Miaimum Spaaning Trees

The atoll of Taka-
to connect their isl

tree wherec(T) :=
the edges are possible ferry conne
connection. Throughout this chapt

mple, the nodes are islands,
osthareosts of opening a
rected connected graph.

of problems known asetwork design p
concept, they also show up in many seemi
tering, finding paths that minimize the maxi
proximations for harder problems. Sections
equally good reason to discuss MSTs in a te
simple, elegant fast algorlthms to flnd them.

cussed in Sect. 11.2. Kruskal's algorithm grows many trees
graph at once and merges them into larger and larger trees

maintaining partitions of a set of elements under two op@nat “determi
two elements are in the same subset” and “join two subsetg”shll
union—find data structure in Sect. 11.4. This has many aqjpics
struction of minimum spanning trees.

1 The figure was drawn by A. Blancani.

218 11 Minimum Spanning Trees

Exercise 11.11f the input graph is not connected, we may ask fomiaimum span-
ning forest— a set of edges that defines an MST for each connected contpafnen

g setsh setT of edges spans a connected gr&ih (V, T)
imum-cost spanning set of edges raxdgsstree? Is it a tree

hich allow one to add edgesmtMST and
an MST. We need theeqt of a cut in
ub&tof edges such thas \ E' is not

,E\ E’). If Sis a set of nodes with
ndpoinSiforms a cut. Figure 11.1

to exclude edges fro
a graph. Acutin a con

0 +# S+#V, the set of edge
illustrates the proofs of the

Lemma 11.1 (cut property). L let e be a minimal-cost edge in
E’. There is then an MST T of oreover, ifsTa set of edges
that is contained in some MST and from’Ethen TU{e} is also
contained in some MST.

Considerany MST of Gwith T’ C T. Letu
spanning tree, it contains a path franto v, sayp

an edge of minimum cost in the cEf andp is a path in the MST connécting the endpomts
of e. p must contain an edge i&'. The figure on theight illustrates the proof of the cycle
property.C is a cycle inG, eis an edge o€ of maximal weight, and is an MST containing

e Ty andT, are the components @\ e and€ is an edge ir€ connectingT, andTy

11.2 The Jarnik—Prim Algorithm 219

v, p must contain an edge frof, saye’. Now, T”:= (T \ €)Ueis also a spanning
tree, because removal €fsplits T into two subtrees, which are then joined together
by e. Sincec €), we havec(T”) < c(T), and hencd” is also an MST. O

Proof. Consides of G. SupposeTl containse = (u,v). Edgee splits T
g ere must be another edge= (U, V') from C such that
U ecTyandV € Ty. i

e. Sincec(€) < ¢(0 an MST. O
The cut prop i greedy algorithm for findamgMST. Start with
an empty sefl of e is not a spanning tree, I&’ be a cut not
containing any ed imal-cost edge frofd’ to T.
Different choices dlfferent specific algorithms. We discuss two ap-

proaches in detail in t and outlineiadthpproach in Sect. 11.8.
imum cost edge in the cu

algorithm for figdin MST. Sef to
the set of all edges. As lon ing tree, find a cycleThand delete

an edge of maximal cost from. icient implementation of this approach is

if all edge costs arechfiit.
Show that in this case the MST doe ach edgésaegilaced by its

rank among all edge costs.

11.2 The Jarnik—Prim Algorithm

The Jarnik—Prim (JP) algorithm [98, 158, 56
algorithm for shortest patr?sStarting from an

pilar to Dijkstra’s

queueQ. The smallest element iQ gives the desired edge. When a nod
S, its incident edges are checked to see whether they yielcbivep con
nodes iV \ S Fig. 11.2 illustrates the operation of the JP algorithna,
shows the pseudocode. When nads added tdSand an incident e

2 Actually, Dijkstra also described this algorithm in his seal 1959 paper on shortest paths
[56]. Since Prim described the same algorithm two yearsegait is usually named after
him. However, the algorithm actually goes back to a 1930 phpdarnik [98].

220 11 Minimum Spanning Trees

encode this information. If all edge costs are positive, & icuse the-array for
this purpose. For any noded|v] = O indicatess € Sandd[v] > 0 encodes ¢ S.

Exercise 11.5Dijk
queues. Show thg

orithm for shortest paths can use monotorierity
jority queuesdtsuffice for the JP algorithm.

*Exercise 11.6 (
costs 1, ...

sis of the JP algorithrssume that the edge

y to the edgesfShow that the expected
rmed by the JP algorithm is then bounded
ery similar to the average-caseyemabf

by O(nlog(m/n)).
Dijkstra’s algorithm in

arnik—Prim algorithm with starting nodeThe
c,b), and(b,d) are added to the

Function jpMST : Sebf Edge
d = (e,...,0) : NodeArrayl..n| of RU /1 d[v] IS the distance of from the tree
parent: NodeArrayof Nodeld renfv] i test edge betwe&andv
Q: NodePQ | usesd|-] as priority
Q.inser{s) for some arbitrangs € V
while Q # 0 do

u:=Q.deleteMin
dlu:=0 u =0 encodesi€ S
foreachedge e= (u,v) € E do
if c(e) < d[v] then Il c(e) < d[v] implies hence ¢ S
div]:=c(e)
parenfv]:=u
if ve Qthen Q.decreaseKdy) elseQ.insertv)
invariant Vv e Q:d[v] = min{c((u,v)) : (u,v) e EAu€ S}
return {(v,parentv]) :veV\ {s}}

Fig. 11.3.The Jarnik—Prim MST algorithm. Positive edge costs

11.3 Kruskal's Algorithm 221

11.3 Kruskal's Algorithm

The JP algoti probably the best general-purpose M&drig#thm. Nevertheless,
t an alternative algorithm, Kruskabpathm [116]. It also has

over the edg of increasing cost and maintains a partial MST is
initially empty. i maintains the invariant tilacan be extended to an
MST. When an edg sidered, it is either discarded or added to the MST. The
decision is made i the cycle or cut property.€flupoints ok either
belong to the s mponenf\T) or do not. In the former case,

T Ue contains a an edge of maximum cost in this cycle. Since edges
are considered in castan be discarded, by the cycle property.
If econnects distinc &sis a minimum-cost edge in the cht consisting

of all edges connectin nté\afT); again, it is essential that edges
are considered in orderiof i We may therefdde to T, by the cut

11.5 givesxample.
, we have to find whether an edge

property. The invariant is

In an implementation o
connects two components
done so efficiently that the
O(mlogm) if we use an efficien
factor involved is rather small, so th
the Q'm+ nlogn) JP algorithm.

cost factor is sorting thgesd This takes time
i sorting algorithhe donstant
can hope to do better than

Function kruskalMSTV, E, g : Setof Edge
T:=0
invariant T is a subforest of an MST
foreach (u,v) € E in ascending order of cosb
if uandv are in different subtrees df then
T:=Tu{(uv)} /1 jein two subtrees
return T

Fig. 11.4.Kruskal’'s MST algorit

Fig. 11.5. In this example, Kruskal's algorithm first proves thatd) and (b,c) are MST
edges using the cut property. Thérd) is excluded because it is the heaviest edge on the
cycle (b,c,d), and, finally,(a,c) completes the MST

222 11 Minimum Spanning Trees

Exercise 11.7 (streaming MST). Suppose the edges of a graph are presented to
you only once (for example over a network connection) anddmnot have enough
memory to | of them. The edgesmitat necessarily arrive in sorted order.

ithm that nevertheless computes an M&igwspace QV).
hm to run in time @nlogn). Hint: process batches of(6)

A partitionof a sgiv i 1, ..., Mg of subsets o with the property that
the subsets are disjoi »MiNMj =0 fori # jandM = My U---UM.
The subseti/); are
rithm, the forestl p he blecks of the partition are the connected com-
ponents ofV,T). So be trivial and consist of a singletistla
node. Kruskal’s algorit erations on thetifian: testing whether
two elements are in the sa ee) and joiningubsets into one (in-
serting an edge int®).
The union—find data str
entis a block®awn. Each block chooses

one of its elements as its repre ive; ice is imattee data structure and

i. Thus, testing whether two eleme
their respective representatives. An
different blocks joins the blocks.

e blockiate®o comparing
plied to representatives of

tree (the arrayparen). We have self-loops at t
The implementation ofind(i) is trivial. We
counter a self-loop. The self-loop is located a

versed again and again durifigd operations. In the worst case
take linear time.

ppetation may

Exercise 11.8Give an example of an-node graph with @) edges wi a naive
implementation of the union—find data structure withouburidy rank -
pression would lead to quadratic execution time for Kruskabosi

3 Note that this tree may have a structure very different framdorresponding subtree in
Kruskal's algorithm.

11.4 The Union-Find Data Structure 223

ClassUnionFindn: N) /I Maintain a partition of 1n

n) :Array [1..n] of 1..n O O O

1 2 n
i/

parent = (1

rray [1..n] of 0..logn /I rank of representatives

la

parenti]

different blocks g& @%
¥ o

/I path compression

if rank(i] < rank{j]

else
parentj]:=i
if rank{i] = rank

Procedureunion(i, j : 1..n)
if find(i) # find(j) thenlin

the maximal depth of the trees representing blocks. Evamesentative stores a
elementis arepresentative
and has rank zero. When we link two r ndrdndis are different, we
make the representative of smaller rank a chi tve of larger rank.
When their ranks are the same, the choice gashihowever, we
increase the rank of the new root. We refer ta asunion by rank

fices to prove that the rank is bounded byogVe shall show that a tree
has rankk contains at least2lements. This is certainly true far= 0. T
a root grows fronk — 1 tok when it receives a child of rarkk— 1. Thus t
at least #1 descendants before the link operation and it receive
had at least 21 descendants. So the root has at le&sié€scen after the link
operation. O

The second optimization is callgth compressianThis ensures that a chain of
parent references is never traversed twice. Rather, akswibited during an op-

224 11 Minimum Spanning Trees

erationfind(i) redirect their parent pointers directly to the represérgadf i. In
Fig. 11.6, we have formulated this rule as a recursive prnaeedrhis procedure

tively, one can traverse the paitetim the forward direction.

In the first ne finds the representative, andénsdtond traversal, one

redirects the

Exercise 11

j)=2 forj>1,
A(|71) :A(I _172) fori > 2,
Al j)=Al—-1LA(,]j— fori >2and j> 2.

Proof. The proof of this theorem is
refer the reader to [186, 177].

You will probably find the formule
extremely rapidly. We havé\(1,j) = 2/,
A(1,A(2,1))=2*=16,A(2,3) = A(1,A(2,2))
A(3,1) =A(2,2) =16,A(3,2) = A(2,A(3,1))

Exercise 11.11EstimateA(5,1).

without union by rank. The analysis illustrates the powepath €
also gives a glimpse of how Theorem 11.4 can be proved.

Theorem 11.5.The union—find data structure with path compressign’ but auith

union by rank processes m find and-A link operations in timed(

4 The usage of the letteX is a reference to the logician Ackermann [3], who first stddie
variant of this function in the late 1920s.

11.5 *External Memory 225

Proof. A link operation has cost one and adds one edge to the datawstguThe
total cost of all links is @n). The difficult part is to bound the cost of the finds. Note
that the cos is O(1+ number of edges constructed in path compresgsi®n
our taskd the total number of edges constructed.

data structur hatv) may increase as long ass a representativay(v)
reaches its maxid wheigeases to be a representative (because itis linked to
another rep) fv) may decrease afterwards (because path compres-
sion remove it to a higher node). The weights are integers in the

range 1.n
r data structure go from nodssnaller weight to
nodes of larger the span of an edge as tleatiffe between the
weights of its endpo t an edge has a clhis span lies in the range
2.2+1_1. Thecl between 0 &ogn|
Consider a parti The first edge out of is created whex ceases to

be a representative.
through the edgéx, par

parent whenever a find operation passes
e is not the last edge traversed by the

topmost) edge of clagdraverse rge the constructlon of the new
rge ikt@bserve that in this
way, at most & [logn| edges are charged to any find operation (because there are
only 1+ [logn] different classes of e
x is charged t, there is another ed)in cIaSS| following e on the find

path. Also, the new edge out vhas a sp e as the sum of the spans
of eandé€, since it goes to an ancestor (not
edge out ok has a span of at least-22' = 21+1
We conclude that at most one edge in each ¢la
total number of edges constructed is at most

lagst+ 1 or higher.
medex. Thus the
)gn]), and the time

bound follows. O
11.5 *External Memory

The MST problem is one of the very few graph problems that have
an efficient external-memory algorithm. We shall give a denplegant/algorithm
that exemplifies many interesting techniques that are aséulfor other external-

memory algorithms and for computing MSTs in other models
algorithm is a composition of techniques that we have alrsagn®external sortlng,
priority queues, and internal union—find. More details caridund in [50].

226 11 Minimum Spanning Trees
11.5.1 A Semiexternal Kruskal Algorithm

asy case. Suppose we have enough internramnéo store the
cture of Sect. 11.4 fonodes. This is enough to implement
the external-memory model. We firsttshe edges using the
g algorithm described in Sect. Bhien we scan the edges
ight, and process them as deschip&duskal’s algorithm.
btrees, it is an MST edge and cantpetpatherwise, it
10ry graph algorithms that meq®in) internal memory

r the semiexternal alguorith the preceding
subsection, we cal umber of nodes. Thibeawone usingdge
contraction Suppos
eis the least-weight e
thatu andv are already €onnec ST under construction. Abeeaysed

the union—find data struct fact; now we ukgeecontraction to
e identifgndv and replace them
in call this nedén other words, we delete

to u, i.e., any edgév,w) now becomes an edge

by a single node. For simpli
v andrelink all edges incident
(u,w). Figure 11.7 gives an exa
edges, we associate an additional a te with each édgéndicates itriginal
endpoints. With this additional infor f tentracted graph is easily
chedge by its original.

edges and contract them. Once the nu
semiexternal algorithm. The following subse
mentation of this idea.

11.5.3 Sibeyn’s Algorithm

Suppose&/ = 1..n. Consider the following simple strateg
of nodes frorm to ' [50]:

forvi=1ton—n'do
find the lightest edgéu, v) incident on v and contract it

Figure 11.7 gives an example, with= 4 andn’ = 2. The strategy looks deceptively
simple. We need to discuss how we find the cheapest edge im@
we relink the other edges incident gni.e., how we inform the
they are receiving additional incident edges. We can useoaitgrqueue for both
purposes. For each edge- (u,V), we store the item

(min(u,v),max(u, V), weight ofe, origin of e)

11.5 *External Memory 227

() output(d,b) 3

(a.d) ~(c.d) @ 2E> oy CE=0
> Ny relink 49
(b,c) =(c,d)

was?(a, d)

incident on o
(b,c,7) become(d, c,
connected by four

pannlng tree and melgato d The edgegb,c,3) and
), respectively. The resulting graph has two nodes that are
eight 3, 4, 7, and 9 ecmly

Function sibeynMS
let rbe a random
Q: priority queue
foreache= (u,v) € E

/I Order:min node thenmin edge weight

Q.inser{min{m(u), ,c(e),u,v))
current:=0 /I we are just before processing node 1
loop

(u,v,c,ug, Vo) :=minQ
if current£ uthen
if u=n—n"+1thenbre
Q.deleteMin
output(up, Vo)
(current, relinkTo) := (u,V)
else ifv # relinkTothen
Q.inser{(min{v, relinkTo} , max{

/I next edge
/I new node
/I node reduction completed

endpoints define an MST edge
r relinking remaining-edges

inkTo} , ¢, Ug, Vo)) Il relink

S:=sort(Q) 0 increasing edge weight
apply semiexternal Kruskal t®

Fig. 11.8.Sibeyn’s MS

the queue), saycurrent rellnkTo), is added to the MST, and all oth
linked. In order to relink an edgécurrent z ¢, up, Vo) with z # RelinkT
(min(z, RelinkTg, max(z, RelinkTg, c, up, Vo) to the queue.

Figure 11.8 gives the details. For reasons that will becoles g
we renumber the nodes randomly before starting the algoritle.$Wwe chose a ran-
dom permutation of the integers 1 toand rename node as r7(v). For any edge
e = (u,v) we store(min{m(u), m(v)},max{m(u), (v)},c(e),u,v)) in the queue.
The main loop stops when the number of nodes is reduced ¥e complete the

228 11 Minimum Spanning Trees

construction of the MST by sorting the remaining edges aed thnning the semiex-
ternal Kruskal algorithm on them.

r{x) denote the 1/0O complexity of sorting x items. The expected
eeded by the algorithm sibeynM&X ssri{min(n/r))).

)(8briK)) 1/0s. Also, the semiexternal Kruskal step re-
ence, it suffices to count the number of operationfién t

gnsertions during initialization, the number of queue
he sum of the degrees of tdesiencountered. Let the

random variableX;
of expectations,
the contracted gra
remaining nodes i

at the average degree of a graph withi +1
1). We obtain.

E

1<i<n—n’/

whereHp: =511 1/i=INn+0O(1) i

Note that we could do without s
However, then the logarithmic factor i
than Inn/n’) and the practical performa
n' = O(M) is a large number, say $0Forn = 1Q nis thregtimes ltn/r’).

Exercise 11.12For anyn, give a graph witih nades and Qn) es where Sibeyn'’s
algorithmwithout random renumberingiould negd operations.

11.6 Applications

The MST problem is useful in attacking many other graph @ iscuss
the Steiner tree problem and the traveling salesman problem

11.6.1 The Steiner Tree Problem

We are given a nonnegatively weighted undirected g@ph (V,E) and a set of
nodes. The goal is to find a minimum-cost subBeif the edges that connects the
nodes inS. Such aT is called a minimum Steiner tree. It is a tree connecting a set
U with SCU C V. The challenge is to choo4¢ so as to minimize the cost of

11.6 Applications 229

the tree. The minimum-spanning-tree problem is the speeis¢ where consists
of all nodes. The Steiner tree problem arises naturally inrvoductory example.
Assume th of the islands in Taka-Tuka-Land are uhitéth The goal is to
conne i ited islands. The optimal solutior,ivilgeneral, have some of
s in the solution.

construct a soluti is within a factor of two of the iopidm. We construct an
auxiliary comple aphwith node s&tfor any pairu andv of nodes inS, the cost

of the edge jiary graph is their shortest-path distanc&irLet Tp
be an MS auxiliarylgraph. We obtain a Steiner tre6 by replacing every
edge ofTa by the pathni esents f@. The resulting subgraph & may contain

cycles. We delete les until the remaining adigis cycle-free. The
cost of the resu i at most the codhof

Proof. The algorithm
suffices to show thad(Topt is @ minimum Steiner tree fd8
auxiliary graph hapanning tree of
cost Z(Topt). Figure 11.91in struct such a spanning‘Wealking
once around the Steiner tre i cycle of cost Z(Topt); Observe that every
edge inTopt Occurs exactly twice in this path. Deleting the nodes oetSiih this
path gives us a cycle in the au
stsadimces irG. The cycle

in the auxiliary graph sparf§ and therefore the auxiliary graph has a spanning tree

of cost at most &(Topt). O
Exercise 11.13Ilmprove the above bo

The algorithm can be implemented to ru énDi~hlogn) [126]. Algo-
rithms with better approximation ratios exist
Exercise 11.140utline an implementation of [bove and aral{g

running time.

® nodeinS
O nodeinv\S

Fig. 11.9.0nce around the tree. We ha8e-= {v,w,x,y,z}, and the minimum Steiner tree is
shown. The Steiner tree also involves the noalds andc in V \ S. Walking once around the
tree yields the cyclév,a,b,c,w,c,x,c,b,y,b,a,za,v). It maps into the cyclév,w,x,y,zv) in
the auxiliary graph

230 11 Minimum Spanning Trees

11.6.2 Traveling Salesman Tours

The travelin sman problem is one of the most intensisteldied optimiza-
tion pro 117, 13]: given an undirected completply on a node sé&f

wit the goal is to find the minimum-weight simple cycle passing
through all . is the path a traveling salesmandvaaht to take whose

goal it is to Visi odes of the graph. We assume in thidiseahat the edge

ays an optimal round trip which visits nod@dwice

(because le] not increase the cost).

Theorem 11.8.Le
respectively. The

Proof. Let C be an opti : ing any edge fr@@ryields a spanning tree.
ThusCust < Copt. C T be an MST. Walking once around the tree as
shown in Fig. 11.9 giv at m@&&ygr, passing through all nodes.
It may visit nodes sever n extra visit tode does not increase
the cost, owing to the trial O

the lower bound of Theorem 11.8. additional cptsc2-trees and node
potentials. LetG’ be obtained fr

MST of G'. Since deleting the two edges incident on node 1 from a@oyields a
spanning tree o&’, we haveC, < Copt i minimum cost of a 2-tree.

Cr(u,v) = c(u,v) + 71(

for any pairu andv of nodes. For any tout,
2S;:=2%, 1(v), since a tour uses exactly two ed
a minimum 2-tree with respect tg;. Then

s ndec and c;; differ by
nt o y nod &L text

Crr(Trr) < Crr(copt) = C(Copt) + ,

and hence

c(Copt) > mﬁax(cn(Tn) —2Sy) .

This lower bound is known as the Held—Karp lower bound [88, 88
is over all node potential functiors It is hard to compute the lo
However, there are fast iterative algorithms for approxingit. idea is as fol-
lows, and we refer the reader to the original papers for BetAssume we have a
potential functionrr and the optimal 2-tre&;; with respect to it. If all nodes ofy;

have degree two, we have a traveling salesman tour and stbprvidse, we make

11.8 Historical Notes and Further Findings 231

the edges incident on nodes of degree larger than two artittiee expensive and the
edges incident on nodes of degree one a little cheaper. ahisedone by modifying
the node po of as follows. We define a new node potentiby

(V) = (V) + € (deg v, Tn) — 2)

wheree¢ is a parameterwhich goes to zero with increasing iteratiomlver, and
deqv, Ty) is the deg f in T;. We next compute an optimal 2-tree with respect
to 7’ and hope eld a better lower bound.

The minimum-spanni ms discussed in théptdr are so fast that the
running time is us he time required toagate the graphs and ap-
propriate represent rithm works webliflonandn if an adjacency

array representation 4 e graph is alailBhiring heaps [142] are
a robust choice for the priori skal's algorithmay be faster for sparse

sort the edges very efficiently.
The union—find data str e implemented more sgificeently by ex-

ploiting the observation that entatives neexhlt,iwhereas only nonrep-

it ther@méyn Fig. 11.4. Instead,

, instead of two arrays, only

eeded. This is particularly

a root of rankg stores the value+ 1+
one array with values in the range
useful for the semiexternal algorith

11.7.1 C++

LEDA [118] uses Kruskal's algorithm for computing MSTs.\Thaeion—find data

structure is callegbartition in LEDA. The Boo 27] gives a choice
between Kruskal's algorithm and the JP algo 0 public access to
the union—find data structure.

11.7.2 Java

JDSL [78] uses the JP algorithm.

11.8 Historical Notes and Further Findings

The oldest MST algorithm is based on the cut property and
Boruvka’s algorithm[28, 148] goes back to 1926 and hence represents one of the
oldest graph algorithms. The algorithm operates in phasekidentifies many MST
edges in each phase. In a phase, each node identifies thestigitident edge. These

232 11 Minimum Spanning Trees

edges are added to the MST (here it is assumed that the edgeactegairwise
distinct) and then contracted. Each phase can be implechémten in time @m).
Since a phase atleast halves the number of remaining nodgsa single node is
left after@logn) phases, and hence the total running time {m@gn). Boruvka’'s
algefithm isinot often used, because it is somewhat contplic@ implement. It is
nevertheless important as a basis for parallel MST algosth

There is arandomized linear-time MST algorithm that usexsph of Boruvka’s
algorithm to reduc@the aumber of nodes [105, 111]. The skboiiding block of
this algorithmfreduces the number of edges to aboutn@ sample @m/2) edges
randomly, find an MSTI’ ofithe sample, and remove edges E that are the heav-
iest edge in a cycleliBd The last step is rather difficult to implement efficiently.
But, at least for rather dense_graphs, this approach cad gigractical improve-
ment [108]. Thellinear-timefalgorithm can also be paraksli[84]. An adaptation
to the external-memonf model [2]'Saves a factgn)m’) in the asymptotic I/O com-
plexity compared with Sibeyn's algorithm but is impractifa currently interesting
values ofn owing to itS\much larger constant factor in the O-notation.

The theoretically besteterministidViST algorithm [35, 155] has the interesting
property that it has optimal worst<€ase complexity, altjioit is not exactly known
what this complexity is. Hen€e; if\you come up with a compietifferent deter-
ministic MST algorithm and prove that your algorithm rundiirear time, then we
would know that the old algorithm als@yruns in linear time.

Minimum spanning trees define a single path between any paades. Interest-
ingly, this path is éottleneck shortest paf®,"Application 13.3], i.e., it minimizes
the maximum edge cost for all paths eonnecting the nodeserotiginal graph.
Hence, finding an MST amounts ta solving the all-pairs boétk-shortest-path
problem in much less time than that for solving the all-pafvertest-path problem.

A related and even more frequentlypused application is efirgj based on the
MST [8, Application 13.5]: by dropping —1"edgesffromithe MST, it can be split
into k subtrees. The nodes in a subtfeare fagfaway from'the other nodes in the
sense that all paths to nodes in other subtregs use edgesdlatieast as heavy as
the edges used to clit out of the MST.

Many applications lead to MST problems on,complete‘grapreqjikently, these
graphs have a compact description, for exampletifithe ncefegsent points in the
plane and the edge costs are Euclidean distances (thesedi&Talled Euclidean
minimum spanning trees). In these situations, it is andf@iconcern whether one
can rule out most of the edges as too heavy without actuadljing at/them. This
is the case for Euclidean MSTs. It can be shown that Euclidé&nsiare contained
in the Delaunay triangulation [46] of the point set. Thistrgulation has linear size
and can be computed in timeg(@ogn). This leads to an algorithm of thg same time
complexity for Euclidean MSTs.

We discussed the application of MSTs to the Steiner tree lemttéveling'sales:
man problem. We refer the reader to the books [8, 13, 117,20(,for more infor-
mation about these and related problems.

