
FR
E

E
C

O
P

Y
11

Minimum Spanning Trees
a

b

c d

7

9

6
3

4

2

The atoll of Taka-Tuka-Land in the South Seas asks you for help.1 The people want
to connect their islands by ferry lines. Since money is scarce, the total cost of the
connections is to be minimized. It needs to be possible to travel between any two
islands; direct connections are not necessary. You are given a list of possible con-
nections together with their estimated costs. Which connections should be opened?

More generally, we want to solve the following problem. Consider a connected
undirected graphG = (V,E) with real edge costsc : E → R+. A minimum spanning
tree (MST) of G is defined by a setT ⊆ E of edges such that the graph(V,T) is a
tree wherec(T) := ∑e∈T c(e) is minimized. In our example, the nodes are islands,
the edges are possible ferry connections, and the costs are the costs of opening a
connection. Throughout this chapter,G denotes an undirected connected graph.

Minimum spanning trees are perhaps the simplest variant of an important family
of problems known asnetwork design problems. Because MSTs are such a simple
concept, they also show up in many seemingly unrelated problems such as clus-
tering, finding paths that minimize the maximum edge cost used, and finding ap-
proximations for harder problems. Sections 11.6 and 11.8 discuss this further. An
equally good reason to discuss MSTs in a textbook on algorithms is that there are
simple, elegant, fast algorithms to find them. We shall derive two simple properties
of MSTs in Sect. 11.1. These properties form the basis of mostMST algorithms. The
Jarník–Prim algorithm grows an MST starting from a single node and will be dis-
cussed in Sect. 11.2. Kruskal’s algorithm grows many trees in unrelated parts of the
graph at once and merges them into larger and larger trees. This will be discussed in
Sect. 11.3. An efficient implementation of the algorithm requires a data structure for
maintaining partitions of a set of elements under two operations: “determine whether
two elements are in the same subset” and “join two subsets”. We shall discuss the
union–find data structure in Sect. 11.4. This has many applications besides the con-
struction of minimum spanning trees.

1 The figure was drawn by A. Blancani.

FR
E

E
C

O
P

Y
218 11 Minimum Spanning Trees

Exercise 11.1.If the input graph is not connected, we may ask for aminimum span-
ning forest– a set of edges that defines an MST for each connected component of
G. Develop a way to find minimum spanning forests using a singlecall of an MST
routine. Do not find connected components first. Hint: insertn−1 additional edges.

Exercise 11.2 (spanning sets).A setT of edges spans a connected graphG if (V,T)
is connected. Is a minimum-cost spanning set of edges necessarily a tree? Is it a tree
if all edge costs are positive?

Exercise 11.3.Reduce the problem of findingmaximum-cost spanning trees to the
minimum-spanning-tree problem.

11.1 Cut and Cycle Properties

We shall prove two simple Lemmas which allow one to add edges to an MST and
to exclude edges from consideration for an MST. We need the concept of a cut in
a graph. Acut in a connected graph is a subsetE′ of edges such thatG\E′ is not
connected. Here,G\E′ is an abbreviation for(V,E \E′). If S is a set of nodes with
/0 6= S 6= V, the set of edges with exactly one endpoint inS forms a cut. Figure 11.1
illustrates the proofs of the following lemmas.

Lemma 11.1 (cut property). Let E′ be a cut and let e be a minimal-cost edge in
E′. There is then an MST T of G that contains e. Moreover, if T′ is a set of edges
that is contained in some MST and T′ contains no edge from E′, then T′∪{e} is also
contained in some MST.

Proof. We shall prove the second claim. The first claim follows by setting T ′ = /0.
Consider any MSTT of G with T ′ ⊆ T. Letu andv be the endpoints ofe. SinceT is a
spanning tree, it contains a path fromu to v, sayp. SinceE′ is a cut separatingu and

u

u

v

v

u′ v′

e

e

e′

e′

E′

p p

Tu Tv

C

Fig. 11.1. Cut and cycle properties. Theleft part illustrates the proof of the cut property.e is
an edge of minimum cost in the cutE′, andp is a path in the MST connecting the endpoints
of e. p must contain an edge inE′. The figure on theright illustrates the proof of the cycle
property.C is a cycle inG, e is an edge ofC of maximal weight, andT is an MST containing
e. Tu andTv are the components ofT \e; ande′ is an edge inC connectingTu andTv

FR
E

E
C

O
P

Y
11.2 The Jarník–Prim Algorithm 219

v, p must contain an edge fromE′, saye′. Now,T ′′ :=(T \e′)∪e is also a spanning
tree, because removal ofe′ splitsT into two subtrees, which are then joined together
by e. Sincec(e) ≤ c(e′), we havec(T ′′) ≤ c(T), and henceT ′′ is also an MST. ⊓⊔

Lemma 11.2 (cycle property). Consider any cycle C⊆ E and an edge e∈ C with
maximal cost among all edges of C. Then any MST of G′ = (V,E \ {e}) is also an
MST of G.

Proof. Consider any MSTT of G. SupposeT containse= (u,v). Edgee splits T
into two subtreesTu andTv. There must be another edgee′ = (u′,v′) fromC such that
u′ ∈ Tu andv′ ∈ Tv. T ′ :=(T \ {e})∪{e′} is a spanning tree which does not contain
e. Sincec(e′) ≤ c(e), T ′ is also an MST. ⊓⊔

The cut property yields a simple greedy algorithm for findingan MST. Start with
an empty setT of edges. As long asT is not a spanning tree, letE′ be a cut not
containing any edge fromT. Add a minimal-cost edge fromE′ to T.

Different choices ofE′ lead to different specific algorithms. We discuss two ap-
proaches in detail in the following sections and outline a third approach in Sect. 11.8.
Also, we need to explain how to find a minimum cost edge in the cut.

The cycle property also leads to a simple algorithm for finding an MST. SetT to
the set of all edges. As long asT is not a spanning tree, find a cycle inT and delete
an edge of maximal cost fromT. No efficient implementation of this approach is
known, and we shall not discuss it further.

Exercise 11.4.Show that the MST is uniquely defined if all edge costs are different.
Show that in this case the MST does not change if each edge costis replaced by its
rank among all edge costs.

11.2 The Jarník–Prim Algorithm

The Jarník–Prim (JP) algorithm [98, 158, 56] for MSTs is verysimilar to Dijkstra’s
algorithm for shortest paths.2 Starting from an (arbitrary) source nodes, the JP al-
gorithm grows an MST by adding one node after another. At any iteration,S is the
set of nodes already added to the tree, and the cutE′ is the set of edges with exactly
one endpoint inS. A minimum-cost edge leavingS is added to the tree in every iter-
ation. The main challenge is to find this edge efficiently. To this end, the algorithm
maintains the shortest connection between any nodev ∈ V \S andS in a priority
queueQ. The smallest element inQ gives the desired edge. When a node is added to
S, its incident edges are checked to see whether they yield improved connections to
nodes inV \S. Fig. 11.2 illustrates the operation of the JP algorithm, and Figure 11.3
shows the pseudocode. When nodeu is added toSand an incident edgee= (u,v) is
inspected, the algorithm needs to know whetherv∈ S. A bitvector could be used to

2 Actually, Dijkstra also described this algorithm in his seminal 1959 paper on shortest paths
[56]. Since Prim described the same algorithm two years earlier, it is usually named after
him. However, the algorithm actually goes back to a 1930 paper by Jarník [98].

FR
E

E
C

O
P

Y
220 11 Minimum Spanning Trees

encode this information. If all edge costs are positive, we can reuse thed-array for
this purpose. For any nodev, d[v] = 0 indicatesv∈ Sandd[v] > 0 encodesv 6∈ S.

In addition to the space savings, this trick also avoids a comparison in the inner-
most loop. Observe thatc(e) < d[v] is only true if d[v] > 0, i.e.,v 6∈ S, ande is an
improved connection fromv to S.

The only important difference from Dijkstra’s algorithm isthat the priority queue
stores edge costs rather than path lengths. The analysis of Dijkstra’s algorithm carries
over to the JP algorithm, i.e., the use of a Fibonacci heap priority queue yields a
running time O(nlogn+m).

Exercise 11.5.Dijkstra’s algorithm for shortest paths can use monotone priority
queues. Show that monotone priority queues donot suffice for the JP algorithm.

*Exercise 11.6 (average-case analysis of the JP algorithm). Assume that the edge
costs 1, . . . ,m are assigned randomly to the edges ofG. Show that the expected
number ofdecreaseKeyoperations performed by the JP algorithm is then bounded
by O(nlog(m/n)). Hint: the analysis is very similar to the average-case analysis of
Dijkstra’s algorithm in Theorem 10.6.

b

c

b

c

b 7

4

26
9

7

4

2
9

7

4

26
9

3 c 3 3d d d
6

a aa
Fig. 11.2. A sequence of cuts (dotted lines)
corresponding to the steps carried out by the
Jarník–Prim algorithm with starting nodea. The
edges(a,c), (c,b), and(b,d) are added to the
MST

Function jpMST : Setof Edge
d = 〈∞, . . . ,∞〉 : NodeArray[1..n] of R∪{∞} // d[v] is the distance ofv from the tree
parent: NodeArrayof NodeId // parent[v] is shortest edge betweenSandv
Q : NodePQ // usesd[·] as priority
Q.insert(s) for some arbitrarys∈V
while Q 6= /0 do

u:=Q.deleteMin
d[u] :=0 // d[u] = 0 encodesu∈ S
foreach edge e= (u,v) ∈ E do

if c(e) < d[v] then // c(e) < d[v] impliesd[v] > 0 and hencev 6∈ S
d[v] :=c(e)
parent[v] := u
if v∈ Q then Q.decreaseKey(v) elseQ.insert(v)

invariant ∀v∈ Q : d[v] = min{c((u,v)) : (u,v) ∈ E∧u∈ S}
return {(v,parent[v]) : v∈V \{s}}

Fig. 11.3.The Jarník–Prim MST algorithm. Positive edge costs are assumed

FR
E

E
C

O
P

Y
11.3 Kruskal’s Algorithm 221

11.3 Kruskal’s Algorithm

The JP algorithm is probably the best general-purpose MST algorithm. Nevertheless,
we shall now present an alternative algorithm, Kruskal’s algorithm [116]. It also has
its merits. In particular, it does not need a sophisticated graph representation, but
works even when the graph is represented by its sequence of edges. Also, for sparse
graphs withm= O(n), its running time is competitive with the JP algorithm.

The pseudocode given in Fig. 11.4 is extremely compact. The algorithm scans
over the edges ofG in order of increasing cost and maintains a partial MSTT; T is
initially empty. The algorithm maintains the invariant that T can be extended to an
MST. When an edgee is considered, it is either discarded or added to the MST. The
decision is made on the basis of the cycle or cut property. Theendpoints ofe either
belong to the same connected component of(V,T) or do not. In the former case,
T ∪e contains a cycle ande is an edge of maximum cost in this cycle. Since edges
are considered in order of increasing cost,e can be discarded, by the cycle property.
If econnects distinct components,e is a minimum-cost edge in the cutE′ consisting
of all edges connecting distinct components of(V,T); again, it is essential that edges
are considered in order of increasing cost. We may thereforeadde to T, by the cut
property. The invariant is maintained. Figure 11.5 gives anexample.

In an implementation of Kruskal’s algorithm, we have to find out whether an edge
connects two components of(V,T). In the next section, we shall see that this can be
done so efficiently that the main cost factor is sorting the edges. This takes time
O(mlogm) if we use an efficient comparison-based sorting algorithm. The constant
factor involved is rather small, so that form= O(n) we can hope to do better than
the O(m+nlogn) JP algorithm.

Function kruskalMST(V, E, c) : Setof Edge
T := /0
invariant T is a subforest of an MST
foreach (u,v) ∈ E in ascending order of costdo

if u andv are in different subtrees ofT then
T :=T ∪{(u,v)} // join two subtrees

return T

Fig. 11.4.Kruskal’s MST algorithm

c

b

c

b

c

b

c

b 7

4

26
9

3

7

4

26
9

3

7

4

26
9

3

7

4

26
9

3 d d d d

aa aa

Fig. 11.5. In this example, Kruskal’s algorithm first proves that(b,d) and (b,c) are MST
edges using the cut property. Then(c,d) is excluded because it is the heaviest edge on the
cycle〈b,c,d〉, and, finally,(a,c) completes the MST

FR
E

E
C

O
P

Y
222 11 Minimum Spanning Trees

Exercise 11.7 (streaming MST). Suppose the edges of a graph are presented to
you only once (for example over a network connection) and youdo not have enough
memory to store all of them. The edges donot necessarily arrive in sorted order.

(a) Outline an algorithm that nevertheless computes an MST using space O(V).
(*b) Refine your algorithm to run in time O(mlogn). Hint: process batches of O(n)

edges (or use thedynamic treedata structure described by Sleator and Tarjan
[182]).

11.4 The Union–Find Data Structure

A partitionof a setM is a collectionM1, . . . ,Mk of subsets ofM with the property that
the subsets are disjoint and coverM, i.e.,Mi ∩M j = /0 for i 6= j andM = M1∪·· ·∪Mk.
The subsetsMi are called theblocksof the partition. For example, in Kruskal’s algo-
rithm, the forestT partitionsV. The blocks of the partition are the connected com-
ponents of(V,T). Some components may be trivial and consist of a single isolated
node. Kruskal’s algorithm performs two operations on the partition: testing whether
two elements are in the same subset (subtree) and joining twosubsets into one (in-
serting an edge intoT).

Theunion–find data structuremaintains a partition of the set 1..n and supports
these two operations. Initially, each element is a block on its own. Each block chooses
one of its elements as its representative; the choice is madeby the data structure and
not by the user. The functionfind(i) returns the representative of the block containing
i. Thus, testing whether two elements are in the same block amounts to comparing
their respective representatives. An operationlink(i, j) applied to representatives of
different blocks joins the blocks.

A simple solution is as follows. Each block is represented asa rooted tree3, with
the root being the representative of the block. Each elementstores its parent in this
tree (the arrayparent). We have self-loops at the roots.

The implementation offind(i) is trivial. We follow parent pointers until we en-
counter a self-loop. The self-loop is located at the representative ofi. The implemen-
tation oflink(i, j) is equally simple. We simply make one representative the parent of
the other. The latter has ceded its role to the former, which is now the representative
of the combined block. What we have described so far yields a correct but inefficient
union–find data structure. Theparentreferences could form long chains that are tra-
versed again and again duringfind operations. In the worst case, each operation may
take linear time.

Exercise 11.8.Give an example of ann-node graph with O(n) edges where a naive
implementation of the union–find data structure without union by rank and path com-
pression would lead to quadratic execution time for Kruskal’s algorithm.

3 Note that this tree may have a structure very different from the corresponding subtree in
Kruskal’s algorithm.

FR
E

E
C

O
P

Y
11.4 The Union–Find Data Structure 223

ClassUnionFind(n : N) // Maintain a partition of 1..n

parent =〈1,2, . . . ,n〉 : Array [1..n] of 1..n ...
1 2 n

rank = 〈0, . . . ,0〉 : Array [1..n] of 0.. logn // rank of representatives

Function find(i : 1..n) : 1..n
if parent[i] = i then return i
elsei′ :=find(parent[i]) // path compression

parent[i]

i

i′

parent[i] := i′

return i′

Procedure link(i, j : 1..n)
asserti and j are representatives of different blocks
if rank[i] < rank[j] then parent[i] := j
else

2 3

3

3

2 2
i

ii

ij j

jj

parent[j] := i
if rank[i] = rank[j] then rank[i]++

Procedureunion(i, j : 1..n)
if find(i) 6= find(j) then link(find(i), find(j))

Fig. 11.6.An efficient union–find data structure that maintains a partition of the set{1, . . . ,n}

Therefore, Figure 11.6 introduces two optimizations. The first optimization limits
the maximal depth of the trees representing blocks. Every representative stores a
nonnegative integer, which we call itsrank. Initially, every element is a representative
and has rank zero. When we link two representatives and theirranks are different, we
make the representative of smaller rank a child of the representative of larger rank.
When their ranks are the same, the choice of the parent is arbitrary; however, we
increase the rank of the new root. We refer to the first optimization asunion by rank.

Exercise 11.9.Assume that the second optimization (described below) is not used.
Show that the rank of a representative is the height of the tree rooted at it.

Theorem 11.3.Union by rank ensures that the depth of no tree exceedslogn.

Proof. Without path compression, the rank of a representative is equal to the height
of the tree rooted at it. Path compression does not increase heights. It therefore suf-
fices to prove that the rank is bounded by logn. We shall show that a tree whose root
has rankk contains at least 2k elements. This is certainly true fork = 0. The rank of
a root grows fromk−1 tok when it receives a child of rankk−1. Thus the root had
at least 2k−1 descendants before the link operation and it receives a child which also
had at least 2k−1 descendants. So the root has at least 2k descendants after the link
operation. ⊓⊔

The second optimization is calledpath compression. This ensures that a chain of
parent references is never traversed twice. Rather, all nodes visited during an op-

FR
E

E
C

O
P

Y
224 11 Minimum Spanning Trees

erationfind(i) redirect their parent pointers directly to the representative of i. In
Fig. 11.6, we have formulated this rule as a recursive procedure. This procedure
first traverses the path fromi to its representative and then uses the recursion stack to
traverse the path back toi. When the recursion stack is unwound, the parent pointers
are redirected. Alternatively, one can traverse the path twice in the forward direction.
In the first traversal, one finds the representative, and in the second traversal, one
redirects the parent pointers.

Exercise 11.10.Describe a nonrecursive implementation offind.

Union by rank and path compression make the union–find data structure “breath-
takingly” efficient – the amortized cost of any operation is almost constant.

Theorem 11.4.The union–find data structure of Fig. 11.6 performs m find and n−1
link operations in timeO(mαT(m,n)). Here,

αT(m,n) = min{i ≥ 1 : A(i,⌈m/n⌉) ≥ logn} ,

where

A(1, j) = 2 j for j ≥ 1,

A(i,1) = A(i −1,2) for i ≥ 2,

A(i, j) = A(i −1,A(i, j −1)) for i ≥ 2 and j≥ 2.

Proof. The proof of this theorem is beyond the scope of this introductory text. We
refer the reader to [186, 177]. ⊓⊔

You will probably find the formulae overwhelming. The function4 A grows
extremely rapidly. We haveA(1, j) = 2 j , A(2,1) = A(1,2) = 22 = 4, A(2,2) =

A(1,A(2,1))= 24 = 16,A(2,3) = A(1,A(2,2))= 216, A(2,4)= 2216
, A(2,5) = 22216

,
A(3,1) = A(2,2) = 16,A(3,2) = A(2,A(3,1)) = A(2,16), and so on.

Exercise 11.11.EstimateA(5,1).

For all practicaln, we haveαT(m,n)≤ 5, and union–find with union by rank and
path compression essentially guarantees constant amortized cost per operation.

We close this section with an analysis of union–find with pathcompression but
without union by rank. The analysis illustrates the power ofpath compression and
also gives a glimpse of how Theorem 11.4 can be proved.

Theorem 11.5.The union–find data structure with path compression but without
union by rank processes m find and n−1 link operations in timeO((m+n) logn).

4 The usage of the letterA is a reference to the logician Ackermann [3], who first studied a
variant of this function in the late 1920s.

FR
E

E
C

O
P

Y
11.5 *External Memory 225

Proof. A link operation has cost one and adds one edge to the data structure. The
total cost of all links is O(n). The difficult part is to bound the cost of the finds. Note
that the cost of afind is O(1+number of edges constructed in path compression). So
our task is to bound the total number of edges constructed.

In order to do so, every nodev is assigned a weightw(v) that is defined as
the maximum number of descendants ofv (includingv) during the evolution of the
data structure. Observe thatw(v) may increase as long asv is a representative,w(v)
reaches its maximal value whenv ceases to be a representative (because it is linked to
another representative), andw(v) may decrease afterwards (because path compres-
sion removes a child ofv to link it to a higher node). The weights are integers in the
range 1..n.

All edges that ever exist in our data structure go from nodes of smaller weight to
nodes of larger weight. We define the span of an edge as the difference between the
weights of its endpoints. We say that an edge has a classi if its span lies in the range
2i ..2i+1−1. The class of any edge lies between 0 and⌈logn⌉.

Consider a particular nodex. The first edge out ofx is created whenx ceases to
be a representative. Also,x receives a new parent whenever a find operation passes
through the edge(x,parent(x)) and this edge is not the last edge traversed by the
find. The new edge out ofx has a larger span.

We account for the edges out ofxas follows. The first edge is charged to the union
operation. Consider now any edgee= (x,y) and the find operation which destroys
it. Let e have classi. The find operation traverses a path of edges. Ife is the last (=
topmost) edge of classi traversed by the find, we charge the construction of the new
edge out ofx to the find operation; otherwise, we charge it tox. Observe that in this
way, at most 1+ ⌈logn⌉ edges are charged to any find operation (because there are
only 1+⌈logn⌉ different classes of edges). If the construction of the new edge out of
x is charged tox, there is another edgee′ = (x′,y′) in classi following e on the find
path. Also, the new edge out ofx has a span at least as large as the sum of the spans
of e ande′, since it goes to an ancestor (not necessarily proper) ofy′. Thus the new
edge out ofx has a span of at least 2i +2i = 2i+1 and hence is in classi +1 or higher.
We conclude that at most one edge in each class is charged to each nodex. Thus the
total number of edges constructed is at mostn+(n+ m)(1+ ⌈logn⌉), and the time
bound follows. ⊓⊔

11.5 *External Memory

The MST problem is one of the very few graph problems that are known to have
an efficient external-memory algorithm. We shall give a simple, elegant algorithm
that exemplifies many interesting techniques that are also useful for other external-
memory algorithms and for computing MSTs in other models of computation. Our
algorithm is a composition of techniques that we have already seen: external sorting,
priority queues, and internal union–find. More details can be found in [50].

FR
E

E
C

O
P

Y
226 11 Minimum Spanning Trees

11.5.1 A Semiexternal Kruskal Algorithm

We begin with an easy case. Suppose we have enough internal memory to store the
union–find data structure of Sect. 11.4 forn nodes. This is enough to implement
Kruskal’s algorithm in the external-memory model. We first sort the edges using the
external-memory sorting algorithm described in Sect. 5.7.Then we scan the edges
in order of increasing weight, and process them as describedby Kruskal’s algorithm.
If an edge connects two subtrees, it is an MST edge and can be output; otherwise, it
is discarded. External-memory graph algorithms that require Θ(n) internal memory
are calledsemiexternalalgorithms.

11.5.2 Edge Contraction

If the graph has too many nodes for the semiexternal algorithm of the preceding
subsection, we can try to reduce the number of nodes. This canbe done usingedge
contraction. Suppose we know thate= (u,v) is an MST edge, for example because
e is the least-weight edge incident onv. We adde, and somehow need to remember
thatu andv are already connected in the MST under construction. Above,we used
the union–find data structure to record this fact; now we use edge contraction to
encode the information into the graph itself. We identifyu andv and replace them
by a single node. For simplicity, we again call this nodeu. In other words, we delete
v andrelink all edges incident onv to u, i.e., any edge(v,w) now becomes an edge
(u,w). Figure 11.7 gives an example. In order to keep track of the origin of relinked
edges, we associate an additional attribute with each edge that indicates itsoriginal
endpoints. With this additional information, the MST of thecontracted graph is easily
translated back to the original graph. We simply replace each edge by its original.

We now have a blueprint for an external MST algorithm: repeatedly find MST
edges and contract them. Once the number of nodes is small enough, switch to a
semiexternal algorithm. The following subsection gives a particularly simple imple-
mentation of this idea.

11.5.3 Sibeyn’s Algorithm

SupposeV = 1..n. Consider the following simple strategy for reducing the number
of nodes fromn to n′ [50]:

for v :=1 to n−n′ do
find the lightest edge(u,v) incident on v and contract it

Figure 11.7 gives an example, withn = 4 andn′ = 2. The strategy looks deceptively
simple. We need to discuss how we find the cheapest edge incident on v and how
we relink the other edges incident onv, i.e., how we inform the neighbors ofv that
they are receiving additional incident edges. We can use a priority queue for both
purposes. For each edgee= (u,v), we store the item

(min(u,v),max(u,v),weight ofe,origin of e)

FR
E

E
C

O
P

Y
11.5 *External Memory 227

output relink

was

...

output

relinkwas
c c

b

c

3

9

2
4

7
7

4

26
9

3

b 7

4

2
9

3

b
c

7 3

4 9d d d

d

a a

PSfrag

(a,b)
(a
,b
)

(a,d)

(a,d)

(a,c)

(b,c)

(c,b)

(c,d)

(c,d)

(d,b)

Fig. 11.7.An execution of Sibeyn’s algorithm withn′ = 2. The edge(c,a,6) is the cheapest
edge incident ona. We add it to the MST and mergea into c. The edge(a,b,7) becomes an
edge(c,b,7) and(a,d,9) becomes(c,d,9). In the new graph,(d,b,2) is the cheapest edge
incident onb. We add it to the spanning tree and mergeb into d. The edges(b,c,3) and
(b,c,7) become(d,c,3) and(d,c,7), respectively. The resulting graph has two nodes that are
connected by four parallel edges of weight 3, 4, 7, and 9, respectively

Function sibeynMST(V, E, c) : Setof Edge
let π be a random permutation of 1..n
Q: priority queue // Order:min node, thenmin edge weight
foreach e= (u,v) ∈ E do

Q.insert(min{π(u),π(v)} ,max{π(u),π(v)} ,c(e),u,v))
current := 0 // we are just before processing node 1
loop

(u,v,c,u0,v0) :=minQ // next edge
if current 6= u then // new node

if u = n−n′ +1 then break loop // node reduction completed
Q.deleteMin
output(u0,v0) // the original endpoints define an MST edge
(current, relinkTo) :=(u,v) // prepare for relinking remainingu-edges

else ifv 6= relinkTothen
Q.insert((min{v, relinkTo} ,max{v, relinkTo} ,c,u0,v0)) // relink

S:=sort(Q) // sort by increasing edge weight
apply semiexternal Kruskal toS

Fig. 11.8.Sibeyn’s MST algorithm

in the priority queue. The ordering is lexicographic by the first and third compo-
nents, i.e., edges are first ordered by the lower-numbered endpoint and then ac-
cording to weight. The algorithm operates in phases. In eachphase, we select all
edges incident on thecurrent node. The lightest edge (= first edge delivered by
the queue), say(current, relinkTo), is added to the MST, and all others are re-
linked. In order to relink an edge(current,z,c,u0,v0) with z 6= RelinkTo, we add
(min(z,RelinkTo),max(z,RelinkTo),c,u0,v0) to the queue.

Figure 11.8 gives the details. For reasons that will become clear in the analysis,
we renumber the nodes randomly before starting the algorithm, i.e., we chose a ran-
dom permutation of the integers 1 ton and rename nodev as π(v). For any edge
e = (u,v) we store(min{π(u),π(v)} ,max{π(u),π(v)} ,c(e),u,v)) in the queue.
The main loop stops when the number of nodes is reduced ton′. We complete the

FR
E

E
C

O
P

Y
228 11 Minimum Spanning Trees

construction of the MST by sorting the remaining edges and then running the semiex-
ternal Kruskal algorithm on them.

Theorem 11.6.Letsort(x) denote the I/O complexity of sorting x items. The expected
number of I/O steps needed by the algorithm sibeynMST isO(sort(mln(n/n′))).

Proof. From Sect. 6.3, we know that an external-memory priority queue can execute
K queue operations using O(sort(K)) I/Os. Also, the semiexternal Kruskal step re-
quires O(sort(m)) I/Os. Hence, it suffices to count the number of operations in the
reduction phases. Besides them insertions during initialization, the number of queue
operations is proportional to the sum of the degrees of the nodes encountered. Let the
random variableXi denote the degree of nodei when it is processed. By the linearity
of expectations, we have E[∑1≤i≤n−n′ Xi] = ∑1≤i≤n−n′ E[Xi]. The number of edges in
the contracted graph is at mostm, so that the average degree of a graph withn− i +1
remaining nodes is at most 2m/(n− i +1). We obtain.

E

[

∑
1≤i≤n−n′

Xi

]

= ∑
1≤i≤n−n′

E[Xi] ≤ ∑
1≤i≤n−n′

2m
n− i +1

= 2m

(

∑
1≤i≤n

1
i
− ∑

1≤i≤n′

1
i

)

= 2m(Hn−Hn′)

= 2m(lnn− lnn′)+O(1) = 2mln
n
n′

+O(1) ,

whereHn :=∑1≤i≤n1/i = lnn+Θ(1) is then-th harmonic number (see (A.12)).⊓⊔

Note that we could do without switching to the semiexternal Kruskal algorithm.
However, then the logarithmic factor in the I/O complexity would become lnn rather
than ln(n/n′) and the practical performance would be much worse. Observe that
n′ = Θ(M) is a large number, say 108. Forn = 1012, lnn is three times ln(n/n′).

Exercise 11.12.For anyn, give a graph withn nodes and O(n) edges where Sibeyn’s
algorithmwithout random renumberingwould needΩ

(

n2
)

relink operations.

11.6 Applications

The MST problem is useful in attacking many other graph problems. We shall discuss
the Steiner tree problem and the traveling salesman problem.

11.6.1 The Steiner Tree Problem

We are given a nonnegatively weighted undirected graphG = (V,E) and a setS of
nodes. The goal is to find a minimum-cost subsetT of the edges that connects the
nodes inS. Such aT is called a minimum Steiner tree. It is a tree connecting a set
U with S⊆ U ⊆ V. The challenge is to chooseU so as to minimize the cost of

FR
E

E
C

O
P

Y
11.6 Applications 229

the tree. The minimum-spanning-tree problem is the specialcase whereS consists
of all nodes. The Steiner tree problem arises naturally in our introductory example.
Assume that some of the islands in Taka-Tuka-Land are uninhabited. The goal is to
connect all the inhabited islands. The optimal solution will, in general, have some of
the uninhabited islands in the solution.

The Steiner tree problem isNP-complete (see Sect. 2.10). We shall show how to
construct a solution which is within a factor of two of the optimum. We construct an
auxiliary complete graph with node setS: for any pairu andv of nodes inS, the cost
of the edge(u,v) in the auxiliary graph is their shortest-path distance inG. Let TA

be an MST of the auxiliary graph. We obtain a Steiner tree ofG by replacing every
edge ofTA by the path it represents inG. The resulting subgraph ofG may contain
cycles. We delete edges from cycles until the remaining subgraph is cycle-free. The
cost of the resulting Steiner tree is at most the cost ofTA.

Theorem 11.7.The algorithm above constructs a Steiner tree which has at most
twice the cost of an optimal Steiner tree.

Proof. The algorithm constructs a Steiner tree of cost at mostc(TA). It therefore
suffices to show thatc(TA) ≤ 2c(Topt), whereTopt is a minimum Steiner tree forS
in G. To this end, it suffices to show that the auxiliary graph has aspanning tree of
cost 2c(Topt). Figure 11.9 indicates how to construct such a spanning tree. “Walking
once around the Steiner tree” defines a cycle inG of cost 2c(Topt); observe that every
edge inTopt occurs exactly twice in this path. Deleting the nodes outside S in this
path gives us a cycle in the auxiliary graph. The cost of this path is at most 2c(Topt),
because edge costs in the auxiliary graph are shortest-pathdistances inG. The cycle
in the auxiliary graph spansS, and therefore the auxiliary graph has a spanning tree
of cost at most 2c(Topt). ⊓⊔

Exercise 11.13.Improve the above bound to 2(1−1/|S|) times the optimum.

The algorithm can be implemented to run in time O(m+nlogn) [126]. Algo-
rithms with better approximation ratios exist [163].

Exercise 11.14.Outline an implementation of the algorithm above and analyze its
running time.

node inS

node inV \S
a b

c

v

w x

yz

Fig. 11.9.Once around the tree. We haveS= {v,w,x,y,z}, and the minimum Steiner tree is
shown. The Steiner tree also involves the nodesa, b, andc in V \S. Walking once around the
tree yields the cycle〈v,a,b,c,w,c,x,c,b,y,b,a,z,a,v〉. It maps into the cycle〈v,w,x,y,z,v〉 in
the auxiliary graph

FR
E

E
C

O
P

Y
230 11 Minimum Spanning Trees

11.6.2 Traveling Salesman Tours

The traveling salesman problem is one of the most intensively studied optimiza-
tion problems [197, 117, 13]: given an undirected complete graph on a node setV
with edge weightsc(e), the goal is to find the minimum-weight simple cycle passing
through all nodes. This is the path a traveling salesman would want to take whose
goal it is to visit all nodes of the graph. We assume in this section that the edge
weights satisfy the triangle inequality, i.e.,c(u,v)+ c(v,w) ≥ c(u,w) for all nodes
u, v, andw. There is then always an optimal round trip which visits no node twice
(because leaving it out would not increase the cost).

Theorem 11.8.Let Copt and CMST be the cost of an optimal tour and of an MST,
respectively. Then

CMST ≤Copt ≤ 2CMST .

Proof. Let C be an optimal tour. Deleting any edge fromC yields a spanning tree.
ThusCMST ≤ Copt. Conversely, letT be an MST. Walking once around the tree as
shown in Fig. 11.9 gives us a cycle of cost at most 2CMST, passing through all nodes.
It may visit nodes several times. Deleting an extra visit to anode does not increase
the cost, owing to the triangle inequality. ⊓⊔

In the remainder of this section, we shall briefly outline a technique for improving
the lower bound of Theorem 11.8. We need two additional concepts: 2-trees and node
potentials. LetG′ be obtained fromG by deleting node 1 and the edges incident on
it. A minimum 2-tree consists of the two cheapest edges incident on node 1 and an
MST of G′. Since deleting the two edges incident on node 1 from a tourC yields a
spanning tree ofG′, we haveC2 ≤ Copt, whereC2 is the minimum cost of a 2-tree.
A node potential is any real-valued functionπ defined on the nodes ofG. Any node
potential yields a modified cost functioncπ by defining

cπ(u,v) = c(u,v)+ π(v)+ π(u)

for any pairu andv of nodes. For any tourC, the costs underc andcπ differ by
2Sπ :=2∑v π(v), since a tour uses exactly two edges incident on any node. LetTπ be
a minimum 2-tree with respect tocπ . Then

cπ(Tπ) ≤ cπ(Copt) = c(Copt)+2Sπ,

and hence
c(Copt) ≥ max

π
(cπ(Tπ)−2Sπ) .

This lower bound is known as the Held–Karp lower bound [88, 89]. The maximum
is over all node potential functionsπ . It is hard to compute the lower bound exactly.
However, there are fast iterative algorithms for approximating it. The idea is as fol-
lows, and we refer the reader to the original papers for details. Assume we have a
potential functionπ and the optimal 2-treeTπ with respect to it. If all nodes ofTπ
have degree two, we have a traveling salesman tour and stop. Otherwise, we make

FR
E

E
C

O
P

Y
11.8 Historical Notes and Further Findings 231

the edges incident on nodes of degree larger than two a littlemore expensive and the
edges incident on nodes of degree one a little cheaper. This can be done by modifying
the node potential ofv as follows. We define a new node potentialπ ′ by

π ′(v) = π(v)+ ε · (deg(v,Tπ)−2)

whereε is a parameter which goes to zero with increasing iteration number, and
deg(v,Tπ) is the degree ofv in Tπ . We next compute an optimal 2-tree with respect
to π ′ and hope that it will yield a better lower bound.

11.7 Implementation Notes

The minimum-spanning-tree algorithms discussed in this chapter are so fast that the
running time is usually dominated by the time required to generate the graphs and ap-
propriate representations. The JP algorithm works well forall mandn if an adjacency
array representation (see Sect. 8.2) of the graph is available. Pairing heaps [142] are
a robust choice for the priority queue. Kruskal’s algorithmmay be faster for sparse
graphs, in particular if only a list or array of edges is available or if we know how to
sort the edges very efficiently.

The union–find data structure can be implemented more space-efficiently by ex-
ploiting the observation that only representatives need a rank, whereas only nonrep-
resentatives need a parent. We can therefore omit the arrayrank in Fig. 11.4. Instead,
a root of rankg stores the valuen+1+g in parent. Thus, instead of two arrays, only
one array with values in the range 1..n+ 1+ ⌈logn⌉ is needed. This is particularly
useful for the semiexternal algorithm.

11.7.1 C++

LEDA [118] uses Kruskal’s algorithm for computing MSTs. Theunion–find data
structure is calledpartition in LEDA. The Boost graph library [27] gives a choice
between Kruskal’s algorithm and the JP algorithm. Boost offers no public access to
the union–find data structure.

11.7.2 Java

JDSL [78] uses the JP algorithm.

11.8 Historical Notes and Further Findings

The oldest MST algorithm is based on the cut property and usesedge contractions.
Boruvka’s algorithm[28, 148] goes back to 1926 and hence represents one of the
oldest graph algorithms. The algorithm operates in phases,and identifies many MST
edges in each phase. In a phase, each node identifies the lightest incident edge. These

FR
E

E
C

O
P

Y
232 11 Minimum Spanning Trees

edges are added to the MST (here it is assumed that the edge costs are pairwise
distinct) and then contracted. Each phase can be implemented to run in time O(m).
Since a phase at least halves the number of remaining nodes, only a single node is
left after O(logn) phases, and hence the total running time is O(mlogn). Boruvka’s
algorithm is not often used, because it is somewhat complicated to implement. It is
nevertheless important as a basis for parallel MST algorithms.

There is a randomized linear-time MST algorithm that uses phases of Boruvka’s
algorithm to reduce the number of nodes [105, 111]. The second building block of
this algorithm reduces the number of edges to about 2n: we sample O(m/2) edges
randomly, find an MSTT ′ of the sample, and remove edgese∈ E that are the heav-
iest edge in a cycle ine∪T ′. The last step is rather difficult to implement efficiently.
But, at least for rather dense graphs, this approach can yield a practical improve-
ment [108]. The linear-time algorithm can also be parallelized [84]. An adaptation
to the external-memory model [2] saves a factor ln(n/n′) in the asymptotic I/O com-
plexity compared with Sibeyn’s algorithm but is impractical for currently interesting
values ofn owing to its much larger constant factor in the O-notation.

The theoretically bestdeterministicMST algorithm [35, 155] has the interesting
property that it has optimal worst-case complexity, although it is not exactly known
what this complexity is. Hence, if you come up with a completely different deter-
ministic MST algorithm and prove that your algorithm runs inlinear time, then we
would know that the old algorithm also runs in linear time.

Minimum spanning trees define a single path between any pair of nodes. Interest-
ingly, this path is abottleneck shortest path[8, Application 13.3], i.e., it minimizes
the maximum edge cost for all paths connecting the nodes in the original graph.
Hence, finding an MST amounts to solving the all-pairs bottleneck-shortest-path
problem in much less time than that for solving the all-pairsshortest-path problem.

A related and even more frequently used application is clustering based on the
MST [8, Application 13.5]: by droppingk− 1 edges from the MST, it can be split
into k subtrees. The nodes in a subtreeT ′ are far away from the other nodes in the
sense that all paths to nodes in other subtrees use edges thatare at least as heavy as
the edges used to cutT ′ out of the MST.

Many applications lead to MST problems on complete graphs. Frequently, these
graphs have a compact description, for example if the nodes represent points in the
plane and the edge costs are Euclidean distances (these MSTsare called Euclidean
minimum spanning trees). In these situations, it is an important concern whether one
can rule out most of the edges as too heavy without actually looking at them. This
is the case for Euclidean MSTs. It can be shown that EuclideanMSTs are contained
in the Delaunay triangulation [46] of the point set. This triangulation has linear size
and can be computed in time O(nlogn). This leads to an algorithm of the same time
complexity for Euclidean MSTs.

We discussed the application of MSTs to the Steiner tree and the traveling sales-
man problem. We refer the reader to the books [8, 13, 117, 115,200] for more infor-
mation about these and related problems.

