
Internet TomographyMark Coates Alfred Hero Robert Nowak Bin YuJanuary, 2002ABSTRACTToday's Internet is a massive, distributed network whih ontinues to explode in size as e-ommere and related ativities grow. The heterogeneous and largely unregulated struture ofthe Internet renders tasks suh as dynami routing, optimized servie provision, servie levelveri�ation, and detetion of anomalous/maliious behavior inreasingly hallenging tasks. Theproblem is ompounded by the fat that one annot rely on the ooperation of individual serversand routers to aid in the olletion of network traÆ measurements vital for these tasks. Inmany ways, network monitoring and inferene problems bear a strong resemblane to other\inverse problems" in whih key aspets of a system are not diretly observable. Familiarsignal proessing problems suh as tomographi image reonstrution, system identi�ation,and array proessing all have interesting interpretations in the networking ontext. This artileintrodues the new �eld of network tomography, a �eld whih we believe will bene�t greatlyfrom the wealth of signal proessing theory and algorithms.
1 IntrodutionThe Internet has evolved from a small tightly ontrolled network serving only a few users inthe late 1970's to the immense multi-layered olletion of heterogeneous terminals, routers andother platforms that we enounter today when web-sur�ng. Unlike, for example, the telephonenetwork whih evolved in a slower and more ontrolled manner, the Internet has evolved veryrapidly in a largely unregulated and open environment. The lak of entralized ontrol andthe heterogeneous nature of the Internet leads to a very important problem: mapping networkonnetivity, bandwidth, and performane as funtions of spae and time. A wide variety of In-ternet maps have been produed using existing networking tools suh as ping and traeroute.Information on these tools, along with a olletion of interesting Internet mapping projets,an be found on the CAIDA (Cooperative Assoiation for Internet Data Analysis) [1℄. A sur-vey of many Internet mapping projets and results is found in the popular-siene book Atlasof Cyberspae [2℄. The mapping tehniques desribed in the referenes above, however, usu-ally provide only a partial piture of the Internet beause they do not produe quantitativeperformane information. The deentralized nature of the Internet makes quantitative assess-ment of network performane very diÆult. One annot depend on individual servers androuters to freely transmit vital network statistis suh as traÆ rates, link delays, and dropped



paket rates. The olletion of network statistis at servers and internal routers an impose animpratiable overhead expense in terms of added omputing, ommuniation, and hardwarerequirements. Even if suh statistis an be olleted, an Internet Servie Provider (ISP) mayregard suh information as highly on�dential. Moreover, the transmission of statistis to aentral proessing point may onsume onsiderable bandwidth, adding to network load andongestion.In ertain ases, however, useful network statistis an be indiretly aquired withoutspeial-purpose ooperation from servers and routers and with little or no impat on net-work load. These statistial quantities an reveal hidden network struture and help to detetand isolate ongestion, routing faults, and anomalous traÆ. The aquisition of the statistisrelies on the appliation of sophistiated methods of ative network probing or passive traÆmonitoring. These methods do not diretly provide the desired information. The problem ofextrating the hidden information from ative or passive traÆ measurements falls in the realmof statistial inverse problems, an area whih has long been of interest to signal and imageproessing researhers. Signal proessing know-how, aquired in areas suh as image reon-strution, pattern reognition, system identi�ation, and sensor array signal proessing, anprovide tremendous insight into networking inverse problems.This artile deals with network monitoring and inferene for wired networks suh as theInternet. The word \inferene" is intended to more sharply delineate the �eld of study ad-dressed in the artile, preluding approahes that diretly measure network statistis or relyon omplete ooperation from the network. The task of inferential network monitoring givesrise to problems that involve the estimation of a potentially very large number of spatiallydistributed parameters, e.g., single link loss rates, delay distributions, onnetivity, and traÆow. To takle suh large estimation problems, researhers adopt the simplest possible modelsfor network traÆ and ignore many intriaies of paket transport suh as feedbak and la-teny. These simpler models, although not suitable for �ne-grain analysis of individual queuingmehanisms and network traÆ behavior, are generally adequate for the inferene of gross-levelperformane harateristis. Fous is shifted from detailed mathematial modeling of networkdynamis [3, 4℄ to areful handling of measurement and probing strategies, large sale om-putations, and model validation. The measurement methodologies require: software tools formonitoring traÆ ow and generating probe traÆ; statistial modeling of the measurementproess; sampling strategies for online data olletion. The underlying omputational sieneinvolves: omplexity reduing hierarhial statistial models; moment and likelihood based es-timation; expetation-maximization algorithms; Markov Chain Monte Carlo algorithms; andother iterative optimization methods. Model validation inludes: study of parameter identi�-ability onditions; feasibility analysis via Cram�er-Rao bounds and other bounding tehniques;implementation of network simulation software suh as the ns-2 network simulation environ-ment [5℄; and appliation to real network data.Many in the network ommunity have long been interested in measuring internal network pa-rameters and in mathematial and statistial haraterization of network behavior. Researhersin the �elds of omputer siene, network measurement and network protools have developedsoftware for measuring link delays, deteting intruders and rogue nodes, and isolating routingtable inonsistenies and other faults. Researhers from the �elds of networking, signal proess-2



ing, automati ontrol, statistis, and applied mathematis have been interested in modelingthe statistial behavior of network traÆ and using these models to infer data transport param-eters of the network. Previous work an be divided into three areas: i) development of softwaretools to monitor/probe the network; ii) probabilisti modeling of networks of queues; and iii)inferene from measurements of single stream or multiple streams of traÆ.Computer sientists and network engineers have developed many tools for ative and pas-sive measurement of the network. These tools usually require extra ooperation (in additionto the basi ooperation required for routine paket transmission) amongst the nodes of thenetwork. For example, in sessions running under RTCP (Real Time Control Protool), sum-mary sender/reeiver reports on paket jitter and paket losses are distributed to all sessionpartiipants [6℄. Ative probing tools suh as ping, pathhar (phar), link, and traeroutemeasure and report paket transport attributes of the round-trip path (from sender to reeiverand bak) of a probe (see [1℄ for a survey of these and other measurement tools). Trajetorysampling [7℄ is another example of an ative probing software tool. These methods depend onaurate reporting by all nodes along the route and many require speial assumptions, e.g., sym-metri forward/reverse links, existene of store-and-forward routers, non-existene of �re-walls.As the Internet evolves towards deentralized, unooperative, heterogeneous administration andedge-based ontrol these tools will be limited in their apability. In the future, large-sale infer-ene and tomography methods suh as those disussed in this artile will beome of inreasingimportane due to their ability to deal with unooperative networks.Network queueing theory o�ers a rih mathematial framework whih an be useful foranalyzing small sale networks with a few interonneted servers. See the reent books [3, 4℄for overviews of this area. The limitations of queuing network models for analyzing real, large-sale networks an be ompared to the limited utility of lassial Newtonian mehanis inomplex large sale interating partile systems: the marosopi behavior of an aggregate ofmany atoms appears qualitatively di�erent from what is observed at a mirosopi sale witha few isolated atomi nulei. Furthermore, detailed information on queuing dynamis in thenetwork is probably unneessary when, by making a few simple approximations, one an obtainreasonably aurate estimates of average link delays, dropped paket probabilities, and averagetraÆ rates diretly from external measurements. The muh more omputationally demandingqueuing network analysis beomes neessary when addressing a di�erent set of problems thatan be solved o�-line. Suh problems inlude alulating aurate estimates of �ne grain networkbehavior, e.g., the dynamis of node traÆ rates, servie times, and queue lengths.The area of statistial modeling of network traÆ is a mature and ative �eld [8, 9, 10, 11, 12℄.Sophistiated fratal and multifratal models of single traÆ streams an aount for longrange dependeny, non-Gaussian distributions, and other peuliar behaviors. Suh self similarbehavior of traÆ rates has been validated for heavily loaded wired networks [13℄. For a detailedoverview of these and other statistial traÆ models we refer the reader to the ompanionartile(s) in this speial issue. To date these models are overly ompliated to be inorporatedinto the large sale network inferene problems disussed in this artile. Simplifying assumptionssuh as spatial and temporal independene are often made in order to devise pratial andsalable inferene algorithms. By making these assumptions, a fundamental linear observationmodel an be used to simplify the inferene proess. While some progress has been made on3



inorporating simple �rst order spatio-temporal dependeny models into large sale networkinferene problems [14℄ muh work remains to be done.This artile attempts to be fairly self-ontained; only a modest familiarity with network-ing priniples is required and basi onepts are de�ned as neessary. For more bakgroundinformation, the a number of reent textbooks [15, 16, 17, 18, 19, 20, 21℄ provide an exellentintrodutions to the �eld of networking. The artile is organized as follows. First we brieyreview the area of large sale network inferene and tomography. We then disuss link-levelinferene from path measurements and fous on two examples; loss rate and delay distributionestimation. We onsider the problem of determining the onnetivity struture or topology ofa network and then turn to origin-destination traÆ matrix inferene from link measurementsin the ontext of both stationary and non-stationary traÆ.2 Network Tomography2.1 Network Tomography BasisLarge sale network inferene problems an be lassi�ed aording to the type of data aquisi-tion and the performane parameters of interest. To disuss these distintions, we require somebasi de�nitions. Consider the network depited in Figure 1. Eah node represents a omputerterminal, router or subnetwork (onsisting of multiple omputers/routers). A onnetion be-tween two nodes is alled a path. Eah path onsists of one or more links | diret onnetionswith no intermediate nodes. The links may be unidiretional or bidiretional, depending on thelevel of abstration and the problem ontext. Eah link an represent a hain of physial linksonneted by intermediate routers. Messages are transmitted by sending pakets of bits froma soure node to a destination node along a path whih generally passes through several othernodes.Broadly speaking, large sale network inferene involves estimating network performaneparameters based on traÆ measurements at a limited subset of the nodes. Y. Vardi was oneof the �rst to rigorously study this sort of problem and oined the term network tomography[22℄ due to the similarity between network inferene and medial tomography. Two formsof network tomography have been addressed in the reent literature: i) link-level parameterestimation based on end-to-end, path-level traÆ measurements [23, 24, 25, 26, 27, 28, 29, 30,31, 32℄ and ii) sender-reeiver path-level traÆ intensity estimation based on link-level traÆmeasurements [33, 22, 34, 35, 36℄.In link-level parameter estimation, the traÆ measurements typially onsist of ounts ofpakets transmitted and/or reeived between nodes or time delays between paket transmissionsand reeptions. The time delays are due to both propagation delays and router proessing delaysalong the path. The measured path delay is the sum of the delays on the links omprising thepath; the link delay omprises both the propagation delay on that link and the queuing delay atthe routers lying along that link. A paket is dropped if it does not suessfully reah the inputbu�er of the destination node. Link delays and ourrenes of dropped pakets are inherentlyrandom. Random link delays an be aused by router output bu�er delays, router paket4



Figure 1: An arbitrary network topology. Eah node represents a omputer or a luster of omputersor a router. Eah edge in the graph represents a diret link between two nodes. The topology heredepits \lusters" orresponding to loal area networks or other subnetworks onneted together via thenetwork \bakbone". The width of eah edge reets the bandwidth of the orresponding onnetion(thiker edge implies higher bandwidth).serviing delays, and propagation delay variability. Dropped pakets on a link are usually dueto overload of the �nite output bu�er of one of the routers enountered when traversing thelink, but may also be aused by equipment down-time due to maintenane or power failures.Random link delays and paket losses beome partiularly substantial when there is a largeamount of ross-traÆ ompeting for servie by routers along a path.In path-level traÆ intensity estimation, the measurements onsist of ounts of pakets thatpass through nodes in the network. In privately owned networks, the olletion of suh mea-surements is relatively straightforward. Based on these measurements, the goal is to estimatehow muh traÆ originated from a spei�ed node and was destined for a spei�ed reeiver.The ombination of the traÆ intensities of all these origin-destination pairs forms the origin-destination traÆ matrix. In this problem not only are the node-level measurements inherentlyrandom, but the parameter to be estimated (the origin-destination traÆ matrix) must itselfbe treated not as a �xed parameter but as a random vetor. Randomness arises from the traÆgeneration itself, rather than perturbations or measurement noise.The inherent randomness in both link-level and path-level measurements motivates theadoption of statistial methodologies for large sale network inferene and tomography. Manynetwork tomography problems an be roughly approximated by the (not neessarily Gaussian)linear model y = A� + �; (1)where: y is a vetor of measurements, e.g., paket ounts or end-to-end delays, taken at a num-ber of di�erent measurement sites; A is a routing matrix; � is a vetor of paket parameters,e.g. mean delays, logarithms of paket transmission probabilities over a link, or the random5



origin-destination traÆ vetor; � is a noise term whih an result from random perturbationsof � about its mean value and possibly also additive noise in the measured data y (in the origin-destination traÆ matrix estimation problem � is generally assumed to be zero. Typially, butnot always, A is a binary matrix (the i; j-th element is equal to `1' or `0') that aptures thetopology of the network. The problem of large sale network inferene refers to the problemof estimating the network parameters � given y and either a set of assumptions on the statis-tial distribution of the noise � or the introdution of some form of regularization to indueidenti�ability. Spei� examples are disussed below.What sets the large sale network inferene problem (1) apart from other network infereneproblems is the potentially very large dimension of A whih an range from a half a dozenrows and olumns for a few paket parameters and a few measurement sites in a small loalarea network, to thousands or tens of thousands of rows and olumns for a moderate numberof parameters and measurements sites in the Internet. The assoiated high dimensional prob-lems of estimating � are spei� examples of inverse problems. Inverse problems have a veryextensive literature both in signal proessing [37℄, statistis [38℄, and in applied mathematis[39℄. Solution methods for suh inverse problems depend on the nature of the noise � andthe A matrix and typially require iterative algorithms sine they annot be solved diretly.In general, A is not full-rank, so that identi�ability onerns arise. Either one must be on-tent to resolve linear ombinations of the parameters or one must employ statistial means tointrodue regularization and indue identi�ability. Both tatis are utilized in the examplesin later setions of the artile. In most of the large sale Internet inferene and tomographyproblems studied to date, the omponents of the noise vetor � are assumed to be approxi-mately independent Gaussian, Poisson, binomial or multinomial distributed. When the noiseis Gaussian distributed with ovariane independent of A�, methods suh as reursive linearleast squares an be implemented using onjugate gradient, Gauss-Seidel, and other iterativeequation solvers. When the noise is modeled as Poisson, binomial, or multinomial distributedmore sophistiated statistial methods suh as reweighted non-linear least squares, maximumlikelihood via expetation-maximization (EM), and maximum a posteriori (MAP) via MonteCarlo Markov Chain (MCMC) algorithms an be used. These approahes will be illustrated inSetions 3 and 4.2.2 Examples of Network TomographyLet us onsider three onrete examples of the linear model (1). First, onsider the problem ofestimating the paket suess probability on eah link given end-to-end, origin-to-destination(OD) ounts of paket losses1. Let � denote the olletion of log suess probabilities for eahlink. The OD log suess probability is simply A�, where A is the binary routing matrixdesribed above. Assuming a known number of pakets sent from eah soure to destination,a binomial measurement model an be adopted [25℄. When the number of pakets sent andreeived are large, then the binomial model an be approximated with a Gaussian likelihood,leading to the lassial linear model above (1). Seond, suppose that end-to-end, OD delays aremeasured and the goal is estimation of the delay probability distributions along eah link. In1The loss probabilities or \loss rates" are simply one minus the probability of suessful transmission.6



this ase, let � be a vetor omposed of the umulant generating funtions of the delay densitieson eah link. Then, with appropriate approximation arguments [31℄, y is again related to �aording to the linear model (1). Third, in the OD traÆ matrix estimation ase, y are link-level paket ount measurements and � are the OD traÆ intensities. Gaussian assumptionsare made on the origin-destination traÆ with a mean-variane relationship in high ountsituations in [17℄ leading to the linear equation (1) without the error term �. In eah ofthese ases, the noise � may be orrelated and have a ovariane struture depending on Aand/or �, leading to less than trivial inferene problems. Moreover, in many ases the limitedamount of data makes Gaussian approximations inappropriate and disrete observation models(e.g., binomial) may be more aurate desriptions of the disrete, paketized nature of thedata. These disrete observation models neessitate more advaned inferene tools suh as theExpetation-Maximization (EM) algorithm and Monte Carlo simulation shemes (more on thisin Setion 3).Let us onsider two further embellishments of the basi network inferene problem desribedby the linear model (1). First, all quantities may, in general, be time-varying. For example, wemay write yt = At �t + �t; (2)where t denotes time. The estimation problems now involve traking time varying parameters.In fat, the time-varying senario probably more aurately reets the dynamial nature ofthe true networks. There have been several e�orts aimed at traking nonstationary networkbehavior whih involve analogs of lassial Kalman-�ltering methods [34, 26℄. Another variationon the basi problem (1) is obtained by assuming that the routing matrix A is not knownpreisely. This leads to the so-alled \topology identi�ation" problem [30, 40, 41, 42, 43, 44, 45℄,and is somewhat akin to blind deonvolution or system identi�ation problems.3 Link-Level Network InfereneLink-level network tomography is the estimation of link-level network parameters (loss rates,delay distributions) from path-level measurements. Link-level parameters an be estimated fromdiret measurements when all nodes in a network are ooperative. Many promising tools suh aspathhar (phar), traeroute, link, pipehar use Internet Control Message Protool(ICMP) pakets (ontrol pakets that request information from routers) in order to estimatelink-level loss, latenies and bandwidths. However, many routers do not respond to or generateICMP pakets or treat them with very low priority, motivating the development of large-salelink-level network inferene methods that do not rely on ooperation (or minimize ooperationrequirements).In this artile we disuss methods whih require ooperation between a subset of the nodes inthe network, most ommonly the edge nodes (hosts or ingress/egress routers). Researh to datehas foused on the parameters of delay distributions, loss rates and bandwidths, but the generalproblem extends to the reonstrution of other parameters suh as available bandwidths andservie disiplines. The Multiast-based Inferene of Network-internal Charateristis (MINC)Projet at the University of Massahusetts [23℄ pioneered the use of multiast probing for7



network tomography, and stimulated muh of the urrent work in this area [23, 24, 25, 46, 26,27, 29, 30, 31, 47, 32℄.We now outline a general framework for the link-level tomography problems. Considernetwork depited in Figure 2(a). This illustrates the senario where pakets are sent from a setof soures to a number of destinations. The end-to-end (path-level) behavior an be measuredvia a oordinated measurement sheme between the sender and the reeivers. The sender anreord whether a paket suessfully reahed its destination or was dropped/lost and determinethe transmission delay by way of some form of aknowledgment from the reeiver to the senderupon suessful paket reeption. It is assumed that the sender annot diretly determine thespei� link on whih the paket was dropped nor measure delays or bandwidths on individuallinks within paths. A network an be logially represented by a graph onsisting of nodesonneted by links. Potentially, a logial link onneting two nodes represents many routersand the physial links between them, as depited in Figure 2.
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logical link(b) Logial tree topologyFigure 2: Physial and logial networks. The \loud" indiates portions of the network that areinaessible by diret measurement. (a) Physial struture for single sender multiple reeivernetwork. (b) Logial topology.Eah node is numbered j = 0; : : : ;m, and eah link is assigned the number of the onnetednode below it. Let there be n distint measurement paths (from a sender to a reeiver) throughthe network, enumerated i = 1; : : : ; n. De�ne aij to be the probability that the i-th measurementpath ontains the j-th link. In most ases aij will take values of 0 or 1, but it is useful tomaintain a level of generality whih an handle random routing. A is the routing matrix havingij-th element aij. The rows of A orrespond to paths from the sender to the reeivers and theolumns orrespond to individual links in those paths. Figure 3 illustrates a simple networkonsisting of a single sender (node 0), two reeivers (the leaves of the tree, nodes 2 and 3) andan internal node representing a router at whih the two ommuniation paths diverge (node1). Only end-to-end measurements are possible, i.e., the paths are (0,2), and (0,3), where (s; t)denotes the path between nodes s and t. There are 3 links and 2 paths/reeivers, and therefore8



the matrix A is 2� 3 dimensional and has the form:A =  1 1 01 0 1 ! (3)Note that in this example, A is not full rank. We disuss the rami�ations in later setions.
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Figure 3: Tree-strutured topology.A number of key assumptions underpin urrent link-level network tomography tehniques,determining measurement frameworks and mathematial models. The routing matrix is usu-ally assumed to be known and onstant throughout the measurement period. Although therouting tables in the Internet are periodially updated, these hanges our at intervals of sev-eral minutes. However, the dynamis of the routing matrix may restrit the amount of datathat an be olleted and used for inferene. Most urrent methodologies usually assume thatthat performane harateristis on eah link are statistially independent of all other links,however this assumption is learly violated due to ommon ross-traÆ owing through thelinks. Assumptions of temporal stationarity are also made in many ases. In link-level delaytomography, it is generally assumed that synhronized loks are available at all senders andreeivers. Although many of the simplifying assumptions do not stritly hold, suh \�rst-order"approximations have been shown to be reasonable enough for the large-sale inferene problemsof interest here [23, 24, 25, 26, 27, 28, 29, 30, 31, 32℄.There are two ommon modes of ommuniation in networks: multiast and uniast. Inuniast ommuniation, eah paket is sent to one and only one reeiver. In multiast ommuni-ation, the sender e�etively sends eah paket to a group of subsribing reeivers. At internalrouters where branhing ours, e.g., node 1 in Figure 3, eah multiast paket is repliatedand sent along eah branhing path. We now overview the di�erent approahes to link-levelnetwork tomography that are enabled by the two modes of ommuniation. Subsequently, weprovide two detailed examples of link-level network tomography appliations.3.1 Multiast Network TomographyNetwork tomography based on multiast probing was one of the �rst approahes to the problem[24℄. Consider loss rate tomography for the network depited in Figure 3. If a multiast paket9



is sent by the sender and reeived by node 2 but not by node 3, then it an be immediatelydetermined that loss ourred on link 3 (suessful reeption at node 2 implies that the multiastpaket reahed the internal node 1). By performing suh measurements repeatedly, the rate ofloss on the two links 2 and 3 an be estimated; these estimates and the measurements enablethe omputation of an estimate for the loss rate on link 1.To illustrate further, let �1, �2, and �3 denote the log suess probabilities of the three linksin the network, where the subsript denotes the lower node attahed to the link. Let bp2j3 denotethe ratio of the number of multiast paket probes simultaneously reeived at both nodes 2 and3 relative to the total number reeived at node 3. Thus, bp2j3 is the empirial probability ofsuess on link 2 onditional upon suess on link 3, whih provides a simple estimate of �2.De�ne bp3j2 in a similar fashion and also let bpi, i = 2; 3, denote the ratio of the total number ofpakets reeived at node i over the total number of multiast probes sent to node i. We anthen write 0BBB� log bp2log bp3log bp2j3log bp3j2 1CCCA � 0BBB� 1 1 01 0 10 1 00 0 1 1CCCA0B� �1�2�3 1CA : (4)A least squares estimate of f�ig is easily omputed for this overdetermined system of equations.Sophistiated and e�etive algorithms have been derived for large-sale network tomographyin [24, 48, 25, 49℄.Similar proedures an be onduted in the ase of delay distribution tomography. Thereis a ertain minimum propagation delay along eah link, whih is assumed known. Multiasta paket from node 0 to nodes 2 and 3, and measure the delay to eah reeiver. The delay onthe �rst link from 0 to 1 is idential for both reeivers, and any disrepany in the two end-to-end delay measurements is solely due to a di�erene in the delay on link 1 to 2 and the delaylink 1 to 3. This observation allows us to estimate the delay distributions on eah individuallink. For example, if the measured end-to-end delay to node 2 is equal to the known minimumpropagation delay, then any extra delay to node 3 is inurred on link 1 to 3. Colleting delaymeasurements from repeated experiments in whih the end-to-end delay to node 2 is minimalallows onstrution of a histogram estimate of the delay distribution on link 1 to 3. In largerand more general trees, the estimation beomes more ompliated. Advaned algorithms havebeen developed for multiast-based delay distribution tomography on arbitrary tree-struturednetworks [29, 48℄.3.2 Uniast Network TomographyAlternatively, one an takle loss rate and delay distribution tomography using uniast mea-surements. Uniast measurements are more diÆult to work with than multiast, but sinemany networks do not support multiast, uniast-based tomography is of onsiderable pratialinterest. The diÆulty of uniast-based tomography is that although single uniast paket mea-surements allow one to estimate end-to-end path loss rates and delay distributions, there is nota unique mapping of these path-level parameters to the orresponding individual link-by-linkparameters. For example, referring again to Figure 3, if pakets are sent from node 0 to nodes10



2 and 3 and nk and mk denote the numbers of pakets sent to and reeived by reeiver node k,k = 2; 3, then  log bp2log bp3 ! �  1 1 01 0 1 !| {z }A 0B� �1�2�3 1CA (5)where bpk = mk=nk and �j, j = 1; 2; 3 denotes the log suess probability assoiated with eahlink. Clearly, a unique solution for f�jg does not exist sine A is not full rank.To address this hallenge in uniast loss tomography, the authors of [25℄ and [28℄ inde-pendently proposed methodologies based on measurements made using uniast, bak-to-bakpaket pairs. These measurements provide an opportunity to ollet more informative statis-tis that an help to resolve the link-level loss rates and delay distributions. A paket paironsists of two pakets sent one after the other by the sender, possibly destined for di�erentreeivers, but sharing a ommon set of links in their paths. In networks whose queues obey astandard droptail poliy,2 if two bak-to-bak pakets are sent aross a ommon link and oneof the pair is suessfully transmitted aross the link, then it is highly probable that the otherpaket is also suessful. Similarly, the two pakets in eah pair will experiene roughly thesame delay through shared links. These observations have been veri�ed experimentally in realnetworks [51, 27℄. If one assumes that the probability of suess for one paket onditionedon the suess of the other is approximately unity, then the same methodology developed formultiast-based tomography (as desribed above) an be employed with uniast, paket-pairmeasurements [27℄.In the ase of bandwidth tomography, the authors of [52℄ addressed the hallenge of non-uniqueness through lever use of the header �elds of uniast pakets. The time-to-live (TTL)�eld in eah paket header indiates how many hops the paket should traverse. At eahrouter the paket enounters the TTL ounter is deremented by one, and when the ounterreahes zero the next router disards the paket. The nettimer program desribed in [52℄uses \tailgating" to ollet measurements: many paket-pairs are sent from the soure, eahonsisting of a large paket followed by a small paket. The TTL �eld of the large paketis varied during the measurement period so that it is propagated through only a portion ofthe path. The end-to-end delay measured by the small paket (in a relatively unongestednetwork) is primarily omprised of the propagation delay experiened by the large paket,enabling inferene of the bandwidth of the subpath traversed by the large paket. Referring tothe simple triad network in Figure 3 for illustration, nettimer might send paket-pairs fromnode 0 along links 1 and 2. If the TTL of the large paket is set to one, the tailgating smallerpaket measures the propagation delay on link 1.Uniast measurement an be onduted either atively or passively. In the ase of ativemeasurement, probe pakets are sent by the senders spei�ally for the purpose of estimation.In passive monitoring, the sender extrats data from existing ommuniations (e.g., reordsof TCP3 sessions) [49, 53℄. Loss rate and delay distribution tomography methods have been2A droptail queuing poliy means that a paket is dropped by a queue only if it reahes the queue and thereis insuÆient spae in the bu�er. In ative queuing strategies, suh as random-early-drop (RED) [50℄, paketsan be dropped (with a ertain probability) even if they have already entered the queue.3Data transmission in the Internet is primarily handled by the Transmission Control Protool (TCP) and11



developed spei�ally for uniast paket pairs in [25, 28, 14, 49℄. Uniast paket stripes (triples,quadruples, et.) have also been investigated for loss rate tomography [27℄.3.3 Example: Uniast Inferene of Link Loss RatesLink loss rates an be inferred from end-to-end, path-level uniast paket measurements usingthe approximate linear model given in equations (1) when the numbers paket ounts are large;refer to Setion 3.2. However, as stated earlier the disrete proess of ounting the number ofsent and reeived pakets suggests the use of a disrete probability distribution in our modelingand analysis. We give a brief introdution and example of this approah here, and for moredetails the interested reader is referred to related papers [25, 26, 54℄.The suessful traversal of a single paket aross a link an be reasonably modeled as asequene of Bernoulli events. Assoiate with the j-th link in the network a single parametergoverning the Bernoulli model. This parameter is the probability (rate) of suessful trans-mission on the link �j . The omplete set for all m logial links in the network is denoted by� � f�jgmj=1, whih omprise the suess rates that network loss tomography strives to identify.Measurements are olleted by sending nk single pakets along the path to reeiver k andreording how many suessfully reah the destination, denoted as mk. Determination of thesuess of a given paket is handled by an aknowledgment sent from the reeiver bak to thesender. For example, suh aknowledgments are a built-in feature of TCP. The likelihood ofmk given nk is binomial (sine Bernoulli losses are assumed) and is given byl(mk jnk; pk) =  nkmk! pmkk (1� pk)nk�mk ; (6)where pk = Qj2P(0;k) �j and P(0; k) denotes the sequene of nodes in the path from the sender0 to reeiver k.If the routing matrix A is full rank, then unique maximum likelihood estimates of the lossrates an be formed by solving a set of linear equations. If A is not full rank, then there isno unique mapping of the path suess probabilities to the suess probabilities on individuallinks (between routers) in the path. To overome this diÆulty, measurements are made usingbak-to-bak paket pairs or sequenes of pakets as disussed above [25, 28, 27℄.If two bak-to-bak pakets are sent to node j from its parent node �(j), then de�ne theonditional suess probability as�j � Pr(1st paket �(j) ! j j 2nd paket �(j) ! j );where �(j) ! j is shorthand notation denoting the suessful transmission of a paket from�(j) to j. That is, given that the seond paket of the pair is reeived, then the �rst paket isreeived with probability �j and dropped with probability 1� �j . It is antiipated that �j � 1Internet Protool (IP). TCP/IP were developed by a Department of Defense to allow ooperating omputersto share resoures aross a network. IP is responsible for moving pakets of data from node to node and TCPoordinates the delivery between the sender and reeiver (server and lient).12



for eah j, sine knowledge that the seond paket was suessfully reeived suggests that thequeue for link j was not full when the �rst paket arrived. Evidene for suh behavior hasbeen provided by observations of the Internet [55, 51℄. Denote the omplete set of onditionalsuess probabilities by � � f�jgmj=1.Suppose that eah sender sends a large number of bak-to-bak paket pairs in whih the�rst paket is destined for one of its reeivers k and the seond for another of its reeivers l. Thetime between pairs of pakets must be onsiderably larger than the time between two paketsin eah pair. Let nk;l denote the number of pairs for whih the seond paket is suessfullyreeived at node l, and let mk;l denote the number of pairs for whih both the �rst and seondpakets are reeived at their destinations. With this notation, the likelihood of mk;l given nk;lis binomial and is given byl(mk;l jnk;l; pk;l) =  nk;lmk;l! pmk;lk;l (1� pk;l)nk;l�mk;l ;where pk;l is a produt whose fators are � elements on the shared links and � elements on theunshared links. The overall likelihood funtion is given byl(mjn; p) � Yk l(mkjnk; pk)�Yk;l l(mk;ljnk;l; pk;l) (7)The goal is to determine the vetors � and � that maximize (7). Maximizing the likeli-hood funtion is not a simple task beause the individual likelihood funtions l(mk jnk; pk)or l(mk;l jnk;l; pk;l) involve produts of the � and/or � probabilities. Consequently, numer-ial optimization strategies are required. The Expetation-Maximization (EM) algorithm isan espeially attrative option that o�ers a stable, salable proedure whose omplexity growslinearly with network dimension [25℄. An losely-related EM algorithm an be employed inlink-level delay density tomography [26, 56℄.The link-level loss inferene framework is evaluated in [49, 54℄ using the ns-2 networksimulation environment [5℄. Measurements were olleted by passively monitoring existing TCPonnetions. The experiments involved simulation of the 12-node network topology shown inFigure 4(a), and the estimated suess probabilities determined using the network tomographyalgorithm above are depited in Figure 4. This topology reets the nature of many networks| a slower entry link from the sender, a fast internal bakbone, and then slower exit links tothe reeivers.In the simulations, numerous short-lived TCP onnetions were established between thesoure (node 0) and the reeivers (nodes 5-11). In addition, there is ross-traÆ on internal links,suh that in total there are approximately thirty TCP onnetions and thirty User DatagramProtool (UDP)4 onnetions operating within the network at any one time. The averageutilization of the network is in all ases relatively high All the TCP onnetions owing fromthe sender to the reeivers are used when olleting paket and paket-pair measurements (see[49℄ for details on the data olletion proess). Measurements were olleted over a 300 seondinterval.4UDP is a simpler protool than TCP. UDP simply sends pakets and does not reeive an aknowledgmentfrom the reeiver. 13



The experiments were designed to asertain whether the uniast link-level loss tomographyframework is apable of diserning where signi�ant losses are ourring within the network.They assess its ability to determine how extensive the heavy losses are and to provide aurateestimates of loss rates on the better performing links. Three traÆ senarios were explored. InSenario 1, links 2 and 5 experiene substantial losses, thereby testing the framework's abilityto separate asaded losses. In Senario 2, links 2 and 8 experiene substantial loss, (testingthe ability to resolve distributed losses in di�erent branhes of the network). In Senario 3,many more on-o� UDP and on-o� TCP onnetions were introdued throughout the topology.Figure 4 displays the simulation results for eah of the di�erent traÆ senarios.3.4 Example: Uniast Inferene of Link Delay DistributionsWhen the link delays along a path are statistially independent the end-to-end delay densitiesare related to the link delay densities through a onvolution. Several methods for unraveling thisonvolution from the end-to-end densities are: 1) transformation of the onvolution into a moretratable matrix operator via disretization of the delays [29, 26, 31℄; 2) estimation of low ordermoments suh as link delay variane [48℄ from end-to-end delay varianes whih are additiveover the probe paths; 3) nonparametri density estimation methods in ombination with EMtomography algorithms [56℄; 4) estimation of the link delay umulant generating funtion (CGF)[31, 47℄ from the end-to-end delay CGF's whih are also additive over the probe paths. Herewe disuss the CGF estimation method from whih any set of delay moments an be reovered.Let Yi denote the total end-to-end delay of a probe sent along the i-th probe path. ThenYi = ai1Xi1 + � � �+ aimXim; i = 1; : : : n (8)where Xij is the delay of the i-th probe along the j-th link in the path and aij 2 f0; 1g areelements of the routing matrix A. Here fXijgni=1 are assumed to be i.i.d. realizations of arandom variable Xj assoiated with the delay of the j-th link.The CGF of a random variable Y is de�ned as KY (t) = logE[etY ℄ where t a real variable.When Y is a sum of a set fXjgmj=1 of statistially independent random variables the CGFsatis�es the additive property KY (t) = Pmj=1KXj (t). Therefore, in view of the end-to-enddelay representation (8), and assuming independent Xi1; : : : ;Xim (spatial independene), thevetor of CGFs of the end-to-end probe delays fYigmi=1 of the i-th probe satis�es the linearsystem of equations KY (t) = AKX(t); (9)where KY (t) = [KY1(t); : : : ;KYn(t)℄T and KX(t) = [KX1(t); : : : ;KXm(t)℄T are n-element andm-element vetor funtions of t, respetively.The linear equation (9) raises two issues of interest: 1) onditions on A for identi�abilityof KX(t) from KY (t); and 2) good methods of estimation of KX(t) from end-to-end delaymeasurements Yi, i = 1; : : : ; n.When A is not full rank, only linear ombinations of those link CGFs lying outside of thenull spae of A an be determined from (9). We all suh a linear ombination an identi�able14
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subspae of CGFs. Depending on the routing matrix A, identi�able subspaes an orrespondto weighted averages of CGFs Pmj=1 �jKXj (t) over a region of the network. This motivates amulti-resolution suessive re�nement algorithm for deteting and isolating bottleneks, faults,or other spatially loalized anomalies. In suh an algorithm large partially overlapping regions ofthe network are probed with a small number of probes just suÆient for eah of the CGF linearombinations to be sensitive to anomalous behavior of the aggregate regional delay distributions.An example of the anomalous behaviors of interest is a sudden shift of the mass of the delaydistribution towards larger delay values, possibly indiating an emerging region of ongestion.If one of the regions is identi�ed as a potential site of anomalous behavior, a similar probingproess an be repeated on subregions of the suspeted region. This proess ontinues downto the single link level within a small region and requires substantially fewer probe paths thanwould be needed to identify the set of all link delay CGF's.Estimation of the CGF vetor KX(t) from an i.i.d. sequene of end-to-end probe delayexperiments an be formulated as solving a least squares problem in a linear model analogousto (1): K̂Y (t) = AKX(t) + �(t): (10)where K̂Y is an empirial estimate of the end-to-end CGF vetor and � is a residual error.Di�erent methods of solving for KX result from assuming di�erent models for the statistialdistribution of the error residual. One model, disussed in [31℄, is obtained by using a method-of-moments (MOM) estimator for KY and invoking the property that MOM estimators areasymptotially Gaussian distributed as the number of experiments gets large. The bias andovariane of K̂Y an then be approximated via bootstrap tehniques and an approximate max-imum likelihood estimate of KX may be generated by solving (10) using iteratively reweightedleast squares (LS). Using other types of estimators of KY , e.g. kernel based density estimationor mixture models with known or approximatable bias and ovariane, would lead to di�erentLS solutions for KX .The ns-2 network simulator was used to perform a simulation of the 4 link network shownin Figure 5.
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Figure 5: Uniast delay estimation probe routing used in ns-2 simulation. Tailgating an be used toemulate the internal probes 3,4,5. 16



Eah link was a Drop-Tail queue with bu�er size of 50 pakets. The internal \bottlenek"link, link 3 in Fig. 5, was assigned bandwidth 5Mbps with lateny 50ms. Links 1, 2 and 4 wereassigned bandwidths 1Mbps and lateny of 10ms. The bakground traÆ onsisted of bothExponential on-o� UDP traÆ and TCP traÆ (links 1-4 were assigned di�erent numbers ofbakground UDP and TCP traÆ soures in UDP/TCP proportions 6/3, 5/2, 8/4, and 4/2,respetively). Probes were generated as 40 byte UDP pakets at eah sender node aordingto a Poisson proess with mean interarrival time being 16ms and rate being 20Kb/se. Thenumber of probes per path was 3000. Probe-derived link CGF estimators with and withoutbias orretion were omputed and ompared with the true link CGF's (omputed from diretlink measurements of bakground traÆ alone). Di�erenes between the true CGF's and theestimated CGF's an be attributed to both statistial estimation error and systemati biasdue to probe-indued perturbations of bakground traÆ. The link CGF estimate withoutbias orretion was obtained by �nding the LS �t to the vetor KX(t) in relation (10) withK̂Y (t) obtained by straight empirial averaging over the N = 3000 measured probe delays.Spei�ally, the i-th element of K̂Y (t) is the raw sample average K̂Yi(t) = N�1PNk=1 etYik ,where fYikgNk=1 are the probe delays along the i-th probe path among those indiated in Fig. 5.The bias orreted link CGF was estimated using the bootstrap proedure desribed in [31℄. Inthis proedure we aggregated 40 separate estimates of K̂Y (t) eah omputed over a randomlyseleted subset of 2800 probe delays taken from the 3000 measured probe delays.
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addition to the true CGF for links 1 and 3. Table 1 shows the average squared error per unitt of the link CGF estimates over the range t 2 [�200; 200℄. These estimates were based onapplying ordinary LS to (10) with and without bootstrap bias orretion. Note from the tablethat the average MSE of the bias orreted CGF estimate is almost 9% lower than the averageMSE inurred by the raw CGF estimate.Link 1 2 3 4MSE of K̂Xj 0.000909 0.000421 0.000974 0.000325MSE of K̂ 0Xj 0.001171 0.000327 0.001026 0.000363Table 1: MSE of K̂Xj (bias orretion) and K̂ 0Xj (no bias orretion) for estimated link CGF's.Link 3 is bottlenek link.We next illustrate the appliation of the CGF estimation tehnique to bottlenek detetion.De�ne a bottlenek as the event that a link delay exeeds a spei�ed delay threshold. TheCherno� bound spei�es an upper bound on the probability of bottlenek in the j-th link interms of the CGF P (Xj � Æ) � mint>0 �e�tÆetKXj (t)� : (11)In Table 2, we show the estimated Cherno� bounds Pj on the bottlenek probability P (Xj � Æ).These were estimated by plugging bias orreted CGF estimates into the right hand side of (11).Here Æ = 0:005se. Note that the estimated Cherno� bounds orretly identify the bottleneklink (link 3) as that link having probability lose to 1. In partiular if we set the followingriterion for detetion of a bottlenek: \the probability that Xj exeeds 0:005se" is at least0:5, we see that the estimated Cherno� bound orretly identi�es link 3 as the bottlenek link.Link 1 2 3 4Pj 0.439 0.415 0.964 0.392Table 2: Estimated Cherno� bounds Pj on P (Xj � 0:005se). Bottlenek at link 3 is orretlyidenti�ed by its high probability of large delay.3.5 Example: Topology Identi�ationMost of the network tomography problems addressed in earlier setions dealt with the iden-ti�ation of network performane parameters, with full knowledge of the network (routing)topology. The network topology is expressed by the matrix A in equation (1). Knowledge ofA is ruial for most network tomography problems, however suh knowledge is not alwaysreadily available. Most existing tools for network topology mapping, suh as traeroute, relyon the ooperation of routers and thus an only reveal those portions of the network that arefuntioning properly and wish to be known. These ooperative onditions are often not met inpratie, and may be inreasingly unommon as the network grows and privay and proprietaryonerns inrease.For situations in whih ommon tools suh as traeroute are not appliable, a number ofmethods have been proposed for the identi�ation of network (routing) topology based on end-18



to-end measurements that measure the degree of orrelation between reeivers [30, 40, 41, 43,44, 45℄. Most of these approahes have onentrated on identifying the tree strutured topologyonneting a single sender to multiple reeivers. It is assumed that the routes from the senderto the reeiver are �xed. With only end-to-end measurements, it is only possible to identify thelogial topology de�ned by the branhing points between paths to di�erent reeivers.The key idea in most of the existing topology identi�ation methods is to ollet measure-ments at pairs of reeivers that behave (in an average sense) as a monotoni, inreasing funtionof the number of shared links or queues in the paths to the two reeivers. A simple exampleis the ase of delay ovariane. If two reeivers share some portion of their paths, then theovariane between the end-to-end delays to the two reeivers is reetive of the sum of thevarianes on the shared links (assuming the delays are not orrelated on unshared links). Themore shared links (larger shared portion of their paths), the larger the ovariane between thetwo.Metris possessing this type of monotoniity property an be estimated from a numberof di�erent end-to-end measurements inluding ounts of losses, ounts of zero delay events(utilization), delay orrelations, and delay di�erenes [30, 40, 41, 42, 43, 45, 44℄. Using suhmetris, topology identi�ation an be ast as a Maximum Likelihood estimation problem asfollows. The estimated metris x � fxi;jg, where the indies i; j refer to di�erent pairs ofreeivers, an be interpreted as observations of the true metri values  � fi;jg ontaminatedby some randomness or noise. The estimated metris are randomly distributed aording to adensity (whose preise form depends on the ontamination model) that is parameterized by theunderlying topology T and the set of true metri values, written as p(xj;T ). The estimatedmetris x are �xed quantities and hene when p(xj;T ) is viewed as a funtion of T and  itis alled the likelihood of T and . The maximum likelihood tree is given byT � = argmaxT 2F max2G p(xj;T ); (12)where F denotes the forest of all possible tree topologies onneting the sender to the reeiversand G denotes the set of all metris satisfying the monotoniity property.The likelihood optimization in (12) is quite formidable and we are not aware of any methodfor omputing the global maximum exept by a brute fore examination of eah tree in theforest. Consider a network with N reeivers. A very loose lower bound on the size of the forestF is N !=2. For example, if N = 10 then there are more than 1:8� 106 trees in the forest. Thisexplosion of the searh spae preludes the brute fore approah in all but very small (logial)networks. While determining the globally optimal tree is prohibitive in most ases, suboptimalalgorithms based on deterministi and Monte Carlo optimization methods an provide goodestimates of the topology. As far as deterministi algorithms are onerned, the DeterministiBinary Tree (DBT) lassi�ation algorithm proposed in [40℄ is a representative example. TheDBT algorithm is a reursive seletion and merging/aggregation proess that generates a binarytree from the bottom-up (reeivers to sender). The greedy nature of the DBT algorithm anlead to very suboptimal results. To avoid this pitfall, a Markov Chain Monte Carlo (MCMC)proedure has been proposed to quikly searh through the \topology spae," onentratingon regions with the highest likelihood [44℄. The most advantageous attribute of the MCMCproedure is that it attempts to identify the topology globally, rather than inrementally (and19



suboptimally) a small piee at a time.To illustrate the topology identi�ation problem, onsider the network topology depited inFigure 7(a). This is the true topology onneting a sender (at Rie University) to a numberof other omputers in North Ameria and a ouple in Europe. In this ase, traeroute wasused to obtain the true topology (in many ases this may not be possible, but here it providesa onvenient \ground-truth" for our experiment). End-to-end measurements using a speial-purpose uniast probes alled \sandwih" probes were used to obtain a set of metris satisfyingthe monotoniity property [44℄. The sandwih probing sheme is delay-based, but it measuresonly delay di�erenes, so that no lok synhronization is required. Figure 7(b) depits themost ommonly identi�ed topology (over many di�erent experiments on di�erent days and atdi�erent times of day). The identi�ed topology generally agrees with the true topology.
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matrix should be entral to the routing optimization program.There are urrently two ways to obtain OD traÆ ounts. Indiret methods ollet sums ofOD traÆ ounts and are onsidered in [22, 33, 36, 34℄; a diret method to measure OD traÆounts via software suh as NetFlow supported by Ciso routers is desribed in [34, 57℄. Bothapproahes need the ooperation of the routers in the network, but this is not problemati forprivately-owned networks. The link traÆ ounts at routers are muh easier to ollet relativeto the diret approah via NetFlow and lead to a linear inverse problem. There are notieablefeatures about this partiular inverse problem worthy of elaboration. Firstly, the OD traÆvetor to be estimated is not a �xed parameter vetor, but a random vetor, denoted by x;seondly, the linear equation (1) is used without the error term � (stohasti variability isaptured in x). Although A is singular as in other ases disussed, the tehniques in [22, 33,36, 34℄ use statistial means to indue a regularization enabling the reovery of the entire x(or the traÆ intensities underlying x). Moreover, the most reent work [34℄ addressing thisproblem also deals with the time-varying or nonstationary aspet of the data.Vardi was the �rst to investigate the OD network tomography problem. In [22℄ he studiesa network with a general topology, using an independent and identially distributed (i.i.d.)Poisson model for the OD traÆ byte ounts. He spei�es identi�ability onditions under thePoisson model and develops a method that uses the EM algorithm on link data to estimate Pois-son parameters in both deterministi and Markov routing shemes. To mitigate the diÆulty inimplementing the EM algorithm under the Poisson model, he proposes a moment method forestimation and briey disusses the normal model as an approximation to the Poisson. Relatedwork treated the speial ase involving a single set of link ounts and also employed an EMalgorithm [36℄. A Bayesian formulation and Markov Chain Monte Carlo estimation tehniquehas also been proposed [33℄.Cao et al. [34℄ use real data to revise the Poisson model and to address the non-stationaryaspet of the problem. Their methodology is validated through omparison with diret (butexpensive) olletion of OD traÆ. Cao et al. represent link ount measurements as summationsof various OD ounts that were modeled as independent random variables. (Even though TCPfeedbak reates dependene, diret measurements of OD traÆ indiate that the dependenebetween traÆ in opposite diretions is weak. This renders the independene assumption areasonable approximation.) Time-varying (or non-stationary) traÆ matries estimated froma sequene of link ounts were validated on a small subnetwork with 4 origins/destinations byomparing the estimates with atual OD ounts that were olleted by running Ciso's NetFlowsoftware on the routers. Suh diret point-to-point measurements are often not available beausethey require additional router CPU resoures, whih an redue paket forwarding eÆieny,and involve a signi�ant administrative burden when used on a large sale.Let x = (x1; : : : ; xn)T denote the unobserved vetor of orresponding byte ounts for allOD pairs during a given time interval in the network. Here T indiates transpose and x is the`traÆ matrix' even though it is arranged as a olumn vetor for onveniene. One natural wayto enumerate all the OD variables into a vetor is to �rst enumerate all the routers and then theend nodes or origin-destination nodes by 1 through, say, I, and make these indies bloked byrouters: the end nodes onneted to the �rst router in the �rst blok, and those onneted to theseond router in the seond blok, and so forth. Then, to form the OD vetor, we put the OD21



traÆ aounts in the order (1; 1); (1; 2); :::; (1; I); (2; 1); (2; 2); :::; (2; I); :::; (I; 1); (I; 2); :::; (I; I),where (i; j) is the index of the OD traÆ from the ith end node to the jth end node. Let y =(y1; : : : ; ym)T denote the observed olumn vetor of inoming/outgoing byte ounts measuredon eah router link interfae during a given time interval, again bloked into �rst the linkmeasurements on the interfaes of the �rst router and so on. One element of x, for example,orresponds to the number of bytes originating from a spei�ed origin node to a spei�eddestination node, whereas one element of y orresponds to bytes sent from the origin noderegardless of their destination. Thus eah element of y is a sum of seleted elements of x, soy = Ax (13)where A is de�ned as before, an m� n routing matrix of 0's and 1's that is determined by therouting sheme of the network. The orders of elements in x and y determine the positions ofthe 0's and 1's of A aordingly. The work of [34℄ only onsiders �xed routing, i.e. there is onlyone route from an origin to a destination. The unobserved OD byte ounts are modeled asxi � normal(�i; ��i ); independently; (14)where  is a �xed power onstant (its spei�ation is found to be robust in the sense that both = 1 and  = 2 work well with the Luent network data as shown in [34, 35℄). This impliesy � normal(A�; A�AT ); (15)where � = (�1; : : : ; �n)T ; and � = � diag(�1; : : : ; �n):Here � > 0 is the vetor of OD mean rates. � > 0 is a sale parameter that relates the varianeof the ounts to their mean, sine usually larger ounts have larger variane. The mean-variane relationship is neessary to ensure the identi�ability of the parameters in the model.Heuristially, under this onstraint, the ovarianes between the y's give the identi�ability ofthe parameters up to the sale parameter � whih an be determined from the expetation ofa y.Cao et al. [34℄ address the non-stationarity in the data using a loal likelihood model (f.[58℄); that is, for any given time t, analysis is based on a likelihood funtion derived from theobservations within a symmetri window of size w = 2h+ 1 around t (e.g., in the experimentsdesribed below, w = 11 orresponds to observations within about an hour in real time). Withinthis window, an i.i.d. assumption is imposed (as a simpli�ed and yet pratial way to treat theapproximately stationary observations within the window). Maximum-likelihood estimation(MLE) is arried out for the parameter estimation via a ombination of the EM algorithmand a seond-order global optimization routine. The omponent-wise onditional expetationsof the OD traÆ, given the link traÆ, estimated parameters, and the positivity onstraintson the OD traÆ, are used as the initial estimates of the OD traÆ. The linear equationy = Ax is enfored via the iterative proportional �tting algorithm (f. [59, 60℄) to obtain the�nal estimates of the OD traÆ. The positivity and the linear onstraints are very important�nal steps to get reliable estimates of the OD traÆ, in addition to the impliit regularizationintrodued by the i.i.d. statistial model. 22



To smooth the parameter estimates, a state-spae model is imposed in [34℄ on the logarithmof the parameters �'s and � over the time windows of size w = 2h+ 1 (in our implementationfor the simple network of Router 1, we use h=5 or w=11). Let �t = (�t; �t) be the parametervetor for the tth time window. We assume the following random walk model for the evolutionof the log parameters: log(�t) = log(�t�1) + vt;where vt � normal(0; D), independent for di�erent t, and D is a diagonal matrix obtainedusing estimates of �t in the MLE approah desribed earlier. Given the parameters, the linkounts are assumed i.i.d. as before:(Yt�h; :::; Yt; :::; Yt+h)T j�t � i:i:d: Normal(A�t; A�tAT ):This leads to a two-pass algorithm on the data. For the seond pass, inferene at time t isarried out in a sequential manner. We �rst obtain the posterior probability density p(�t�1)based on the �rst t � 1 windows of data, then the prior probability density �(�t) is updatedvia the random walk equation, and then the maximum a posterior estimate of �t via numerialoptimization using the observations in the tth time window and the prior.This state-spae model does improve on the parameter estimates, but not so muh on theestimated OD traÆ xt, whih implies an insensitivity of the �nal OD traÆ estimates. Thisinsensitivity or robustness to hanges in parameter estimates is probably due to the fat thateven in the MLE approah, positivity and linear onstraints are imposed on the OD estimates,and these onstraints override the improvements brought about by the state-spae model.4.1 Example: Time-varying OD TraÆ Matrix EstimationFigure 8 is a network at Luent Tehnologies onsidered in [34, 35℄. Figures 9 and 10 are takenfrom [34℄: traÆ plots only for the subnetwork around Router 1 with four origin-destinationend nodes. These plots show the validation (via NetFlow) and estimated OD traÆ based onthe link traÆ. Figure 9 gives the full sale and Figure 10 is the zoomed-in sale (20�). Itis obvious that the estimated OD traÆ agrees well with the NetFlow measured OD traÆfor large measurements (> 50 K bytes/se), but not so well for small measurements (< 20 Kbytes/se) where the Gaussian model is a poor approximation. From the point of view of traÆengineering, it is adequate that the large traÆ ows are inferred aurately. Hene for somepurposes suh as planning and provisioning ativities estimates of OD traÆ ould be used asinexpensive substitutes for diret measurements.Even though the method desribed in [34℄ uses all available information to estimate parame-ter values and the OD traÆ vetor x, it does not sale to networks with many nodes. In general,if there are Ne edge nodes, the number of oating point operations needed to ompute the MLEis at least proportional to N5e . A salable algorithm that relies on a divide-and-onquer strategyto lower the omputational ost without losing muh of the estimation eÆieny is proposed in[35℄. 23
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rp Figure 8: A network at Luent Tehnologies5 Conlusion and Future DiretionsThis artile has provided an overview of the area of large sale inferene and tomography inommuniations networks. As is evident from the limited sale of the simulations and experi-ments disussed in this artile, the �eld is only just emerging. Deploying measurement/probingshemes and inferene algorithms in larger networks is the next key step. Statistial signalproessing will ontinue to play an important role in this area and here we attempt to stimulatethe reader with an outline of some of the many open issues. These issues an be divided intoextensions of the theory and potential networking appliations areas.The spatio-temporally stationary and independent traÆ and network transport modelshave limitations, espeially in tomographi appliations involving heavily loaded networks.Sine one of the prinipal appliations of network tomography is to detet heavily loaded linksand subnets, relaxation of these assumptions ontinues to be of great interest. Some reentwork on relaxing spatial dependene and temporal independene has appeared in uniast [31℄and multiast [24℄ settings. However, we are far from the point of being able to implementexible yet tratable models whih simultaneously aount for long time traÆ dependene, la-teny, dynami random routing, and spatial dependene. As wireless links and ad ho networksbeome more prevalent spatial dependene and routing dynamis will beome dominant.Reently, there have been some preliminary attempts to deal with the time-varying, non-stationary nature of network behavior. In addition to the estimation of time-varying OD traÆmatries disussed in Setion 4, others have adopted a dynamial systems approah to handlenonstationary link-level tomography problems [14℄. Sequential Monte Carlo inferene tehniquesare employed in [14℄ to trak time-varying link delay distributions in nonstationary networks.One ommon soure of temporal variability in link-level performane is the nonstationary har-ateristis of ross-traÆ. Figure 11 illustrates this senario and displays the estimated delaydistributions at di�erent time instanes (see [14℄ for further details).There is also an aelerating trend toward network seurity that will reate a highly uno-operative environment for ative probing | �rewalls designed to protet information may nothonor requests for routing information, speial paket handling (multiast, TTL, et.), and other24



network transport protools required by many urrent probing tehniques. This has promptedinvestigations into more passive traÆ monitoring tehniques, for example based on samplingTCP traÆ streams [49℄. Furthermore, the ultimate goal of arrying out network tomographyon a massive sale poses a signi�ant omputational hallenge. Deentralized proessing anddata fusion will probably play an important role in reduing both the omputational burdenand the high ommuniations overhead of entralized data olletion from edge-nodes.The majority of work reported to date has foused on reonstrution of network parameterswhih may only be indiretly related to the deision-making objetives of the end-user regard-ing the existene of anomalous network onditions. An example of this is bottlenek detetionwhih has been onsidered in [47, 32℄ as an appliation of reonstruted delay or loss estimation.However, systemati development of large sale hypothesis testing theory for networks wouldundoubtedly lead to superior detetion performane. Other important deision-oriented appli-ations may be detetion of oordinated attaks on network resoures, network fault detetion,and veri�ation of servies.Finally the impat of network monitoring, whih is the subjet of this artile, on networkontrol and provisioning ould beome the appliation area of most pratial importane. Ad-mission ontrol, ow ontrol, servie level veri�ation, servie disovery, and eÆient routingould all bene�t from up-to-date and reliable information about link and router level perfor-manes. The big question is: an signal proessing methods be developed whih ensure aurate,robust and tratable monitoring for the development and administration of the Internet andfuture networks?AknowledgmentsThis work was supported by the National Siene Foundation, grant nos. MIP{9701692, ANI-0099148, FD01-12731, and ANI-9734025, the OÆe of Naval Researh, grant no. N00014-00-1-0390, the Army Researh OÆe, grant nos. DAAD19-99-1-0290, DAAD19-01-1-0643, andDAAH04-96-1-0337, and the Department of Energy, grant no. DE-FC02-01ER25462. The au-thors would also like to aknowledge the invaluable ontributions of J. Cao, R. Castro, D.Davis, M. Gadhiok, R. King, E. Rombokas, C. Shih, Y. Tsang, and S. Vander Wiel to the workdesribed in this artile.Referenes[1℄ CAIDA: Cooperative Assoiation for Internet Data Analysis.http://www.aida.org/Tools/.[2℄ M. Dodge and R. Kithin. Atlas of Cyberspae. Pearson Eduation, 2001.[3℄ F. P. Kelly, S. Zahary, and I. Ziedins. Stohasti networks: theory and appliations. RoyalStatistial Soiety Leture Note Series. Oxford Siene Publiations, Oxford, 1996.[4℄ X. Chao, M. Miyazawa, and M. Pinedo. Queueing networks: ustomers, signals and produtform solutions. Systems and Optimization. Wiley, New York, NY, 1999.25
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Figure 9: Full-sale time series plots of OD traÆ on Feb. 22, 1999 for Router 1 sub-networkwith 4 origins/destinations. In the lower-left 4�4 matrix, the rows (from TOP down) orrespondto orp, loal, swith and fddi and the olumns (from RIGHT to LEFT) orrespond to orp,loal, swith and fddi. These 4 � 4 main panels orrespond to the 16 OD pairs. For example,the (1,2) panel is orp ! swith. The 8 marginal panels (above and to the right of the mainmatrix) are the observed link traÆ used to infer the 16 OD traÆ pairs. The top-right ornershows the total observed link traÆ. Xhat is the estimated OD traÆ and X is the observedOD traÆ. At this time-sale it is impossible to di�erentiate between estimated and observedOD traÆ in most panels of the matrix.
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Figure 10: Time series plots of OD traÆ like in Fig. 6, exept that the sale is zoomed in.At this zoomed-in time-sale it is easier to di�erentiate between estimated and observed ODtraÆ in most panels, partiularly when there is a small traÆ load.
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