) and some selection of special 
characters.  Such codes fit nicely into the 36-bit word.  Just what their 
codes are, is unimportant.  The proliferation of different codes in use has 
been a severe problem.  One has often found it necessary to convert 
between various versions of such codes, which has high nuisance value, 
but is certainly doable. 
 
However, alphanumeric data don’t fit the world of words so nicely.  For 
example, if I were to have data for First Name, Middle Initial and Last 
Name, I couldn’t simply assign these to consecutive addresses.  The first 
and last names wouldn’t fit into a single word and it seems a shame to 
take up a whole word to store a single initial.  So one could decide to 
place First Name in addresses 1004, 1005 and 1006, Middle Initial in 1007 
and Last Name in 1008, 1009 and 1010 or one could allow for 17-character 
first names and store First Name and Middle Initial in 1004, 1005 and 1006 
and 18-character last names in 1007, 1008 and 1009.  The second scheme 
would save one word of storage, but would increase the processing time 
because of the need to separate the Middle Initial from the First Name 
during preparation of the output display.  All of these things and many 
others are possible and have been used, no doubt, but they lack the 
straightforward simplicity of the word-oriented addressing found in 
numerical calculations. 
 
The use of six-bit codes for representation of alphanumeric data has two 
disadvantages then: the proliferation of codes in use and the 
awkwardness of using word addressing to deal with data that are variable 
in length by their nature.  An additional problem of six-bit codes is their 
inability to represent rich character sets such as those containing both 
upper and lower case alphabetic characters and/or those with special 
characters for foreign languages or for entire foreign language character 
sets. 



 151 

The problems of the proliferation and richness of character sets were 
addressed concurrently by the American National Standards Institute 
(ANSI) and the International Standards Organization (ISO).  This work came 
to fruition in the United States in the 1970s with the adoption of the ASCII 
code by the U. S. computer industry.  ASCII stands for American Standard 
Code for Information Interchange.  It consists of the eight-bit code in 
general use now for several decades and is an admirable solution to 
these early problems.  In 36-bit machines, each word contains four eight-
bit characters with four bits that can be used for parity or ignored. 
 
The awkwardness of word-oriented addressing has been solved by the use 
of addressing at the character level—so-called variable word-length 
processing.  This was first done with the introduction of such machines as 
the IBM-702, 705 and 1401.  Although these machines had character 
addressing, they used six-bit characters and, hence, were only a partial 
solution.  Most, if not all, modern machines use character addressing and 
use eight-bit characters that solve both the proliferation and richness 
problems.  These eight-bit characters are referred to as bytes. 
 
Historically, variable word length machines were at a disadvantage for 
performance of calculations.  For example, if the average length of 
numbers in a calculation is 18 bits, then on average a variable-word-
length machine with six-bit characters would need to access memory 
three times each time a number was retrieved or stored whereas a fixed-
word-length machine would require only one memory access for the 
same retrieval or storage. 
 
Most, if not all, modern machines can handle both situations efficiently by 
utilizing byte addressing, while accessing memory with fixed words.  With 
inexpensive models, it is common to access memory eight bits at a time; 
while higher performance models do so sixteen or thirty-two bits at a time.  
Hence, in higher performance models, all modes of processing benefit 
from a reduction in memory accesses but more complex hardware is 
required to get the same job done as is performed in lower performance 
models. 
 
In a few machines, the hardware was given the ability to operate in 
decimal; hence, data were represented in codes other than binary.  I 
believe Univac used BCD and I know the IBM-650 used bi-quinary.  In bi-
quinary, five bits are used to represent the digits from 0 through 4 and a 
sixth bit is used to determine whether or not to add 5 to this amount.  
Hence, if the sixth bit were equal to 0 then the digit would be equal to the 
number of the first five bits that was on.  So if the second bit were on, the 
value would be two, if the fourth bit were on, the value would be four, 



 152 

etc.  If the sixth bit were equal to one, then five would be added to the 
number of the first five bits that was on.  So if the second bit were on, then 
the value would be seven, if the fourth bit were on, then the value would 
be nine. 
 
How were data and instructions recorded on magnetic tape?  In the early 
days, it depended upon the machine.  For example, on the RAYDAC, 
data were always recorded in blocks of 32 30-bit words.  I don’t 
remember just how the magnetic spots corresponding to the bits were 
arranged on the tape.  But what is more important, a standard for 
recording was arrived at fairly early in the industry permitting 
interchangeability of seven-channel and nine-channel tapes to occur 
between machines from various vendors. 
 
Seven-channel tapes were used in the days of character machines.  They 
recorded information in seven information channels arrayed across the 
width of the half-inch tape.  Each “frame” recorded across the width 
contained six information bits and a seventh “parity” bit.  The parity bit 
would be a one if the number of information bits was even and it would 
be a zero if the number of information bits were odd.  That is, the frames 
were said to have “odd parity”; they could never contain all zero bits. 
 
Nine-channel tapes were used in machines that used bytes to store 
alphanumeric information.  Their data frames contained nine bits 
recorded across the width of the half-inch tape.  Each frame contained 
eight information bits and one parity bit.  They also used odd parity. 
 
Most punched cards used the Hollerith Card Code.  Each eighty-column 
card contains twelve rows and 80-columns.  Each column contains a 
single character of information.  If the information is numeric, it will be 
punched into the row number equaling its value.  That is, a zero will be 
punched in row zero, a one in row one and so forth.  If the information is 
alphabetic or a special character, it will be punched in a numeric row 
and one or both of the so-called X and Y rows located on the card atop 
the numeric rows. 
 
Another important code is binary card code.  In this case, each of the 
possible holes in the first seventy-two columns of each eighty-column card 
is used to represent a zero or a one—i. e. a bit.  The last eight rows are 
used to contain Hollerith codes.  In this way, a card can store 72 * 12 = 864 
bits of binary information and still be sorted or selected by punched card 
equipment based upon the information contained in its last eight 
columns.  The use of binary cards was used extensively on many 
mainframe computers for the storage of programs. 



 153 

 



 154 

Appendix C—Computer Memories 
 
The Internal Memories of computers come in a great many varieties and 
have evolved greatly over the short history of the technology.  The first 
major division among the many varieties is serial versus parallel.  This has to 
do with the mode in which words are entered into and retrieved from the 
memories.  In a serial memory, each bit of a word is stored or retrieved in 
sequence; in a parallel memory, all of the bits of a word are stored or 
retrieved simultaneously.  As one would expect, parallel memories are 
much faster than serial memories.  Historically, serial memories were used 
because they were less expensive than parallel ones, but they became 
less and less advantageous as memory technology evolved.  Now, most if 
not all memories are parallel. 
 
The class of serial memories has two members: rotating magnetic 
memories and delay lines.  The members of the class of parallel memories 
with which I am familiar are: Williams Tubes, magnetic cores and 
semiconductor memories.  Each of these is described briefly below: 
 

1.1 Serial Memories 
 
C1. Rotating Magnetic Memories 
 
Magnetic drums, one form of rotating magnetic memories, have been 
used from very early in the computer industry.  They consist of a 
ferromagnetic cylinder mounted on its central axis.  A set of read/write 
heads is placed in a row parallel to the axis along the periphery of the 
cylinder so each head can record bits on the surface of the drum in a 
fixed track and read bits from the same track. 
 
The cylinder (drum) is rotated at a fixed rate while it is in operation so a 
constant number of bits pass beneath each read/write head in a single 
rotation.  As the drum rotates each head may read a sequence of bits 
from its track or record a sequence of bits as magnetic spots on its track of 
the drum.  Each drum has a track length of something like 16 or 32 or 64 
words.  If the machine had a 30-bit word and a 32-word track length, this 
would mean each track on the drum would have 30 x 32 = 960 magnetic 
spots.  If the same drum had 32 read/write heads, its total storage would 
be 32 x 32 = 1024 words of storage. 
 



 155 

The storage on each track is divided into sectors.  So if the track capacity 
were 32 words, the track would be divided into 32 sectors numbered 0 
through 31.  So the storage of a word on a 32-track drum with 32 words 
per track could be addressed using 10-bit addresses; 5 bits for specifying 
the track and 5 bits for specifying the sector in which each word is to be 
stored.  (How do I know this?  Each track and each sector must have a 
unique binary address.  Since there are 32 of tracks and 32 sectors, it 
requires some number, p, such that 2p = 32, to provide the correct number 
of addresses.  The value of p that satisfies this relationship is p = 5.  Try it: 25 

= 2x2x2x2x2 = 32.) 
 
The words to be stored must be presented to the drum serially, so if the 
other components of the system deal with words in parallel, it is necessary 
to provide a parallel to serial conversion between the other components 
and the drum.  Similarly, serial to parallel conversion between the drum 
and other components is necessary if the other components deal with 
words in parallel. 
 
Of course, drums, like all serial memories, suffer a serious disadvantage—
latency time.  That is, the waiting time for the word being sought to arrive 
under its read/write head.  Drums often rotate at 1800 rpm.  This means a 
single rotation takes (60 seconds/1800 revolutions = 60,000 
milliseconds/1800 revolutions =) 33 1/3 milliseconds, or the average wait 
for a word to arrive under its read/write head is half a revolution or 16 2/3 
milliseconds.  This is referred to as the drums latency time. 
 
Having arrived under the head, it would take the time for the word to pass 
under the head to read or record the bits of the word.  With a 32-word, 
track length this would be 33 1/3 milliseconds /32 = 1.067 milliseconds.  So 
the average time to access a word would be 16.667 + 1.067 = 17.734 
milliseconds. 
 
The other variant of rotating magnetic memories is the magnetic disk.  
They are the same as magnetic drums in many ways except the rotating 
medium is a disk instead of a cylinder and instead of having one 
read/write head per track, one read/write head on an arm that can be 
repositioned over any desired track serves the entire disk.  The time it takes 
to reposition the head is called seek time and must be added to the 
latency time and data transmission time.  Hence, disks are somewhat 
slower than drums in general. 
 
However, disks are usually used to transmit blocks of information to/from 
internal memory whereas drums are often used to move single words at a 
time.  Therefore, disk sectors are generally large and contain a large 



 156 

amount of information, so the seek time penalty is shared by many words 
so that the average seek time per word may remain relatively low. 
 



 157 

C2. Delay-line Memories 
 
Delay-line memories consist of some delaying medium through which a 
train of bits can be passed and then retrieved.  If you have such a 
delaying medium, it will perform just like a magnetic drum.  Each delay-
line performs like a track on a magnetic drum. 
 
The RAYDAC (and Univac and several other early computers) used 
Acoustic delay-line memory where the acoustic medium was mercury.  
Each delay line consisted of a path through a pool of mercury in which 
bits were entered by an electric-to-acoustic transducer and were exited 
by an acoustic-to-electric transducer.  The 36 delay-lines in the RAYDAC 
Internal Memory were 32 words long.  They all shared the same pool of 
mercury. 
 
In the case of the delay-line memory, one considers the time for the entire 
32 words to pass through a delay-line instead of the time for a drum to 
rotate.  This time was referred to as the major cycle and was equal to 9.76 
milliseconds in the case of RAYDAC.  Hence, the average latency time is 
4.88 milliseconds.  The time for a single word to enter or leave a delay-line 
is called a minor cycle and equals 305 microseconds.  Hence, the 
average access time to the RAYDAC  delay-line memory was 5.185 
milliseconds, or a little less than most drum memories of its time. 
 
  

1.2 Parallel Memories 
 
C3.  Williams Tubes  
 
 Williams Tubes  were small (under six inches in diameter) cathode ray 
tubes upon whose surfaces spots representing binary digits could be 
displayed.  They also had the ability to read the spots on their surfaces.  
Hence, they were used to store and retrieve words of computer memory. 
 
Williams Tubes  were quite fast in relation to serial memories, but were not 
particularly reliable.  They had to be run in darkness so the illumination of 
external light would not be sensed during retrieval as previously stored bits.  
On the other hand, they were convenient because you could look at the 
tubes and read the bits stored in memory (though it was difficult to 
associate a given bit with the word to which it belonged).  The 
maintenance personnel liked this visibility because they could store 



 158 

certain known patterns in memory and then look at the tubes to see if 
those patterns were the ones being displayed. 
 
The access time of Williams Tubes  was, as I recall, on the order of 20 
microseconds per word. 
 
C4.  Magnetic Cores 
 
The first really good parallel memories were supplied by magnetic cores.  
These were little ferromagnetic doughnuts strung in rectangular arrays 
with wires passing through them.  Each core could be set, reset, or read 
by passing appropriate currents through the wires passing through it.  In 
this way, many words of memory could be provided with very acceptable 
access times. 
 
When they were first introduced, core memories were about the same 
speed as Williams tube memories, but far more reliable.  The speed of a 
core memory is inversely proportional to the size of the core.  So as it 
became possible to manufacture smaller and smaller cores, the memory 
speeds increased.  At the same time as smaller cores were faster, they 
were also more reliable, occupied less physical space and utilized less 
energy.  As this trend proceeded access times became as low as 2 
microseconds per word and memory sizes of up to 265,000 36-bit words 
were common before core memories were superseded by semiconductor 
memories. 
 
C5.  Semiconductor Memories 
 
The exploitation of semiconductors has provided the latest step forward in 
Internal Memory technology.  Although some semiconductor memories 
are faster than any core memories, their biggest contribution has been 
the availability of larger memories.  The contemporary practice of 
referring to memory sizes in terms of megabytes makes this increase clear; 
with core memories, we always talked about memory sizes in terms of 
kilobytes or kilo-words.  For example, the machine upon which this is being 
typed has a 128-megabyte memory and that is not considered to be 
unusually large.  I’m not sure of the memory speed, but I think it is 1 
microsecond access time or perhaps it is even faster.  In any case, it is 
plenty fast and well matched to the speed of the ALU that is, of course, 
also using semiconductor technology. 
 
Many varieties of semiconductor memory exist—more than I am aware of 
in detail.  A separate book, or a substantial essay could be written on that 
subject.  Most of them are capable of being read and written, but some 



 159 

are read only.  Some are destructive read-out and some are not.  In 
destructive read-out memories, reading a byte also resets it, so if it is to 
remain in memory, it must be rewritten.  However, this all happens 
automatically and at very high speed.  Best of all, semiconductor 
memories are more reliable than any of their predecessors. 



 160 

Appendix D—Computer Interior Decor 
 
The capabilities of a computer may be made visible to the programmer in 
a large number of ways.  These are referred to as the “Interior Décor” of 
the computer.  Some of the important versions of these are summarized 
below. 
 
In addition to Internal Memory described elsewhere, certain forms of 
storage exist within the ALU.  These are generally electronic storage 
devices and are called registers.  Most computer operations involve three 
registers.  The first of these is the IC or instruction counter, which specifies 
the memory location from which the next instruction will be retrieved.  The 
other two are often referred to as the A and B registers.  These are used to 
store the results of one operation so they will be available for use in the 
next operation.  One or the other or in some cases both of these are 
involved in the execution of most operations the computer is capable of 
executing. 
 
How does the computer know what to do?  It does what is specified in the 
instruction most recently retrieved by the CCU from Internal Memory.  In 
general, each type of computer has its own unique instruction format, but 
these can be broken into five categories each of which is about the same 
from one computer to the next.  These are single-address, two-address, 
three-address, four-address and variable formats.  Each of these is 
described below: 
 
D1. Single-address Format 
 
In single address format, each instruction contains an operand address 
and an operation code.  These instructions are generally stored one to a 
word.  So, in a machine with a 36-bit word length, an instruction might 
specify an 18-bit address, an 8-bit operation code and ten bits for other 
uses (that we will not get into in this brief overview).  This would allow 
addressing 256K of memory (where K is 1024 words) and 256 operation 
codes. 

 



 161 

Typical instructions might be as follows (all codes and addresses are in 
octal on an imaginary machine): 

 
Instruction 
Address Operation 

Code 
Operand 
Address 

Description 

001000 
001 123456 

Load A register from memory location 
123456 

001001 
010 123457 

Add the contents of 123457 to the A register 

001002 
014 123460 

Subtract the contents of 123460 from the A 
register 

001003 
004 123461 

Store the contents of the A register in 
123461 

001004 
001 123462 

Load A register from memory location 
123462 

001005 
020 123464 

Perform the logical and of the contents of 
location 123464 and the A register 

001006 
030 123465 

Perform the logical or of the contents of 
location 123465 and the A register. 

001007 
004 123466 

Store the contents of the A register in 
location 123466 

001010 
070 001200 

Obtain the next instruction from location 
001200. 

 
This small set of computer code might represent a small snippet of a 
program.  During its execution, addresses 123456 through 123471 and 
001200 are addressed.  Their contents would need to be listed in the 
program and would consist of an area of memory (excluding 001200) 
such as the following: 
 
 
 
 
Memory 
Address 

Octal Value 
Comments 

123456 000000000144 
Octal equivalent of 100 decimal 

123457 000000000100 
Octal equivalent of 64 decimal 

123460 000000000002 
Octal equivalent of 2 decimal 

123461 000000000242 
Octal equivalent of 162 decimal after execution of  



 162 

instruction stored in 1003 
123462 626563630043 

Octal equivalent of “RUSS C” 
123463 005543474545 

Octal equivalent of “ MCGEE” 
123464 000000000077 

Mask for use in instruction at location 1005 
123465 202020202000 

Octal equivalent of five blanks followed by zeros 
used in instruction location 1006 

123466 202020202043 
Octal equivalent of five spaces followed by the letter 
C. This is the result of executing instructions stored 
in 1004 through 1007—the middle initial, “C”. 

 
The first four instructions, in locations 1000 through 1003, perform a small 
and trivial calculation that should be easy to understand.  The instruction 
in 1004 loads the alphabetic string “RUSSbC” into the A register, where “b” 
stands for blank.  The instruction in 1005 then sets the first five characters of 
the A register to zeros and leaves the “C” unchanged.  The instruction in 
1006 then replaces the leading zeros in the A-register by the octal code 
for blank—“20”.  The instruction in 1007 stores this result in 123466.  The last 
instruction at address 1010 instructs the CCU to retrieve its next instruction 
from octal address1200. 
 
This example gives the general flavor of a one-address interior décor 
except for a few internal details.  Some of these are important to get a 
more complete picture.  In addition to the registers, the ALU has many 
triggers used to store the existence of certain conditions.  These are 
generally exception conditions that may be tested for using special 
instructions.  Examples of such exception conditions are overflow and 
divide by zero.  In general, any condition leaving the result of the 
operation ambiguous will result in an exception that will raise some one or 
more triggers. 
 
An example of an overflow would be adding two numbers together in the 
A register whose sum is greater than the capacity of the register.  Divide 
by zero is clear from its name.  These triggers are not peculiar to one-
address machines, but will be present in all of the following. 
 
D2: Two-Address Format 
 
In this format, two addresses are available to specify operand addresses 
and additional bits in the instruction specify an operation code.  It is 



 163 

conceivable to define a two-address instruction format in which both 
addresses are used to refer to operands, but I know of no real example of 
such.  However, the IBM-650 used a two-address format in which the first 
address was an operand address and the second was the address of the 
next instruction.  This was to facilitate what was known as Minimum 
Latency Programming.  To distinguish between a true two-address format 
and one like the IBM-650, the latter is referred to as a 1+1-address format. 
 
The description of the one-address format will give the reader what he 
needs to know about understanding the use of the operand address and 
its connection to the operation code. 
 
If a magnetic drum machine (or any other serial memory machine) is 
implemented with one-address instruction format, a serious problem with 
performance exists because the sequence of instructions to be executed 
will be one after another around the periphery of the drum.  This is a very 
poor choice because instruction execution times are usually a small 
fraction of the time of one drum rotation.  So after one instruction has 
been executed the computer must wait for almost an entire drum rotation 
to find its next instruction.  It is the use of the second address, the 
instruction address, which may ameliorate this problem.  This permits the 
sequence of instructions to be placed in locations so they will be under 
the read heads at exactly the time they are needed.  This placement is 
specified by the second address of the instruction of the previously 
executed instruction. 
 
In a machine with a serial memory, this capability can materially speed up 
the execution time of a program by placing instructions and their 
operands in memory locations so each will be under the read/write heads 
at just the time it is required to be there.  By this ploy, much of the latency 
time characteristic of a serial memory is nullified with a very substantial 
improvement in performance.  Programming so as to take advantage of 
this time saving is referred to as Minimum Latency Programming. 
 
The IBM-650 had ten decimal digits per word.  Eight digits were allocated 
for addresses and two for the operation code.  Although this would have 
provided for memory addressing of up to 10,000 words, I don’t think that 
any drums were offered larger than 2048 words. 
 
The creation of minimum latency programs is a very tedious and labor-
intensive task, not to mention the resulting code tends to be hard to 
debug and very inflexible.  Some of these shortcomings were ameliorated 
by the use of compilers and assemblers capable of creating minimum 
latency code from sequential program descriptions.  However, the much 



 164 

better solution has been to use parallel memories where the problem 
being solved doesn’t exist because every word in a parallel memory is 
accessible in the same small amount of time. 
 
D3.  Three-address Format 

In this instruction format, the first two addresses specify operand addresses 
and the third specifies where the result is to be stored.  Instructions are 
retrieved from sequential addresses unless the instruction counter is set by 
an instruction to a non-sequential address.  If the word length is 36 bits, this 
scheme will provide for three 10-bit addresses and a six-bit operation 
code, for example.   
 
Each instruction in the three-address format occupies more space than 
an instruction in the single address format.  For example, a single three-
address instruction could add the contents of two memory locations and 
put the result in a third.  Let us suppose a single address machine is 
available with a sixteen-bit word length in which ten bits are used for the 
address and six for the operation code.  In this latter machine, three 
instructions would be required to do the same job as a single three-
address instruction.  So our hypothetical three-address machine seems to 
have an advantage in terms of bits of instruction to do the same job 
versus our hypothetical single-address machine—that is, 36 versus 48.  
However, if the problem we used for comparison were to add two 
numbers, subtract a third, then store the result, the outcome would be 
different.  In this case, the three-address format would require two words 
(seventy-two bits) of storage for instructions; the single-address format 
would require four words (sixty-four bits).  Now the preference seems to 
have switched the other way.  Of course, then you would want to argue 
about the validity of the cases chosen because the three-address 
machine is operating on 36-bit words and the single address machine on 
16-bit words. 
 
Needless to say, this problem has been extensively studied.  It would seem 
the single-address format has won, because most modern machines tend 
to have mostly single-address characteristics. 
 

1.3 D4.  Four-address Format 
 
It is not clear why anyone would want a four-address format containing 
four operand and storage addresses.  Indeed, I know of none.  However, 
a three-plus-one-address machine is possible and has been built and 
operated—RAYDAC.  In this case, the word-length is 30 bits and the 



 165 

instructions are stored in pairs of words the first word of which is stored in a 
word with an even address.  The first instruction word contains two 
operand addresses and some unused bits; the second instruction word 
contains an address in which the result is to be stored, an operation code 
and the memory location in which the next instruction pair is to be found.  
For further explanation of this interior decor, see Appendix E. 
 
The justification for this format is to facilitate the implementation of 
minimum latency code.  (See discussion above, D2 Two-Address Format.) 
 
 
D5.  Variable-length Format 

 
With the advent of character addressing, it was possible to introduce 
variable instruction length.  In this scheme, an operation code occupies a 
character and the length of the instruction is determined from the 
operation code.  In this way, each instruction uses only as much storage 
as it needs.  And because the machine is character addressable, it is 
possible for code to completely fill the space in which it is stored.  
[Actually, performance reasons argue against always filling all of the 
space, but that is another topic and will not be discussed here.] 
 
I was first exposed to variable word-length processing in the IBM-702.  In 
this machine two modes of processing were provided: numeric and 
alphanumeric. 
 
If you wanted to do some arithmetic, you would do a RESET ADD 
operation with the address of the first character of the operand.  That is, 
the instruction would consist of the character used to designate the RESET 
ADD instruction followed by four characters of operand address.  This 
would cause the ALU to go to the operand address and begin to load a 
large register from the specified address.  If the character found there was 
a numeric character, it would be loaded into the register and the next 
character in memory would be examined.  If it were also numeric, the 
loading process would continue.  This would proceed until a non-numeric 
character was encountered.  The numeric characters were all in BCD so 
their two most significant bits would be zero.  The terminal character was 
also in BCD, but had one of the leading bits set to one indicating two 
things: this was the last character of the number and the sign of the 
number--positive or negative. 
 
The register loaded by a RESET ADD was quite large—256 characters I 
think, so lack of precision was never a problem.  It performed the role of 



 166 

the A and B registers in other decors.  To proceed with a calculation after 
the RESET ADD, other numeric operations existed in the same format—one 
character operation code followed by four-character address.  A 
complete set of fixed-point arithmetic operations was provided. 
 
To operate on alphanumeric data, the same register was utilized, but it 
was loaded in a different manner.  In this case, one used an operation 
called SET LEFT.  This instruction set the length of the register.  Having set 
the length, one could perform a LOAD instruction consisting of the LOAD 
operation code followed by a four-character address.  The ALU executed 
the LOAD operation by copying the characters starting with the specified 
address from memory to the register starting with the character to which 
the register is SET LEFT.  Having loaded the register, it is now possible to 
execute a whole suite of other character operations provided by the ALU. 
 
 



 167 

Appendix E—Computer Programming Languages 
 
In modern computers, a user has many choices from which to choose 
when writing a program.  This has not always been the case.  On early 
computers such as EDSAC and RAYDAC, (or even in the factory where 
entirely new computers are being made) the only language originally 
available in which to program is the language of the computer itself.  This 
will generally be binary and it is very awkward to work with.  The computer 
will generally have a certain word length and will store one instruction per 
word (this is not necessarily the case, but is a useful simplifying assumption 
for descriptive purposes). 
 
For example, let us assume, for purposes of illustration, we have a one-
address computer with an 18-bit word.  Let us further assume the machine 
is capable of performing 64 different operations and has a memory 
containing 4096 words.  In this case, each instruction will consist of a six-bit 
operation code, followed by a 12-bit address.  The operation code will 
instruct the computer what to do and the address will give the location in 
memory where the operand of the instruction is to be found.  We will 
assume further, the machine has an 18-bit A-register and an 18-bit B-
register. 
 
Now the computer will, no doubt, have some rows of switches permitting 
an operator to insert instructions, one at a time, into memory locations 
also specified by setting switches.  This will be useful for engineers 
performing maintenance and hardware debugging, but will not be 
efficient for entering programs of any significant length.  Rather, one will 
wish to have a way of planning and expressing an entire program in 
written form readable by others and used by the program’s author to 
refresh his or her memory after the initial creation has been accomplished. 
 
One choice would be to use binary.  In this case, we could write a small 
program in a sequence something like this: 
 
Location Op. code Operand address  Comment 
000000000000 000001  000001000000    Load contents of 64 into A 
000000000001 000100  000001000001    Add contents of 65 to A 
000000000010 000101  000001000010    Subtract the contents of 66 from A 
000000000011 001000  000001000011    Store  contents of A in location 67 
       . 
       . 
000001000000 000010000000        The value 128 decimal in binary 
000001000001 000000000100        4 decimal in binary 
000001000010 000000000010        2 decimal in binary 
000001000011 000010000010        the result (130) in binary 
 



 168 

This is not a very lucid description.  If it were not for the comments, it would 
be almost entirely incomprehensible.  Even so, it is probably worth going 
through the example in words, to make sure it is clear.  We will assume the 
computer begins executing at location 0—the word whose location is all 
zeros, in binary.  Apparently the op code 000001 instructs the ALU to load the 
A-register with the contents of the address field.  The address field 
contains the binary equivalent of 64.  Looking to the location with this 
address in the location field, we see it contains the value 128 decimal 
expressed in binary.  Hence, the result of the first line of code is to place 
the binary equivalent of 128 decimal in the A-register.   
 
The computer now proceeds to location 000000000001 for its next instruction.  
Here it finds an op code of 000100, which apparently means add the 
contents of the address field to the A-register.  The address field contains 
the binary equivalent of 65.  Looking to the location with this address in 
the location field, we see it contains the binary equivalent of 4 decimal.  
Hence, the result of the second line of code is to place 128 + 4 = 132 in the 
A-register. 
   
The computer now proceeds to location 000000000010 for its next instruction.  
Here it finds an op code of 000101, which apparently means subtract the 
contents of the address field from the A-register.  The address field 
contains the binary equivalent of 66.  Looking in location 66, we see it 
contains the binary equivalent of 2 decimal.  Hence, the result of the third 
line of code is to place 132 - 2 = 130 in the A-register. 
 
The computer now proceeds to location 000000000011 for its next instruction.  
Here it finds an op code of 001000, which apparently means store the 
contents of the A-register in the location specified by the address field.  
The address field contains the binary equivalent of 67.  Hence, the result of 
the last line of code is to place the contents of the A-register (= 130) in 
address 67. 
 
This is all correct (I think) and one could code in this manner, but it is 
unnecessarily labor intensive and hard to follow.  The very next step in 
clarity and efficiency is to use either octal or hexadecimal numbers to 
express the binary quantities.  After making this change to octal, the same 
code looks as follows: 
 
Location Op. code Operand    Comment 
    address 
000  01  0100                       Load contents of 64 (octal 100) into A 
001  04  0101      Add contents of 65 (octal 101) to A 
010  05  0102      Subtract the contents of 66(octal 102) from A 
011  10  0103      Store contents of A in location 67(octal 103) 



 169 

       . 
       . 
100  0200        The value 128 decimal in octal 
101  0004        4 decimal in octal 
102  0002        2 decimal in octal 
103  0202        the result (130) in octal 
 
This is, at least, more efficient of writing effort and paper.  It will need a 
program of some kind to convert the octal digits written down above to 
binary and place them in the indicated addresses.  This program would 
be called a loader and is needed anyway for other reasons. 
 
However, it still lacks anything that could be characterized as application 
related.  For example, suppose the problem involved here was to adjust 
the balance in an account by adding a deposit and subtracting a 
withdrawal.  It would be useful to express the code so the significance of 
the quantities being dealt within the code were clear to the reader.  To 
achieve this objective, symbols are introduced. 
 
The first thing to do is to make the op codes more mnemonic.  For 
example, if we use three characters to represent op codes, we could 
make the four we have used in our example be LDA for Load the A-
register, ADA for Add to the A-register, SBA for Subtract from the A-register 
and STA for Store the contents of the A-register.  Such assignments will be 
done for each of the op codes of the machine and used in place of any 
binary or octal coding by everyone who uses the symbolic language. 
 
However, the user will be permitted, within some limitations, to select 
symbols of his or her choosing for the variables of the problem.  The 
limitations arise because of the need to translate this language into binary 
machine language.  A program called an assembler or an assembly 
program will perform this translation.  In the process of doing so, the 
assembler will need to build a table, called a symbol table, relating the 
various symbols to their locations in the resulting machine language 
program (the so-called object program).  To keep the assembler’s job 
manageable, limits are placed upon the length of the symbols 
programmers can utilize and the characters symbols may contain.  In our 
case, we shall assume symbols may be up to six characters in length and 
may contain any combination of 26 upper-case letters and ten decimal 
digits. 
 
Finally, we will need a way to declare to the assembler what storage to 
allocate in performing the actions of the program and the initial values to 
assign to them.  For this purpose, we shall introduce a single pseudo-
operation.  (In an actual assembly language, many pseudo-operations 



 170 

might be provided.)  The one we shall use is DEC, which allocates a single 
word of memory and sets its value to the binary equivalent of the decimal 
value provided with the pseudo-operation.  With this background, the 
sample problem shown above can be rewritten as follows: 
 
Location Operation Operand  Comment 
BALANC DEC  128   Initial value of balance 
DPOSIT DEC  4   Amount of deposit 
WTHDRL DEC  2   Amount of withdrawal 
NEWBAL DEC  0   New balance value (before  run) 
START LDA  BALANC  Load A with balance 
  ADA  DPOSIT  Add deposit 
  SBA  WTHDRL  Subtract withdrawal 
  STA  NEWBAL  Store new balance 
 
Although this is not  entirely plain English or mathematics, it is a large step 
forward toward the objective of problem orientation.  Assemblers can be 
made very capable, but they still reflect the characteristics of the 
machines on which they are used.  Notice the language written here must 
be processed by an assembler before it may be in a form acceptable to 
a loader, which will place the assembled bits in their proper locations in 
memory ready for execution. 
 
Machine-independence is a long-sought-after objective in computer 
languages.  Many languages have been invented approaching this goal 
and have had varying degrees of success in achieving it.  It is not the 
purpose of this appendix to provide a complete compendium of such 
languages, but we shall take a look at BASIC as an example.  
 
If we were to rewrite the program for our simple problem in the language 
of BASIC, it might look like the following: 
 
 MAIN DIM BALANCE, DEPOSIT, WITHDRAWAL, NEWBALANCE; 
   
  PRINT “ENTER BALANCE, DEPOSIT, WITHDRAWAL”; 
  INPUT BALANCE, DEPOSIT, WITHDRAWAL; 
   
  NEWBALANCE = BALANCE + DEPOSIT – WITHDRAWAL; 
   
  PRINT “NEW BALANCE = “NEWBALANCE; 
  END 
 
First, we notice the program is given a name: “MAIN”.  This is, in fact the 
name of a block of BASIC code.  A complete BASIC program might 
contain many such named blocks.  The remainder of the first line of the 



 171 

program is a “dimension” statement.  It is used to declare by name the 
variables to be used in the program.  In our case the variables are 
BALANCE, DEPOSIT, WITHDRAWAL and NEWBALANCE.  Now skipping to the 
fourth line, we see the entire remainder of what was contained in the 
earlier versions of the program.  The other lines in the BASIC program 
provide a way for the user to provide input values and to see the result of 
the calculation.  (These details were omitted from the earlier examples 
because no method of providing input and output had been invented for 
our imagined machine.  The machine-independent language of BASIC 
provides means for accomplishing these tasks.) 
 
Users at time-sharing terminals were the persons for which BASIC was 
originally created.  One should imagine such a user while reading the 
BASIC program.  The PRINT statement on the second line invites the user to 
enter values for the BALANCE, DEPOSIT and WITHDRAWAL variables 
separated by commas.  When he or she does so, the values entered will 
be assigned to the three variables as specified in the PRINT statement in 
the third line.  The NEWBALANCE will be calculated as per the fourth line.  
The fifth line tells the computer to PRINT the computed value of 
NEWBALANCE preceded by the text “NEW BALANCE = “.  
 
Programs written in languages such as BASIC, like more machine-oriented 
languages, must be translated to the language of the machine upon 
which they are to execute before they may be used.  These translators 
are called compilers and will be referred to in the text of this document. 



 172 

 

Appendix F—RAYDAC Programming 
 
Some additional information about its interior décor is necessary before a 
discussion of RAYDAC Programming is possible.  The main internal memory 
of the machine contained 1024 30-bit words.  These were addressed with 
the octal addresses 2000 through 3777.  Its A and B registers were referred 
to with the addresses 0100 and 0200.  In addition, two special registers 
were provided: one with octal address 0300 that facilitated locating 
information on magnetic tape and one with the octal address 0400, used 
to send information to the console Teletype unit.  The machine had four 
magnetic tape handlers, each of which had an associated 32-word 
memory buffer into which it read input and out of which it wrote output.  
The four buffers associated with the four handlers were addressed with the 
octal addresses 1100-1137, 1200-1237, 1300-1337 and 1400-1437 and could 
be used as extensions to the main internal memory. 
 
With this information, we can repeat the sample code given in Appendix 
D for single-address machines here in the 3+1-address format of the 
RAYDAC. 
 
Location Address 

1 
Address 
2 

Operation 

 Address 
3 

Address 
4 

Comment 

2000 3000 3001 01 

 0100 2002 Add the contents of 3000 to the contents of 3001 
and leave the result in the A-register. Get the next 
instruction from 2002. 

2002 0100 3002 04 

 3003 2004 Subtract the contents of 3002 from the contents of 
the A-register and put the result in 3003. Get the 
next instruction from 2004. 

2004 3005 3007 63 

 0100 2006 Shift the contents of location 3005 right by the 
amount in location 3007 and leave the result in the 
A-register.  Get the next instruction from 2006. 

2006 0100 3010 34 

 3011 2010 Perform the logical or of the contents of the A-
register and the contents of 3010 and place the 



 173 

result in 3011.  Continue to 2010. 
2010 0100 3012 52 

 2012 2100 This is a conditional branch instruction.  If the 
contents of the A-register equal the contents of 
3012, then the next instruction is taken from 2012-
13, otherwise it is taken from 2100-1. 

 
The storage for this program snippet would be as follows: 
 
Address Octal Value Comments 

3000 0000000144 Octal equivalent of decimal 100. 

3001 0000000100 Octal equivalent of decimal 64. 

3002 0000000002 Octal equivalent of decimal 2. 

3003 0000000242 Octal equivalent of decimal 162 after execution of 
instruction in 2002-3. 

3004 6265636320 Octal equivalent of “RUSSb” [b = blank] 

3005 4320554347 Octal equivalent of “CbMCG” 

3006 45455202020 Octal equivalent of “EEbbb” 

3007 0000000030 Octal equivalent of decimal 24—the amount of shift in the 
instruction at 2004-5. 

3010 2020202000 Operand, “bbbb0”, for performing logical or in locations 
2006-7. 

3011 2020202043 Octal equivalent of “bbbbC” after execution of instruction 
at 2010-11 [Middle Initial]. 

3012 2020202043 Constant for performing test at locations 2012-13. 

 
The first two instructions calculate the result of the expression 100+64-2 and 
place the result in location 3003.  The next two instructions, at 2004 and 
2006, load an alphanumeric string into the A-register, perform a right shift 
to place the six bits originally in the high order positions of the string 
“CbMCG” into the low-order six bits of the A-register.  The spaces vacated 
on the left are filled with zeros.  A logical or sets these zeroed bits to blanks 
and stores the result (the middle initial ”C”) in location 3011.  The final 
instruction, in 2010, is a conditional branch demonstrating a very 
important class of operations, which permit programs to adjust their flow 
to the particular data they are processing. 
 
In many instances in this code an operand has been retrieved or stored in 
the A-register in lieu of a memory location.  This choice was made to 



 174 

increase the speed of the code.  The access time from registers was much 
faster than from memory. 
 
In truth, my memory does not recall the exact operations the RAYDAC 
performed or their operation codes.  However, the instructions in this code 
are representative of the ones it performed.  In particular, I am sure add, 
subtract, multiply, divide, various shifts, logical ands and ors and a variety 
of conditional branch instructions were provided.  You could branch on 
equal or not equal, or on greater than or less than, or on greater than or 
equal to, or on less than or equal to.  This small sample of RAYDAC code 
gives a slight flavor of how a three plus one address décor appears. 
 
The magnetic tape handlers used standard half-inch magnetically 
coated plastic tape (to the extent a standard then existed) of, I believe, 
1200-foot length.  However, they had optical block numbers on their non-
magnetic side—a feature unique to RAYDAC.  These were printed on the 
tapes using a special press, which placed the block number in binary 
code on the back of each tape before it was put into use.  Each block 
was a 32-word parcel of storage, which would just fill one of the four 
above mentioned buffer delay lines. 
 
The optical block numbers were recorded as a sequence of bars 
representing ones on one side of the tape and bars representing zeros on 
the opposite side.  They were kind of a precursor to the bar codes used 
today to read the identity of your purchases at the supermarket.   
 
To read information into the machine from magnetic tape, one would 
place the number of the block one wished to read into a register 
addressed with the octal address 0300, and then one would issue a hunt 
command.  The tape handler would find the desired block on the 
specified handler by reading the optical block numbers on the non-
magnetic side of the tape and would leave the block that had been 
hunted for under the read/write head.  If the program then issued a read 
instruction, the contents of the magnetic tape block would be read from 
the tape into buffer memory and could then be addressed directly using 
the buffers’s set of 32 addresses.  If, instead, the program issued a write 
instruction following a hunt, the contents of the buffer would be recorded 
on the magnetic tape block for the specified handler.  This special ability 
to position the tape where one wanted it gave the RAYDAC magnetic 
tape handlers some of the abilities later available on magnetic disk 
handlers, though at much lower speed and reliability. 
 
To complete the system, two additional devices were needed that were 
peripheral to RAYDAC.  These were the Problem Preparation Unit, PPU, 



 175 

and the Output Printer.  The PPU was used to record information on 
magnetic tape typed on a Teletype machine by a human operator.  The 
Output Printer was used to print information recorded on magnetic tape 
on a Teletype machine. 



 176 

Appendix G—RAYDAC Assembly Program 
 
The main problem I was trying to solve with the RAYDAC Assembly 
Program was the ability to create a program from a set of previously 
written/tested and used subprograms [=subroutines].  A reduction of 
duplicate programming and debugging effort results from this approach.  
It is also a way of permitting specialization among the programming staff.  
Each programmer can be permitted to create those subprograms that his 
or her background and skills have best prepared him or her to create.  In 
the ideal case, one would be able to create a new program by writing a 
single master subroutine that performs its functions by merely calling other 
pre-written and pre-tested subroutines in the correct sequence and 
circumstances.  It is unusual to find a problem and a set of subprograms 
complementing one another this well, but it is an ideal to which 
programmers aspire. 
 
In the case of the RAYDAC and other machines of its time, the 
programmer was provided with no greater capability than the instruction 
set built into the hardware.  Any other capability had to be provided by 
programs—hopefully in the form of reusable subroutines.  These had to be 
provided to perform floating-point arithmetic, trigonometric functions, 
logarithmic and exponential functions, conversions between number 
systems, program/subprogram loading and many other tasks and 
capabilities. 
 
The first problem one must solve to achieve this building block approach 
to program construction is the ability to relocate subprograms.  That is, it is 
customary when writing RAYDAC code to begin at location 2000 octal 
and place succeeding instructions in successively higher-addressed word 
pairs.  However, it is obvious every subroutine cannot start at address 2000 
at execution time—only one may be there and the others must be 
displaced to other locations. 
 
If this problem is solved, then it is necessary to solve the similar problem 
with respect to the subprogram’s data.  Suppose each subprogram starts 
its data storage in the word at octal 3000 and addresses that increase in 
sequence from there.  It is now necessary to relocate the addresses of the 
data of each subprogram so each may properly address its own data 
and not be allowed to address the data of another subprogram. 
 



 177 

Finally, a method must be provided to permit interchange of data among 
subprograms.  This is often accomplished by providing a common area 
every subprogram may address. 
 
Because the ability of the RAYDAC to handle alphanumeric data was 
limited and awkward, I did not attempt to utilize any alphanumeric 
characters in the RAYDAC Assembly Program.  Instead, I took advantage 
of the fact that many of the addresses in the total address space of the 
RAYDAC were not used by the hardware.  So, out of a total address 
space spanning the octal range from 0000 to 7777, only the addresses 
0100, 0200, 0300, 0400, 1100 through 1277 and 2000 through 3777 were 
used by the hardware—all other addresses were illegal and unused. 
 
I defined a standard subroutine coding convention that worked with the 
assembly program to facilitate subprogram relocation and data 
reference.  When writing code according to this convention, you would 
start all subroutines at octal address 4000 and add instructions in address 
pairs in the range 4000 to 4777.  You would place all data used internally 
by the subroutine in addresses starting at 5000 and increasing to as high 
as 5777.  All common storage would be assigned to addresses starting at 
6000 and increasing to as high as 6777. 
 
The proper use of common storage was key.  Each subprogram had 
certain common storage addresses containing its inputs and certain 
common addresses containing its outputs.  It was the responsibility of the 
calling program to place the necessary inputs in the appropriate 
common storage addresses before calling a subprogram and to remove 
the results from the appropriate common storage addresses after the 
execution of a called subprogram.  It was also the responsibility of the 
Assembly Program to relocate those addresses to that the caller and the 
called addresses matched up as they were required to. 
 
The assembly program would create a program ready for execution by 
going through each of the program’s subroutines and reassigning the 
fictitious addresses in the 4000 through 5777 range to legal addresses in 
the 2000 through 3777 range, leaving all addresses starting with 0 
unchanged.  It also created a common area of sufficient size and 
reassigned all addresses used in the 6000 to 6777 range to it.  This is the 
general scheme that was utilized, but I have been unable to reconstruct 
just how the assembler established communication between the various 
common areas of various subroutines, especially when subroutines were 
calling subroutines. 
 



 178 

Appendix H.  Multi-Programming 
 
Multi-programming is the ability of a computer to simultaneously progress 
in the execution of more than one program at a time.  This ability is 
facilitated by the introduction of an event called an “interrupt”.  An 
interrupt causes the processor to cease what it is doing, store the state of 
all its registers at the time it was interrupted and continue execution at a 
place, called the INT for interrupt handler, in a memory location that is a 
function of the particular interrupt.    When the processor arrives at the INT 
it will execute a sequence of instructions tailored to the needs of the 
particular interrupt. 
 
Interrupts can occur for a wide variety of reasons, but some of the most 
common occur in conjunction with the execution of input and output.  For 
example, an interrupt will typically occur after the completion of an 
input/output operation.  It will be either a normal interrupt indicating 
successful completion of an operation or an abnormal one signaling an 
error or malfunction.  A distinct interrupt will occur in each of these cases.   
 
In the case of the normal interrupt, the interrupt handler will return an okay 
signal to the program for which the command was being executed.  If the 
interrupt signals a malfunction, a recovery procedure will normally be 
attempted.  For example, if this is a read error on a magnetic tape 
handler, the tape will be backspaced and a new read instruction issued.  
If the new read is successful, an okay signal will be returned to the 
program that originally issued the read instruction and it can then 
continue processing.  Otherwise, several attempts will be made to reread 
the record.  If after several attempts the instruction has still not succeeded 
in executing, a message is issued to the operator and he will be required 
to take corrective action. 
 
Of course, the use of interrupts can become complex because additional 
interrupts can occur while an interrupt handler is in execution, so interrupts 
can be interrupted by interrupts at multiple levels.  This is not a problem 
normally, and interrupts usually obey some priority rules so lower priority 
interrupts do not interrupt higher ones.  Also an ability to mask interrupts is 
usually provided so the occurrence of interrupts can be inhibited; 
however, this capability must be used with extreme care because 
excessive inhibition of interrupts can, in some circumstances, induce 
errors. 
 



 179 

When the interrupt capability is present, the user normally expects 
interrupt handlers will be supplied automatically when he/she executes a 
program.  That is, the handling of interrupts is part of the system programs 
loaded before the user’s application program so the user program is not 
concerned with these details. 
 
Given the interrupt capability, it is not difficult to write programs that can 
progress concurrently—in other words, to achieve multiprogramming.  To 
illustrate the point, consider the media conversion programs utilized in the 
IBM-1401.  In this case, the media were cards, printer paper and magnetic 
tape; the conversions were card to tape, tape to card and tape to 
printer.  A conversion program was present for each conversion 
supportable by the peripheral hardware configuration.  For example, if 
the configuration contained one card reader, one cardpunch, two 
printers and four magnetic tape handlers; one card-to-tape, one tape-to-
card and two tape-to-printer programs could be in execution 
concurrently and keeping all of the peripheral devices except the tape 
handlers operating at their full rated speeds. 
 
Each of these programs would have been trivially simple.  The tape-to-
printer program, for instance, would have consisted of a program that 
said, “Read Magnetic Tape, Write line to printer” and would have 
repeated this instruction pair without limit.  This program would have been 
supported by a full array of interrupt handlers instructing the operator on 
his or her console to perform certain tasks.  For example, if printer2 ran out 
of paper, an interrupt would have occurred activating an interrupt 
handler that displayed, “Load Paper on Printer2” on the operator’s 
console.  When the conversion was completed, an End-of-File signal 
would have occurred on the Magnetic Tape Handler that would have 
said “End-of-File” to the appropriate interrupt handler.  The handler would 
then have displayed “Tape-to-Printer Conversion on Printer 2 Complete” 
on the operator’s console. 
 
How did the programs get started?  When an operator was ready to do a 
conversion, he would have mounted the magnetic tape to be used and 
then readied the other peripheral device.  The peripheral device would 
have been in stand-by status waiting for something to do.  When the 
operator placed it in ready status, an interrupt would have been issued 
signaling this change in status.  The handler for the interrupt would have 
passed control to the conversion program associated with the device that 
caused the interrupt.  When all of the devices needed for the conversion 
to proceed, were in ready status, the program to perform the media 
conversion would have sensed this state and would have automatically 
started. 



 180 

 
This level of multi-programming is known as SPOOLing.  SPOOL is an 
acronym for Simultaneous Peripheral Or OffLine.  
 
Programs such as these would take up very little processor time.  Most of 
the execution time would be spent waiting for mechanical devices to 
move.  Hence, it was easy for a small computer to keep many conversions 
going without running out of processor capacity. 
 
Once this basic level of multiprogramming has been achieved, it is a fairly 
small step to permit any programs for which adequate memory (or virtual 
memory) is available to execute concurrently.  However, in this instance, 
additional hardware support is needed so as to prevent interference 
between the various running programs.  Various means of providing this 
added level of protection have existed.  These forms of multiprogramming 
are commonly seen in timesharing systems. 
 



 181 

Appendix I. Blocking and Buffering 
 
Two efficiency problems occur with magnetic tape and some other 
media that are ameliorated with the use of Blocking and Buffering.  The 
problems and the use of Blocking and Buffering in solving them are 
described in this appendix. 
 
When recording data, it takes a magnetic tape some time to get up to 
speed and to stop after the recording is complete.  The same is true for 
reading.  To accommodate these needs to speed up and to slow down, 
each record on the tape is surrounded by what is called an “inter-record 
gap”.  This gap is about a half inch long.  Hence, the tape is not all 
recorded data, but a bunch of records separated by gaps.  If the records 
are laid down on the tape at 200 characters per inch, a tape record 
created by a card-to-tape converter to record the contents of an eighty 
column card (a standard IBM card) would occupy 80/200 = 0.4 inches.  
Therefore, a complete tape of such records would contain only 0.4/(0.4 + 
0.5) * 100 = 44% recorded information and 56% inter-record gaps.  The 
situation with 120 character print lines is somewhat better, but still not 
ideal—0.6/(0.6+0.5) * 100 = 54% recorded data and 46% inter-record gaps.  
In general, about half of a tape consists of inter-record gaps when the 
recording density is 200 characters per inch.  As recording densities 
increase, this problem becomes more and more severe. 
 
The solution to the problem is to use blocking, which means records are 
not read and recorded singly, but several at once.  This, of course, means 
that programs written to use unblocked data must be changed to permit 
them to use blocked data.  Although this is true, the difference is small 
and easy for the user to deal with. 
 
Most computers, and the IBM 700-series and the GE 600-line in particular, 
have a feature called index registers that permit a user to refer to data 
relative to a starting address contained in the index register.  Hence, if you 
write a program that refers to a single set of contiguous data, you could 
modify it to refer to many sets of contiguous data by simply making 
reference to each set relative to a different starting address and 
changing the starting address each time it changed from one set to the 
next.  So if I write a program that refers to A, B and C and each of these is 
one word long; I can change it to a program that refers to a set of such 
triplets by replacing each reference to A,X, B,X and C,X where the 
addition of the “,X” means “relative to the contents of index register X”.  If 
I now arrange to set the index register to the starting location of the triplet 



 182 

before I perform the reference, I will have achieved the desired 
modification. 
 
Because this problem is widespread and most programs find the use of 
blocking to be beneficial, standard subroutines are typically supplied that 
perform the input and output of blocked records so as to relieve each 
programmer from the need to consider it in detail and to guarantee 
interchangeability of blocked records produced by different programs.  
Hence, if I do not use blocking, I might record one of my triplets with the 
instruction Write A, 3*6,1 where A is the address where the triplet starts, 3*6 
is the length of the triplet in characters (in a 36-bit word-length machine) 
and 1 is the number of the tape handler upon which the triplet is to be 
recorded.  Later, I may reread the same record and address its contents 
as A, B and C as before. 
 
However, if I do use blocking, I perform an instruction like Open for Output 
Trip, 3*6, 1, 5, X early in the execution of the program.  This announces to 
a blocking subroutine I wish to create a file with a blocking factor of 5 
named Trip on tape handler 1 upon which this program will write records 
of length 3*6 characters.  At the same time, the subroutine will set a 
specified index register, in this case X, to contain the location in which to 
place the first triplet for output.  As the values of A, B and C are 
determined by the program, they will be stored in A,X, B,X and C,X.  When 
a triplet is to be written to tape the program will perform an instruction like 
Put Trip.  The Put subroutine will see if enough space is available in the 
block it is creating for another triplet; if so, it will advance the index register 
to the next available space and return control to the program that issued 
the Put.  If this Put is for the last available space in the block, the 
subroutine will write the entire block to tape 1, reset the index register to 
the location of the first triplet in the block and then return control to the 
program that issued the Put after the write to tape 1 is complete. 
 
By using this technique, the effective speed of tape handlers can be 
increased and the capacity of individual tapes can be substantially 
increased.  Some comparisons of capacities in percent of tape utilized 
versus blocking factors and recording density are shown in the following 
two tables. 

Percent of Tape Utilized with 80 Character Records 
Recording 
Density      (Chars 
per inch) 

Blocking Factor 

= 1 

Blocking Factor 

= 5 
Blocking Factor  

= 10 

200 44% 80% 89% 
400 29% 67% 80% 
800 17% 50% 67% 



 183 

 
Percent of Tape Utilized with 120 Character Records 

200 54% 86% 92% 
400 38% 75% 86% 
800 23% 60% 75% 
 
By multiplying these numbers by the instantaneous character transfer rate 
while the tape is moving (at 75 inches per second) the maximum 
attainable data transfer rate of each of these combinations can be 
calculated.  The following two tables give these results. 
 

Maximum Average Transfer Rate (Chars/sec) with 80 Character Records 
Recording 
Density 

Chars/Inch 

Blocking Factor 

=1 
Blocking Factor  

= 5 
Blocking Factor 

= 10 

200 6600 12000 13350 
400 8700 20100 24000 
800 10200 30000 40200 
 
Maximum Average Transfer Rate (Chars/sec) with 120 Character Records 

Recording 
Density 

Chars/Inch 

Blocking Factor 

= 1 
Blocking Factor 

= 5 
Blocking Factor 

= 10 

200 8100 12900 13800 
400 11400 22500 25800 
800 13800 36000 45000 
 
The other efficiency problem has to do with the sequencing of events 
required so as to permit input/output operations to occur concurrently 
with central processor operations.  This simultaneity requires the hardware 
to be capable of operating its central processor and its input/output 
devices concurrently (which was the case with the 700-series and the GE 
600-line), but it is also necessary to organize the program in such a way it 
will take advantage of this potential.  Assume the hardware will permit 
simultaneous operation of the processor and not more than one 
magnetic tape handler at a time and consider a simple program 
performing the following sequence repeatedly: 

 
 Read record from tape 1 
 Compute using input from tape 1 
 Write results to tape 2. 

 



 184 

As it is written, it is not possible to utilize simultaneity.  The compute cannot 
proceed until the Read is finished because it has no input to use and the 
Write cannot begin before the compute is finished because it has no 
results to write.  Also, the next Read cannot begin until the last Write has 
been completed because we have assumed only one tape can be in 
operation at a time.  The program would work as written, but lots of time 
would be spent waiting for tape handlers to complete the tasks they have 
been commanded to perform. 
 
To solve this problem, we expand the subroutine that performs blocking 
and ask it to also perform what is called buffering.  With this capability we 
will always read input in advance of the time of its use and provide extra 
storage in memory to hold new outputs while earlier outputs are being 
written to tape.  To make this work, we write the program in a slightly 
different way.  It would now look as follows: 
 
  Open for Input Inp, L1, 1, 5, X, B 
  Open for Output Outp, L2, 2, 5, Y, B 
   Start Loop 

   Get Inp 
   Compute 

Put Outp 
Repeat Loop until EOF(1) 

Close Inp 
Close Outp 
 

This is a bit more complex than what we have looked at before, but it 
accomplishes a great deal more.  The two Opens announce to the I/O 
subroutine what files are to be involved, the length of the records in each 
(L1 and L2), the tape handlers on which the files are to be mounted (1 and 
2), the blocking factor for each file (5), the index registers to be used in 
referencing the data within the records (X and Y) and that the files are 
each to be buffered (B).  When the Open for Input subroutine is executed, 
it will read a block of input into one of the input buffers and return control 
to the program that issued the Open.  The Open for Output subroutine will 
allocate two blocks of storage to be used to hold outputs in memory 
preparatory to being written to tape 2, will set index register Y to the 
beginning of the first block and return control to the program that issued 
the Open.  The Loop will then be traversed repeatedly until the end-of-file 
occurs on the tape 1 handler (EOF(1)). 
 
The first instruction within the Loop, the Get, will cause the I/O subroutine to 
set index register X to the location of the beginning of the next input 
record to be processed.  If this is the first record of a new block, it will also 



 185 

start a Read operation to bring the next unread block from tape to the 
buffer whose records have just been processed.  It will then return control 
to the program that issued the Get.  Whatever computations are to take 
place will do so in the Compute line making reference to inputs using 
index register X and references to outputs using index register Y. 
 
When the data for a complete record has been stored, the Put instruction 
will be executed.  This will cause the I/O subroutine to increment the 
address in index register Y to the next available record space.  If room is 
available in the current block for another record, the new value in the 
index register will be an address in the current block.  If the current buffer is 
full, the index register will be set to the first address in the alternate storage 
buffer and a Write instruction will be issued to tape handler 2 to record on 
tape the contents of the full block.  After these actions, control will be 
returned to the program that issued the Put.  These events will be 
performed repeatedly until no more input exists to be processed.  This 
condition will be signaled by EOF(1) (meaning end-of-file on handler 1) 
becoming true. 
 
The result of this approach is to have a continuous supply of input 
available to the Compute line and to always have space in a buffer block 
for its output.  If this can be achieved, the program can progress at the 
rated speed of the central processor or the tape handlers (whichever are 
limiting) and never need to slow down to await action on the other type 
of device.  Of course, whether or not this is achieved depends upon the 
balance between the amounts of central processor work versus I/O work 
involved in the particular program.  However, by using blocking and 
buffering, it is possible to eliminate many of the repeated waits upon I/O 
that would otherwise be encountered repeatedly. 
 
This description of blocking and buffering has been presented using the 
example of magnetic tape as the I/O medium.  However, the same logic 
works with a little modification on magnetic disk.  The big difference is that 
on disk, the block size is normally an inherent property of the device.  Each 
surface of a disk storage unit is formatted to contain a certain number of 
concentric tracks.  The amount of storage a track may contain is fixed 
and constant.  Each track is further subdivided into sectors.  Again, the 
number of sectors is fixed and constant.  If one writes a record shorter 
than a sector to disk storage, it will be written in the beginning portion of 
the sector and the rest of the sector will remain unused.  Hence, one 
wants to write records to disk that are as nearly as possible about one 
sector in length.  In other words, one wishes the block size on disk to be the 
sector size or a little under.  With this understanding, the information given 
above in relation to magnetic tape can also apply to magnetic disk. 



 186 

Appendix J—GE-645 Addressing 
 
This appendix describes how the GE-645 with 18-bit addresses was able to 
reference more than 256k unique memory locations.  In brief, the GE-645 
expected the users and the Operating System to employ virtual memory.  
 
The real address space of the GE-645 was the same old 256k set of 
addresses used on the GE-625/35.  The virtual memory was a much larger 
space, which consisted of 256k such spaces, each referred to as a 
segment. [57] So the virtual address space was a two dimensional array: 
the first dimension consisted of segments each of which was addressed in 
the manner of the GE-625/35, the second dimension consisted of a 
segment number that ranged from 0 to as high as 256k – 1.  Each user 
process had such a virtual memory potentially as extensive as this for its 
exclusive use. 
 
The address within a segment was formed in the same way that any 
address was formed for the real memory of a GE-625/35 machine.  It 
consisted of the address resulting after all address modifications, such as 
indexing and indirection had been performed and was referred to as the 
“effective address”.  Formation of the effective address was the first step 
in forming the virtual memory address. 
 
To complete the formation of the virtual memory address, it was 
augmented by a segment number that was stored in one of two 18-bit 
registers: the PDR or Procedure Descriptor Register if this was an instruction 
access or the DDR or Data Descriptor Register if this was a data access.  
There were eight DDRs.  The DDR to be used in a particular instruction was 
specified by three bits of the instruction word.  With these two values—the 
effective address and the segment number from one of the Descriptor 
Registers—the virtual memory address was fully specified. 
 
But how could many users be concurrently provided with their own unique 
virtual memory spaces?  This was done with the introduction of another 
18-bit register—the Descriptor Segment Base Register.  As the name 
suggests, this register contained the address that led to the beginning of a 
segment called the Descriptor Segment.  A Descriptor Segment 
contained one entry for each segment in the virtual memory available to 
a single user.  The Multics File System constructed the Descriptor Segment 
for each user process as it confirmed the user’s right to access the 
segment.  Multics could change the virtual memory from one user process 
to another by simply resetting the contents of the Descriptor Segment 



 187 

Base Register.  The value in the Descriptor Segment Base Register led to 
the real memory address of a Descriptor Segment.   
 
But how was a virtual memory address translated to a real memory 
address?  The answer is that each entry in the Descriptor Segment 
contained the address of another table, the Page Table for that Segment.  
Only part of a segment, a Page, needed to be stored in real memory 
while the process that used the segment was in execution, though more 
than one page might have been in real memory if space were available.  
Pages, in the GE-645, are 1024 words in size.  The Page Table for a 
segment contained one entry for each page of the segment and the 
location of each page in real memory was contained in the Page Table 
entry, if the page was in real memory.  The page table entries also 
contained bits that indicated (among other things) if each page was or 
was not contained in real memory. 
 
If a reference were made to a word in a page of virtual memory that was 
in real memory, the processor would construct the real memory address of 
the reference by using the location of the page from the segment’s Page 
Table and the offset within the page from the effective address.  If the 
page containing the reference were not in real memory, the process 
making the reference would be taken out of execution and control of the 
processor would be given to the File System to start retrieval of the 
needed page from secondary storage.  After this action had been 
started, control of the processor would be given to another process, 
which was perhaps previously removed from execution because of a 
missing page. 
 
But how about the Descriptor Segment, was it necessarily contained 
completely in memory while its process was in execution?  The answer is 
no.  The Descriptor Segment was paged just like any other segment; only 
its active pages needed to be in memory while its process was in 
execution. 
 
Figure J-1 summarizes the process by which a real address was formed in 
the GE-645.  To simplify the description, let us assume the first time through 
that the pages referred to in the discussion are all present in real memory.  
We will then go through a second time describing the actions to be taken 
when any of those pages is missing. 
 
Whenever a user process was going to be given control of the processor, 
Multics would have created a Descriptor Segment for the process in virtual 
memory.  The Descriptor Segment would contain a single entry for each 
segment the process was entitled to access.  Like all segments, the 



 188 

Descriptor Segment would be paged and would have a page table, 
which would have contained one entry for each page of the segment 
that might currently have been stored in real memory.  If a given page 
were in real memory, its page table entry would provide the real memory 
address in which it started.  If it were not in real memory, a bit in the page 
table entry would be set to indicate that fact. 
 

 
 

Multics would set the Descriptor Segment Base Register before giving 
control to the user process.  That register would contain the address of the 
Descriptor Segment Page Table that would also have been constructed 
by Multics.  By setting and resetting the Descriptor Segment Base Register, 
Multics could establish or change, with the execution of a single 
instruction, the pieces and parts of real memory each user process was 
permitted to access. 
 
Each segment to be referenced, called here the target segment, was 
known within a program and within the Multics File System by a name, but 
within the hardware, it was known by a segment number.  This segment 
number, ranging from 0 through 256k – 1, was the number of the target 
segment’s entry in the Descriptor Segment.  The user program would 
specify the segment number to be used by placing it in either the 
Procedure Descriptor Register or one of the eight Data Descriptor 
Registers.  The segment number from the Procedure Descriptor Register 
would be used if this were an instruction reference; the number from one 
of the Data Descriptor Registers if this were a data reference.  The 
segment number would be separated into two parts: the high-order eight 



 189 

bits would specify which page of the Descriptor Segment Page Table 
contained the descriptor for the target segment, the low-order ten bits 
would specify which entry in that page contained the entry for the target 
segment. 
 
These various references can be seen graphically in the four leftmost 
rectangles of Figure J-1.  Note that it is important for the page size to be a 
power of 2 so that the processor can easily isolate the page number and 
word number.  (If the page size were not a power of 2, it would be 
necessary to perform a division to determine the page number and word 
number—an untenable alternative.) 
 
Once the target segment descriptor was located, it would provide the 
real memory address of the target segment Page Table.  Now the 
effective address was split into a Page number and Word Number just as 
the segment number was split.  The page number was used as the offset 
into the target segment Page Table, which contains the real memory 
address of the target segment page origin.  Finally, the word number was 
added to the target sector page origin to give the real memory address 
of the target.  These last steps in the address formation process are shown 
graphically in the right-hand three rectangles of Figure J-1. 
 
This all works very well but would be a complete waste if all pages of all 
segments were located in real memory all of the time.  The true value of 
the scheme was realized only if a fraction of the pages of each segment 
was in real memory at any one time.  First, note that a page table was not 
over 256 words in length—one word for each of the 1k pages in a 256k 
segment.  Hence, there was no need to consider paging page tables. 
 
If a new process were being started by Multics on behalf of an authorized 
user, it would create a Descriptor Segment Page Table for the process 
and initialize a Descriptor Segment to contain certain segment descriptors 
that corresponded to segments that all processes had such as one or 
more segments for a command processor.  Now if the user of this process 
entered a new command that needed to use one or more segments not 
now part of his or her process, the segment descriptors for these new 
segments would be added to the descriptor segment for the process.  Of 
course, such additions would be made to the descriptor segment only if 
the File System determined that the user was entitled to use them. 
 
Hence, descriptor segments could be built up as the needs of processes 
became apparent and justified.  Now let us suppose that a user made 
reference to a segment for the first time so that its descriptor was not 
contained in the descriptor segment for the process.  The File System 



 190 

would add a descriptor for the new segment to the descriptor segment 
and would create a page table for it.  However, the File System has no 
way to know which of the pages of the segment would be referred to by 
the user process, so it would set a bit in each of the page table entries 
indicating that the page was not present in real memory. 
 
When the user process made a reference to a word (target) in one of the 
segment’s pages, the processor would detect (by examining the state of 
the “page absent” bit in the page table) that the page was not in real 
memory and would execute a “missing page fault”.  When the fault 
occurred, the contents of all of the registers for the process would be 
saved and control would be passed to the File System.  The File System 
would begin to retrieve the page requested by the process and would 
then give control of the processor to another process, which, it was 
hoped, would be ready to continue execution.  The page that caused 
the missing page fault would eventually be located and placed in real 
memory.  Its page origin would be entered in the segment’s page table, 
the “page absent” bit would be reset and control would be returned to 
the process that was interrupted by the missing page fault at the point of 
its interruption. 
 
While interactions such as this were occurring, the File System was busily 
controlling the flow of pages between real memory and secondary 
storage.  (In the GE-645, secondary storage was a high-speed magnetic 
drum known as the “fire-hose drum”.)  The type of processing described 
here went on both for the management of application segments and for 
descriptor segments.  Pages of each type and their page tables needed 
to be constructed, moved between primary and secondary storage and 
have their descriptors updated on a continuing basis.  Actually there were 
many status bits in the descriptors that assisted in the proper management 
of the virtual memory mechanism.  These were all maintained in a 
harmonious interplay between the processor and the Multics Operating 
System Software. 
 
 



 191 

Appendix K—Utility Programs 
 
In general, a need exists for various programs to perform small but 
essential tasks concerned with running programs and the management of 
their media.  These are referred to as Utility Programs.  Some of these are 
described in this appendix. 
 
K1.  Loaders 
Stored-program computers, in their pure form, have one possibly obscure 
weakness—no way is provided to get programs into their memories.  In a 
bare von Neumann computer, the program will execute beautifully (after 
all of its bugs have been removed) once it is located in internal memory, 
but how does it get there?  The answer is it is loaded into internal memory 
by a program called a loader. 
 
But how does the loader get there?  Each machine has its own special 
feature that loads a small snippet of code into the memory.  This small 
piece of code then brings in a bit larger piece of code and so forth until a 
complete loader is in memory and capable of loading any desired 
program.  For obvious reasons, this process of getting the loader loaded is 
referred to as “bootstrapping”. 
 
The bootstrap process is generally started from the operator’s console.  
The operator is capable of executing a single wired read instruction from 
some device.  This wired instruction is executed and then control of the 
processor is given to the area into which the read has occurred.  In the 
RAYDAC, a rotary switch on the console allowed the operator to choose 
one of the tape handlers from which the first read would be executed 
and a button that would cause the read to be executed.  The read 
instruction would bring a block of information into the buffer memory for 
the selected tape handler and then control would be transferred to the 
first word of the buffer.  The block of information read would (hopefully) 
contain the beginning of the bootstrap process and would permit a 
complete loader to be loaded that would, in turn, load the desired 
program. 
 
On some machines with card readers, a start button on the console 
caused a card to be read into a fixed location and then control of the 
processor would be transferred to that location.  Again, this would provide 
enough instructions and data to be read into memory to allow the 
bootstrap process to proceed.   The card would contain enough 
instructions and data to permit the bootstrap process to load a complete 



 192 

loader that would then load a program from the cards following the first 
“startup” card. 
 
In early machines, most loaders could only load instructions and data 
contained on the input medium along with the loader and its bootstrap.  
If any library subroutines were to be used, these had to be incorporated 
into the program at compilation or assembly time.  This was necessary 
because certain addresses in the subroutines and the calling program 
needed to be set so all of the parts of the resulting program could pass 
values to and from one another.  At some point in the mid 1950s the use of 
relocatable loaders became common.  With a relocatable loader, it was 
possible to defer this process of address adjustment until load time. 
 
Use of a relocatable loader often speeds up the loading time because 
more of the program is read in from the high-speed medium upon which 
the library is stored (magnetic tape or disk) as compared to the slow 
medium upon which the user’s program might be stored.  But perhaps 
more importantly, the user is assured to always have the latest version of 
every subroutine included in his program.  So if a more accurate or faster 
version of a subroutine were put in the library between one program 
execution and the next, the user would get the new version from the 
library instead of continuing to use the old version bound into his program. 
 
K2.  Memory Dumps 
 
After writing a program and assembling or compiling it, it is necessary to 
subject it to the “acid test” of the computer.  On the first several tries, it will 
in all likelihood crash.  In other words, it will contain errors that will cause 
the computer to cease operation because some attempt has been 
made to execute a meaningless instruction.  Many errors may result in 
such a situation: transferring control of the computer to a word containing 
data, dividing some number by zero, getting in a never-ending program 
loop and addressing memory outside the address range available to the 
program are but a few possibilities.  When a crash occurs, you can 
depend upon a good computer operator to record the value of the 
instruction counter and perhaps the values in important computer 
registers at the time of the crash.  But that is often not enough. 
 
A memory dump gives a snapshot of the computer’s registers and 
memory at the time of the crash.  It permits the programmer to 
reconstruct the situation including the state of all data and instructions.  
This type of information is vital in diagnosing the source of the problem.   
 



 193 

K3.  Media Conversion 
 
It is often necessary to transfer trays of cards to magnetic tape or vice 
versa or magnetic tapes containing reports to be printed to paper.  All of 
these must be possible with various possible choices of blocking factors 
and possible tape formats.  The programs that perform these tasks are 
referred to generically as media conversion programs. 
 
K4. Sorts 
 
It must be possible to reorder the contents of magnetic tape files of 
various formats in any desired sequence.  Sort generators or 
parameterized sorts provide this function. 
 
K5.  Trace Programs 
 
If the path a program is following is difficult to determine during 
debugging, a Trace Program will provide invaluable information as to the 
reason for the errant behavior.  A Trace Program causes each instruction 
of a program to be executed in sequence and the results of the 
execution to be recorded.  The trace produces a complete record of 
each instruction executed as follows: 

- The location of the instruction 
- The form of the instruction at the time of execution 
- The values of operands at the time of execution 
- The results of the execution 
- The values of all computer registers after the execution 

This wealth of information usually permits the mystery of errant paths of 
execution to be revealed. 
 
  



 194 

Appendix L.  Personal Background 

 
I was born on April 27, 1926 in Stockton, California.  I have dim 
recollections of people debating whether to vote for Hoover of Roosevelt 
in 1931.  I was raised in the Great Depression; nevertheless my father was 
always employed.  We led a humble life, but we were always adequately 
sheltered and clothed and better than adequately fed.  My only sister 
and I were always well treated and avoided any major traumas. 
 
My educational background began at Victory School in Stockton, 
California.  After graduation from Victory School in February of 1940, I 
continued my education at Stockton High School—the only high school in 
town at the time.  I graduated from Stockton High in February 1944. 
 
In grade school I found most of the material—Reading, Writing, Social 
Studies, Art, English—boring.  However, I enjoyed Arithmetic, Singing and 
Manual Training (what is now called Industrial Arts).  The Bank of Italy (later 
renamed the Bank of America) had a savings program for students and 
conducted a weekly, student-operated bank at school during which 
students could do banking business.  I was chosen to be a teller at the 
bank. 
 
I joined the school orchestra at the beginning of my fourth grade year.  I 
started out playing the bass drum and then switched to the bass horn 
(tuba).  The orchestra conductor came to the school once a week for 
practice.  He also had a band made up of students chosen from 
throughout the city that practiced every Monday night.  I was chosen to 
be in the band and played in it until I graduated from grade school. 
 
Also while in grade school I became a member of the League of Curtis 
Salesmen.  That was the name given to young people who sold the 
Saturday Evening Post, Lady’s Home Journal and the Country 
Gentleman—the three publications of the Curtis Publishing Company.  I 
sold 50 to 70 Posts per week, 15 to 20 Journals and 5 or 6 Country 
Gentlemen per month.  I made only a few cents per copy, but I learned a 
little about selling and conducting my own mini-business. 
 
My Dad had introduced me to the use of some tools before I took Manual 
Training, but I enjoyed the approach taken at school for its 
comprehensiveness.  We went to El Dorado School, which was farther 
from our house than Victory and a more up-scale institution, to take the 



 195 

course during my 7th and 8th grade years.  We had one semester each of 
woodworking, wood lathe, sheet metal and metal lathe.  This provided a 
scope my father could not have provided and which gave me a feel for 
a wide range of skills. 
 
In high school, I continued to find most courses to be boring.  This lack of 
motivation was punctuated when I flunked English and got a D- in typing.  
My Typing teacher said she would give me a D- instead of an F if I 
promised never to take the course from her again.  However, I continued 
to do well in mathematics through Trigonometry and played in the Band 
for all four years and enjoyed every minute of it. 
 
The high school band had a little internal organization that helped the 
director get all of the instruments and equipment where they had to be 
before performances and back to the high school afterward.  The 
organization consisted of a Sergeant, a Lieutenant and a Captain 
selected each year by vote of the band members.  The officers had the 
privilege of wearing special chevrons on their uniforms that distinguished 
them from the other band members.  In my second year in the band I was 
elected Sergeant; in my third and fourth years I was elected Captain.  I 
gained some organizational and leadership experience from these 
involvements. 
 
From the time I was quite young, I can remember going to my dad’s 
office and being fascinated by the calculator he always had on his desk.  
I believe it was a Monroe.  It occupied a space about 16 inches by 16 
inches on the desk and had a ten by ten array of buttons to enter values 
(the digits zero through 9 for each digit of a ten digit number).  It also had 
a carriage across the top much like a typewriter carriage except it 
contained displays of numbers.  One display was of the accumulator—it 
displayed the answer if you were adding numbers or the product if you 
were multiplying.  Another was a display of the buttons depressed on the 
keyboard and still another was a counter that told how many operations 
had been performed since the machine was last cleared.  You could use 
the counter, to see if you had entered the right number of addends if you 
were adding a column of numbers, for example.  The counter was also 
needed in multiplication and division. 
 
The carriage also had a little handle on the right side you cranked to 
perform an operation—addition, subtraction, multiplication or division.  For 
addition, you cranked the crank clockwise; for subtraction, you cranked it 
counterclockwise.  (Multiplication and division were more complicated.)  
A way was provided to clear all of the displays, but I don’t remember 
what it was—probably another crank.  So to add a column of numbers, 



 196 

you would first clear the machine.  This made all of the displays zero.  Then 
you would enter the first addend and turn the crank clockwise once, and 
then you would enter the next addend and turn the crank clockwise 
once, and so forth until all of the numbers had been entered.  The sum 
would appear in the accumulator at each step. 
 
The machine had one other control that permitted it to multiply and 
divide.  This was a little knob at the front below the keyboard.  When you 
turned the knob clockwise, the carriage would shift one decimal place to 
the right; when you turned it counterclockwise, the carriage would shift 
one decimal place to the left.  The significance of this shifting was that it 
caused the addend, stored in the keyboard to be multiplied or divided by 
10 before it was added to or subtracted from the accumulator.  It also 
caused the accumulator to be incremented/decremented by ten or one-
tenth instead of one when a one was entered in the keyboard.  Hence, if 
you wanted to multiply 45 by 21, you would enter 45 in the keyboard and 
crank the crank on the carriage once clockwise.  This would add 45 to the 
accumulator and place 1 in the counter.  You would then turn the knob in 
front one notch clockwise.  That would cause the next operation to affect 
the accumulator one decimal place to the left of where it previously had, 
or, in other words, it would cause 450 to be added for each clockwise turn 
of the crank.  You would then crank the crank on the carriage twice 
clockwise.  That would add 900 and produce the product, 945, in the 
accumulator and would increment the counter by 20 so that it showed 
the multiplier, 21.  You could perform a similar process in reverse to 
accomplish division.  My Dad always let me fool around with the machine 
and I found it fascinating. 
 
As a boy, I had the usual array of career goals including fireman, pilot, 
streetcar driver (we still had street cars) and others.  However, at some 
point, my Dad suggested I might want to look into Chemical Engineering.  
Being an engineer himself, it was natural for him to have a bias toward 
engineering occupations and he was very fascinated and impressed with 
the advances being made at the time in Chemistry.  I heeded his advice 
and kept Chemical Engineering as my career goal for many years. 
 
In my junior year at high school, I took Chemistry.  I absolutely loved it.  It 
was exciting and fascinating to me.  Better still, my enjoyment of 
Chemistry spilled over to my other subjects and I started doing better in all 
areas of study.  I was even selected to become a member of the club 
whose membership was reserved for the best students (I don’t remember 
the name of it). 
 



 197 

If this was a positive turn of events, then my senior year was even better.  
That was the year I took Physics.  I had not previously known Physics 
existed or what it was about.  When I was exposed, I was hooked.  If it was 
possible to find anything I loved more than Chemistry, then it was Physics.  
I was blessed to have taken my first semester from Mr. Corbett, who was 
an old gentleman who had taught Physics for years and loved it and 
passed on his love of the subject to his students.  Every day his students 
looked forward to his class because he made it entertaining and 
participatory.  He presented the “nuts and bolts” of the universe before 
your very eyes and made it all seem like fun.  Of course, I got an A in the 
course. 
 
Unfortunately, he retired at the end of the first semester.  An okay teacher 
replaced him in the second semester and I got another A, but I will always 
be grateful I had the old man for my introduction.  I was also hired as the 
laboratory assistant for the second semester so I had an opportunity to get 
more fully involved in the course and its presentation than I had before.  
The result of all this was that I changed my career objective from 
Chemical Engineering to Physics. 
 
World War II was raging during my years in high school.  Before I 
graduated from high school, I enlisted in the Army Specialized Training 
Program.  As a member of this program, I knew I would be sent to some 
university in April of 1944.  It turned out to be the University of Idaho, at 
Moscow, Idaho.  After I graduated from high school in February 1944, to fill 
the time until April, I audited a course in Music Appreciation at Stockton 
High School.  Also, at about this time, I was invited to play the tuba for 
Stockton Symphony Orchestra and continued to do so until I went away 
to the service. 
 
Attendance at the University of Idaho took place as scheduled and I 
enjoyed the army life on the campus.  I also did very well in all of my 
courses, especially math and chemistry.  I got high grades.  I don’t know if 
they were all A’s but many of them were.  The only problem was the 
program was cancelled during our first quarter and that was the end of it.  
We were all sent to the Presidio of Monterey to be inducted into the 
regular army after completion of the quarter. 
 
While at Monterey, I had a chance to try out for the Army Band.  I 
marched with them one afternoon and played one of their sousaphones, 
but I guess I didn’t measure up because nothing ever came of it.  I was 
assigned instead to the Army Air Corps.  From Monterey I went to Basic 
Training at Buckley Field outside of Denver and from there to 
Cryptographic Technician’s School at Chanute Field, Rantoul, Illinois.  I 



 198 

ended up with an MOS (Military Occupation Specialty) of 805, 
Cryptographic Technician.  I spent the rest of my tour of duty as a 
cryptographer, first in Greenland and then in the Azores. 
 
My experience as a cryptographer served me well.  In addition to being 
able to apply my cryptographic skills, I finally learned to type, and the 
communication equipment of the day became very familiar to me.  
Everywhere I was stationed, they had CW (constant wave, Morse code) 
radio and radio-teletype communication.  These were the state-of-the art 
at the time.  I became quite familiar with Teletype operation and the use 
of paper tape as a storage medium.  I also got used to relying on 
machines to assist me in doing my job. 
 
After military service, I attended Stockton Junior College from September 
1946 to June 1948.  I had been told I could get the same courses there as I 
could get at a university; it would be less expensive, and I could stay at 
home.  It was true I could get courses with the same names, but I was to 
discover later the quality of the course content was not the same.  
However, I was more than adequately compensated by having found 
and married my wife during my sophomore year at Stockton JC. 
 
While I was at Stockton JC, I had three friends with whom I was very close: 
Ralph Cowen, Peter McCurdy and Stanley Bacon.  Ralph had been my 
friend through most of my high school years, Peter played snare drum in 
the high school band and had also been in our group at the University of 
Idaho (and also introduced me to my wife to be), and so we continued 
our friendship.  I had also known Stanley from high school.  He played in 
the high school orchestra and owned a wide array of electronic 
equipment he used to play recorded music at school dances and other 
activities.  We were all taking similar courses and sometimes studied 
together.  The big tough course was calculus and it was one of my 
strongest subjects.  They all came to me for help and I, of course, got A’s 
in the subject. 
 
We first heard about computers during this period.  Once or twice during 
the Stockton JC days, newspaper articles appeared about computers.  
We all read them and were dazzled.  Machines capable of performing 
thousands of calculations per minute were described.  They used 
electrical switches called relays or even in some cases vacuum tubes to 
get their work done.  We tried to imagine how these spectacular 
machines might be built. 
 
In September of 1948, my wife of one year and I went to Berkeley so I 
could attend the University of California.  My junior year was difficult for 



 199 

me because I was faced suddenly and unexpectedly with the 
inadequacies of the course materials to which I had been exposed at the 
junior college compared to those the Cal students had been provided.  I 
loved the courses I was taking, but I had to work very hard to keep up.  
For the first time in my life, I took a mathematics course I was unable to 
cope with.  It was Vector Analysis and I flunked it.  I took it from an old 
man with whom I did not at all communicate.  This was a severe blow to 
my ego but I retook the course and got an A. 
 
During the summers of my freshman and sophomore years, I worked as 
gopher/delivery boy for Atwood Printing Co.  During my junior and senior 
summers, I worked as a Rod and Chainman on the survey crew for the 
City of Stockton. 
 
In any case, in June of 1950, I received a baccalaureate from the College 
of Letters and Science at the University of California, Berkeley, with a 
major in Physics.  I had a good solid B average; I don’t remember the 
numerical grade point average.  Most of my classmates were going on to 
graduate school somewhere, but nobody had bothered to tell me a 
bachelor’s degree in Physics was good for nothing.  So when it came time 
to get a job, very few potential employers responded.  However, I 
received an offer from the U. S. Navy to work at the Naval Air Missile Test 
Center at Point Mugu, California as a GS-4 Civil Servant.  I don’t remember 
the name of the position, but I do remember it paid $2475 per annum and 
I was glad to get it. 
 



 200 

Appendix M. Evolution of Computer Technology 
 
During my thirty-two years in the Computer Industry, I had the opportunity 
to observe a passing parade of technology.  The changes were truly 
remarkable in many cases and worth reviewing.  They are described 
below in figures that consist of parallel time lines and also in text.   
 
Figure M1 shows the evolution of storage media present on systems I 
worked on.  The lines are to represent the passage of time with the earliest 
times being at the top.  Delay lines were not a very successful medium on 
the RAYDAC, but they were about all that was available in the early days 
and were also used on Univac I.  That machine was around and in use for 
quite some time, so I have showed the life of delay lines to have 
continued until approximately the end of Williams Tube use.  Williams 
Tubes  were relatively fast but not very reliable, so they didn’t last very 
long.  Magnetic cores were quite good and improved over time.  They 
would have lasted even longer had they not been superseded by 
semiconductor memories.  Although I never worked on a machine during 
my career that had semiconductor memory, I have since retirement and 
they are certainly far superior to any of their predecessors.   

     
   Figure M1. Storage Media Versus Time    
 
Figure M2 shows the evolution of peripheral storage devices.  The earliest 
was probably paper tape, though punched cards also came along very 
early.  I don’t think paper tape survived for long after the availability of 



 201 

punched cards and associated equipment.  Magnetic tape came along 
quite early.  It was available on Univac I, RAYDAC and SWAC.  It has also 
been a medium with great longevity.  Over the years, it has improved in 
every dimension: recording density, recording format and tape speed 
(especially in rewind).  It has also come out in various forms—not only in 
reels but also in cassettes and on cards. 
 
Magnetic drums also came out fairly early and they were useful and 
reliable media in general, but were replaced by magnetic disks for many 
purposes about half way through its long life.  The big move to magnetic 
disk came with the IBM-305 RAMAC.  From then on, disks have gotten 
smaller but their capacity and reliability have increased remarkably.  The 
recording densities now possible are truly amazing and they seem to 
continue to improve. 
 
A big step forward in the development of disk technology was the 
introduction of removable disks.  These first took the form of “disk packs”—
each of them looked like a covered cake dish—that could be installed or 
de-installed from a disk handler just as a magnetic tape could from a 
magnetic tape handler.  As time passed, this idea was revisited with the 
use of floppy disks on personal computers. 

 
   Figure M2. Peripheral Storage 
 
Figure M3 shows the evolution of bi-stable devices over the years.  These 
are the circuit elements that permit computers to perform arithmetic and 
logic.  It started out with relays being the only available bi-stable devices.  



 202 

After a short time, these were replaced with vacuum tubes.  On the 
RAYDAC, we had about 18,000 special electron tubes that had gold 
filaments for improved reliability. 
 
Vacuum tubes were the best thing available at the time, but their 
reliability was not outstanding and they used a very large amount of 
energy.  This produced much heat that had to be disposed of using a very 
large amount of air conditioning (more energy gone).  Then transistors 
came along, which were a big help, but not the final answer.  The final 
answer, so far, has been semi conductors and they are still with us. 

 
 Figure M3. Bi-Stable Devices Versus Time 

 
Figure M4 shows the evolution of certain interior décor features.  These 
relate mostly to modes of addressing.  The earliest and simplest was fixed 
word length.  This simply means that in the first computers the engineers 
decided how many bits would be stored into or retrieved from the internal 
memory at one time.  In the case of the RAYDAC, this was 30 bits, for 
Univac I it was 40 bits (I think) and for many later machines, like the IBM 
700-series and GE-600 series, 36 bits.  This was convenient for the 
engineers, but not particularly good for the programmers or the 
customers.  To more nearly match the needs of the users, variable word 
length machines were developed.  These included the IBM-702, 705 and 
1401.  The programmer convenience was improved as expected, but 
performance suffered. 
 



 203 

The introduction of interrupts was a major improvement in computer 
capability.  Previously, the computer would just execute one instruction 
after another in the sequence the programmer had indicated.  If an error 
occurred, the users had to test for it using a special instruction and then 
go to a special program provided to handle that particular error.  Often 
programmers didn’t test for the occurrence of all the possible errors and 
hence, the computers sometimes produced incorrect results without 
anyone’s knowledge.  With the introduction of interrupts, a special class 
called “faults” came along that caused the processor to execute its next 
instruction from a fixed location if an error of a certain type occurred.  This 
location was different for each type of error and when the fault occurred 
and the transfer resulted, the contents of all of the processors registers 
were also stored in a fixed location, as a function of the type of error that 
occurred.  In this way, it was possible to be sure all errors were responded 
to in some way.  In some instances, the fault could be handled by a 
standard program supplied by the system; in others, the user programmer 
would specify a location to which control would be transferred so the user 
program could handle the fault itself.  In other cases, the program would 
simply be aborted with a record of the cause of the abort. 
 
However, interrupts were caused not only because of errors, but also in 
connection with executing input/output instructions.  Any one of many 
interrupts may occur depending upon the I/O device being used.  Some 
examples are: 

• A previously started I/O operation has completed: 
1. Correctly 
2. With an error condition (which error would be returned as a 

status condition). 
• An I/O operation sent to the IOC to be started, but cannot be 

started because: 
1. It was a card read and the card hopper is empty. 
2. It was a write to printer and the printer is out of paper. 
3. It was a punched card and the card hopper is full. 
4. It was to any device and the power was off. 

 
Segmentation and paging in one form or another were introduced first 
with the crude, fixed fences as in the GE-625/635 that provided no paging 
and then with the elegant virtual memory concepts of the GE-645.  Many 
variants of this scheme appeared after they were introduced in the 
Ferranti-Atlas, Burroughs- B5000 and GE-645. 
 
Finally, and this occurred after my retirement, byte accessing within word 
accessing became common.  This combines the best of both the 



 204 

program efficiency of variable word length and the memory access 
efficiency of fixed word length and is utilized in most modern machines. 

 
 Figure M4. Evolution of Décor Features 

 
Figure M5 shows the various choices of parallel printer available over time.  
A parallel printer is one that displays an entire line at a time as compared 
to a serial printer like a typewriter that displays a single character at a 
time.  The speed advantage of the parallel approach is obvious.  In the 
very early days, printers were called tabulators and they printed by raising 
a whole row of sticks arrayed side-by-side, each to the correct height, 
and then pressing the entire array against the paper.  The sticks each had 
an upper-case alphabet and the decimal digits on it and the letter or 
digit to be printed on each line by each stick was determined by the 
height to which the stick was raised.  These were used mainly by punched 
card equipment.  The number of columns they would print was limited 
and the speed was less than 100 lines per minute. 
 
The next generation of printers replaced the sticks with wheels, and the 
letter or number to be printed was determined by the angle to which 
each wheel was rotated before the entire assembly was pressed against 
the paper.  These printers could print 120 columns at up to 150 lines per 
minute and were quite reliable.  However, they could only print the upper 
case alphabet, the decimal digits and some special characters. 
 
In an effort to obtain higher print speeds, wire printers were offered like 
modern dot matrix printers where the dots were printed by wires striking 



 205 

the paper selectively depending upon the character to be printed in 
each column.  These printed 120 columns and in the same character set 
as the wheel printers, but much faster.  IBM offered one wire printer with a 
speed of 500 lines per minute and another with a speed of 1000 lines per 
minute.  However, their great speed was a mixed blessing because they 
had very low reliability. 
 
I found the next generation of printers very appealing though I never 
worked anywhere that had one.  They were the electrostatic printers.  
They worked by projecting an optical image of a line to be printed onto a 
selenium cylinder.  The projected optical image was converted to an 
identical electrostatic image in the process.  The cylinder—in continuous 
motion—then passed electrically sensitive ink where the electrostatic 
image became covered with ink.  Finally the inked image was pressed 
against paper to form the final hard copy.  This is exactly the way a Xerox 
machine works except the source of the image in a Xerox machine is a 
piece of paper instead of a projector which is getting its signals from a 
computer or other electronic controller.  Several of these were offered in 
the late 1950s and they printed up to 5000 lines per minute.  Their 
shortcoming was they would not print multipart forms and many computer 
shops were wedded to such forms. 
 
Finally, the laser printers and Ink Jet printers came along.  These are the 
high quality printers available today for personal computers at very 
reasonable costs.  They have all come out since I retired.  I have shown 
this on the figure by showing their time line as a bold line. 

 
   Figure M5. Parallel Print/Display Devices 



 206 

 
Figure M6 shows a general evolution of programming languages.  When I 
started, we had nothing but octal or hexadecimal in which to write our 
code.  This was arduous and error prone and soon was embellished by the 
introduction of crude assemblers like the one I developed at Point Mugu 
permitting programs to be assembled from previously written and tested 
subroutines.  (These capabilities were later incorporated into relocatable 
loaders.)  These subroutines were generally written with relative addresses 
that started each subroutine at address 0.  These addresses were then 
relocated as necessary by the assembler. 
 
The first step toward what might be legitimately called a computer 
language was the introduction of symbolic addressing.  In this type of 
language, a programmer could name the variables of his problem using 
names that had meaning in the application.  For instance, he could call 
First Name FRSTNM, and year-to-date pay YTDPAY, and so forth.  The 
symbols were in upper case and generally limited in length to 6 or 8 
characters.   In some cases, as in SCRIPT, it was possible to use 
alphabetical symbols for program references, but data references were in 
a kind of decimal notation like A1.22.02 or 14.17.03.  In general, the 
leading characters before the first decimal, referred to a block of storage, 
the second two digits referred to a single entry in the block and the last 
two digits were for filling in things you had forgotten on the first numbering.  
The better symbolic assemblers made obsolete the use of the type of 
relative assembler I mentioned above by providing the ability to 
incorporate subroutines from a subroutine library.  The programmer 
needed merely to supply the assembler with the names of the library 
subroutines to be incorporated along with the main program’s code. 
 
With the advent of FORTRAN and BASIC, it was possible to write 
mathematical expressions.  That ability has been included in many, if not 
most, languages after these initial ones. 
 
Starting with Grace Hopper’s work with the A0 compiler at Remington 
Rand a whole sequence of English-like programming languages 
developed leading eventually to COBOL.  These enjoyed a rich and useful 
life and are, I assume, still in use in some places. 
 
Finally, generalized programs such as 9PAC and the others from Hanford 
were developed.  This approach has been greatly exploited in personal 
computers.  For example, word processors are generalized routines where 
the problem solved is text recording, editing and formatting.  Excel is a 
generalized system for creating, editing and displaying spreadsheets.  



 207 

Access is a generalized system for creating, updating and displaying 
databases. 

 Figure M6. Programming Languages 
 
Figure M7 shows the evolution of input/output methods.  With the first 
computers the only methods of addressing devices and their contents 
were those supplied by the hardware.  So if one wanted to address tape 
handler 3 or printer 2, one was required to specify tape handler 3 or 
printer 2. 
  
Blocking and buffering were probably the first enhancements available 
that affected the content of files.  They have been explained in Appendix 
I and subroutines were provided to support them from early in the 
evolution of I/O technology. 
 
Mass storage devices came next.  Like other devices of their time, it was 
necessary to address them and their contents by using the addressing 
schemes provided by the hardware.  This worked, but produced code 
that was difficult to read and was often inflexible if it was necessary to 
make changes (as it always was). 
 
Operating Systems (or perhaps some of the more elegant job monitors) 
permitted the introduction of symbolic device designations.  In this case, a 
program could refer to Tape 1 and Tape 2 and when execution occurred 
have these files mounted, for example, on tape handler 3 and tape 
handler 7.  Better yet, it would be possible to refer to them functionally as 



 208 

TIMECARDS and PAYCHECKS.  In that event, TIMECARDS and PAYCHECKS 
files could be assigned to any pair of tape handlers (such as 3 and 7) 
available at the time of the program’s execution.  These assignments 
would be made by the Operating System and would be made based 
upon its knowledge of the status and utilization of the system devices.  The 
fact that the files were magnetic tape files would be announced on 
control cards accompanying the program. 
 
A natural extension of symbolic device designations was the notion of 
device independence.  One might want to assign a print file to magnetic 
tape on one execution, for example, and directly to the printer on the 
next.  With device independence, merely changing a control card 
between executions would make such changes—the program would be 
the same in each case and would be unaware of the change. 
 
File Systems were a natural companion of timesharing systems.  A user at a 
terminal wanted to be able to get to his or her data quickly and easily 
without being concerned with devices or other system details.  The 
services of a File System permitted users to refer to their files by name and 
to catalog them for current and future use. 
 
Methods of structuring the contents of ones mass storage files appeared 
in about the same time frame as File Systems.  Chief among these to my 
knowledge were Index Sequential and IDS (Integrated Data Store, 
developed by Charlie Bachman of General Electric).   
 
Note that any or all of these methods carried forward into the future.  They 
each continued to have an application at some level of the system. 



 209 

 
   Figure M7. I/O, File Systems and Database Managers 
 
Figure M8 gives a brief depiction of the evolution of Operating Systems.  
Before Operating Systems existed, human operators performed all of the 
functions that controlled the system.  Humans still take charge in case the 
automatic controls fail to function.  Job Monitors conducted the first 
attempts at automatic control.  However they were short lived because 
Multi-Programming and Multi-Tasking Operating Systems rapidly 
superseded them. 
 
Multi-Programming and Multi-Tasking Operating Systems could not take 
place until hardware systems with some sort of segmentation and an 
interrupt system were available.  With this event, it was possible for the 
Operating System to take control of the scheduling, allocation and de-
allocation of resources to different jobs and/or users.  This is what occurred 
with GECOS and MULTICS.  With MULTICS and other timesharing systems 
the entire panoply of system resources was brought to the user from 
his/her terminal in a way similar to what the modern personal computer 
user enjoys today. 
 
Of course, all of this led to the creation of the Internet and to Intranets.  
Although I have made good use of the Internet, I do not pretend I had 
anything to do with its creation, hence, its time-line is shown with a bold 
line in Figure M8. 



 210 

Figure M8. Monitors and Operating Systems 
 



 211 

GLOSSARY 
 
Access time The time it takes to store or retrieve a word to/from 

memory.  In a disk storage unit, it is the sum of the 
latency time, the seek time and the transfer time.  See 
Appendix C. 

AEC Atomic Energy Commission.  The U. S. Government 
agency that oversaw Nuclear Energy activities prior 
to the U. S. Department of Energy. 

Application 
Program 

A program written by or purchased for use by a user 
permitting him or her to solve the problem or perform 
the function, which he wishes (that is, his or her 
application) on a computer. 

ALU Arithmetic And Logic Unit.  See Appendix A. 
ARPA Advanced Research Project Agency of the U. S. 

Department of Defense. 
Assembler See Assembly Program 
Assembly 
Program 

A program used for building other programs, which 
uses symbols to represent the operations and 
operands of the program to be created instead of 
the language of the machine that will execute it.  See 
Appendix E. 

Atomic Energy 
Commision 

The predecessor of the U. S. Department of Energy 
that had responsibility to control all developments 
and materials having to do with Atomic Energy. 

Backing Store A form of memory that is usually larger but slower 
than the internal memory.  Backing stores are usually 
used to swap blocks of storage out of and into the 
internal memory to give the illusion that it is larger 
than it actually is, as in Virtual Memory. 

Batch Processing A mode of computer use in which the user or a 
computer operator representing him or her is in the 
computer room mounting  and dismounting 
magnetic tapes, loading and unloading card 
hoppers,  and manipulating printers in order to get 
the user’s computer program run.  This is in contrast to 
the timesharing mode of processing, which see. 

BCD Binary coded decimal. 
Binary Having to do with base two numbers.  See Appendix 

B. 
Binary Coded 
Decimal 

A code representing each decimal digit as a group 
of four bits: 0 = 0000, 1 = 0001, 2 = 0010, 3 = 0011, 4 = 



 212 

0100, 5 = 0101, 6 = 0110, 7 = 0111, 8 = 1000, 9 = 1001. 
Bit Binary digit.  A single digit in the base-two number 

system having the value zero or one. 
Byte An eight-bit storage group, which is now the 

international standard.  Bytes can be used to 
represent all the decimal digits; upper and lower-
case letters; many special characters as well as 
foreign alphabets. 

CPU  Central Processing Unit.  This is the ALU and CCU 
combined. 

CTSS Compatible Time Sharing System.  See Note [G]. 
Differential 
Equation 

A differential equation is an equation connecting 
certain independent variables, certain functions 
(dependent variables) of these variables, and certain 
derivatives of these functions with respect to the 
independent variables.  Two types of differential 
equations exist: ordinary and partial.  The following 
are examples of these: 

yz
y

z

x

z

xy
dx

dy

=
!

!
+

!

!

"=

 

The first of these is an ordinary differential equation.  
The variable x is the independent variable and y, the 
dependent variable, is a function of x.  The quantity 
on the left of the equal sign is the derivative of y with 
respect to x.  In other words, it tells how much y 
changes for a small change in x. 
 
The second of these is a partial differential equation.  
The dependent variable changes as a function of 
two independent variables, x and y.  The quantities 
on the left of the equal sign are the partial derivatives 
of z with respect to x and y, respectively.  [See 
Simultaneous Differential Equations.] 

DOD United States Department of Defense. 
Drive This word is used interchangeably with “handler” in 

the case of magnetic tape and disk devices.  Hence, 
a magnetic tape drive and a magnetic tape handler 
are the same thing. 

File System A set of capabilities permitting a user to refer to his or 



 213 

her files by name, and perform a host of other 
functions concerning the storage and maintenance 
of files.  Some of these functions are: File security, 
permitting only authorized users to access each file; 
File traffic control, protecting various users from 
interfering with one another while updating files; File 
Recovery, restoring files to previously states, known to 
be correct, in case of hardware or software failure; 
Maintaining Catalogs of User Files; Storing and 
retrieving user files upon request of authorized users. 

Fixed Point A form of representation in which every number has 
the same number of decimal places—that is, the 
decimal point location in each number is fixed.  See 
Appendix B. 

Floating Point A form of representation in which the number is 
represented in the form of a mantissa and an 
exponent.  Hence, the number N, might be 
represented in the form N = M * 10E, where M is the 
mantissa and E is the exponent, and 1 > M >= 0.1.  
See Appendix B. 

FSO Honeywell Federal Systems Operation. 
Hexadecimal Having to do with base sixteen numbers.  See 

Appendix B. 
IAO Internal Automation Operation.  A department within 

General Electric. 
INA Acronym for the Institute for Numerical Analysis of the 

National Bureau of Standards located on the Campus 
of UCLA. 

Latency time The time, on a rotating storage device, it takes for the 
device to rotate from its angular position when a 
command is issued until it reaches the addressed 
record.  See Appendix C. 

Loader A program that is used to move other programs from 
some input medium, such as paper tape, cards or 
magnetic tape to the internal memory of a computer 
prior to execution of the loaded program. 

Minimum Latency 
Programming 

A programming technique used on properly 
equipped serial memory computers to minimize the 
storage latency time.  See Appendix D. 

Multiprogramming A mode of utilizing the computer resources in which 
more than one program is loaded into the internal 
memory and take turns using the processor.  This is in 
contrast to uniprogramming, which see. 



 214 

Octal Having to do with base eight numbers.  See Appendix 
B. 

Operand One of the quantities in an arithmetic expression.  For 
example, in the expression A + B = C, A and B are 
operands.  Individually they are known as “augend” 
and “addend”, respectively; but collectively they are 
“operands”.  Also, any values used as inputs to 
operations performed by a computer. 

Page In the context of this book, a page is a 1024-word 
subdivision of a virtual memory segment or file.  This is 
the meaning in the GE-645 and may have other more 
general meaning in a broader context.  In this narrow 
context, a page is a 1024-word unit of virtual memory 
swapped into and out of memory as needed for 
processing. 

Paging A method of memory addressing in which the total 
memory address space is partitioned into groups 
(pages) of a fixed size (such as 1024 words) and the 
origin of addresses in each page may be set to any 
value between zero and T/1024-1, where T is the total, 
in words, of the available real memory.  The origin of 
each page is specified in a page table maintained 
by the operating system and the CPU performs the 
translation between the address in an instruction and 
the effective address used for memory access by 
appending the page origin from the page table to 
the intra-page address from the instruction. 

Parity A simple method of providing a check for data 
integrity.  Parity may be either odd or even.  If the 
parity is even, then the parity of a correct string of bits 
= 1 if the number of bits equal to 1 in the string is even.  
If the parity is odd, then the parity of a string of bits = 1 
if the number of bits equal to 1 in the string is odd. 

Parity Checking When parity checking is performed, the parity of the 
bit string is appended to the string whenever the 
string enters the computer system.  The parity is then 
recomputed whenever the string is used or moved to 
see if any change has occurred since the string 
entered the machine.  On magnetic tapes, each 
frame of data on the tape (on old-fashioned tape 
handlers) consisted of six information bits and one 
parity bit.  In this way each frame could be checked 
for change whenever it was read.  Odd parity is 



 215 

generally preferred because it distinguishes a zero 
from a null transmission that might occur, for example, 
because of a broken wire. 

Pipeline This is high-speed storage within the CPU of a very fast 
computer to fetch instructions ahead of their use.  This 
process reduces the number of times when the 
processor is stopped while waiting to gain access to 
the next instruction it is to execute.  The pipeline is 
made to contain the next L instructions that might be 
executed on each of the possible execution paths, 
where L is a look-ahead amount in number of 
instructions. 

PPU Problem Preparation Unit of the RAYDAC.  This piece 
of peripheral equipment permitted data and 
programs manually entered via a Teletype Unit to be 
recorded on magnetic tape for reading by RAYDAC 
magnetic tape handlers. 

Processor See ALU. 
Pure Procedure A pure procedure is a set of computer instructions 

intended to be run without being modified.  Many 
users may share a single pure procedure if a means is 
provided for each user to have his or her own data 
upon which the pure procedure may operate.  It is 
also possible for pure procedures to call themselves, 
which in some instances is advantageous. 

Relocatable 
Loader 

A loader that is capable of adjusting the addresses of 
the programs it is loading while performing the normal 
loading process. 

Seek time The time it takes to position the read/write head on a 
disk storage unit in a storage or retrieval operation.  
See Appendix C. 

Segment An amount of storage overlaid with an address space 
that is unique to this storage and is not accessible via 
the addresses of any other address space.  In this 
book, segments will usually be GE-645 segments that 
have a content less than or equal 256K 36-bit words. 

Segmentation The process by which a computer is capable of 
providing addressing within segments. 

Simultaneous 
Differential 
Equations 

Two or more differential equations in which two or 
more dependent variables and the differential 
equations are concurrently satisfied.  For example, 
suppose two functions, x and y, exist, both of which 
are functions of the independent variable t and the 



 216 

following two differential equations also exist: 

,2 xy
dt

dx
+=               xy

dt

dy
43 +=  

These two equations can be solved for x and y as a 
function of t.  [See Differential Equations.] 

System Program A computer program (usually supplied by the 
computer vendor) provided to support users’ 
application programs.  System programs are often 
invisible to the user and supply functions in more user-
friendly forms than those supplied by the computer 
hardware.  For example, I may address the file 
containing this book as “D:\Career\Book.doc” 
instead of “Record 3 of Track 129 of Disk 1 on I/O 
Channel 5”.  Various system programs provide this 
and many other capabilities. 

Timesharing A computer system in which the users gain access to 
the machine by way of remote terminals.  This is in 
contrast to a “batch system” in which the user (or a 
computer operator representing him or her) is in the 
room with the computer and manually mounts and 
dismounts tapes and loads and unloads card hoppers 
and tends printers to cause a computer job to be 
completed. 

Uniprogramming Running one program at a time.  Completely finishing 
one program before beginning the next, in contrast 
to multiprogramming where several programs 
cohabitate the computer and take turns using the 
processor. 

Virtual Memory An array of storage that can be operated upon by 
normal computer instructions, but is addressed by an 
address space much larger than the real address 
space.  The storage that does not fit in the real 
memory is retained in a secondary memory such as 
disk or drum.  The virtual memory may also have other 
capabilities that in conjunction with File System 
software provide for protection of user files and 
management of the real internal memory. 

VMM Virtual Machine Monitor.  See VMM chapter above. 
Word The amount of information in bits retrieved from or 

stored in internal memory in a single access. 
Word length The number of bits retrieved or stored in a single 

memory access. 
 



 217 

NOTES 
 
[A] 

As we seriously got into the business of RAYDAC programming, in 
1952, other people were busily trying to advance the art of 
programming at the same time. [58] Most notably Grace Hopper 
was making great progress.  She had started out as a programmer 
on the Harvard Mark I in 1944, and by now was employed by 
Remington Rand and working on the UNIVAC.  In this year, she 
wrote a paper entitled The Education of a Computer in which she 
described the idea of a compiler.  This paper took up the idea of 
reusable programs and paved the way for the work in high-level 
languages she would pursue for many years to come. 
 
By the end of 1952, the name UNIVAC was becoming synonymous 
with “computer” as Frigidaire was with refrigerators and Kleenex 
was with facial tissues.  Following up on this popularity, CBS used the 
UNIVAC at the Philadelphia factory to forecast the winner in the 
1952 presidential election.  The UNIVAC predicted Eisenhower 
would win when only 5% of the vote had been counted.  However, 
the network failed to believe the results until after midnight Eastern 
Time.  Elections have never been the same. 
 
In the same year, John von Neumann completed the IAS computer 
at the Institute for Advanced Study at Princeton University. 

 
[B] 

IBM introduced the 650 in 1954.  Its internal memory was magnetic 
drum and it performed its arithmetic and addressing in decimal.  It 
was intended to fill the capability gap existing below the 700-series 
machines.  Smaller users that couldn’t afford a 701 or a 704, could 
upgrade from punched card equipment by utilizing a 650. 

 
[C] 

Two users groups had been formed in 1955—the first of their kind to 
exist.   One was SHARE for IBM-701 and 704 (and later 709) users; the 
other was USE for UNIVAC users. 

 
[D] 

As 9PAC was moving along and I was doing a lot of traveling, 
computer technology was moving ahead at a rapid pace.  The 
year 1958 was a signal year in that regard [59].  Control Data 
Corporation, recently founded under the direction of William Norris, 



 218 

entered the market with the fully transistorized CDC 1604.  Seymour 
Cray was the chief architect of the machine.  Jack St. Clair Kilby 
conceived and proved his idea of integrating a transistor with 
resistors and capacitors on a single semiconductor chip, which is a 
monolithic IC.  The SAGE system for Air Defense was put into service 
at McGuire Air Force Base in New Jersey and the first effective air 
traffic control system was made operational for the north-eastern U. 
S.  John McCarthy developed concepts of the LISP programming 
language for manipulating strings of symbols, a non-numeric 
processing language. 

 
[E] 

IBM introduced two small computers in 1959[60]: the 1401 and the 
1620.  They were both character-oriented machines.  The 1401 was 
targeted for use by small businesses, colleges and universities and 
had memory sizes ranging from 4 to 16 k characters (where k = 
1024) and could be equipped with a full array of peripheral devices 
(except magnetic disk memory units?).  The 1620 was targeted for 
use by small scientific users.  It had memory sizes ranging from 20 to 
60 k characters.  It was like a timesharing terminal without much 
software support.  It had no logical place to fit at Hanford, but Fred 
Gruenberger loved it and thought he would like to have one of his 
own. 
 
Also in 1959, General Electric delivered 32 ERMA (Electronic 
Recording Machines—Accounting) systems to the Bank of America 
in California.  The machines employed Magnetic Ink Character 
Recognition (MICR) as a means of capturing data from checks.  It 
was the leading edge of the wave of technology that would lead 
to ATM machines and personal electronic banking. 

 
[F] 

Since 1952[61], Grace Hopper, at Remington Rand and later Sperry 
Rand, had been developing a series of programming languages.  
These culminated in the development of FLOWMATIC in 1960.  The 
languages that were developed made increasing use of natural-
language-like phrases for use in business data processing.  In the 
same year, IBM responded by producing COMMERCIAL 
TRANSLATOR with the same objective.   
 
COBOL (Common Business Oriented Language) was defined as the 
first standardized business computer programming language.  The 
standard was created by CODASYL (Conference on Data System 
Languages) under the leadership of Joe Wegstein of the US Bureau 



 219 

of Standards.  In a more mathematical vein, a committee also 
developed ALGOL 60.  Although ALGOL was not widely 
implemented, it became the conceptual basis of many 
programming languages thereafter. 

 
[G] 

In 1961 MIT put in operation the CTSS [62] (Compatible Timesharing 
System).  This was the first timesharing system.  It was implemented 
on a modified 7090 with bounds registers to isolate user programs 
from one another and a timer for limiting the execution duration of 
separate users.  In the same year, the first integrated circuits 
became available commercially from Fairchild Corporation. 

 
[H] 

While our opportunity to develop a Y computer disappeared in 
1962, the Ferranti Atlas became operational.  It contained such 
advanced features as virtual memory, paging and pipelined 
instruction retrieval—all features to be included in many computers 
of the future. 

 
[I] 

A great achievement was accomplished in 1963—the definition of 
ASCII, the American Standard Code for Information Interchange.  It 
took some time after its definition for the code to come into 
common use, but this was the necessary first step. 

 
[J] 

In 1964, CTSS was still the only operational time-sharing system.  
However, the Dartmouth Time Sharing System [63] was nearing 
operational status.  This system was implemented on a GE-235 and 
featured BASIC as the principal programming language.  The 
system was used for student program development.  This was also 
the year in which Douglas Englehart invented the “mouse” and IBM 
announced the System/360, the first IBM family of compatible 
machines. 

 
[K] 

In 1965, Digital Equipment Corporation introduced the PDP-8.  It was 
the first true minicomputer. 

 
[L] 

In 1963, the B5000 was introduced.  It had a form of addressing 
called segmentation.  In this case, multiple address spaces were 
available each of which was called a segment.  This capability was 



 220 

used to great advantage in the creation of compilers by Burroughs. 
When I arrived in Phoenix, everyone was talking about the recently 
announced Burroughs B-5000.  It included a whole bundle of 
innovations in addition to segmentation: multiprogramming and 
multiprocessing, use of stack segments for process communication, 
use of high-level language in implementation of system programs 
and use of Polish notation in the parsing of language statements.  
The uninitiated reader may be troubled by the inscrutability of these 
attributes, but suffice it to say this machine involved a GIANT LEAP in 
both hardware and programming technology and we needed to 
be able to compete with this class of machine. 

 
[M] 

In 1966, a joint project between IBM and SHARE defined a new 
programming language intended to be useful for both scientific 
and business data processing even as the System/360 machines 
were intended to be.  The language was called PL-1 and was also 
intended to be a high-level system development language. 

 
[N] 

The first third generation computers were delivered in 1967.  These 
used integrated circuits as their primary electronic elements. 

 
[O] 

In 1968, Edsger Djikstra’s paper “GO TO Statement Considered 
Harmful” (Communications of ACM, August 1968) was published 
and was a key event in the striving for more effective methods of 
software development. 

 
[P] 

During 1969 ARPAnet was begun.  This was a network of computers 
that was a harbinger of the Internet.  Ritchie and Thompson at Bell 
Labs started their operating system--a “watered down” version of 
Multics.  They called it Unix. 

 
[Q] 

In 1970 and 1971 two important technological developments came 
along.  Intel Corporation produced the first computer on a chip—a 
microprocessor called the Intel 4004.  In the same period, Alan 
Shugart of IBM used an 8-inch floppy disk in the DISPLAYWRITER 
product. 

 
 
 



 221 

[R] 
The first digital microcomputer for personal use was made available 
in 1972.  It was the MITS (Micro Instrumentation and Telemetry 
Systems) 816.  In 1973, Robert Metcalfe created Ethernet, the basis 
for a “local area net” at Xerox PARC.  

 
[S] 

In 1974, the personal computer trend really started to gain 
momentum.  Scelbi Computer Consulting of Milford, Connecticut 
offered a machine as did Jonathan Titus—the Mark 8.  Gary Kildall 
introduced the first operating system to run independent of the 
platform.  Also, the first ATM machines appeared.  In 1975, Edward 
Roberts, William Yates and Jim Bybee produced the MITS Altair 8800.  
Bill Gates and Paul Allen wrote their first product for the Altair—a 
BASIC compiler.  Also, IBM introduced its first PC, the 5100. 

 
[T] 

In 1976 and for the rest of my career, all of the important activities 
were with personal computers.  In 1976, the Apple II came out.  In 
1977 Commodore Pet and the Radio Shack TRS-80 joined in.  In 
1978, Visicalc was introduced and the first spreadsheet programs 
came into use.  Word was beginning to spread of the convenience 
of these small machines.  Wordstar word processor was added in 
1979.  Perhaps the biggest breakthrough came in 1980 when Alan 
Shugart introduced the Winchester hard drive.  IBM introduced the 
PC in 1981 and provided DOS as its operating system.  In the same 
year, Commodore introduced the VIC-20 and sold a million units.   

 
 
[1]   http://kbs.cs.tu-berlin.de/~jutta/time/ 

The chronology in the Introduction is based 
upon this reference. 

  
[2]   http://www.turing.org.uk/bio/part3.html 

This idea is illustrated by the 
following quote from this web site: “The 
Universal Turing Machine exploits what 
was later seen as the ‘stored program’ 
concept.” 

 
[3]   http://www.turing.org.uk/bio/part3.html 

The paper referred to is On Computable 
Numbers with an Application to the 
Entscheidungsproblem, Aug. 1936. 

 



 222 

[4]   http://ftp.arl.army.mil/~mike/comphist/96summary 
 
[5] Ada, A Life and a Legacy;  by Dorothy Stein, MIT Press Series in the History of 

Computing, 1985 
 
[6]  http://www.epemag.com/zuse/part5.htm  A description of Plankalkul and 

reference to other Zuse works. 
 
[7]  The Preparation of Programs for an Electronic Digital Computer, with Special 

reference to the EDSAC and the use of a 
Library of Subroutines, by Maurice V. 
Wilkes, David J. Wheeler and Stanley Gill. 

 
[8]  http://www.awc-hq.org/lovelace/1997.htm This is a brief biography of Betty 

Holberton. 
 
[9]  http://www.cbi.umn.edu/oh/display.phtml?id=78 In addition to providing an 

interesting discussion of early work on the 
EDSAC and some of its contributors, this 
interview seems to attribute the use of flow 
diagrams for program design to von 
Neumann. 

 
[10]  http://members.iinet.net.au/~dgreen/ Data on first computer deliveries in 1952 

and later are based upon data from this 
URL. 

 
[11] www.cs.unr.edu/~ban/Dclist.html A list of early digital computers in the order 

of their development dates. 
 
[12] http://www.stanford.edu/group/mmdd/SiliconValley/Valley/valley.rtf 
 This contains (toward the end) an excellent 

description of the debate between advocates 
of analog versus digital computers in the 
1950s.  It also indicates that the Hurricane 
Computer (RAYDAC) was considered for 
use in the SAGE system. 

 
[13]  http://www.computer.org/history/development/ 
 The chronology of events in the Introduction 

and Chapters 3 through 13 and Notes is 
taken from this reference. 

 
[14] http://www.thocp.net/timeline/1952.htm  Fred Gruenberger is credited with writing 

the first computer manual in 1952. 
 



 223 

[15] Digital Computer Programming by Daniel D. McCracken (1957) 
 
[16] Generalization: Key to Successful Electronic Data Processing, by W. C. McGee, 

Journal of the Association for Computing 
Machinery 6 (January 1959): 1-23. 

 
[17] Private communication from E. C. Roddy to R. C. McGee.  Email dated June 24, 

2003. 
 
[18]  See Note 15. 
 
[19] http://www.cc.gatech.edu/gvu/people/randy.carpenter/folklore/v6n1.html 
 The first 1103A was delivered to Lockheed, 

Sunnyvale in September, 1956.  It had an 
interrupt capability.  I have been unable to 
find any earlier commercial machine with 
interrupts. 

 
[20] Private communication from Charles Bachman to R. C. McGee.  Email dated 

January 1, 2004.  I am indebted to Charlie’s 
wife Connie for the dates from her personal 
diary that Charlie was able to provide in this 
email. 

 
[21] A Re-evaluation of Generization, Datamation, July/August 1960, pp. 25-29, by R. C. 

McGee and H. Tellier 
 
[22] The history of the General Electric Computer Department up to my arrival in 

Phoenix in 1961 is taken from GE: King of 
the Seven Dwarfs by Homer R. Oldfield. 

 
[23]  http://www.cbi.umn.edu/oh/pdf.phtml?id=92 
 An oral history by Fernando Corbató, his 

early days at MIT including the 
development of CTSS and a brief history of 
Multics and its development.  In this history, 
credit is given to Jack Dennis for the address 
development hardware design of the GE-
645.  I would have thought that Ted Glaser 
should have gotten at least some 
recognition. 

 
[24]  http://www.mit.edu:8001/afs/net/user/srz/www/multics.html 
 Multics home page--the entry to an 

enormous collection of Multics facts and 
information. 



 224 

 
[25]  See Note [13]. 
 
[26]  See note [H] 
 
[27] http://www.cbi.umn.edu/oh/pdf.phtml?id=104 
 This is a personal history by Jack Dennis in 

which he is given credit for recommending 
that both paging and segmentation be 
provided in the GE-645.  He also indicates 
he disapproves of the way the MULTICS 
developers used the hardware provided. 

 
[28] Private communication from Charles Bachman to R. C. McGee.  Email dated July 

30, 2003. 
 
[29] See note [26]. 
 
[30]  GE: King of the Seven Dwarfs by Homer R. Oldfield Page 215. 
 
[31]  http://www.scholzroland.de/VPStuff/MYHIST.htm 
 
[32]  http://starfish.osfn.org/~mikeu/h316/history.shtml 
 
[33]  IBM 7090 PROGRAMMING SYSTEMS, SHARE 7090 9PAC 
               Part 1: INTRODUCTION AND GENERAL PRINCIPALS, Manual J28-6166 
               Part 2: The File Processor, Manual J28-6167 
               Part 3: The Reports Generator, Manual J28-6168 
 
[34]  Private email, Glenn Otterbein to R. C. McGee, 8/27/2003. 
 
[35]  Email, Fred Ourenn to Glenn Otterbein,8/25/2003. 
 
[36]  Email, Fred Ourenn to R. C. McGee, 9/14/2003. 
 
[37] “Evolution of Database Management Systems” by Fry and Sibley, Computing 

Surveys 8 (March 1976). 
 
[38]  Email to R. C. McGee from Phillip Frana dated 11/21/2003 included the following 

references: 
 Introduction to RPG II, 2nd edition 

(Rochester, Minn.: International Business 
Machines Corporation, 1971). 

 
 IBM-System/3: Disk system, RPG II, and 

System Addditional Topics Programmer’s 



 225 

Guide (Rochester, Minn.: International 
Business Machines Corporation, 1970). 

 
 IBM-System/3: RPG II Auto Report Feature 

Reference Manual, 2ne edition, Technical 
Newsletter No. SN21-7691 (Rochester, 
Min.:International Business Machines 
Corporation, 1973). 

 
 IBM-System/3: RPG II Disk File Processing 

Programmer’s Guide, 2nd edition (Rochester, 
Minn.: International Business Machines 
Corporation, 1974). 

 
 Solomon Martin Bernard, System/3 

Programming: RPG II (Englewood Cliffs, 
N.J.: Prentice-Hall, Inc., 1972). 

 
[39]  Postley, John A, Mark IV: Evolution of the Software Product, A Memoir”. IEEE 

Annals of the History of Computing, Vol. 
20, No. 1 (Jan-Mar 1998): 43-50. 

 
[40]  http://www.softwarehistory.org/history/informatics.html 
 
[41]  http://ca.com/acq/sterling 
 
[42]  Bauer, Walter F., “Informatics, An Early Software Company”, IEEE Annals of the 

History of Computing, Vol. 18, No. 2: 70-76 
 
[43]  Private communication: W. C. McGee to R. C. McGee.  Email dated 11/26/2003 

says, ‘Concerning other generalized 
programs, a survey of some 20 of these 
programs is given in my article “Generalized 
File Processing” in M. Halpern and C. Shaw 
(Eds.), Annual Review of Automatic 
Programming (Pergamon Press), 1969.  
Many of these came later than the HAPO 
programs, but some must have been in 
development concurrently. 

 
[44]  http://www.corsairsfreehold.com/nuke.htm 
 
[45]  http://picturethis.pnl.gov 
 
[46]  http://www.pnl.gov/main/welcome/ 
 



 226 

[47]  http://www.pnl.gov/main/welcome/history.html 
 
[48]  “The need for speed”, Tri-City Herald article from Glenn Otterbein to R. C. McGee, 

6 September 2003. 
 
[49]  http://www.honeywell.com/about/page1_1.html 
 
[50]  http://feb-patrimoine.com/Histoire/english/chronoa11.htm 
 
[51]  http://www.bull.com/servers/gcos7/ 
 
[52]  http://perso.club-internet.fr/febcm/english/gecos_to_gcos8_part2.html 
 
[53]  http://www.bull.com/servers/gcos8/ 
 
[54]  http://www.20minutesfromhome.com/twminpages/BULLprofile.html 
 
[55]  http://www.multicians.org/history.html 
 
[56]  Personal email, Paul Kosct to R. C. McGee, dated 10/12/2003 
 
[57]http://www.spies.com/~aek/pdf/honeywell/multics/AL39-

01C_multicsProcMan_Nov85.pdf 
 
[58] See note [13]. 
 
[59] See note [13]. 
 
[60] See note [13]. 
 
[61] See note [13]. 
 
[62] See note [13]. 
 
[63] See note [13]. 



 227 

Index  
1401, 66, 112, 128, 129, 151, 179, 202, 

218 
 
200-line, 79, 80, 94, 98 
 
305 RAMAC, 68, 201 
 
400-line, 94, 110 
 
600-line, 81, 82, 84, 90, 95, 96, 97, 98, 

101, 105, 110, 113, 114, 117, 181, 
183 

601, 4, 6 
604, 5, 6, 34 
650, 50, 58, 128, 151, 163, 217 
 
701, 61, 217 
702, 39, 42, 44, 45, 47, 49, 50, 53, 54, 

58, 60, 61, 64, 65, 151, 165, 202 
704, 50, 58, 61, 217 
705, 58, 61, 151, 202 
709, 58, 59, 60, 61, 62, 64, 70, 81, 128, 

217 
7090, 70, 81, 85, 128, 219 
 
9PAC, 62, 63, 64, 65, 68, 69, 78, 126, 

128, 129, 130, 134, 206, 217 
9PAC Subcommittee, 62 
 
ABC, 5 
Aberdeen Proving Ground. See APG  
ACM, 72, 220 
ACOS, 118, 132 
Ada Byron Lovelace, 10 
AEC, 60, 76, 130, 211 
Aiken 

Howard H., 5, 14, 22 
ALGOL, 219 
Aller 

LCDR James C., 25, 26, 29, 31, 32 
analog computer, 16 
Anchagno 

Jack, 32 

APG, 8 
Arithmetic and Logic Unit, 3, 4 
Arithmometer, 4, 5 
Arizona State University, 74, 114 
Army Specialized Training Program, 

197 
Aronson 

Chuck, 13, 17, 20, 25 
ARPA, 87, 211 
artillery, 9 
assembler, 26, 29, 45, 53, 169, 170, 206 
assembly language, 11, 29, 91, 169 
assembly program. See Assembler 
Association for Computing Machinery. 

See ACM 
Atanasoff 

John V., 5, 7 
ATLAS, 59 
Atomic Energy Commission. See AEC 
Azores, 198 
 
Babbage 

Charles, 4, 10, 26 
Bachman 

Charlie, 61, 68, 98, 99, 100, 102, 134, 
224 

Backus 
John, 52 

Bacon 
Stanley, 198 

Baker 
W.R. G. (Doc), 73 

Banan 
Fred, 63, 82 

Bank of America, 73, 74, 75, 194, 218 
Baugh 

Hal, 17, 20 
Bell Labs, 87, 88, 89, 90, 94, 95, 98, 

126, 220 
Bell Telephone, 4, 87 
Bemer 

Bob, 51 
Berry 

Clifford, 5, 7 



 228 

BINAC, 5, 10, 13, 23 
bi-stable devices, 7, 201 
BIZMAC, 74 
Blasdell 

Bruce, 32 
Blechley Park, 6, 8, 82 
Blocking, 68, 79, 181, 182, 183, 207 
Booth 

Grayce, 100, 101, 134 
Bridge II, 80 
BRL, 8, 9, 10 
BRL Scientific Advisory Board, 9 
Brooks 

Robert, 20 
Buchanan 

Chuck, 70, 101 
Buffering, 68, 181 
Burroughs 

William, 4, 5, 9, 91, 203, 220 
Butch, 88, 89 
 
Calculating Clock, 4, 5 
California Institute of Technology, 15 
Cambellic 

Don, 36 
Cambridge University, 10 
Camelot, 71 
Canning 

Dick, 32 
Cannon 

Joan, 56, 64 
Cantrell 

Harry, 63 
capacitor memory, 8 
Card Programmed Calculator. See CPC 
card reader, 34, 44, 53, 55, 56, 66, 179 
card-to-tape, 66, 79, 83, 179, 181 
Carlyle 

Dick, 102, 111, 112 
Carr 

John W., 52 
Cathode Ray Tube, 7 
Causey 

Robert, 13, 17, 20, 26, 29 

CBI, 129 
CCSC, 121, 123 
Central Control Unit, 3, 4, 138 
Central Processing Unit. See CPU 
Chance-Vaught, 36, 37 
Charles Babbage Institute, 129 
Christine, 32, 33 
Chrysler, 64 
COBOL, 51, 83, 84, 128, 129, 206, 218 
Collosus, 5, 6 
Colton 

Shirley, 13, 39 
Compatible Time Sharing System. See 

CTSS 
compiler, 11, 50, 59, 63, 123, 128, 129, 

206, 217, 221 
Complex Number Calculator, 4, 6 
Comptometer, 4, 5 
Computer Control Company, 30, 31, 128 
Computer Department, 51, 70, 71, 74, 

75, 76, 77, 81, 90, 101, 108, 109, 
110, 223 

Computer Science Corporation, 64 
Computing News, 43, 44 
Conlen 

Bill, 101 
console, 44, 100, 172, 179, 191 
Convair, 38, 58 
Corbató 

Fernando, 61, 87, 88, 223 
Corbett, 197 
Cordiner 

Ralph, 73, 75 
Corporate Computer Science Center. See 

CCSC 
Couleur 

John F., 82, 87, 115, 117, 134 
Cowen 

Ralph, 198 
CPC, 33, 34 
CPU, 83, 87, 103, 104, 212, 214, 215 
Critchlow 

Art, 77, 94 



 229 

CRT. See Cathode Ray Tube 
cryptographer, 198 
Cryptographic Technician, 197 
CTSS, 87, 88, 91, 94, 212, 219, 223 
Cummerford 

Emma, 20, 21 
 
Data Processing Committee, 69 
Datamatic-1000, 59 
DATANET-30, 99 
David 

Ed, 88 
de Colmar 

Charles Xavier Thomas, 4 
delay-line, 7, 36, 157 
Dennin 

Sandy, 33 
Dibble 

Bill, 123 
dictionary, 55, 56 
Digital Differential Analyzer, 15 
Dix 

Walker, 82, 109, 110, 111, 114, 115, 
117, 122 

Djikstraa 
Edsgar, 120, 121, 122 

Dow Chemical, 61 
Dufford 

Don, 13, 17, 20, 21, 25, 26 
DuPont, 41 
Dwarfs, v, 223, 224 
 
Eastwood 

Doug, 87, 89 
Eaton 

Max, 13 
Eckert 

Presper, 5, 6, 7, 8, 9, 10, 11, 14 
Eckert, Wallace, 5 
EDSAC, 5, 6, 10, 11, 13, 26, 29, 45, 

167, 222 
EDVAC, 5, 9, 10, 13, 23 
Eichenberry 

Ralph, 50 

ELECOM 100, 13, 14 
Electronic Recording Method—

Accounting, 73 
Ellison 

Leroy, 84 
Engineering Research Associates. See 

ERA 
ENIAC, 5, 8, 9, 13, 14, 72 
Enigma code, 6, 82 
ERA, 5, 58 
ERA 1101, 5 
ERA 1103A, 58 
ERMA, 73, 74, 75, 218 
 
Fanno 

Robert, 88 
Faul 

Don, 101 
Federal Systems Operation. See FSO 
Fein 

Lou, 31, 33, 36, 39 
Felt 

Dorr E., 4 
Ferranti, 5, 59, 90, 203, 219 
Fichten 

Jim, 69, 70, 101 
file maintenance, 56, 57 
firing tables, 9, 14 
flip-flops, 20, 121 
flow diagrams, 11, 44, 222 
Flowers 

Tommy, 5 
flutter, 15 
Forrester 

Jay W., 5, 7 
FORTRAN, 59, 83, 84, 128, 206 
Franklin Institute, 51, 68, 76 
Freon, 24, 25 
Friden, 14 
FSO, 115, 124, 213 
 
Gagliardi 

Ugo, 111 
Galler 

Bernard, 68 



 230 

Gantt Charts, 31 
GAP, 83, 84 
GCOS, 131, 132, 133 
GE-210, 75 
GE-225, 75 
GE-235, 79, 87, 99, 104, 219 
GE-265, 99, 134 
GE-312, 74, 75 
GE-625/635, 203 
GE-635, 82, 85, 87, 101, 104, 105, 112 
GE-645, 87, 88, 90, 91, 94, 95, 96, 110, 

112, 114, 134, 186, 187, 190, 203, 
214, 215, 223, 224 

GECOS, 84, 85, 86, 87, 88, 92, 96, 101, 
102, 103, 110, 111, 112, 117, 123, 
124, 126, 131, 134, 209 

General Comprehensive Operating 
System. See GECOS 

General Electric, 38, 41, 51, 62, 63, 69, 
70, 71, 73, 74, 75, 76, 77, 80, 81, 
83, 84, 85, 88, 90, 91, 99, 110, 114, 
117, 125, 130, 131, 213, 218, 223 

generalized routines, 55, 57, 59, 60, 62, 
64, 65, 206 

Gibson 
Matt, 17, 20 

Gill 
Stanley, 11, 222 

Glazer 
Ted, 88, 89 

Goldberg 
Bob, 114 
Morgan, 84 

Graham 
Robert, 88 

Granholm 
Jackson, 44 

Greenland, 198 
Grimes 

Bob, 123 
Gruenberger 

Fred, 43, 49, 63, 218, 222 
GUIDE, 61 
Gumble 

Harold, 15 

 
Haanstra 

John, 32, 59, 107 
Hahn 

Mathieus, 4 
Hanford, 39, 40, 41, 43, 44, 45, 47, 49, 

50, 51, 57, 58, 60, 61, 62, 64, 65, 
66, 67, 69, 71, 76, 78, 99, 101, 103, 
107, 126, 128, 130, 131, 134, 206, 
218 

Hanford Atomic Products Operation. See 
Hanford 

Hanson 
John, 32 

Harvard Mark, 5, 217 
Harvey 

Jim, 20 
Hastings 

Cecil, 29 
Heath Robinson, 5, 6 
Heffner 

Bill, 84 
Helgeson 

Bill, 99, 100 
Hereford 

Lou, 69, 99, 101, 102, 103, 106, 107, 
126 

Hermanson 
Doris, 32 

Hines 
Lloyd, 25, 26, 31 

Hobbs 
Bob, 84, 102 

Hollerith, 152 
Herman, 4, 6, 7 

Honeywell, 27, 51, 59, 108, 109, 110, 
112, 113, 114, 115, 123, 126, 128, 
131, 132, 133, 213 

Honeywell New Product Line. See NPL 
Hopper 

Grace, 11, 51, 52, 119, 206, 217, 218 
Hurricane, 13, 14, 222 
Husky 

Harry, 72 



 231 

 
IBM, v, 4, 5, 6, 23, 33, 34, 39, 42, 44, 

45, 49, 50, 52, 53, 56, 58, 59, 60, 
61, 62, 63, 66, 67, 68, 70, 71, 73, 
75, 77, 81, 87, 90, 95, 98, 107, 108, 
112, 125, 128, 129, 130, 131, 132, 
151, 163, 165, 179, 181, 201, 202, 
205, 217, 218, 219, 220, 221, 224, 
225 

IBSYS, 67 
IDS, 69, 98, 99, 100, 102, 105, 106, 208 
ILLIAC, 13 
INA, 16, 17, 20, 21, 26, 33, 213 
Institute for Advanced Study, 9, 217 
Integrated Data Store. See IDS 
International Business Machines. See 

IBM. See IBM. See IBM 
interrupt, 58, 79, 82, 178, 179, 209, 223 
IOC, 82, 83, 105, 203 
 
Jackson 

John, 44, 45 
Jacquard Loom, 7 
job monitor. See monitor 
Jones 

Fletcher, 63, 74 
Jordan 

Bob, 97 
F. W., 7 

 
Katz 

Charles, 51, 76 
Kendrick 

George and Barbara, 25, 26, 73, 76, 
85, 134 

King 
Jane, 63, 84, 134, 223, 224 

Kinneberg 
Lois, 85, 134 

Knox 
Stephanie, 118 

 
Lady Lovelace, 26 
Landrum 

Ed, 118, 124 

LARC, 59 
Lasher 

Claire, 74, 76 
Latimore 

Dave, 80 
LEO, 5, 13 
Levinson 

Dave, 89 
Lincoln-TX0, 59 
loader, 21, 26, 169, 170, 191, 192 
logical design, 20, 121 
Lyons, 5, 6 
 
M236, 81, 82 
magnetic core, 9, 49 
magnetic drum, 44, 90, 157, 163, 190, 

217 
Magnetic tape, 201 
Magnetic Tape Handler, 37, 38, 179 
mainframe, v, 53, 65, 152 
Manchester Mark, 5, 6, 10, 13 
MANIAC, 13 
Marchant, 14, 147 
Mark IV, 21, 129, 130, 225 
Massachusetts Institute of Technology. 

See MIT 
Mastracola 

Phllis, 13 
Mauchly 

John W., 5, 6, 8, 9, 10, 11, 14 
Maynard 

John, 96 
McCarthy, 39, 218 
McCracken 

Dan, 44, 223 
McCurdy 

Peter, 198 
McGee 

Bill, 42, 43, 47, 108, 130, 134, 223, 
224, 225, 226 



 232 

Missile Matricide Study, 33 
MIT, 5, 22, 32, 61, 87, 88, 89, 91, 94, 

134, 219, 222, 223 
monitor, 67, 78 
monitors, 67, 80, 92, 207 
Monroe, 195 
Montee 

Bob, 115 
Moore School, 9, 10 
Morland 

Sir Samuel, 4 
mosaic, 76 
Mueller 

J. H., 4 
MULTICS, 88, 89, 90, 91, 92, 93, 94, 

95, 96, 106, 110, 111, 115, 118, 
126, 132, 134, 209, 224 

multiple record types, 65 
multiprocessor, 83 
multiprogramming, 66, 78, 83, 179, 180, 

216, 220 
multi-programming, 67, 180 
Murphy 

Bill, 32 
 
NAMTC. See Naval Air Missile Test 

Center 
National Cash Register, 74 
Naval Air Missile Test Center, 12, 199 
NCR-304, 74 
neon lamp memory, 8 
New System Architecture. See NSA 
Newman 

Max, 5, 7 
Nielson 

Anna Mae, 41 
Northrup, 30, 34 
NPL, 110, 111, 112, 113, 114, 117, 118 
NSA, 17, 20, 25, 117, 118, 132 
numerical analysis, 17, 21 
 
O’Connor 

Dave, 85, 86 
Oldfield 

Homer R. (Barney), 73, 74, 223, 224 

OMNICODE, 50, 52 
Operating System, 78, 79, 80, 81, 83, 84, 

85, 86, 87, 88, 91, 92, 96, 117, 131, 
186, 190, 208, 209 

Operating Systems, 78, 81, 91, 207, 209, 
210 

ORDVAC, 13 
Ossana 

Joe, 89 
Otterbein 

Glenn, 64, 134, 224, 226 
Ouren 

Fred, 134 
 
Pacelli 

Mauro, 89 
packet, 55, 78 
paging, 90, 91, 189, 203, 219, 224 
paper tape, 2, 8, 198, 200 
parity, 23, 45, 151, 152, 214 
Pascal 

Blaise, 4, 5 
Pascaline, 4 
patent, 5, 83 
Pedersen 

Jim, 20 
Perlis 

Alan, 51 
Petersen 

Richard M., 51, 63 
Philco-2000, 59, 81, 82 
Phillips Petroleum, 64 
Pilot ACE, 5, 13 
Pizzarello 

Tony, 120, 124 
PL-1, 91, 220 
Plankalkul, 10, 222 
Point Mugu, 12, 13, 16, 17, 20, 21, 22, 

29, 30, 31, 32, 33, 39, 45, 59, 73, 
76, 107, 128, 134, 199, 206 

Poland 
Clarence, 42, 52, 58 

Porter 
Jim, 84 

Potter 
Norman, 13, 17, 19, 20, 26, 31 



 233 

PPU. See Problem Preparation Unit 
Presidio of Monterey, 197 
printer, 3, 34, 44, 53, 66, 67, 78, 83, 91, 

179, 203, 204, 205, 207, 208 
Problem Preparation Unit, 23, 174, 215 
Project MAC, 87 
Pulfer 

Ron, 64, 102 
punched card, 7, 23, 42, 43, 44, 53, 64, 

152, 203, 204, 217 
pure procedure, 92, 215 
 
RAND Corporation, 29, 31 
Ratcliff 

Braxton, 89 
RAYDAC, vii, 13, 14, 16, 17, 19, 20, 

21, 22, 23, 24, 25, 26, 27, 29, 30, 
31, 32, 33, 34, 35, 36, 37, 38, 42, 
44, 45, 123, 128, 134, 145, 147, 
148, 152, 157, 164, 167, 172, 174, 
176, 177, 191, 200, 201, 202, 215, 
217, 222 

RAYDAC Assembly Program, 29, 176, 
177 

Raytheon, 14, 17, 19, 20, 21, 24, 26, 30 
RCA, 73, 74, 98, 129 
relays, 6, 7, 198, 201 
Remington Rand, 5, 6, 7, 11, 51, 206, 

217, 218 
Report Generator, 54, 57, 62, 64 
Report Program Generator. See RPG 
Richland, 38, 40, 41, 44, 62, 130, 134 
Robertson 

Ken, 69, 98, 125 
Roddy 

Ed, 54, 55, 64, 101, 134, 223 
RPG, 128, 129, 224, 225 
Runge-Kutta, 37 
 
Saco 

Sarah, 44 
Sage, 59 
Sassenfeld 

Helmut, 76, 88, 89, 96, 98, 125 
Scheutz 

George, 4 

Tabulating Machines, 4, 6 
Schickard 

Wilhelm, 4 
Schreyer, 7 
Schwenk 

Harold, 114 
Scientific Data Systems, 94 
SEAC, 5, 10, 13 
Segmentation, 203, 215 
Shannon 

Claude E., 7 
SHARE, 58, 60, 61, 62, 63, 65, 67, 68, 

69, 72, 82, 87, 115, 126, 130, 217, 
220 

Shockley 
William, 7 

Sisson 
Roger, 32 

Smith 
Allen, 100 

Soden 
Walt, 25, 26, 33 

software, v, vi, 16, 45, 50, 81, 82, 84, 86, 
89, 92, 96, 97, 101, 105, 106, 110, 
111, 112, 120, 122, 124, 129, 130, 
133, 212, 216, 218, 220 

Software Factory, 123 
sort program, 33, 54, 56 
source file, 55, 56, 57 
Sperry Rand, 6, 218 
Spielberg 

Arnold, 74, 75, 94 
Steven, 94 

SRI, 73 
SSEC, 5 
Stanford Research Institute, 73 
Stanford University, 73 
Stibitz 

George, 5, 7 
Stockmal 

Kay and Frank, 32 



 234 

Stockton, 43, 194, 197, 198, 199 
Stockton Symphony Orchestra, 197 
stored-program, 6, 8, 9, 10, 22, 140 
STRETCH, 59 
Structured Programming, 120 
SWAC, 5, 13, 16, 72, 201 
Swanson 

Margaret, 13 
SYSOUT, 67, 78, 83 
 
Tani 

Paul, 63 
Tape Handler. See magnetic tape handler 
tape-to-card, 66, 83, 179 
tape-to-printer, 66, 179 
teletype, 198 
Tellier 

Harry, 39, 41, 42, 53, 63, 69, 71, 96, 
98, 111, 119, 125, 130 

Texas Instruments, 73 
Thompson 

Chuck, 42, 45, 50, 52, 54, 57, 70, 220 
Thompson Ramo Wooldridge, 64 
thyratrons, 7 
Tupac 

Jim, 13, 17, 19, 20, 21, 25, 26, 31, 134 
Turing, 7, 8, 11, 221 
 
UCLA, 13, 16, 17, 213 
Union Carbide, 62, 64 
uniprogramming, 86, 213 
UNIVAC, 5, 6, 8, 11, 13, 32, 51, 59, 

129, 217 
Universal Turing Machine, 8 
University of California, 198, 199 
University of Idaho, 197, 198 
University of Manchester, 10, 11 
University of Michigan, 52, 68 
University of Pennsylvania, 5, 9 
Utility Programs, 26, 191 
 
Vance 

Ed, 81, 82, 84, 86, 88, 96, 122, 123, 
124 

Verea 
Ramon, 4 

Viehe 
Frederick, 7 

Virtual Machine Monitor. See VMM 
Vissotsky 

Vic, 88, 89, 98 
VMM, 110, 112, 113, 114, 115, 117, 

119, 122, 127, 133, 216 
von Leibnitz 

Gottfried, Wilhelm, 4 
von Neumann, 191, 217, 222 

John, 7, 8, 9, 10, 11 
Von Neumann Computer, 3 
Vought 

Pop, 42 
 
Waller 

Bob, 17, 20 
Wang 

An, 7 
Weil 

John, 81, 88 
Weizenbaum 

Joe, 32, 36, 73 
WELLMADE, 120, 121, 122, 123, 127, 

133 
WEYCOS, 99, 101, 103, 104, 105, 106, 

108, 132, 134 
WEYCOS I, 101, 106 
WEYCOS II, 101, 103, 108 
Weyerhaeuser, 98, 99, 100, 101, 102, 

103, 104, 106, 108, 109, 120, 125, 
127, 132 

Wheeler 
David J., 11, 222 

Whirlwind, 5, 8, 13, 22, 59 
Wilde 

Jim, 110 
Wilkes 

Maurice, 5, 11, 222 
Williams 

Freddie C., 5, 7 
Jackie, 124 
Stan, 63, 101, 134 
Wynn, 5, 7 



 235 

Williams tubes, 8, 22, 45, 154, 157, 158, 
200 

Wimberley 
Chuck, 34, 45 

Woodward 
George, 107 

Wright 
Kendall, 42, 43, 52, 58, 70 

 
X computer, 79 
Xerox Data Systems, 122 
Y computer, 78, 79, 219 
 
Yelen 

Sigmund, 17, 20 
 
Z1, 4 
Zuse 

Conrad, 4, 10, 222 

 

 
 


	Table of Contents
	Preface
	Introduction
	Getting Started
	Computer Control Company
	Hanford—Getting Started
	Getting to Work at Hanford
	The 709 and SHARE
	Getting Started at General Electric
	GE-625/35
	GE-645
	WEYCOS
	VMM
	WELLMADE
	Summing Up
	Epilog
	Acknowledgements
	Appendix A—Some Computer Fundamentals
	Appendix B—Representation of Computer Information
	Appendix C—Computer Memories
	Appendix D—Computer Interior Decor
	Appendix E—Computer Programming Languages
	Appendix F—RAYDAC Programming
	Appendix G—RAYDAC Assembly Program
	Appendix H—Multi-Programming
	Appendix I—Blocking and Buffering
	Appendix J—GE-645 Addressing
	Appendix K—Utility Programs
	Appendix L—Personal Background
	Appendix M—Evolution of Computer Technology
	GLOSSARY
	NOTES
	INDEX

