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Abstract: Pattern mining is a technique, which discovers 

interesting, hidden, unpredicted and useful patterns of data from 

the database. Most of the research work in pattern mining has 

been focused on the traditional way of Frequent Itemset Mining 

(FIM) and Association Rule Mining (ARM) for pattern-

discovery. Patterns in frequent itemset mining are based on the 

occurrence frequency of items. Although frequent pattern mining 

is useful, the assumption that ‘frequent patterns are interesting,’ 

doesn’t hold for numerous applications. High Utility Itemset 

Mining (UIM) overcomes this limitation of frequent itemset 

mining. The aim of HUIM is to find the patterns based on a 

utility function where the utility can be measured in terms of 

revenue, profit, weight, frequency, interestingness or time spent 

on some webpage, etc. Mining patterns with high utility can be 

seen as a generalization of FIM where the transaction database 

is the input and every item is having a utility factor representing 

its importance and might have non-binary quantities in the 

transactions. This paper surveys various recent advances and 

research opportunities in the field of high utility itemset mining. 

 

Keywords: Itemset Mining, High Utility, Frequent Itemset, Data 

Mining, Candidate Pruning 

I. INTRODUCTION 

Data mining is the process of discovering hidden and useful 

information from huge databases. Various data mining 

algorithms have been proposed to analyze the data 

depending upon the type of knowledge to be mined 

(Aggarwal, 2015; Han & Kamber, 2011). Patterns mining 

algorithms are designed to extract interesting, useful, 

unexpected and unpredicted patterns from data (Fournier et 

al, 2017; Viger et al, 2017). The patterns can be of various 

types such as sequential patterns, itemsets, outliers, graph 

structures, trends etc., each providing a different knowledge 

to the user. It is an unsupervised learning where no prior 

class, category or label type is required. 

Frequent itemset mining is the key area in pattern mining, 

which discovers the itemsets that occur frequently in the 

database (Agrawal & Srikant, 1994). The information is 

very useful in various spheres such as market basket 

analysis, web analysis, click stream analysis, software bug 

detection etc. It finds the itemsets with the occurrence count 

more than the minimum threshold specified by the user. For 

example, if a customer buys a mobile phone, he may also 

buy a screen cover and phone cover. If another customer 

buys milk, he may also buy curd and bread. Such kind of 

patterns can be found on mining large set of transactions.  

 

 

Revised Manuscript Received on November 30, 2019.  
Sandeep Dalal, Assistant Professor, Department of Computer Science 

and Applications, Maharshi Dayanand University, Rohtak, India. 

Vandna Dahiya, Research Scholar, Department of Computer Science 
and Applications, Maharshi Dayanand University, Rohtak, India. 

Based on the buying history of a customer, 

recommendations could be provided to customers. In past, 

the researchers mainly focused on the conventional way of 

frequent itemset mining and Association Rule Mining 

(ARM) for pattern-discovery where patterns were 

discovered based only on the occurrence frequency of items. 

Such patterns are beneficial but are not convenient for every 

domain. For example, FIM may generate the frequent 

pattern for itemset {milk, butter}, as they are the most 

common items of a grocery store but might leave the itemset 

{champagne, nuts}, which is less common but having more 

profit.  So, there is the need to consider other profit-

generating factors also apart from the occurrence frequency 

of the item. Utility mining addresses this issue with a utility 

factor, which is associated with every item (Fournier et al, 

2014; Lin, J.C.W. et al, 2011). The utility factor composed 

of quantity of the item and some measure of interestingness 

such as weight, profit, side effect or other preference of user. 

The utility mining is therefore a task of discovering the set 

of items occurring together in transaction database and 

yields a high profit. There are many application areas where 

the technique for high utility mining is employed such as 

online shopping, recommendation systems, cross marketing, 

biological gene analysis, mobile commerce etc. HUIM can 

be reflected as generalization of FIM, as if the weights have 

unit values, it will degenerate to FIM. The generalized 

model can be used for various tasks such as to discover all 

itemsets with high yield of profit, to find the set of most 

visited webpages or to find frequent patterns in the 

traditional way.   

HUIM is complex than FIM because the utility of an itemset 

does not satisfy monotonic and anti-monotonic properties 

(Yun, U. et al, 2014; Viger et al, 2015). A subset of high 

utility itemset may or may not be HUI. This paper presents a 

review of high utility itemset mining algorithms and various 

extensions to the problem of HUIM along with the future 

prospects.  

The rest of the paper is organized as follows: Section 2 

introduces the problem of high utility itemset mining with 

the mathematical preliminaries. A survey of popular HUIM 

algorithms has been described in section 3. The possible 

extensions of HUIM have been presented in section 4. 

Section 5 presents various research opportunities in HUIM. 

Lastly, conclusion is drawn in section 6. 
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II. PROBLEM DEFINITION 

 

A. Motivation 

The goal of high utility itemset mining is to discover all the 

itemsets with a utility, which is no less than a user-specified 

value called as minimum utility threshold and may be 

denoted as minutil. Transactional database can serve as a 

basis for decision-making strategies as important market and 

user trends can be found out in these transactions. Lets take 

the example of online advertising. By checking the browsing 

history/records of a client, the Ad agency could display the 

ads the user is interested in. This will be more relevant to the 

user and profitable for the Ad agency. But there will be too 

many candidate ads with different prices. The problem is 

now to display the set of Ads, which are more profitable for 

the user. Humbly displaying the top-k expensive Ads will 

not be much useful, as only few users will be interested in 

them. Whereas, if there are Ads with less profit but a huge 

number of interested users, the summed revenue will be 

more than the top-k money-making Ads. FIM cannot solve 

this problem as it only considers the unit profit and 

frequency of the item. HUIM algorithms can be embraced to 

find the set of most optimal Ads to be displayed. 

B. Notations 

The standard key terms used in HUIM are defined in this 

section. Consider a transactional database D, composed of 

set of transactions, T = {T1, T2, T3…Tn}. Each transaction Tr 

 D has a unique identifier Tid. Let I ={I1, I2, I3…Im} be the 

set of distinct items. An itemset X is a set of items {Ii1, 

Ii2…Iiz} where Z denotes the length of X. The common 

definitions used in HUIM are presented here. Table 1 and 

table 2 are used for the references.  

Definition 1 (Internal Utility and External Utility): Each 

item I is associated with a positive number called as external 

utility P(Ij), corresponds to the unit profit and internal utility 

Q(Ij, Tr) based on number of occurrence of the item. For 

example, External Utility of item A is 3 and its Internal 

Utility in T1 is 1. 

Definition 2 Utility of an item Ii in a transaction Tj  is 

defined as: u(Ii, Tj), product of profit of item with its 

quantity in a transaction. For example, utility of A in T3, 

u(A, T5) is 6. 

Definition 3 Utility of an itemset X in a transaction Tj is 

defined as: u(X, Tj) = Ii  X (Ii, Tj). For example, utility of 

itemset u({BE}, T4) = 2*6 +1*4 = 16. 

Definition 4 Utility of a transaction Tj is defined as: 

TU(Tj) and computed as u(Tj, Tj). For example, transactional 

utility TU(T4) =  u(T4, T4) i.e. 12+10+4+10 = 32. 

Definition 5 Utility of an itemset in database D is defined 

as: U(X) = TjDXTj(X, Tj). For example, utility for itemset 

{C, D} is U({C, D}, T1) + U({C, D}, T3) is 29 + 39 = 68 

Definition 6 High Utility Itemset HUI, an itemset X is 

called as high utility itemset (HUI) iff the utility of an 

itemset X is no less than a minimum utility threshold 

specified by the user, minutil.  

So, the problem statement is to find the high utility itemsets 

from the database. Various algorithms have been proposed 

so far to mine the HUIs, which are being discussed in the 

next section. 

Table I: Transaction Database 

Tid Transactions 

T1 (A, 1), (C, 1), (D, 3) 

T2 (A, 2), (C, 6), (E, 2), (F, 4) 

T3 (A, 1), (B, 2), (C, 3), (D, 3), (E, 1) 

T4 (B, 2), (C, 2), (E, 1), (F, 2) 

T5 (A, 2), (F, 5) 

    

Table II: External Utilities of Items 

Item Name A B C D E F 

External Utility 3 6 5 8 4 5 

III. OVERVIEW OF HUIM ALGORITHMS 

Chan, Yand and Shen first presented the idea of HUIM in 

2003 and Yao et. al. gave the model in 2004. After that, 

many algorithms have been proposed which differ in the 

type of data structure and strategy they use. They can be 

grouped into two categories based on the number of phases 

they have. The algorithms of group A first generate the 

possible candidates in phase one and then calculate their 

utilities in second phase by recursive calls to explore the tree 

structure. The group B algorithms directly calculate the 

utilities of itemsets without candidate generation by using 

various pruning strategies, data structures and other 

techniques. 

A. Group A- The Two Phase Algorithms 

The first category of algorithms is referred as two-phase 

algorithms as they usually have two phases. In phase 1, 

candidate-sets are generated by overestimating the utilities 

of itemsets using TWU-model. An itemset I is kept in 

memory if TWU(I)  minutil and its supersets can be 

explored. Else if TWU(I) < minutil, the itemset is discarded. 

In phase 2, database is scanned to count the exact utilities of 

the candidates of phase 1.  The low-utility itemsets are 

filtered out and high utility itemsets are reverted to the user. 

The two-phase algorithms are complete algorithms as they 

generate all high utility itemsets from the search space. But 

these algorithms generate too many candidate sets and the 

database is also required to scan multiple times to weed out 

the low-utility itemsets. This consumes more memory and 

computation time. So, the methodology of two-phase 

algorithms is inefficient. Various optimal strategies have 

been designed to prune more number of candidates in the 

search space by decreasing the TWU upper bound. But to 

overcome the generate-and-test approach, one-phase 

algorithms have been designed where there is no need to 

generate the potential 

candidates of HUI.  
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Some of these algorithms are discussed in this section. 

 Two-Phase Algorithm 

The two-phase algorithm adapts the Apriori algorithm 

(Agrawal & Srikant, 1994) (Agrawal & Srikant, 1994; Liu Y 

et al, 2005).  It explores the search space in breadth-first 

manner, where, the single items are considered first. These 

single-itemsets are then used to generate 2-itemsets, then 3-

itemsets and so on until the largest itemset is found. Then, 

the second phase of the algorithm starts where exact utility 

of each itemset is calculated and itemsets with utility  

minutil are returned to the user and rest are discarded. The 

transaction database is required in standard horizontal 

format. Minimum utility threshold is also given as input. 

The two-phase algorithm suffers from the problem of level-

wise candidate generation and test approach. It combines the 

itemsets without looking into the database. So, there may be 

some patterns generated by it, which do not exist at all in the 

database and expends the time in their processing. Also, 

database has to be scanned repeatedly to calculate the 

utilities. These two factors consume a lot of time. Also, with 

the breadth-first approach, memory requirements are also 

high, as at any moment, the algorithm may need to keep all 

k-itemsets in the memory in the worst case. Various 

researchers have modified this second phase by storing the 

itemsets in better data structure like hash-tree to reduce the 

memory cost. Pattern growth algorithms tackle some of the 

downsides of two-phase algorithms (Fournier et al, 2013; 

Ahmed C. F. et al, 2009; Hong T.P. et al, 2014). Database is 

scanned in the phase 1 to generate the itemsets, which 

actually exists in the database. Also, the cost of repeated 

scans of phase 2 is lessened by using compact-

representations such as projected database, which is reduced 

version of original database. Most of the algorithms here use 

depth-first approach where less number of itemsets are 

prerequisite to be kept in memory during the search. Some 

of the pattern-based two-phase algorithms are discussed 

here. 

 IHUP  

Incremental High Utility Pattern mining (IHUP) algorithm 

was formerly proposed for incremental and interactive 

HUIM. On changing the inputs, i.e. when there is any 

update in a database or the minimum utility value is 

changed, IHUP can use the former results of mining and 

avoids unnecessary re-computations. It uses an FP-tree like 

structure called as IHUP-TWU-tree, where restructuring is 

not required. It is a very compact structure with all the 

useful information in it. IHUP takes advantage of the fact 

that in some cases of updates, there may be the transactions 

with common items. So, it exploits the path overlapping or 

prefix-sharing way and a very suitable algorithm for 

interactive and incremental mining.  

 UP-Growth 

Utility-Pattern Growth (UP-Growth) uses a compact tree-

structure named as UP-tree. First, the utility values are 

counted for single items. Using the order of these utilities, 

FP-tree is constructed like a prefix tree. For every node, UP-

tree maintains the transaction information. Two novel 

strategies were proposed - Discarding Local Unpromising 

Items (DLU) to discard the low-utility items from the path 

of UP-tree and Decreasing Local Node Utilities (DLN), 

where minimum item utilities of descendant nodes are 

decreased while creating local-UP-trees. This algorithm 

works well in case of low minimum utility and when the 

length of transactions is very long. Further improvement has 

been done in this approach by using histograms for item-

quantities for the nodes, called as UP-Hist algorithm.  

The two-phase algorithms are complete algorithms as they 

generate all high utility itemsets from the search space. But 

these algorithms generate too many candidate sets and the 

database is also required to scan multiple times to weed out 

the low-utility itemsets (Fournier et al, 2011) This consumes 

more memory and computation time. Thus, the methodology 

of two-phase algorithms is inefficient. Various optimal 

strategies have been designed to prune more number of 

candidates in the search space by decreasing the TWU upper 

bound. Still, the accumulated values of TWU are required in 

node utilities, which also result in generating huge number 

of candidates. To overcome the level-wise generate-and-test 

approach, one-phase algorithms have been designed where 

there is no need to generate the potential candidates of HUI. 

B. Group B- One Phase Algorithm  

The algorithms in this group calculate the utilities of 

itemsets directly and do not generate the candidate sets. So, 

there is no need to store the candidate sets in the memory as 

an itemset is identified as high or low utility itemset 

immediately. Many novel concepts of upper bounds were 

introduced in one-phase algorithms such as remaining 

utility, local-utility, sub-tree utility etc. HUI-Miner was the 

first design in one-phase algorithms (Liu & Qu, 2012; 

Fournier et al, 2018). Many optimal versions have also been 

designed for this algorithm such as HUP-Miner, HUI-

Miner*, mHUIMiner etc. Other one-phase algorithms are 

D
2
HUP, FHM, EFIM etc. The brief overview of some of the 

imperative algorithms is presented here.  

The algorithms of one-phase can be divided further into two 

categories-utility-list based and pattern-growth based.  

 Utility-List Based Algorithms 

The algorithms here use the vertical representation of 

database where, a list of items is maintained indicating the 

transactions having them. This is unlike from the 

conventional-horizontal representation where the entries are 

composed of transactions and their items. Utility-

information of the itemsets is stored in utility-list data 

structure, which is a vertical data structure and inspired from 

tid-list data structure of frequent itemset mining. This data 

structure is very significant as the utility of an itemset can be 

obtained directly from it. It is also used to prune the search-

space. 
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HUI-Miner 

HUI-Miner was the first algorithm where there was no need 

to generate the candidate sets (Liu & Qu, 2012; Fournier et 

al, 2018). It can discover HUIs directly. So, it outperforms 

the two-phase algorithms. Utility information is stored in 

utility-list, which is a vertical data structure and is very 

advantageous as the utility of an itemset can be obtained 

directly from it without scanning the database. A single scan 

of database is requisite to create the utility-lists of all 

itemsets taking single items. Then join operation on utility-

ist is implemented to get the utility-lists of larger itemsets. 

The join operation is costly and thus the algorithm is not 

efficient for larger datasets. 

HUP-Miner 

HUP-Miner is an extension to HUI-Miner (Krishnamoorthy 

S, 2015). Two pruning strategies were added to it- the first is 

based on partitioning of database and the second is look-

ahead pruning. HUP-Miner routines the number of partitions 

internally based on the input value k supplied by the user. 

The value of k concludes the running time and memory 

usage for the algorithm. The optimal value of k should be 

found experientially for a particular dataset. Apart from the 

overhead of external calculation of k, HUP-Miner is faster 

than HUI-Miner. 

FHM 

Fast High Utility Itemset Mining (FHM) algorithm is an 

improvement over HUI-Miner (Fournier 2014). A novel 

approach of Estimated Utility Co-occurrence Pruning 

(EUCP) was proposed, with less memory overhead and was 

used with utility-list data structure during mining of HUIs. 

The algorithm uses depth-first approach and creates a 

utility-list for every itemset visited in the search space. 

There are less join operations (up to 95% less than HUI-

Miner) in this approach. First the EUC structure is created 

using a single scan of database. The longer itemsets are 

gained by executing join-operations on the utility-lists of 

smaller itemsets. Due to less number of costly join 

operations, this algorithm is nearly six times speedier than 

HUI-Miner. 

The algorithms with utility-lists data structure are easy to 

implement and more efficient than two-phase algorithms. 

There are some drawbacks of these algorithms. First, they 

may explore some itemsets, which never appear in the 

database as they get them from join operations and not by 

database scanning. So, time is wasted in their computation. 

Second, the memory consumption may be high as utility-list 

is maintained for each visited-itemset and in the worst case 

it may have the tuple for all the transactions. The join 

operation is also costly. To overcome some of these 

limitations, the optimal versions of the algorithm HUI-

Miner and FHM have been proposed such as ULB-Miner 

(Duong et al, 2017), HUI-Miner* (Fournier et al, 2018), 

mHUI-Miner (Peng AX. et al, 2017) etc. A buffer called as 

utility-list buffer (ULB) is used in ULB-Miner where the 

memory can be reused to store the utility-lists, which then 

improved the runtime and memory usage. In HUI-Miner*, 

an improved version of utility-list called as utility-list* is 

used to speed up the algorithm. Another HUI-Miner based 

algorithm is mHUI-Miner where the itemset development 

process is guided using a tree structure and needless creation 

of utility list is avoided. It thus avoids the consideration of 

itemsets that do not exist in the database.  

 Pattern-Growth One-phase 

The limitations of utility-list based algorithms have been 

addressed in pattern-growth one-phase algorithms. The 

search space is explored by database scanning and only 

existing patterns or itemsets are explored further.  

 

D
2
HUP 

D
2
HUP was the first algorithm of this category (Liu J et al, 

2012). It also generates HUIs without candidate generation. 

The algorithm uses depth-first search. A novel data structure 

called as Chain of Accurate Utility-lists (CAUL) was 

proposed. It counts the itemsets as prefix addition of another 

itemsets. It filters out the irrelevant items during the budding 

HUIs from sparse data. This approach takes less memory 

than tree structures. This algorithm is more efficient than 

Up-Growth and Two-phase.  

 

EFIM 

Efficient High Utility Itemset Mining (EFIM) performs 

depth-first search and uses horizontal representation of 

database, which reduces the memory usage (Fournier et al, 

2015). Efficient techniques for database projection and 

merging of similar transactions were proposed in this 

algorithm that condenses the size of database and decreases 

the cost of database scans. Each itemset is processed in 

linear time and space. Further, a reusable array-based utility 

counting technique was proposed called as Fast Utility 

Counting (FUC) to compute new upper bounds - local utility 

and sub-tree utility. These novel upper bounds further 

reduce the search space. In experiments, EFIM is found to 

be approximately two to three times faster and consumes 

upto 8 times less memory than all the above algorithms such 

as HUI-Miner, UP-Growth, FHM. 

C. Comparison of HUIM Algorithms 

A brief overview of some standard HUIM algorithms has 

been presented in the above section. The table below 

provides an assessment of these algorithms in terms of their 

characteristics. 

 

 



International Journal of Recent Technology and Engineering (IJRTE) 

ISSN: 2277-3878, Volume-8 Issue-4, November 2019 

2459 

 

Published By: 
Blue Eyes Intelligence Engineering 

& Sciences Publication  

Retrieval Number: D7213118419/2019©BEIESP 

DOI:10.35940/ijrte.D7213.118419 

 

 

Table III: Comparisons of Various HUIM Algorithms 

 

Sr.

No 

Algorith

m 

Year Phase Search-

Type 

Data 

Base 

 

Approach Performance 

1 Two-

Phase 

2005 Two Breadth

-first 

Horizonta

l 

 

Apriori based, overestimate 

the utilities in phase 1, then 

filters in phase 2. 

Inefficient, generates many 

candidates in phase 1. 

2 IHUP 2009 Two Depth-

first 

Horizonta

l (prefix-

tree) 

‘Build once, Mine many’ 

property for incremental 

HUIM. 

Efficient in memory usage and 

running time, but huge number of 

recursive calls due to tree 

structure. 

3 UP-

Growth 

2010 Two Depth-

first 

Horizonta

l (prefix-

tree) 

Based on FP-Growth, it 

constructs UP-tree to store 

the itemsets. 

Uses DLN, DGN, DLU, DGU 

(local and global) decreasing and 

discarding strategies for pruning, 

Fewer candidates. 

Efficient for dense databases but 

huge number of recursive calls 

due to tree structure. 

4 HUI-

Miner 

2012 One Depth-

first 

Vertical 

(utility-

list) 

Avoids generation and test 

approach of candidates. 

Inefficient join operation and not 

scalable. Worst for sparse datasets 

as no good pruning strategy. 

5 FHM 2014 One Depth-

first 

Vertical 

(utility-

list) 

Extends HUI-Miner, 

precompute the TWUs and 

less join operations 

95% less join-operations and 6 

times faster than HUI-Miner 

6 HUP-

Miner 

2015 One Depth-

first 

Vertical 

(partition

ed utility-

list) 

Extends HUI-Miner, limits 

the search space using 

various pruning and 

partition strategies 

2-3 times faster than HUI-Miner 

7 EFIM 2015 One Depth-

first 

Horizonta

l 

(merging) 

Linear time search is 

possible with array based 

utility counting technique 

Low memory consumption, 

because of projected database and 

merging approach 

8 D
2
HUP 2016 One Depth-

first 

Vertical 

(hyper 

linked 

list-chain 

of 

accurate 

utility 

list) 

Maintains CAUL- chain of 

accurate utility list 

40 times faster than HUI-Miner 

9 mHUI-

Miner 

2017 One Depth-

first 

Vertical 

(utility-

list) 

Global tree for transaction 

information and utility list 

for different items. 

Outperforms others for sparse 

datasets and comparable for dense 

datasets. 

10 ULB-

Miner 

2017 One Depth-

first 

Vertical 

(buffered) 

Memory-re-utilization 

approach and estimated 

utility co-occurrence 

structure 

Using buffer, 10 times faster than 

other utility-list based algorithms 

and consumes less space. 

11 UP-Hist 2018 Two Depth-

first 

Horizonta

l 

(histogra

m) 

Uses histogram to store the 

utility information of nodes 

Efficient than UP-Growth 
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IV. VARIOUS EXTENSIONS TO HUIM 

In this section, various extensions possible to high utility 

itemset mining has been discussed for further possible 

research opportunities.  

 Top-K High Utility Itemsets 

In HUIM, there is a prerequisite to externally specify the 

value of minimum utility threshold. It directly influences the 

performance of algorithm along with the number of patterns 

mined. If the utility threshold were set too low, many 

irrelevant itemsets would be there with increased memory 

consumption and running time. If the value is set too high, 

there would be very less itemsets and the important 

information would get lost. To tackle this problem, the 

parameter minimum-utility is superseded by the parameter k 

and the algorithm is operated as to find the top-k high utility 

itemsets from the database (Fournier et al, 2016). 

 HUIM with Negative Utilities 

Occasionally, items are sold with low or negative profits to 

attract customers to the stores. In such cases, utility of an 

item become negative and the traditional HUIM algorithms 

cannot mine them because they will not satisfy the TWU 

property (Chu C et al, 2009). Algorithms can be developed 

with novel upper bounds that can mine the itemsets with 

negative utilities.  

 HUIM with Discount Strategies 

Various discount strategies can be combined in marketing 

(Bansal R et al, 2014). For example, An item may be tagged 

as a discounted item in various ways such as percentage 

discount, buy one get one, buy two get 70% on another two 

etc. In such cases, there is a need of additional information 

to be stored with the items.  

 HUIM with Length Constraints 

Often, users are interested in smaller set of itemsets, as 

longer itemsets are often rare. Length constraints on itemsets 

can be applied as further extension to HUIM (Duong et al, 

2016). 

 HUIM with Correlations 

Itemsets mined with the HUIM algorithms are often not 

correlated (Fourier et al, 2015). For example, any thing 

buying with an expensive item would be high utility itemset. 

But such itemset is not much useful to promote the less 

expensive item. Users are interested in correlated items to 

make business strategies.  

 Periodic HUIM 

Periodic high utility mining is a concept where, mining is 

done for group of items that are bought together cyclically. 

For example, a customer may buy same set of kitchen or 

household items weekly or monthly. Marketing strategies 

can be developed for such customers for example, offering 

discounts, rewards or points to attract more sales (Duong et 

al, 2016).  

 

 HUIM for Dynamic Databases 

Most of the algorithms assume the database as static. When, 

there is any update in the database, results cannot be updated 

and there is the need to run the algorithm from scratch. 

There is need to develop the incremental and interactive 

algorithms for dynamic databases (Fourier et al, 2015; 

Ryang H & Yum U, 2016). 

 

V. RESEARCH PROSPECTS 

 

Several algorithms have been proposed by various 

researchers in the field of HUIM for mining various types of 

itemsets. Still, numerous research opportunities are there in 

this field. Some of them are discussed here: 

 Novel Applications 

The pattern mining algorithms can be applied in various 

domains such as social network analysis, graph analysis, 

community algorithms, Internet of Things, Big Data. 

Several novel applications can be expected by using HUIM 

methods in these emerging areas.  

 Complex Data and Patterns 

Most of the HUIM algorithms are for transactional data. The 

algorithms can be enhanced to work on complex and 

dynamic data like graphs, spatial data, time-series, complex 

sequence data etc. The pattern mining algorithms can extend 

their support in mining more complex and beneficial 

patterns such as closed patterns, maximal patterns, sub 

graphs etc. 

 Scalability 

Scalability is one of the core issues to be deal with to meet 

the new data challenges. Most of the HUIM algorithms have 

been developed for small databases. Scalability of these 

algorithms is one of the core aspects for future research. 

 Work Partitioning and Load Balancing 

One of the challenges in parallel processing is how to 

partition the jobs so that they can be executed concurrently 

on parallel nodes. The ideal scenario is to distribute the 

workload equally. Precise methods are needed to 

guesstimate the resource requirement for each process to 

uniformly partition the work in parallel processing. Also, 

dynamic load balancing techniques are desirable to re-

distribute the work to further optimize the processing. 

 Privacy 

Various algorithms have been developed for privacy 

preserving but they are not used in the field of high utility 

itemset mining. Privacy is the chief concern and of 

paramount importance in data mining especially when most 

of the data used for HUIM is personalized to the user.  

 Enhanced Algorithms 

The performance of the algorithms can be enhanced in terms 

of time and memory usage for larger databases.  
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Various opportunities are there in the field of parallel and 

distributed frameworks to raise the speed and scalability of 

the algorithm. Also, work can be done in GPU and multi-

core environments. 

 

VI. CONCLUSION 

High utility itemset mining is an emerging area of research. 

The utility information is of great interest for various 

decision-making domains like medical, business, security, 

banks, retail etc. This paper has presented a survey of 

various popular algorithms in the field of utility mining, 

which can be very helpful for developing the more efficient 

and optimize methods. Various extensions to the problem of 

HUIM have been discussed along with several research 

opportunities. HUIM can be used in various greener 

domains to create novel applications. The future work can 

incorporate soft computing, parallel computing and other 

frameworks to enhance the performance of the algorithms 

on larger, distributed, dynamic and complex data sets.  
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