1. Introduction

What is a glass?

Conventionally: cooled oxide melts

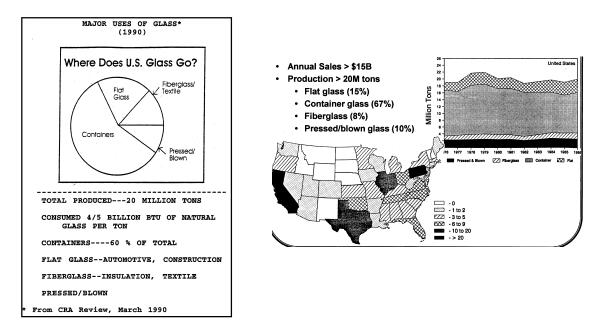
Natural Glasses:

- Obsidian; viscous melts
 - Artifacts from 75,000 BC (Paleolithic Age)
 - Arrow tips, scrapers, etc.
- Pumice; gassy, low viscosity melts

Egyptians were making glasses ~9000 years ago; technological origins 'lost in the mists of time'

- Pliny (Roman historian) claimed that Phoenecian sailors cooking on blocks of *Natron* (alkali salts used for mummification) noticed primitive glass melts formed in beach sands around the cooking fires. Three basic components:
 - Sand (SiO₂)
 - Natron (Na₂O)
 - Sea Shells (CaCO₃)

(Same three components in SLS compositions)


History of glass development: see <u>www.pennynet.org/glmuseum/edglass.htm</u>

- Through the 1500's, artisans dominate development
 - Venetian glass: Island of Murano
 - Well-guarded trade secrets; artisans held captive on island, death penalty for revealing trade information.
- Development of defect-free glass central to a variety of scientific revolutions:
 - Glass windows replacing dark wooden shutters/oiled paper in Europe, 1400's and the development of superior mirrors → heightened awareness of cleanliness and hygiene.
 - Optical glass (1500's) → microscopes (Huygens) revolutionized *biology* → telescopes (Galileo) revolutionized *astronomy*
 - 3. **Thermometer Glasses** (1800's): accurate/reproducible measurement of temperature responsible for experimental underpinnings of *thermodynamics.*
 - 4. Laboratory Glass (1800's): chemical revolution (Michael Faraday)

Today: >98% (by weight) of commercial glasses are silicates

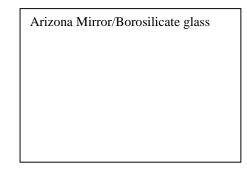
- Soda-lime silicate glass:
 - ~72 wt% SiO₂
 - ~14 wt% Na₂O
 - ~11 wt% CaO
 - ~3 wt% other
- melted at 2800°F (1500°C)

sand soda ash (Na₂CO₃ mined in Wyoming) limestone (CaCO₃)

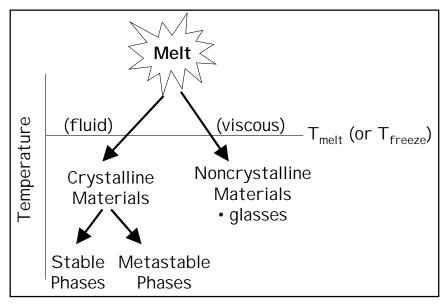
>20 million tons annually; production locations across the country to reduce transportation costs (typical for commodity material).

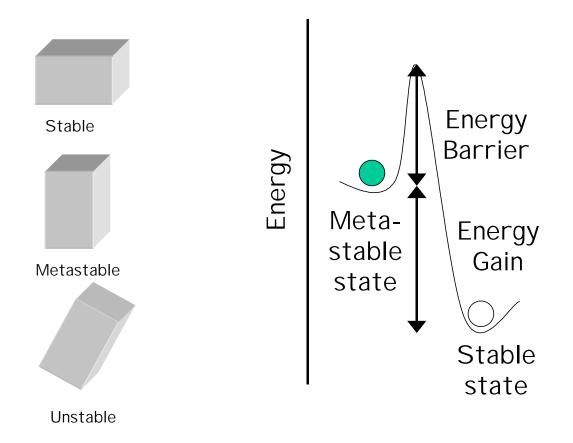
- Containers, flat glass, pressed/blown: generally SLS compositions
- Fiber glasses: borosilicate compositions
- Other types of glasses include:
 - **Glazes** for *decoration (dinnerware, architectural applications, etc.) *protective coatings (strength, chemical resistance, scratch resistance, etc.
 - Consumer ware *Pb-crystal

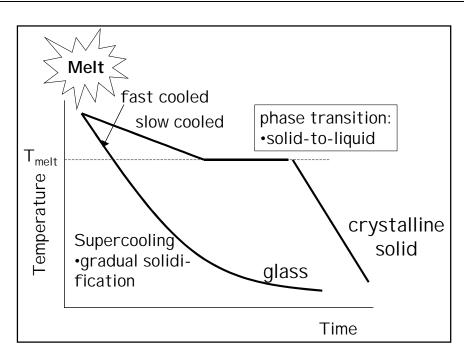
*glass-ceramics (Corelleware, etc)


More recently, glass has been part of new scientific and technological revolutions

- Ultrapure SiO₂ for optical fibers
 - Transparency improved by 10¹⁰⁰ times since 1965 (first 1000-m fiber transmitted virtually no light; now sub-Pacific cables transmit 120,000 simultaneous phone calls, M-bit/sec transmission rates (Encyclopedia Brittanica per second- see *Stuff*, I. Amato, p 109-110).


- Ultrapure SiO₂ for photolithographic optics
 - Submicron features for next generation chip manufacturing
 - 191 nm (free electron lasers)
- Rare-Earth soluble glasses; other non-linear optical glasses
 - Optical amplifiers, switches, lasers
- Semiconducting Chalcogenide Glasses
 - Xerox process
- New glasses are developed for:
 - Information displays/flat panels
 - Microelectronic packages (seals, protective layers, etc.)
 - •


New Astronomical Optics:

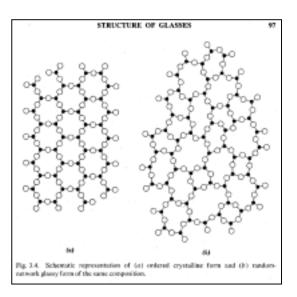

 10-meter diameter low expansion glasses and glass-ceramics Rotating furnace to form meniscus

Classification of Solids

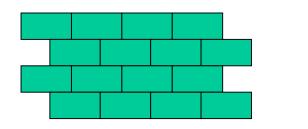
Crystalline solids follow a well-defined path:

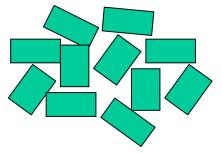
- Thermodynamically stable path
- Lower energy
- Equilibrium conditions

Non-crystalline solids (glasses)


- Non-equilibrium path
- Favored by fast cooling & high viscosity
 - Slow atomic motion prevents long-range structural order that constitutes crystalline solids

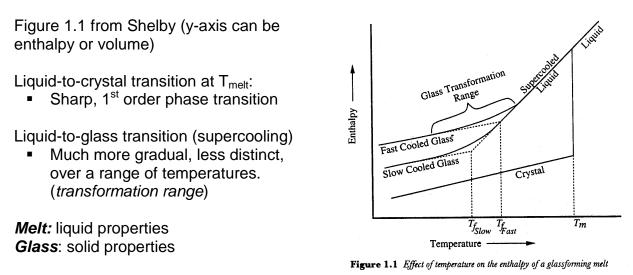
Consider structures of liquids & solids:


<u>Liquids</u>: atoms/molecules moving rapidly; bonds breaking and reforming; fluid behavior.


<u>Solids</u>: local positions of atoms are fixed; bonds are intact; rigid behavior.

Difference between crystals and glasses? Positions of 'fixed' atoms are different. In a **crystal**, atoms have **ordered** positions, **long-range order.** In a **glass**, gradual solidification, 'freeze in' aspects of the '**liquid-like**' structure- **no long range order.**

Same polyhedral building blocks, different configurations:



Note: Two distinguishing characteristics of a glass:

- Gradual solidification kinetics
- No long-range atomic order

These characteristics form the basis for our definition of 'glass'.

- Crystals: •ordered atomic structures mean smaller volumes & lower energies •thermodynamically stable phase
- Glasses: •lack of long-range order results in larger volumes, higher energies; atoms could rearrange to form denser structures if given enough thermal energy and time.

•thermodynamically metastable phase

Fictive Temperature: cross-over from supercooled liquid (equilibrium) behavior to solid glass behavior. A glass with 'T_f' possesses the 'frozen in' equilibrium structure of a supercooled liquid at T_f.

- Rapid cooling: fall out of equilibrium sooner as atoms cannot rearrange fast enough to reach lower densities → greater T_f → more open room temp. structure→lower room temperature density
- Slow cooling: atoms have more time to rearrange to reach lower energy, denser configurations → lower T_f → less open room temp. structure → greater room temperature density

Glass Transformation Range: temperature range over which a melt becomes a rigid solid (glass) upon cooling.

 Defined as 'range' because cooling rate will affect the temperature at which a melt becomes a glass (and so cooling rate will affect macroscopic glass properties).

Glass transition temperature (T_g) : experimental temperature at which glass properties change to melt properties.

- Not unique; experimentally sensitive
- Less precisely defined than T_f, but more useful because it is easy to measure.

Definitions: older ones are incomplete.

♦ "Glass is an inorganic product of fusion that has cooled to a rigid condition without crystallization" ASTM (C-162-92):

- Accurate for most commercial materials (e.g., soda-lime-silica) but,
 - Ignores organic, metallic, H-bonded materials
 - Ignores alternate processing routes (sol gel, CVD, n-bombardment, etc.)
- "Glass is an amorphous solid." (R. Doremus, *Glass Science*, 1994)
- Not all amorphous solids are glasses;
 - wood, cement, a-Si, thin film oxides, etc. are amorphous but do not exhibit the glass transition.
- Glass is an undercooled liquid."
- Problems: glasses have 'solid' properties (e.g., elastic material) No flow at room temperature

♦ "Glass is a solid that possesses no long range atomic order and, upon heating, gradually softens to the molten state."

- Non-crystalline structure
- Glass transformation behavior