Astronomers See the Farthest Galaxy Group Ever Found, When the Universe was Only 5% of its Current Age

By looking deeper into space (and farther back in time), astronomers and cosmologists continue to push the boundaries of what is known about the Universe. Thanks to improvements in instrumentation and observation techniques, we are now at the point where astronomers are able to observe some of the earliest galaxies in the Universe – which in turn is providing vital clues about how our Universe evolved.

Using data obtained by the Kitt Peak National Observatory, a team of astronomers with the Cosmic Deep And Wide Narrowband (Cosmic DAWN) Survey were able to observe the farthest galaxy group to date. Known as EGS77, this galaxy existed when the Universe was just 680 million years old (less than 5% of the age of the Universe). Analysis of this galaxy is already revealing things about the period that followed shortly after the Big Bang.

Continue reading “Astronomers See the Farthest Galaxy Group Ever Found, When the Universe was Only 5% of its Current Age”

Hubble Captured a Photo of This Huge Spiral Galaxy, 2.5 Times Bigger than the Milky Way With 10 Times the Stars

This galaxy looks a lot like our own Milky Way galaxy. But while our galaxy is actively forming lots of new stars, this one is birthing stars at only half the rate of the Milky Way. It’s been mostly quiet for billions of years, feeding lightly on the thin gas in intergalactic space.

Continue reading “Hubble Captured a Photo of This Huge Spiral Galaxy, 2.5 Times Bigger than the Milky Way With 10 Times the Stars”

This is the Core of the Milky Way, Seen in Infrared, Revealing Features Normally Hidden by Gas and Dust

The world’s largest airborne telescope, SOFIA, has peered into the core of the Milky Way and captured a crisp image of the region. With its ability to see in the infrared, SOFIA (Stratospheric Observatory For Infrared Astronomy) is able to observe the center of the Milky Way, a region dominated by dense clouds of gas and dust that block visible light. Those dense clouds are the stuff that stars are born from, and this latest image is part of the effort to understand how massive stars form.

Continue reading “This is the Core of the Milky Way, Seen in Infrared, Revealing Features Normally Hidden by Gas and Dust”

The Moon’s Magnetosphere Used to be Twice as Strong as the Earth’s

For decades, scientists have held that the Earth-Moon system formed as a result of a collision between Earth and a Mars-sized object roughly 4.5 billion years ago. Known as the Giant Impact Hypothesis, this theory explains why Earth and the Moon are similar in structure and composition. Interestingly enough, scientists have also determined that during its early history, the Moon had a magnetosphere – much like Earth does today.

However, a new study led by researchers at MIT (with support provided by NASA) indicates that at one time, the Moon’s magnetic field may have actually been stronger than Earth’s. They were also able to place tighter constraints on when this field petered out, claiming it would have happened about 1 billion years ago. These findings have helped resolve the mystery of what mechanism powered the Moon’s magnetic field over time.

Continue reading “The Moon’s Magnetosphere Used to be Twice as Strong as the Earth’s”

The Surprising Possibility That There are Still Active Volcanoes on Venus

Despite the similarities our world has with Venus, there is still much don’t know about Earth’s “Sister planet” and how it came to be. Thanks to its super-dense and hazy atmosphere, there are still unresolved questions about the planet’s geological history. For example, despite the fact that Venus’ surface is dominated by volcanic features, scientists have remained uncertain whether or not the planet is still volcanically active today.

While the planet is known to have been volcanically active as recent as 2.5 million years ago, no concrete evidence has been found that there are still volcanic eruptions on Venus’ surface. However, new research led by the USRA’s Lunar and Planetary Institute (LPI) has shown that Venus may still have active volcanoes, making it the only other planet in the Solar System (other than Earth) that is still volcanically active today.

Continue reading “The Surprising Possibility That There are Still Active Volcanoes on Venus”

It’s Snowing Iron Near the Earth’s Core

The Earth's layers, showing the Inner and Outer Core, the Mantle, and Crust. Credit: discovermagazine.com

Scientists theorize that within Earth’s interior, conditions are extremely hot and extremely pressurized. This is what allows for the primarily iron and nickel core to be divided between a solid inner region and liquid outer region. The dynamics of this core are believed to be responsible for driving our planet’s protective magnetosphere, which is why scientists are determined to improve their understanding of it.

Thanks to new research conducted by an international team of scientists, it appears that the core region also gets its fair share of “snow”! To put it another way, their research showed that within the outer core, tiny particles of iron solidify and fall to form piles up to 320 km (200 mi) thick on top of the outer core. These findings could vastly improve our understanding of the forces that affect the entire planet.

Continue reading “It’s Snowing Iron Near the Earth’s Core”

“Super-Puff” Exoplanets Aren’t Like Anything We’ve Got in the Solar System

The study of extrasolar planets has really exploded in recent years. Currently, astronomers have been able to confirm the existence of 4,104 planets beyond our Solar System, with another 4900 awaiting confirmation. The study of these many planets has revealed things about the range of possible planets in our Universe and taught us that there are many for which there are no analogs in our Solar System.

For example, thanks to new data obtained by the Hubble Space Telescope, astronomers have learned more about a new class of exoplanet known as “super-puff” planets. Planets in this class are essentially young gas giants that are comparable in size to Jupiter but have masses that are just a few times greater than that of Earth. This results in their atmospheres having the density of cotton candy, hence the delightful nickname!

Continue reading ““Super-Puff” Exoplanets Aren’t Like Anything We’ve Got in the Solar System”