
International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878, Volume-8 Issue-4, November 2019

2455

Published By:
Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: D7213118419/2019©BEIESP

DOI:10.35940/ijrte.D7213.118419

Various Research Opportunities in High Utility

Itemset Mining

Sandeep Dalal, Vandna Dahiya

Abstract: Pattern mining is a technique, which discovers

interesting, hidden, unpredicted and useful patterns of data from

the database. Most of the research work in pattern mining has

been focused on the traditional way of Frequent Itemset Mining

(FIM) and Association Rule Mining (ARM) for pattern-

discovery. Patterns in frequent itemset mining are based on the

occurrence frequency of items. Although frequent pattern mining

is useful, the assumption that ‘frequent patterns are interesting,’

doesn’t hold for numerous applications. High Utility Itemset

Mining (UIM) overcomes this limitation of frequent itemset

mining. The aim of HUIM is to find the patterns based on a

utility function where the utility can be measured in terms of

revenue, profit, weight, frequency, interestingness or time spent

on some webpage, etc. Mining patterns with high utility can be

seen as a generalization of FIM where the transaction database

is the input and every item is having a utility factor representing

its importance and might have non-binary quantities in the

transactions. This paper surveys various recent advances and

research opportunities in the field of high utility itemset mining.

Keywords: Itemset Mining, High Utility, Frequent Itemset, Data

Mining, Candidate Pruning

I. INTRODUCTION

Data mining is the process of discovering hidden and useful

information from huge databases. Various data mining

algorithms have been proposed to analyze the data

depending upon the type of knowledge to be mined

(Aggarwal, 2015; Han & Kamber, 2011). Patterns mining

algorithms are designed to extract interesting, useful,

unexpected and unpredicted patterns from data (Fournier et

al, 2017; Viger et al, 2017). The patterns can be of various

types such as sequential patterns, itemsets, outliers, graph

structures, trends etc., each providing a different knowledge

to the user. It is an unsupervised learning where no prior

class, category or label type is required.

Frequent itemset mining is the key area in pattern mining,

which discovers the itemsets that occur frequently in the

database (Agrawal & Srikant, 1994). The information is

very useful in various spheres such as market basket

analysis, web analysis, click stream analysis, software bug

detection etc. It finds the itemsets with the occurrence count

more than the minimum threshold specified by the user. For

example, if a customer buys a mobile phone, he may also

buy a screen cover and phone cover. If another customer

buys milk, he may also buy curd and bread. Such kind of

patterns can be found on mining large set of transactions.

Revised Manuscript Received on November 30, 2019.
Sandeep Dalal, Assistant Professor, Department of Computer Science

and Applications, Maharshi Dayanand University, Rohtak, India.

Vandna Dahiya, Research Scholar, Department of Computer Science
and Applications, Maharshi Dayanand University, Rohtak, India.

Based on the buying history of a customer,

recommendations could be provided to customers. In past,

the researchers mainly focused on the conventional way of

frequent itemset mining and Association Rule Mining

(ARM) for pattern-discovery where patterns were

discovered based only on the occurrence frequency of items.

Such patterns are beneficial but are not convenient for every

domain. For example, FIM may generate the frequent

pattern for itemset {milk, butter}, as they are the most

common items of a grocery store but might leave the itemset

{champagne, nuts}, which is less common but having more

profit. So, there is the need to consider other profit-

generating factors also apart from the occurrence frequency

of the item. Utility mining addresses this issue with a utility

factor, which is associated with every item (Fournier et al,

2014; Lin, J.C.W. et al, 2011). The utility factor composed

of quantity of the item and some measure of interestingness

such as weight, profit, side effect or other preference of user.

The utility mining is therefore a task of discovering the set

of items occurring together in transaction database and

yields a high profit. There are many application areas where

the technique for high utility mining is employed such as

online shopping, recommendation systems, cross marketing,

biological gene analysis, mobile commerce etc. HUIM can

be reflected as generalization of FIM, as if the weights have

unit values, it will degenerate to FIM. The generalized

model can be used for various tasks such as to discover all

itemsets with high yield of profit, to find the set of most

visited webpages or to find frequent patterns in the

traditional way.

HUIM is complex than FIM because the utility of an itemset

does not satisfy monotonic and anti-monotonic properties

(Yun, U. et al, 2014; Viger et al, 2015). A subset of high

utility itemset may or may not be HUI. This paper presents a

review of high utility itemset mining algorithms and various

extensions to the problem of HUIM along with the future

prospects.

The rest of the paper is organized as follows: Section 2

introduces the problem of high utility itemset mining with

the mathematical preliminaries. A survey of popular HUIM

algorithms has been described in section 3. The possible

extensions of HUIM have been presented in section 4.

Section 5 presents various research opportunities in HUIM.

Lastly, conclusion is drawn in section 6.

Various Research Opportunities in High Utility Itemset Mining

2456

Published By:
Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: D7213118419/2019©BEIESP

DOI:10.35940/ijrte.D7213.118419

II. PROBLEM DEFINITION

A. Motivation

The goal of high utility itemset mining is to discover all the

itemsets with a utility, which is no less than a user-specified

value called as minimum utility threshold and may be

denoted as minutil. Transactional database can serve as a

basis for decision-making strategies as important market and

user trends can be found out in these transactions. Lets take

the example of online advertising. By checking the browsing

history/records of a client, the Ad agency could display the

ads the user is interested in. This will be more relevant to the

user and profitable for the Ad agency. But there will be too

many candidate ads with different prices. The problem is

now to display the set of Ads, which are more profitable for

the user. Humbly displaying the top-k expensive Ads will

not be much useful, as only few users will be interested in

them. Whereas, if there are Ads with less profit but a huge

number of interested users, the summed revenue will be

more than the top-k money-making Ads. FIM cannot solve

this problem as it only considers the unit profit and

frequency of the item. HUIM algorithms can be embraced to

find the set of most optimal Ads to be displayed.

B. Notations

The standard key terms used in HUIM are defined in this

section. Consider a transactional database D, composed of

set of transactions, T = {T1, T2, T3…Tn}. Each transaction Tr

 D has a unique identifier Tid. Let I ={I1, I2, I3…Im} be the

set of distinct items. An itemset X is a set of items {Ii1,

Ii2…Iiz} where Z denotes the length of X. The common

definitions used in HUIM are presented here. Table 1 and

table 2 are used for the references.

Definition 1 (Internal Utility and External Utility): Each

item I is associated with a positive number called as external

utility P(Ij), corresponds to the unit profit and internal utility

Q(Ij, Tr) based on number of occurrence of the item. For

example, External Utility of item A is 3 and its Internal

Utility in T1 is 1.

Definition 2 Utility of an item Ii in a transaction Tj is

defined as: u(Ii, Tj), product of profit of item with its

quantity in a transaction. For example, utility of A in T3,

u(A, T5) is 6.

Definition 3 Utility of an itemset X in a transaction Tj is

defined as: u(X, Tj) = Ii X (Ii, Tj). For example, utility of

itemset u({BE}, T4) = 2*6 +1*4 = 16.

Definition 4 Utility of a transaction Tj is defined as:

TU(Tj) and computed as u(Tj, Tj). For example, transactional

utility TU(T4) = u(T4, T4) i.e. 12+10+4+10 = 32.

Definition 5 Utility of an itemset in database D is defined

as: U(X) = TjDXTj(X, Tj). For example, utility for itemset

{C, D} is U({C, D}, T1) + U({C, D}, T3) is 29 + 39 = 68

Definition 6 High Utility Itemset HUI, an itemset X is

called as high utility itemset (HUI) iff the utility of an

itemset X is no less than a minimum utility threshold

specified by the user, minutil.

So, the problem statement is to find the high utility itemsets

from the database. Various algorithms have been proposed

so far to mine the HUIs, which are being discussed in the

next section.

Table I: Transaction Database

Tid Transactions

T1 (A, 1), (C, 1), (D, 3)

T2 (A, 2), (C, 6), (E, 2), (F, 4)

T3 (A, 1), (B, 2), (C, 3), (D, 3), (E, 1)

T4 (B, 2), (C, 2), (E, 1), (F, 2)

T5 (A, 2), (F, 5)

Table II: External Utilities of Items

Item Name A B C D E F

External Utility 3 6 5 8 4 5

III. OVERVIEW OF HUIM ALGORITHMS

Chan, Yand and Shen first presented the idea of HUIM in

2003 and Yao et. al. gave the model in 2004. After that,

many algorithms have been proposed which differ in the

type of data structure and strategy they use. They can be

grouped into two categories based on the number of phases

they have. The algorithms of group A first generate the

possible candidates in phase one and then calculate their

utilities in second phase by recursive calls to explore the tree

structure. The group B algorithms directly calculate the

utilities of itemsets without candidate generation by using

various pruning strategies, data structures and other

techniques.

A. Group A- The Two Phase Algorithms

The first category of algorithms is referred as two-phase

algorithms as they usually have two phases. In phase 1,

candidate-sets are generated by overestimating the utilities

of itemsets using TWU-model. An itemset I is kept in

memory if TWU(I) minutil and its supersets can be

explored. Else if TWU(I) < minutil, the itemset is discarded.

In phase 2, database is scanned to count the exact utilities of

the candidates of phase 1. The low-utility itemsets are

filtered out and high utility itemsets are reverted to the user.

The two-phase algorithms are complete algorithms as they

generate all high utility itemsets from the search space. But

these algorithms generate too many candidate sets and the

database is also required to scan multiple times to weed out

the low-utility itemsets. This consumes more memory and

computation time. So, the methodology of two-phase

algorithms is inefficient. Various optimal strategies have

been designed to prune more number of candidates in the

search space by decreasing the TWU upper bound. But to

overcome the generate-and-test approach, one-phase

algorithms have been designed where there is no need to

generate the potential

candidates of HUI.

International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878, Volume-8 Issue-4, November 2019

2457

Published By:
Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: D7213118419/2019©BEIESP

DOI:10.35940/ijrte.D7213.118419

Some of these algorithms are discussed in this section.

 Two-Phase Algorithm

The two-phase algorithm adapts the Apriori algorithm

(Agrawal & Srikant, 1994) (Agrawal & Srikant, 1994; Liu Y

et al, 2005). It explores the search space in breadth-first

manner, where, the single items are considered first. These

single-itemsets are then used to generate 2-itemsets, then 3-

itemsets and so on until the largest itemset is found. Then,

the second phase of the algorithm starts where exact utility

of each itemset is calculated and itemsets with utility

minutil are returned to the user and rest are discarded. The

transaction database is required in standard horizontal

format. Minimum utility threshold is also given as input.

The two-phase algorithm suffers from the problem of level-

wise candidate generation and test approach. It combines the

itemsets without looking into the database. So, there may be

some patterns generated by it, which do not exist at all in the

database and expends the time in their processing. Also,

database has to be scanned repeatedly to calculate the

utilities. These two factors consume a lot of time. Also, with

the breadth-first approach, memory requirements are also

high, as at any moment, the algorithm may need to keep all

k-itemsets in the memory in the worst case. Various

researchers have modified this second phase by storing the

itemsets in better data structure like hash-tree to reduce the

memory cost. Pattern growth algorithms tackle some of the

downsides of two-phase algorithms (Fournier et al, 2013;

Ahmed C. F. et al, 2009; Hong T.P. et al, 2014). Database is

scanned in the phase 1 to generate the itemsets, which

actually exists in the database. Also, the cost of repeated

scans of phase 2 is lessened by using compact-

representations such as projected database, which is reduced

version of original database. Most of the algorithms here use

depth-first approach where less number of itemsets are

prerequisite to be kept in memory during the search. Some

of the pattern-based two-phase algorithms are discussed

here.

 IHUP

Incremental High Utility Pattern mining (IHUP) algorithm

was formerly proposed for incremental and interactive

HUIM. On changing the inputs, i.e. when there is any

update in a database or the minimum utility value is

changed, IHUP can use the former results of mining and

avoids unnecessary re-computations. It uses an FP-tree like

structure called as IHUP-TWU-tree, where restructuring is

not required. It is a very compact structure with all the

useful information in it. IHUP takes advantage of the fact

that in some cases of updates, there may be the transactions

with common items. So, it exploits the path overlapping or

prefix-sharing way and a very suitable algorithm for

interactive and incremental mining.

 UP-Growth

Utility-Pattern Growth (UP-Growth) uses a compact tree-

structure named as UP-tree. First, the utility values are

counted for single items. Using the order of these utilities,

FP-tree is constructed like a prefix tree. For every node, UP-

tree maintains the transaction information. Two novel

strategies were proposed - Discarding Local Unpromising

Items (DLU) to discard the low-utility items from the path

of UP-tree and Decreasing Local Node Utilities (DLN),

where minimum item utilities of descendant nodes are

decreased while creating local-UP-trees. This algorithm

works well in case of low minimum utility and when the

length of transactions is very long. Further improvement has

been done in this approach by using histograms for item-

quantities for the nodes, called as UP-Hist algorithm.

The two-phase algorithms are complete algorithms as they

generate all high utility itemsets from the search space. But

these algorithms generate too many candidate sets and the

database is also required to scan multiple times to weed out

the low-utility itemsets (Fournier et al, 2011) This consumes

more memory and computation time. Thus, the methodology

of two-phase algorithms is inefficient. Various optimal

strategies have been designed to prune more number of

candidates in the search space by decreasing the TWU upper

bound. Still, the accumulated values of TWU are required in

node utilities, which also result in generating huge number

of candidates. To overcome the level-wise generate-and-test

approach, one-phase algorithms have been designed where

there is no need to generate the potential candidates of HUI.

B. Group B- One Phase Algorithm

The algorithms in this group calculate the utilities of

itemsets directly and do not generate the candidate sets. So,

there is no need to store the candidate sets in the memory as

an itemset is identified as high or low utility itemset

immediately. Many novel concepts of upper bounds were

introduced in one-phase algorithms such as remaining

utility, local-utility, sub-tree utility etc. HUI-Miner was the

first design in one-phase algorithms (Liu & Qu, 2012;

Fournier et al, 2018). Many optimal versions have also been

designed for this algorithm such as HUP-Miner, HUI-

Miner*, mHUIMiner etc. Other one-phase algorithms are

D
2
HUP, FHM, EFIM etc. The brief overview of some of the

imperative algorithms is presented here.

The algorithms of one-phase can be divided further into two

categories-utility-list based and pattern-growth based.

 Utility-List Based Algorithms

The algorithms here use the vertical representation of

database where, a list of items is maintained indicating the

transactions having them. This is unlike from the

conventional-horizontal representation where the entries are

composed of transactions and their items. Utility-

information of the itemsets is stored in utility-list data

structure, which is a vertical data structure and inspired from

tid-list data structure of frequent itemset mining. This data

structure is very significant as the utility of an itemset can be

obtained directly from it. It is also used to prune the search-

space.

Various Research Opportunities in High Utility Itemset Mining

2458

Published By:
Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: D7213118419/2019©BEIESP

DOI:10.35940/ijrte.D7213.118419

HUI-Miner

HUI-Miner was the first algorithm where there was no need

to generate the candidate sets (Liu & Qu, 2012; Fournier et

al, 2018). It can discover HUIs directly. So, it outperforms

the two-phase algorithms. Utility information is stored in

utility-list, which is a vertical data structure and is very

advantageous as the utility of an itemset can be obtained

directly from it without scanning the database. A single scan

of database is requisite to create the utility-lists of all

itemsets taking single items. Then join operation on utility-

ist is implemented to get the utility-lists of larger itemsets.

The join operation is costly and thus the algorithm is not

efficient for larger datasets.

HUP-Miner

HUP-Miner is an extension to HUI-Miner (Krishnamoorthy

S, 2015). Two pruning strategies were added to it- the first is

based on partitioning of database and the second is look-

ahead pruning. HUP-Miner routines the number of partitions

internally based on the input value k supplied by the user.

The value of k concludes the running time and memory

usage for the algorithm. The optimal value of k should be

found experientially for a particular dataset. Apart from the

overhead of external calculation of k, HUP-Miner is faster

than HUI-Miner.

FHM

Fast High Utility Itemset Mining (FHM) algorithm is an

improvement over HUI-Miner (Fournier 2014). A novel

approach of Estimated Utility Co-occurrence Pruning

(EUCP) was proposed, with less memory overhead and was

used with utility-list data structure during mining of HUIs.

The algorithm uses depth-first approach and creates a

utility-list for every itemset visited in the search space.

There are less join operations (up to 95% less than HUI-

Miner) in this approach. First the EUC structure is created

using a single scan of database. The longer itemsets are

gained by executing join-operations on the utility-lists of

smaller itemsets. Due to less number of costly join

operations, this algorithm is nearly six times speedier than

HUI-Miner.

The algorithms with utility-lists data structure are easy to

implement and more efficient than two-phase algorithms.

There are some drawbacks of these algorithms. First, they

may explore some itemsets, which never appear in the

database as they get them from join operations and not by

database scanning. So, time is wasted in their computation.

Second, the memory consumption may be high as utility-list

is maintained for each visited-itemset and in the worst case

it may have the tuple for all the transactions. The join

operation is also costly. To overcome some of these

limitations, the optimal versions of the algorithm HUI-

Miner and FHM have been proposed such as ULB-Miner

(Duong et al, 2017), HUI-Miner* (Fournier et al, 2018),

mHUI-Miner (Peng AX. et al, 2017) etc. A buffer called as

utility-list buffer (ULB) is used in ULB-Miner where the

memory can be reused to store the utility-lists, which then

improved the runtime and memory usage. In HUI-Miner*,

an improved version of utility-list called as utility-list* is

used to speed up the algorithm. Another HUI-Miner based

algorithm is mHUI-Miner where the itemset development

process is guided using a tree structure and needless creation

of utility list is avoided. It thus avoids the consideration of

itemsets that do not exist in the database.

 Pattern-Growth One-phase

The limitations of utility-list based algorithms have been

addressed in pattern-growth one-phase algorithms. The

search space is explored by database scanning and only

existing patterns or itemsets are explored further.

D
2
HUP

D
2
HUP was the first algorithm of this category (Liu J et al,

2012). It also generates HUIs without candidate generation.

The algorithm uses depth-first search. A novel data structure

called as Chain of Accurate Utility-lists (CAUL) was

proposed. It counts the itemsets as prefix addition of another

itemsets. It filters out the irrelevant items during the budding

HUIs from sparse data. This approach takes less memory

than tree structures. This algorithm is more efficient than

Up-Growth and Two-phase.

EFIM

Efficient High Utility Itemset Mining (EFIM) performs

depth-first search and uses horizontal representation of

database, which reduces the memory usage (Fournier et al,

2015). Efficient techniques for database projection and

merging of similar transactions were proposed in this

algorithm that condenses the size of database and decreases

the cost of database scans. Each itemset is processed in

linear time and space. Further, a reusable array-based utility

counting technique was proposed called as Fast Utility

Counting (FUC) to compute new upper bounds - local utility

and sub-tree utility. These novel upper bounds further

reduce the search space. In experiments, EFIM is found to

be approximately two to three times faster and consumes

upto 8 times less memory than all the above algorithms such

as HUI-Miner, UP-Growth, FHM.

C. Comparison of HUIM Algorithms

A brief overview of some standard HUIM algorithms has

been presented in the above section. The table below

provides an assessment of these algorithms in terms of their

characteristics.

International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878, Volume-8 Issue-4, November 2019

2459

Published By:
Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: D7213118419/2019©BEIESP

DOI:10.35940/ijrte.D7213.118419

Table III: Comparisons of Various HUIM Algorithms

Sr.

No

Algorith

m

Year Phase Search-

Type

Data

Base

Approach Performance

1 Two-

Phase

2005 Two Breadth

-first

Horizonta

l

Apriori based, overestimate

the utilities in phase 1, then

filters in phase 2.

Inefficient, generates many

candidates in phase 1.

2 IHUP 2009 Two Depth-

first

Horizonta

l (prefix-

tree)

‘Build once, Mine many’

property for incremental

HUIM.

Efficient in memory usage and

running time, but huge number of

recursive calls due to tree

structure.

3 UP-

Growth

2010 Two Depth-

first

Horizonta

l (prefix-

tree)

Based on FP-Growth, it

constructs UP-tree to store

the itemsets.

Uses DLN, DGN, DLU, DGU

(local and global) decreasing and

discarding strategies for pruning,

Fewer candidates.

Efficient for dense databases but

huge number of recursive calls

due to tree structure.

4 HUI-

Miner

2012 One Depth-

first

Vertical

(utility-

list)

Avoids generation and test

approach of candidates.

Inefficient join operation and not

scalable. Worst for sparse datasets

as no good pruning strategy.

5 FHM 2014 One Depth-

first

Vertical

(utility-

list)

Extends HUI-Miner,

precompute the TWUs and

less join operations

95% less join-operations and 6

times faster than HUI-Miner

6 HUP-

Miner

2015 One Depth-

first

Vertical

(partition

ed utility-

list)

Extends HUI-Miner, limits

the search space using

various pruning and

partition strategies

2-3 times faster than HUI-Miner

7 EFIM 2015 One Depth-

first

Horizonta

l

(merging)

Linear time search is

possible with array based

utility counting technique

Low memory consumption,

because of projected database and

merging approach

8 D
2
HUP 2016 One Depth-

first

Vertical

(hyper

linked

list-chain

of

accurate

utility

list)

Maintains CAUL- chain of

accurate utility list

40 times faster than HUI-Miner

9 mHUI-

Miner

2017 One Depth-

first

Vertical

(utility-

list)

Global tree for transaction

information and utility list

for different items.

Outperforms others for sparse

datasets and comparable for dense

datasets.

10 ULB-

Miner

2017 One Depth-

first

Vertical

(buffered)

Memory-re-utilization

approach and estimated

utility co-occurrence

structure

Using buffer, 10 times faster than

other utility-list based algorithms

and consumes less space.

11 UP-Hist 2018 Two Depth-

first

Horizonta

l

(histogra

m)

Uses histogram to store the

utility information of nodes

Efficient than UP-Growth

Various Research Opportunities in High Utility Itemset Mining

2460

Published By:
Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: D7213118419/2019©BEIESP

DOI:10.35940/ijrte.D7213.118419

IV. VARIOUS EXTENSIONS TO HUIM

In this section, various extensions possible to high utility

itemset mining has been discussed for further possible

research opportunities.

 Top-K High Utility Itemsets

In HUIM, there is a prerequisite to externally specify the

value of minimum utility threshold. It directly influences the

performance of algorithm along with the number of patterns

mined. If the utility threshold were set too low, many

irrelevant itemsets would be there with increased memory

consumption and running time. If the value is set too high,

there would be very less itemsets and the important

information would get lost. To tackle this problem, the

parameter minimum-utility is superseded by the parameter k

and the algorithm is operated as to find the top-k high utility

itemsets from the database (Fournier et al, 2016).

 HUIM with Negative Utilities

Occasionally, items are sold with low or negative profits to

attract customers to the stores. In such cases, utility of an

item become negative and the traditional HUIM algorithms

cannot mine them because they will not satisfy the TWU

property (Chu C et al, 2009). Algorithms can be developed

with novel upper bounds that can mine the itemsets with

negative utilities.

 HUIM with Discount Strategies

Various discount strategies can be combined in marketing

(Bansal R et al, 2014). For example, An item may be tagged

as a discounted item in various ways such as percentage

discount, buy one get one, buy two get 70% on another two

etc. In such cases, there is a need of additional information

to be stored with the items.

 HUIM with Length Constraints

Often, users are interested in smaller set of itemsets, as

longer itemsets are often rare. Length constraints on itemsets

can be applied as further extension to HUIM (Duong et al,

2016).

 HUIM with Correlations

Itemsets mined with the HUIM algorithms are often not

correlated (Fourier et al, 2015). For example, any thing

buying with an expensive item would be high utility itemset.

But such itemset is not much useful to promote the less

expensive item. Users are interested in correlated items to

make business strategies.

 Periodic HUIM

Periodic high utility mining is a concept where, mining is

done for group of items that are bought together cyclically.

For example, a customer may buy same set of kitchen or

household items weekly or monthly. Marketing strategies

can be developed for such customers for example, offering

discounts, rewards or points to attract more sales (Duong et

al, 2016).

 HUIM for Dynamic Databases

Most of the algorithms assume the database as static. When,

there is any update in the database, results cannot be updated

and there is the need to run the algorithm from scratch.

There is need to develop the incremental and interactive

algorithms for dynamic databases (Fourier et al, 2015;

Ryang H & Yum U, 2016).

V. RESEARCH PROSPECTS

Several algorithms have been proposed by various

researchers in the field of HUIM for mining various types of

itemsets. Still, numerous research opportunities are there in

this field. Some of them are discussed here:

 Novel Applications

The pattern mining algorithms can be applied in various

domains such as social network analysis, graph analysis,

community algorithms, Internet of Things, Big Data.

Several novel applications can be expected by using HUIM

methods in these emerging areas.

 Complex Data and Patterns

Most of the HUIM algorithms are for transactional data. The

algorithms can be enhanced to work on complex and

dynamic data like graphs, spatial data, time-series, complex

sequence data etc. The pattern mining algorithms can extend

their support in mining more complex and beneficial

patterns such as closed patterns, maximal patterns, sub

graphs etc.

 Scalability

Scalability is one of the core issues to be deal with to meet

the new data challenges. Most of the HUIM algorithms have

been developed for small databases. Scalability of these

algorithms is one of the core aspects for future research.

 Work Partitioning and Load Balancing

One of the challenges in parallel processing is how to

partition the jobs so that they can be executed concurrently

on parallel nodes. The ideal scenario is to distribute the

workload equally. Precise methods are needed to

guesstimate the resource requirement for each process to

uniformly partition the work in parallel processing. Also,

dynamic load balancing techniques are desirable to re-

distribute the work to further optimize the processing.

 Privacy

Various algorithms have been developed for privacy

preserving but they are not used in the field of high utility

itemset mining. Privacy is the chief concern and of

paramount importance in data mining especially when most

of the data used for HUIM is personalized to the user.

 Enhanced Algorithms

The performance of the algorithms can be enhanced in terms

of time and memory usage for larger databases.

International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878, Volume-8 Issue-4, November 2019

2461

Published By:
Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: D7213118419/2019©BEIESP

DOI:10.35940/ijrte.D7213.118419

Various opportunities are there in the field of parallel and

distributed frameworks to raise the speed and scalability of

the algorithm. Also, work can be done in GPU and multi-

core environments.

VI. CONCLUSION

High utility itemset mining is an emerging area of research.

The utility information is of great interest for various

decision-making domains like medical, business, security,

banks, retail etc. This paper has presented a survey of

various popular algorithms in the field of utility mining,

which can be very helpful for developing the more efficient

and optimize methods. Various extensions to the problem of

HUIM have been discussed along with several research

opportunities. HUIM can be used in various greener

domains to create novel applications. The future work can

incorporate soft computing, parallel computing and other

frameworks to enhance the performance of the algorithms

on larger, distributed, dynamic and complex data sets.

REFERENCES

Aggarwal, (2015). C.C.: Data mining: the textbook. Springer, Heidelberg.

1. Agrawal, R., Srikant, R.(1994): Fast algorithms for mining

association rules. In: Proc. 20th int. conf. very large data bases, pp.

487–499. Morgan Kaufmann
2. Ahmed, C.F., Tanbeer, S.K., Jeong, B.-S., Lee, Y.-K. (2009):

Efficient Tree Structures for High-utility Pattern Mining in

Incremental Databases. IEEE Trans. Knowl. Data Eng. 21(12), 1708–
1721

3. Bansal, R., Dawar, S. and Goyal, V. (2015): An efficient algorithm

for mining high-utility itemsets with discount notion. In: Proc. Intern.
Conf. on Big Data Analytics, 84–98. Springer

4. Chan, R., Yang, Q., Shen, Y. (2003): Mining High Utility Itemsets.

In: Proc. of 3rd IEEE Int’l Conf. on Data Mining, pp. 19–26. IEEE
5. Chu, C., Tseng, V.S. Liang, T. (2009): An Efficient Algorithm for

Mining High Utility Itemsets with Negative Item Values in large

databases. Applied Mathematics and Computation 215(2), 767–778
6. Dalal Sandeep, Dahiya Vandna, (2018): Review of High Utility

Itemset Mining Algorithms for Big Data, In: Journal of Advanced
Research in Dynamical and Control Systems- JARDCS, 10(4), pp:

274-283

7. Duong, Q.H., Fournier-Viger, P., Ramampiaro, H., Norvag, K. Dam,
T.-L. (2017):Efficient High Utility Itemset Mining using Buffered

Utility-Lists. Applied Intelligence 48(7), 1859–1877

8. Fournier-Viger, P., Lin, J.C.-W., Kiran, R. U., Koh, Y. S., Thomas, R.
(2017): A Survey of Sequential Pattern Mining. Data Science and

Pattern Recognition 1(1), 54–77

9. Fournier-Viger, P., Lin, J.C.-W., Vo, B, Chi, T.T., Zhang, J., Le, H.
B. (2017): A Survey of Itemset Mining. WIREs Data Mining and

Knowledge Discovery, e1207 doi: 10.1002/widm.1207

10. Fournier-Viger, P., Wu, C.W., Zida, S., Tseng, V.S. (2014): FHM:
Faster high-utility itemset mining using estimated utility co-

occurrence pruning. In: Proc. 21st Inter. Symp. Methodologies for

Intelligent Systems, pp. 83–92. Springer
11. Fournier-Viger, P., Wu, C.W., Zida, S., Tseng, V.S. (2014): FHM:

Faster high-utility itemset mining using estimated utility co-

occurrence pruning. In: Proc. 21st Inter. Symp. Methodologies for
Intelligent Systems, pp. 83–92. Springer

12. Fournier-Viger, P., Lin, J.C.-W., Duong, Q.-H., Dam, T.-L. (2016):

FHM+: Faster High-Utility Itemset Mining using Length Upper-

Bound Reduction. In: Proc. 29th Intern. Conf. on Industrial,

Engineering and Other Applications of Applied Intelligent Systems,

pp. 115–127. Springer
13. Fournier-Viger, P., Lin, J.C.-W., Duong, Q.H., Dam, T.L. (2016):

PHM: Mining Periodic High-Utility Itemsets. In: Proc. 16th Industrial

Conf. on Data Mining, pp. 64–79. Springer
14. Fournier-Viger, P., Lin, J.C.-W., Gueniche, T., Barhate, P. (2015):

Efficient Incremental High Utility Itemset Mining. In: Proc. 5th ASE

International Conf. on Big Data. ASE

15. Goyal, V., & Dawar, S. (2015). Up-hist tree: An efficient data

structure for mining high utility patterns from transaction databases.
In Proceedings of the 19th inter- national database engineering &

applications symposium (pp. 56–61). ACM.

16. Han, J., Pei, J., Kamber, M. (2011): Data mining: concepts and
techniques. Elsevier, Amsterdam

17. Krishnamoorthy, S. (2015): Pruning Strategies for Mining High

Utility Itemets, In: Expert Systems with Applications, 42950, 2371-
2381

18. Lan, G.-C., Hong, T.P., Tseng, V.S. (2014): An efficient projection-

based indexing approach for mining high utility itemsets. Knowl. and
Inform. Syst. 38(1), 85–107

19. Lin, J.C.-W., Hong, T.P., Lu, W.H. (2011): An effective tree structure

for mining high utility itemsets. Expert Systems with Applications
38(6), 7419–24

20. Lin, Y.C., Wu, C.W., Tseng, V.S. (2015): Mining high utility itemsets

in big data. In: Proc. Pacific-Asia Conf. on Knowledge Discovery and
Data Mining, pp. 649–661. Springer

21. Liu, M., Qu,. J. (2012): Mining high utility itemsets without candidate

generation. In: Proc. 21st ACM Intern. Conf. Information and

knowledge management, pp. 55–64. ACM

22. Liu, Y., Liao, W.K. and Choudhary, A.N. (2005): A two-phase

algorithm for fast discovery of high utility itemsets. In: Proc. 9th
Pacific-Asia Conf. on Knowledge Discovery and Data Mining, pp.

689–695. Springer

23. Liu, J., Wang, K., Fung, B. (2012): Direct discovery of high utility
itemsets without candidate generation, In: Proc. 12th IEEE Intern.

Conf. Data Mining, pp. 984–989. IEEE
24. Peng, A.X., Koh, Y.S., Riddle, P. (2017): mHUIMiner: A Fast High

Utility Itemset Mining Algorithm for Sparse Datasets. In: Pacific-Asia

Conf. on Knowledge Discovery and Data Mining, pp. 196– 207
25. Philippe Fournier-Viger, Jerry Chun-Wei Lin, Tin Truong Chi, Roger

Nkambou. (2019): A Survey of High Utility Itemset Mining, In: High

Utility Pattern Mining, pp. 1-46, Springer
26. Qu, J.-F., Liu, M., Fournier-Viger, P. (2018): Efficient algorithms for

high utility itemset mining without candidate generation . In:

Fournier-Viger et al. (eds). High-Utility Pattern Mining: Theory,

Algorithms and Applications, to appear. Springer

27. Ryang, H., Yun, U. (2016): High utility pattern mining over data

streams with sliding window technique. Expert Systems with
Applications 57, 214–231

28. Tseng, V., Wu, C., Fournier-Viger, P., Yu, P.S. (2016): Efficient

Algorithms for Mining Top-K High Utility Itemsets. IEEE Trans.
Knowl. Data Eng. 28(1), 54–67

29. Tseng, V.S., Shie, B.-E., Wu, C.-W., Yu., P. S. (2013): Efficient

algorithms for mining high utility itemsets from transactional
databases. IEEE Trans. Knowl. Data Eng. 25(8), 1772–1786

30. Wu, C.-W., Fournier-Viger, P., Yu., P.S., Tseng, V.S. (2011):

Efficient Mining of a Concise and Lossless Representation of High
Utility Itemsets. Proc. 11th IEEE Intern. Conf. on Data Mining, pp.

824– 833. IEEE

31. Yao, H., Hamilton, H.J., Geng, L. (2006): A Unified Framework for
Utility-based Measures for Mining Itemsets. In: Proc. of ACM

SIGKDD Workshop on Utility-Based Data Mining, pp. 28-37. ACM

32. Yun, U., Ryang, H., Ryu, K.H. (2014): High utility itemset mining
with techniques for reducing overestimated utilities and pruning

candidates. Expert Syst. Appl. 41(8), 3861–3878

33. Zida, S., Fournier-Viger, P., Lin, J.C.-W., Wu, C.W., Tseng, V.S.
(2015): EFIM: A Highly Efficient Algorithm for High-Utility Itemset

Mining. In: Proc. 14th Mexican Intern. Conf. Artificial Intelligence,

pp. 530–546. Springer
34. Zida, S., Fournier-Viger, P., Lin, J.C.-W., Wu, C.W., Tseng, V.S.

(2015): EFIM: A Highly Efficient Algorithm for High-Utility Itemset

Mining. In: Proc. 14th Mexican Intern. Conf. Artificial Intelligence,
pp. 530–546. Springer

35. Zida, S., Fournier-Viger, P., Wu, C.-W., Lin, J.C.-W., Tseng, V.S.

(2015): Efficient Mining of High Utility Sequential Rules. In: Proc.
11th Intern. Conf. on Machine Learning and Data Mining, pp. 157–

171. Springer

