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Abstract

We re-examine the notion of the quantum potential introduced by
de Broglie and Bohm and calculate its explicit form in the case of
the two-slit interference experiment. We also calculate the ensemble
of particle trajectories through the two slits. The results show clearly
how the quantum potential produces the bunching of trajectories that
is required to obtain the usual fringe intensity pattern. Hence we are
able to account for the interference fringes while retaining the notion
of a well-defined particle trajectory. The wider implications of the
quantum potential particularly in regard to the quantum interconnec-
tedness are discussed.

1 Introduction.

In spite of the undoubted success of the quantum formalism, its interpre-
tation continues to present difficulties [1]. In fact, Feynman [2] writes “I
think I can safely say that nobody understands quantum mechanics . . . ”
and goes on to suggest that questions like “how can nature be like that?”
should be avoided. We would like to propose that such questions can be
meaning-fully raised and we will show how detailed considerations of the
quantum potential [3],[4] can be used to give a different insight into quantum
interference.

Let us start by contrasting the nature of classical and quantum ensem-
bles. In classical physics each individual particle has well-defined properties
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and all movement is described in terms of trajectories on a space-time mani-
fold. Any statistical properties of an ensemble arise as a result of a frequency
distribution over the individual properties themselves. In quantum theory,
however, one usually denies the possibility of specifying completely all the
properties of the individual even in principle, so that the meaning of an en-
semble becomes unclear. Of course individual properties can be calculated
from the wave function, but the relation between the individual and the
wave function is essentially ambiguous and it is because of this ambiguity
that the statistical ensembles used in quantum theory do not have the same
epistemological status as those used in classical physics.

To Bohr [5],[6] this ambiguity was essential to the development of the
Copenhagen interpretation. It was not a question of disturbance, but a con-
sequence of the indivisibility of the quantum of action. As a result, it is
not meaningful to ask what goes on between measurements even though the
wave function and the entire formalism can be used to predict the proba-
bilities of the outcome of a given measurement. Thus in the Copenhagen
interpretation one is forced to renounce all possibility of conceiving how
a particle moves between measurements. As Bohr [5] puts it “there is no
question of reverting to a mode of description that fulfills to a higher degree
the accustomed demands regarding pictorial representation of the relation
between cause and effect”. Yet the terms particle, position, momentum,
etc. are essential to the theory and their retention has carried implications
that lead, almost inevitably, to the type of difficulties raised by Schrödinger
[7] and Renniger [8]. It will be recalled that Schrödinger’s difficulty arose
from the identification of the wave function with the state of a macroscopic
object, namely a cat, while Renniger showed that under certain conditions
the wave function of a particle changes even when a measuring instrument
gives no response. Similar interpretative difficulties also occur in the two-slit
interference experiment when the pattern is analysed in terms of individual
events.

Of course these particular features of the Copenhagen interpretation
have received many criticisms and have led to the development of a number
of alternative attitudes to the relation between the wave function and the
individual. In this paper we reconsider the de Broglie-Bohm approach to
this problem and report some new results that show much more clearly its
implications. In particular, we calculate the quantum potential for the two-
slit situation and show how it gives rise to “interference” without the need
to abandon the notion of a well-defined particle trajectory, thus supporting
the qualitative claims made both by de Broglie [9] and Bohm [4].

Futhermore, we are able to show that even though the theory uses par-
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ticles with well-defined properties it does not imply a return to the classical
paradigm. The quantum potential suggests a radical change in our con-
ceptual outlook and provides two new interesting possibilities that could
have a direct bearing on the subsequent development of the theory. Firstly
it provides a fresh perspective on the microworld by giving clear intuitive
representations of physical processes without the need for the ambiguous re-
lation between the individual and the wave function. We believe that clear
intuitive structures are a necessary requirement for suggesting new concepts
and new experiments.

Secondly the quantum potential offers a clearer insight into the quantum
interconnectedness or “quantum wholeness” that Bohr saw as the essential
new feature of quantum phenomena1. Although Bohm did recognise this
aspect of the quantum potential, he did not immediately pursue its impli-
cations. In fact, it was only much later that these considerations led to
the realization that a different kind of causality was implicit in quantum
mechanics. This has been discussed in a somewhat different context by
Baracca, Bohm, Hiley and Stuart [10] and Philippidis [11] and its relation
to this work will be discussed elsewhere. Here we will show in what way the
quantum potential implies interconnectedness by examining the exact form
of the potential in the case of the two-slit system.

2 The quantum potential formalism.

Let us follow Bohm [4] and write the wave function in the form ψ =
R exp[iS/~], where R and S are real. Then Schrödinger’s equation reduces
to the following two equations:

∂S

∂t
+

(∇S)2

2m
+ V +Q = 0 (1)

where V is the classical potential and Q is the quantum potential,

Q = −
~

2

2m

∇2R

R
(2)

and

∂P

∂t
+ ∇

(

P
∇S

m

)

= 0 (3)

1It has been shown that the quantum potential associated with two particles gives rise
to a force between them whieh does not necessarily decrease as the distance between them
increases. This may be considered as an instance of quantum interconnectedness. For
further details see D. Bohm and B. J. Hiley: Fonds of Phys., 5, 93 (1975).
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with

P = R2 = ψ∗ψ. (4)

Equation (1) is recognized immediately to be the classical one-particle Hamilton-
Jacobi equation with an additional term which vanishes when ~ = 0. Thus
we see that a new quantity Q, the quantum potential, appears alongside
classical quantities. It is this feature that allows us to retain the localized
particle with well-defined positions and momenta, while the novel aspects
of the quantum phenomena can be accounted for in terms of the quantum
potential.

Although this new potential formally appears in an equation that sug-
gests a dynamical origin, a closer examination reveals a conceptual structure
that is radically different from that used in classical physics. For example,
it carries nonlocal features which seem to be essential for a proper descrip-
tion of some quantum effects [12] [13] and it appears to have no well-defined
source, so that its interpretation as a dynamical field is inappropriate. Bohm
originally considered this to be a weakness of the model and thought it was a
temporary feature of the unrefined theory. No doubt it is the nondynamical
nature of the quantum potential that has generated an attitude best sum-
marized in a quotation by Bopp [14] “we say that Bohm’s theory cannot be
refuted . . . however we don’t believe it”. But it is not a matter of faith, and
novelty is not a sufficient reason for rejection. We share Bohm’s later views
and take the nondynamical features of the quantum potential to reflect the
essential novelty of the quantum domain.

Equation (3) together with eq.(4) is taken to be an expression for the
conservation of probability. In the quantum potential approach the prob-
ability density arises as a result of a distribution of initial conditions of
the particles in the ensemble together with the density of trajectories in
that region, the trajectories themselves being determined from the modified
Hamilton-Jacobi equation. Thus, in this case, the probability is interpreted
as a frequency distribution over individuals with well-defined properties so
that the ensembles are of the type used in classical physics. However, we
must emphasize that there is an essential difference in the sense that in
classical physics the initial distribution can be arbitrarily reduced by careful
preparation of the initial conditions. But in the model we are considering,
the role played by the quantum potential itself is such as to make it impos-
sible to reduce the uncertainty in the initial conditions below that given by
quantum mechanics in any given measurement. Whether there exist situa-
tions in which this is not true will be left open. However, once the initial
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distribution satisfies the quantum mechanical condition, the presence of the
quantum potential in eq.(1) ensures that the probability P is equal to ψ∗ψ
for all subsequent times.

3 The quantum potential for the two-slit experi-

ment.

We shall now indicate how the quantum potential was calculated for the
usual two-slit set-up comprising an electron source S1, two slits A and B
and a screen S2, In the co-ordinate system with origin at O shown in fig. 1,
the centres of the slits have co-ordinates (0, Y ) and (0,−Y ).

Figure 1: Two-Slit Arrangement

We begin by computing the wave function using the path integral method
from which the quantum potential can be obtained by using equation (2).
This method of obtaining the quantum potential does not imply that the
wave function has any physical significance, but rather may be considered as
a mathematical aid from which the physically significant quantum potential
is calculated. First we calculate the free-particle kernel for a path starting at
S1, passing through the point a inside slit A at a distance δY from its centre,
and ending at a point D on the screen. If D has co-ordinates (x, Y + η),
where η is measured from the centre of A, the kernel can be written in the
form

KA
δY (−X, 0, 0;x, Y + η, tD) exp

[

im

2~

[

X2 + (Y + δY )2

T

]]

. exp

[

im

2~

[

x2 + (Y + η − Y − δY )2

τ

]]

(5)
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where T = X/Vx and τ = x/Vx, Vx being the velocity along the x-axis.
F (T, τ) is a normalizing factor.

The probability amplitude ψA is obtained by integrating over all posi-
tions of a within the slit. For convenience we assume the slit to be Gaussian
[15] so that the probability amplitude is then given by the following integral:

ψA = F (T, τ)

∫ ∞

−∞

KA
δY exp

[

−
δY 2

2β2

]

d(δY ) (6)

where β is the half-width of the slit. We obtain finally

ψA = F (T, τ) exp

[

im

2~

(

X2

T
+
x2

τ

)]

exp

[

im

2~

(

Y 2

T
+
η2

τ

)]

. exp

[

(m2/2~
2τ2)(Vyτ − η)2

im/~T + im/~τ − 1/β2

]

(7)

similarly for the slit B we find

ψB = F (T, τ) exp

[

im

2~

(

X2

T
+
x2

τ

)]

exp

[

im

2~

(

Y 2

T
+

(2Y + η)2

τ

)]

. exp

[

(m2/2~
2τ2)(Vyτ + 2Y + η)2

im/~T + im/~τ − 1/β2

]

(8)

Here Vy is the packet velocity in the y-direction.
These solutions give two wave packets immediately behind the slits, each

moving with velocity Vx, in the x-direction and separating from each other
with a relative velocity 2Vy. The half-widths of these two packets in the
y-direction are given by

∆y =

[

β2

(

x

VxT
+ 1

)2

+
~

2x2

m2β2V 2
x

]1/2

. (9)

In order to obtain a clear visualization of the shape of the quantum
potential under “steady state” conditions, we have carried out numerical
computations using data based on the experiments performed by Jonsson
[16]. The energy of the electrons is taken to be 45 keV and we have used
the velocities Vx = 1.3 · 108ms−1 and Vy = ±1.5 · 102ms−1. The separation
between the centres of the two slits, A and B, is 1.0 · 10−4cm and their half-
width is assumed to be 0.1 · 10−4cm. The quantum potential was calculated
in a region between the slits and the screen bounded by 0 < x ≤ 35cm and
−1.9 · 10−4cm ≤ y ≤ 1.9 · 10−4cm.
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Figure 2 shows the quantum potential when viewed from the screen
S2 looking towards the slits. The position of the slits coincides with the
two parabolic peaks in the background. In fig.3 we plot the corresponding
particle trajectories for various initial positions within each of the slits2. The
trajectories are calculated by integrating the equation

∇S = mv, (10)

which relates the S-function to the particle velocity in the usual way. Ini-
tially the trajectories from each slit fan out in a manner that is consistent
with diffraction at a single Gaussian slit. The subsequent “kinks” in the
trajectories coincide with the troughs in the quantum potential. They arise
because, when a particle enters the region of a trough, it experiences a strong
force in the y-direction which accelerates the particle rapidly through the
trough into a plateau region where the forces are again weak. In conse-
quence most of the trajectories run along the plateau regions giving rise to
the bright fringes, while the troughs coincide with the dark fringes.

At about 35 cm, which corresponds to the foreground of fig.2, one has
already reached the Fraunhoffer limit in which the separation between the
fringes is given by δ = λx/2Y , λ being the de Broglie wavelength. In fact,
this result is used to provide a check on the numerical data.

Figure 2: The quantum potential for two Gaussian slits viewed from S2,

The density distribution of trajectories alone does not provide the actual
intensity distribution, but must be supplemented by the particle distribution

2A preliminary attempt to calculate the particle trajectories has been made by J.
P. Wesley, Phys. Rev., 122, 1932 (1961). However, his premises and assumptions are
radically different from those used here and, furthermore, his results do not correspond
with those derived from quantum mechanics.
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Figure 3: Ensemble of trajectories through two Gaussian slits

function. If we assume a Gaussian distribution at the slits, then the intensity
distribution in the Fraunhoffer limit agrees with that expected from the
usual considerations.

In fig. 2 the finer details of the quantum potential are not evident, so
we have plotted a cross-section in fig. 4 which shows the depth and gradient
of each trough at about 18 cm from the slits. The diminishing depth of the
troughs for larger values of |y| is responsible for the intensity envelope of
the fringes.

Figure 4: Cross-section of quantum potential at 18cm from slits

4 Discussion.

In the usual quantum-mechanical interpretation of the two-slit interference
pattern, it is argued that the question as to which slit the electron passes
through should not be raised. Naturally such a conclusion would follow from
the assertion that it is not meaningful to consider what happens between
measure-ments, but in this particular case a further reason is often given. If
an actual experiment is performed to try to answer such a question, say by

8



placing a small counter behind one of the slits, we find that the outcome of
the original experiment is changed and the fringes are no longer produced.
It is then argued that, since we cannot design an experiment to answer such
questions, we must not raise them because they are, in fact, meaningless.
Thus we are left with point electrons producing interferencelike phenomena
with no intuitive structure to comprehend such a behaviour and, by following
Bohr, we must combine incompatible concepts like wave and particle through
complementarity.

Our calculations show very clearly that this position is not necessary
to account for interference. The approach through the quantum potential
retains a pointlike particle and each particle in the original ensemble follows
a well-defined trajectory which passes through one or other of the slits.
This ensemble produces the required interference pattern and, at the same
time, shows that the final position of the particle on the screen allows us to
deduce through which slit it actually passes. Thus it is possible to retain the
trajectory concept and, at the same time, account for the interference. There
is no longer a mystery as to how a single particle passing through one slit “
knows” the other slit is open. This information is carried by the quantum
potential so that we no longer have a conceptual difficulty in understanding
the results obtained in very low intensity interference experiments.

Notice that the trajectory of a single particle is not obtained by direct
observation at the slits. In fact, if a counter is placed at one of the slits,
the resulting quantum potential can be shown to be different from the one
we have calculated and this new potential will show no interference proper-
ties. Thus altering the experimental arrangement can radically change the
outcome of the experiment. This feature of quantum mechanics was con-
tinually emphasized by Bohr [5] when he talked about “the impossibility of
subdividing quantum phenomena” . The quantum potential actually pro-
vides a clear expression of this inseparability. For example, the quantum
potential calculated from eq.(7) shows that the properties of the particle
(such as mass and velocity) cannot be isolated from those of the apparatus
(such as width and separation of the slits). In other words, the observed sys-
tem and the observing apparatus are linked in an essential and irreducible
way. Our disagreement with Bohr’s position concerns his assertion that it
is a logical consequence of this irreducibility that we are presented with a
choice of either tracing the path of a particle or observing interference ef-
fects. Our results show that this is not the case since the essential features
of the wholeness of quantum phenomena can be retained without the need
to give up the idea of point particles following well-defined trajectories. The
wholeness is now expressed through the quantum potential which depends
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irreducibly on the properties of both the particle and the apparatus.

Figure 5: 150· azimuthal view of quantum potential.

From the remarks above and those in sect.2, it is clear that the quantum
potential is unlike any other field used in classical physics. Indeed we can
bring out yet another interesting feature of this potential by examining the
150◦ azimuthal view shown in fig.5. Immediately behind the slits the cross-
section of the initial parabolic peaks first increase slowly, causing the trajec-
tories to spread out radially. This feature corresponds to the spread of the
wave packet in the usual approach.

As one moves away from the slits, high, rapidly varying spikes appear
at about 1.5 cm from the slit plane and finally decay into the background
at about 6 cm. Very few electrons actually reach this region, so it can be
regarded as lying in the geometric shadow of the two slits. However, this
does not imply that its role is negligible. On the contrary fig.2 shows that
the high peaks are the source of the overall pattern because all the troughs
and ridges emerge from here and radiate outwards.

Furthermore, the magnitude of the quantum potential contributes neg-
ligibly to the total energy of the electrons. Its absolute maximum value is
only about 10−4 eV, whereas the kinetic energy of the electrons is about 45
keV. Its effect is almost entirely confined to the relatively narrow troughlike
regions, where it gives rise to large positive and negative accelerations which
produce the short kinks found in the trajectories; its role may, therefore, be
thought of as one of ordering and structuring the particle trajectories in a
way that reflects the peculiarities of the quantum domain. Thus the geomet-
ric shadow can be thought of as an organizing centre for the whole ensemble
of trajectories which unfold as the particle moves towards the screen. This
suggests a natural link with the recent ideas proposed by Thom [17] in a
different context. We have already begun to explore this relationship and
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a more detailed study of the structural characteristics and function of this
region will be discussed in a later paper.

5 Conclusion.

Our results using the quantum potential show that one can, in fact, re-
move the ambiguity of whether quantum objects are waves or particles and
provide, instead, a clear intuitive understanding of quantum interference in
terms of well-defined particle trajectories. More important than this, how-
ever, is the new perspective it gives to quantum interconnectedness. We
have shown that the quantum potential combines properties of all the par-
ticipating elements—masses, velocities of particles, widths and separation of
slits—in an irreducible way and suggests that, as far as the quantum domain
is concerned, space cannot be thought of simply as a neutral back cloth. It
appears to be structured in a way that exerts constraints on whatever pro-
cesses are embedded within it. More surprisingly still, this structure arises
out of the very objects on which it acts and the minutest change in any of
the properties of the contributing objects may result in dramatic changes in
the quantum potential.

This gives a new appreciation of Bohr’s insistence that quantum phe-
nomena and the experimental situation are inseparable. Moreover, it recalls
the relativistic relationship between space and inertial mass, and seems to
extend this relationship to include the geometrical and possibly the topo-
logical configu-rations of matter.

It is clear, therefore, that the quantum potential is unlike any other field
employed in physics. Its globalness and homogeneity in the sense of not
being separable into well-defined source and field points indicates that it
calls for a different conceptual framework for its assimilation. Notions of
structure, structural relationships and stabilities seem to be more appropri-
ate than those of dynamics (even though here we have started with what
appeared to be dynamical equations). However, a more detailed discussion
of these points will be presented in a further paper.

* * *
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