
 Foundations of computing Volume 9

Universitätsverlag der TU Berlin

Christoph Dittmann

Parity Games, Separations, and the Modal μ-Calculus

Christoph Dittmann
Parity Games, Separations,
and the Modal µ-Calculus

Die Schriftenreihe Foundations of computing
der Technischen Universität Berlin wird
herausgegeben von:
Prof. Dr. Rolf Niedermeier,
Prof. Dr. Uwe Nestmann,
Prof. Dr. Stephan Kreutzer

Foundations of computing | 9

Christoph Dittmann

Parity Games, Separations,
and the Modal µ-Calculus

Universitätsverlag der TU Berlin

Bibliografische Information der Deutschen Nationalbibliothek
Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der
Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im
Internet über http://dnb.dnb.de abrufbar.

Universitätsverlag der TU Berlin, 2017
http://verlag.tu-berlin.de
Fasanenstr. 88, 10623 Berlin
Tel.: +49 (0)30 314 76131 / Fax: -76133
E-Mail: publikationen@ub.tu-berlin.de

Zugl.: Berlin, Techn. Univ., Diss., 2017
1. Gutachter: Prof. Dr. Stephan Kreutzer
2. Gutachter: Prof. Dr. Erich Grädel
3. Gutachter: Prof. Dr. Uwe Nestmann
Die Arbeit wurde am 20. Januar 2017 an der Fakultät IV unter Vorsitz
von Prof. Dr. Rolf Niedermeier erfolgreich verteidigt.

Diese Veröffentlichung – ausgenommen Umschlagfoto –
ist unter der CC-Lizenz CC BY lizenziert.
Lizenzvertrag: Creative Commons Namensnennung 4.0
http://creativecommons.org/licenses/by/4.0/

Druck: docupoint GmbH
Satz/Layout: Christoph Dittmann

Umschlagfoto:
Jaro Larnos | https://www.flickr.com/photos/jlarnos/8297692520/
CC BY 2.0 | https://creativecommons.org/licenses/by/2.0/

ISBN 978-3-7983-2887-7 (print)
ISBN 978-3-7983-2888-4 (online)

ISSN 2199-5249 (print)
ISSN 2199-5257 (online)

Zugleich online veröffentlicht auf dem institutionellen Repositorium der
Technischen Universität Berlin:
DOI 10.14279/depositonce-5700
http://dx.doi.org/10.14279/depositonce-5700

http://dnb.dnb.de
http://verlag.tu-berlin.de
mailto:publikationen@ub.tu-berlin.de
http://creativecommons.org/licenses/by/4.0/
https://www.flickr.com/photos/jlarnos/8297692520/
https://creativecommons.org/licenses/by/2.0/
http://dx.doi.org/10.14279/depositonce-5700

Abstract

The topics of this thesis are the modal µ-calculus and
parity games. The modal µ-calculus is a common logic
for model-checking in computer science. The model-
checking problem of the modal µ-calculus is polynomial
time equivalent to solving parity games, a 2-player game
on labeled directed graphs.
We present the first FPT algorithms (fixed-parameter
tractable) for the model-checking problem of the modal
µ-calculus on restricted classes of graphs, specifically on
classes of bounded Kelly-width or bounded DAG-width.
In this process we also prove a general decomposition
theorem for the modal µ-calculus and define a useful
notion of type for this logic.
Then, assuming a class of parity games has a polynomial
time algorithm solving it, we consider the problem of ex-
tending this algorithm to larger classes of parity games.
In particular, we show that joining games, pasting
games, or adding single vertices preserves polynomial-
time solvability. It follows that parity games can be
solved in polynomial time if their underlying undirected
graph is a tournament, a complete bipartite graph, or
a block graph.
In the last chapter we present the first non-trivial formal
proof about parity games. We explain a formal proof
of positional determinacy of parity games in the proof
assistant Isabelle/HOL.

i

Zusammenfassung

Die Themen dieser Dissertation sind der modale µ-
Kalkül und Paritätsspiele. Der modale µ-Kalkül ist
eine häufig eingesetzte Logik im Bereich des Model-
Checkings in der Informatik. Das Model-Checking-Pro-
blem des modalen µ-Kalküls ist polynomialzeitäqui-
valent zum Lösen von Paritätsspielen, einem 2-Spieler-
spiel auf beschrifteten, gerichteten Graphen.
Wir präsentieren die ersten FPT-Algorithmen (fixed-pa-
rameter tractable) für das Model-Checking-Problem des
modalen µ-Kalküls auf Klassen von Graphen mit be-
schränkter Kelly-Weite oder beschränkter DAG-Weite.
Für diesen Zweck beweisen wir einen allgemeineren Zer-
legungssatz für den modalen µ-Kalkül und stellen eine
nützliche Definition von Typen für diese Logik vor.
Angenommen, eine Klasse von Paritätsspielen hat einen
Polynomialzeit-Lösungs-Algorithmus, betrachten wir
danach das Problem, diese Klassen zu erweitern auf eine
Weise, sodass Polynomialzeit-Lösbarkeit erhalten bleibt.
Wir zeigen, dass dies beim Join von Paritätsspielen,
beim Pasting und beim Hinzufügen einzelner Knoten
der Fall ist. Wir folgern daraus, dass das Lösen von
Paritätsspielen in Polynomialzeit möglich ist, falls der
unterliegende ungerichtete Graph ein Tournament, ein
vollständiger bipartiter Graph oder ein Blockgraph ist.
Im letzten Kapitel präsentieren wir den ersten nicht-
trivialen formalen Beweis über Paritätsspiele. Wir stel-
len einen formalen Beweis für die positionale Deter-
miniertheit von Paritätsspielen im Beweis-Assistenten
Isabelle/HOL vor.

iii

Contents

1 Introduction 1

2 Preliminaries 11

3 The Modal µ-Calculus and Parity Games 15
3.1 The Modal µ-Calculus 16

3.1.1 Syntax 16
3.1.2 Semantics 18
3.1.3 Negation Normal Form 23
3.1.4 Recursion 26
3.1.5 Examples 28
3.1.6 Bisimulation Invariance 31
3.1.7 Subformulas and Closure 34
3.1.8 Formula Depth 38

3.2 Parity Games 47
3.2.1 Definition 47
3.2.2 Positional Determinacy 50
3.2.3 Attractor Sets 53

3.3 Relation to the Modal µ-Calculus 58
3.3.1 Annotated Formulas 59
3.3.2 Model-Checking Game 60

v

Contents

4 Computational Complexity 71
4.1 The Complexity of Parity Games 71

4.1.1 General Algorithms 74
4.1.2 Algorithms on Restricted Classes 77
4.1.3 Fixed-parameter Tractability 78

4.2 The Lµ Model-Checking Problem 81
4.3 Difficulty of Restricted Classes 83

4.3.1 Hardness 84
4.3.2 Planar Graphs 85
4.3.3 Treewidth 91
4.3.4 Locally Bounded Treewidth 94

5 Lµ Types 99
5.1 A Feferman-Vaught Theorem 99

5.1.1 Directed Separations 101
5.2 Proof of the Main Theorem 104

5.2.1 An Easy Case 104
5.2.2 A Slightly More General Case 106
5.2.3 Priority Tracking 111
5.2.4 The General Case 114
5.2.5 Parity Games 115
5.2.6 Profiles and Types 116
5.2.7 Definable Profiles 126
5.2.8 A Small Parity Game 132
5.2.9 Finishing the Proof 137

5.3 Running Time 140
5.3.1 Upper Bound 140
5.3.2 Lower Bound 145

5.4 FPT Algorithms for Lµ Model Checking 147
5.4.1 Weak Separations 147
5.4.2 Kelly-Width 152

vi

Contents

5.4.3 DAG-width 157
5.5 Conclusions . 161

6 Graph Operations on Parity Games 163
6.1 Preliminaries 164

6.1.1 Basic Definitions 164
6.1.2 Half-Solving Parity Games 166
6.1.3 Recognizing Winning Regions 169

6.2 The Join of Two Parity Games 169
6.2.1 Adjoining Vertices Belonging to One Player171
6.2.2 Joining Two Parity Games 180

6.3 Pasting of Parity Games 183
6.4 Adding a Single Vertex 187
6.5 Conclusions . 189

7 A Formal Proof of Positional Determinacy 191
7.1 Background . 192

7.1.1 Formal Proofs 192
7.1.2 Computer-Assisted Proofs 193
7.1.3 Isabelle/HOL 194

7.2 The Informal Proof 196
7.3 Isabelle Primer 202

7.3.1 Syntax 202
7.3.2 Context 203
7.3.3 Adding New Facts 205
7.3.4 Solving Goals 205
7.3.5 Assumptions 206
7.3.6 Proving Facts 208
7.3.7 Proof Methods 210
7.3.8 Rules 212
7.3.9 Naming Facts 213

vii

Contents

7.3.10 Finding Facts 214
7.3.11 Quantification 215
7.3.12 Types 219
7.3.13 Exploring Facts 220
7.3.14 Definitions 221
7.3.15 Locales 223
7.3.16 Further Reading 224

7.4 The Formal Proof 226
7.5 Technical Aspects 228

7.5.1 Graphs 228
7.5.2 Paths 231
7.5.3 Well-Ordered Strategies 235

7.6 Conclusions . 239
7.6.1 Time Complexity 239
7.6.2 Turing Machines 240
7.6.3 Restricted Graph Classes 242

Bibliography 243

Index 265

Symbols 271

viii

List of Figures

3.1 A cycle M of 2 vertices 27
3.2 The structure A for Example 3.18 30
3.3 An example for reboots and reboot-free paths

in the syntax tree 42
3.4 A simple parity game 49
3.5 The model-checking game M⋉ φ 62
3.6 Comparing M[X/S] ⋉ ψ to M⋉ µX.ψ 66

4.1 Arc crossing gadget 86
4.2 An arc crossing gadget in a parity game (impos-

sible) . 90
4.3 A model-checking game with unbounded treewidth 93

5.1 A directed separation 102
5.2 A disjoint separation 104
5.3 A separation with one vertex in the interface . 106
5.4 The model-checking game of Figure 5.3 107
5.5 Two parity games with similar possible profiles 120
5.6 A part of Pφ 133
5.7 A weak directed separation 148
5.8 M′ from the proof of Theorem 5.42 150

6.1 Orientations and biorientations 165
6.2 The first subgame solved by Algorithm 6.2 . . . 174
6.3 The second subgame solved by Algorithm 6.2 . 174

ix

List of Figures

6.4 The case distinction of the proof of Lemma 6.12 176
6.5 An illustration of the proof of Theorem 6.18 . . 182
6.6 The paste of P ′ and P ′′ at v′, v′′ 184
6.7 A game from RepeatedPasting(C) 184

7.1 The situation in the proof of Lemma 7.2 197
7.2 Every play is winning for player ◇ 199

x

1 Introduction

Model checking is one of the most important topics in com-
puter science and a successful application of methods of formal
mathematics in practice. Introduced in the 1980’s, nowadays
this method is widely used to express and verify properties of
programs and of protocols [EC80; QS82; Hol93; BK08]. Mod-
ern examples of implementations of model checking include the
SPIN model checker and the NuSMV model checker [Spi; Nus].
Formally, model checking is the problem of deciding whether a
given logical formula is true on a given mathematical structure.

The collection of all possible formulas and their semantics
is called a mathematical logic. Finding a good logic is key to
an effective and efficient model checking procedure. The logic
needs to be expressive enough for the properties of interest
but simple enough so that model checking remains feasible.
A logic that seems to strike a very nice balance here is the
modal µ-calculus, introduced by Dexter Kozen [Koz83]. It is
a highly expressive logic, more expressive than the linear and
branching temporal logics PDL [Koz83], LTL and CTL [EL86],
CTL* and ECTL* [Dam94; BC96; CGR11]. At the same time
the model-checking problem of the modal µ-calculus is easy
enough to be feasible in practice.

The modal µ-calculus makes statements about individual
vertices in a directed graph, for example “from this vertex
a red vertex is reachable” or “from this vertex an infinite

1

1 Introduction

walk along the arcs is possible”, to name only a few. On the
other hand, the modal µ-calculus is bisimulation-invariant,
an equivalence relation between models (see Section 3.1.6).
Bisimulation invariance implies that the modal µ-calculus is
unable to express properties such as “this vertex has a loop”
or “this vertex has degree 3”.

Formally, the modal µ-calculus is an extension of basic modal
logic with fixed points (see Section 3.1). Basic modal logic
is a mathematical logic that can express statements such as
“something is possible” or “something is necessary”. The usual
interpretation of “possible” and “necessary” is based on the
edge relation on directed graphs. Some statement is possible on
a vertex if there exists a successor where it is true. Conversely,
a statement is necessary if it is true on all successors.

Basic modal logic is contained in first-order logic because we
can readily reason about all successors if we have a universal
quantifier. But it is easy to see that the modal µ-calculus is not
contained in first-order logic because it follows from locality
arguments that first-order logic is unable to express “from this
vertex a red vertex is reachable”.

However, “this vertex has a loop” is trivial to express in
first-order logic. This shows that the modal µ-calculus is
incomparable to first-order logic. In some aspects it is stronger
and in some aspects it is weaker.

The model-checking problem for basic modal logic is a very
easy task and trivially possible in polynomial time. For most
other logics, however, the model-checking problem quickly
becomes too hard in the general case. For example, the prob-
lem of evaluating quantified Boolean formulas is the canonical
PSPACE-complete problem (see e.g., [AB09]). Clearly, a quan-
tified Boolean formula is nothing more than a special case of a

2

first-order formula evaluated over a 2-element model containing
“true” and “false”.

In practice the formula, in some logic, often turns out to
be small compared to the model in the the model-checking
problem. So instead of looking at the general model-checking
problem, we consider it as a parameterized problem where we
define a parameter, in this case the formula. Then we look
for parameterized algorithms that are fast when the parameter
is fixed. For a fixed formula, the model-checking problem of
the modal µ-calculus is trivially polynomial time solvable with
a simple brute force algorithm. However, the degree of this
polynomial depends on the formula.

For more efficient algorithms, we would like to limit the
degree of the polynomial in the running time. We say that a
parameterized problem is fixed-parameter tractable (FPT) if it
becomes polynomial-time solvable for every fixed choice of the
parameter and the degree of the polynomial is independent of
the parameter (see Section 4.1.3 for the formal definition).

To put this work into the wider context, let us remark that
very recently, Martin Grohe, Stephan Kreutzer and Sebastian
Siebertz showed that first-order model-checking with the for-
mula as the parameter is FPT on certain sparse classes of
graphs [GKS14]. Their result is also optimal, because Anuj
Dawar and Stephan Kreutzer showed that it is intractable on
all larger “effective” classes that are closed under taking sub-
graphs, under the common complexity theoretic assumption
FPT ̸= AW[∗] [KD09, Theorem 6.1]. Zdeněk Dvořák, Daniel
Král’ and Robin Thomas later showed that it is intractable
on all larger classes closed under taking subgraphs under the
assumption that FPT ̸= W[1] [DKT13, Theorem 1.5].

Let us now move to the model-checking problem of the

3

1 Introduction

modal µ-calculus, the main focus of this thesis. As mentioned
above, the modal µ-calculus is not contained in first-order logic,
so the result by Grohe et. al does not apply to this case.

The µ-calculus model-checking problem has an intimate
relationship to 2-player games called parity games. A parity
game is played on a directed graph with 2 players called “even”
(◇) and “odd” (□) who push a single token over the vertices
along the arcs. The vertices are labeled with natural numbers
called their priorities, and the total number of distinct priorities
is finite. Each vertex is also labeled with the player who must
move the token when it is on this vertex. If a player is unable
to move because a vertex has no successors, then he loses.

The game continues for as long as possible, usually an infi-
nite number of turns. Because we have finitely many distinct
priorities, at least one of the priorities will occur infinitely of-
ten. We then look at the smallest priority p occurring infinitely
often. If p is even, then player ◇ wins, and if it is odd, then
player □ wins (see Section 3.2 for the formal definition).

Determining the winner of a parity game is polynomial-
time equivalent to the µ-calculus model-checking problem. So
instead of investigating the model-checking problem directly,
in many cases it is both equivalent and easier to work with
parity games.

It is known that the complexity of solving parity games is
in NP ∩ coNP. There exists a slightly better result by Marcin
Jurdziński showing that the problem is in UP ∩ coUP [Jur98].
UP is the class of all problems that can be solved by a non-
deterministic polynomial-time Turing machine with at most
one accepting path. It follows that P ⊆ UP ⊆ NP, and it is
unknown if any of these inclusions are strict.

Membership to NP ∩ coNP already makes the problem of

4

solving parity games unlikely to be NP-complete because then
we would have a proof of NP = coNP. Another indication for
this is that Marcin Jurdziński, Mike Paterson and Uri Zwick
found a subexponential algorithm [JPZ06]. As of 2016 it is still
open whether solving parity games and thus µ-calculus model
checking have polynomial-time algorithms.

What makes this complexity so intriguing is that it is ex-
tremely rare for a problem to be in NP∩coNP with an unknown
membership to P. Other such problems are integer factorization
(but not primality testing, which is in P [AKS04]), stochastic
games [Con92] and lattice problems [AR05] (approximating
the shortest and closest vector in a lattice to within a fac-
tor of

√
n). If we also allow the class coAM instead of coNP,

which, as stated by László Babai and Shlomo Moran, is “just
above coNP”, then we can extend this list with graph isomor-
phism and matrix group membership [BM88; Bab92]. Matrix
group membership is the problem, given invertible matrices
A,B1, . . . , Bk over a finite field, of deciding whether A is in the
group generated by B1, . . . , Bk.

As far as the author is aware, these are all of the common
NP∩ coNP-problems (NP∩ coAM, respectively) with unknown
membership to P. Usually problems in NP∩ coNP turn out to
be in P. This includes problems with solutions that are far from
obvious, for example primality testing and linear programming,
both of which have polynomial-time algorithms.

From the point of view of parameterized complexity, the
usual parameter for parity games is the number of distinct
priorities. With this parameter, it is FPT equivalent to the
µ-calculus model-checking problem with the formula as the
parameter. However, if a graph width measure is included in
the parameter, then this width usually becomes unbounded

5

1 Introduction

in the reduction from the model-checking problem to parity
games. This does not happen in the other direction, where the
structure for the model-checking problem will essentially be
identical to the parity game. In this sense, FPT results for the
model-checking problem are more general than FPT results for
parity games.

In this thesis we work with the aim in mind of proving that
the µ-calculus model-checking problem parameterized with
the formula is in FPT. We do not solve this problem in its
full generality, but we consider restricted classes of graphs,
specifically bounded Kelly-width and bounded DAG-width,
and prove fixed-parameter tractability of the µ-calculus model-
checking problem on these classes with the formula and the
width of the decomposition as the parameter. For the DAG-
width we also need to include the size of the decomposition in
the running time (but not in the parameter) because a DAG
decomposition can have exponential size compared to the input
graph [AKR14].

In this process we prove a more general decomposition theo-
rem for the modal µ-calculus, interesting in its own right. Our
theorem is similar in nature to the well-known theorems by
Solomon Feferman and Robert L. Vaught from classical model
theory [FV59]. Their classical and our new result are state-
ments about the type of a vertex, that is, the set of formulas
that are true at that vertex. The classical result says that with
certain constructions such as disjoint unions and products, the
type of a vertex in the resulting graph depends only on the
types occurring in the factors and not on the factors themselves.

This theorem is very useful for algorithms because it allows
dynamic programming, which is a well-known technique to
solve a complicated problem by splitting the input into simpler

6

substructures, solving these subproblems, and finally combin-
ing the results. Johann A. Makowsky provides a good survey
over the algorithmic applications of the Feferman-Vaught The-
orem [Mak04].

In Chapter 5 we show that if a model has the form of a
directed separation, that is, if it consists of two submodels M1
andM2 intersecting only in a small set X of vertices and with
no arcs pointing from M2 \ X to M1 \ X, then the modal
µ-types ofM1 can be computed essentially fromM1 and from
the types occurring in M2. While the result talks only about
the µ-calculus, we use parity games extensively throughout the
proof.

While in Chapter 5 we are mostly concerned with solving the
model-checking problem directly, in Chapter 6 we consider the
problem of solving parity games. We look at graph operations
that preserve polynomial-time solvability. More specifically, if
a class of parity games is solvable with a polynomial-time algo-
rithm, then some larger classes are also solvable in polynomial-
time, for example the class of graphs with one additional vertex
per game or the class of graphs consisting of so-called joins of
two games.

As an application, these results imply that parity games can
be solved in polynomial time if their underlying undirected
graph is an orientation of a complete graph, such as tourna-
ments, or a complete bipartite graph, or a block graph, or a
cactus graph. A graph is a block graph if every biconnected
component is a clique, and it is a cactus graph if every edge
lies on at most one cycle.

Another aspect of parity games that we are going to look
at in Chapter 7 is the problem of writing formal proofs about
them. Usually, people write mathematical proofs in a mix

7

1 Introduction

of English, formulas, and pictures. We call this an informal
proof. On a certain level, this is unsatisfying because humans
are fallible and mistakes are bound to happen. And indeed
mistakes happen, as evidenced for example by the many failed
attempts of proving Fermat’s Last Theorem or the numerous
unsuccessful attempts of proving or refuting NP = P.

In recent years, it has become possible to use computers to
verify mathematical proofs by writing a formal proof with a
proof assistant. A proof assistant is a software that implements
a calculus, allowing the user to check a mathematical proof for
formal correctness in a given system of axioms and inference
rules. Usually, a proof assistant also supports the user in finding
a formal proof, for example by searching for parts of the proof
automatically or by proposing lemmas that could be helpful in
the current context.

However, presently proof assistants cannot automatically
prove most statements that require insight. In particular, an
informal proof may use an innocent phrase such as “it is easy
to see that”. Such a phrase can turn into hundreds of lines of
formal proof because for a proof assistant it is not at all easy
to see that the statement is true. Often, this implies that the
statement indeed requires a non-trivial proof within the given
system of axioms and inference rules, and that the informal
proof arguably glossed over these details, fingers crossed that it
will work out. Thus formalizing an informal proof may expose
gaps in the proof that would otherwise go unnoticed.

Consequently, compared to a proof in English a formal
proof gives an extremely high confidence in the truth of a
statement. Additionally, every new formal proof advances the
proof assistant because it grows the database used for the
automatic proof search.

8

In Chapter 7, we present a formal proof about an aspect
of parity games, their positional determinacy. A positional
strategy is a strategy for a player where he only looks at the
current state of the game and ignores the history of how the
game got to that state. One fundamental property of parity
games is that they are positionally determined (see e.g., [Zie98]).
This means that if one player has no positional winning strategy
from a given vertex, then the other player has one. The proof is
non-trivial and uses transfinite induction to capture arbitrarily
large parity games.

We formally prove in the widely used proof assistant Is-
abelle/HOL that parity games are positionally determined and
thus (to our knowledge) we provide the first formalization and
the first non-trivial formal result for parity games.

The thesis is organized as follows.

• In Chapter 2, we give a few basic definitions such as
graphs and digraphs.

• In Chapter 3, we define the modal µ-calculus and parity
games, and explain their relationship.

• In Chapter 4, we give an overview of what is known
about the complexity of solving parity games and model-
checking problem of the modal µ-calculus, and prove
hardness results.

• In Chapter 5, we consider the µ-calculus model-checking
problem on restricted classes of graphs (bounded DAG-
width and bounded Kelly-width), prove a decomposition
theorem for Lµ and provide fast algorithms for the re-
stricted classes.

9

1 Introduction

• In Chapter 6, we look at graph operations, such as adding
a single vertex, that we can apply to parity games while
preserving polynomial-time solvability.

• In Chapter 7, we explain a formalization of parity games
and a formal proof of their positional determinacy, as
well as first steps towards a formalization of tree decom-
positions.

The results of Chapter 5 have been published in [BDK14] and
are joint work with Mikolaj Bojańczyk and Stephan Kreutzer.
The results of Chapter 6 have been published in [DKT16] and
are joint work with Stephan Kreutzer and Alexandru Tomescu.
The results of Chapter 7 have been published in [Dit15; Dit16].

10

2 Preliminaries

We use standard notation for functions and graphs. See
for example the books by Reinhard Diestel and by Jørgen
Bang-Jensen and Gregory Gutin for good introductions [Die10;
BJG09]. First, let us define some basic notation we are going
to use.

We write N = {0, 1, 2, . . .} for the set of natural numbers.
A partial function partial

function
or function f : X → Y is a set f ⊆ X × Y

with the property that for every x ∈ X there is at most one
y ∈ Y with (x, y) ∈ f . We will denote this unique y, if it exists,
as f(x).

For elements x ∈ X, y ∈ Y , we write f [x ↦→ y] f [x ↦→ y]for the
function

f [x ↦→ y](z) =
{
y if z = x

f(z) otherwise.

The domain domainof f is the set dom(f) := {x ∈ X | ∃y ∈ Y. (x, y) ∈
f}. The function f is total if dom(f) = X total

function
. All functions in

this thesis are total unless noted otherwise.
If f : X → Y is a partial function and A ⊆ dom(f), then

we write f(A) := {y ∈ Y | ∃x ∈ A. f(x) = y} for the image image
of A under f . For B ⊆ Y we write f−1(B) := {x ∈ dom(f) |
f(x) ∈ B} for the preimage preimageof B under f . For a single element
y ∈ Y , we write f−1(y) instead of f−1({y}).

11

2 Preliminaries

Definition 2.1 An undirected graphgraph G is a pair (V,E) where
V is a set of vertices andvertices

E ⊆ {{u, v} | u, v ∈ V, u ̸= v}

is a set of edgesedges . We write V (G) and E(G) for the set of
vertices and edges of G, respectively, if there is any chance of
ambiguity. ⊣

A few special undirected graphs are Kn, the complete graphcomplete
graph with n vertices and Kn,m, the complete bipartite graph with

n + m vertices, n vertices in one part and m vertices in the
other part of the partition.

Definition 2.2 A directed graph (digraph)digraph G is a pair (V,E)
where V is a set of vertices and E ⊆ V × V is a set of arcsarcs . ⊣

Note that in contrast to undirected graphs, directed graphs
may have loopsloops , that is, arcs of the form (v, v) for some v ∈ V .
Neither undirected nor directed graphs have parallel edges or
parallel arcs.

For a directed graph G, we sometimes write u → vu → v to say
(u, v) ∈ E(G) if G is clear from the context.

For X ⊆ V (G), we write G[X]G[X] for the subgraph induced by
X. This notation is the same for undirected and for directed
graphs.

When the context makes it clear whether we have an undi-
rected or directed graph, we usually simplify the notation and
only say “graph”. Graphs may be infinite unless otherwise
noted. In particular, whenever algorithms are involved, the
graphs are finite.

12

Definition 2.3 A path pathin a graph or a digraph G is a possibly
infinite sequence v1, v2, . . . of vertices such that vi → vi+1 holds
for all pairs of consecutive vertices in the sequence. ⊣

Note that a path may have repeated vertices. To simplify the
definition we also allow the empty path, but this will be of no
importance because we always work with paths starting in a
given vertex.

We often denote finite or infinite sequences of vertices such
as (v1, v2, . . .) as v vand write v ∈ v to say that v ∈ {v1, v2, . . .}.

13

3 The Modal µ-Calculus and
Parity Games

In this chapter we first define the logic that we are going to use
throughout this thesis, the modal µ-calculus. In Section 3.2,
we define parity games, a 2-player game on labeled directed
graphs, and in Section 3.3 we explain their connection to the
modal µ-calculus in terms of the model-checking game.

If you are already familiar with the modal µ-calculus and
parity games, you may safely skip most of this chapter except
a few sections where we introduce new concepts or deviate
from the usual definitions in preparation for Chapter 5. These
important sections are

• Section 3.1.7 on pages 34–38, where we define the subfor-
mulas and the closure of a formula,

• Section 3.1.8 on pages 38–47, where we give various no-
tions of the depth of a formula, and

• Section 3.3 on pages 58–69, where we define annotated for-
mulas and the model-checking game in a slightly different,
but equivalent, way than usual.

15

3 The Modal µ-Calculus and Parity Games

3.1 The Modal µ-Calculus
The modal µ-calculus was introduced by Dexter Kozen in
1983 [Koz83]. Based on standard modal logic, this logic is
extended with fixed points and makes statements about labeled
directed graphs. In the following we will usually abbreviate
“fixed point” as “fixpoint”.

3.1.1 Syntax
We use a common definition of the modal µ-calculus Lµ as
presented in the comprehensive survey by Julian Bradfield and
Colin Stirling [BS07]. Let us revisit these definitions.

Definition 3.1 A signaturesignature σ is a finite or infinite set. We call
the elements of σ proposition symbols or atomic propositions..⊣

Let us fix a countably infinite set VarVar . We call the elements
of Var fixpoint variables and usually denote them with the
capital letters X,Y,

Definition 3.2 Let σ be a signature. We define the syntax of
the modal µ-calculus Lµ[σ]Lµ[σ] inductively as follows.

• ⊤ (“top”) ∈ Lµ[σ], ⊥ (“bottom”) ∈ Lµ[σ].

• For all P ∈ σ, P ∈ Lµ[σ].

• For all X ∈ Var, X ∈ Lµ[σ].

• For all φ,ψ ∈ Lµ[σ], (φ ∧ ψ), (φ ∨ ψ) ∈ Lµ[σ].

• For all φ ∈ Lµ[σ], □φ (“box φ”),◇φ (“diamond φ”),¬φ ∈
Lµ[σ].

16

3.1 The Modal µ-Calculus

• For all φ ∈ Lµ[σ] and X ∈ Var such that X occurs only
positively in φ, that is, in the scope of an even number
of negations, µX.φ, νX.φ ∈ Lµ[σ]. ⊣

We write Lµ instead of Lµ[σ] if the signature is clear from the
context. We call a formula of the form ⊤, ⊥, P , or X for some
P ∈ σ, X ∈ Var an atomic formula

atomic
formula.

The operators µ, ν are called fixpoint operators µ, ν. We say that
a fixpoint operator µX.φ (or νX.φ) binds X in φ bound, free. A variable
not bound by an enclosing fixpoint operator is free.

The operators □,◇ are the modal operators modal
operators

. We call the
subset of Lµ without fixpoint operators, that is, the subset
with only the modal operators and the Boolean operators, basic
modal logic basic modal

logic
.

The length of φ, denoted as |φ|, is the number of symbols
needed for writing out φ syntactically. |φ|

We omit parentheses when there is no confusion. Note that
already by the definition of the syntax, the unary operators
¬,□,◇ have higher priority than the binary operators ∨ and
∧. If we omit parentheses, then a fixpoint operator’s scope
always extends as far to the right as possible while the scope of
¬,□,◇ extends as little to the right as possible. For example,

µX.◇P ∧□X = µX.
(
◇P ∧□X

)
,

with the diamond ◇ applying only to P . We write equality
(=) here because we consider both sides of the equality sign to
be denotations of syntactically the same formula.

17

3 The Modal µ-Calculus and Parity Games

We also introduce as abbreviations

(φ→ ψ) := ¬φ ∨ ψ
(φ↔ ψ) := (φ→ ψ) ∧ (ψ → φ).

When it comes to omitting parentheses, both arrows have
lower priority than ∨,∧,¬,□,◇ but higher priority than the
fixpoint operators. This preserves the property that a fixpoint
operator’s extends as far to the right as possible and the scope
¬,□,◇ extends as little to the right as possible. For example,

µX.Q→ ◇P ∧□X = µX.
(
Q→

(
◇P ∧□X

))
.

If we write a formula as φ(X), the notation φ(ψ) means that
all free occurrences of X are substituted by ψ. An alternative
way of writing this, which we will also use, is φ[X/ψ]. This is
more precise in the case that φ also has free variables other
than X.

3.1.2 Semantics
Let σ be a signature. The semantics of Lµ[σ] is defined on
σ-structures, also known as labeled transition systems or Kripke
structures.

Definition 3.3 A σ-structureσ-structure
M

M is a directed graph (V (M),
E(M)) together with a valuation VM

Prop : σ → 2M

VM
Prop

of the atomic
propositions. ⊣

Whenever we useM as a set, we mean its set of vertices V (M).

Definition 3.4 Let φ ∈ Lµ[σ] andM, v be a σ-structure with
a valuation VM

Prop : σ → 2M together with another valuation

18

3.1 The Modal µ-Calculus

V : Var→ 2M Vfor the variables. The set [[φ]]MV ⊆M of vertices
satisfying φ is defined inductively as follows [[φ]]MV.

• [[⊤]]MV =M and [[⊥]] = ∅.

• [[P]]MV = VM
Prop(P) for P ∈ σ.

• [[X]]MV = V(X) for X ∈ Var.

• [[φ ∨ ψ]]MV = [[φ]]MV ∪ [[ψ]]MV .

• [[φ ∧ ψ]]MV = [[φ]]MV ∩ [[ψ]]MV .

• [[¬φ]]MV =M\ [[φ]]MV .

• [[◇φ]]MV =
{
v ∈M

⏐⏐
there is a w with v → w and w ∈ [[φ]]MV

}
.

• [[□φ]]MV =
{
v ∈M

⏐⏐
for all w with v → w it holds that w ∈ [[φ]]MV

}
.

• [[µX.φ]]MV =
⋂
{S ⊆M | S ⊇ [[φ]]MV[X ↦→S]}.

• [[νX.φ]]MV =
⋃
{S ⊆M | S ⊆ [[φ]]MV[X ↦→S]}.

If v ∈ [[φ]]MV , then we denote this by

M,V, v |= φ.

Often φ will have no free variables and thus the choice of V
will be irrelevant. In this case we write

M, v |= φ. ⊣

19

3 The Modal µ-Calculus and Parity Games

Definition 3.5 We say that φ,ψ ∈ Lµ[σ] are equivalentequivalent , de-
noted φ ≡ ψ, if and only ifφ ≡ ψ

M,V, v |= φ⇐⇒M,V, v |= ψ

holds for all σ-structures M, v and for all variable assignments
V. ⊣

Let us abbreviate the term used in the definition of the
semantics of the fixpoint operators:

FXφFXφ : 2M → 2M, S ↦→ [[φ]]MV[X ↦→S].

With this, we can write the semantics of the fixpoints as

[[µX.φ]]MV =
⋂
{S ⊆M | S ⊇ FXφ (S)},

[[νX.φ]]MV =
⋃
{S ⊆M | S ⊆ FXφ (S)}.

Lemma 3.6 Let φ(X) ∈ Lµ[σ] such that X occurs only posi-
tively in φ. Then for all S ⊆ T ⊆M, it holds that FXφ (S) ⊆
FXφ (T).

Proof. This follows by a simple structural induction over φ.
Here it is essential that X occurs only positively in φ. ■

Lemma 3.6 is usually stated as saying that FXφ is monotone.

Definition 3.7 Let A be a set and F : 2A → 2A be a function.
F is monotonemonotone if and only if for all X ⊆ Y ⊆ A it holds that
F (X) ⊆ F (Y). ⊣

A fixpointfixpoint of a function F is an X with F (X) = X. By
the following well-known theorem by Bronislaw Knaster and

20

3.1 The Modal µ-Calculus

Alfred Tarski, a monotone map of sets (or more generally, a
map on a complete lattice) has a unique least and a unique
greatest fixpoint, and they can be expressed as we did in the
semantics of µX.φ and νX.φ, respectively.
Theorem 3.8 ([Tar55]) Let A be a set and let F : 2A → 2A
be a monotone function. Define

µF :=
⋂
{X ⊆ A |X ⊇ F (X)},

νF :=
⋃
{X ⊆ A |X ⊆ F (X)}.

Then
1. F (µF) = µF and F (νF) = νF and

2. for every set X ⊆ A with F (X) = X it holds that

µF ⊆ X ⊆ νF.

In this sense the operators µ, ν compute the least and the
greatest fixpoint, respectively.

This implies the following equivalences.
Corollary 3.9 For all φ ∈ Lµ the following two equivalences
hold.

µX.φ ≡ φ[X/µX.φ]
νX.φ ≡ φ[X/νX.φ]

Proof. Indeed, [[µX.φ]] = FXφ
(
[[µX.φ]]

)
= [[φ[X/µX.φ]]], and

similar for νX.φ. ■

We can also view these fixpoint operators via their approx-
imations, which is useful for some proofs. For this and in a

21

3 The Modal µ-Calculus and Parity Games

few other places in this thesis, we are going to need ordinal
numbers and transfinite induction. Because the definition of
ordinal numbers and transfinite induction is outside the scope
of this thesis, we would like to refer the reader to the very
accessible book by Keith Devlin on contemporary set theory
for a good introduction to this topic [Dev93].

Definition 3.10 Let α be an ordinal and φ ∈ Lµ. We define
the α-approximantα-approx-

imant
µXα.φ inductively as follows.

[[
µX0.φ

]]M
V := ∅µXα.φ [[

µXα+1.φ
]]M

V :=
[[
φ[X/µXα.φ]

]]M
V[[

µXβ.φ
]]M

V :=
⋃
γ<β

[[
µXγ .φ

]]M
V for limit ordinals β.

For greatest fixpoints, we define the semantics of the α-approx-
imant as follows.[[

νX0.φ
]]M

V := ∅νXα.φ [[
νXα+1.φ

]]M
V :=

[[
φ[X/νXα.φ]

]]M
V[[

νXβ.φ
]]M

V :=
⋂
γ<β

[[
νXγ .φ

]]M
V for limit ordinals β. ⊣

Lemma 3.11 For every σ-structureM, there exists an ordinal
α such that

[[µXα.φ]]MV = [[µX.φ]]MV and [[νXα.φ]]MV = [[νX.φ]]MV .

Proof. First, we observe by ordinal induction and Lemma 3.6
that α ≤ β implies [[µXα.φ]] ⊆ [[µXβ.φ]]. Next, suppose to

22

3.1 The Modal µ-Calculus

the contrary that [[µXα.φ]] ⊊ [[µXα+1.φ]] for all α. Then we
have an injective mapping of the class of ordinals into M by
mapping α to some v ∈ M with v ∈ [[µXα+1.φ]] \ [[µXα.φ]].
This is a contradiction because the ordinals form a proper class.
So we find some α such that [[µXα.φ]] = [[µXα+1.φ]].

This means that [[µXα.φ]] is a fixpoint of FXφ . So we have
[[µX.φ]] ⊆ [[µXα.φ]] because [[µX.φ]] is the least fixpoint.

What remains to show is [[µXα.φ]] ⊆ [[µX.φ]]. We show this
for all α by ordinal induction. For α = 0 and for limit ordinals
this is trivial. For the case of successor ordinals, assume that
[[µXα.φ]] ⊆ [[µX.φ]]. Then we have with Lemma 3.6

[[
µXα+1.φ

]]
= FXφ

([[
µXα.φ

]])
⊆ FXφ

([[
µX.φ

]])
=

[[
µX.φ

]]
.

The proof for νX works analogously. ■

3.1.3 Negation Normal Form
In every logic a natural task is to seek a normal form. Common
examples from first-order logic are the prenex form (all quan-
tifiers in front) and the Gaifman form (Boolean combination
of basic-local sentences) [EF99]. For the modal µ-calculus,
we will introduce only one normal form, the negation normal
form where every negation is in front of an atomic formula. In
the literature, this form is sometimes also called the positive
normal form.

Definition 3.12 We say that a formula φ ∈ Lµ is in nega-
tion normal form negation

normal form
if negations occur only in front of atomic

formulas. ⊣

To work towards this normal form, let us first collect a few

23

3 The Modal µ-Calculus and Parity Games

fundamental equivalences.

Lemma 3.13 For all φ ∈ Lµ, the following equivalences hold.

1. □φ ≡ ¬◇¬φ.

2. µX.φ(X) ≡ ¬νX.¬φ(¬X).

Proof.

1. Let M be a σ-structure. We have

[[□φ]]MV =
{
v ∈M

⏐⏐⏐ for all w with v → w

it holds that w ∈ [[φ]]MV
}

=
{
v ∈M

⏐⏐⏐ there is no w with v → w

and w /∈ [[φ]]MV
}

=M\
{
v ∈M

⏐⏐⏐ there is a w with v → w

and w ∈ [[¬φ]]MV
}

=M\ [[◇¬φ]]MV
= [[¬◇¬φ]]MV .

2. Let M be a σ-structure and

v ∈
⋂ {

S ⊆M
⏐⏐⏐ S ⊇ [[φ]]MV[X ↦→S]

}
. (3.1)

We need to show that⋂ {
S ⊆M

⏐⏐⏐ S ⊇ [[φ]]MV[X ↦→S]

}
=

24

3.1 The Modal µ-Calculus

M\
⋃ {

S ⊆M
⏐⏐⏐ S ⊆ [[¬φ]]MV[X ↦→M\S]

}
.

Assume to the contrary that

v ∈
⋃ {

S ⊆M
⏐⏐⏐ S ⊆ [[¬φ]]MV[X ↦→M\S]

}
.

Then there exists an S ⊆M with v ∈ S and

S ⊆ [[¬φ]]MV[X ↦→M\S]. (3.2)

We claim that

M\ S ⊇ [[φ]]MV[X ↦→M\S].

Indeed, for every w contained in the right side we have

w /∈ [[¬φ]]MV[X ↦→M\S],

which together with (3.2) proves the claim. Now S′ :=
M\ S is a set of vertices contradicting (3.1).
The other direction follows similarly. ■

It is obvious that ¬¬φ ≡ φ holds for all φ ∈ Lµ, from which
we get the following equivalences.

Corollary 3.14 For all φ ∈ Lµ, the following equivalences
hold.

1. ¬□φ ≡ ◇¬φ.

2. ¬◇φ ≡ □¬φ.

3. ¬µX.φ(X) ≡ νX.¬φ(¬X).

25

3 The Modal µ-Calculus and Parity Games

4. ¬νX.φ(X) ≡ µX.¬φ(¬X).

We also trivially have that ¬¬φ ≡ φ. By repeated applica-
tion of these equivalences, we can push all negations deeper
into the formula until they all are in front of atomic formulas.
Thus we arrive at our desired normal form.

Corollary 3.15 Every φ ∈ Lµ is equivalent to a formula in
negation normal form. Furthermore, the negation normal form
of φ can be computed in time O(|φ|).

3.1.4 Recursion

The semantics gives a rather abstract picture of how the fix-
points work. Here we would like to provide a different picture,
possibly more intuitive. The same idea appears in the survey
by Julian Bradfield and Colin Stirling [BS07].

Recalling Corollary 3.9, a fixpoint can be seen as a recursion
by the equivalence

µX.φ ≡ φ[X/µX.φ].

So if we want to know whether M, v |= µX.φ holds we can
instead ask whether M, v |= φ[X/µX.φ] holds.

The idea now is that a least fixpoint contains only what
is absolutely necessary, whereas a greatest fixpoint contains
everything it can. In the evaluation of the fixpoints, this means
that a µ-fixpoint contains only the elements for which we can
prove in a finite number of steps that they must be included.

To explain this concept, let us consider one of the easiest
cases. Let M be a σ-structure consisting of a cycle with two
vertices v, w, as shown in Figure 3.1. We obtain the following

26

3.1 The Modal µ-Calculus

M: v w

Figure 3.1: A cycle M of 2 vertices

equivalences.

M, v |= µX.◇X

⇐⇒ M, v |= ◇µX.◇X

⇐⇒M, w |= µX.◇X

⇐⇒M, w |= ◇µX.◇X

⇐⇒ M, v |= µX.◇X.

Clearly, this evaluation goes on forever. We cannot prove in a
finite number of steps that v must be included in the fixpoint,
so it is not included and thus M, v ⊭ µX.◇X. On the other
hand, M, v |= νX.◇X because ν denotes a greatest fixpoint
and we cannot refute the inclusion of v in a finite number of
steps.

The very similar formula µX.□X behaves rather differently.
Because □ψ, independent of ψ, is true on leaves (vertices
without successors), µX.□X is true on all leaves. So all leaves
must be included in the least fixpoint. But now there may be
vertices whose successors are all leaves. These must be included
in the fixpoint as well because on them □X holds.

Inductively we see that µX.□X is true on a vertex v if and
only if all paths starting in v have finite length.

27

3 The Modal µ-Calculus and Parity Games

3.1.5 Examples
Let us look at a few more examples to gain some intuition for
the expressivity of the modal µ-calculus.

µX.◇X
Always false, as we saw above.

¬νX.□X
Always false. This formula is equivalent to the previous
one.

µX.□X, ¬νX.◇X
All paths from the current vertex are finite.

µX.□⊥ ∨◇X
There is a finite maximal path from the current vertex.

µX.□⊥ ∨◇◇X
There is a finite maximal path of even length from the
current vertex.

µX.φ ∨ (ψ ∧◇X)
There is a path where φ holds on the last vertex and ψ
holds until the vertex before the last.

νX.µY.(P ∧□X) ∨□Y
All infinite paths contain an infinite number of P -vertices.
The idea is that we can descend only finitely often into
Y ; eventually the left disjunct must be reached. Then
P holds at the current vertex and on all successors the
whole formula holds again. This must happen an infinite
number of times (if there are successors), so on all infinite
paths there must be an infinite number of P -vertices.

28

3.1 The Modal µ-Calculus

νX.µY.((P ∧□X) ∨□Y) ∧◇⊤
On all infinite paths we see P an infinite number of times
and all paths are infinite.

µY.νX.(P ∧□X) ∨□Y
All infinite paths eventually contain only P -vertices.

We also observe that the last formula implies νX.µY.(P ∧
□X)∨□Y . Indeed, this implication of swapped fixpoints holds
in general.

Lemma 3.16 ([BS07, page 746])

(µX.νY.φ)→ νY.µX.φ

is a tautology for all φ ∈ Lµ[σ].

However, the opposite direction does not hold.

Lemma 3.17 There exists a formula φ ∈ Lµ[σ] and a σ-
structure M, v such that

M, v ⊭ (νX.µY.φ)→ µY.νX.φ.

Proof. Choose φ := (P ∧ □X) ∨ □Y and the structure from
Figure 3.1 extended with a valuation of P such that P is true
only at v. Then we have

M, v |= νX.µY.(P ∧□X) ∨□Y

because we descend through X and Y alternately an infinite
number of times and the outermost fixpoint is a ν fixpoint.

However, we have

M, v ⊭ µY.νX.(P ∧□X) ∨□Y

29

3 The Modal µ-Calculus and Parity Games

A: a

¬P,¬X
b

P,X

c

P,¬X

Figure 3.2: The structure A for Example 3.18

because this time descending an infinite number of times
through Y is not allowed because it is the outermost fixpoint.
But we also cannot avoid Y because we can use only the left
disjunct where P holds, and P does not hold at w. ■

Example 3.18

µX.νY.(□Y ∧□X)∨(¬P∧□Y) ≡ µX.νY.(P∧□X)∨(¬P∧□Y)

Both formulas are equivalent to µX.νY.□X ∨ (¬P ∧□Y) and
all three have the meaning “P occurs only finitely often on each
reachable path”. Again the reason for this is that we cannot
expand X infinitely often because it is bound by a µ operator,
and the binding formula of Y is nested inside.

However, the greatest fixpoints by themselves are not equiv-
alent. That is,

νY.(P ∧□X) ∨ (¬P ∧□Y) ̸≡ νY.□X ∨ (¬P ∧□Y).

For example, take a 3-vertex model A, a with vertex set
{a, b, c} and arcs a→ b→ c and c→ c, as shown in Figure 3.2.
Let b, c be P -vertices and A, b |= X (and negative on the
remaining vertices). Then

A, a ⊭ νY.(P ∧□X) ∨ (¬P ∧□Y)

30

3.1 The Modal µ-Calculus

but
A, a |= νY.□X ∨ (¬P ∧□Y).

3.1.6 Bisimulation Invariance

One notable property of the modal µ-calculus is that it is
invariant under bisimulations, an equivalence relation between
vertices of σ-structures.

Definition 3.19 A bisimulation bisimulationbetween two σ-structuresM1,
M2 is a binary relation R ⊆ V (M1)× V (M2) satisfying the
following properties for all (v, w) ∈ R.

1. v and w satisfy the same atomic formulas.

2. For every successor v′ of v inM1 there exists a successor
w′ of w in M2 such that (v′, w′) ∈ R.

3. For every successor w′ of w inM2 there exists a successor
v′ of v in M1 such that (v′, w′) ∈ R.

We write M1, v0 ∼ M2, w0, read “M1, v0 and M2, w0 are
bisimilar bisimilar”, if there exists a bisimulation R between M1 and
M2 with (v0, w0) ∈ R. ⊣

Is is easy to check that ∼ is an equivalence relation.

Definition 3.20 We call a formula φ ∈ Lµ[σ] bisimulation
invariant bisimulation

invariant
if for all σ-structuresM1, v andM2, w withM1, v ∼

M2, w it holds that

M1, v |= φ⇐⇒M2, w |= φ. ⊣

31

3 The Modal µ-Calculus and Parity Games

Bisimulations and bisimilar structures are fundamental to
modal logic because most modal logics are bisimulation in-
variant, that is, they cannot distinguish between bisimilar
structures. Even more surprisingly, invariance under bisimula-
tion characterizes many modal logics. For example, consider a
formula of first-order logic with one free variable that is invari-
ant under bisimulation, with bisimulation invariance defined
analogously to Definition 3.20. Johan van Benthem famously
showed that every such formula has an equivalent formula in
basic modal logic [Ben84; BB07].

More recently, David Janin and Igor Walukiewicz showed
that Lµ is the bisimulation invariant fragment of monadic
second order logic (MSO) [JW96].

For us, bisimulations will play a role in Section 5.4. Because
the proof is short, let us show that every formula in Lµ is bisim-
ulation invariant. First, we need that substitution preserves
bisimulation invariance.

Lemma 3.21 Let φ(X), ψ ∈ Lµ[σ] be bisimulation invariant.
Then φ[X/ψ] is bisimulation invariant.

Proof. We assume without loss of generality that X is the only
free variable in φ and that ψ has no free variables.

Let M1, M2 be two σ-structures with a bisimulation R.
Then for all (v, w) ∈ R it holds that v ∈ [[ψ]]M1 if and only if
w ∈ [[ψ]]M2 because ψ is bisimulation invariant.

Let M′
1, M′

2 be the σ ∪ {X}-structures with X-valuations

[[X]]M1 := [[ψ]]M1 ,

[[X]]M2 := [[ψ]]M2 .

It follows that R is also a bisimulation between M′
1 and M′

2.

32

3.1 The Modal µ-Calculus

Because φ is bisimulation invariant, it follows that for all
(v, w) ∈ R we have

v ∈ [[φ]]M
′
1 ⇐⇒ w ∈ [[φ]]M

′
2 .

But this is equivalent to saying

v ∈ [[φ[X/ψ]]]M1 ⇐⇒ w ∈ [[φ[X/ψ]]]M2

for all (v, w) ∈ R. This shows that φ[X/ψ] is bisimulation
invariant. ■

Theorem 3.22 ([BS07, Theorem 4]) Every φ ∈ Lµ[σ] if
bisimulation invariant.

Proof. We prove this by structural induction. The only non-
trivial case is the case µX.φ (the case νX.φ follows analo-
gously), with the assumption that φ is bisimulation-invariant.

Clearly, we have that µX0.φ ≡ ⊥ is bisimulation invari-
ant. If µXα.φ is bisimulation invariant for some ordinal α,
then µXa+1.φ = φ[X/µXα.φ] is bisimulation invariant by
Lemma 3.21.

If α is a limit ordinal, then

M1, v |= µXα.φ⇐⇒M2, w |= µXα.φ

for all M1, v, M2, w holds by the definition of the α-approxi-
mant, Definition 3.10 on page 22.

So we have that µXα.φ is bisimulation invariant for all α.
By Lemma 3.11, this implies the bisimulation invariance of
µX.φ. ■

33

3 The Modal µ-Calculus and Parity Games

3.1.7 Subformulas and Closure

Usually the definition of a subformula is very simple. However,
we are going to need a slightly more involved definition. As a
motivating example, consider the formula φ := P ∧µX.P ∨◇X.
Clearly, the set of subformulas would be{

φ, P, µX.P ∨◇X, P ∨◇X, ◇X, X
}
.

However, this ignores part of the structure of φ: The subformula
“P” appears twice in different locations, and one occurrence is
under a fixpoint operator. It also loses information about X:
Although not the case here, the variable X might occur under
multiple fixpoint operators all binding X, so knowing that “X”
is a subformula is useless information.

Separating these occurrences and tracking information about
fixpoint variables will be crucial in Chapter 5, so we need to
define the set of subformulas in a more intricate way.

One simple way to achieve this is to consider φ as a string
and equip every subformula with its position in the string φ.
This distinguishes identical subformulas by their position in
φ, and connects fixpoint variables to their enclosing fixpoint
operator. To make this well-defined, recall that in the syntax of
Lµ in Definition 3.2, we introduced parentheses. So φ from the
example above would formally be written φ = (P ∧ µX.(P ∨
◇X)). There is only one way to put these parentheses according
to the syntax definition.

Observe also that no two subformulas start at the same
position in this string. So it would already be sufficient to
remember only the indices where subformulas start instead of
the whole formula. However, this would be very cumbersome, so

34

3.1 The Modal µ-Calculus

we talk about indexed subformulas instead of only the indices.
For reasons that will be obvious in a moment, we are also

going to exclude single fixpoint variables from our set of sub-
formulas.

Definition 3.23 For φ ∈ Lµ, let sub(φ) sub(φ)be the set of all
indexed subformulas without formulas of the formX for fixpoint
variables X. Indices start at 1. That is,

sub(φ) := {(ψ, i) | ψ is a subformula of φ
starting at position i in the string φ
and ψ is not a fixpoint variable}.

Let sub+(φ) = sub(φ) \ {(φ, 0)} sub+(φ)be the set of proper subformu-
las. ⊣

Definition 3.24 For an occurrence of a fixpoint variable X
in a formula φ, its definition in φ definition

in φ
is the enclosing fixpoint

(µX.ψ, i) ∈ sub(φ) (or (νX.ψ, i) ∈ sub(φ)) that binds this oc-
currence ofX. For a formula (ψ, i) ∈ sub(φ), let closureφ(ψ, i) =
(ψ′, i)

closureφ(ψ, i)
be such that ψ′ is the formula ψ with all free variables

replaced by their definitions until there are no more free vari-
ables. ⊣

Definition 3.25 Define

CL(φ) CL(φ):= {closureφ(ψ, i) | (ψ, i) ∈ sub(φ)}

and
CL+(φ) CL+(φ):= CL(φ) \ {(φ, 0)} . ⊣

35

3 The Modal µ-Calculus and Parity Games

Lemma 3.26 closureφ : sub(φ) → CL(φ) is a bijection that
is the identity on the second component.

Proof. The function is surjective and preserves the second
component. For injectivity, observe that (ψ, i), (χ, j) ∈ sub(φ)
with (ψ, i) ̸= (χ, j) implies i ̸= j and thus closureφ(ψ, i) ̸=
closureφ(χ, j). ■

Here it is useful that we have no single fixpoint variables X
in sub(φ) because otherwise the definition of X would appear
twice in CL(φ), which would be inconvenient for some proofs.
However, this is only a matter of style.

Example 3.27 Consider the formula φ := (P ∧µX.(P ∨◇X))
we mentioned earlier. As explained before, we do not omit
the parentheses here. Because (P ∨ ◇X) has position 7 in
the string “(P ∧ µX.(P ∨◇X))” (indices start at 1), we have
((P ∨◇X), 7) ∈ sub(φ) and

closureφ
(
(P ∨◇X), 7

)
=

(
(P ∨◇(µX.(P ∨◇X))), 7

)
.

The full set of subformulas of φ is

sub(φ) =
{(
φ, 1

)
,
(
P, 2

)
,
(
µX.(P ∨◇X), 4

)
,(

(P ∨◇X), 7
)
,
(
P, 8

)
,
(
◇X, 10

)}
and the closure is, with the abbreviation ψ := µX.(P ∨◇X),

CL(φ) =
{(
φ, 1

)
,
(
P, 2

)
,
(
µX.(P ∨◇X), 4

)
,(

(P ∨◇ψ), 7
)
,
(
P, 8

)
,
(
◇ψ, 10

)}
.

36

3.1 The Modal µ-Calculus

In order to not get entangled in unusual notation, we will
usually omit the index and simply write ψ ∈ sub(φ) instead
of (ψ, i) ∈ sub(φ) when there is no confusion. However, from
now on we always implicitly assume that elements of sub(φ)
or CL(φ) are equipped with its index in order to distinguish
identical subformulas.

Except for the indices, the definition of CL(φ) is something
well-known in disguise. In the literature, we find the definition
of the Fischer-Ladner closure [SE89, Definition 4.1].
Definition 3.28 (Fischer-Ladner Closure) The Fischer-
Ladner closure FLC(φ)FLC : Lµ[σ]→ 2Lµ[σ] is defined inductively as
follows.

FLC(P) := {P}
FLC(φ ∧ ψ) := {φ ∧ ψ} ∪ FLC(φ) ∪ FLC(ψ)
FLC(φ ∨ ψ) := {φ ∨ ψ} ∪ FLC(φ) ∪ FLC(ψ)

FLC(¬φ) := {¬φ} ∪ FLC(φ)
FLC(□φ) := {□φ} ∪ FLC(φ)
FLC(◇φ) := {◇φ} ∪ FLC(φ)

FLC(µX.φ) := {µX.φ} ∪ FLC(φ[X/µX.φ])
FLC(νX.φ) := {νX.φ} ∪ FLC(φ[X/νX.φ]). ⊣

Our notion of closure is essentially the same as the Fischer-
Ladner closure.
Lemma 3.29 For all φ ∈ Lµ[σ],

FLC(φ) = {ψ | (ψ, i) ∈ CL(φ)}.

Let us also define the closure of a set of formulas. In this
set we do not need the index i, different from CL(φ).

37

3 The Modal µ-Calculus and Parity Games

Definition 3.30 For a set of formulas L ⊆ Lµ, define

CL(L)CL(L) := {ψ | φ ∈ L, (ψ, i) ∈ CL(φ)}. ⊣

3.1.8 Formula Depth
Definition 3.31 Let φ ∈ Lµ[σ] be a formula. The standard
depthstandard

depth
depth(φ) of φ is defined inductively as follows.

depth(P) = depth(X) = 0
for P ∈ σ, X ∈ Var

depth(¬φ) = depth(φ)
depth(φ ∧ ψ) = max{depth(φ), depth(ψ)}
depth(φ ∨ ψ) = max{depth(φ), depth(ψ)}

depth(□φ) = depth(◇φ) = 1 + depth(φ)
depth(µX.φ) = depth(νX.φ) = 1 + depth(φ)

for X ∈ Var. ⊣

Lemma 3.32 Let σ and Var be finite. For a given n ∈ N
there are only finitely many formulas of standard depth n up
to logical equivalence.

Proof. For n = 0 this is true because there are only finitely
many Boolean combinations of the atomic propositions and
fixpoint variables.

For n > 0, the Boolean combinations of formulas of the
finite set

{□φ,◇φ, µX.φ, νX.φ | depth(φ) = n− 1, X ∈ Var}

38

3.1 The Modal µ-Calculus

provide all possible formulas of standard depth n up to logical
equivalence. ■

Definition 3.33 Let X = (X1, . . . , Xn) be a finite sequence
of fixpoint variables. A formula φ ∈ Lµ is called consistent
with X consistent

with X

if

1. all fixpoint variables of φ are in the sequence and

2. every Xi is bound only in µ-subformulas or only in ν-
subformulas of φ and

3. in every subformula ψ of φ that binds a fixpoint variable
Xi, only the variables X1, . . . , Xi can appear freely in ψ.
⊣

It is common to define a partial order on the variables by
saying X comes before Y if Y is bound inside of some µX
or νX binding where Y occurs freely. However, this is not
a well-defined partial order on every formula. As a simple
counter-example, consider

(µX.µY.X ∧ Y) ∧ (µY.µX.X ∧ Y).

There is no way to order X and Y in the above formula by
their syntactic nesting.

A common way to avoid this problem is to require that every
variable is quantified at most once in the formula. However, this
does not work for us because we want to use the equivalence
µX.φ ≡ φ[X/µX.φ], and the right-hand side will usually have
more than one binding of X.

We avoid this problem instead by considering only certain
nice formulas.

39

3 The Modal µ-Calculus and Parity Games

Definition 3.34 A formula φ ∈ Lµ is consistentconsistent if there is
some linear order X = (X1, . . . , Xn) of variables such that
φ is consistent with X. A formula that is not consistent is
inconsistent. ⊣

In particular, every formula with at most one binding per
variable is trivially consistent by choosing a linear order that
is a completion of the partial order induced by the nesting of
the fixpoints.

It is also easy to see that every formula can be made consis-
tent with some sequence X = (X1, . . . , Xn) of sufficient length
by renaming the variables. So we can usually assume that we
have consistent formulas. Let us prove a few operations that
preserve consistency with a fixed sequence X.

Lemma 3.35 Let X = (X1, . . . , Xn), φ ∈ Lµ be consistent
with X and ψ ∈ sub(φ). Then ψ is consistent with X.

Proof. None of the consistency conditions can be violated by
going to a subformula, so this follows immediately. ■

Lemma 3.36 Let X = (X1, . . . , Xn), φ ∈ Lµ be consistent
with X and ψ ∈ CL(φ). Then ψ is consistent with X.

Proof. We prove this by structural induction over φ. In this
proof we ignore the indices in CL(φ) because they are irrelevant
for consistency. If φ = χ1 ∧ χ2, then clearly χ1 and χ2 are
consistent with X. We also have

CL(φ) = {φ} ∪ CL(χ1) ∪ CL(χ2),

so every ψ ∈ CL(φ) is consistent with X either because ψ = φ
or by the induction hypothesis applied to χ1 or χ2, respectively.

40

3.1 The Modal µ-Calculus

The other Boolean operators and □,◇ are similar, so we
skip them and focus on the case of a µ fixpoint. The case of a
ν fixpoint follows analogously.

Assume that φ = µXi.χ and let ψ ∈ CL(φ). We assume
that ψ ̸= φ because otherwise ψ is already consistent with X.
In order to apply the induction hypothesis, we need to show
that χ[Xi/φ] is consistent with X.

Clearly, every Xj in χ[Xi/φ] is bound only in µ or only in ν
subformulas, and every fixpoint variable of χ[Xi/φ] is among
X1, . . . , Xn.

Let us check the last consistency condition. Let µXj .χ
′ ∈

sub(χ[Xi/φ]) (the case ν follows analogously). We need to
show that the free variables of χ′ are among X1, . . . , Xj . We
distinguish two cases.

Case 1: µXj .χ
′ is a subformula of φ. Then we are done

by using the assumption that φ is consistent with X and the
previous lemma.

Case 2: µXj .χ
′ is not a subformula of φ. In this case, there

exists some µXj .χ
′′ ∈ sub(χ) not within the scope of an Xi-

binding such that (µXj .χ
′′)[Xi/φ] = µXj .χ

′. We use sub(χ)
here so that the outermost Xi-binding in φ = µXi.χ does not
count. Because µXj .χ

′ is not a subformula of φ, Xi is free in
χ′′. Note that we need to assume that µXj .χ

′′ is not within
the scope of an Xi-binding because φ = µXi.χ might bind Xi

more than once.
Because φ is consistent with X, so is µXj .χ

′′. So the free
variables of χ′′ are among X1, . . . , Xj . Because Xi is free in χ′′,
this implies i ≤ j. Then the free variables of (µXj .χ

′′)[Xi/φ]
are among X1, . . . , Xj , as required. ■

41

3 The Modal µ-Calculus and Parity Games

ν
Y

re
b o

ot

◇ ∨

µ
X

re
bo

ot

ν
Y ∨

◇ X

◇ Y

◇ Y

A
pa

th
w

ith
2

op
er

at
or

s

A
pa

th
w

ith
2

op
er

at
or

s

Fi
gu

re
3.

3:
A

n
ex

am
pl

e
fo

r
re

bo
ot

s
an

d
re

bo
ot

-fr
ee

pa
th

s
in

th
e

sy
nt

ax
tr

ee

42

3.1 The Modal µ-Calculus

Definition 3.37 Let φ be a formula consistent with X and
let x be a vertex in the syntax tree labeled with some formula
of the form µXi.ψ or νXi.ψ. We call x a reboot rebootif no ancestor
of x binds a fixpoint variable among X1, . . . , Xi.

The X-depth X-depthof a formula is the biggest number of occur-
rences of operators from the set □,◇, µ, ν that can be found
on a path in the syntax tree that does not visit reboot vertices.
The X-depth is undefined if the formula is not consistent with
X. ⊣

Intuitively, a reboot is a subformula φ of the form φ = µXi.ψ
or φ = νXi.ψ without free variables. This is because by
consistency, such a ψ can only have X1, . . . , Xi as free variables,
but it is a reboot only if it is not within the scope of some
formula binding one of these variables.

Figure 3.3 shows the formula φ = νY.ψ = νY.◇(µX.νY.◇X∨
◇Y) ∨◇Y , which has (X,Y)-depth 2. Note that φ is inconsis-
tent with (Y,X). The definition is designed so that going from
νY.ψ to ψ[Y/νY.ψ] does not increase the (X,Y)-depth.

Lemma 3.38 For all αXi.φ ∈ Lµ (α ∈ {µ, ν}) consistent
with X = (X1, . . . , Xk), the X-depth of αXi.φ is not smaller
than the X-depth of φ[Xi/αXi.φ].

Proof. First, we observe that by Lemma 3.36, φ[Xi/αXi.φ] is
consistent with X.

Because αXi.φ is consistent with X, the free variables of
φ are among X1, . . . , Xi. We show that every occurrence of
αXi.φ in φ[Xi/αXi.φ] is a reboot. Suppose to the contrary that
some αXi.φ ∈ sub(φ[Xi/αXi.φ]) is not a reboot. Then there
exists a subformula βXj .ψ ∈ sub(φ[Xi/αXi.φ]) (β ∈ {µ, ν})
containing αXi.φ, with 1 ≤ j ≤ i and βXj .ψ ̸= αXi.φ.

43

3 The Modal µ-Calculus and Parity Games

Let ψ′ ∈ sub(αXi.φ) be the subformula such that

(βXj .ψ
′)[Xi/αXi.φ] = βXj .ψ.

In particular, Xi occurs free in βXj .ψ
′, so we have 1 ≤ j < i.

Moreover, because αXi.φ is consistent, the free variables of ψ′

are among X1, . . . , Xj , contradicting the fact that Xi is free in
βXj .ψ

′.
So every αXi.φ ∈ sub(φ[Xi/αXi.φ]) is a reboot, which

proves the lemma. ■

By the definition of the closure operator CL, we get that the
X-depth is closed under application of CL.

Corollary 3.39 Let φ ∈ Lµ a formula of X-depth at most d.
Then every ψ ∈ CL(φ) has X-depth at most d.

Definition 3.40 A µ-depthµ-depth is a pair δ = (X, d) where X is a
sequence of fixpoint variables and d is a natural number. A
formula is called consistent with δconsistent

with δ
if it is consistent with X

and its X-depth is at most d.
For a set L ⊆ Lµ, define the L-typeL-type of a vertex in a structure

to be the set of formulas from L that are true at the vertex.
The δ-type of a vertexδ-type in a structure is its L-type, with L

being the set of all formulas consistent with δ. ⊣

The δ-type of a vertex is finite thanks to the following lemma.

Lemma 3.41 For every µ-depth δ and finite set of proposi-
tional variables, up to logical equivalence there are finitely many
formulas in these propositional variables that are consistent
with δ.

44

3.1 The Modal µ-Calculus

Proof. Let δ = (X, d) with X = (X1, . . . , Xn). We prove the
statement by induction over the nesting depth of reboots. First,
let us observe that we can have at most n reboots nested inside
each other because a reboot µXi (or νXi) can contain only
other reboots µXj (or νXj) with j < i by the definition of
reboot.

If a formula φ consistent with δ has no reboots, then we
have depth(φ) ≤ d by the definition of the standard depth. By
Lemma 3.32, there are only finitely many formulas of standard
depth at most d, which proves the base case.

For the induction step, let k < n and suppose that the
statement is true for the set of δ-consistent formulas with a
reboot nesting depth of at most k. Let φ be a formula with
reboot nesting depth of k + 1. We see that if φ is of the form
φ = µXi.ψ or φ = νXi.ψ for some i and some ψ of reboot
nesting depth k, then there are only finitely many such φ by
the induction hypothesis.

If φ does not start with a fixpoint operator, then we can
write φ as

φ = ψ(Y1, . . . Yl)[Y1/ψ1, . . . , Yl/ψl]

for a formula ψ in basic modal logic (that is, without fixpoint
operators) and some formulas ψ1, . . . , ψl of reboot nesting depth
at most k + 1 such that every ψi for 1 ≤ i ≤ l starts with a
fixpoint operator. That is, the ψi are the first reboot vertices
in the syntax tree of φ. Observe that depth(ψ) ≤ d because
φ is consistent with δ, so by Lemma 3.32 there is only a
finite number of choices for ψ up to logical equivalence. By
the previous paragraph, there is also only a finite number of
choices for the ψi up to logical equivalence.

45

3 The Modal µ-Calculus and Parity Games

So in total we conclude that there is only a finite number of
formulas φ of reboot nesting depth at most k + 1 up to logical
equivalence. ■

Although the set in the statement of the above lemma is
finite, its size is non-elementary with respect to δ. This follows
from the fact that the number of non-equivalent Lµ formulas
up to a certain standard depth n is non-elementary in n, even
without fixpoint operators.

Lemma 3.42 Let σ = {P,Q}. Then there exists a sequence
Φ0,Φ1, . . . ⊆ Lµ[σ] of sets of pairwise non-equivalent formulas
such that

1. |Φi+1| = 2|Φi| for all i ∈ N and

2. depth(φ) ≤ i for every φ ∈ Φi and

3. no formula uses a fixpoint operator µ or ν.

Proof. We define

Φ0 := {P,Q} , Φi+1 :=
{ ⋀
φ∈Φ

◇φ

⏐⏐⏐⏐⏐ Φ ⊆ Φi

}
.

The conjunction over the empty set has the usual meaning of
⊤. It is obvious that these Φi satisfy the three listed conditions.
It remains to show that no two formulas in Φi are equivalent.
We do this by induction over i.

Clearly Φ0 contains no pair of equivalent formulas. Let i > 0
and Φ,Φ′ ⊆ Φi−1 be such that Φ ̸= Φ′. We need to show that⋀

φ∈Φ
◇φ ̸≡

⋀
φ∈Φ′

◇φ.

46

3.2 Parity Games

Assume without loss of generality that there is a φ0 ∈ Φ
with φ0 /∈ Φ′. Then all structures M, v satisfying

⋀
φ∈Φ ◇φ

must have a successor w of v such that M, w |= φ0. On
the other hand we can construct a structure M′, v satisfying⋀
φ∈Φ′ ◇φ where v does not have such a successor, because

by the induction hypothesis, all φ ∈ Φi−1 are pairwise non-
equivalent. ■

3.2 Parity Games
3.2.1 Definition
A parity game is a game played by two players, called ◇ (“even”)
and □ (“odd”). For i ∈ {◇,□}, we denote by i the element of
{◇,□} \ {i}.

Definition 3.43 (Parity Game) A parity game parity gameP = (V,E,
V◇, ω) is a directed graph (V,E) with V◇ ⊆ V and a function
ω : V → N mapping vertices to priorities with |ω(V)| < ∞.
We write V□ := V \ V◇. V◇, V□, ω

Definition 3.44 (Play) A play playin a parity game is a maximal
path. ⊣

A play starts on some vertex v (we often denote a game
with a chosen starting vertex as (P, v)). If the current vertex
is in V◇, then it is player ◇’s turn, otherwise it is player □’s
turn. In their turn, the players must choose an outgoing arc
and the endpoint becomes the current vertex for the next turn.
If a player cannot make a move, he loses. Otherwise, the game
continues indefinitely.

47

3 The Modal µ-Calculus and Parity Games

Let us define the winner of a finite or infinite path.

Definition 3.45 (Winning Path) A path v ∈ V ∗ ∪ V ω is
winning for player ◇winning

path
if and only if

• v = (v1, . . . , vn) is finite and vn ∈ V□, or

• v is infinite and the minimum priority occurring infinitely
often on v is even.

A path not winning for player ◇ is winning for player □. ⊣

Note that the minimum always exists because of |ω(V)| <∞.
By the pigeon hole principle, for every infinite path there exists
at least one element in ω(V) that appears infinitely often on
the path.

Figure 3.4a shows an example of a small parity game. We
always draw vertices in V◇ as circles and vertices in V□ as
rectangles to make them easily distinguishable. The numbers
in the vertices are their priorities. Starting from the top vertex,
player ◇ wins this game: No matter what player □’s choices
are, player ◇ can ensure that the minimum priority visited
infinitely often is either 0 or 3.

In the following definitions, let P = (V,E, V◇, ω) be a parity
game and i be a player.

Definition 3.46 (Strategy) A strategystrategy for player i is a par-
tial function π : V ∗Vi → V such that for all finite paths
(v1, . . . , vk) ∈ V ∗Vi with v ∈ dom(π), we have (vk, π(v)) ∈ E.⊣

So a strategy for player i selects a successor depending on the
play up to the current point.

48

3.2 Parity Games

0

1 2

3 3 3

(a)

0

1 2

3 3 3

(b) With a strategy for player ◇

Figure 3.4: A simple parity game

49

3 The Modal µ-Calculus and Parity Games

Definition 3.47 (π-Conforming Path) Let π be strategy
for player i. We say that a path v = (v1, v2, . . .) ∈ V + ∪ V ω

(finite or infinite) is π-conformingπ-
conforming

if vk+1 = π(v1, . . . , vk) holds
for all its proper initial segments (v1, . . . , vk) ∈ V ∗Vi.

A π-conforming play is a maximal π-conforming path. ⊣

Definition 3.48 (Winning Strategy) A strategy π is win-
ning for player i from the vertex vwinning

strategy
if every π-conforming play

starting in v is winning for player i. ⊣

Definition 3.49 (Winning a Game) If there exists a strat-
egy π winning for player i from a vertex v, then we say that
player i wins the game (P, v)i wins (P, v) .

Similarly, if there exists a strategy π winning for player i
from a set of vertices U , then we say that player i wins on U .⊣

When we talk about strategies and do not explicitly mention
the player, we assume that the strategy is meant for player ◇.

3.2.2 Positional Determinacy
There is a special kind of strategy that only depends on the
last vertex.

Definition 3.50 (Positional Strategy) A strategy π is po-
sitional if

π(v1, . . . , vn) = π(w1, . . . , wm)

holds for all paths v, w ∈ dom(π) with vn = wm. ⊣

We denote positional strategies for player i as functions
π : Vi → V . Positional strategies are computationally very nice
because they have polynomial size. Moreover, it is possible to

50

3.2 Parity Games

check in polynomial time whether a positional strategy is a
winning strategy.

Theorem 3.51 There exists a polynomial-time algorithm that
decides if a given positional strategy π : Vi → V is a winning
strategy for player i for a given parity game (P, v).

Proof. Let π : Vi → V be a strategy for player i. Without loss
of generality, we assume i = ◇. Let Pπ be the game P restricted
to the arcs conforming to π. That is, Pπ = (V,Eπ, V◇, ω) with

Eπ := {(v, w) ∈ E | if v ∈ V◇, then π(v) = w}.

Clearly, every π-conforming play in P is also a π-conforming
play in Pπ and vice-versa, so every vertex v ∈ V has the same
winner in P and Pπ when restricted to π-conforming plays.
Furthermore, Pπ is polynomial-time computable from P and
π.

Next, we observe that Pπ is a one-player game for player □.
All player □ needs to do in order to win from a vertex v ∈ V is

1. find a path from v to a dead end w ∈ V◇ or

2. find a path from v to a cycle v1, . . . , vk = v1 where
min1≤i≤k ω(vi) is odd.

The first condition can trivially be checked in polynomial time.
In order to check the second condition in polynomial time, one
way to do it is to compute a function f : V → {⊤,⊥} with

f(v) :=

⎧⎪⎨⎪⎩
⊤ if there is a cycle v = v1, . . . , vk = v with

minimum priority ω(v) and ω(v) is odd,
⊥ otherwise.

51

3 The Modal µ-Calculus and Parity Games

The value f(v) can be computed in polynomial time by remov-
ing all vertices w from Pπ with ω(w) < ω(v) and looking for
a cycle with v on it. Then condition (2) can be checked by
looking for a path from v to a vertex w with f(w) = ⊤. ■

Definition 3.52 (Winning Region) Let P be a parity game.
The winning regionWi Wi(P) ⊆ V of player i is the set of vertices
from which the player has a positional winning strategy. ⊣

We usually write Wi instead of Wi(P) if the game is obvious
from the context. We observe that it is impossible for both
players to have a winning strategy for the same vertex.

Observation 3.53 It holds that W◇ ∩W□ = ∅.

The fat arrows in Figure 3.4b on page 49 are an example
for a positional strategy for player ◇. This strategy is in fact
a winning strategy, as the reader may easily verify. That we
can find a positional winning strategy is no coincidence. The
following result is well-known (see e.g., [Zie98]).

Theorem 3.54 For every parity game P and vertex v there
exists a positional winning strategy π for (P, v) for one of the
players.

A different, but equivalent, way of stating this theorem is
the following.

Theorem 3.55 (Positional Determinacy) For every par-
ity game P = (V,E, V◇, ω) it holds that V = W◇ ∪W□.

In Chapter 7, we will prove this theorem formally with the
interactive theorem prover Isabelle/HOL.

52

3.2 Parity Games

3.2.3 Attractor Sets
Another common notion on parity games is the idea of attractor
sets. The idea is that there are sets from which player ◇ cannot
necessarily win the game, but from which player ◇ can force
every play to behave in a certain way. Specifically, she can
force every play to visit a given set of vertices without player □
being able to prevent this. We are going to use these sets
extensively in Chapter 6.

Definition 3.56 We define the one-step attractor one-step
attractor

of A ⊆ V
for player i with basis W ⊆ V as

direct-attri,W (A) := W ∪A
∪ {v ∈ Vi | there is a w with v → w and w ∈ A}
∪ {v ∈ Vi | for all w with v → w it holds that w ∈ A

and there is at least one such w}. ⊣

Observation 3.57 direct-attri,W : 2V → 2V is monotone.

With Theorem 3.8 on page 21, it follows that direct-attri,W has
a least and a greatest fixpoint. However, the greatest fixpoint
is uninteresting because it is V . The least fixpoint is

µdirect-attri,W =
⋂
{A ⊆ V | direct-attri,W (A) ⊆ A}.

We call the least fixpoint the attractor set.

Definition 3.58 Let A ⊆ V . We denote by attri(A) attri(A)the i-
attractor set of A, defined as the least fixpoint of direct-attri,A.
That is,

attri(A) := µ direct-attri,A . ⊣

53

3 The Modal µ-Calculus and Parity Games

Observation 3.59 For all A ⊆ V , we have

A ⊆ attri(A) ⊆ V.

Similar to the semantics of the least fixpoint formulas µX.φ,
we can also view an attractor set via its approximations.

attr0
i (A) := ∅

attrα+1
i (A) := direct-attri,A(attrαi (A))

attrαi (A) :=
⋃
β<α

attrβi (A) for limit ordinals α.

Lemma 3.60 For every parity game P = (V,E, V◇, ω), there
exists an α such that for all i ∈ {◇,□} and for all A ⊆ V , we
have attri(A) = attrαi (A).

Proof. This is analogous to the proof of Lemma 3.11 on page 22.■

It is easy to see that for finite games P , choosing α = |V | is
sufficient. This is because if we are not at a fixpoint yet, then
every successor approximation step adds at least one vertex.
So after at most |V | steps, there are no more vertices left to
add and we have a fixpoint.

Furthermore, direct-attri,W (A) is computable in timeO(|V |+
|E|) by iterating over all vertices in V \ (W ∪A) and checking
their outgoing arcs. It follows that attri(A) is computable in
time O(|V |2 + |V ||E|) by iterating direct-attri,A for |V | times.
But there is a better algorithm that can compute attri(A) in
time O(|V |+ |E|).

54

3.2 Parity Games

Algorithm 3.1: Compute the i-attractor set of A.
Attr(P = (V, E, V◇, ω), i, A)

X ← A
while X ̸= ∅ do

A← A ∪X
X ′ ← ∅
foreach v ∈ X do

foreach w with (w, v) ∈ E and w /∈ A ∪X
do

if w ∈ Vi or (w, v) is the only outgoing arc
of w then
X ′ ← X ′ ∪ {w}

else
Remove (w, v) from P

X ← X ′

return A

55

3 The Modal µ-Calculus and Parity Games

Lemma 3.61 Algorithm 3.1 on a parity game P = (V,E, V◇,
ω), i ∈ {◇,□}, and A ⊆ V computes attri(A) and runs in
time O(|V |+ |E|).

Proof. For the running time, we observe that the inner most
loop in total runs over each arc (w, v) ∈ E at most once, and it
either adds w to X ′ (and eventually, A) or it removes the arc.
In both cases it never visits the arc (w, v) again. Furthermore,
the sets X from different iterations of the outer while loop are
disjoint, so the algorithm visits every vertex at most once. So
the running time is bounded by O(|V |+ |E|).

Correctness follows from the observation that each itera-
tion of the outer while loop computes direct-attri,A(A), and
direct-attri,W (A) = direct-attri,A(A) for all W ⊆ A ⊆ V . ■

Lemma 3.62 For every A ⊆ V , player i has a positional
strategy π such that every π-conforming play starting in attri(A)
visits A.

Proof. For finite games, it is easy to extract such a strategy
from Algorithm 3.1. For infinite games, we need transfinite
induction and a well-ordering of the set of all strategies. We
will discuss this case in detail in Section 7.5.3 on page 235. ■

We call a strategy π as in the previous lemma an attractor
strategyattractor

strategy
for attri(A).

Corollary 3.63 For all i ∈ {◇,□} and all A ⊆ V , we have

attri(A) = {v ∈ V | Player i has a strategy π such that
every π-conforming play starting in v

visits A}.

56

3.2 Parity Games

Lemma 3.64 For all i ∈ {◇,□}, we have attri(Wi) = Wi.

Proof. If v ∈ attri(Wi) \ Wi, then v would be winning for
player i by her playing according to her attractor strategy and
then switching to her winning strategy as soon as the play
visits Wi. ■

Computability in time linear in the number of arcs makes
attractor sets algorithmically very nice. Together with lem-
mas 3.65 and 3.66, which we will prove next, this will be the
basis of Chapter 6.

Lemma 3.65 Let P = (V,E, V◇, ω) be a parity game, i ∈
{◇,□} and A ⊆ V . Then

Wi

(
P \ attri(A)

)
⊆Wi(P).

Proof. Let P = (V,E, V◇, ω) be a parity game, i ∈ {◇,□},
A ⊆ V and

v ∈Wi(P \ attri(A)).

Then we have in particular

v /∈ attri(A).

If v /∈ Wi(P), then player i has a winning strategy from v in
P .

But player i cannot force the play into attri(A) or otherwise
we would have v ∈ attri(A). So, if player i chooses so, then the
play stays in P \ attri(P), where it was winning for player i.
So player i has a winning strategy from v in P , showing v ∈
Wi(P). ■

57

3 The Modal µ-Calculus and Parity Games

Lemma 3.66 Let P = (V,E, V◇, ω) be a parity game, i ∈
{◇,□} and U ⊆Wi(P). Then

1. Wi(P) = attri(U) ∪Wi(P \ attri(U)) and

2. Wi(P) = Wi(P \ attri(U)).

Proof.

1. Let v ∈Wi(P) and assume v /∈ attri(U) and v /∈Wi(P \
attri(U)). Because parity games are determined, we have
v ∈ Wi(P \ attri(U)). By Lemma 3.65, this implies
v ∈Wi(P), which contradicts v ∈Wi(P).

2. Let v ∈Wi(P). Then we have v /∈ attri(U) because all of
U is winning for player i. Suppose to the contrary that
v /∈ Wi(P \ attri(U)). Then player i can force the play
into a dead end v ∈ P \ attri(U) that did not exist in
P , the only difference between P and P \ attri(U). But
a dead end in P \ attri(U) which is not a dead end in
P has all its successors (at least one) in attri(U). This
implies v ∈ attri(U), a contradiction.
The other direction of the equality follows directly from
Lemma 3.65. ■

3.3 Relation to the Modal µ-Calculus
Parity games are relevant because they are the model-checking
game for the modal µ-calculus. For every formula φ ∈ Lµ
and every structure M, there exists a parity game M⋉ φ
such that M, v |= φ holds if and only if player ◇ wins from

58

3.3 Relation to the Modal µ-Calculus

(φ, v) ∈M⋉ φ. Furthermore, if M is finite, then this model-
checking game can be computed from φ and M in polynomial
time and satisfies |V (M⋉ φ)| ∈ O

(
|V (M)||φ|

)
.

3.3.1 Annotated Formulas

In the definition of the model-checking game, the most tricky
part is to find the priorities, because they somehow need to
capture the semantics of the fixpoint operators. For this, let
us first go back to the modal µ-calculus and assign priorities
to the fixpoint operators based solely on syntax. Recall that
in consistent formulas, a fixpoint variable Xi is bound only by
µ or only by ν, but not by both.

Definition 3.67 Let φ ∈ Lµ be consistent with X = (X1, . . . ,
Xn). We call (p1, . . . , pn) ∈ Nn a priority sequence priority

sequence
for X if it

is strictly increasing and for all 1 ≤ i ≤ n, pi is odd if and only
if Xi is bound in µ-subformulas. ⊣

The intuition is that we assign the priority pi to every
subformula that binds Xi. In order to illustrate this concept,
we write the number pi on top of the fixpoint operators binding
Xi, as in pi

µXi.ψ. We call such a formula an annotated formula annotated
formula

.
For example, a formula

νY.◇(µX.νY.◇X ∨◇Y) ∨□Y

consistent with (X,Y) under the priority sequence (1, 2) would
be labeled as

2
νY.◇(1

µX.
2
νY.◇X ∨◇Y) ∨□Y.

59

3 The Modal µ-Calculus and Parity Games

Note that it cannot be labeled
2
νY.◇(3

µX.
4
νY.◇X ∨◇Y) ∨□Y,

even though these priorities would work in the model-checking
game (that we are going to define in Definition 3.68). However,
they violate the sequence (X,Y) and the priority sequence
(1, 2).

The first annotated formula is an element of CL(1
µX.

2
νY.◇X∨

◇Y). Due to Lemma 3.36 on page 40, it holds true in general
that for an annotated formula φ and for some ψ ∈ CL(φ), we
can use the annotation of φ for ψ as well.

3.3.2 Model-Checking Game

Definition 3.68model-
checking

game

For a σ-structure M and an annotated for-
mula φ ∈ Lµ[σ] in negation normal form, let M⋉ φ = (V, V◇,
E, ω) be the model-checking game

M ⋉ φ

defined as follows.

V (M⋉ φ) :=M× CL(φ)

There is a an arc from (v, ψ) to (w,χ) if and only if

• v = w and ψ ∈ {χ ∧ χ′, χ ∨ χ′, χ′ ∧ χ, χ′ ∨ χ} for some
χ′ or

• v = w, ψ ∈ {µX.χ′, νX.χ′} and χ = closureφ(χ′) or

• (v, w) ∈ E(M) and ψ ∈ {◇ψ,□ψ}.

A vertex (v, ψ) is a □-node if and only if

• ψ = ⊤ or

60

3.3 Relation to the Modal µ-Calculus

• ψ = P for some P ∈ σ and M, v |= P or

• ψ ∈ {χ ∧ χ′,□χ} for some χ, χ′ ∈ Lµ[σ].

A vertex (v, ψ) has the priority

ω(v, ψ) :=
{
p if ψ = p

µX.χ or ψ = p
νX.χ for some χ

p′ otherwise,

where p′ is the maximum priority. ⊣

See Figure 3.5 on the following page for an example. Note
how most vertices in the example have priority 2, the maximum
priority.

It is easy to show that this definition gives a well-defined
model-checking game (see e.g., [Zap01]). However, the usual
proofs from the literature do not apply directly to our defi-
nition of the model-checking game because our definition is
slightly different. Usually, the set of vertices is notM×CL(φ),
but M× sub′(φ), where sub′(φ) is the set of all non-indexed
subformulas1 of φ, with the additional assumption that in φ
every fixpoint variable is quantified at most once. Then the
game has additional arcs from (v,X) to (v, µX.ψ), where µX.ψ
is the subformula which binds X. Furthermore, the non-trivial
priorities are on the vertices of the form (v,X). These vertices
do not exist in our game, due to taking the closure, so we push
the priorities to the vertices of the form (v, µX.ψ).

Let us prove that our game is also a correct model-checking
game.

1Recall from Definition 3.23 on page 35 that sub(φ) excludes subformulas
consisting of a single variable, and is indexed. This is why we use
sub′(φ) here.

61

3 The Modal µ-Calculus and Parity Games

v
/

2 ν
Y
.◇

(1 µ
X
.2 ν
Y
.◇
X

∨
◇
Y
)
∨
□
Y

(=
φ
)

2:

v
/
◇
(1 µ
X
.2 ν
Y
.◇
X

∨
◇
Y
)
∨
□
φ

2:

w
/
(1 µ
X
.2 ν
Y
.◇
X

∨
◇
Y
)
∨
□
φ

2:

w
/

1 µ
X
.2 ν
Y
.◇
X

∨
◇
Y

(=
ψ
)

1:

w
/

2 ν
Y
.◇
ψ
∨
◇
Y

2:

w
/
◇
ψ
∨
◇
(2 ν
Y
.◇
ψ
∨
◇
Y
)

2
:

w
/
◇
ψ

2
:

w
/
◇
(2 ν
Y
.◇
ψ
∨
◇
Y
)

2
:

w
/
□
φ

2:

w
/
φ

2
:

w
/
◇
(1 µ
X
.2 ν
Y
.◇
X

∨
◇
Y
)
∨
□
φ

2
:

v
/
(1 µ
X
.2 ν
Y
.◇
X

∨
◇
Y
)
∨
□
φ

2
:

v
/

1 µ
X
.2 ν
Y
.◇
X

∨
◇
Y

1
:

v
/

2 ν
Y
.◇
ψ
∨
◇
Y

2
: v

/
◇
ψ
∨
◇
(2 ν
Y
.◇
ψ
∨
◇
Y
)

2
:

v
/
◇
(2 ν
Y
.◇
ψ
∨
◇
Y
)

2
:

v
/
◇
ψ

2
:

v
/
□
φ

2
:

Fi
gu

re
3.

5:
T

he
m

od
el

-c
he

ck
in

g
ga

m
e
M

⋉
φ

fo
r
φ

=
2 ν
Y
.◇

(1 µ
X
.2 ν
Y
.◇
X
∨
◇
Y

)∨
□
Y

an
d

M
=

({
v
,w
},
{(
v
,w

),
(w
,v

)}
)

62

3.3 Relation to the Modal µ-Calculus

Lemma 3.69 Let φ ∈ Lµ[σ] be in negation normal form and
let ψ ∈ sub(φ) such that ψ is not in the scope of a µ or ν
fixpoint operator in φ. In particular, we have closureφ(ψ) = ψ
and hence ψ ∈ CL(φ).

Then

(v, ψ) ∈W◇(M⋉ φ)⇐⇒ (v, ψ) ∈W◇(M⋉ ψ).

Proof. Let ψ = (ψ, i) be the formula ψ together with its posi-
tion in φ, and let (χ, j) ∈ sub(ψ). Then we have (χ, j + i) ∈
sub(φ). Furthermore, this satisfies

π1(closureφ(χ, j + i)) = π1(closureψ(χ, j)),

where π1 is the projection onto the first component (that is, π1
forgets the index).

It follows that the subgraphs reachable from (v, ψ) inM⋉ ψ
and M⋉ φ are isomorphic with the isomorphism

(v, closureψ(χ, j)) ↦→ (v, closureφ(χ, j + i)). ■

Theorem 3.70 For every φ ∈ Lµ[σ] in negation normal form
and every σ-structure M, v, it holds that

M, v |= φ⇐⇒ (v, φ) ∈W◇(M⋉ φ).

Proof. We show this simultaneously for all σ by structural
induction on φ.

(φ = P , P ∈ σ) Let v ∈ M and P ∈ σ. By definition of
the arcs, (v, P) has no successors. Furthermore, we have that
(v, P) ∈ V□ if and only if M, v |= P . So (v, P) is winning for
◇ if and only if M, v |= P , as required.

63

3 The Modal µ-Calculus and Parity Games

(φ = ¬P , P ∈ σ) The argument is analogous for negated
propositions.

(φ = ψ∨χ) Let v ∈M. Then (v, φ) is a player ◇-vertex with
the two successors (v, ψ) and (v, χ). Assume that M, v |= φ
holds. Then M, v |= ψ or M, v |= χ, so by the induction hy-
pothesis, we have (v, ψ) ∈W◇(M⋉ ψ) or (v, χ) ∈W◇(M⋉ χ).
Using Lemma 3.69 and because (v, φ) is a player ◇-vertex, this
implies (v, φ) ∈W◇(M⋉ φ).

On the other hand, if (v, φ) ∈W◇(M⋉ φ), then one of the
successors must be winning for player ◇, too. Then, again
by Lemma 3.69 and by the induction hypothesis, we have
M, v |= ψ or M, v |= χ, so M, v |= φ.

(φ = ψ ∧ χ) The case of conjunction is fully analogous to
the case of disjunction.

(φ = ◇ψ) Let v ∈ M. Then (v, φ) is a ◇-vertex and has
(v1, ψ), . . . , (vk, ψ) as its successors, where v1, . . . , vk are the
successors of v in M.

If M, v |= ◇ψ, then there exists a successor vi of v with
M, vi |= ψ and we have (vi, ψ) ∈W◇(M⋉ ψ) by the induction
hypothesis. This implies (v, φ) ∈W◇(M⋉ φ) because player ◇
can choose (vi, ψ) as the successor of (v, φ), and the games
M⋉ φ and M⋉ ψ are isomorphic if restricted to the vertices
reachable from (vi, ψ) due to Lemma 3.69.

If v ∈W◇(M⋉ φ), then player ◇ has a positional winning
strategy. Using this positional strategy she chooses a successor
(vi, ψ) of (v,◇ψ) and wins, so we have (vi, ψ) ∈ W◇(M⋉ φ).
Again, the games M⋉ φ and M⋉ ψ restricted to the vertices
reachable from (vi, ψ) are isomorphic by Lemma 3.69, so this
implies vi ∈ W◇(M⋉ ψ). By the induction hypothesis, this
gives us M, vi |= ψ, which implies M, v |= φ by the semantics
of the ◇-operator.

64

3.3 Relation to the Modal µ-Calculus

(φ = □ψ) This case follows analogously to the previous case.
(φ = µX.ψ) Assume that M, v |= φ. Let

F : V (M)→ V (M), S ↦→ [[ψ]]M[X/S].

By the induction hypothesis, this is

F (S) = {v ∈M | (v, ψ) ∈W◇(M[X/S] ⋉ ψ)}.

We need to show that

µF = {v ∈M | (v, φ) ∈W◇(M⋉ φ)}.

(⊆): Let S be an abbreviation for the right-hand side of
the equation. It suffices to show F (S) ⊆ S. Let v0 ∈M with
(v0, ψ) ∈W◇(M[X/S] ⋉ ψ).

Let π be a winning ◇-strategy in M[X/S] ⋉ ψ for the
winning region of player ◇. We want to apply this strat-
egy to M⋉ µX.ψ. However, all the vertices of the form
(v,X) ∈ M[X/S] ⋉ ψ do not exist in M⋉ µX.ψ. In their
place, M⋉ µX.ψ has vertices of the form (v, µX.ψ) which did
not exist in M[X/S] ⋉ ψ. See Figure 3.6 for an illustration.
Note that in the figure, the vertex (v,X) is a ◇-vertex if and
only if v /∈ S by the definition of M[X/S] ⋉ ψ.

As is evident from the figure, we can simply apply π directly
to M⋉ µX.ψ because there are no additional choices to be
made by player ◇; every vertex (v, µX.ψ) with v ∈ M has a
single outgoing arc pointing to (v, ψ). We claim that this is a
winning strategy on M⋉ µX.ψ from (v0, µX.ψ). Suppose to
the contrary that is not winning.

Then there exists a π-conforming play in M⋉ µX.ψ start-
ing from (v0, µX.ψ) winning for player □. The strategy π is

65

3 The Modal µ-Calculus and Parity Games

v/ψ

...

w/◇X

v/X

v/ψ

...

w/◇µX.ψ

v/µX.ψ

Figure 3.6: Comparing M[X/S] ⋉ ψ (left) to M⋉ µX.ψ
(right)

winning inM[X/S] ⋉ ψ from (v0, ψ), but by assumption losing
in M⋉ µX.ψ from (v0, µX.ψ). The only way this can happen
is that (after leaving the starting vertex) the play inM⋉ µX.ψ
eventually visits a vertex (v, µX.ψ) with S ∈ v, because then
(v,X) would be winning M[X/S] ⋉ ψ while (v, µX.ψ) could
be losing in M⋉ µX.ψ.

But v ∈ S implies by the definition of S that player ◇ wins
from (v, µX.ψ) in M⋉ µX.ψ, which is a contradiction.

(⊇): Let π be a winning ◇-strategy in M⋉ µX.ψ for the
winning region of player ◇ and let v0 ∈ S. We apply the
same strategy to M[X/µF] ⋉ ψ and claim that it is a winning
strategy from (v0, ψ).

Because µF is a fixpoint of F , we have

µF = F (µF) = {v ∈M | (v, ψ) ∈W◇(M[X/µF] ⋉ ψ)}

66

3.3 Relation to the Modal µ-Calculus

and it is sufficient to show (v0, ψ) ∈W◇(M[X/µF] ⋉ ψ).
The game M⋉ µX.ψ differs from M[X/µF] ⋉ ψ only by

having arcs from vertices of the form (v,X) (which we now
call (v, µX.ψ) due to taking the closure) back to (v, ψ). We
claim that the same strategy π is winning for player ◇ in
M[X/µF] ⋉ ψ. Suppose to the contrary that it is not winning.

The only difference in the structures is that in the game
M[X/µF] ⋉ ψ the outgoing arcs from vertices of the form
(v,X) are missing. Only those (v,X) with v /∈ µF are win-
ning for player □, so there exists a π-conforming path in
M[X/µF] ⋉ ψ starting from (v0, ψ) ending in some (v,X) with
v /∈ µF or π would be winning.

So there exists a π-conforming path in M⋉ µX.ψ starting
(v0, µX.ψ) and ending in (v, µX.ψ). It follows that (v, µX.ψ)
is winning for player ◇ inM⋉ µX.ψ or π would not have been
a winning strategy. But M, v ⊭ µX.ψ implies M[X/µF], v ⊭
ψ, which means that (v, ψ) is winning for player □ in the
gameM[X/µF] ⋉ ψ. So we can repeat this argument and find
an infinite path in M⋉ µX.ψ visiting an infinite number of
vertices of the form (v, µX.ψ). These all have odd priority, and
this priority is the minimal priority in the game, so this play is
losing for player ◇. This is a contradiction, so π is winning for
player ◇ in M[X/µF] ⋉ ψ from (v, ψ). ■

As described above the proof, our version of the model-
checking game is slightly different from the usual definition
of the model-checking game in the literature. We will now
present the reason why we believe our definition is more useful
for our purposes: The gameM⋉ φ is good not only for model-
checking φ, but the same game also works for model-checking
every ψ ∈ CL(φ).

67

3 The Modal µ-Calculus and Parity Games

To prove this, we need to strengthen Lemma 3.69.

Lemma 3.71 Let φ ∈ Lµ[σ] be in negation normal form and
let ψ ∈ CL(φ).

Then

(v, ψ) ∈W◇(M⋉ φ)⇐⇒ (v, ψ) ∈W◇(M⋉ ψ).

Proof. Fix φ ∈ Lµ[σ] and ψ ∈ CL(φ). Let us revisit Defini-
tion 3.68, the definition of the model-checking game M⋉ φ,
and observe that it works just as well if we use

V (M⋉ φ) :=M× FLC(φ)

instead of M× CL(φ). According to Lemma 3.29, FLC(φ) is
CL(φ) without the indices, that is,

FLC(φ) = {ψ | (ψ, i) ∈ CL(φ)}.

Lemma 3.69 does not use the indices in an essential way
(the isomorphism used in the proof then becomes the identity)
and Theorem 3.70 never uses the indices, so both statements
are also true under the modified model-checking games.

The modified games M⋉ φ and M⋉ ψ are identical when
restricted to the vertices reachable from (v, ψ), which together
with Theorem 3.70 proves the lemma. ■

It follows that the gameM⋉ φ is the model-checking game
for every ψ ∈ CL(φ).

Theorem 3.72 For every φ ∈ Lµ[σ], every ψ ∈ CL(φ) and
every σ-structure M, v, it holds that

M, v |= ψ ⇐⇒ (v, ψ) ∈W◇(M⋉ φ).

68

3.3 Relation to the Modal µ-Calculus

Proof. By Theorem 3.70 and Lemma 3.71, we have

M, v |= ψ ⇐⇒ (v, ψ) ∈W◇(M⋉ ψ)
⇐⇒ (v, ψ) ∈W◇(M⋉ φ). ■

69

4 Computational Complexity

In the previous chapter, we defined the modal µ-calculus and
parity games. In this chapter we want to discuss the computa-
tional complexity of the problem of determining the winner in
a parity game and of the model-checking problem of the modal
µ-calculus. We will see that these problems are intimately
related.

First, we will give an overview over existing algorithms for
solving parity games, followed by the relation to the model-
checking problem of the modal µ-calculus. Finally we will
consider both problems on restricted classes of graphs and
show that this is usually as hard as the general case.

Sections 4.1, 4.2 and 4.3.1 are a survey over known results.
Sections 4.3.2 to 4.3.4 are new results.

4.1 The Complexity of Parity Games

Let us consider the complexity of the problem of determining
the winner of a vertex in a given parity game. We saw in The-
orem 3.51 on page 51 that it is possible to check in polynomial
time whether a positional strategy is a winning strategy. It
follows immediately that the problem of solving parity games
is in NP because a nondeterministic machine can simply guess
the winning strategy and then verify that the guess was correct.

71

4 Computational Complexity

Conversely, if player ◇ does not have a winning strategy
from a given vertex, then by Theorem 3.55, player □ has a
winning strategy. It follows that the problem is in NP ∩ coNP.

In 1998, Marcin Jurdziński improved this and showed that
the problem is in UP∩coUP [Jur98]. The class UPUP is defined as
the class of NP-problems that have a nondeterministic Turing
machine with a unique accepting path. That is, if the answer to
an instance of a UP-problem is “yes”, then the nondeterministic
Turing machine has exactly one accepting path, and if the
answer is “no”, then it has no accepting path. Note that for an
instance of an NP-problem, the non-deterministic polynomial-
time machine may have more than one accepting path if the
answer is “yes”. Directly from this definition we see that
UP ∩ coUP ⊆ NP ∩ coNP. It is an open question whether this
inclusion is strict.

Jurdziński proves membership in UP ∩ coUP via a poly-
nomial-time reduction of parity games to mean payoff games
followed by a polynomial-time reduction to discounted mean
payoff games, and then proving that solving the latter games
is in UP ∩ coUP. A discounted mean payoff game is defined as
follows.

Definition 4.1 A discounted mean payoff gamedisc. mean
payoff game

A = (V,E,
V◇, v, d, λ, ω) is a directed graph (V,E) without dead ends
and with V◇ ⊆ V , numbers v, d ∈ N, λ ∈ Q and a function
ω : E → {−d, . . . ,−1, 0, 1, . . . , d} assigning weights to the arcs.

Strategies and plays are defined as for parity games. A play
(v1, v2, . . .) is winning for player ◇ if and only if

(1− λ)
∞∑
i=1

λiω(vi−1, vi) ≥ v.
⊣

72

4.1 The Complexity of Parity Games

Theorem 4.2 ([Jur98, Theorem 8]) The problem of decid-
ing the winner in a discounted mean payoff game, and thus the
problem of deciding the winner in a mean payoff game and in
a parity game, is in UP ∩ coUP.

Another famous problem contained in the class UP is integer
factorization. This is the problem, given n, k ∈ N, of deciding
whether there exists a factor c of n with 1 < c < k. Due
to the fundamental theorem of algebra, every integer has a
unique prime factorization if we fix the order of the factors.
So it is easy to construct a non-deterministic Turing machine
with at most one accepting path by guessing the unique prime
factorization with factors in ascending order and then checking
whether one of the primes is smaller than k.

Membership to UP∩coUP is the best result currently known
for the problem of solving parity games. Let us remark that
there is also a logical point of view under which we can consider
the complexity of parity games, called the descriptive complex-
ity descriptive

complexity
. The question is, in what logics is it possible to define the

winner of a parity game? Formally the task is to find a formula
φ in some logic that is true at a vertex v in a parity game P
(with the parity game presented suitably for the logic) if and
only if player ◇ wins from (P, v) or prove that no such formula
exists.

Similar to the computational complexity, very little is known
about the descriptive complexity of parity games in general.
By a result by Igor Walukiewicz which we will revisit in detail
in Section 4.2, for every number d ∈ N, there exists a formula
φd ∈ Lµ that defines the winner of a parity game with at most
d distinct priorities [Wal96].

In 2008, Anuj Dawar and Erich Grädel showed that with

73

4 Computational Complexity

an unbounded number of priorities, guarded second order logic
(GSO) can define the winner, but least fixed point logic (LFP)
is unable to do so [DG08]. Furthermore, they showed that
on finite games, LFP can define the winner if and only if
the winner is computable in polynomial time, relating the
descriptive complexity to the computational complexity.

Dawar and Grädel also conjectured that monadic second
order logic without quantifications over sets of arcs (called
MSO1) cannot define the winner of a parity game. This remains
an open question.

4.1.1 General Algorithms

Although we only know that solving parity games belongs to
UP∩coUP, there are still numerous algorithms, not all of them
with exponential running time. One of the first algorithms was
invented by Robert McNaughton, who introduced more general
infinite games and presented an exponential-time algorithm
for solving these [McN93]. Wieslaw Zielonka modified this
algorithm, analyzing the memory requirements in detail and
proving positional determinacy of parity games [Zie98]. Both
algorithms have running time O

(
nd

)
, where n is the number

of vertices and d the number of distinct priorities in the parity
game.

Another recursive algorithm is the algorithm by Perdita
Stevens and Colin Stirling [SS98]. Oliver Friedmann showed
that this algorithm also has exponential worst-case running
time [Fri10].

In 1994, David E. Long, Anca Browne, Edmund M. Clarke,
Somesh Jha, and Wilfredo R. Marrero significantly improved
the running time to about O

(
nd/2)

[Lon+94]. Helmut Seidl im-

74

4.1 The Complexity of Parity Games

proved their result further by finding a far simpler proof [Sei96].
In 2000, Marcin Jurdziński presented an algorithm called

small progress measures small
progress
measures

that runs in time

O
(
m · (n/⌊d/2⌋)⌊d/2⌋

)
,

where m is the number of arcs [Jur00]. His algorithm is not
based on the algorithms by Long et al. or by Seidl but matches
their worst-case running time. The improvement in Jurdziński’s
algorithm is the space complexity, which is O(dn).

Sven Schewe improved the running time of the small progress
measure algorithm to roughly O

(
mnd/3)

[Sch07].
Marcin Jurdziński and Jens Vöge showed a different algo-

rithm based on strategy improvement strategy im-
provement

, improved later by Sven
Schewe [VJ00; Sch08]. The idea is to start with some eas-
ily computable strategy (for example, an arbitrary strategy)
and then improve it until no further improvements are pos-
sible. Provided that each improvement step can be done in
polynomial time and that there is at most a polynomial num-
ber of improvement steps, this would give a polynomial-time
algorithm.

Luckily, the first part works: Each improvement step can
be done in polynomial time. However, it was open for a long
time whether the number of improvement steps is polynomial
for any of these algorithms.

A few years later, Oliver Friedmann finally settled the ques-
tion of the number of improvement steps negatively [Fri09;
Fri11]. He showed that there exists a sequence of parity games
on which the strategy improvement algorithm by Jurdziński
and Vöge and the improved algorithm by Schewe both require

75

4 Computational Complexity

an exponential number of improvement steps, concluding that
these algorithms are not polynomial time.

In [BSV03], Henrik Björklund, Sven Sandberg, and Sergei
Vorobyov presented a randomized subexponentialrandomized algorithm
with running time roughly

min
(
O

(
n3 · (1 + n/d)d

)
, 2O(

√
n logn)

)
.

Their algorithm is based on work by Walter Ludwig on simple
stochastic games and by Gil Kalai on linear programming
[Lud95; Kal92].

In contrast to the linear programming approach, Marcin
Jurdziński, Mike Paterson, and Uri Zwick found a deterministic
subexponentialsubexponen-

tial
algorithm that is modification of McNaughton’s

algorithm [JPZ06]. The runtime of this subexponential algo-
rithm is

nO(
√
n).

If the outdegree of every vertex is bounded by 2, then the
running time improves to

nO(
√
n/ logn).

Another technique applied by Keijo Heljanko, Misa Kei-
nänen, Martin Lange, and Ilkka Niemelä is to reduce the
problem of solving parity games to a SAT problemSAT [Hel+12].
Because solving parity games is in UP ∩ coUP ⊆ NP and SAT
is NP-complete, this is trivially possible by the definition of NP-
completeness. However, the general reduction of NP-problems
to SAT, although polynomial, is very inefficient. Heljanko
et. al found that with a reduction specifically designed for

76

4.1 The Complexity of Parity Games

parity games, modern SAT solvers are surprisingly efficient at
solving the instances.

In practice, there are also a few tricks that we can always
use if we want to solve a parity game. All these tricks simplify
common cases. The most well-known simplification is the ob-
servation that we can work on strongly connected components

connected
components

separately. If a game has more than one component, then we
can solve the leaf components first and then work our way
backwards. This works because there is no way that non-leaf
components can affect the winning regions of leaf components
(otherwise they would not be leaf components). For a discussion
of this and other reductions, we refer the reader to the survey
by Oliver Friedmann and to the documentation of PGSolver PGSolver,
a software for manipulating and solving parity games [FL09;
Pgs]. PGSolver implements many of the algorithms described
above, in particular the exponential recursive algorithm, the
small progress measures algorithm, several strategy improve-
ment algorithms, reductions to SAT, and the deterministic
subexponential algorithm.

4.1.2 Algorithms on Restricted Classes

Because parity games proved to be very difficult in general,
researchers have analyzed the problem on restricted classes of
games, hopefully finding polynomial-time algorithms or better.

The first of many such projects was done by Jan Obdržálek
who considered classes of parity games whose underlying undi-
rected graph has bounded treewidth [Obd03]. He showed that
for every such class, a polynomial-time algorithm exists.

Later, Dietmar Berwanger and Erich Grädel showed the
same for classes of bounded entanglement [BG04]. Other results

77

4 Computational Complexity

in this setting are bounded clique-width [Obd07], bounded
DAG-width [Ber+06], and (again) bounded treewidth [FS12] by
John Fearnley and Sven Schewe, and (again) bounded treewidth
and bounded clique-width [Gan15] by Moses Ganardi.

Fearnley and Schewe’s result is an improvement over the
result by Obdržálek in both the running time and in that they
proved membership to the complexity class NC2, a class of
problems which can be efficiently parallelized.

Ganardi showed that parity games of bounded treewidth or
bounded clique-width are in the complexity class LogCFL, the
class containing all problems log-space reducible to a context-
free language. LogCFL is a subclass of NC2.

A reasonable conjecture could also be that parity games on
undirected graphs are easier. However, it turns out that this
is not the case. Dietmar Berwanger and Olivier Serre showed
that undirected parity games are as hard as general parity
games [BS12].

4.1.3 Fixed-parameter Tractability

Mostly for Chapter 5, but also for some earlier sections, we
will need the notion of fixed-parameter tractability. For a good
introduction and survey of parameterized complexity theory, we
recommend the book by Jörg Flum and Martin Grohe [FG06].
We will use their definitions, which are standard.

alphabet The definitions are based on Turing machines, which require
an alphabet and an encoding procedureencoding

procedure
for the problem instances.

As is usual in complexity theory, the complexity classes are
irrelevant of the choice of the alphabet and of the encoding
procedure as long as they are chosen not to be exceedingly
inefficient.

78

4.1 The Complexity of Parity Games

An example of an exceedingly inefficient encoding would
be a unary encoding. Take for example n ↦→ 01n0 for n ∈ N,
where 1n is the letter 1 repeated n times. As you can see, we
need to work hard to produce exceedingly inefficient encodings.

For this reason we will not concern ourselves with the choice
of alphabets and encodings for the rest of this thesis. Nonethe-
less, here we will give the general definitions because it is
unusual to define fixed-parameter tractability without referring
to a specific alphabet and a specific encoding.

Definition 4.3 Let Σ be a finite alphabet. A problem problemis a set
L ⊆ Σ∗. ⊣

We will not repeat the definition of Turing machines because
it is well-known, quite verbose, and irrelevant to our topic.
We note that also the previously mentioned book by Flum
and Grohe never bothers to define “Turing machines” and
instead assumes from the beginning that the reader is familiar
with the concepts of “algorithm” and “running times”. This
is a reasonable assumption because as with the choice of the
alphabet and the encoding, the complexity classes are robust
with respect to the exact formalization of Turing machines.
We refer the reader to the book by Sanjeev Arora and Boaz
Barak for a formal and excellent modern treatment of Turing
machines [AB09].

Let us now define the fundamentals of parameterized com-
plexity theory.

Definition 4.4 A parameterization parameteri-
zation

is a polynomial-time com-
putable function Σ∗ → N. A parameterized problem is a prob-
lem L ⊆ Σ∗ with a parameterization κ. ⊣

79

4 Computational Complexity

Definition 4.5 A parameterized problem is fixed-parameter
tractablefixed-

parameter
tractable

(FPT) if there exists a computable function f , a
polynomial p and an algorithm deciding the problem for all
x ∈ Σ∗ in time O

(
f(κ(x)) · p(|x|)

)
, where |x| is the length of

x. ⊣

Definition 4.6 A parameterized problem L ⊆ Σ∗ with param-
eter κ is FPT-reducibleFPT-

reducible
to a parameterized problem L′ ⊆ (Σ′)∗

with parameter κ′ if there exists a function R : Σ∗ → (Σ′)∗

such that

1. For all x ∈ Σ∗ we have x ∈ L⇐⇒ R(x) ∈ L′.

2. R is computable by an FPT-algorithm with respect to
κ. That is, there exists a computable function f , a
polynomial p and an algorithm computing R(x) in time
O(f(κ(x)) · p(|x|)) for all x ∈ Σ∗.

3. There is a computable function g : N→ N with κ′(R(x)) ≤
g(κ(x)) for all x ∈ Σ∗. ⊣

There are very few fixed parameter tractability results for
parity games. While all algorithms mentioned in Section 4.1.2
are polynomial-time, the degree of the polynomial depends on
the number of priorities. Gajarský et al. [Gaj+15] parame-
terized the problem by the size of a feedback vertex set, by
the distance to a tournament, or by modular width and found
that it is fixed-parameter tractable in these cases. In another
recent paper, Matthias Mnich, Heiko Röglin, and Clemens
Rösner showed fixed-parameter tractability for the parameter
|V◇| [MRR16]. We will consider parity games on tournaments
in detail in Chapter 6.

80

4.2 The Lµ Model-Checking Problem

4.2 The Lµ Model-Checking Problem
Our prime example for a parameterized problem is the Lµ
model-checking problem with parameter |φ|, the length of
the formula. The motivation is that if this problem is fixed-
parameter tractable, then we have an efficient model-checking
algorithm for every fixed choice of φ. By the definition of FPT
this would mean that the running time of such an algorithm
is a polynomial in M with degree independent of φ. It is
well-known that this problem is closely connected to parity
games parameterized by the number of distinct priorities.

Theorem 4.7 The Lµ model-checking problem parameterized
by |φ| is FPT equivalent to the problem of solving parity games
parameterized by the number of distinct priorities d.

Moreover, in the reduction from games to σ-structures we
have |φ| ∈ O(d), and the graph of the structure produced in the
reduction is isomorphic to the graph of the input parity game.

Proof. The first direction is easy: The model-checking game
M⋉ φ is clearly computable in polynomial time, and Theo-
rem 3.70 says that player ◇ winsM⋉ φ from (v, φ) if and only
if M, v |= φ. So solving M⋉ φ answers the model-checking
problem.

Furthermore, this is an FPT reduction: The number of
distinct priorities in M⋉ φ only depends φ, and M⋉ φ is
computable in time O(|φ|) · |M|2. The squaring is necessary
because their could be a quadratic number of arcs in M.

For the other direction we need to construct an FPT-re-
duction of the problem of solving parity games to the model-
checking problem. Every parity game P = (V,E, V◇, ω) can
be considered as a σ-structure with σ = {V◇, P0, P1, . . . , Pd},

81

4 Computational Complexity

where d is the maximum priority. We can assume that d is the
parameter because without loss of generality, the number of
distinct priorities cannot be significantly lower than d.

For the proposition symbols, P, v |= Pi holds if and only if
ω(v) = i. Then player ◇ wins from v ∈ V if and only if

P, v |= φd

with

φd := νX0µX1νX2 . . . λXd

d⋁
i=0

(
(V◇ ∧ Pi ∧◇Xi) ∨ (¬V◇ ∧ Pi ∧□Xi)

)
,

where λ = µ if d is odd and λ = ν if d is even. The idea is
that if v ∈ V◇, then it should be player ◇’s turn in the model-
checking game P ⋉ φd, so we use a ◇ modality. Additionally,
if ω(v) = i, then we need to pass through priority i in P ⋉ φd.
This is guaranteed by passing through Xi because the formula
can be annotated as follows.

0
νX0

1
µX1

2
νX2 . . .

d
λXd

d⋁
i=0

(
(V◇ ∧ Pi ∧◇Xi) ∨ (¬V◇ ∧ Pi ∧□Xi)

)
,

For a detailed proof, we refer the reader to Section 3.3.6 of the
book on finite model theory by Grädel et. al [Grä+07]. The
original proof, although written for monadic second order logic,
is by Igor Walukiewicz [Wal96].

This is an FPT-reduction because d ≤ |V |, so the σ-structure

82

4.3 Difficulty of Restricted Classes

P is computable in time polynomial in |V |, and φd depends
only on d. Furthermore, we have |φ| ∈ O(d) as claimed. ■

Without parameters, we get the classical version of the
equivalence.

Corollary 4.8 The Lµ model-checking problem is polynomial-
time equivalent to solving parity games.

As of 2016, it is unknown for the Lµ model-checking problem
and for the problem of solving parity games if they are fixed-
parameter tractable in general for the usual parameters.

On the other hand, at the end of Section 4.1.3 we saw FPT
results for other parameters such as feedback vertex set. In the
same spirit of choosing a different parameter, we will show in
Section 5.4 on page 147 that the problem is fixed-parameter
tractable with respect to the parameter |φ| + k, where k is
the width of certain decompositions (Kelly decomposition or
DAG decomposition), assuming the decomposition is part of
the input.

4.3 Difficulty of Restricted Classes

The Lµ model-checking problem is the problem of determining
M |= φ, given a σ-structure M and φ ∈ Lµ[σ]. Parity games
are polynomial-time solvable on many restricted classes of
graphs, as we saw in Section 4.1.2. However, these results do
not transfer to the Lµ model-checking problem. The reason
is that the reduction in Theorem 4.7 from the model-checking
problem to parity games blows up most width measures such
as treewidth.

83

4 Computational Complexity

In this sense, solving the Lµ model-checking problem on
restricted classes of graphs is a worthy question independent
of the problem of solving parity games. We will study this
problem in depth in Chapter 5. Let us here discuss some
reductions.

4.3.1 Hardness

In 2006, Nicolas Markey and Philippe Schnoebelen in [MS06]
showed that Lµ model checking is reducible to Lµ model check-
ing on cycles.

Theorem 4.9 ([MS06, Theorem 3.1]) Lµ model checking
logspace reduces to Lµ model checking of cycles.

Nearly all measures of graph complexity (treewidth, DAG-
width, etc.) are small on cycles. We get the following corollary.

Corollary 4.10 Let C be a class of structures containing all
cycles for all signatures (for example, structures of bounded
treewidth, or of bounded DAG-width, etc.).

If there exists a polynomial-time algorithm solving the Lµ
model-checking problem on C, then the general Lµ model-check-
ing problem is polynomial-time solvable.

This means that short of solving the general Lµ model-
checking problem in polynomial time, it is impossible to solve
restricted classes in polynomial time. However, this is not as
bad as it sounds. Fixed-parameter tractability (FPT) algo-
rithms for restricted classes are still possible and interesting
ways of attacking the problem, because Markey’s and Schnoe-
belen’s reduction is not FPT.

84

4.3 Difficulty of Restricted Classes

Furthermore, this obstruction does not apply to parity games.
Markey’s and Schnoebelen’s reduction blows up the cycle, the
signature and the formula linearly with the size ofM, which in
term blows up the model-checking game. While parity games
can be reduced to some restricted classes such as classes of
locally bounded treewidth (as we will show in Section 4.3.4),
no reductions to classes such as planar parity games or games
of bounded treewidth or bounded clique-width are known. Of
course, a polynomial-time reduction to classes of bounded
treewidth or bounded clique-width would imply a polynomial-
time algorithm for solving parity games.

A polynomial-time reduction to planar parity games seems
more reasonable to expect, as planar parity games are not
known to be easier than general parity games. However, we
will see in the following that a simple reduction by replacing
arc crossings with some gadget does not work.

4.3.2 Planar Graphs

In contrast to parity games, where the complexity of solving
planar games is unknown, the Lµ model-checking problem is
as hard on planar graphs as on general graphs. We prove this
by constructing a polynomial-time reduction of the general
problem to the planar problem.

Theorem 4.11 There exist polynomial-time functions f, g, h
such that for all finite σ-structures M, all v ∈ M and all
φ ∈ Lµ[σ], it holds that

1. M, v |= φ if and only if f(M), v |= g(φ)

2. f(M) is a planar h(σ)-structure.

85

4 Computational Complexity

Replace by

y2x1

y1 x2

y2x1

y1 x2

B
b2

A
a1

A
a2

B
b1

Figure 4.1: Arc crossing gadget

3. g(φ) ∈ Lµ[h(σ)].

4. σ ⊆ h(σ).

Proof. Let A,B /∈ σ be fresh proposition symbols and define
h(σ) := σ ∪ {A,B}. The idea for defining f(M) is to find an
arbitrary embedding of M into the plane, possibly with arc
crossings (but only with at most one crossing per pair of arcs
and at most two arcs crossing in the same point), and then
replace each arc crossing with a small planar gadget, depicted
in Figure 4.1. Thus each arc crossing introduces four new
vertices, two vertices where only A holds and two where only B
holds. A and B are false everywhere else. Clearly, the resulting
h(σ)-structure f(M) is planar because the arc crossing gadget
is planar.

It remains to define g(φ). Every □ and ◇ may now need
to skip over an unbounded number of arc crossing gadgets.
This is possible by replacing every subformula ◇ψ of φ (and
analogously, □φ), with a suitable fixpoint formula.

Let Z be a fixpoint variable not occurring in φ. We define

86

4.3 Difficulty of Restricted Classes

g(φ) := φ̃ inductively as follows.

⊤̃ := ⊤ ⊥̃ := ⊥
P̃ := P for all P ∈ σ X̃ := X for all X ∈ Var

φ̃ ∧ ψ := φ̃ ∧ ψ̃ φ̃ ∨ ψ := φ̃ ∨ ψ̃
¬̃φ := ¬φ̃

µ̃X.φ := µX.φ̃ ν̃X.φ := νX.φ̃ for all X ∈ Var

So far, g has no effect. For the modal operators, this is different.

◇̃φ := ◇µZ.(¬A ∧ φ̃) ∨
(
A ∧◇◇◇(¬B ∧ Z)

)
□̃φ := □µZ.(¬A ∧ φ̃) ∨

(
A ∧◇◇◇(¬B ∧ Z)

)
.

Clearly, φ̃ is polynomial-time computable from φ.
We claim that f(M), v |= φ̃ if and only if M, v |= φ. Let

x1 → z be an arc in M. In f(M), this arc may have an
unbounded, but finite, number of arc crossing gadgets.

Let us consider the model-checking games P := M⋉ φ
and P ′ := M⋉ φ̃. We are going to translate strategies for
player ◇ between these two games. By the definition of φ̃, the
games only differ in the vertices corresponding to ◇ and □

subformulas of φ.
Let τ be a ◇-strategy on P . Let us consider a vertex of

the form (v,◇ψ) ∈ V (P), and choose w ∈ V (M) such that
τ((v,◇ψ)) = (w,ψ) (in particular, (v, w) ∈ E(M)). Let us
introduce the abbreviation

χ := µZ.(¬A ∧ ψ̃) ∨
(
A ∧◇◇◇(¬B ∧ Z)

)
,

87

4 Computational Complexity

such that ◇χ = ◇̃ψ.

We claim that player ◇ then has a strategy to end up in
(w, ψ̃) ∈ P ′, starting from (v,◇χ) ∈ P ′. The strategy is simple:
Player ◇ has a strategy to pass over an arc crossing gadget in
the x1 → x2 direction as follows.

(x1, ◇χ),
(a1, χ),(
a1, (¬A ∧ ψ̃) ∨

(
A ∧◇◇◇(¬B ∧ χ)

))
,(

a1, A ∧◇◇◇(¬B ∧ χ)
)
.

Here it is player □’s turn, but his choice is forced if he does
not want to lose immediately, because we have M, a1 |= A.(

a1, ◇◇◇(¬B ∧ χ)
)
,(

a2, ◇◇(¬B ∧ χ)
)
,(

b1, ◇(¬B ∧ χ)
)
,

(x2, ¬B ∧ χ).

Again, it is player □’s turn, but M, x2 ⊭ B, so the choice is
forced, and we end in

(x2, χ).

Similarly, player ◇ has a strategy to pass over a gadget in
the y1 → y2 direction. Furthermore, the strategies for the two
directions are compatible, because they apply to disjoint sets

88

4.3 Difficulty of Restricted Classes

of vertices.
So player ◇ can pass over a single gadget, and thus over

any finite number of gadgets, in the x1 → x2 or in the y1 → y2
direction. Eventually, player ◇ has passed over all gadgets on
the arc v → w and arrives at (w,χ). From (w,χ), she moves
to (

w, (¬A ∧ ψ̃) ∨
(
A ∧◇◇◇(¬B ∧ Z)

))
,(

w, ¬A ∧ ψ̃
)
,

where we have M, w ⊭ A, so player □ will move to:(
w, ψ̃

)
,

which shows that player ◇ has the claimed strategy.
Is is easy to see that the above strategies are the only

strategies on these gadgets for player ◇ and for player □ where
they do not immediately lose. This implies the other direction:
Every ◇-strategy on P ′ can be translated to a ◇-strategy in
P , and the same for □-strategies.

Furthermore, our translation of strategies preserves dead
ends and priorities that are visited along strategy-conforming
paths because the priorities in the gadgets are irrelevant. Thus
the winning regions (restricted to the parts outside the gadgets)
are the same in P and in P ′. So we haveM, v |= φ if and only
if f(M), v |= φ̃. ■

Corollary 4.12 The Lµ model-checking problem is polyno-
mial-time and FPT-reducible to the Lµ model-checking problem
on planar graphs, with both problems parameterized by |φ|.

89

4 Computational Complexity

Replace by

y2x1

y1 x2

y2x1

y1 x2

planar
gadget

Figure 4.2: An arc crossing gadget in a parity game (impossi-
ble)

Proof. FPT-reducibility follows from the observation that φ̃
in the proof of the previous theorem does not depend on M,
and f(M) does not depend on φ. ■

Let us point out the difference between Corollary 4.12 and
Markey and Schnoebelen’s construction (Theorem 4.9). In
their reduction, the translated formula grows with M. In
contrast to this, in our reduction to planar graphs the formula
φ̃ does not depend on the structure. This is the reason our
reduction is FPT, and also why our reduction does not follow
from Theorem 4.9.

Let us conclude our remarks by showing that for parity
games, the situation is not this easy. An arc crossing gadget
as depicted in Figure 4.2 turns out to be impossible for parity
games.

Theorem 4.13 There exists in general no planar gadget to
replace an arc crossing in a parity game.

Proof. Suppose to the contrary that there exists such a gadget
as depicted in Figure 4.2. Fix positional strategies for players

90

4.3 Difficulty of Restricted Classes

◇ and □, winning on their winning regions, such that entering
the planar gadget at x1 leads to leaving the gadget at x2, and
entering at y1 leads to leaving it at y2.

Because we have fixed positional strategies for both players,
there exists exactly one strategy-conforming path from x1 to
x2 through the gadget and exactly one strategy-conforming
path from y1 to y2. Because the gadget is planar, these paths
intersect in at least one vertex v. But we have positional
strategies, so after v the path cannot go to both x2 and y2,
which contradicts our assumption. ■

4.3.3 Treewidth

Another way to restrict classes is to bound their treewidth. We
already mentioned in Section 4.1.2 the existence of polynomial-
time algorithms for classes of parity games with bounded tree-
width. However, for µ-calculus model checking, no such al-
gorithms are known. Here we will present a reason why the
polynomial time algorithms for solving parity games of bounded
treewidth cannot be applied to the model-checking problem of
the modal µ-calculus.

Let us first define treewidth as defined by Neil Robertson
and Paul D. Seymour, as well as the closely related concept of
a graph minor [RS86].

Definition 4.14 A tree decomposition tree decom-
position

of an undirected graph
G = (V,E) is a tree T with a map β : V (T)→ 2V such that

1.
⋃
t∈V (T) β(t) = V .

2. For all (v, w) ∈ E there exists a t ∈ V (T) with v, w ∈
β(t).

91

4 Computational Complexity

3. For all s, t, u ∈ V (T) such that t is on the unique path
from s to u, it holds that β(s) ∩ β(u) ⊆ β(t).

The width of (T , β) is maxt∈V (T)|β(t)|−1. The treewidthtreewidth tw(G)
of G is the minimal width of any of its tree decompositions.⊣

Definition 4.15 For an undirected graph G = (V,E), we call
H a minorminor of G if H can be constructed from G by deleting
edges or vertices and by contracting edges. ⊣

It is well-known and easy to check that treewidth is closed
under minors.

Lemma 4.16 ([RS86]) If H is a minor of G, then tw(H) ≤
tw(G).

Consider a σ-structure M of small treewidth and a formula
φ ∈ Lµ[σ]. It may be reasonable to expect that the treewidth
of the underlying undirected graph of the parity game M⋉ φ
could maybe be a little larger than the treewidth of M, but
not by much. Unfortunately, it turns out that the treewidth of
M⋉ φ has no relationship with the treewidth of M.

Theorem 4.17 Let σ be a signature. Then there exists a
sequence φ1, φ2, . . . of Lµ formulas with |φn| ∈ O(n2) such that
for every σ-structure M and n > 0 we have tw(M⋉ φn) ≥ n.

Proof. We define

φn := µX1.µX2. · · ·µXn.
n⋀
i=1

n⋁
i=1

Xi

Let v ∈ M and assume without loss of generality that
V (M) = {v}. The model-checking game M⋉ φi then looks

92

4.3 Difficulty of Restricted Classes

µX1. · · ·

µX2. · · ·

µX3. · · ·

...

µXn.
⋀
i

⋁
iXi

⋀
i

⋁
iXi

⋁
iXi

⋁
iXi

⋁
iXi

...

⋁
iXi

Figure 4.3: A model-checking game with unbounded treewidth

93

4 Computational Complexity

similar to the game shown in Figure 4.3. We simplified this
game a little by writing Xi when in reality Xi is replaced by its
binding formula. We also merged long chains of conjunctions
into one conjunction, and the same for chains of disjunctions.
It is easy to see that the graph in Figure 4.3 can be built from
M⋉ φi by arc contractions.

As the figure indicates, the underlying undirected graph con-
tains a complete bipartite graph Kn,n as a subgraph. Because
all we did in order to get to the graph in Figure 4.3 was to con-
tract edges, this means that the underlying undirected graph
of M⋉ φ has a complete bipartite graph Kn,n as a minor. It
is well-known that tw(Kn,n) = n [Klo94, Lemma 2.2.1]. So it
follows with Lemma 4.16 that tw(M⋉ φ) ≥ n. ■

We conclude that the reduction from structures to parity
games in Theorem 4.7 is not an FPT reduction if we include
treewidth in the parameter. This means that efficient algo-
rithms on classes of parity games of bounded treewidth cannot
be transferred to the model-checking problem of the modal
µ-calculus without adding φ to the parameter.

4.3.4 Locally Bounded Treewidth

We saw in Section 4.3.2 that solving the model-checking prob-
lem of the modal µ-calculus on planar structures is as hard as
solving it on general structures. We also saw that for parity
games it is unknown whether solving planar games is as hard
as general games. One approach to solving planar parity games
could be to work with their property of having locally bounded
treewidth.

Intuitively a class of graphs has locally bounded treewidth

94

4.3 Difficulty of Restricted Classes

if the treewidth of a neighborhood around a vertex depends
only on the size of the neighborhood and not on the graph. As
it turns out, locally bounded treewidth is not enough to make
parity games easier. In this section we will show that if we can
solve all classes of locally bounded treewidth in polynomial
time, then we can solve parity games in general in polynomial
time.

For an undirected graph G = (V,E) and v, w ∈ V , let d(v, w)
denote the distance distancebetween v, w. That is, d(v, w) = n if and
only if v = v0, v1, . . . , vn = w is a shortest path from v to w.
If v and w are in different components, we write d(v, w) =∞
with the property that n <∞ for all n ∈ N.

Definition 4.18 For an undirected graph G = (V,E) and
v ∈ V , r ∈ N, let

NG
r (v) := {w ∈ V | d(v, w) ≤ r}

be the r-neighborhood of v r-neighbor-
hood
of v

, the vertices of distance at most
r from v. For directed graphs, we consider the underlying
undirected graph. As usual, we omit the index G if it is clear
from the context. ⊣

Definition 4.19 A class C of graphs has locally bounded tree-
width locally

bounded
treewidth

if there exists a function f : N → N such that for all
r ∈ N, G ∈ C, v ∈ V (G), it holds that

tw(Nr(v)) < f(r). ⊣

Example 4.20 The class of planar graphs has locally bounded
treewidth with f(r) = 3r + 1 ([RS84, Section 2]). More gen-
erally, every class of graphs excluding a fixed apex graph as a

95

4 Computational Complexity

minor has treewidth locally bounded by f(r) = cr+ d for some
constants c, d ∈ N depending on the class, as Erik Demaine
and Mohammad Hajiaghayi show in [DH04]. A graph is an
apex graph if it has a vertex whose removal makes the graph
planar.

Theorem 4.21 If for all classes C of parity games of locally
bounded treewidth there exists a polynomial-time algorithm for
solving C, then there exists a polynomial-time algorithm for
solving parity games in general.

Proof. Let C be the class of all parity games. We transform
C into a class C′ of locally bounded treewidth as follows. For
every parity game P ∈ C, subdivide every arc of P into n
segments, where n is the number of vertices in P , and assign
the new vertices an irrelevant priority (that is, the maximum
priority). Call the subdivided game P ′ and add it to C′. Clearly,
V (P ′) ≤ n3 because E(P) ≤ n2. Furthermore, solving P ′ solves
P because subdividing arcs does not change the winner if we
use irrelevant priorities for the additional vertices.

It remains to show that C′ has locally bounded treewidth.
Let r ∈ N be arbitrary and let P ∈ C, n = |V (P)|, P ′ ∈ C′

be as above. Let v ∈ V (P ′). If r < n, then tw
(
NP ′
r (v)

)
= 1

because NP ′
r (v) is a tree. If r ≥ n, then

tw
(
NP ′
r (v)

)
≤ |V (P ′)| ≤ n3 ≤ r3.

Together we have tw
(
NP ′
r (v)

)
≤ r3 for all r ∈ N, which

proves that C′ has locally bounded treewidth. ■

This theorem shows that solving parity games of locally
bounded treewidth is just as hard as solving general parity

96

4.3 Difficulty of Restricted Classes

games. In particular, hopes for a polynomial time algorithm
for planar parity games cannot be based on exploiting only the
locally bounded treewidth of planar graphs, because this would
solve all parity games.

97

5 Lµ Types

We shall investigate the relation between the elementary
properties possessed by the product algebraic system and
those possessed by its factors.

(Solomon Feferman and Robert L. Vaught, [FV59])

5.1 A Feferman-Vaught Theorem
A famous result by Solomon Feferman and Robert L. Vaught
known as the Feferman-Vaught Theorem shows how to evaluate
a first-order formula on a generalized product of structures by
evaluating sets of formulas on the individual factors and then
combining the results [FV59]. This theorem is widely used in
model theory. For applications and more background on this
classical result, we refer the reader to the survey by Johann
A. Makowsky [Mak04]. Our goal in this chapter is to obtain a
similar result for the modal µ-calculus, where no such theorem
was known.

One issue preventing a theorem similar to the Feferman-
Vaught Theorem for the modal µ-calculus is that in Lµ we
cannot identify individual vertices due to invariance under
bisimilarity. So by evaluating formulas on a vertex in a small
part of a structure we cannot say much about how this vertex
behaves in a larger structure.

Our approach is to give every vertex, where necessary, a

99

5 Lµ Types

unique label. We can do this with only a small number of
labels, and thus get the following theorem. Here the type of a
vertex is a set of formulas true at that vertex.

Theorem 5.1 Let M = M1 ∪M2 be a structure such that
every vertex in M1 ∩M2 has a unique label and there are no
arcs from M2 to M1 except via the intersection (see Figure 5.1
on page 102).

Then the type of every vertex in M1 can be computed from
M1 and the types of the vertices in M2.

In this section we will make these notions precise, and in partic-
ular accurately define the type of a vertex. See Theorem 5.14
for the precise statement of this theorem.

Decomposition theorems such as the above are often used
with dynamic programming. In Section 5.4, these techniques
will allow us to construct FPT algorithms for the Lµ model-
checking problem on classes of structures of bounded DAG-
width or bounded Kelly-width. As discussed in Section 4.1.3,
there are very few FPT algorithms for parity games and for the
modal µ-calculus. Our result is significant because it provides
FPT algorithms for the modal µ-calculus on restricted classes
of structures and by Theorem 4.7 on page 81, these immediately
give FPT algorithms for parity games on these classes.

As discussed before in Section 4.3.1 on page 84, FPT is the
best we might hope for because Nicolas Markey and Philippe
Schnoebelen showed in [MS06] that the general model-checking
problem is reducible to model checking on cycles, where all the
width measures we consider are bounded by a small constant.

The results of this chapter have been published in [BDK14].

100

5.1 A Feferman-Vaught Theorem

5.1.1 Directed Separations
The desired decomposition theorem talks about the union of
two structures with a small intersection and some additional
arcs all going in the same direction. To formalize this, let us
introduce directed separations.

Definition 5.2 directed
separation

Let M be a σ-structure. A pair (M1,M2)
of induced substructures is a directed σ-separation of M with
interface X = (x1, . . . , xk) interface

• V (M) = V (M1) ∪ V (M2),

• X = {x1, . . . , xk} = V (M1) ∩ V (M2),

• and there are no arcs from M2 \X to M1 \X. ⊣

Abusing notation, we write M = (M1,M2) to denote that
(M1,M2) is a directed separation of M, and notationally we
consider (M1,M2) to be interchangeable with M. We call
M1 the left side and M2 the right side of the separation.

See Figure 5.1 for an example of a directed separations with
an interface of size 3. Note that there are no arcs going from
M2 \X to M1 \X, but all other arcs are possible.

The idea here is that a directed separation is pointing to-
wards its right side, and that it is difficult to go from the right
side to the left side. Difficult here means that in order to go
from the right side to the left side, one has to pass through the
interface. On the other hand, going from the left side to the
right side is always possible without restrictions.

So a path in a directed separation has only very few ways
of coming back to the left side if it ever happens to visit the
right side. In fact, we do not care about how exactly a path

101

5 Lµ Types

x1

x2

x3

M1 M2

Figure 5.1: A directed separation with interface X =
(x1, x2, x3)

manages to come back to the left side, we only care about
two things: Which interface vertex does it use and what was
the worst priority visited in M2 ⋉ φ? Clearly, this amount of
information is independent of the size ofM2 and only depends
on the size of the interface and on the number of distinct
priorities, which only depends on φ.

We want to be able to specify all this in Lµ, so we need
some way to identify the interface vertices. This motivates the
following definition.

Definition 5.3 For some k, let P = (P1, . . . , Pk)P be a sequence
of fresh proposition symbols. For a σ-structure M and a k-
tuple X = (x1, . . . , xk) ∈ V (M)k, we define ∂P (M, X)∂P (M, X) to be
the σ ∪ P -structure based on M such that Pi is true only at
the vertex xi. If the sequence P = (P1, . . . , Pk) is longer than
X = (x1, . . . , xl), then ∂P (M, X) is defined the same except
that Pi is always false for i > l. ⊣

102

5.1 A Feferman-Vaught Theorem

So ∂P (M, X) differs from M only in that each interface
vertex receives a unique color, in order to be able to be identified
by Lµ-formulas. Now let us define what it formally means that
the µ-calculus is unable to distinguish the right sides of two
separations.

Recall that for a set L ⊆ Lµ, the L-type of a vertex v in a
structure M is the set {φ ∈ L | M, v |= φ} (Definition 3.40 on
page 44).

Definition 5.4 Let (M1,M2), (M1,M′
2) be two directed sep-

arations with the same interface X and the same left side M1.
Let P be a set of |X| many fresh proposition symbols and let
L ⊆ Lµ[σ ∪ P].

We call (M1,M2), (M1,M′
2) L-equivalent L-equivalentif

• for every vertex in X, its L-type is the same in ∂P (M2, X)
and in ∂P (M′

2, X), and

• for every arc (v, w) in (M1,M2) with v ∈M1, w ∈M2
there is an arc (v, w′) in (M1,M′

2) with w′ ∈ M′
2 such

that w and w′ have the same L-types in ∂P (M2, X) and
in ∂P (M′

2, X), and

• for every arc (v, w′) in (M1,M′
2) with v ∈M1, w ∈M′

2
there is an arc (v, w) in (M1,M2) with w ∈ M2 such
that w′ and w have the same L-types in ∂P (M′

2, X) and
in ∂P (M2, X). ⊣

If δ is a µ-depth (Definition 3.40), we say that two directed
separations are δ-equivalent δ-equivalentif they are L-equivalent with L
being all formulas consistent with δ. Let us state our main
theorem.

103

5 Lµ Types

M1 M2

Figure 5.2: A disjoint separation

Theorem 5.5 Let δ be a µ-depth and let M = (M1,M2),
M′ = (M1,M′

2) be δ-equivalent directed separations. Then for
every vertex in M1, its δ-type is the same in M and M′.

In fact, we will prove a more general version of Theorem 5.5,
without limiting us to µ-depth. It turns out that there exists
a suitable closure operator CLP : 2Lµ → 2Lµ that maps finite
sets to finite sets such that the main theorem holds for CLP (L)-
equivalent directed separations. In particular, we can choose
L = {φ} if we are only interested in the model-checking problem
for a fixed formula φ consistent with δ. Then CLP ({φ}) will
consist of δ-consistent formulas, but will also be significantly
smaller than the set of all δ-consistent formulas.

5.2 Proof of the Main Theorem
5.2.1 An Easy Case
Let us first consider a much easier case, the case of a directed
separationM = (M1,M2) withM1∩M2 = ∅ (see Figure 5.2).

104

5.2 Proof of the Main Theorem

We call such separations disjoint disjoint
separation

.
Because the interface of disjoint separations is empty, there

are no arcs fromM2 toM1. Note that there are no restrictions
on the arcs that are fully inside one of the substructures.

With a formula φ we can construct the model-checking game
M⋉ φ and observe that its set of vertices is the disjoint union
of M1 ⋉ φ and M2 ⋉ φ, with no arcs from the latter to the
former. So this parity game has at least two strongly connected
components.

How to solve parity games comprising multiple strongly
connected components is well-known in the literature (see e.g.,
[FL09]); the solution is to solve the leaves first and then work
backward along the topologically sorted components.

In the case of only two components A,B with arcs going
from A to B, this means we solve B first and annotate every
vertex in B with its winning player. Then all of B can be
replaced by just two representative vertices, one winning vertex
per player. All arcs pointing from A to B are redirected to
the appropriate vertex. Finally we can solve A together with
these two vertices, thus saving a considerate amount of work
compared to solving A ∪B directly.

The same argument applies to the model-checking game
M⋉ φ, because, as we saw, it too consists of multiple com-
ponents. In particular, the player winning from a vertex in
M1 ⋉ φ does not actually depend on the whole structure of
M2. The only information we need to compute the winner is
the winning player for each vertex (v, ψ) ∈M2 ⋉ φ.

However, the winning player of this vertex is already de-
termined by the truth value of a single formula on v in M2.
The correctness of the model-checking game (Theorem 3.72
on page 68) says exactly what we need here; it gives us that

105

5 Lµ Types

x1

M1 \ {x1} M2 \ {x1}

Figure 5.3: A separation with one vertex in the interface

M2, v |= ψ if and only if player ◇ wins from (v, ψ).
So if we know for each vertex v ∈ M2 the truth value of

every formula in CL(φ), then we already know the winning
player of every vertex in M2 ⋉ φ in the model-checking game.

So it seems that {ψ ∈ CL(φ) | M, v |= ψ} could be a suitable
definition for the type of a vertex. For disjoint separations, this
is true. For general directed separations, however, we are going
to need something more sophisticated.

5.2.2 A Slightly More General Case

Let us consider a slightly more general case. Fix an arbitrary
formula φ and letM = (M1,M2) be a directed separation such
thatM1∩M2 = {x1} (see Figure 5.3). Now the model-checking
game M⋉ φ cannot be as neatly divided into components as
we did when we had a disjoint separation. However, not all is
lost. Every arc from M2 ⋉ φ to M1 \ {x1}⋉ φ has its tail in
{x1}⋉ φ (see Figure 5.4).

Again, we would like to solve M2 ⋉ φ separately from the

106

5.2 Proof of the Main Theorem

{x1}⋉ φM1 \ {x1}⋉ φ M2 \ {x1}⋉ φ

Figure 5.4: The model-checking game of Figure 5.3

rest and replace it by something simpler. In the case of disjoint
separations, we were able to simplify this subgame down to two
vertices, because who is winning is the only relevant information
if we can never leave the subgame. Now we can leave the
subgame, but only by going through {x1}⋉ φ. The idea is
to mark x1 with a fresh predicate so that we have a way of
identifying x1 in formula, hopefully becoming able to solve
M2 ⋉ φ separately from the rest.

Let P be a fresh predicate and assume that P in M is
true only at x1; note the we are slowly moving towards the
definition of ∂(P)(M2, (x1)) we presented on page 102 (where
(P) and (x1) are 1-element tuples). We now want to find the
minimum information that we need from each vertex ofM2 ⋉ φ
to determine the winning regions of M1 ⋉ φ in M⋉ φ. In the
case of disjoint separations, this was simply the winning player.

Let us fix a vertex (v, ψ) ∈M2 ⋉ φ. Suppose that this vertex
is losing for player ◇ in the subgame restricted to M2 ⋉ φ.
This certainly looks like useful information. However, it could

107

5 Lµ Types

be that (v, ψ) is winning in the full game M⋉ φ. Fortunately,
this is possible only if player ◇ can force his way from (v, ψ)
back to M1 \ {x1}⋉ φ, because otherwise the play would stay
in M2 ⋉ φ where we assumed player ◇ is losing. This can
happen only through {x1}⋉ φ because (M1,M2) is a directed
separation with interface {x1}.

In fact, we can be even more precise: By the construction
of the model-checking game, the only vertices in {x1}⋉ φ that
could possibly allow player ◇ to move back to

M1 \ {x1}⋉ φ

are (x1, χ) for some χ ∈ CL(φ) where χ starts with a □ or ◇.
All vertices (x1, χ) where χ does not start with □ or ◇ have
outgoing arcs only to vertices of the form (x1, χ

′) for some χ′;
the first component of the vertices in the model-checking game
only changes when going through a □ or ◇-formula.

On further observation we notice that also □-vertices cannot
be responsible for allowing player ◇ to leave the subgame
because we assumed that (v, ψ) was losing for player ◇ in
M2 ⋉ φ. So every □-vertex must offer a choice for player □ to
stay in M2 ⋉ φ.

We conclude that

X1 := {x1} ×Ψ

with
Ψ := {ψ ∈ CL(φ) | ψ starts with a ◇}

is the set of interest. Note that the size of this set is independent
of M1 and M2.

So it seems that we need to know which of the vertices in X1

108

5.2 Proof of the Main Theorem

are reachable from (v, ψ). Moreover, after having left M2 ⋉ φ,
the game is far from over. The players might end up going back
to M2 ⋉ φ. So we need to collect the reachability information
not only for (v, ψ) but for all vertices in M2 ⋉ φ.

On top of this, we have a parity game, so reachability is a
little more involved than just graph reachability. We also need
to keep track of the worst priority that we visited on the way.
Here we use an idea similar to the idea of a “border” from Jan
Obdržálek [Obd03].

What we do is that for each subset Ψ′ ⊆ Ψ, we assume
that all vertices in {x1} × Ψ′ are immediately winning for
player ◇. Under this assumption, we check if (v, ψ) is winning
for player ◇ in M2 ⋉ φ. We get a function mapping subsets
Ψ′ ⊆ Ψ to players {◇,□}.

Let us compare this one more time with the easy case of
disjoint separations. There the information that we collected
for each (v, ψ) ∈M2 ⋉ φ was simply the winning player. This
time, we collect a function mapping subsets Ψ′ ⊆ Ψ to the
winning player.

We claim two things.

1. We can define this information by evaluating a set of
formulas on M2, v.

2. Collecting this information for all (v, ψ) ∈ M2 ⋉ φ is
enough to solve the remainder of the game.

Let us look at the first claim. We immediately see that
CL(φ) will not be sufficient to define this information, except
if Ψ′ = ∅. We need to take the subset Ψ′ ⊆ Ψ into account.

First, let us assume for simplicity that Ψ′ = Ψ. This means
that we now work under the assumption that all vertices in

109

5 Lµ Types

X1 are immediately winning for player ◇. This is the point
where the proposition P comes into play. The proposition P
is true only at x1, so it provides a way to say in a formula
“we are currently at x1”. So we can easily express “a vertex
(x1, χ) ∈ X1 is winning for player ◇” by replacing χ with P ∨χ
everywhere.

We do this for every ψ ∈ CL(φ). More precisely, we con-
struct a formula ψ′ by replacing in ψ every subformula of the
form ◇χ with P ∨◇χ. Then M2, v |= ψ′ iff (v, ψ) is winning
for player ◇.

The idea is to generalize this to arbitrary subsets Ψ′. But
this is easy: We simply replace only the subformulas ◇χ ∈ Ψ′

with P ∨ ◇χ. We conclude that there is a way of defining
this information with formulas, although we still need to make
everything precise.

The other claim is that this information suffices to solve
M1 ⋉ φ. Here the idea is that we replaceM2 ⋉ φ by a simpler
parity game, similar to replacing it with two vertices like we
did when we had a disjoint separation.

Now, the replacement game will be a lot more involved and
will not be a dead-end but instead have arcs pointing back to
M1 ⋉ φ. We need to represent all the ways how subsets of X1
are reachable. We also need to care about the priorities with
which each reachable vertex in X1 is reachable.

The crucial observation here is that we can fix the priority
of every µ/ν-subformula in φ once and then use the same
priorities for every ψ ∈ CL(φ)1. From this it follows that
although there may be more than one path reaching a vertex

1This is expressed formally by Theorem 3.72 on page 68, in contrast to
the weaker Theorem 3.70.

110

5.2 Proof of the Main Theorem

(x1, ψ) inM2 ⋉ φ, they will all visit the same minimum priority.
So it is indeed enough to consider subsets Ψ′ ⊆ Ψ and ignore
the priorities, because they are determined.

This means that we can replace M2 ⋉ φ by a parity game
whose size only depends on φ and whose structure is completely
determined by the types of the vertices in M2 ⋉ φ, because
the types describe exactly how the players can win, lose, or
leave this subgame.

Unfortunately, making all these notions precise is a fair bit
of work. We devote the remainder of Section 5.2 to this.

5.2.3 Priority Tracking

As a motivating example, consider the formula φ := ◇ψ ∧
µX.◇X ∨ ◇ψ for some ψ ∈ Lµ. Recalling the definition of
CL(φ) from Section 3.1.7 on page 34, we observe that the
subformula ◇ψ occurs twice in φ, so CL(φ) contains the two
elements (◇ψ, 2) and (◇ψ, i) for some i > 2 in order to distin-
guish both occurrences.

As described above, we would like to replace ◇ψ by P1∨◇ψ,
where P1 is a proposition that is true at only one vertex. In
order to handle more than one vertex in the interface of a
directed separation, we also need to be able to replace ◇ψ with
P2 ∨◇ψ, or with P1 ∨ P2 ∨◇ψ, or any other combination of
proposition symbols that identify the vertices in the interface.
We also want to be able to replace the two occurrences of ◇ψ
with different combinations of disjunctions. This motivates the
following definition.

Let P = {P1, . . . , Pk} be a set of proposition symbols disjoint
from σ.

111

5 Lµ Types

Definition 5.6 For a formula φ ∈ Lµ[σ ∪ P] we define the
set of priority tracking variants of φ, denoted as PTP (φ)PTP (φ) ,
inductively as follows.

PTP (φ) = {φ} for atomic φ
PTP (¬φ) = {¬φ′ | φ′ ∈ PTP (φ)}

PTP (φ ∨ ψ) =
{φ′ ∨ ψ′ | φ′ ∈ PTP (φ), ψ′ ∈ PTP (ψ)}

PTP (φ ∧ ψ) =
{φ′ ∧ ψ′ | φ′ ∈ PTP (φ), ψ′ ∈ PTP (ψ)}

PTP (µX.φ) = {µX.φ′ | φ′ ∈ PTP (φ)}
PTP (νX.φ) = {νX.φ′ | φ′ ∈ PTP (φ)}

PTP

((⋁
R∈S

R
)
∨◇φ

)
=

{(⋁
R∈Q∪S

R
)
∨◇φ′

⏐⏐⏐⏐Q ⊆ P,φ′ ∈ PTP (φ)
}

PTP

((⋀
R∈S

R
)
∨□φ

)
=

{(⋀
R∈Q∪S

¬R
)
∨□φ′

⏐⏐⏐⏐Q ⊆ P,φ′ ∈ PTP (φ)
}
. ⊣

Note that PTP (φ) is finite because P is finite. The complicated
way of writing the last two lines is necessary in order to get
idempotency. Note that the set S in the last two lines of the
definition may be empty.

Observation 5.7 PTP (PTP (φ)) = PTP (φ) for all φ ∈ Lµ[σ∪
P].

112

5.2 Proof of the Main Theorem

Observation 5.8 If φ ∈ Lµ[σ ∪ P] has X-depth at most d,
then PTP (φ) has X-depth at most d.

Definition 5.9 Similar to the closure operator CL, we define
PTP (L) for sets of formulas L ⊆ Lµ[σ ∪ P] as

PTP (L) PTP (L):=
⋃
φ∈L

PTP (φ).

We introduce the abbreviation CLP (L) := PTP (CL(L)). CLP (L)⊣

With Corollary 3.39 on page 44 and Observation 5.8, we imme-
diately get that X-depth is preserved under CLP .

Lemma 5.10 If φ ∈ Lµ[σ ∪ P] has X-depth at most d, then
every ψ ∈ CLP ({φ}) has X-depth at most d.

We also find that CLP is idempotent.

Lemma 5.11 CLP (CLP (L)) = CLP (L) for all L ⊆ Lµ[σ∪P].

Proof. By definition, CLP (L) is closed under PTP . Hence,
it is enough to show CL(CLP (L)) = CLP (L). Let µX.φ ∈
CLP (L). We want to show that φ[X/µX.φ] ∈ CLP (L), where
φ[X/µX.φ] is φ with all free occurrences of X replaced by
µX.φ. By definition of PTP (CL(L)), there is a µX.φ′ ∈ CL(L)
with φ ∈ PTP (φ′). Because CL(L) is essentially equal to the
Fischer-Ladner closure of L, we have φ′[X/µX.φ′] ∈ CL(L).
Since φ ∈ PTP (φ′), we have φ[X/µX.φ] ∈ PTP (φ′[X/µX.φ′]),
hence φ[X/µX.φ] ∈ PTP (CL(L)).

The other cases are similar. ■

113

5 Lµ Types

Definition 5.12 For a structureM, v, a k-tuple X ∈ V (M)k
and a set L ⊆ Lµ[σ ∪ P] where P is a sequence of at least
k many proposition symbols, we define the (L,P)-type of v in
M, X

(L,P)-type
of v in M, X as

tpL,P (M, v,X)tpL,P := {φ ∈ CLP (L) | ∂P (M, X), v |= φ}.

We also define the set of (L,P)-types realized in a structure,

TL,P (M, X)TL,P (M, X) := {tpL,P (M, v,X) | v ∈ V (M)}.

Finally, let
TL(P)TL(P) := 2CLP (L)

be the set of all candidates for (L,P)-types. ⊣

5.2.4 The General Case

First, let us restate Theorem 5.5 in a more general form.

Theorem 5.13 Let P be a sequence of proposition symbols
disjoint from σ, L ⊆ Lµ[σ ∪ P] and let (M1,M2), (M1,M′

2)
be CLP (L)-equivalent directed σ-separations with interface X.

Then for all v ∈M1, we have

tpL,P ((M1,M2), v,X) = tpL,P ((M1,M′
2), v,X).

We have already seen that if all formulas in L ⊆ Lµ are
consistent with a µ-depth δ, then the same is true for CLP (L);
this is Lemma 5.10. Therefore, δ-equivalence implies CLP (L)-
equivalence, and thus Theorem 5.5 follows from Theorem 5.13.
We will also use a different and slightly stronger way of stating
Theorem 5.13, stated below.

114

5.2 Proof of the Main Theorem

Theorem 5.14 Let P , Q be sequences of proposition symbols
such that σ ∩ P = σ ∩Q = P ∩Q = ∅.

Let L ⊆ Lµ[σ ∪ P] and M be a structure with a directed
σ-separation (M1,M2) with interface X. Let Y ∈ V (M1)|Q|

be a tuple.
For all v ∈M1, the set tpL,Q(M, v, Y) depends only on

• M1 and Q and

•
{

(xi, tpL,P (M2, xi, X))
⏐⏐⏐ xi ∈ X}

and

•
{

(v, tpL,P (M2, w,X)) | (v, w) ∈ E(M) ∩ (M1 ×M2)
}

.

Provided L is finite, tpL,Q(M, v, Y) can be computed from these
sets.

Furthermore, for every w ∈ M2, the set tpL,Q(M, w, Y)
depends only on the above sets and on tpL,P (M2, w,X) and
can be computed from these sets if L is finite.

5.2.5 Parity Games

To prove the decomposition theorems, we want to use the model-
checking game of the modal µ-calculus. Instead of replacing a
substructure by a different substructure preserving the types
in the whole structure, we replace a subgame by a different
subgame preserving the winner in the whole game.

The winner of a parity game from a given vertex is always
determined (see Chapter 7). However, in order to replace
subgames by different subgames preserving the winner in the
whole game, we need a more subtle analysis of the subgame
than just its winner.

115

5 Lµ Types

We call the intersection between a subgame and the rest of
the game its interface. For the more subtle analysis, we look at
partial strategies, which may be undefined on some vertices of
the interface. If a partial strategy is undefined on some vertex,
the player indicates that she would like to leave the subgame.
We then partially order these strategies by their profiles, that
is, the set of interface vertices that are possibly reachable by
player □, together with the worst priority that player □ can
enforce.

All this culminates in a proof that the feasibility of profiles
of strategies is in fact definable in Lµ. The formulas that define
profiles in a partial model-checking game of φ will all be in
CLP ({φ}), so this proves that tp{φ},P (M, v,X) determines the
set of possible profiles, which we will use to define a specific
parity game.

From now on, let us fix a sequence Z of fixpoint variables
and a priority sequence (p1, . . . , pn) ∈ Nn (see Definition 3.67).
All formulas in the rest of Section 5.2 should be consistent with
Z and annotated with the pi, even if we do not mention this
explicitly.

5.2.6 Profiles and Types

We already know parity games, (positional) strategies and the
model-checking game from page 47ff. We now generalize these
definitions to partial games and partial strategies. This is
necessary so we can analyze the effect of replacing a subgame
by a different, but in some sense, similar subgame.

Definition 5.15 A partial parity gamepartial game is a parity game P
with a subset U ⊆ V (P) called the interfaceinterface of a

partial game
. ⊣

116

5.2 Proof of the Main Theorem

The game is played the same way as a parity game, except
that upon reaching an interface ◇-vertex, player ◇ may choose
to end the play and win immediately. Therefore, a partial
strategy for player ◇ is defined the same way as in a non-partial
parity game, except that the partial strategy may be undefined
on plays that end in an interface ◇-vertex.

Definition 5.16 Let P be a partial parity game. A partial
strategy partial

strategy
for player ◇ for a game (P, v1) is a partial function

π : V (P)+ → V (P) with the following conditions.

1. For every (v1, . . . , vn) ∈ dom(π), the sequence (v1, . . . ,
vn, π(v1, . . . , vn)) is a π-conforming path in P with vn ∈
V◇(P).

2. For every π-conforming path (v1, . . . , vn), if vn ∈ V◇(P)
and vn /∈ U , then (v1, . . . , vn) ∈ dom(π). ⊣

A partial strategy π is called winning if for every strategy
of the opponent, the resulting play either visits an interface
vertex where π is undefined or satisfies the parity condition.
Formally, we define this as follows.

Definition 5.17 Let (P, v1) be a partial parity game with
interface U and π be a partial strategy. Let P ′ be the game
constructed from P by adding a □-vertex called ⊤ and an arc
from every vertex in V◇∩U to ⊤. Then define π′ as an extension
of π such that on all π-conforming paths (v1, . . . , vn) with vn ∈
V◇ ∩ U , if (v1, . . . , vn) /∈ dom(π), then π′((v1, . . . , vn)) = ⊤.
Then π′ is a strategy on (P ′, v1).

We say that π is a partial winning strategy partial
winning
strategy

from vertex v1
iff π′ wins from vertex v1 in the game P ′. ⊣

117

5 Lµ Types

If we have a structure together with some subset of its
vertices, we consider the corresponding model-checking games
to be partial with respect to these vertices.

Definition 5.18 Let φ ∈ Lµ[σ], M be a σ-structure and
X ⊆ V (M). The game M ⋉X φM ⋉X φ is the partial parity game
defined as M⋉ φ with interface

{(v, ψ) ∈ X × CL(φ) | ψ starts with ◇ or □}.

We will usually write M⋉ φ for this game if X is clear from
the context. ⊣

Definition 5.19 Let P be a partial parity game with interface
U . We define

strategy-
targets(P)

strategy-targets(P) :=
{(u, p) | u ∈ U , p a priority of P}

profiles(P) profiles(P) :=
{y ⊆ strategy-targets(P) | for all u
there is at most one p with (u, p) ∈ y}. ⊣

Definition 5.20 Let ⊑p ⊑ p′ be the reward ordering on priorities.
That is, p ⊑ p′ if p is better for player ◇ than p′. Formally,
p ⊑ p′ is true if and only if

• p is even and p′ is odd or

• both p and p′ are even and p ≤ p′ or

• both p and p′ are odd and p ≥ p′. ⊣

118

5.2 Proof of the Main Theorem

Definition 5.21 Let P be a partial parity game with interface
U , v1 ∈ V (P) and let π be a partial winning strategy for (P, v1).
We define

preprofile(
π, v1)

preprofile(π, v1) :=
{(vn, min

1≤i≤n
ω(vi)) |

n > 1, (v1, . . . , vn) is a π-conforming path with
vn ∈ U and (v1, . . . , vn) /∈ dom(π)}

profile(π, v1) profile(π, v1):=
{(u, p) | p is ⊑-maximal such that
(u, p) ∈ preprofile(π, v1)}.

The min is taken with respect to the usual ordering ≤.
We say that a profile y ∈ profiles(P) is possible possible

profile
on (P, v1) if

there exists a π such that y = profile(π, v1). ⊣

Definition 5.22 Let y, y′ ∈ profiles(P). We say that y is at
least as good as y′ iff for every (u, p) ∈ y, there is a (u, p′) ∈ y′

with p ⊑ p′. We denote this as y ⊑ y′ y ⊑ y′. ⊣

As an example, consider the two parity games given in
Figure 5.5 with interface vertices , . For simplicity, we
assume that all vertices in these parity games have priority 0.
Then the profile {(, 0)} is possible on (P1, v) but not on (P2, v).
On the other hand, the profile {(, 0), (, 0)} is possible on
both (P1, v) and (P2, v). Note that on (P1, v), the last profile
is only possible with a non-positional strategy. However, the
need for a non-positional strategy here is of course somewhat
artificial because player ◇ must deliberately avoid a decision
where she could simply make one.

119

5 Lµ Types

v

P1

v

P2

Figure 5.5: Two parity games with similar possible profiles

As one might expect, every partial strategy can be converted
into a positional partial strategy at least as good as the original
strategy.

Lemma 5.23 Let P = (V, V◇, E, ω) be a partial parity game
with interface U , v ∈ V and π be a partial strategy for (P, v).
Then there exists a positional partial strategy ρ such that

profile(ρ, v) ⊑ profile(π, v).

Proof. The proof is a reduction to the positional determinacy
of (non-partial) parity games.

We define a game P ′ = (V ′, V ′
◇, E

′, ω′) based on P and use
Theorem 3.54. Let

V ′ := V ∪ {vp | p is a priority of P} ∪ {v⊥}
V ′
◇ := V◇ ∪ {v⊥}
E′ := E ∪ {(vp, v) | p is a priority of P}

120

5.2 Proof of the Main Theorem

∪ {(u, vp) | p is odd
and (u, p− 1) ∈ profile(π, v)}

∪ {(u, vp) | p is even
and (u, p+ 1) ∈ profile(π, v)}

∪ {(u, v⊥) | (u, p) /∈ profile(π, v) for all p}

ω′(w) :=

⎧⎪⎪⎨⎪⎪⎩
ω(w) if w ∈ V (P)
0 if w = v⊥

p if w = vp.

Note that for each u ∈ U , there is exactly one vp such that
(u, vp) ∈ E′. So we can extend π to a strategy π′ on P ′ by
defining π′(v1, . . . , u) = vp if π(v1, . . . , u) is undefined.

We claim that π′ is a winning strategy. Let v = v1, v2, . . .
be an infinite π′-conforming path. Clearly the path is winning
if it has a π-conforming suffix.

So assume that it visits some u ∈ U an infinite number of
times followed by vp. If p is odd, then (u, p− 1) ∈ profile(π, v)
guarantees that the worst priority on all path segments that
go from v to u is p − 1. By the pigeon principle there is at
least one priority p′ ⊑ p − 1 that we visit infinitely often on
the path. Furthermore, p′ ≤ p− 1 because p− 1 is even. This
means the priority p of vp is irrelevant because p′ < p.

If p is even, then (u, p + 1) ∈ profile(π, v) guarantees that
the worst priority on all path segments that go from v to u is
p + 1. So there must be a minimum priority p′ ⊑ p + 1 that
occurs infinitely often on these path segments. If p′ ≥ p, then
p′ becomes irrelevant because we visit vp an infinite number of
times. If p′ < p, then p becomes irrelevant. However, p′ ⊑ p+ 1
then implies that p′ is even.

121

5 Lµ Types

We repeat this argument for all pairs (u, vp) that occur in-
finitely often in the path. We see that in all cases the minimum
priority that occurs infinitely often is even, so π′ is a winning
strategy.

By Theorem 3.54 on page 52, there exists a positional win-
ning strategy ρ′ on (P ′, v). Let ρ be the restriction of ρ′ to P .
We claim that profile(ρ, v) ⊑ profile(π, v).

Clearly (u, p) /∈ profile(π, v) implies (u, p) /∈ profile(ρ, v)
because otherwise we would visit the vertex v⊥ and immediately
lose. Let (u, p) ∈ profile(ρ, v) and (u, p′) ∈ profile(π, v). We
have to show p ⊑ p′. If p ⊐ p′, then there is a ρ-conforming
path from v to u with a priority no better than p. In P ′

this gives us a ρ′-conforming path by going back from u to
v. However, the only new vertex we visit is vp′′ and p′′ is not
enough to offset p, so this path loses, contradicting the fact
that ρ′ was a winning strategy. ■

Definition 5.24 The type of a vertex v ∈ V (P) is the set of
optimal profiles.

ptypeP (v)ptypeP (v) := {profile(π, v) |
π is a partial winning strategy for (P, v) and
there is no partial winning strategy π′ such that

profile(π′, v) ⊏ profile(π, v)}. ⊣

By Lemma 5.23, the strategies occurring in the above definition
can be chosen to be positional.

Next, we define the notion of a parity game simulating
another parity game. A game simulates another game if it
behaves in the same way when viewed from the outside. For
every vertex in the old game there must be a vertex in the new

122

5.2 Proof of the Main Theorem

game that has the same type. Internally the games could be
quite different, and in fact the new game could have a very
different number of vertices than the old game.

Our goal is to find small games that simulate large games.

Definition 5.25 Let P, P ′ be partial parity games with the
same interface U .

The game P ′ simulates simulationP if there is a map f : V (P)→ V (P ′)
such that f(u) = u for all u ∈ U and for every vertex v ∈ V (P),
ptypeP (v) = ptypeP ′(f(v)). ⊣

Whenever we have a game P with an induced subgame
Q with no arcs going from Q to the rest of P except via
the interface of Q, then we can replace Q in P by one of its
simulations without the rest of P noticing.

Lemma 5.26 (Simulation Lemma) Let P,Q be parity games
such that Q is an induced subgame of P with interface U and
with no arcs from Q \ U to P \ Q. Let Q′ be a partial par-
ity game with interface U which simulates Q via the function
f : V (Q)→ V (Q′). Extend f to V (P) by letting f(v) = v for
all v ∈ V (P) \ V (Q).

Define P ′ as the parity game where the induced subgame Q
has been replaced by Q′ and arcs from P \Q pointing to vertices
v ∈ V (Q) now point to f(v) ∈ V (Q′).

Then for all v ∈ V (P), player ◇ wins (P, v) iff player ◇

wins (P ′, f(v)).

Proof. Let P,Q, f be as described. Let π be a positional
winning strategy for player ◇ on W◇(P).

Let v ∈ V (P) and w = f(v). We claim that player ◇ has
a winning strategy from (P ′, w). We will define this strategy

123

5 Lµ Types

as we go. While defining it, we will at nearly all times keep
track of a partial winning strategy ϱ on Q′ and overwrite ϱ
throughout the play at specific points. Let us postpone the
choice of ϱ for now.

Whenever it is player ◇’s turn, we play according to π or
according to ϱ, depending on whether we are in P ′ \Q′ or in
Q′. Formally, if we are on w ∈ P ′ \Q′, then player ◇ chooses
f(π(w)). Note that in this case we also have w ∈ P \Q by the
definition of P ′. If the play is on w ∈ Q′ and if ϱ(w) is defined,
then player ◇ chooses ϱ(w) ∈ Q′. If the play is on w ∈ U and
ϱ(w) is undefined, then player ◇ chooses f(π(w)).

We claim that a play following the above strategy is winning
for player ◇. We uphold the invariant that if the play visits a
vertex w ∈ P ′ such that there exists a v ∈ P with f(v) = w,
then v ∈W◇(P). For the first vertex, this is true.

But first, let us define the updates of ϱ. Initially, ϱ is
undefined. Let (w1, . . . , wn) be the play so far. We update ϱ
whenever both of the following two conditions are true.

1. wn ∈ Q′.

2. n = 1 or wn−1 /∈ Q′.

By the definition of P ′ and the choice of the initial vertex, if
both these conditions are true, then there exists v such that
f(v) = wn. We then update ϱ by choosing a partial winning
strategy such that

profile(ϱ, wn) ⊑ profile(π↾Q, v)

and

profile(ϱ, wn) ∈ ptypeP ′(wn).

124

5.2 Proof of the Main Theorem

Such a strategy exists because π↾Q is a partial winning
strategy for (Q, v), which implies that there exists some ϱ′ with

profile(ϱ′, v) ⊑ profile(π↾Q, v)

such that
profile(ϱ′, v) ∈ ptypeP (v).

Because we have

ptypeP (v) = ptypeP ′(wn),

there exists a partial winning strategy ϱ for (Q′, wn) with

profile(ϱ, wn) ∈ ptypeP ′(wn)

such that
profile(ϱ, wn) = profile(ϱ′, v).

Because we always update ϱ when possible, this makes our
strategy well-defined, that is, we never use ϱ before defining it.

Let us prove that the play is winning for player ◇. If the
play stays in P ′ \ Q′, then clearly it is winning for player ◇

because we follow the winning strategy π. So if it is losing, then
at some point the play must go to Q′. We can only enter Q′ via
a vertex f(v) ∈ Q′. When this happens, we choose a partial
winning strategy ϱ on (Q′, f(v)) with an optimal profile that
agrees with the profile that π gives us on (Q, v). Furthermore,
we follow this ϱ until we leave Q′.

If the play stays in Q′, then it is winning for player ◇ because
π was winning from (Q, v). If the play leaves Q′, then it can
only do so via a vertex in U . When leaving Q′ via U , the worst
priority visited in Q′ cannot be worse than the worst priority

125

5 Lµ Types

that we would have visited in Q following π. Furthermore, we
can only leave Q′ via a vertex w that we could also use to leave
Q in P , so we have that w ∈W◇(P).

In all cases, player □ cannot force an immediate win but he
also cannot force a win by going over bad priorities. In total
this means that player ◇ wins the play.

The other direction follows analogously. ■

5.2.7 Definable Profiles

In the next step, we would like to encode a profile in a formula.
Given a profile y in a model-checking game and a starting
point x = (x′, ψ), we would like to define a formula ψy with
the property that ψy is true on the vertex x′ in the structure
if and only if the profile y is possible on (P, x). However, we
do not know how to do this.

Hence we weaken the restriction and want ψy to be true iff
a profile y′ ⊑ y is possible. This is enough for our purposes
because the type of x cares only about ⊑-minimal profiles. This
formula turns out to be definable. Using a suitable definition
of ψy, we get the following theorem.

Theorem 5.27 Let P be a sequence of proposition symbols
disjoint from σ. Let φ ∈ Lµ[σ ∪ P], M, v be a σ-structure
and X be a sequence of vertices of M. For ψ ∈ CL(φ),
y ∈ profiles(M⋉ φ), it holds that M, v |= ψy iff there is a
positional partial winning strategy π for (M⋉ φ, (v, ψ)) such
that profile(π, (v, ψ)) ⊑ y.

Corollary 5.28 Let P be a sequence of proposition symbols
disjoint from σ. Let φ ∈ Lµ[σ ∪ P], M, v be a σ-structure,

126

5.2 Proof of the Main Theorem

X ∈ V (M)|P | and ψ ∈ CL(φ). Then

ptypeM⋉φ((v, ψ)) =
{
y ∈ profiles(M⋉ φ)

⏐⏐⏐
M, v |= ψy and there is no y′ ⊏ y with M, v |= ψy

′}
.

That is, tp{φ},P (M, v,X) determines ptypeM⋉φ((v, ψ)).

Before we can explain ψy, we need one more definition.

Definition 5.29 For an annotated φ ∈ Lµ[σ], ψ ∈ CL(φ) and
χ ∈ sub(ψ), let

prioφ(
ψ ↝ χ)

prioφ(ψ ↝ χ)

be the minimum priority of all fixpoint operators that enclose
χ in ψ. ⊣

Definition 5.30 Let P = (P1, . . . , Pk) be a sequence of propo-
sition symbols disjoint from σ. Let φ ∈ Lµ[σ∪P] be a formula,
M be a σ-structure and X = (x1, . . . , xk) ∈ V (M)k. Let
ψ ∈ CL(φ) and y ∈ profiles(M⋉ φ). For every ψ′ ∈ sub+(ψ),
there is a formula φ′ ∈ CL(φ) corresponding to ψ′. We induc-
tively define an operation ·y ψ′yover the structure of ψ′.

V y := V, (¬V)y := ¬V for prop. or var. V
(χ ∗ χ′)y := (χy) ∗ (χ′y) for ∗ ∈ {∨,∧}
(αX.χ)y := αX.(χy) for α ∈ {µ, ν}

(◇χ)y :=
((⋁

i∈N
Pi

)
∨◇(χy)

)

(□χ)y :=
((⋀

i∈N
¬Pi

)
∧□(χy)

)

127

5 Lµ Types

In the case ◇χ, we use

N := {1 ≤ i ≤ k |
((xi, φ′), p′) ∈ y for some p′ ⊒ prioφ(ψ ↝ ◇χ)}.

In the case □χ, we use

N := {1 ≤ i ≤ k |
((xi, φ′), p′) /∈ y for all p′ ⊏ prioφ(ψ ↝ □χ)}.

In both cases, φ′ ∈ CL(φ) is the formula corresponding to ◇χ
or □χ, respectively. ⊣

The motivation behind this seemingly quite arbitrary defi-
nition is that if a profile says we can reach (xi,◇χ) with the
worst priority p′, and the actual priority we have is at least as
good as p′, then we are allowed to take the shortcut and leave
the game. That is why we add Pi to the disjunction in this case.
Of course, we need to pay close attention to the games that are
involved, because (xi,◇χ) is not a vertex in M⋉ φ and y is
not a profile ofM⋉ ψ. However, this is not a problem because
every ◇χ corresponds to a unique φ′ ∈ CL(φ), and the game
M⋉ ψ is a partial unfolding of the game M⋉ φ. This means
that every strategy on one of these games is also a strategy on
the other game, although not necessarily positional.

Dually, in the case □χ, if the actual priority is worse than
what the profile wants, then we must make sure that (xi,□χ)
is not reached, so we add ¬Pi to the conjunction.

A formal statement of this explanation is Theorem 5.27.
Before we can prove this, however, we need a technical lemma
about prioφ(ψ ↝ χ).

128

5.2 Proof of the Main Theorem

Lemma 5.31 LetM be a structure, v, x ∈ V (M) and φ ∈ Lµ,
ψ ∈ CL(φ) and χ ∈ sub(ψ). Then every path from (v, ψ) to
(x, χ) inM⋉ ψ (with priorities according to φ) has prioφ(ψ ↝

χ) as its minimum priority.

Proof. Let p be the minimum priority of a path from (v, ψ) to
(x, χ). Clearly p ≤ prioφ(ψ ↝ χ) because χ is a subformula
of ψ, so every fixpoint operator enclosing χ must have been
visited at some point on the path.

Assume to the contrary that p < prioφ(ψ ↝ χ). This means
that there is a vertex (v′,

p
αX.ψ′) with α ∈ {µ, ν} on the path.

Assume this is the first vertex of priority p on the path. The
priorities increase with respect to a fixed sequence of variables
Z, so ψ′ cannot contain a free variable Y for any Y that is
quantified earlier, or p would have to be larger. But this means
that p

αX.ψ′ is a closed formula. So in order to reach (x, χ), the
formula χ must be a subformula of p

αX.ψ′, and we have that
p
αX encloses χ, a contradiction to p < prioφ(ψ ↝ χ). ■

We split the proof of Theorem 5.27 into two directions.
Lemma 5.32 shows the first direction and Lemma 5.33 the
other.

Lemma 5.32 Let P be a sequence of k proposition symbols
disjoint from σ. Let φ ∈ Lµ[σ ∪ P], M, v be a σ-structure,
X ∈ V (M)k, ψ ∈ CL(φ), y ∈ profiles(M⋉ φ). Let π be
a partial winning strategy for (M⋉ ψ, (v, ψ)) and πφ be the
corresponding strategy on M⋉ φ. If profile(πφ, (v, ψ)) ⊑ y,
then there exists a winning strategy π′ for (M⋉ ψy, (v, ψy)).

Proof. Let π be as required. Without loss of generality we are
going to assume that πφ is a positional strategy. According to

129

5 Lµ Types

Lemma 5.23, this is always possible. Then π can be chosen to
be positional, too.

There is an obvious mapping from sub(ψ) to sub(ψy) because
ψy is only a slightly modified version of ψ.

Define π′ positionally on M⋉ ψy so that it follows π wher-
ever possible using the mapping we just described. The only
points where π′ is undefined are the vertices of the form
w := (w,

⋁
i∈N Pi ∨ ◇χ). On these vertices, if w = xi ∈ X

for some i ∈ N , define π′(w) = (w,Pi). Otherwise, de-
fine π′(w) = (w,◇χ). We claim that π′ is a strategy on
(M⋉ ψy, (v, ψy)).

Let (xi,◇χ) ∈ M⋉ ψy be such that (xi,◇χ) is reach-
able in M⋉ ψyπ

′ from (v, ψy) but (xi,◇χ) /∈ dom(π′). Let
(v1, . . . , vn) be a π′-conforming path with v1 = (v, ψy) and
vn = (xi,◇χ) with minimum priority p. This path corresponds
to a π-conforming path inM⋉ ψ starting from (v, ψ) with the
same minimum priority, and hence a πφ-conforming path in
M⋉ φ with the same minimum priority. By Lemma 5.31, we
have p = prioφ(ψ ↝ ◇χ).

Let ◇χ′ ∈ CL(φ) be the unique subformula of φ correspond-
ing to ◇χ. Then we have

((xi,◇χ′), p′) ∈ profile(πφ, (v, ψ))

for some p′ ⊒ p and hence ((xi,◇χ′), p′′) ∈ y for some p′′ ⊒ p′.
By the construction of ψy, the vertex (xi,◇χ) inM⋉ ψy must
have a unique predecessor (xi,

⋁
i∈N Pi ∨◇χ) for some set N .

Recall the definition of N ,

N := {1 ≤ i ≤ k |
(xi,◇χ′, q) ∈ y for some q ⊒ prioφ(ψ ↝ ◇χ)}.

130

5.2 Proof of the Main Theorem

We find that i ∈ N , so the path was not π′-conforming.
We need to show that π′ is winning. Let (v1, . . . , vn) be a

maximal π′-conforming path in M⋉ ψy with v1 = (v, ψy). By
definition of π′, the last vertex cannot be (w,Pi) for w ̸= xi.

Assume vn ∈ V◇, that is, the path is losing. The same
path can be viewed as a maximal π-conforming path inM⋉ ψ.
In M⋉ ψ, the last vertex is also in V◇ and has no succes-
sors, so we would have a π-conforming losing path in M⋉ ψ,
which contradicts the assumption that π was a partial winning
strategy.

Clearly all infinite paths starting from (M⋉ ψy, (v, ψy)) can
never visit a vertex of the form (w,Pi), so they can be viewed
as paths on M⋉ ψ. They visit exactly the same priorities.
This implies that π′ is a winning strategy. ■

Lemma 5.33 Let P be a sequence of k proposition symbols
disjoint from σ. Let φ ∈ Lµ[σ ∪ P], M, v be a σ-structure,
X ∈ V (M)k, ψ ∈ CL(φ), y ∈ profiles(M⋉ φ). Let π′ be a
winning strategy for (M⋉ ψy, (v, ψy)).

Then there exists a partial winning strategy π for (M⋉ ψ,
(v, ψ)) such that for the corresponding partial strategy πφ on
M⋉ φ it holds that profile(πφ, (v, ψ)) ⊑ y.

Proof. Let π′ be as required. Assume π′ is a positional winning
strategy. Define π (positionally) like π′ where possible. If
π′((w,

⋁
i∈N Pi ∨◇χ)) = (xi, Pi) for some w ∈ V (M⋉ ψy), N

and i, then leave π′((xi,◇χ)) undefined.
Similar to the proof of the previous lemma one shows that

π′ is a partial winning strategy and profile(πφ, (v, ψ)) ⊑ y. ■

131

5 Lµ Types

5.2.8 A Small Parity Game

With Theorem 5.27 at our hands, we can now define a partial
parity game simulating the model-checking game that depends
only on the types of some vertices in the original structure.
The parity game consists of four layers of vertices.

1. One layer of ◇-vertices, one for each type, where player ◇
can choose a profile.

2. Then one layer of □-vertices, one for each profile, where
player □ can choose one of the allowed paths.

3. Then a layer of vertices with out-degree 1 to ensure the
priorities match the chosen path.

4. Finally a layer representing the interface.

The arcs point only from one layer to the next or from the
last layer back to the first layer. Formally, letM be a structure
and X = {x1, . . . , xk} ⊆ V (M). Let φ ∈ Lµ. First, we define
the layers described above.

V1 := 2profiles(M⋉Xφ) V3 := strategy-targets(M⋉X φ)
V2 := profiles(M⋉X φ) V4 := X × CL(φ).

Next, we define the game Pφ = (V, V◇, E, ω)Pφ with interface
V4 depending only on φ and the sets tp{φ},P (M, xi, X), but
not on M.

V := V1 ∪ V2 ∪ V3 ∪ V4 E := E1 ∪ E2 ∪ E3 ∪ E4

V◇ := V1 ∪ {(xi, ψ) ∈ V4 | ψ starts with a ◇}

132

5.2 Proof of the Main Theorem

ptypeM⋉φ(v)

{(v1, 1)}
{(v1, 0),
(v2, 2),
(v4, 0)}

{(v2, 3)}

z1, 1 z1, 0 z2, 2 z4, 0z2, 3

z1 z2 z3 z4

}
V1

}
V2

}
V3}
V4

Figure 5.6: A part of Pφ

ω(v) :=
{
p for v = (xi, ψ, p) ∈ V3

p′ otherwise,

where p′ is the maximum priority of φ.
For the set of arcs, we connect the vertices according to the

subset relation and the vertices from V4 back to their types.

E1 := {(x, y) ∈ V1 × V2 | y ∈ x}
E2 := {(x, y) ∈ V2 × V3 | y ∈ x}
E3 :=

{(
(xi, ψ, p), (x′

i, ψ
′)

)
∈ V3 × V4

⏐⏐ (xi, ψ) = (x′
i, ψ

′)
}

E4 :=
{

(x, t) ∈ V4 × V1
⏐⏐⏐ t = ptypeM⋉φ(x)

}
.

Note that E4 is determined by the sets tp{φ},P (M, x,X) by
Corollary 5.28.

To illustrate this construction, assume that M⋉ φ has the

133

5 Lµ Types

interface {z1, . . . , z4} ⊆ X × CL(φ) and a vertex v ∈ M⋉ φ
with

ptypeM⋉φ(v) ={
{(z1, 1)} , {(z1, 0), (z2, 2), (z4, 0)}, {(z2, 3)}

}
.

Figure 5.6 illustrates a part that could occur in the game Pφ.
In the full game Pφ, we would also add the arcs(

zi, ptypeM⋉φ(zi)
)
∈ V4 × V1.

In the vertex ptypeM⋉φ(v), player ◇ can choose one of the
possible profiles. This corresponds to player ◇ fixing a strategy
π. After fixing her strategy, player □ can choose a path through
the game conforming to this strategy. The profile tells us
exactly what the worst possible paths are, and the layer V3
makes sure that the correct priority is visited.

The goal of this construction is to get a game such that the
type of a vertex labeled ptypeM⋉φ(v) is exactly ptypeM⋉φ(v).
This leads to the main theorem of this subsection.

Theorem 5.34 For a formula φ ∈ Lµ, a structure M and
X ⊆ V (M), the game Pφ simulates M⋉X φ.

Proof. For every vertex u ∈ X × CL(φ), define f(u) = u. For
the remaining vertices v ∈ V (M⋉ φ) \ (X × CL(φ)), define
f(v) = ptypeM⋉φ(v) ∈ V◇(Pφ).

All we have to do now is to show that ptypeM⋉φ(v) =
ptypePφ(f(v)) for all v ∈ V (M⋉ φ). First we show ⊆.

Let π be a positional partial winning strategy for (M⋉ φ,
(v, ψ)). We want to construct a positional partial winning
strategy π′ for (Pφ, f((v, ψ))) such that profile(π, (v, ψ)) =

134

5.2 Proof of the Main Theorem

profile(π′, f((v, ψ))).
For every vertex (v, ψ) ∈M⋉ φ, define

π′(ptypeM⋉φ((v, ψ))) := profile(π, (v, ψ)).

For (xi, ψ) ∈ V◇(Pφ), if (xi, ψ) ∈ dom(π), then we define

π′((xi, ψ)) := ptypeM⋉φ(xi).

Otherwise, leave π′((xi, ψ)) undefined.
We claim that π′ is a partial winning strategy on (Pφ, (v,

ψ)). By Theorem 5.27, for all (xi, χ) ∈ X × CL(φ) it holds
that M, xi |= χprofile(π,(xi,χ)). So the unique arc leaving from
(xi, ψ) in Pφ goes to some vertex y with profile(π, (xi, ψ)) ∈ y.

Inductively it follows that every π′-conforming path in Pφ

corresponds to a π-conforming path in M⋉ φ and vice versa.
So π′ is a partial winning strategy with profile(π, (v, ψ)) =
profile(π′, f((v, ψ))).

It remains to show the other direction ptypeM⋉φ(v) ⊇
ptypePφ(f(v)).

Let π′ be a ⊑-minimal positional partial winning strategy for
(Pφ, f((v, ψ))), that is, an element of ptypePφ(f(v)). We want
to construct a partial winning strategy π for (M⋉ φ, (v, ψ))
such that

profile(π, (v, ψ)) = profile(π′, f((v, ψ))).

We define a non-positional partial winning strategy π with
this property as we go, starting from (v, ψ). In addition to the
token on M⋉ φ that we use to play the game in the normal
way, player ◇ places and moves a token on Pφ in order to
keep track of her choices. Initially she places the token on

135

5 Lµ Types

π′(f(v, ψ)). We uphold the invariant that the token on Pφ

is always in V2(Pφ). Because V2 contains only profiles, let us
introduce the abbreviation

g(w) := π,

where π is some strategy such that w = profile(π, x) for some
x ∈ X × CL(φ).

Suppose that the current position is some (v, ψ) ∈ M⋉ φ
and the token on Pφ is on some vertex w ∈ V2(Pφ).

If (v, ψ, p) ∈ w for some p, then player ◇ moves the token
on Pφ as follows.

w → (v, ψ, p)
→ (v, ψ)
→ ptypeM⋉φ((v, ψ))
→ π′(ptypeM⋉φ((v, ψ))) ∈ V2(Pφ).

If (v, ψ, p) /∈ w for all p, then player ◇ does not touch the token
on Pφ. If she moved the token, then the vertex

π′(ptypeM⋉φ((v, ψ))) ∈ V2(Pφ)

is the new w.
Then, if (v, ψ) ∈ V◇(M⋉ φ), player ◇ moves in M⋉ φ to

the vertex g(w)(v, ψ) (or stops moving if g(w)(v, ψ) is unde-
fined), and the process starts from the beginning.

We see that this defines a non-positional partial strategy π
for player ◇ on M⋉ φ starting from (v, ψ). We also see that
player ◇ consistently follows one strategy until she moves the
token in Pφ. She moves the token in Pφ only if she hits a vertex

136

5.2 Proof of the Main Theorem

(v, ψ) with (v, ψ, p) ∈ w for some p. By the definition of profile,
this means that the worst priority q that she encountered in
M⋉ φ since she started following g(w), satisfies q ⊑ p.

Player ◇ then moves the token in Pφ according to her
partial winning strategy π′ and according to a specific move
by player □ that she chooses. In particular, she moves the
token in Pφ through a vertex of priority p. This means that
every priority q visited in M⋉ φ is trumped by a priority
p ⊒ q in Pφ. Note also that the path the token takes in Pφ is
π′-conforming. Because π′ is a partial winning strategy in Pφ,
it follows that π is a partial winning strategy in M⋉ φ.

The argument also implies

profile(π, (v, ψ)) ⊑ profile(π′, f((v, ψ))).

Furthermore, by Lemma 5.23, we can assume that π is a
positional partial winning strategy with this property.

As we saw when proving the other direction, we can construct
from π a partial winning strategy π′′ for (Pφ, f((v, ψ))) such
that

profile(π, (v, ψ)) = profile(π′′, f((v, ψ))).

From the definition of ptype() it follows that

profile(π, (v, ψ)) = profile(π′, (v, ψ)). ■

5.2.9 Finishing the Proof

With Theorem 5.34, we finally have the necessary tool to con-
clude the proof of the decomposition theorems from pages 114
and 115.

137

5 Lµ Types

Proof of Theorem 5.13. Fix some φ ∈ CLP (L). Consider the
model-checking gameM⋉ φ and the induced subgameM2 ⋉ φ
with interface U . We can assume that

V (M2 ⋉ φ) ∩ V (M⋉ φ) = U

by duplicating some vertices as necessary.
The game M2 ⋉ φ is simulated by Pφ, constructed as de-

scribed in Theorem 5.34. By Lemma 5.26, we can replace
M2 ⋉ φ by Pφ (by properly adapting the arcs) without chang-
ing the winner on (v, φ). Since the construction of Pφ depends
only on the types of the vertices in X, we will get the same
game Pφ if we start the construction with M′

2.
Let (v, w) be an arc from M1 \ X to M2 \ X and let

w′ ∈ M′
2 be the vertex chosen as the replacement for w.

Because tp{φ},P (M2, w,X) determines ptypeM2⋉φ((w,φ)) by
Corollary 5.28 and we have

tp{φ},P (M2, w,X) ⊆ tpL,P (M2, w,X),

it follows that

ptypeM2⋉φ((w,φ)) = ptypeM′
2⋉φ((w′, φ)).

So in the simulation, the arc will point to the same vertex no
matter if we started with M2 or M′

2. ■

Proof of Theorem 5.14. The first part is essentially a different
way of stating Theorem 5.13 which follows immediately with
the same argument as in the previous proof.

Note that we may assume without loss of generality that
X ∩ Y = ∅. If this is not the case, then we have xi = yj for

138

5.2 Proof of the Main Theorem

some xi ∈ X, yj ∈ Y and the propositional variables Xi ∈ P
and Yj ∈ Q will be interchangeable.

Set L′ := CLQ(L). Theorem 5.13 states that tpL′,∅(M, v, ∅)
is invariant under CL∅(L′)-equivalent directed separations for
all v ∈M1. All we need to show is that the requirements listed
in Theorem 5.14 specify the directed separation (M1,M2) up
to CL∅(L′)-equivalence.

For all vertices w ∈ M2, the set tpL′,P (M2, w,X) can be
computed from tpL,P (M2, w,X); a propositional variable Yi ∈
Q corresponding to a vertex yi ∈ Y is always false in M2.
From this we can easily compute tpL′,∅(M2, w, ∅) by forgetting
about P .

The computability in the above argument follows from the
observation that all sets involved are finite in size and the
model checking for Lµ is decidable.

For the second part, let φ ∈ CLQ(L). We want to decide
whetherM, w |= φ. By the first part, we already know the sets
tpL,Q(M, xi, Y) for all xi ∈ X. Consider the model-checking
gameM⋉ φ. In this game, the vertices of the form (v, Yi) with
v ∈M1 are always losing because Yi ∈ Q is never true in M2.
It follows that the subgameM2 ⋉ φ is isomorphic toM2 ⋉ φ′,
where φ′ is constructed from φ by replacing all Yi ∈ Q by ⊥.
Note that φ′ ∈ CLP (L), so we know all optimal partial strate-
gies for (M2 ⋉ φ′, (w,φ′)) because we know tpL,P (M2, w,X).
It follows that the winner is determined by the remaining sets
given in the theorem. ■

139

5 Lµ Types

5.3 Running Time

5.3.1 Upper Bound

Theorem 5.14 claims that tpL,Q(M, v, Y) can be computed
from

• M1 and Q and

•
{

(xi, tpL,P (M2, xi, X))
⏐⏐⏐ xi ∈ X}

and

•
{

(v, tpL,P (M2, w,X))
⏐⏐⏐

(v, w) ∈ E(M) ∩ (M1 ×M2)
}

.

Let us analyze the previous proof to find the running time for
this computation.

First, let us prove an upper bound on the number of formulas
in PTP (φ) and on the length of formulas in the closure CL(φ).

Lemma 5.35 |PTP (φ)| ∈ O(2|P ||φ|).

Proof. The inductive definition of PTP (φ) has depth at most
|φ| and at each step we collect at most 2P many formulas, so
the bound follows. ■

Lemma 5.36 For all φ ∈ Lµ, |φ| = n and ψ ∈ CL(φ) it holds
that |ψ| ≤ nn−1.

Proof. Fix a φ ∈ Lµ and let |φ| = n. We proceed via induction
over the recursive definition of the Fischer-Ladner closure. This
gives us a finite tree of unique formulas, every formula labeled
by their depth in this tree. The root φ has depth 0, and the

140

5.3 Running Time

formulas directly below φ have depth 1, etc., until the tree is
complete.

Let X be fixpoint variable. We say that a specific occurrence
of X in a formula ψ ∈ CL(φ) is relevant if the depth of the
enclosing µX or νX formula is not smaller than the depth of ψ.
In particular we need that if ψ = µX.χ has at most k relevant
occurrences of X, then χ has at most k free occurrences of X.

The induction hypothesis has two parts. If ψ occurs at
depth i− 1 in the tree, then

1. |ψ| ≤ ni−1 and

2. for every variable X, the formula ψ contains at most
n− 1 relevant occurrences of X.

For i = 1 this is obviously true because φ itself has no free
variables.

The only place where the length of a formula or the number
of occurrences of variables could increase is the case µX.φ (or
νX.φ, which is identical). Let µX.φ be at depth i− 1 in the
tree. By the induction hypothesis we have |µX.φ| ≤ ni−1 and
φ contains at most n− 1 free occurrences of X. It follows that⏐⏐φ[X/µX.φ]

⏐⏐ ≤ ni−1 + (n− 1) · ni−1 = ni.

We also see that φ[X/µX.φ] contains no relevant occurrences
of X. Additionally, for every variable Z different from X, all
new occurrences of Z introduced by the substitution are not
relevant, so the second part of the induction hypothesis also
holds.

The depth of ψ ∈ CL(φ) can never be larger than n − 1
because the number of subformulas of φ is bounded by n. It
follows that every formula in CL(φ) has length at most nn−1.■

141

5 Lµ Types

Corollary 5.37 Let φ ∈ Lµ with |φ| = n. Then the following
are true.

1. For all ψ ∈ CLP (φ), it holds that |ψ| ∈ O
(
|P |nn−1)

.

2. |CLP (φ)| ∈ O
(
2|P |nn

)
.

3. |V (Pφ)| ∈ O
(
22|P |n

)
.

Proof.
1. Let ψ′ ∈ CL(φ) be such that ψ ∈ PTP (ψ′). By the

previous lemma we have |ψ′| ≤ nn−1. In the definition
of PTP , we blow up every box and every diamond by a
factor of at most |P |, so the bound follows.

2. We have |CL(φ)| ∈ O(n) and |PTP (ψ)| ∈ O
(
2|P ||ψ|

)
.

The bound then follows with the previous lemma.

3. We have profiles(M⋉ φ) ∈ O
(
2|P |n)

. In the construction
of Pφ, the powerset of this set dominates the size of the
game. ■

Let us combine these results to get the time needed to
compute tpL,Q(M, v, Y) from M1 and the types of M2 in
Theorem 5.14, where (M1,M2) is a directed separation with
interface X and L = {φ}. First let us observe the cost to
compute the type from scratch.
Lemma 5.38 Given a σ-structure M with |V (M)| = n, a
vertex v ∈ M, a sequence of proposition symbols P , a set of
vertices X and a formula φ ∈ Lµ[σ], the type tp{φ},P (M, v,X)
can be computed in time

O

(
2|P |

(
n|P ||φ||φ|

)3+|φ|
)
.

142

5.3 Running Time

Proof. We recall the definition

tp{φ},P (M, v,X) =
{
ψ ∈ CLP (φ)

⏐⏐⏐ ∂P (M, X), v |= ψ
}

and fix some ψ ∈ CLP (φ).
The parity game ∂P (M, X) ⋉ ψ has size n · |ψ|. There are

many algorithms for solving parity games, but so far they are all
super-polynomial in the number of priorities, so for simplicity
we use one of the earliest and easiest algorithms, the algorithm
by McNaughton [McN93]. This algorithm has a running time
of O

(
n2+l) where n is the number of vertices in the game and

l the number of different priorities.
Note that ψ has exactly the same priorities as φ because

going through PTP does not affect the fixpoint operators,
leaving the priorities unaffected. So computing the winning
regions of the parity game ∂P (M, X) ⋉ ψ can be done in time
O((n|ψ|)2+|φ|). Together with the upper bounds

|ψ| ∈ O
(
|P ||φ||φ|−1)

and

|CLP (φ)| ∈ O
(
2|P ||φ||φ|),

from Corollary 5.37, we get a total running time of

O

(
2|P ||φ||φ|

(
n|P ||φ||φ|−1

)2+|φ|
)

⊆ O
(

2|P |
(
n|P ||φ||φ|

)3+|φ|
)
. ■

In the proof of Theorem 5.14, we solve a parity game consist-

143

5 Lµ Types

ing of Pψ and M1 ⋉ ψ for ψ ∈ CLQ(φ). By the construction,
this parity game has |φ| many priorities because even though
ψ is longer than φ, we use the same priorities to label the
fixpoints.

In total we need to solve O(2|Q||φ||φ|) many parity games,
one for each formula in CLQ(φ). Furthermore, each parity
game has O

(
22|Q||ψ|

)
vertices.

With this algorithm we can solve one of the parity games in
time

O

(
2(2+|φ|)2|Q||ψ|

)
⊆ O

(
2(2+|φ|)2|Q||φ||φ|

)
.

We need to solve O(2|Q||φ||φ|) many parity games, so in total
we need time

O

(
|φ||φ|2|Q|+(2+|φ|)2|Q||φ||φ|

)
. (*)

Because
O

(
|φ||φ|2|Q|

)
⊆ O

(
2|Q||φ||φ|

)
and

O

(
|φ|2|Q||φ||φ|

)
⊆ 2O

(
|Q||φ||φ|

)
,

we have that (*) is bounded by

O

(
2(3+|φ|)2|Q||φ||φ|

)
⊆ 22O

(
|Q||φ||φ|

)
,

and this is an upper bound on the time needed to compute

144

5.3 Running Time

tpL,Q(M, v, Y). So we have the following theorem.

Theorem 5.39 There is an algorithm that computes the type
tpL,Q(M, v, Y) as in Theorem 5.14 in time

22O
(

|Q||φ||φ|
)
.

5.3.2 Lower Bound
Let us now show a lower bound. We will show that formulas in
CL(φ) can have exponentially more diamonds than φ, which
implies that the types have an exponential number of elements.
It follows that every algorithm working on the types will have
a running time of at least exponential in |φ|.

Theorem 5.40 For every c ∈ N with c > 1 there exists a
sequence φ1, φ2, . . . ∈ Lµ such that

1. |φn| ∈ O(c · n) and

2. max {|ψ|◇ | ψ ∈ CL(φn)} ∈ Ω(cn).

where |ψ|◇ is the number of ◇ modalities in ψ.

Proof. We define

φn := µX1.µX2. · · ·µXn.
n⋁
i=1

c⋁
j=1

◇Xi.

Clearly we have |φn| ∈ O(c · n). It remains to show that the
length of the longest formula in CL(φn) grows exponentially.

For i ∈ {1, . . . , n− 1} we define inductively

ψ1 := φn

145

5 Lµ Types

ψi+1 := χ[Xi/µXi.χ] where ψi = µXi.χ.

We have ψi ∈ CL(φ) because the definition above follows the
definition of the Fischer-Ladner closure, and we already saw
with Lemma 3.29 that this is essentially equivalent to CL.

We also observe that the formula with the most ◇ modalities
in CL(φn) is among the ψi: All subformulas of ψn starting
with a µ have already been considered, so we never go the
µ rule of the Fischer-Ladner closure again and we never add
new diamonds.

Let i ∈ {1, . . . , n− 1}. Then ψi is of the form ψi = µXi.χi.
By induction it follows that χi has exactly c free occurrences of
Xi. So the step from ψi to ψi+1 replaces c occurrences of Xi by
ψi. Every ψi contains at least c occurrences of Xn. Together
this implies that ψn contains cn occurrences of Xn.

By construction every occurrence of Xn is preceded by a
diamond. This shows that |ψn|◇ ∈ Ω(cn), which concludes the
proof. ■

The formula used in the above proof is inspired by the
construction in [BFL15, Theorem 3.1]. The theorem implies in
particular that

|CLP (φ)| = |PTP (CL(φ))|

can be exponential in |P | because PTP has 2|P | different choices
at each diamond.

Because we will use CLP (φ) a lot when we construct algo-
rithms in Section 5.4, this already shows that all types that
we consider might have exponentially many formulas and all
algorithms have at least an exponential worst case running
time.

146

5.4 FPT Algorithms for Lµ Model Checking

5.4 FPT Algorithms for Lµ Model Checking
In this section we derive two algorithmic applications of Theo-
rem 5.14. More precisely, we show that Lµ-model-checking is
fixed-parameter tractable on any class of structures of bounded
Kelly-width or bounded DAG-width, provided a decomposition
is given as part of the input.

Before proving our results, we develop some algorithmic
concepts common to both proofs. We first need an algorithmic
version of L-equivalence.

In the following, let σ be a signature, P be a sequence of
propositional symbols of the appropriate length disjoint from
σ and let L ⊆ Lµ[σ ∪ P].

5.4.1 Weak Separations
Definition 5.41 Let M be a σ-structure. A pair (M1,M2)
of induced substructures is a weak directed σ-separation weak

directed sep.
of M

with interface X = (x1, . . . , xk) if

• V (M) = V (M1) ∪ V (M2),

• X = {x1, . . . , xk} ⊆ V (M1) ∩ V (M2),

• there are no arcs from M2 \X to M1 \M2. ⊣

Recalling Definition 5.2 on page 101, we see that every directed
separation is a weak directed separation because the only dif-
ference is that in directed separations the interface X is exactly
the intersection V (M1)∩V (M2), whereas in weak separations
the intersection may be larger. However, vertices in the inter-
section but not in X cannot have outgoing arcs pointing to
M1 \M2. Figure 5.7 on the following page shows the possible

147

5 Lµ Types

x1

x2

x3

M1 M2

Figure 5.7: A weak directed separation with interface X =
(x1, x2, x3)

148

5.4 FPT Algorithms for Lµ Model Checking

arcs in a weak directed separation with an interface of size 3.
As with directed separations, loops are always possible.

Weak separations can be transformed into proper separations
by duplicating the vertices outside of the interface X. This is
made precise by the following theorem.

Theorem 5.42 Let (M1,M2) be a weak directed separation
of M with interface X. Then there exists a structure M′ and
a directed separation (M′

1,M′
2) of M′ with the same interface

X and isomorphisms π1 :M1 →M′
1, π2 :M2 →M′

2 which
are the identity on X such that

tpL,P (M, v,X) = tpL,P (M′, πi(v), X)

for all i ∈ {1, 2} and v ∈ V (Mi).

Proof. For i ∈ {1, 2}, define πi and M′ as

πi(v) :=
{
v if v ∈ X
(i, v) if v /∈ X

V (M′) := π1(V (M1)) ∪ π2(V (M2))
E(M′) := E1 ∪ E2 ∪ E3,

where, for i ∈ {1, 2},

Ei := {(πi(v), πi(w)) | (v, w) ∈ E(Mi)},
E3 := {(π1(v), π2(w)) |

(v, w) ∈ E(M) ∩ (V (M1)× V (M2))}.

The substructures M′
1, M′

2 of M′ are induced by the sets

V (M′
i) := πi(V (Mi)).

149

5 Lµ Types

x1

x2

x3

M′
1 M′

2

Figure 5.8: M′ from the proof of Theorem 5.42, based on Fig-
ure 5.7

150

5.4 FPT Algorithms for Lµ Model Checking

For example, applying this construction to the weak directed
separation described in Figure 5.7, we get Figure 5.8 on the
preceding page. We duplicate all vertices in the intersection of
M1 and M2 that are not also in X, and introduce additional
arcs.

Clearly, πi is an isomorphism between Mi and M′
i and

the identity on X. We also have that (M′
1,M′

2) is a directed
separation of M′.

It is easy to verify that the colored structures ∂P (M, X)
and ∂P (M′, X) are bisimilar. With Theorem 3.22 on page 33,
bisimilarity of these structures implies

tpL,P (M, v,X) = tpL,P (M′, πi(v), X)

for all i ∈ {1, 2} and v ∈ V (Mi). ■

Having isomorphisms means that

tpL,P (Mi, v,X) = tpL,P (M′
i, πi(v), X)

for all v ∈ V (Mi).
This and the previous theorem imply that Theorem 5.13

on page 114 and with appropriate wording also Theorem 5.14
hold for weak directed separations as well. Let us restate the
last theorem in its more general form.

Theorem 5.43 (Corollary of theorems 5.14 and 5.42)
Let P , Q be sequences of proposition symbols such that σ∩P =
σ ∩Q = P ∩Q = ∅.

Let L ⊆ Lµ[σ∪P] andM be a structure with a weak directed
σ-separation (M1,M2) with interface X. Let Y ∈ ((V (M1) \
V (M2)) ∪X)|Q| be a tuple.

151

5 Lµ Types

For all v ∈M1, the set tpL,Q(M, v, Y) depends only on

• M1 and Q and

•
{

(xi, tpL,P (M2, xi, X))
⏐⏐⏐ xi ∈ X}

and

•
{

(v, tpL,P (M2, w,X)) | (v, w) ∈ E(M) ∩ (M1 ×M2)
}

.

Provided L is finite, tpL,Q(M, v, Y) can be computed from these
sets.

Furthermore, for every w ∈ M2, the set tpL,Q(M, w, Y)
depends only on the above sets and on tpL,P (M2, w,X) and
can be computed from these sets if L is finite.

The only difference of this statement to Theorem 5.14 is
that we only require a weak separation and that the tuple Y
should not contain a vertex v ∈ V (M1) ∩ V (M2) which is
not part of the interface. This last requirement is necessary
because otherwise we would have a color in M2 where there
was none before, and the types of M2 with respect to X do
not carry this information.

We observe that Theorem 5.39 also applies to Theorem 5.43.

5.4.2 Kelly-Width
First we consider Kelly-width. We follow the notation and
definitions by Paul Hunter and Stephan Kreutzer [HK08]. For
a directed acyclic graph (DAG), we write ⪯⪯ for the reflexive
and transitive closure of the arc relation.

Let G be a digraph. A set W ⊆ V (G) guardsguard X ⊆ V (G)
if W ∩X = ∅ and for all (u, v) ∈ E(G) with u ∈ X, we have
v ∈ X ∪W .

152

5.4 FPT Algorithms for Lµ Model Checking

Definition 5.44 A Kelly decomposition Kelly decom-
position

of a digraph G is a
triple D := (D,β, γ), where β, γ : V (D)→ 2V (G) such that
• D is a DAG and (β(t))t∈V (D) partitions V (G),

• for all t ∈ V (D), γ(t) guards B↓
t :=

⋃
t′⪰t β(t′) B↓

tand

• for all s ∈ V (D) there is a linear order ≤t on its children
so that the children can be ordered as t1, . . . , tp such that
for all 1 ≤ i ≤ p,

γ(ti) ⊆ β(s) ∪ γ(s) ∪
⋃
j<i

B↓
tj .

Similarly, there is a linear order on the roots such that

γ(ri) ⊆
⋃
j<i

B↓
rj .

The width of D is max {|β(t) ∪ γ(t)| | t ∈ V (D)}. The Kelly-
width Kelly-widthof G is the minimal width of any of its Kelly decomposi-
tions. ⊣

In order to distinguish V (G) from V (D), we call the elements
of V (D) nodes node, in contrast to the vertices in V (G).
Theorem 5.45 There exists a constant c ∈ N and an algo-
rithm that solves the Lµ model-checking problem in time

O

(
22ck|φ||φ|

n3
)
,

where k is the Kelly-width and n the size of the input structure,
provided a Kelly decomposition of width at most k is given as
part of the input.

153

5 Lµ Types

Let G be a structure of Kelly-width k with a given Kelly-
decomposition of width k and let v ∈ V (G). It is easily seen
that we can construct a Kelly decomposition of G of width
≤ k + 1 which has only one root and this root contains v. We
call such a Kelly decomposition rooted at vrooted at v .

Proof of Theorem 5.45. Let G, v be a structure and P be a
sequence of k fresh proposition symbols. We pick an arbitrary
linear order of V (G) in order to define interfaces consistently.

Let D = (D,β, γ) be a Kelly decomposition of width k of G
rooted at v and φ ∈ Lµ. We set L := {φ}.

Let us introduce the abbreviation

T (A,B) :=
{

(v, tpL,P (A, v,B)) | v ∈ A
}
.

We will inductively compute the types

T (B↓
t ∪ γ(t), γ(t))

for all t ∈ V (D). For the leaves, these sets can be computed by
brute force. Let t ∈ V (D) be a node with children s1, . . . , sl
and assume that we already know the above types for all si.

Let

δi :=
⋃
j≤i

(γ(sj) ∩ (β(t) ∪ γ(t)))

δ′
i := δi ∪

⋃
j≤i
B↓
sj .

We inductively compute the types T (δ′
i, δi). For i = 1 we

already know these types by assumption. Assume i > 1.
We want to construct weak directed separations. Note that

154

5.4 FPT Algorithms for Lµ Model Checking

by assumption we know T (B↓
si ∪ γ(si), γ(si)). We now first

compute
T (B↓

si ∪ γ(si) ∪ δi−1, γ(si) ∪ δi−1).

This is possible because (δi−1,B↓
si ∪ γ(si)) is a directed separa-

tion with interface δi−1 ∩ γ(si).
Next, we observe that (B↓

si ∪ γ(si) ∪ δi−1, δ
′
i−1) is a weak

directed separation with interface δi−1 ∪ (γ(si) ∩ δi−1). Thus
Theorem 5.43 allows us to compute T (δ′

i, δi).
After the last step we still need to compute T (B↓

t ∪γ(t), γ(t))
for the parent t. The pair (β(t)∪γ(t), δ′

l) is a directed separation
with interface δl, which is the final piece to the proof.

Let us analyze the running time. We compute T (B↓
t ∪

γ(t), γ(t)) for each t ∈ V (D) and we have |V (D)| ≤ n. So if
T is the time needed to compute T (B↓

t ∪ γ(t), γ(t)), then the
total running time will be O(T · n).

According to Lemma 5.38, computing T (B↓
t ∪ γ(t), γ(t)) for

a leaf takes time

O

(
2k

(
k2|φ||φ|

)3+|φ|
)

because |γ(t)| ≤ k and |P | = k. This term is bounded by

O

(
2k+k2|φ||φ|(3+|φ|)

)
⊆ O

(
2k+3k2|φ||φ|+k2|φ||φ|+1

)
⊆ O

(
22k|φ||φ|

)
.

For a node t ∈ V (D) with children s1, . . . , sl, comput-
ing T (B↓

t ∪ γ(t), γ(t)) consists of computing T (δ′
i, δi) for all

1 ≤ i ≤ l. In each step we compute for every v ∈ δ′
i the

155

5 Lµ Types

set tpL,P (δ′
i, v, δi). Computing the latter is an application of

Theorem 5.43 and by Theorem 5.39 this can be done in time

22O
(
k|φ||φ|

)
.

So computing T (δ′
i, δi) can be done in time

22O
(
k|φ||φ|

)
· n.

The node t can have at most n successors, so we have at most
n such computations. In total, tpL,P (B↓

t ∪ γ(t), v, γ(t)) can be
computed in time

22O
(
k|φ||φ|

)
· n2.

So our total running time to solve the model-checking prob-
lem on graphs of bounded Kelly-width is

O

(
22ck|φ||φ|

n3
)

for some constant c ∈ N. ■

By Theorem 4.7 on page 81, solving parity games with
parameter d, where d is the number of distinct priorities, is FPT-
reducible to the Lµ model-checking problem with parameter φ.
Furthermore, the reduction yields a φ with |φ| ∈ O(d) and a
parity game whose graph is isomorphic to the structure M.

So our FPT result for Lµ model-checking with parameter
φ for structures of bounded Kelly-width also holds for parity
games of bounded Kelly-width with the parameter d.

156

5.4 FPT Algorithms for Lµ Model Checking

Corollary 5.46 There exists a constant c ∈ N and an algo-
rithm that, given a parity game P = (V,E, V◇, ω) and v ∈ V ,
decides whether player ◇ wins from (P, v) in time

O

(
22ckdcd |V |3

)
,

where k is the Kelly-width and d is the number of distinct
priorities of P , provided a Kelly decomposition of width at
most k is given as part of the input.

5.4.3 DAG-width

Next we consider DAG-width. We use the definition and
notation from [Ber+12]. Again, we write ⪯ for the reflexive
and transitive closure of the arc relation of a DAG.

Definition 5.47 A DAG decomposition DAG decom-
position

of a digraph G is a
pair D := (D, (Xd)d∈D) such that

• D is a DAG,

•
⋃
d∈DXd = V (G),

• For all d ⪯ d′ ⪯ d′′, Xd ∩Xd′′ ⊆ Xd′ ,

• for all arcs (d, d′) ∈ E(D), Xd ∩ Xd′ guards X⪰d′ \ Xd,
where

X⪰d′ :=
⋃

d′′⪰d′

Xd′′ X⪰d.

The width of D is max{|Xd| | d ∈ V (D)}. The DAG-width DAG-width
of G is the minimal width of any of its DAG decompositions.⊣

157

5 Lµ Types

Theorem 5.48 There exists an algorithm that, given a struc-
ture M of size n, a vertex v ∈M, and a DAG-decomposition
of M of width k and size k′, answers M, v |= φ in time
O(f(k, |φ|) · k′ · n) for some computable function f .

Proof. Let G, v0 be a structure and (D, (Xd)d∈V (D) be a nice
DAG decomposition of G. That means (see [Ber+12])

1. D has a unique source.

2. Every d ∈ V (D) has at most two successors.

3. For d0, d1, d2 ∈ V (D), if d1, d2 are two successors of d0,
then Xd0 = Xd1 = Xd2 .

4. For d0, d1 ∈ V (D), if d1 is the unique successor of d0,
then ⏐⏐(Xd0 \Xd1) ∪ (Xd1 \Xd0)

⏐⏐ = 1.

We set L := {φ}. As in the proof for bounded Kelly width,
we fix an arbitrary linear order < on V (G) so that we can con-
sistently map vertices to the proposition symbols Pi occurring
in the types.

During the run of the algorithm, we fill a table T with
indices from the set {(v, d) ∈ V (G)× V (D) | v ∈ X⪰d} and en-
tries that are elements of TL(P). We will write to every index
in this table at most once during the run, and we will always
make sure to write

T (v, d) = tpL,P (G[X⪰d], v,Xd).

If d is the root of D, then T (v0, d) will answer the model-
checking problem G, v0 |= φ.

158

5.4 FPT Algorithms for Lµ Model Checking

Clearly, we can fill in all values for the leaves d immediately
by computing them directly.

Let d ∈ V (D). If d has two successors d0, d1, then we
have Xd = Xd0 = Xd1 . Then (G[X⪰d0], G[X⪰d1]) is a weak
directed separation with interface Xd. Because we already know
tpL,P (G[X⪰di], v,Xd) for all v and i ∈ {0, 1}, Theorem 5.43
allows us to compute the types tpL,P (G[X⪰d], v,Xd).

The other case is that d has a unique successor d0. Let
Xd = {v1, . . . , vk} be ordered by the global linear order <. If
Xd0 \Xd = {vi}, then for all v ∈ X⪰Xd we set

T (v, d) = {shrinki(ψ) |
ψ ∈ T (v, d0) and Pi does not occur in ψ},

where shrinki(ψ) is a function defined inductively over the
structure of formulas with the base case

shrinki(Pj) :=
{
Pj if j < i

Pj−1 if j > i.

In other words, shrinki(ψ) is the formula ψ with all Pj with
j > i replaced by Pj−1 in order to not leave a hole. It is easy
to check that we have

{shrinki(ψ) | ψ ∈ T (v, d0) and Pi does not occur in ψ}
= tpL,P (G[X⪰d], v,Xd).

The last case is Xd \Xd0 = {vi}. Because Xd ∩Xd0 guards
X⪰d0 \Xd, all arcs (v, vi) ∈ G[X⪰d] satisfy v ∈ Xd.

This means we have a directed separation (G[Xd], G[X⪰d0])
with interface Xd0 . We know G[Xd] (its size is small), and we

159

5 Lµ Types

know the types tpL,P (G[X⪰d0], v,Xd0) for all v ∈ X⪰Xd0
.

By Theorem 5.14, this is all the information that we need
to compute the type tpL,P (G[X⪰d], v,Xd) for all v ∈ X⪰Xd ,
which completes the algorithm.

For the running time we note that by a theorem by Dietmar
Berwanger, Anuj Dawar, Paul Hunter, Stephan Kreutzer and
Jan Obdržálek, a nice DAG-decomposition has width k and
size at most 4kk′ if we start with a DAG-decomposition of
width k and size k′ [Ber+12, Theorem 24]. Furthermore, a nice
DAG-decomposition can be computed in time O(kk′).

We need to compute at most |V (G)||V (D)| = n · 4kk′ many
types, and computing one type T (v, d) takes time O(g(k, |φ|))
for some computable function g. Computing one type is inde-
pendent of n because the sizes of all the sets that Theorem 5.14
needs are independent of n.

In total we get a running time of

O(kk′ + g(k, |φ|) · n · 4kk′) ⊆ O(f(k, |φ|) · k′ · n)

for some computable function f , as claimed. ■

One might expect that this upper bound could be simplified
to O(f(k, |φ|) · nc) for some constant c, removing the odd
dependency on the size of the DAG-decomposition.

However, Saeed Amiri, Stephan Kreutzer and Roman Rabi-
novich showed recently that DAG-decompositions of a graph
G are sometimes necessarily super-polynomial in the size of
G [AKR14]. So in general, k′ can be super-polynomial in n,
which prevents the proposed simplification.

Analogous to Corollary 5.46, by Theorem 4.7 we get the
same result for parity games.

160

5.5 Conclusions

Corollary 5.49 There exists an algorithm that, given a parity
game P = (V,E, V◇, ω) with d distinct priorities, a vertex
v ∈ P , and a DAG-decomposition of (V,E) of width k and
size k′, decides whether player ◇ wins from (P, v) in time
O(f(k, d) · k′ · |V |) for some computable function f .

Note that this does not follow from the result by Dietmar
Berwanger, Anuj Dawar, Paul Hunter, and Stephan Kreutzer
that parity games on classes of bounded DAG-width can be
solved in polynomial time because their result is not an FPT
result [Ber+06].

5.5 Conclusions
We presented a decomposition theorem for the modal µ-calculus,
introducing a notion of Lµ-types in the process. This theorem,
interesting already all by itself, further allowed us to prove
fixed-parameter tractability results for the Lµ model-checking
problem on classes of bounded Kelly-width or of bounded
DAG-width.

Open questions arise from the diverse number of decompo-
sitions for directed graphs. In particular, we think it could
be promising to analyze D-width, introduced by Mohammad
Ali Safari [Saf05]. Another notable width measure is directed
tree-width, introduced by Thor Johnson, Neil Robertson, Paul
D. Seymour, and Robin Thomas [Joh+01].

161

6 Graph Operations on Parity
Games

As discussed in Chapter 4, the computational complexity of
solving parity games remains a major open question. It is
known that solving parity games is in UP ∩ coUP, and there
also exists a sub-exponential algorithm [JPZ06].

One way of tackling this problem is to consider the prob-
lem on restricted classes of parity games. For some classes,
polynomial-time algorithms are known, for example on classes
of bounded tree-width [Obd03; FS12; Gan15], bounded entan-
glement [BG04], bounded DAG-width [Ber+06], and bounded
clique-width [Obd07]. See Section 4.1.2 on page 77 for a discus-
sion of these algorithms. In Chapter 5, we showed that solving
parity games is fixed-parameter tractable on classes of bounded
Kelly-width and classes of bounded DAG-width, provided that
a decomposition is given as part of the input.

In this chapter we consider graph classes that are constructed
from simpler graph classes. The idea is that if we can solve
parity games in polynomial time on a given class C, can we
then also solve it on classes constructed from C? The answer
turns out to be yes, for certain constructions.

In particular, using these methods, we provide polynomial
time algorithms for solving parity games whose underlying
graph is an orientation of a complete graph (such as tourna-

163

6 Graph Operations on Parity Games

ments), a complete bipartite graph, a block graph, or a cactus
graph. A block graph is a graph where every biconnected
component is a clique and a cactus graph is a graph where
every edge lies on at most one cycle (see e.g., [BLS99]).

The results of this chapter have been published in [DKT16].

6.1 Preliminaries

6.1.1 Basic Definitions

First we need a few basic definitions. For these, we will follow
the book by Jørgen Bang-Jensen and Gregory Gutin [BJG09].
Because we consider only algorithms, all graphs in this chapter
are finite.

Definition 6.1 An orientationorientation of an undirected graph G =
(V,E) is a digraph obtained from G by replacing every edge
{x, y} ∈ E by one of the arcs (x, y) or (y, x), but not both. ⊣

Definition 6.2 A biorientationbiorientation of G is a digraph obtained
from G by replacing every edge {x, y} ∈ E with the arcs (x, y)
or (y, x) or both. ⊣

See Figure 6.1 for an illustration of these concepts.
We recall the definition of parity games and the associated

notions from Section 3.2 on page 47. We will also use attractor
sets quite often in this chapter. We defined attractor sets in
Definition 3.58 as follows: attri(A) is the set of vertices in V
from which player i has a strategy to enter A at least once.

For a parity game P = (V,E, V◇, ω) and some priority d ∈ N,
we denote by ω−1(d) the set of vertices having priority d.

164

6.1 Preliminaries

G

All orientations of G All biorientations of G

Figure 6.1: Orientations and biorientations

Definition 6.3 Given a parity game P = (V,E, V◇, ω) and a
set A ⊆ V , we denote by P ∩A the restriction of P to A restriction:

P ∩A :=
(
V ∩A,E ∩ (A×A), V◇ ∩A,ω↾A

)
.

We write P \A as an abbreviation for the game P ∩ (V \A).⊣

Definition 6.4 Given a class of parity games C, we say that C
is hereditary hereditaryif for all P ∈ C and A ⊆ V (P), we have P∩A ∈ C.⊣

Definition 6.5 Given parity games P and P ′, we call P ′ a
proper subgame of P

proper
subgameif P ′ = P ∩ V (P ′) and P ′ ̸= P . ⊣

Definition 6.6 A single-player game single-player
game

is a parity game where
all vertices belong to one of the players, that is, V = V◇ or
V = V□. If all the vertices of a single-player game P belong to
player i, we will say that P belongs to player i. ⊣

165

6 Graph Operations on Parity Games

We will use an algorithm Solve-Single-Player-Game(P)
which solves single-player games in time cubic in the number of
vertices, by returning the two winning regions (W◇(P),W□(P)).
A description of such an algorithm is given, for example, by
Oliver Friedmann and Martin Lange [FL09]. We also gave an
explicit construction in the proof of Theorem 3.51 on page 51.

6.1.2 Half-Solving Parity Games
First, let us simplify the problem of finding an algorithm for
solving parity games to the problem of half-solving them.

Definition 6.7 (Half-Solving Parity Games) Let C be a
class of parity games. An algorithm half-solves Chalf-solve if for every
input game P ∈ C it returns one of the following three results.

1. W◇(P) and W□(P).

2. A proper subgame P ′ of P and sets W ∗
◇,W

∗
□ ⊆ V (P) \

V (P ′) such that W◇(P) = W ∗
◇ ∪W◇(P ′) and W□(P) =

W ∗
□ ∪W□(P ′).

3. The game P itself, but only if either W◇(P) = ∅ or
W□(P) = ∅. ⊣

Intuitively, an algorithm half-solves a parity game by either
solving it on the spot, by reducing the problem to a proper
subgame, or by determining that one of the winning regions is
empty (but without telling us which one is empty).

We claim that efficiently half-solving a hereditary class C
suffices to efficiently solve C completely. This is the statement
of the following lemma, whose proof is based on the recursive
algorithm by Robert McNaughton [McN93].

166

6.1 Preliminaries

Lemma 6.8 Let C be a hereditary class of parity games. If
there is an algorithm half-solving parity games in C running in
time O(nc) for some c ≥ 1, where n is the number of vertices,
then there is an algorithm that computes the winning regions
on all parity games in C in time O(nc+1).

Proof. Let Half-Solve be the given algorithm. Consider
Algorithm 6.1.

Algorithm 6.1: From partial to full solution.
Solve(P = (V, E, V◇, ω))

R ← Half-Solve(P)
if R = (W◇,W□) then

return (W◇,W□)
if R = (P ′,W ∗

◇,W
∗
□) then

(W◇(P ′),W□(P ′)) ← Solve(P ′)
return (W ∗

◇ ∪W◇(P ′),W ∗
□ ∪W□(P ′))

if R = P then
d←Minimum-Priority(ω)
i← ◇ if d is even, □ otherwise
(C◇, C□) ← Solve(P \ attri(ω−1(d)))
if Ci ̸= ∅ then

(Wi,Wi)← (∅, V)
else

(Wi,Wi)← (V, ∅)
return (W◇,W□)

First let us analyze the running time of Solve. Let T (n)
be the running time of Solve and knc be the running time of

167

6 Graph Operations on Parity Games

Half-Solve with k ∈ N. Then we have

T (n) ≤ O(n) + knc + f(n) + T (n− 1)

where f(n) is the time used to compute the attractor set
attri(ω−1(d)).

An attractor set can be computed in time O(n2), but this
would only give the bound T (n) ∈ O(nc+2). However, we
observe that in total each arc is only considered once because
P \ attri(ω−1(d)) does not contain any arcs with their start or
end point in attri(ω−1(d)). So the algorithm only needs O(n2)
time to compute all the attractor sets in total over all recursive
steps. So we have T (n) ∈ O(nc+1 +n2) which gives the desired
bound of T (n) ∈ O(nc+1).

To prove the correctness, it is enough to consider the case
where Half-Solve returns P unmodified because the other
cases are trivially correct.

Let d be the minimum priority of P and let D := ω−1(d).
Assume that d is good for player ◇ (the case of player □

is similar). Then the algorithm solves the game P ′ := P \
attr◇(D).

If W□(P ′) ̸= ∅, then W□(P) ̸= ∅ because every vertex
winning for player □ in P ′ is also winning for player □ in
P , because we only removed a ◇-attractor (Lemma 3.65 on
page 57). Since we are in the case where one of the winning
regions of P is empty, this implies W◇(P) = ∅.

If W□(P ′) = ∅, then it is easy to see that player ◇ wins
everywhere in P . Indeed, if a play eventually stays in P ′, then
player ◇ wins because W□(P ′) = ∅. If a play visits attr◇(D)
an infinite number of times, then player ◇ can force to visit D
an infinite number of times, and hence wins the play. ■

168

6.2 The Join of Two Parity Games

6.1.3 Recognizing Winning Regions
Lemma 6.8 shows a method to decide the global winner under
the restriction that there is one definite global winner (that
is, W◇ = ∅ or W□ = ∅) and under the assumption that we
can solve subgames recursively. A natural question is if this
can be generalized to recognize winning regions without the
restriction that W◇ = ∅ or W□ = ∅. Unfortunately, the answer
is no, as shown by Dietmar Berwanger, Krishnendu Chatterjee,
Martin De Wulf, Laurent Doyen and Thomas A. Henzinger.
Proposition 6.9 ([Ber+10, Proposition 2])

The following two problems are polynomial-time equivalent.
1. Given a parity game P and v ∈ V (P), decide whether

player ◇ wins from (P, v).

2. Given a parity game P and W ⊆ V (P), decide whether
W = W◇.

The direction from (2) to (1) says that recognizing a winning
region as correct is as hard as solving parity games.

6.2 The Join of Two Parity Games
In this section we will show that if C and C′ are hereditary
classes of parity games that can be solved in polynomial time,
then the class of parity games obtained by joining games from
C and C′ can also be solved in polynomial time.
Definition 6.10 (Join of parity games) Given two parity
games P ′ = (V ′, E′, V ′

◇, ω
′) and P ′′ = (V ′′, E′′, V ′′

◇ , ω
′′) with

V ′ ∩ V ′′ = ∅, we say that the game P = (V,E, V◇, ω) is a join
of P ′ and P ′′ if the following conditions hold.

169

6 Graph Operations on Parity Games

• V = V ′ ∪ V ′′,

• E = E′ ∪ E′′ ∪ E∗, where for all x ∈ V ′
□, y ∈ V ′′

◇ and for
all x ∈ V ′

◇, y ∈ V ′′
□ , the set E∗ ⊆ (V ′ × V ′′) ∪ (V ′′ × V ′)

contains at least one arc (x, y) or (y, x),

• V◇ = V ′
◇ ∪ V ′′

◇ ,

• the vertices of P have the same priorities as they have in
P ′ and P ′′.

Given two classes of parity games C and C′, we define

HalfJoin(C)HalfJoin :=
{P | P is a join of a single-player game P ′

and a game P ′′ ∈ C},
Join(C, C′)Join :=
{P | P is a join of P ′ ∈ C and P ′′ ∈ C′}.

⊣

Remark 6.11 Observe that if C and C′ are hereditary, then
so are HalfJoin(C) and Join(C, C′).

We will first show how to solve parity games obtained by
joining a polynomial time solvable parity game with a single-
player game and then extend this construction to the general
case of joining arbitrary parity games.

As an immediate corollary we get that parity games whose
underlying undirected graph is a complete graph, so-called
tournaments, can be solved in polynomial time. As a corollary
from the more general case of arbitrary joins we get that

170

6.2 The Join of Two Parity Games

parity games whose underlying undirected graph is a complete
bipartite graph can be solved in polynomial time.

Note that the result for tournaments is not a special case
of Obdržálek’s polynomial time algorithm for parity games
of bounded directed clique-width [Obd07]. Biorientations of
complete graphs and of complete bipartite graphs do not have
bounded directed clique-width, although their underlying undi-
rected graphs have bounded undirected clique-width.

6.2.1 Adjoining Vertices Belonging to One Player

Let us now show how to solve half-joins efficiently. We will use
the same technique also in the proof of the main theorem on
joins in Section 6.2.2.

Lemma 6.12 If C is a hereditary class of parity games that
can be solved in time O(nc), then all games P ∈ HalfJoin(C) can
be solved in time O

(
n1+max{3,c})

, provided that a decomposition
of P as a join of a game in C with a single-player parity game
is given.

Proof. We claim that Algorithm 6.2 half-solves HalfJoin(C) in
time O

(
nmax{3,c})

. By Lemma 6.8 we then have an algorithm
for solving HalfJoin(C) in time O

(
n1+max{3,c})

.
In order to prove the correctness, let P = (V,E, V◇, ω) ∈

HalfJoin(C) be a join of the single-player game P ′ = (V ′, E′,
V ′
◇, ω

′) and the game P ′′ = (V ′′, E′′, V ′′
◇ , ω

′′) ∈ C. We may
assume without loss of generality that V ′

◇ is empty, so that
V ′ = V ′

□ and V◇ = V ′′
◇ .

We assume that there is an algorithm Solve-C-Game that
solves games in C in time O(nc) where n is the number of

171

6 Graph Operations on Parity Games

Algorithm 6.2: A polynomial-time algorithm for half-
solving parity games on half joins where P is a join of the
◇- or □-player game P ′ and the game P ′′ ∈ C.

Half-Solve-Half-Join(P = (V, E, V◇, ω), P ′, P ′′)
if V = ∅ then

return (∅, ∅)
i← ◇ if V◇(P ′) = ∅, □ otherwise
(Ai, Ai) ←

Solve-Single-Player-Game(P \ attri(Vi(P ′′)))
if Ai ̸= ∅ then

W ∗
i ← ∅

W ∗
i
← attri(Ai)

return (P \W ∗
i
,W ∗

◇,W
∗
□)

(Bi, Bi) ← Solve-C-Game(P \ attri(Vi(P ′)))
if Bi ̸= ∅ then

W ∗
i ← attri(Bi)

W ∗
i
← ∅

return (P \W ∗
i ,W

∗
◇,W

∗
□)

return P

172

6.2 The Join of Two Parity Games

vertices of the game. Recall from Section 6.1.1 that single-
player parity games can be solved in cubic time by the algorithm
Solve-Single-Player-Game(P).

The algorithm first solves the single-player game P1 :=
P \ attr◇(V ′′

◇), in time O(n3). See Figure 6.2 for an illustration
of the situation, where vertices lie above the dotted line if and
only if they are winning for player □. By Lemma 3.65 we know
that W□(P1) ⊆W□(P) and by Lemma 3.66 we get that

W□(P) = attr□(W□(P1)) ∪W□(P \ attr□(W□(P1))).

Therefore, if W□(P1) is not empty, then we can return

(P \ attr□(W□(P1)), ∅, attr□(W□(P1))),

which is the second outcome of the algorithm according to
Definition 6.7.

If W□(P1) is empty, then we solve the game P2 := P \
attr□(V ′

□) in time O(nc) and proceed as before (see Figure 6.3).
By Lemma 3.65 we know that W◇(P2) ⊆ W◇(P). Thus, if
W◇(P2) is not empty, then we can return

(P \ attr◇(W◇(P2)), attr◇(W◇(P2)), ∅),

which again is the second possible outcome according to Defi-
nition 6.7.

Finally, suppose both W□(P1) and W◇(P2) are empty. We
claim that either W□(P) = ∅ or W◇(P) = ∅. In both cases we
return P unmodified as this is the third possible outcome ac-
cording to Definition 6.7. To establish the claim we distinguish
two cases, depending on whether V ′

□ ∩W◇(P) = ∅ or not.

173

6 Graph Operations on Parity Games

W□(P)

W◇(P)

P ′ P ′′

P1 = P \ attr◇(V ′′
◇)

is a single-player game

Figure 6.2: The first subgame solved by Algorithm 6.2, where
P is a join of the single-player parity game P ′ and
the game P ′′ ∈ C.

W□(P)

W◇(P)

P ′ P ′′

P2 = P \ attr□(V ′
□) is in C

Figure 6.3: The second subgame solved by Algorithm 6.2

174

6.2 The Join of Two Parity Games

Case 1. V ′
□ ∩W◇(P) ̸= ∅ (see Figure 6.4a).

Observe that

V ′′
◇ ⊆W◇(P).

Assume to the contrary that there is v ∈ V ′′
◇∩W□(P) and

let w ∈ V ′
□ ∩W◇(P). But then there can be no arc (v, w)

in P because if there were such an arc, then player ◇

would have a winning strategy from v by choosing w as
v’s successor. Similarly, there cannot be an arc (w, v).
This contradicts the definition of P . By Lemma 3.66, we
have that

W□(P) = W□(P \ attr◇(V ′′
◇)) = W□(P1).

As W□(P1) = ∅, this implies that W◇(P) = V .

Case 2. V ′
□ ∩ W◇(P) = ∅, equivalently V ′

□ ⊆ W□(P) (see
Figure 6.4b). Again by Lemma 3.66, we have that

W◇(P) = W◇(P \ attr□(V ′
□)) = W◇(P2).

As W◇(P2) = ∅, this implies that W□(P) = V .

We see that the running time of the algorithm is O(n3 + nc)
because solving the single-player game and the game in C
are the most expensive operations. As claimed, this is in
O

(
nmax{3,c})

. ■

Definition 6.13 We say that a digraph D = (V,E), with a
partition of its vertices V = V◇ ∪ V□, is a weak tournament weak

tournamentif between every two vertices v ∈ V◇, w ∈ V□ we have that
(v, w) ∈ E or (w, v) ∈ E (or both).

175

6 Graph Operations on Parity Games

W□(P)

W◇(P)

P ′ P ′′

(a) Case 1

W□(P)

W◇(P)

P ′

P ′′

(b) Case 2

Figure 6.4: The case distinction of the proof of Lemma 6.12,
where P is a join of the single-player parity game
P ′ and the game P ′′ ∈ C.

176

6.2 The Join of Two Parity Games

We denote by wTournaments the class of parity games on a
weak tournament, that is,

wTournaments := {P = (V,E, V◇, ω) |
(V,E) with the partition V = V◇ ∪ V□
is a weak tournament}. ⊣

Note that every tournament (that is, an orientation of a
complete graph) is a weak tournament.

An easy corollary of Lemma 6.12 is the following.

Corollary 6.14 There is an algorithm that solves all parity
games P = (V,E, V◇, ω) ∈ wTournaments and runs in time
O(|V |4).

Proof. Let C be the class of single-player games. Then we have
HalfJoin(C) = wTournaments. The required decompositions
can be easily computed. ■

For i ∈ {◇,□}, we define HalfJoini(C) HalfJoini(C)to be the class of
joins of single-player games that belong to player i with games
from C. Note that HalfJoin(C) = HalfJoin◇(C) ∪ HalfJoin□(C).
We call a class C of parity games polynomial-time decidable poly-time

decidable
if

there is a polynomial-time algorithm that decides C, that is,
tests membership P ∈ C.

We see that in some cases we do not need to provide a
decomposition as required by Lemma 6.12.

Corollary 6.15 Let C be a hereditary class of parity games
and i ∈ {◇,□}.

1. If C is polynomial-time solvable, then HalfJoini(C) is
polynomial-time solvable.

177

6 Graph Operations on Parity Games

2. If C is polynomial-time solvable and polynomial-time de-
cidable, then HalfJoin(C) is polynomial-time solvable.

Proof. Given P = (V,E, V◇, ω) ∈ HalfJoini(C), we can com-
pute a decomposition of it in time linear in the number of arcs.
Indeed, we can take

• P ′
i := P ∩{v ∈ Vi | N(v) ⊇ Vi} as the single-player game,

• P ′′
i := P \ {v ∈ Vi | N(v) ⊇ Vi} as the game from the

hereditary class C.

This proves the first statement.
If the player to which the vertices of the single-player game

belong to is not known, then we have to check for both i ∈
{◇,□} which game P ′′

i considered above belongs to C in order
to find a decomposition. This proves the second statement. ■

Note that if we could also compute the winning strategies
for the graphs in HalfJoini(C), then we could solve games
in HalfJoin(C) without having to test membership to C. In-
deed, one could construct a game which assumes that player ◇

owns the single player game, and a game which assumes that
player □ owns the single player game, run the algorithm from
Lemma 6.12 on these two instances in parallel, and then check
the validity of the returned winning strategies. However, com-
puting the winning strategies for games in HalfJoini(C) is not
trivial, as in our current proof we reduce the game to one in
which we are only guaranteed that one player wins from all
vertices. Moreover, since the HalfJoin operation is not closed
under arc deletions, we cannot pass from winning regions to
winning strategies by the simple policy of removing arcs one

178

6.2 The Join of Two Parity Games

at a time and checking in which resulting game the winning
regions change.

Even though not needed in the next section, we introduce
here another kind of adjoining operation between a single-player
parity game P ′ and an arbitrary parity game P ′′. In this case,
assuming the vertices of P ′ belong to player i, we fix a subset
M of vertices of player i of P ′′ and connect every vertex of P ′

with every vertex in M . These are the only arcs that may exist
between P ′ and P ′′. So if M = ∅, we have the disjoint union
of P ′ and P ′′.

Definition 6.16 Given i ∈ {□,◇}, a single-player game P ′ =
(V ′, E′, V ′

◇, ω
′) with V ′

i = ∅ and a parity game P ′′ = (V ′′, E′′,
V ′′
◇ , ω

′′) with V ′ ∩ V ′′ = ∅, we say that a game P = (V,E,
V◇, ω) is a generalized single-player join (G-join) of P ′ and
P ′′ if P is the join of P ′ and P ′′ except that the set of arcs
is defined differently: There exists a set M ⊆ V ′′

i such that
E = E′ ∪ E′′ ∪ E∗ and E∗ ⊆ (M × V ′

i
) ∪ (V ′

i
×M) and there

is at least one arc (x, y) or (y, x) for all x ∈M , y ∈ V ′
i
.

For a class C of parity games, we denote by HalfJoinG(C)
the class

HalfJoinG(C) HalfJoinG:=
{P | P is a G-join of a single-player game P ′

and a game P ′′ ∈ C}. ⊣

Theorem 6.17 If C is a hereditary class of parity games that
can be solved in polynomial time, then all games P ∈ Half-
JoinG(C) can be solved in polynomial time, provided that a
decomposition of P as a G-join of a single-player game and a
game in C is given.

179

6 Graph Operations on Parity Games

Proof. The algorithm and proof are very similar to what we
saw in Lemma 6.12, the only difference being the subgame
the algorithm solves in the first case. We briefly sketch the
difference here, under the same notations and assumptions as
before. Let M be as given in the definition of the G-join.

In the original algorithm, Algorithm 6.2, the first subgame
considered by the algorithm is P \ attri(Vi(P ′′)), which is then
solved in polynomial time because it is a single-player game.
The difference for HalfJoinG(C) is that for the first subgame
we instead consider P1 := P \ attri(M). Now P1 will not be
single-player game in general. However, P1 is the disjoint union
of the single player game P1 ∩ P ′ and the game P1 ∩ P ′′ ∈ C,
so we can solve P1 in polynomial time.

What remains is to prove that this algorithm is correct.
The proof proceeds along the lines of Lemma 6.12, the only
difference being in Case 1 because the first subgame is different.

If the set V ′
□∩W◇(P) is not empty, then let v be an arbitrary

vertex in this set. Note that M = N(v) ∩ V ′′
◇ . By the same ar-

gument given in the proof of Lemma 6.12, we get M ⊆W◇(P).
Therefore, W□(P) = W□(P1), where P1 := P \attr◇(M), which
is what we needed to show.

The complementary case V ′
□ ∩W◇(P) = ∅ is identical to

Case 2 in the proof of Lemma 6.12, and the result immediately
follows. ■

6.2.2 Joining Two Parity Games
Now we can state our main theorem on the join of two parity
games.
Theorem 6.18 If C and C′ are hereditary classes of parity
games that we can solve in time O(nc) and O(nc′), respectively,

180

6.2 The Join of Two Parity Games

then there exists an algorithm for solving Join(C, C′) in time
O

(
n2+max {3,c,c′})

, assuming a decomposition as a join of a
game in C and a game in C′ is given.

Proof. Let P = (V,E, V◇, ω) ∈ Join(C, C′) be a join of a game
P ′ = (V ′, E′, V ′

◇, ω
′) ∈ C with a game P ′′ = (V ′′, E′′, V ′′

◇ ,
ω′′) ∈ C′.

We follow the lines of the proof of Lemma 6.12. The case
distinctions and their conclusions are exactly the same. The
only difference is that in the proof of Lemma 6.12, the two
subgames P \ attr◇(V ′′

◇) and P \ attr□(V ′
□) were solvable in

polynomial time because they were single-player games or
in C, respectively. Here these games can be solved in time
O

(
n1+max{3,c,c′})

by Lemma 6.12 because both games are in
HalfJoin(C) and HalfJoin(C′), respectively. See Figure 6.5 and
note the similarity to figs. 6.2 and 6.3. Note that in contrast to
the other figures, in Figure 6.5a the winning region for player ◇
is at the top.

The remaining part of the algorithm is exactly the same as
in the proof of Lemma 6.12: If both of these subgames do not
provide a usable winning region, then we have W□(P) = ∅ or
W◇(P) = ∅ and we return the original game unmodified.

In total this gives a running time of O
(
n1+max{3,c,c′})

for
the half-solving algorithm. Lemma 6.8 turns this into an
algorithm that solves all parity games in Join(C, C′) in time
O

(
n2+max{3,c,c′})

. ■

We remark that if C is the class of parity games without
arcs, then the class Join(C, C) contains the class of parity games
whose underlying graph is a biorientation of a complete bipar-
tite graph.

181

6 Graph Operations on Parity Games

W◇(P)

W□(P)

P ′ P ′′

P \ attr◇(V ′′
◇) ∈ HalfJoin(C)

(a) Case 1a

W□(P)

W◇(P)

P ′ P ′′

P \ attr□(V ′
□) ∈ HalfJoin(C′)

(b) Case 2a

Figure 6.5: An illustration of the proof of Theorem 6.18, where
P is a join of P ′ ∈ C and P ′′ ∈ C′.

182

6.3 Pasting of Parity Games

6.3 Pasting of Parity Games

Definition 6.19 Let P ′ = (V ′, E′, V ′
◇, ω

′) and P ′′ = (V ′′, E′′,
V ′′
◇ , ω

′′) be two parity games with V ′ ∩ V ′′ = ∅, and let v′ ∈ V ′

and v′′ ∈ V ′′. Assume that v′, v′′ have the same priority and
belong to the same player in P ′ and in P ′′, respectively, say
player i.

The result of pasting P ′, P ′′ at v′, v′′ pastingis the game P =
(V,E, V◇, ω), defined as the disjoint copy of P ′ and P ′′ with
v′ and v′′ identified (see Figure 6.6 on the following page).
Formally, we define this game as follows.

V := (V ′ ∪ V ′′ ∪ {v∗}) \ {v′, v′′}
E := {(u,w) ∈ E′ ∪ E′′ | {v′, v′′} ∩ {u,w} = ∅}

∪ {(u, v∗) | (u, v′) ∈ E′ or (u, v′′) ∈ E′′}
∪ {(v∗, u) | (v′, u) ∈ E′ or (v′′, u) ∈ E′′}

V◇ :=
{

(V ′
◇ ∪ V ′′

◇ ∪ {v∗}) \ {v′, v′′} if i = ◇

(V ′
◇ ∪ V ′′

◇) \ {v′, v′′} otherwise

ω(v) :=

⎧⎪⎪⎨⎪⎪⎩
ω′(v) if v ∈ V ′

ω′′(v) if v ∈ V ′′

ω′(v′) if v = v∗.

For a class of parity games C, we denote by RepeatedPasting(C)
Repeated-
Pasting

the class of games obtained by repeated pasting of a finite
number of games from C. ⊣

We observe that if C is hereditary and is closed under disjoint
unions, then RepeatedPasting(C) is hereditary. Moreover, every
P ∈ RepeatedPasting(C) has a decomposition into components

183

6 Graph Operations on Parity Games

P ′ P ′′

v′ v′′
paste−−−→

v∗

P

Figure 6.6: The paste of P ′ and P ′′ at v′, v′′

P1

P2

P3

P4
P5

Figure 6.7: A game from RepeatedPasting(C)

184

6.3 Pasting of Parity Games

P1, P2, . . . , Pk with Pi ∈ C, such that every distinct Pi and Pj
are either disjoint or share exactly one vertex. This means that
games P1, . . . , Pk form a tree-like structure, in the sense that
the graph TP obtained by adding a vertex i for every Pi and
an arc (i, j) if Pi and Pj share a vertex is a tree (see Figure 6.7
on the preceding page).

Theorem 6.20 If C is a hereditary class of parity games that
can be solved in time O(nc), then games in RepeatedPasting(C)
can be solved in time O

(
n1+max{2,c})

.

Proof. Let P ∈ RepeatedPasting(C) and let T (n) be the run-
ning time of the algorithm we are constructing for Repeated-
Pasting(C), where n is the number of vertices of P . In order to
find a decomposition of P into games from C, we compute the
biconnected components (that is, maximal 2-connected sub-
graphs) of the underlying undirected graph of P , say P1, . . . , Pk,
in time linear in the number of arcs of P , for example by the
algorithm presented by John E. Hopcroft and Robert E. Tar-
jan [HT73]. Since P ∈ RepeatedPasting(C) and C is hereditary,
each such biconnected component belongs to C.

Let L ∈ C be a leaf-component of the tree TP associated
with P . This means that L shares at most one vertex with
all other components of P . If there is no such vertex, we
are done because the graph is disconnected and we can easily
solve different components separately. Otherwise, let v be
this vertex. Without loss of generality we assume that v is a
vertex that belongs to player ◇. Since all paths between L and
P ′ := P \ (L \ {v}) use vertex v, and thus there are no cycles
without repeated vertices spanning both L and P ′, we have that
v ∈W◇(P) if and only if v ∈W◇(L) or v ∈W◇(P \ (L \ {v})).

185

6 Graph Operations on Parity Games

First we solve the parity game L, which can be done in time
O(nc) since L ∈ C. If player ◇ wins on v in L, then we solve
P \ (L∪ attr◇(v)) recursively, in time T (n− 1). Since all paths
between L and P \ (L ∪ attr◇(v)) use vertex v, from which
player ◇ has a winning strategy inside L, we have, thanks to
Lemma 3.66:

• W◇(P) = W◇(L) ∪ attr◇(v) ∪W◇(P \ (L ∪ attr◇(v))),

• W□(P) = W□(L) ∪W□(P \ (L ∪ attr◇(v))).

However, if player □ wins on v in L, then we solve P ′

recursively, in time T (n − 1). Then we have two cases. If
player □ wins on v in P ′, then we merge the winning regions
of L and P ′, that is:

• W◇(P) = W◇(L) ∪W◇(P ′),

• W□(P) = W□(L) ∪W□(P ′).

This is correct because no matter which successor player ◇

chooses on v, the game will either continue in L or in P ′, and
v ∈W□(L) and v ∈W□(P ′).
Otherwise, if player ◇ wins on v in P ′, then we have to re-
compute the winning regions of L, from which we remove
attr◇(v). Since C is hereditary, then L \ attr◇(v) ∈ C, and can
be solved in time O(nc). Thus, again by Lemma 3.66, and by
the fact that all paths between L \ attr◇(v) and P ′ use vertex
v, from which player ◇ has a winning strategy inside P ′, we
put:

• W◇(P) = W◇(L \ attr◇(v)) ∪ attr◇(v) ∪W◇(P ′),

• W□(P) = W□(L \ attr◇(v)) ∪W□(P ′).

186

6.4 Adding a Single Vertex

Finally, the running time of the algorithm satisfies

T (n) ≤ n2 + tnc + T (n− 1),

for some fixed t > 1, where n2 accounts for the computation of
the attractor sets. Thus, T (n) ∈ O

(
n1+max{2,c})

. ■

As a corollary of Corollary 6.14 and Theorem 6.20, we can
solve parity games in polynomial time on every biorientation
of a block graph, that is, a graph where every biconnected
component is a clique.

Furthermore, this also gives us a polynomial time algorithm
for solving parity games on cactus graphs, that is, graphs where
every edge lies on at most one cycle.

On the other hand, it is unlikely that we can easily extend the
above method by pasting along 2 vertices since this immediately
leads to a polynomial-time algorithm for the class of all parity
games by pasting along complete graphs with 2 vertices.

6.4 Adding a Single Vertex
Definition 6.21 If C is a class of parity games, we let Add-
Vertex(C) Add-

Vertex(C)
denote the class of parity games obtained by adding a

single vertex to every game in C in any possible way. Formally,

AddVertex(C) := {P | P is a parity game and
there exists a vertex v such that P \ {v} ∈ C}. ⊣

Theorem 6.22 If C is a hereditary class of parity games which
we can solve in time O(nc) with c ≥ 2 and we can test mem-
bership to C in time O(nd), then we can solve parity games

187

6 Graph Operations on Parity Games

in AddVertex(C) in time O
(
nmax{c,d}+1)

and test membership
to AddVertex(C) in time O(nd+1), where n is the number of
vertices of a parity game.

Proof. Let P = (V,E, V◇, ω). In order to find a vertex v
such that P \ {v} ∈ C, and at the same time test whether
P ∈ AddVertex(C), we can iterate over all v ∈ V and test the
membership of P \ {v} to C, with an overall complexity of
O(nd+1).

First, we solve the two subgames P1 := P \attr◇(v) ∈ C and
P2 := P \ attr□(v) ∈ C in time O(nc). If W□(P1) or W◇(P2)
is not empty, we return the corresponding subgame P \ P1 or
P \ P2.

If W□(P1) = W◇(P2) = ∅, we conclude that W□(P) = ∅ or
W◇(P) = ∅, analogous to the proof of Lemma 6.12 and Theo-
rem 6.18. We can then return the original game unchanged.

The running time of this part is O(nc) because computing
the attractor sets is in O(n2) ⊆ O(nc). Lemma 6.8 then yields
an algorithm that solves all games in AddVertex(C) in time
O(nc+1). Finding the vertex v that we have to remove takes
time O(nd+1), so the total running time is O

(
nmax{c,d}+1)

. ■

This theorem implies, for example, that if parity games can
be solved in polynomial time on orientations of planar graphs,
then they can also be solved in polynomial time on orientations
of apex graphs, which are planar graphs with one additional
vertex.

188

6.5 Conclusions

6.5 Conclusions

We presented some graph operations that preserve solvability
of parity games in polynomial time. In Section 6.2.2, we saw
that the join of two classes of parity games is as easy to solve
as the individual classes up to a polynomial factor provided
a decomposition of the join is available. In Section 6.3 we
considered the case of pasting many games together along
vertices to form a larger game and in Section 6.4 we analyzed
the problem of adding a single vertex to a parity game. In
both cases we showed that the resulting classes can be solved
in time only a small polynomial factor slower than the original
classes.

Recently, Gajarský et al. successfully solved more general
cases [Gaj+15]. They parameterized the problem in the size of
a feedback vertex set, by the distance to a tournament, or by
modular width and found that it is fixed-parameter tractable
in these cases, which in particular implies our polynomial-time
result for tournaments.

For more graph operations, it is an open problem whether
our approach can be adapted. One graph operation that comes
to mind is the operation of substitution. Particular instances
of this operation are obtained by starting from a tree T whose
vertices are coloured with either ◇ or □ such that no two
adjacent vertices have the same colour. Then we replace ev-
ery i-coloured vertex with a single-player game consisting of
vertices of player i and connect games that correspond to adja-
cent vertices in T analogous to the Join-operation defined in
Section 6.2. The resulting game can be solved with dynamic
programming and the help of Theorem 6.18 in time O(nc), but
c depends on the depth of the tree T . These games seem to be

189

6 Graph Operations on Parity Games

simpler than general parity games, so it could be reasonable to
expect a polynomial time algorithm.

On the other hand, it is interesting to study whether the
graph operations considered here preserve the polynomial time
solvability of other games. A starting point could be parity
games whose arcs are assigned priorities; more generally, one
could consider some of our operations for mean payoff games,
energy games, or simple stochastic games.

190

7 A Formal Proof of Positional
Determinacy

Es soll in mathematischen Angelegenheiten prinzipiell
keine Zweifel, es soll keine Halbwahrheiten [. . .] geben
können.

(David Hilbert, [Hil22])

In this chapter we present a formal proof that parity games
are positionally determined. We already saw this theorem
in Section 3.2 on page 52. For convenience, we restate the
theorem.

Theorem 7.1 (Theorem 3.55) For every parity game P =
(V,E, V◇, ω) it holds that V = W◇ ∪W□.

This theorem has many proofs [BSV04; Küs01; Zie98], so a
new proof by itself is not very exciting. What distinguishes our
proof from the previous proofs is that we provide a complete
formalization in the formal logic “Isabelle/HOL”. This formal-
ization has been published on the Archive of Formal Proofs
(AFP) [Dit15], a reviewed collection of formalized proofs. Al-
though the AFP has a respectable size of 1,018,800 lines of
code as of April 2015, so far there had been no published proofs
about games played on graphs [Bla+15]. For this reason, our
publication led to the creation of the new category “Computer

191

7 A Formal Proof of Positional Determinacy

Science/Games” and laid the foundation for more formalized
proofs in this area.

7.1 Background

7.1.1 Formal Proofs

Usually, mathematicians write their proofs in a combination of
English, formulas, and pictures. We did very much the same in
the previous chapters. We call this an informal proofinformal

proof
. One of

the most fundamental question about proofs is how to discern
correct proofs from invalid proofs.

After a long history, modern mathematics has found a seem-
ingly satisfying answer to this question [Eve97]. We define
a formal logic by syntactically describing strings of symbols
that we call formulasformula . Then we define manipulation rules for
these strings of symbols, and call the collection of these rules
a calculuscalculus . Finally we claim that everything derivable by this
calculus is “true”, and we call the derivations formal proofsformal proof . A
formal proof of a statement “A implies B” then boils down to
applying the rules of the calculus to the string A in such a way
as to arrive at the string B.

Often, we also associate semantics with these strings of
symbols, that is, meaning. For example, we want to be able
to say that some symbol strings are tautologies while others
are unsatisfiable. Then one crucial property of a calculus is
correctness. Correctness means that the calculus always turns
tautologies into tautologies, with the goal that starting out
with a tautology and ending in some symbol string φ means
that φ is a tautology, too.

While justifying every theorem with a formal proof is the

192

7.1 Background

theoretical foundation of modern mathematics, in most cases
this ideal is elusive. The symbol manipulation rules are far
too low-level to make proving non-trivial statements by hand
feasible. Furthermore, even checking a formal proof is often
beyond humans because although each step in the proof is
easily verified, a formal proof could have millions or more of
tiny inference steps.

So most proofs in modern mathematics are still written in
English with the silent assumption that every step should be
expressible in a calculus, if only someone would invest the time
to do so. Of course, this makes it possible for logical gaps or
errors to hide in informal proofs.

With the exponential growth of computing power in recent
years, the goal of having verified formal proofs for everything
has become within reach by shifting the work of rigorously using
the calculus rules from the user to the computer, allowing the
user to write their proof in a high-level language similar to
a very restricted form of English with a computer program
compiling the proof down to simple rule inferences. These
programs are called proof assistant proof

assistant
or theorem prover . Usually,

these programs also help the user in finding a formal proof by
suggesting lemmas or even automatically proving some parts.

A proof assistant will not accept proofs that it cannot com-
pile down to correct rule inferences. Thus logical gaps or errors
are all but impossible in formal proofs, provided the proof
assistant works correctly.

7.1.2 Computer-Assisted Proofs

When speaking of proofs assisted by a computer, what could
also come to mind is the four-color theorem and the controversy

193

7 A Formal Proof of Positional Determinacy

around its initial proof by Wolfgang Appel and Kenneth Haken
in 1976 [AH76]. Their proof was computer-aided because they
used a computer program to generate a comprehensive list of
possible counterexamples and to refute each one of them. That
this program was essential to the proof made the proof hard
to verify to the same rigor as you would verify a handwritten
proof.

However, while the initial proof of the four-color theorem
used a computer program, it did not use a theorem prover.
Only in 2005, 29 years after the first proof, Georges Gonthier
succeeded in formalizing a proof in the interactive theorem
prover Coq [Gon08]. This is the crucial difference between
computer-aided proofs and formal proofs. A computer-aided
proof is in no way more formal or more trustworthy than an
informal proof (quite the opposite, as we saw with the four-color
theorem).

What we are after is a formal proof that can be verified by
a small computer program unspecific to the particular proof.
For example, with Gonthier’s formal proof a reviewer does not
need to trust the proof or some computer program specific to
this proof. Instead, they only need to trust the Coq kernel,
which is intentionally small (see [Pau11] for an introduction
to Coq and its architecture). Because of this, Gonthier goes
as far as claiming that his proof is more rigorous than any
handwritten proof could possibly be [Gon07].

7.1.3 Isabelle/HOL

A small trusted kernel is also the foundation of the interactive
theorem proverIsabelle/

HOL
Isabelle/HOL, the prover that we are going to

use. For a formal proof in Isabelle/HOL, the user usually writes

194

7.1 Background

text in a high-level language called “Isar”, an abbreviation for
“intelligible semi-automated reasoning”. But the kernel does not
understand Isar: To make it easier for the user to trust the
kernel, it only accepts tiny inference steps based on natural
deduction.

This design with a small reliable kernel is knows as the LCF
approach. The idea is that except for a very small logical core,
everything else can be developed by possibly declaring a few
additional axioms and by building more and more complex
definitions, but crucially without modifying the kernel itself.

Technically, the kernel in the case of Isabelle/HOL accepts
only inferences of a far simpler language called Isabelle/

Pure
Isabelle/Pure,

which implements a minimal calculus of higher-order logic.
Isabelle/HOL then implements the full HOL calculus (higher-
order logic) on top of Isabelle/Pure. For this, Isabelle/HOL
declares a small set of additional axioms for logic and set
theory. The Isar language is common to both Isabelle/Pure and
Isabelle/HOL. For more details, we refer the reader to [WPN08]
for a short overview of the architecture of Isabelle/HOL.

The Isabelle/HOL system then has the task to generate tiny
inference steps from the high level proof language entered by
the user. This design makes it possible for the user to formalize
large proofs within a reasonable time.

A formal proof of a mathematical theorem provides very
strong evidence for its truth, but it may also offer new insights
because no form of handwaving is possible. All edge cases
and all assumptions that are imprecise or possibly incomplete
in a handwritten proof must be made explicit in a formal
proof. Furthermore, a theorem prover can also generate a list
of axioms that appear in the proof, which is interesting for
proof theory.

195

7 A Formal Proof of Positional Determinacy

For our formal proof of positional determinacy, we follow a
proof by Stephan Kreutzer [Kre15], which is based on the proof
given by Wieslaw Zielonka [Zie98]. Because our formalization
is rather long and technical with 3,579 lines of code, we will
only discuss key design decisions and refer the reader to the
Archive of Formal Proofs [Dit15] for the full proof text.

7.2 The Informal Proof
Because Kreutzer’s proof is in German and, as lecture notes,
has not been properly published, let us reproduce the proof
here in natural language.

We will use many definitions from Section 3.2, in particular
parity games (Definition 3.43 on page 47), winning regions
(Definition 3.52), attractor sets (Definition 3.58), and attractor
strategies (Lemma 3.62).

First, let us prove a slightly weaker statement.

Lemma 7.2 Let P = (V,E, V◇, ω) a parity game without dead
ends, that is, every vertex has at least one outgoing arc. Then
V = W◇ ∪W□.

Proof. We prove the statement by induction on |ω(V)|, which
is finite. Suppose the theorem holds for all parity games P ′ =
(V ′, E′, V ′

◇, ω
′) without dead ends with |ω′(V ′)| < |ω(V)|.

Let k := minω(V) be the minimum priority of P . Without
loss of generality, we assume that k is even. We define the
following sets.

U := V \W□

K := U ∩ ω−1(k)

196

7.2 The Informal Proof

U = V \W□ W□

K = U ∩ ω−1(k)

attr◇(K)

V ′ = U \ attr◇(K)

Figure 7.1: The situation in the proof of Lemma 7.2

V ′ := U \ attr◇(K).

By basic set theory it follows that

V = attr◇(K) ∪ V ′ ∪W□. (7.1)

Let P ′ = (V ′, E′, V ′
◇, ω

′) be the subgame of P induced by
V ′. See Figure 7.1 for an illustration of the situation here
with the subgame P ′ indicated by the shaded area. Note that
attr◇(K)∩W□ = ∅ because player ◇ cannot force a play away
from W□ (player □’s winning region), and K ⊆ attr◇(K) by
the definition of the attractor set.

We have |ω′(V ′)| < |ω(V)| because k /∈ ω′(V ′). To use the
induction hypothesis, we also need that P ′ has no dead ends.
Assume to the contrary that v ∈ V ′ has no successor in V ′, so
all successors of v in P must be in W□ ∪ attr◇(K), and there
is at least one such successor (recall that P has no dead ends).
We distinguish two cases.

197

7 A Formal Proof of Positional Determinacy

1. If v ∈ V ′
□, then no successor can be in W□ or we would

have v ∈W□. So all successors are in attr◇(K), but this
implies v ∈ attr◇(K), a contradiction.

2. If on the other hand v ∈ V ′
◇, then not all successors can

be in W□ or we would have v ∈ W□. So there exists
a successor in attr◇(K), but this implies v ∈ attr◇(K),
again a contradiction.

In both cases we get a contradiction, so v cannot be a dead
end in P ′. This allows us to apply the induction hypothesis to
P ′.

By the induction hypothesis, we get V ′ = W ′
◇ ∪W ′

□. How-
ever, it turns out that W ′

□ = ∅. Suppose to the contrary that
there exists a v ∈W ′

□ and let σ□ be player □’s winning strategy
on W ′

□ in P ′. We arbitrarily extend σ□ to all of V . We have
two cases.

1. Every σ□-conforming play starting from v stays in W ′
□

and is thus winning for player □. Then v should have
been in W□, so we cannot have this case.

2. There exists a σ□-conforming play starting from v that
leaves W ′

□. This play then visits a vertex in V \ V ′, be-
cause if it would stay in V ′, we would have a contradiction
to the definition of W ′

□.

Let w ∈ V \ V ′ be the first such vertex. We consider two cases.

1. If for every such play we have w ∈ W□, then v should
have been in W□ to begin with, so this cannot happen.

2. There exists some play starting in v with w ∈ (V \
V ′) \W□ = attr◇(K). But such a play also cannot exist,

198

7.2 The Informal Proof

U = V \W□ W□

K = U ∩ ω−1(k)

attr◇(K)

W ′
◇

Figure 7.2: Every play is winning for player ◇

because then the predecessor of w, which is in W ′
□, should

have been in attr◇(K) by the definition of the attractor
set.

So we have W ′
□ = ∅.

Now we can finally construct a winning strategy for player ◇
on P . Let σA be an attractor strategy on attr◇(K), let σ◇ be a
winning strategy for player ◇ on W ′

◇ = V ′, and let σ∗ be some
arbitrary strategy on V \ (attr◇(K) ∪W ′

◇) that avoids W□.
That is, we take an arbitrary strategy with the restriction that
σ∗(v) /∈ W□ if v has a successor in V \W□, which is trivially
possible. For all v ∈ V◇, define the strategy σ as

σ(v) =

⎧⎪⎪⎨⎪⎪⎩
σA(v) if v ∈ attr◇(K)
σ◇(v) if v ∈ V ′

σ∗(v) otherwise.

We claim that σ is a winning strategy for player ◇ in P on

199

7 A Formal Proof of Positional Determinacy

U . Let v ∈ U be arbitrary and let v be σ-conforming play in P
starting in v. Then v is infinite because P has no dead ends.

We see by induction that v never visits W□; here we use
that σ∗ avoids W□. So we have that v stays in V ′ ∪ attr◇(K).

The situation is illustrated in Figure 7.2 with two paths
v could take. The path leaving K is dashed to indicate that
v cannot go from K through attr◇(K) to W ′

◇, but instead
it must jump away from K without going through attr◇(K).
Note that v may also jump from K to any other vertex in U ,
not necessarily in W ′

◇, and v may start in any vertex of U .
Furthermore, v does not need to end up in a cycle because P
could be infinite.

The only important point here is that as soon as v visits
attr◇(K), it will eventually also visit K. It follows that the
play either eventually stays in the shaded W ′

◇ region and is
thus winning for player ◇ because σ◇ is a winning strategy
on W ′

◇, or the play visits K infinitely often and is winning for
player ◇ because k is even. ■

The next step is to drop the requirement that P contains
no dead ends and prove the full theorem.

Theorem 7.3 (Theorem 3.55) For every parity game P =
(V,E, V◇, ω) it holds that V = W◇ ∪W□.

Proof. For i ∈ {◇,□}, define the sets of dead ends

Di := {v ∈ Vi | there is no w with (v, w) ∈ E}

and also define
Ai := attri(Di).

200

7.2 The Informal Proof

It is easy to see that for all v ∈ Ai there exists a strategy σ
such that v is winning for player i: the attractor strategy. In
other words, v ∈ Ai implies v ∈Wi. It remains to consider the
case v ∈ V ′ with V ′ := (V \A◇) \A□.

First, we observe that the induced subgame P [V ′] has no
dead ends. If v ∈ V ′ is a dead end, then all outgoing arcs
must point towards A◇ ∪A□ and there is at least one such arc
because was not a dead end in P .

Suppose v ∈ V◇. If there is an arc pointing towards A◇,
then we have v ∈ A◇ because v is in the ◇-attractor. Because
we assumed v ∈ V ′, this cannot be the case. So all arcs from
v point towards A□ and there is at least one such arc. But
this implies v ∈ A□ by the definition of □-attractor, again
a contradiction. The case v ∈ V□ follows analogously. This
proves that P [V ′] has no dead ends.

Now let us fix some v ∈ V ′ and apply Lemma 7.2 to get a
player i and a strategy σ′ on P [V ′] which is winning for player i
from v. We extend σ′ to a strategy σ on P with the attractor
strategies of A◇. If a σ-conforming play starting from v stays
in V ′, then it follows σ′ and is winning for player i. If it enters
A◇, then it is also winning for player ◇ because the attractor
strategy on A◇ makes sure that eventually the play hits a dead
end of player □.

Assume the play enters A□. This can only happen from
a player □-vertex w in V ′. But then w has an outgoing arc
towards A□, so w should have been in A□ already. So the play
cannot enter A□.

In all cases, the play is winning for player i, so σ is a
winning strategy for player i from v in P . Because v ∈ V ′ was
arbitrary and because we already know the winning strategies
for v ∈ A◇ ∪A□, we have V = W◇ ∪W□. ■

201

7 A Formal Proof of Positional Determinacy

7.3 Isabelle Primer

We would like to sketch a few key technical points of our formal
proof. However, this requires a little familiarity with the Is-
abelle/HOL system. A thorough introduction to Isabelle/HOL
is given in [NPW16], which is a more recent version of [NPW02].

Because that introduction has over 200 pages, we will here
present a heavily summarized and shortened tutorial sufficient
to give the reader an idea of how our formal proof in this
system works. Note that we will pick and choose and present
mostly the aspects of Isabelle/HOL that are relevant to our
formal proof and omit many features that you would see in a
more general introduction.

If you are already familiar with Isabelle/HOL, you may
safely skip ahead to Section 7.4 on page 226, where we will
present the formal proof of positional determinacy.

7.3.1 Syntax

Syntactically, Isabelle/HOL distinguishes between the outer
syntaxsyntax and the inner syntax. Intuitively, the inner syntax de-
scribes formulas and the outer syntax describes the scaffolding
of a proof. For now, let us assume for simplicity that every
mathematical formula that we encounter, such as ∀x.P (x) or
∃y.f(x) = y, is an example of inner syntax.

Of course, the inner syntax has strict syntax rules, but
the above are proper examples of formulas written in inner
syntax because Isabelle/HOL accepts and understands Unicode
characters such as ∀, and the grammar of the inner syntax is
extremely flexible.

The default is to parse a proof text according to the rules

202

7.3 Isabelle Primer

of the outer syntax and all strings enclosed in ". . . " or ⟨. . . ⟩
according to the rules of the inner syntax. So it is easy to
distinguish if something is outer syntax or inner syntax.

7.3.2 Context

One of the most fundamental parts of a proof in Isabelle/HOL
is the context context. Essentially no matter where we are in a proof
document, at every cursor position there is a current context.

A simple context consists of a finite set of known facts factsand
a finite set of goals, the formulas that we want to prove.

A theory context is special in the sense that it has no goals,
only a set of known facts. theory

context
After a tiny setup, every proof

document starts in a theory context.
A context is local local contextif it is not a theory context. Every known

fact in a theory context is called a lemma, a theorem, a corollary,
or a proposition (which are all the same internally). Other
than that, a theory context is not much different from local
contexts, except that most keywords for manipulating contexts
have different names and different syntax in theory contexts
and in local contexts.

There is one more minor complication: Every local context
can be in one of two modes: state mode or modeprove mode. Tech-
nically, there is more, but we simplify here for the purposes
of this exposition. The rule of thumb is that we are always
in state mode except under certain circumstances that we will
point out.

Let us begin with a very simple lemma, a lemma stating
“A∧B”. We note that as a general lemma, this will be unprovable
(and false) unless A and B have definitions evaluating to equal
objects.

203

7 A Formal Proof of Positional Determinacy

The reason is that as a general lemma, A and B will be
implicitly universally quantified, so the lemma states that “A
and B” is true for every A and every B, which is obviously
false.

Let us assume for now that A and B are something mean-
ingful. We will soon see how we can add local assumptions to
write a lemma of the form “A and B implies A ∧B”, which is
true also with the implicit universal quantification of variables.

Going back to our simple lemma stating A∧B, we can write
this in a theory context as

lemma "A ∧ B" proof-
...

This opens a new local context with the single goal A ∧ B
and a set of known facts consisting of every lemma and every
theorem known to the system.

Directly before proof-prove mode in the above line, the new local
context already exists, but it is in prove mode. The keyword
proof-state mode switches the context into state mode. This is a minor
technicality but useful to know because most keywords are valid
only in one of the two modes. For example, proof - is valid
only in prove mode and lemma is valid only in state mode
(however, as we will see, lemma is invalid in local contexts).

In the Isar language, a good first approximation is that we
can never modify a goal in state mode, only remove them, and
that in the end we want to have an empty set of goals. If the
set of goals becomes empty, then we consider the current local
context as done and can close it with the keyword qed.

As one might expect, we can remove a goal X and consider
it solved by adding X to the set of known facts. Here it is

204

7.3 Isabelle Primer

crucial that exactly X must become a known fact. For example,
the goal A ∧B will not be considered solved if B ∧A becomes
a known fact.

7.3.3 Adding New Facts
The main way to manipulate a local context is the keyword
have, which adds something to the set of known facts. This
corresponds to lemma, which does the same to a theory con-
text. They keyword lemma is invalid in local contexts and
have is invalid in theory contexts, but apart from that they
are essentially the same. For example, consider the line

have "A ∧ B" proof-
...

This line is perfectly equivalent to the lemma line we saw above.
The only difference if that lemma is for theory contexts and
have is for local contexts. We can also think of have as adding
local lemmas to the local context.

This example with have adds the formula A∧B to the set of
known facts in the current local context. Analogous to lemma,
proof- opens a local context with the single goal A ∧B.

7.3.4 Solving Goals
For readability, the Isabelle/HOL system insists on seeing the
keyword show instead of have when we want to solve a goal in
a local context. The keyword show works exactly the same as
have except that in addition to adding the formula to the set
of known facts, it also marks the matching goal as solved and
removes this goal from the set of goals (and fails if it cannot

205

7 A Formal Proof of Positional Determinacy

find a matching goal). So in order to finish the proof of A ∧B
in the local context, we would need to write

show "A ∧ B" ...

In all other aspects, show is identical to have. In particular,
show is invalid in a theory context.

If there is only one goal, then ?thesis (optionally with quota-
tion marks) is an abbreviation for this goal. So you will often
see proofs ending with

show ?thesis ...

So the general structure of a proof of a lemma will be as
follows.

lemma shows "A ∧ B" proof-
...
show "A ∧ B" ...

qed

We can write qed here to finish the proof because show removes
the single goal from the context, leaving us with a context with
no more goals.

7.3.5 Assumptions

Most lemmas in mathematics are of some form of implication
such as “A and B implies A ∧B”. We write these implications
in Isabelle/HOL as A =⇒ B =⇒ A ∧ B, where =⇒ is right-
associative.

206

7.3 Isabelle Primer

However, for technical reasons this form turns out to be
inconvenient for proving all but the simplest of lemmas. The
reason is that the local context of such a lemma contains the
single goal A =⇒ B =⇒ A∧B and no additional facts, whereas
we would like to have the single goal A∧B with the additional
facts A and B.

Whenever we have a local context with a goal of the form
of an implication A =⇒ B, we can pull the assumption A into
the set of known facts by writing assume ”A” somewhere in
the local context.

For example, we can write

lemma shows "A =⇒ B =⇒ A ∧ B" proof-
assume "A" and "B"
...
show "A ∧ B" ...

qed

But there is an easier way. We can write our lemma as
follows.

lemma assumes "A" and "B" shows "A ∧ B" proof-
...
show "A ∧ B" ...

qed

Then our local context automatically contains the additional
facts A and B and the single goal A∧B, as expected. When the
proof is done, then the above lemma adds to the set of facts of
the enclosing theory context the new fact A =⇒ B =⇒ A ∧B.

207

7 A Formal Proof of Positional Determinacy

This is the same as if we would have written

lemma "A =⇒ B =⇒ A ∧ B" proof-
...

So in the end, using assumes. . . shows makes no difference, it
only simplifies the local context created for proving the lemma.

When adding local facts with have or show, we can do
exactly the same, but the syntax is completely different. It is
a postfix syntax as follows.

have "A ∧ B" if "A" and "B" proof-
...

show "A ∧ B" ...
qed

Other than the different way of writing this, this is completely
equivalent to the assumes. . . shows syntax for lemma.

Let us summarize with Table 7.1 the differences between
the three keywords that introduce new facts. There are more
differences, but these are the most important ones.

Let us also remark here that the keywords theorem, propo-
sition, and corollary all are aliases for lemma. They can
make proofs more readable but their distinction has no rele-
vance to the Isabelle/HOL system.

7.3.6 Proving Facts
Of course, we cannot add something to the set of known facts
by simply saying with lemma, have, or show that we would
like to do so. We need to prove that the new fact really follows
logically from the currently known facts. This is why in place

208

7.3 Isabelle Primer

le
m

m
a

ha
ve

sh
ow

P e
rm

iss
ib

le
on

ly
in

th
eo

ry
co

nt
ex

t
on

ly
in

lo
ca

lc
on

te
xt

on
ly

in
lo

ca
lc

on
te

xt

Sp
ec

ia
lf

ea
tu

re
—

—
lo

ok
s

fo
r

an
d

re
m

ov
es

m
at

ch
in

g
go

al

A
an

d
B

im
pl

ie
s
A
∧
B

le
m

m
a

as
su

m
es

”A
”

an
d

”B
”

sh
ow

s
”A
∧

B
”

ha
ve

”A
∧

B
”

if
”A

”
an

d
”B

”
sh

ow
”A
∧

B
”

if
”A

”
an

d
”B

”

Ta
bl

e
7.

1:
D

iff
er

en
t

ke
yw

or
ds

fo
r

pr
ov

in
g

ne
w

fa
ct

s

209

7 A Formal Proof of Positional Determinacy

of the ellipsis . . . in our examples, we need to indicate to the
Isabelle/HOL system how it can derive the new fact A ∧ B
from the current set of known facts.

As mentioned before, when we write a global or local lemma
with lemma, have, or show, immediately after the statement
is the only place where a local context is in prove mode. As the
name indicates, this is the mode where we can prove something.

There are essentially two ways to tell the Isabelle/HOL
system how it can prove something from the set of known
facts. One is to write proof- to switch to state mode. The
new local context then has the same set of known facts as the
enclosing context, but the single goal is now A ∧B. Switching
the local context to state mode, showing all goals with show
and then closing the context with qed is the usual way of
proving non-trivial facts.

So we could write

lemma "A ∧ B" proof-
show "A ∧ B" proof-

...

But this gets us nowhere. The context after the show is exactly
the same as the enclosing context; it consists of the single goal
A ∧B, and the set of known facts is unchanged.

7.3.7 Proof Methods

The other way of proving facts is the keyword by, valid only in
prove mode, followed by the name of a proof method. There is
a large number of proof methods in Isabelle/HOL, and many
of them have numerous customization options. Proof methods

210

7.3 Isabelle Primer

make up a large part of the complexity of Isabelle/HOL from
a user’s perspective.

Probably the most common methods are blast, simp, and
auto, which implement first-order solvers, simplifications, and
heuristics to prove statements. Usually, auto can solve more
complex statements than blast or simp, but this is not always
the case. In practice, one may need to try several methods
until one succeeds.

In our case of proving A∧B from A and B, all three methods
work fine. So one would expect the following line to be a correct
Isar proof.

lemma assumes "A" and "B" shows "A ∧ B" by blast

Unfortunately, this line will be marked red in the visual editor
Isabelle/JEdit and receive the unspecific error “Failed to apply
initial proof method”.

This error is a common cause of frustration among new
Isabelle users. But the reason here is obvious in hindsight if
you know how blast works.

What happens here is that blast does not look at the whole
set of known facts because it is huge (it contains every lemma
and every theorem proved so far). We need to explicitly tell
the proof method with the keyword using which of the known
facts it should consider, quoting facts by enclosing them in
⟨. . . ⟩.

So a correct proof is the following.

lemma assumes "A" and "B" shows "A ∧ B"
using ⟨A⟩ ⟨B⟩ by blast

211

7 A Formal Proof of Positional Determinacy

A perfectly equivalent, but overly verbose, proof would be
the following.

lemma assumes "A" and "B" shows "A ∧ B" proof-
show "A ∧ B" using ⟨A⟩ ⟨B⟩ by blast

qed

7.3.8 Rules

One mystery that remains is how exactly blast manages to prove
the goal. Here is where the calculus called HOL (higher-order
logic) comes in, because blast uses the rules of the calculus
(and more) automatically. This calculus is defined in the Is-
abelle/HOL standard library in the file src/HOL/HOL.thy and
consists mainly of lemmas such as

lemma "P =⇒ Q =⇒ P ∧ Q"

This lemma says that P and Q together imply P ∧Q, where
P and Q are implicitly universally quantified. We can use this
lemma directly with the proof methodrule rule as follows.

lemma assumes "A" and "B" shows "A ∧ B"
using ⟨A⟩ ⟨B⟩ by (rule ⟨P =⇒ Q =⇒ P ∧ Q⟩)

The rule method looks at the currently available facts (made
available by using) and tries to match these facts with the
assumptions of the rule and the current goal with the conclusion
of the rule. If at any point the matching fails, then the method
fails.

212

7.3 Isabelle Primer

Formally, the matching is done by unification unification. The uni-
fication process takes two formulas and instantiates the free
variables in both formulas in such a way that the two formula
become identical.

In the case of the above proof, the rule method works fine
because we easily have an exact match (P to A and Q to
B). But we see that it is very inconvenient to manually quote
lemmas like this. This is why Isabelle/HOL allows named facts.

7.3.9 Naming Facts
As we saw, in order to use a lemma, we need to quote it like ⟨P
=⇒ Q =⇒ P ∧ Q⟩. This quickly becomes unwieldy, especially
the more complex a lemma gets. There is a way of naming
facts by writing an identifier followed by a colon in front of the
fact, as illustrated by this lemma from the HOL library.

lemma conjI: "P =⇒ Q =⇒ P ∧ Q"

This allows us to quote this lemma by writing conjI instead of
⟨P =⇒ Q =⇒ P ∧ Q⟩. Naming facts works for every keyword
that introduces new facts into a context, so in particular it
works for lemma, have, and show.

So our proof of A ∧B can be simplified to

lemma myConjI: assumes "A" and "B" shows "A ∧ B"
using ⟨A⟩ ⟨B⟩ by (rule conjI)

We also named our lemma myConjI to illustrate where the
identifier goes in the assumes. . . shows syntax.

Again, proof by rule is possible, but usually it is easier to
use other, more powerful proof methods such as auto. However,

213

7 A Formal Proof of Positional Determinacy

if you know exactly which lemma you want to apply, then rule
may be preferable.

7.3.10 Finding Facts

One question that probably every beginner asks is how to
find the name of a lemma, for example conjI. Finding useful
lemmas among the existing lemmas is crucial for successful
formalizations. The HOL library defines explicitly more than
10,000 lemmas, each with its own name (one of which is conjI).
In addition to this, it defines many lemmas implicitly via
definitions, locales, and other syntactic features (we will explain
some of them later). It is reasonable to assume, and true, that
many non-trivial results already exist in some form, but it
seems hopeless to find them.

Fortunately, there are several ways of finding lemmas. One
way is to guess the name of the lemma such as conjI. This
works for basic lemmas because the HOL library aims to follow
a consistent naming scheme.

Arguably the most productive way to find lemmas in Is-
abelle2016 is to run sledgehammersledge-

hammer
on a statement. This takes

a few seconds and can be achieved either by clicking the sledge-
hammer button in the visual editor or by writing “sledgeham-
mer” in prove mode where the proof should go. Sledgehammer
is a powerful tool of Isabelle/HOL that applies heuristics and
calls external SAT and SMT1 solvers to come up with a fully
automatic proof.

Another method of finding useful lemmas is to read the HOL
1SMT stands for “satisfiability modulo theories”. These are first-order

solvers with a background theory such as the theory of the natural
numbers.

214

7.3 Isabelle Primer

library. The HOL library is mostly well-organized and easy to
browse, so even though it has more than 10,000 lemmas, it is
feasible to find specific lemmas if you broadly know what you
need. This works well if the lemma already exists in slightly
different form than what you need, preventing sledgehammer
from finding it. For example the pigeonhole principle has many
different forms of stating it and the HOL library contains only
a selection of these variants.

Yet another way to find lemmas is the interactive theorem
search in Isabelle/jEdit. Here you can enter some assumptions
and goals and it looks for matching lemmas. This search can
sometimes be fickle, so the author had less success using this
method.

All the above assumes that you have a specific lemma or local
fact that you expect to prove with a one-line proof. Coming up
with good local facts or good lemmas is a whole other category.
The mentioned tool sledgehammer does not help here. This is
the point where you need to come up with the right lemmas,
theorems, data structures and predicates so that in the end
you have a complete proof. This is the creative and difficult
part in writing a formal proof, and essentially no different from
writing a proof on paper in detail.

7.3.11 Quantification

Up to now, we skipped over quantification of variables and said
that everything undefined is implicitly universally quantified.
While this is mostly true, in some cases it is preferable (and
sometimes necessary) to make quantification explicit.

Let us revisit the definition of context. We introduced
contexts (theory and local contexts) as a set of known facts

215

7 A Formal Proof of Positional Determinacy

together with a set of goals. What we omitted was that a
context also contains a list of fixed variables.

Every new variable that a lemma introduces in its statement
automatically becomes a fixed variable in the local context
created by this lemma. A theory context also has a list of fixed
variables; we will see later in sections 7.3.14 and 7.3.15 how to
add variables to this list.

A lemma such as

lemma "A" and "B" shows "A ∧ B"

cannot be fully understood without knowing the list of fixed
variables of the enclosing theory context. If A and B are not
fixed, then the lemma implicitly universally quantifies A and
B, and the lemma might as well talk about P and Q or any
other pair of fresh variables.

If, however, A and B are fixed by the enclosing theory
context, then the lemma talks about the same A and B as the
theory context. The theory context might contain other facts
about A and B, and those will be available in the proof of the
lemma.

There are two ways for a variable that occurs free in the
statement of a lemma to become a universally quantified
variable for this lemma:

1. If it is not fixed in the enclosing context or

2. if it is explicitly universally quantified in the statement
of the lemma (introduced below).

Arguably, in the second case the variable is not free, but the
explicit quantification does not usually happen in the inner
syntax, as we will see.

216

7.3 Isabelle Primer

Universal quantification in the first case does not apply
to local lemmas stated with have/show; local lemmas must
always quantify their new variables explicitly.

As with most language features, the syntax of universal quan-
tification universal

quantifica-
tion

of variables is different for lemma and for have/show.
For lemma, universal quantification of A and B uses the key-
word fixes, as follows.

lemma fixes A and B assumes "A" and "B"
shows "A ∧ B"
using ⟨A⟩ ⟨B⟩ by (rule conjI)

In contrast to this, the postfix notation for have/show is
reversed and looks as follows.

have "A ∧ B" if "A" and "B" for A and B
using ⟨A⟩ ⟨B⟩ by (rule conjI)

We already introduced the notation A =⇒ B for assumes
”A” shows ”B”. Similarly, explicit universal quantification can
be incorporated into this notation with the operator

⋀
, read

“for all”. So an equivalent way of stating the local lemma above
is:

have "
⋀

A B. A =⇒ B =⇒ A ∧ B" by (rule conjI)

We do not need using here because, as discussed in Sec-
tion 7.3.5, the single goal is A =⇒ B =⇒ A ∧ B, so the
assumptions are already available.

The reader might have noticed that existential quantification existential
quantifica-
tion

is suspiciously absent. The reason is that the quantification

217

7 A Formal Proof of Positional Determinacy

described so far is the low-level quantification of Isabelle/Pure,
the foundation of Isabelle/HOL, which does not have existential
quantification. Instead, existential quantification is modeled
via two rules defined by Isabelle/HOL:

lemma exI:
shows "P x =⇒ ∃ x. P x"

lemma exE: assumes "∃ x. P x" and "
⋀

x. P x =⇒ Q"
shows "Q"

The lemma exI says that if P x holds for some fixed P and
some witness x, then we can conclude that ∃x. P x holds. The
lemma exE says that if ∃x. P x is true and if every x satisfying
P x yields a true Q, then Q must be true (by simply plugging
into the second assumption the witness whose existence the first
assumption postulates). These two rules allow us to introduce
and eliminate ∃ without knowing anything else about ∃.

For syntactical reasons, the universal quantifier
⋀

cannot
occur arbitrarily nested inside of terms, so Isabelle/HOL defines
similarly a universal quantifier ∀ and two rules for introducing
and eliminating ∀. Whenever possible, it is best to prefer⋀

over ∀, because ∀ introduces another layer of indirection,
making lemmas using ∀ harder to apply in practice.

Similarly, Isabelle/HOL defines −→ as logical implication
because =⇒ cannot occur arbitrarily nested inside of terms.
Here, too, it is best to prefer =⇒ whenever possible.

Although the rule exI for ∃-introduction looks like construc-
tive mathematics where we can only prove ∃x. P x by con-
structing a witness term t such that P t holds, Isabelle/HOL
is not constructive. Together with the other rules such as
classical proof by contradiction (¬P =⇒ ⊥) =⇒ P and the

218

7.3 Isabelle Primer

rules for ∀, it is easy to derive non-constructive rules such as
(∀x. ¬P x =⇒ ⊥) =⇒ ∃x. P x.

7.3.12 Types

Up to now we successfully ignored types typesbecause Isabelle/HOL
offers good type inference, so explicit type annotations are
rarely necessary. Let us remark that if a term τ has type ′a,
then this is denoted as τ :: ′a.

The type system of Isabelle/HOL is based on the simply
typed λ-calculus [Chu40] and uses Hindley-Milner type infer-
ence. Most types are built inductively according to few rules.

• Basic types such as nat, the type of the natural numbers,
and bool, the type containing the two elements true and
false.

• Type variables such as ′a, standing for an arbitrary but
fixed type.

• Function types ′a⇒ ′b. An element of ′a⇒ ′b is a total
function mapping elements of type ′a to elements of type
′b.

• Set types ′a set. This is the type containing all sets of
elements of type ′a.

• Tuple types ′a× ′b containing all tuples (x, y) with x :: ′a
and y :: ′b.

• Record types. These correspond to records in program-
ming languages and are basically extensible tuple types
with names for the individual entries.

219

7 A Formal Proof of Positional Determinacy

• Alias types. The keyword type synonym declares that
a type is an alias for a different type.

• Algebraic and coalgebraic datatypes such as finite or
infinite lists. We will introduce these in Section 7.5.2.

7.3.13 Exploring Facts
When you know the name of a fact, you can print its meaning
with print statement. This is very useful for debugging the
current context or for exploring available facts. For example,

print statement myConjI

This prints the following, no matter whether we explicitly or
implicitly quantified our variables.

theorem myConjI:
fixes A :: "bool" and B :: "bool"
assumes "A" and "B"
shows "A ∧ B"

As you see, this is identical to the lemma that we wrote, except
that it defaults to theorem instead of lemma (which is the
same) and that it adds type annotations to the variables.

A variant of print statement is thm. The output is similar
but much more concise. For example, thm myConjI prints only

" [[?A; ?B]] =⇒ ?A ∧ ?B"

The technical details are of little importance here, but the
question marks here identify variables that are universally

220

7.3 Isabelle Primer

quantified on a low level, and [[?A; ?B]] =⇒ ?A ∧ ?B is an
abbreviation for ?A =⇒ ?B =⇒ ?A ∧ ?B, a syntax we have
already seen.

7.3.14 Definitions

Definitions definitionsare very simple in Isabelle/HOL. Say we would like
to define a function f(x) = x+ x on natural numbers (or more
generally, on anything that has an addition operator), then we
can give this definition to Isabelle/HOL as follows.

definition definition"f x ≡ x + x"

From this syntax, Isabelle/HOL automatically determines that
we want to define f as a function with one parameter. Essen-
tially all this does semantically is to introduce a new constant
f of the appropriate function type together with the following
lemma, which is proved automatically.

lemma f_def: fixes x shows "f x ≡ x + x"

The symbol ≡ denotes equivalence in Isabelle/Pure, the un-
derlying framework of Isabelle/HOL, and is necessary in the
definition for Isabelle/HOL to determine which symbol we want
to define.

There is also a long form for definitions:

definition f :: "nat ⇒ nat" where "f x ≡ x + x"

The long form makes the defined symbol and optionally the

221

7 A Formal Proof of Positional Determinacy

type explicit. Apart from this, the long form is equivalent to
the abbreviated form.

The keyword definition is valid only in a theory context. As
with most language features, local contexts have an equivalent
keyword called defdef . The keyword def has no long form, it has
only an abbreviated form with the additional restrictions that
the defined symbol cannot have parameters and that it must
be outside the quotes:

def f ≡ "λx. x + x"

def lacks the syntactic sugar for defining f x directly. Instead
we need to define f as a lambda functionlambda

function
. In general, a term

of the form λx. t describes a function with one parameter
evaluating to t[x/a] on input a, where t[x/a] denotes the result
of substituting in t all free occurrences of x by a. In the end,
this is almost equivalent to the direct definition of f x, the
only difference being that for definition, the lemma f def
says f x ≡ x+ x, but for def, f def says f ≡ λx. x+ x.

The introduction of the lemma f def (by definition or by
def) means that later in proofs we can work with f as an
opaque function, and whenever we need to use the definition
of f , we can prove a local lemma with

have ... using f_def ...

Another way, stating the intention more clearly, is to use
unfolding instead of using. This also makes sure that f˙def
will be used to unfold every occurrence of f and then be
forgotten, so that the proof method afterwards sees neither f

222

7.3 Isabelle Primer

nor f˙def. This usually makes unfolding preferable over using,
when possible.

have ... unfolding f_def ...

We can add an arbitrary number of using and unfolding
clauses in any order. An unfolding statement applies to all
facts that appear before it in the have line, as well as the goal.
Note that this means that unfolding is one of the commands
that manipulates a goal without removing it. This is fine,
because we are in prove mode.

7.3.15 Locales

In the context of a mathematical theory, for example graphs,
we usually prove many lemmas that start with “Let G be a
graph”. We could quantify G and add the assumption that G
is a graph to each lemma individually. But Isabelle/HOL offers
a simpler way called a locale locale.

A locale opens a new theory context but with some additional
variables and some additional facts that we can choose freely.
In particular, because it is a theory context and not a local
context, in a locale we can use lemma to add a fact to the
locale, but not have. If we add a lemma, then the same fact
will be added to the enclosing theory context, enriched with
the assumption that the locale is satisfied.

Let us give a simple example.

locale L = fixes A B assumes a: "A" and b: "B" begin
lemma myConjI: "A ∧ B" using a b by blast

end

223

7 A Formal Proof of Positional Determinacy

The proof of the lemma myConjI works because A and B
are available as facts in the context of L.

Outside the locale, the lemma will not be available under
the name myConjI. But it will be available under the qualified
name L.myConjI in slightly different form. If we look at the
definition of L.myConjI with print statement, we find

theorem L.myConjI:
fixes A :: "bool" and B :: "bool"
assumes "L A B"
shows "A ∧ B"

We see that the locale introduced a predicate L with two
parameters. The definition of this predicate should reflect the
assumptions of the locale. And indeed it does, because the
locale automatically proves the following lemma.

theorem L.intro:
fixes A :: "bool" and B :: "bool"
assumes "A" and "B"
shows "L A B"

7.3.16 Further Reading
There are many more very useful features of Isabelle/HOL that
we did not mention. One example is algebraic (co-)datatypes,
which we will introduce later. As a first approximation for the
rest of Isabelle/HOL, you may safely assume that everything
we introduced has dozens of special cases and extensions that
we skipped.

For example, the dash at the end of proof- is called the
initial proof methodinitial proof

method
. An initial proof method modifies the

224

7.3 Isabelle Primer

newly created context, including the goals, before switching
to state mode. The initial proof method does not need to be
the no-op method denoted by the dash. Usually, however, it
is advisable to only use simple rules or induction rules as the
initial proof method, and to avoid complex methods such as
auto, simp, and similar because of the unpredictability of how
they affect the context.

Other important features are raw proof blocks raw proof
blocks

(another way
of adding local facts, equivalent to have) and final proof meth-
ods final proof

methods
. Similar to an initial proof method you can also provide

a final proof method after qed to prove the remaining goals,
which can be useful if the remaining goals are very simple to
prove, for example by simp.

Another aspect that we ignored are the many different ways
of how to present local facts to proof methods and the many
abbreviations for commonly used statements such as “use the
previous fact”. Yet another aspect that we did not mention is
how to instantiate existentially quantified variables. This is
nothing essentially new if you know contexts, but of course it
has its own syntax and its own quirks.

For details on these and more features, we refer the reader to
the Isabelle/HOL documentation [NPW16]. However, in order
to effectively write formal proofs you also need to know what
theories already exist. In Section 7.3.10, we already gave some
advice on how to find interesting lemmas. We recommend to
everyone who wants to learn to write formal proofs to read
existing theories of high quality. We think that the primary
source of high-quality theories should be the HOL source code
in the directory src/HOL/ in the Isabelle home directory.

The reader should be aware that the quality of the theories
published on the Archive of Formal Proofs varies wildly, partly

225

7 A Formal Proof of Positional Determinacy

due to old theories written in an outdated style called the apply
styleapply style , that modern Isabelle/HOL has deprecated. In the apply
style, you do not only add new facts to a context like we did,
but instead you freely modify the goals and known facts directly
(still according to the logic, of course), usually without saying
what the result should be, only specifying the methods, by
staying in prove mode for an extended length. This can make
proofs hard to read because by specifying only the methods
and not the results, the current state of the context is difficult
to determine.

7.4 The Formal Proof
After this very broad overview over Isabelle/HOL, let us come
back to the proof of positional determinacy of parity games.
The formal proof of Lemma 7.2 and of Theorem 7.3 can be
found in the file PositionalDeterminacy.thy of [Dit15]. The
main result expressed in the Isar language reads as follows.

theorem partition_into_winning_regions:
shows

"V = winning_region Even ∪ winning_region Odd"
and
"winning_region Even ∩ winning_region Odd = {}"

Let us look into the definition of winning region, where
p ∈ {◇,□} is a player.

definition "winning_region p ≡
{ v ∈ V. ∃σ.

strategy p σ ∧ winning_strategy p σ v }"

226

7.4 The Formal Proof

This defines the (positional) winning region of player p as
the set of vertices for which there exists a strategy σ for player p
which is a winning strategy from v. Let us look at the next
definition.

definition "winning_strategy p σ v ≡
∀ P. vmc_path G P v p σ −→ winning_path p P"

A strategy σ is a winning strategy from a vertex v for a
player p if all valid maximal σ-conforming paths are winning
paths for player p. Here we use the abbreviation vmc path
for the concept of “valid maximal σ-conforming path”, where
“valid” simply means that the path walks along arcs.

Consider again the statement of Lemma 7.2, which proves
positional determinacy without dead ends. The full statement
and proof of this lemma is as follows.

theorem positional_strategy_exists_without_deadends:
assumes "v ∈ V" "

⋀
v. v ∈ V =⇒ ¬deadend v"

shows "∃ p. v ∈ winning_region p"
using assms ParityGame_axioms

by (induct "card (ω ‘ V)"
arbitrary: G v rule: nat_less_induct)

(rule
ParityGame.positional_strategy_induction_step,
simp_all)

The basic idea is that the proof runs the induct tactic on the
cardinality of the set ω(V). In Isar notation, this is card (ω ‘ V).
The induction hypothesis should be:

For all games G = (V ′, E′, V ′
◇, ω

′) with |ω′(V ′)| <

227

7 A Formal Proof of Positional Determinacy

|ω(V)| and for all v ∈ V ′, there exists a player i
and a winning strategy σ for player i from v in G.

Because G and v are universally quantified in this hypothesis,
we need to declare these variables as “arbitrary” in the Isar
code. Finally, we use the rule nat less induct, which is a basic
induction rule for natural numbers without special treatment
of the case n = 0:(
∀n ∈ N.

(
∀m < n. φ(m)

)
=⇒ φ(n)

)
=⇒ ∀n ∈ N. φ(n).

The other key ingredient is ParityGame.positional strategy -
induction step, which is a lemma that proves the induction step.
This lemma contains the meat of the proof. The formalization
is rather long, but it stays very close to the informal proof of
Lemma 7.2 given in Section 7.2.

7.5 Technical Aspects
Let us now sketch a few technical aspects of our proof of Theo-
rem 7.3. The most important question in this formalization is
how to represent graphs (parity games) and paths with concrete
data structures.

7.5.1 Graphs

First, let us consider graphs and parity games. Mathematically,
a directed graph with loops is a tuple (V,E) of a set of vertices
and a set of arcs with E ⊆ V × V . In Isabelle/HOL we can
express this directly with records.

228

7.5 Technical Aspects

type synonym ’a Arc = "’a × ’a"
record ’a Graph =

verts :: "’a set" ("Vı")
arcs :: "’a Arc set" ("Eı")

locale Digraph =
fixes G (structure)
assumes valid_arc_set: "E ⊆ V × V"

First, we define an arc as a pair of vertices. As described
in Section 7.3.12, the syntax ′a denotes a type variable, that
is, a polymorphic type. In our case this means that the vertex
type could be any arbitrary but fixed type, for example the
type of natural numbers. A graph with vertex type ′a is then a
record consisting of a set of vertices and a set of arcs. A record
cannot have constraints such as E ⊆ V × V , so we declare a
simple locale enforcing this constraint. A locale is essentially
a context declaring some fixed variables together with some
assumptions.

The special declaration “(structure)” is only for conve-
nience. It allows us to write V and E most of the time without
explicitly referring to the graph G. If we omitted the struc-
ture keyword, we would need to write VG and EG every time,
adding useless clutter. This corresponds to our convention
in this thesis of writing V and E instead of V (G) and E(G)
whenever there is no confusion.

Even with this declaration, we have the option of explicitly
writing VG and EG whenever we want to, for example when
we prove a lemma mentioning more than one graph.

The symbol ı is special in the Isar language and represents
the current graph G in syntax declarations. This is why we
need to write V ı and not only V in the definition of the record.

229

7 A Formal Proof of Positional Determinacy

A parity game is a natural extension of the above record
and locale.

record ’a ParityGame = "’a Graph" +
player0 :: "’a set" ("V0ı")
priority :: "’a ⇒ nat" ("ωı")

locale ParityGame = Digraph G
for G :: "(’a, ’b) ParityGame_scheme" (structure)
+
assumes valid_player0_set: "V0 ⊆ V"

and priorities_finite: "finite (ω ‘ V)"

We extend the record with a set V◇, called V 0 in the code,
and with a function ω : V → N. The locale adds the restric-
tions that V◇ ⊆ V and that |ω(V)| is finite. Although not
necessary for the proof of positional determinacy, we refer to
ParityGame scheme instead of ParityGame to allow instantia-
tion of this locale with ParityGame-derived records.

We would like to mention that it is also possible to rep-
resent a graph as a function ′a ⇒ ′a ⇒ bool without further
assumptions. An example of this technique can be seen in the
formalization of a proof of König’s Lemma by Andreas Lochbih-
ler [Loc10]. This technique simplifies the representation in some
sense because it needs neither records nor additional assump-
tions. However, we believe that our approach is better suited
to prove results for parity games, because we do not require
that the set of vertices is UNIV :: ′a set, the universe of the
type ′a. Our approach allows arbitrary sets to be the set of
vertices, so it becomes easier to reason about subgraphs.

230

7.5 Technical Aspects

7.5.2 Paths

Compared to the definition of parity games, the definition of
a path is a far more subtle question. If a path could only be
finite, then the answer would be easy: Isabelle comes with
finite lists, so we can use these to define paths. Unfortunately,
the paths we need for parity games can be finite or infinite.
Ideally, we would like to handle both kinds in a uniform way
because for many proofs, the difference is irrelevant.

One approach is to recall basic mathematics, where infinite
sequences of vertices are usually formally defined as functions
N→ V . We can use this definition in Isabelle, too. However,
then the question arises of how to represent finite paths. There
are two natural choices that the author is aware of: One is
to use the option type, which defines V⊥ := V ∪ {⊥} with a
bottom element ⊥, and then require that a path f : N→ V⊥
either never becomes ⊥ or if it becomes ⊥, then it stays ⊥.

The other approach is to use functions f : N→ V and never
look at values beyond n with f(n) = v if v has no successors.

We found that both methods have a clear-cut distinction
between finite and infinite paths and they also make it rather
difficult to append, cut or extend paths.

Thus we looked at another method of defining paths and
found it with the coinductive lists developed by Andreas Lochbih-
ler in [Loc10]. To explain coinductive lists, let us first look at
the standard list definition (for finite lists) in Isabelle/HOL,
omitting a few non-essential parts:

datatype ’a List = Nil | Cons ’a "’a List"

This defines the algebraic datatype List inductively:

231

7 A Formal Proof of Positional Determinacy

1. Nil is a list.

2. If x has type ′a and if x′ is a list, then Cons x x′ is also
a list.

Everything not constructible by these two rules is not a list.
Thus, for ′a = N, the following are lists:

Nil
Cons 1 Nil
Cons 42 (Cons 0 Nil).

Coinductive lists, also called lazy lists, have a nearly identical
definition:

codatatype ’a LList = LNil | LCons ’a "’a LList"

The only difference besides different identifiers is the use
of codatatype instead of datatype. With codatatype, the
type contains all the elements that List contains, but also
infinitely nested elements such as

Cons 0 (Cons 1 (Cons 2 (Cons 3 (. . .)))).

Formally, the universe is defined as all things that can be
deconstructed with the two rules given in the definition:

1. LNil is a lazy list.

2. If x′ ̸= LNil is a lazy list, then there exists an x of type
′a and a lazy list y′ with x′ = LCons x y′.

232

7.5 Technical Aspects

Two lazy lists are equivalent if there exists a bisimulation
relating them. Formally, for two lazy lists x′, y′ to be the same
there must exist a relation R such that

1. R(x′, y′) holds.

2. For all lazy lists x′, y′: If R(x′, y′) holds, then
a) x′ = y′ = LNil or
b) There exists an x with x′ = LCons x x′′ and y′ =

LCons x y′′ and R(x′′, y′′).

Proof schemas like the above are also called coinductive
proofs.

The idea is that two lists are equivalent if and only if they are
observationally equivalent, which means that all finite prefixes
are equal. It follows that lazy lists allow indexing by natural
numbers, that is, every element of a lazy list is behind a finite
nesting of LCons constructors. There cannot be elements
beyond this, at some ordinal index greater or equal than ω,
because every such list would be equivalent to a list without
these unreachable elements.

This is what allows us to use coinductive lists to represent
paths in parity games: A coinductive list can represent a finite
or infinite, but still N-indexed, sequence of vertices.

For the sake of completeness we should add that technically,
the above notion of equivalence is a consequence of the imple-
mentation and not a definition. The conclusion that lazy lists
are N-indexed is also not a conclusion, but part of the internal
construction of codatatypes in Isabelle/HOL, which is based on
so-called bounded natural functors. The “bounded” part refers
to a cardinal bound, which in the case of lazy lists is ℵ0, the

233

7 A Formal Proof of Positional Determinacy

cardinality of the natural numbers. See [Bla+14] for the imple-
mentation and [TPB12] for the category-theoretic background
of the internal construction of codatatypes in Isabelle/HOL.

The great thing about codatatype is that it allows a unified
handling of finite and infinite elements by defining coinductive
predicates. Take for example the definition of a valid path:

coinductive valid_path :: "’a Path ⇒ bool" where
"valid_path LNil"

| "v ∈ V =⇒ valid_path (LCons v LNil)"
| " [[v ∈ V; w ∈ V; v→w; valid_path P;

¬lnull P; lhd P = w]]
=⇒ valid_path (LCons v P)"

We want to declare as valid all the paths that walk along
vertices and arcs, corresponding to Definition 2.3 on page 13.
The first case is that the empty path LNil is a valid path.
The second case is that if v ∈ V , then the path consisting of
only the vertex v is valid. For the last case, if v, w ∈ V and
(v, w) ∈ E (denoted as v→w in Isar), and if P is a non-empty
valid path whose first element is w, then LCons v P is also a
valid path.

Similarly, we define maximal and σ-conforming paths. With
coinductive lists, these definitions become fairly straight-forward,
and it turns out that the proofs are far simpler compared to
using functions f : N→ V as path representations.

To further simplify proofs about valid path, we prove the
following coinduction schema, where Q is an arbitrary predicate
on paths.

234

7.5 Technical Aspects

lemma valid_path_coinduct:
assumes major: "Q P"

and base: "
⋀

v P. Q (LCons v LNil) =⇒ v ∈ V"
and step: "

⋀
v w P. Q (LCons v (LCons w P))

=⇒ v→w
∧ (Q (LCons w P) ∨ valid_path (LCons w P))"

shows "valid_path P"

In English the lemma says that if the following three condi-
tions are true (for a fixed predicate Q), then P is valid path:

1. Q holds for P .

2. For all P = (v, . . .), if Q holds for P , then v ∈ V .

3. For all P = (v, w, . . .), if Q holds for P , then (v, w) ∈ E
and Q holds for (w, . . .) or (w, . . .) is a valid path.

Observe the similarities to the definition of equivalence of
coinductive lists.

7.5.3 Well-Ordered Strategies

We glossed over some detail in the informal proof of Lemma 7.2.
In particular, we completely ignored the construction of uniform
attractor and uniform winning strategies. More formally, let
P = (V,E, V◇, ω) be a parity game, S ⊆ V and i ∈ {◇,□}.

Let g be a map from V to non-empty sets of strategies and
< be a well-order on the set

⋃
g(S). We call g(v) the set of

good strategies on v. We want to prove the following lemma.

Lemma 7.4 Assume that for all v → w with v ∈ S and all
σ ∈ g(v) it holds that

235

7 A Formal Proof of Positional Determinacy

1. if v ∈ Vi and σ(v) = w, then σ ∈ g(w) and

2. if v /∈ Vi, then σ ∈ g(w).

Then there exists a strategy σ for player i on S such that for
every σ-conforming path in S there exists a suffix (v, . . .) of
this path and σv ∈ g(v) such that

1. v ∈ S and

2. (v, . . .) follows σv and

3. σv is <-minimal on all w ∈ (v, . . .).

The assumption of this lemma says that if σ is a good strategy
on v and if we follow σ, then it keeps being a good strategy.

Proof. Let σ′ be an arbitrary strategy and define σ as

σ(v) :=
{
σv(v) if v ∈ S ∩ Vi and σv is <-minimal in g(v)
σ′(v) otherwise.

By the assumption that good strategies are still good on suc-
cessors it is easy to see that σ has the property that every path
in S follows smaller and smaller strategies. Because our order
< is a well-order, it follows that eventually the path follows a
constant strategy. ■

Let us remark that the above is a more general case of
Lemma 3.62 on page 56. The approximations attrαi of attri,
defined in Section 3.2.3, immediately give us for every vertex
v ∈ attri(A) a positional strategy such that every conforming
play starting in v visits A. The above lemma shows that we
can merge all these different strategies for different v into one
uniform strategy for attri(A).

236

7.5 Technical Aspects

We formalize this statement as follows.

locale WellOrderedStrategies = ParityGame +
fixes S :: "’a set"

and p :: Player
— The set of good strategies on a vertex v
and good :: "’a ⇒ ’a Strategy set"
and r :: "(’a Strategy × ’a Strategy) set"

assumes S_V: "S ⊆ V"
— r is a wellorder on the set of all strategies
— which are good somewhere.
and r_wo:

"well_order_on {σ. ∃ v ∈ S. σ ∈ good v} r"
— Every vertex has a good strategy.
and good_ex: "

⋀
v. v ∈ S =⇒ ∃σ. σ ∈ good v"

— Good strategies are well-formed strategies.
and good_strategies:

"
⋀

v σ. σ ∈ good v =⇒ strategy p σ"
— A good strategy on v is also good on
— possible successors of v.
and strategies_continue:

"
⋀

v w σ. [[v ∈ S; v→w;
v ∈ VV p =⇒ σ v = w; σ ∈ good v]]

=⇒ σ ∈ good w"

For a given vertex v, we define a predicate minimal good -
strategy v on strategies that tells us if a strategy is good and
minimal. Formally,

definition "minimal_good_strategy v σ ≡
σ ∈ good v
∧ (∀σ’. (σ’, σ) ∈ r - Id −→ σ’ /∈ good v)"

237

7 A Formal Proof of Positional Determinacy

Here r−Id is the well-order without the reflexive pairs. This
is necessary because in Isabelle well-orders are reflexive.

Now for every v ∈ S, we can select the minimum strategy
from all good strategies of v:

definition "choose v ≡
THE σ. minimal_good_strategy v σ"

The THETHE operator is the definite description operator in Is-
abelle/HOL and can only be usefully applied to predicates that
are true for exactly one element. If f is such a predicate, then
the term

THE x. f x

denotes the unique x such that f x is true.
This lets us finally define the strategy we are after, the

strategy that uses the minimum strategy on all vertices of S.

definition "well_ordered_strategy ≡
override_on σ_arbitrary (λv. choose v v) S"

Here override on f g S overrides the function f with g on
the set S. Like in the informal proof above, this defines σ via a
case distinction: If v ∈ S, we use the minimal strategy of g(v),
and for v /∈ S, we use an arbitrary (but fixed) strategy.

Finally, we show that under these assumptions and defini-
tions, every path that stays in S eventually follows a constant
strategy.

We use this method for two theorems: First, we show that
every attractor has a uniform attractor strategy. Second, we

238

7.6 Conclusions

show that the winning region of player i

Wi = {v ∈ V | there exists a strategy σ for i
that is winning from v}

has a uniform strategy σ that is winning on all v ∈Wi.

7.6 Conclusions
We presented a formal proof of positional determinacy for
parity games. Hopefully, this proof will provide the foundation
for other formal proofs about parity games.

Possible future work would be, for example, to consider
parity games with infinitely many priorities. Surprisingly, such
games are positionally determined under certain conditions,
as shown by Erich Grädel and Igor Walukiewicz [GW06]. A
formalization of this result would extend ours.

Another interesting project would a formalization of the
modal µ-calculus, proving for example bisimulation invariance,
or even deeper theorems such as the strictness of the alternation
hierarchy, the finite model theorem or the completeness of an
axiomatization.

Furthermore, assuming we have a basic formalization of
the modal µ-calculus, proving the equivalence between modal
µ-calculus model checking and parity games seems well within
reach.

7.6.1 Time Complexity

However, there is one aspect that seems to be more difficult.
The equivalence between modal µ-calculus model checking and

239

7 A Formal Proof of Positional Determinacy

parity games is not only a mathematical equivalence between
satisfied formulas and winning players, but also a polynomial-
time equivalence (Corollary 4.8 on page 83).

We expect that proving polynomial-time equivalence be-
tween the Lµ model-checking problem and parity games will be
much harder because, as far as the author is aware, there is no
general framework in the Isabelle community for proving time
bounds of algorithms. The usual way of formally proving time
complexity is to add a time counter to the measured function,
counting for example the number of recursive calls and the
number of arithmetic operations, and then bounding the value
of this counter.

However, mathematically this is hardly satisfying because
this is an ad-hoc machine model. The proof crucially depends
on the human to make sure that the time counter really counts
all operations that should be counted. This mirrors English
language proofs where proving time bounds usually involves
a pseudo-code implementation with costs applied to certain
operations in a convincing, but due to the nature of pseudo-
code, ultimately informal way.

7.6.2 Turing Machines

Traditionally, complexity classes are introduced with a fixed
machine model such as Turing machines. We think that ideally,
a formalization for reasoning about time complexity should be
grounded in standard complexity theory by ultimately express-
ing everything in terms Turing machines. This is a daunting
task. It is so daunting that the author is unaware of any
formalization of even the basics of standard complexity theory.

The current state of the art, as of 2016, is a formalization

240

7.6 Conclusions

of multi-tape Turing machines by Andrea Asperti and Wilmer
Ricciotti [AR15] in the Matita theorem prover [Mat], which is
similar to Coq. They formalize a multi-tape universal Turing
machine simulating a mono-tape normal2 machine and prove
its correctness, but they have not yet proved its complexity nor
generalized it to simulating multi-tape machines. They observe
that working with Turing machines is fiddly, and rightly state
as their long-term goal the formalization of complexity theory
“at a convenient level of abstraction” removed from the gritty
details of states and transition functions.

Two years earlier, Jian Xu, Xingyuan Zhang and Christian
Urban [XZU13] came up with a different formalization of Tur-
ing machines. However, Asperti and Ricciotti criticize their
formalization as too complex and as not compositional enough,
and thus hard to work with [AR15]. Moreover, the machines in
Xu, Zhang and Urban’s formalization are not efficient enough
to be useful for developing complexity theory, although they
are perfectly suitable for computability theory (which was, to
be fair, the authors’ intention).

However, Turing machines are still very removed from how
people practically prove time bounds for their algorithms. The
practical way is a pseudo-code implementation with associated
costs for each instruction. For formal proofs, this is a problem
because obviously, there is no formal specification of pseudo-
code or we would call it “code”.

So a formal specification of pseudo-code would end up as
2A normal Turing machine has the alphabet {0, 1}, the set of states

{0, 1, . . . , k} and the initial state 0. It is a standard result from com-
plexity theory that every Turing machine with alphabet Γ running
in time T (n) can be simulated by a normal machine running in time
O(log |Γ|T (n)) [AB09, Claim 1.5].

241

7 A Formal Proof of Positional Determinacy

a formal specification of the semantics of some programming
language. This alone is a major project, as evidenced by,
for example, the recent formalization of the specification of
ECMAScript 5, more commonly known as JavaScript [Bod+14;
Jsc]. This specification measures more than 23,000 lines of
code written for the Coq proof assistant.

But even such a formalized specification is insufficient: We
need a formally verified translation of programs into equivalent
Turing machines if we want to stay within the traditional
framework of complexity theory. The scope of these problems
together is immense and makes it unlikely to see a formalization
of traditional complexity theory in the near future.

7.6.3 Restricted Graph Classes
Another aspect of parity games is that they can be efficiently
solved on many restricted classes of graphs, for example on
classes of bounded treewidth, bounded DAG-width, and more
(see Section 4.1.2 on page 77). In order to formalize correct-
ness or complexity proofs for these algorithms, we also need
formalizations of these restricted classes of graphs.

As of 2016 there is very little progress in this area, either.
One starting point, but also a work in progress, is a recent
formalization of tree decompositions by the author [Dit16]. We
are not aware of any other attempts of formalizing graphs of
bounded treewidth, bounded clique width or graphs bounded
by any of the directed width measures.

242

Bibliography
[AB09] Sanjeev Arora and Boaz Barak. Computational

Complexity – A Modern Approach. Cambridge Uni-
versity Press, 2009. isbn: 978-0-521-42426-4. url:
http://www.cambridge.org/catalogue/catalogue.
asp?isbn=9780521424264.

[AH76] Kenneth Appel and Wolfgang Haken. “Every planar
map is four colorable”. In: Bulletin of the American
Mathematical Society 82 (1976), pp. 711–712. doi:
10.1090/S0002-9904-1976-14122-5.

[AKR14] Saeed Akhoondian Amiri, Stephan Kreutzer, and
Roman Rabinovich. “DAG-width is PSPACE-com-
plete”. In: CoRR (2014). arXiv: 1411.2438.

[AKS04] Manindra Agrawal, Neeraj Kayal, and Nitin Saxena.
“PRIMES is in P”. In: Annals of Mathematics 160.2
(2004), pp. 781–793. doi: 10.4007/annals.2004.
160.781.

[AR05] Dorit Aharonov and Oded Regev. “Lattice prob-
lems in NP ∩ coNP”. In: J. ACM 52.5 (2005),
pp. 749–765. doi: 10.1145/1089023.1089025.

[AR15] Andrea Asperti and Wilmer Ricciotti. “A formal-
ization of multi-tape Turing machines”. In: Theor.
Comput. Sci. 603 (2015), pp. 23–42. doi: 10.1016/
j.tcs.2015.07.013.

243

http://www.cambridge.org/catalogue/catalogue.asp?isbn=9780521424264
http://www.cambridge.org/catalogue/catalogue.asp?isbn=9780521424264
http://dx.doi.org/10.1090/S0002-9904-1976-14122-5
http://arxiv.org/abs/1411.2438
http://dx.doi.org/10.4007/annals.2004.160.781
http://dx.doi.org/10.4007/annals.2004.160.781
http://dx.doi.org/10.1145/1089023.1089025
http://dx.doi.org/10.1016/j.tcs.2015.07.013
http://dx.doi.org/10.1016/j.tcs.2015.07.013

Bibliography

[Bab92] László Babai. “Bounded Round Interactive Proofs
in Finite Groups”. In: SIAM J. Discrete Math. 5.1
(1992), pp. 88–111. doi: 10.1137/0405008.

[BB07] Patrick Blackburn and Johan van Benthem. “Modal
logic: a semantic perspective”. In: Handbook of
Modal Logic. Ed. by Johan Van Benthem Patrick
Blackburn and Frank Wolter. Vol. 3. Studies in
Logic and Practical Reasoning. Elsevier, 2007, pp. 1–
84. doi: 10.1016/S1570-2464(07)80004-8.

[BC96] Girish Bhat and Rance Cleaveland. “Efficient Model
Checking via the Equational µ-Calculus”. In: Pro-
ceedings, 11th Annual IEEE Symposium on Logic
in Computer Science, New Brunswick, New Jer-
sey, USA, July 27-30, 1996. IEEE Computer So-
ciety, 1996, pp. 304–312. isbn: 0-8186-7463-6. doi:
10 . 1109 / LICS . 1996 . 561358. url: http : / /
ieeexplore.ieee.org/xpl/mostRecentIssue.
jsp?punumber=4265.

[BDK14] Mikolaj Bojańczyk, Christoph Dittmann, and Ste-
phan Kreutzer. “Decomposition theorems and model-
checking for the modal µ-calculus”. In: Joint Meet-
ing of the Twenty-Third EACSL Annual Conference
on Computer Science Logic (CSL) and the Twenty-
Ninth Annual ACM/IEEE Symposium on Logic in
Computer Science (LICS), CSL-LICS ’14, Vienna,
Austria, July 14 - 18, 2014. Ed. by Thomas A.
Henzinger and Dale Miller. ACM, 2014, 17:1–17:10.
isbn: 978-1-4503-2886-9. doi: 10.1145/2603088.
2603144. url: http://dl.acm.org/citation.
cfm?id=2603088.

244

http://dx.doi.org/10.1137/0405008
http://dx.doi.org/10.1016/S1570-2464(07)80004-8
http://dx.doi.org/10.1109/LICS.1996.561358
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4265
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4265
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4265
http://dx.doi.org/10.1145/2603088.2603144
http://dx.doi.org/10.1145/2603088.2603144
http://dl.acm.org/citation.cfm?id=2603088
http://dl.acm.org/citation.cfm?id=2603088

Bibliography

[Ben84] Johan van Benthem. “Correspondence Theory”. In:
Handbook of Philosophical Logic: Volume II: Ex-
tensions of Classical Logic. Ed. by D. Gabbay and
F. Guenthner. Dordrecht: Springer Netherlands,
1984, pp. 167–247. isbn: 978-94-009-6259-0. doi:
10.1007/978-94-009-6259-0_4.

[Ber+06] Dietmar Berwanger et al. “DAG-Width and Parity
Games”. In: STACS. Ed. by Bruno Durand and
Wolfgang Thomas. Vol. 3884. Lecture Notes in
Computer Science. Springer, 2006, pp. 524–536.
isbn: 3-540-32301-5. doi: 10.1007/11672142_43.

[Ber+10] Dietmar Berwanger et al. “Strategy construction
for parity games with imperfect information”. In:
Inf. Comput. 208.10 (2010), pp. 1206–1220. doi:
10.1016/j.ic.2009.09.006.

[Ber+12] Dietmar Berwanger et al. “The DAG-width of di-
rected graphs”. In: J. Comb. Theory, Ser. B 102.4
(2012), pp. 900–923. doi: 10.1016/j.jctb.2012.
04.004.

[BFL15] Florian Bruse, Oliver Friedmann, and Martin Lange.
“On guarded transformation in the modal µ-calculus”.
In: Logic Journal of the IGPL 23.2 (2015), pp. 194–
216. doi: 10.1093/jigpal/jzu030.

[BG04] Dietmar Berwanger and Erich Grädel. “Entangle-
ment – A Measure for the Complexity of Directed
Graphs with Applications to Logic and Games”. In:
LPAR. Vol. 3452. Lecture Notes in Computer Sci-
ence. Springer Berlin / Heidelberg, 2004, pp. 209–

245

http://dx.doi.org/10.1007/978-94-009-6259-0_4
http://dx.doi.org/10.1007/11672142_43
http://dx.doi.org/10.1016/j.ic.2009.09.006
http://dx.doi.org/10.1016/j.jctb.2012.04.004
http://dx.doi.org/10.1016/j.jctb.2012.04.004
http://dx.doi.org/10.1093/jigpal/jzu030

Bibliography

223. isbn: 978-3-540-25236-8. doi: 10.1007/978-
3-540-32275-7_15.

[BJG09] Jørgen Bang-Jensen and Gregory Gutin. Digraphs:
Theory, Algorithms and Applications. Second. Mono-
graphs in Mathematics. Springer, London, 2009.
isbn: 978-1-84800-997-4. doi: 10.1007/978- 1-
84800-998-1.

[BK08] Christel Baier and Joost-Pieter Katoen. Principles
of model checking. MIT Press, 2008. isbn: 978-0-
262-02649-9.

[Bla+14] Jasmin Christian Blanchette et al. “Truly Modular
(Co)datatypes for Isabelle/HOL”. In: Interactive
Theorem Proving - 5th International Conference,
ITP 2014, Held as Part of the Vienna Summer
of Logic, VSL 2014, Vienna, Austria, July 14-17,
2014. Proceedings. Ed. by Gerwin Klein and Ruben
Gamboa. Vol. 8558. Lecture Notes in Computer
Science. Springer, 2014, pp. 93–110. isbn: 978-3-
319-08969-0. doi: 10.1007/978-3-319-08970-
6_7.

[Bla+15] Jasmin Christian Blanchette et al. “Mining the
Archive of Formal Proofs”. In: Intelligent Computer
Mathematics - International Conference, CICM
2015, Washington, DC, USA, July 13-17, 2015,
Proceedings. Ed. by Manfred Kerber et al. Vol. 9150.
Lecture Notes in Computer Science. Springer, 2015,
pp. 3–17. isbn: 978-3-319-20614-1. doi: 10.1007/
978-3-319-20615-8_1.

246

http://dx.doi.org/10.1007/978-3-540-32275-7_15
http://dx.doi.org/10.1007/978-3-540-32275-7_15
http://dx.doi.org/10.1007/978-1-84800-998-1
http://dx.doi.org/10.1007/978-1-84800-998-1
http://dx.doi.org/10.1007/978-3-319-08970-6_7
http://dx.doi.org/10.1007/978-3-319-08970-6_7
http://dx.doi.org/10.1007/978-3-319-20615-8_1
http://dx.doi.org/10.1007/978-3-319-20615-8_1

Bibliography

[BLS99] Andreas Brandstädt, Van Bang Le, and Jeremy
P. Spinrad. Graph Classes: A Survey. Philadel-
phia, PA, USA: Society for Industrial and Applied
Mathematics, 1999. isbn: 978-0-89871-432-6. doi:
10.1137/1.9780898719796.

[BM88] László Babai and Shlomo Moran. “Arthur-Merlin
Games: A Randomized Proof System, and a Hier-
archy of Complexity Classes”. In: J. Comput. Syst.
Sci. 36.2 (1988), pp. 254–276. doi: 10.1016/0022-
0000(88)90028-1.

[Bod+14] Martin Bodin et al. “A Trusted Mechanised Java-
Script Specification”. In: Proceedings of the 41st
ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages. POPL ’14. New
York, NY, USA: ACM, 2014, pp. 87–100. isbn: 978-
1-4503-2544-8. doi: 10.1145/2535838.2535876.

[BS07] Julian Bradfield and Colin Stirling. “Modal mu-
calculi”. In: Handbook of Modal Logic. Ed. by Johan
Van Benthem Patrick Blackburn and Frank Wolter.
Vol. 3. Studies in Logic and Practical Reasoning.
Elsevier, 2007, pp. 721–756. doi: 10.1016/S1570-
2464(07)80015-2.

[BS12] Dietmar Berwanger and Olivier Serre. “Parity games
on undirected graphs”. In: Inf. Process. Lett. 112.23
(2012), pp. 928–932. doi: 10.1016/j.ipl.2012.
08.021.

[BSV03] Henrik Björklund, Sven Sandberg, and Sergei G.
Vorobyov. “A Discrete Subexponential Algorithm
for Parity Games”. In: STACS 2003, 20th Annual

247

http://dx.doi.org/10.1137/1.9780898719796
http://dx.doi.org/10.1016/0022-0000(88)90028-1
http://dx.doi.org/10.1016/0022-0000(88)90028-1
http://dx.doi.org/10.1145/2535838.2535876
http://dx.doi.org/10.1016/S1570-2464(07)80015-2
http://dx.doi.org/10.1016/S1570-2464(07)80015-2
http://dx.doi.org/10.1016/j.ipl.2012.08.021
http://dx.doi.org/10.1016/j.ipl.2012.08.021

Bibliography

Symposium on Theoretical Aspects of Computer
Science, Berlin, Germany, February 27 - March 1,
2003, Proceedings. Ed. by Helmut Alt and Michel
Habib. Vol. 2607. Lecture Notes in Computer Sci-
ence. Springer, 2003, pp. 663–674. isbn: 3-540-
00623-0. doi: 10.1007/3-540-36494-3_58.

[BSV04] Henrik Björklund, Sven Sandberg, and Sergei G.
Vorobyov. “Memoryless determinacy of parity and
mean payoff games: a simple proof”. In: Theor.
Comput. Sci. 310.1-3 (2004), pp. 365–378. doi: 10.
1016/S0304-3975(03)00427-4.

[CGR11] Sjoerd Cranen, Jan Friso Groote, and Michel A.
Reniers. “A linear translation from CTL* to the
first-order modal µ-calculus”. In: Theor. Comput.
Sci. 412.28 (2011), pp. 3129–3139. doi: 10.1016/
j.tcs.2011.02.034.

[Chu40] Alonzo Church. “A Formulation of the Simple The-
ory of Types”. In: J. Symb. Log. 5.2 (1940), pp. 56–
68. doi: 10.2307/2266170.

[Con92] Anne Condon. “The Complexity of Stochastic Games”.
In: Inf. Comput. 96.2 (1992), pp. 203–224. doi:
10.1016/0890-5401(92)90048-K.

[Dam94] Mads Dam. “CTL* and ECTL* as Fragments of the
Modal mu-Calculus”. In: Theor. Comput. Sci. 126.1
(1994), pp. 77–96. doi: 10.1016/0304-3975(94)
90269-0.

[Dev93] Keith Devlin. The Joy of Sets: Fundamentals of
Contemporary Set Theory. Undergraduate Texts
in Mathematics. Springer, New York, 1993. isbn:

248

http://dx.doi.org/10.1007/3-540-36494-3_58
http://dx.doi.org/10.1016/S0304-3975(03)00427-4
http://dx.doi.org/10.1016/S0304-3975(03)00427-4
http://dx.doi.org/10.1016/j.tcs.2011.02.034
http://dx.doi.org/10.1016/j.tcs.2011.02.034
http://dx.doi.org/10.2307/2266170
http://dx.doi.org/10.1016/0890-5401(92)90048-K
http://dx.doi.org/10.1016/0304-3975(94)90269-0
http://dx.doi.org/10.1016/0304-3975(94)90269-0

Bibliography

978-1-4612-6941-0. doi: 10.1007/978- 1- 4612-
0903-4.

[DG08] Anuj Dawar and Erich Grädel. “The Descriptive
Complexity of Parity Games”. In: CSL. Ed. by
Michael Kaminski and Simone Martini. Vol. 5213.
Lecture Notes in Computer Science. Springer, 2008,
pp. 354–368. isbn: 978-3-540-87530-7. doi: 10 .
1007/978-3-540-87531-4_26.

[DH04] Erik D. Demaine and Mohammad Taghi Hajiaghayi.
“Equivalence of local treewidth and linear local tree-
width and its algorithmic applications”. In: Proceed-
ings of the Fifteenth Annual ACM-SIAM Sympo-
sium on Discrete Algorithms, SODA 2004, New
Orleans, Louisiana, USA, January 11-14, 2004.
Ed. by J. Ian Munro. SIAM, 2004, pp. 840–849.
isbn: 0-89871-558-X. url: http://dl.acm.org/
citation.cfm?id=982792.982919.

[Die10] Reinhard Diestel. Graph Theory, 4th Edition. Vol. 173.
Graduate texts in mathematics. Springer, 2010.
isbn: 978-3-642-14278-9.

[Dit15] Christoph Dittmann. “Positional Determinacy of
Parity Games”. In: Archive of Formal Proofs (Nov.
2015). http : / / www . isa - afp . org / entries /
Parity_Game.shtml, Formal proof development.
issn: 2150-914x.

[Dit16] Christoph Dittmann. “Tree Decomposition”. In:
Archive of Formal Proofs (May 2016). http://isa-
afp.org/entries/Tree_Decomposition.shtml,
Formal proof development. issn: 2150-914x.

249

http://dx.doi.org/10.1007/978-1-4612-0903-4
http://dx.doi.org/10.1007/978-1-4612-0903-4
http://dx.doi.org/10.1007/978-3-540-87531-4_26
http://dx.doi.org/10.1007/978-3-540-87531-4_26
http://dl.acm.org/citation.cfm?id=982792.982919
http://dl.acm.org/citation.cfm?id=982792.982919
http://www.isa-afp.org/entries/Parity_Game.shtml
http://www.isa-afp.org/entries/Parity_Game.shtml
http://isa-afp.org/entries/Tree_Decomposition.shtml
http://isa-afp.org/entries/Tree_Decomposition.shtml

Bibliography

[DKT13] Zdeněk Dvořák, Daniel Král’, and Robin Thomas.
“Testing first-order properties for subclasses of sparse
graphs”. In: J. ACM 60.5 (2013), p. 36. doi: 10.
1145/2499483.

[DKT16] Christoph Dittmann, Stephan Kreutzer, and Alexan-
dru I. Tomescu. “Graph operations on parity games
and polynomial-time algorithms”. In: Theor. Com-
put. Sci. 614 (2016), pp. 97–108. doi: 10.1016/j.
tcs.2015.11.044.

[EC80] E. Allen Emerson and Edmund M. Clarke. “Char-
acterizing Correctness Properties of Parallel Pro-
grams Using Fixpoints”. In: Automata, Languages
and Programming, 7th Colloquium, Noordweijk-
erhout, The Netherland, July 14-18, 1980, Pro-
ceedings. Ed. by J. W. de Bakker and Jan van
Leeuwen. Vol. 85. Lecture Notes in Computer Sci-
ence. Springer, 1980, pp. 169–181. isbn: 3-540-
10003-2. doi: 10.1007/3-540-10003-2_69.

[EF99] Heinz-Dieter Ebbinghaus and Jörg Flum. Finite
model theory. Perspectives in Mathematical Logic.
Springer, 1999. isbn: 978-3-540-65758-3.

[EL86] E. Allen Emerson and Chin-Laung Lei. “Efficient
Model Checking in Fragments of the Propositional
Mu-Calculus (Extended Abstract)”. In: Proceedings
of the Symposium on Logic in Computer Science
(LICS ’86), Cambridge, Massachusetts, USA, June
16-18, 1986. IEEE Computer Society, 1986, pp. 267–
278. isbn: 0-8186-0720-3.

250

http://dx.doi.org/10.1145/2499483
http://dx.doi.org/10.1145/2499483
http://dx.doi.org/10.1016/j.tcs.2015.11.044
http://dx.doi.org/10.1016/j.tcs.2015.11.044
http://dx.doi.org/10.1007/3-540-10003-2_69

Bibliography

[Eve97] Howard Eves. Foundations and Fundamental Con-
cepts of Mathematics. Dover Books on Mathematics.
Dover Publications, Inc., 1997. isbn: 978-0486696096.

[FG06] J. Flum and M. Grohe. Parameterized Complexity
Theory. Texts in Theoretical Computer Science. An
EATCS Series. Secaucus, NJ, USA: Springer-Verlag
New York, Inc., 2006. isbn: 3540299521.

[FL09] Oliver Friedmann and Martin Lange. “Solving Par-
ity Games in Practice”. In: Automated Technol-
ogy for Verification and Analysis. Ed. by Zhiming
Liu and Anders Ravn. Vol. 5799. Lecture Notes in
Computer Science. Springer Berlin / Heidelberg,
2009, pp. 182–196. isbn: 978-3-642-04760-2. doi:
10.1007/978-3-642-04761-9_15.

[Fri09] Oliver Friedmann. “An Exponential Lower Bound
for the Parity Game Strategy Improvement Algo-
rithm as We Know it”. In: LICS. IEEE Computer
Society, 2009, pp. 145–156. isbn: 978-0-7695-3746-7.
doi: 10.1109/LICS.2009.27.

[Fri10] Oliver Friedmann. “The Stevens-Stirling-Algorithm
for Solving Parity Games Locally Requires Expo-
nential Time”. In: Int. J. Found. Comput. Sci. 21.3
(2010), pp. 277–287. doi: 10.1142/S0129054110007246.

[Fri11] Oliver Friedmann. “An Exponential Lower Bound
for the Latest Deterministic Strategy Iteration Al-
gorithms”. In: Logical Methods in Computer Science
7.3 (2011). doi: 10.2168/LMCS-7(3:23)2011.

251

http://dx.doi.org/10.1007/978-3-642-04761-9_15
http://dx.doi.org/10.1109/LICS.2009.27
http://dx.doi.org/10.1142/S0129054110007246
http://dx.doi.org/10.2168/LMCS-7(3:23)2011

Bibliography

[FS12] John Fearnley and Sven Schewe. “Time and Paral-
lelizability Results for Parity Games with Bounded
Treewidth”. In: ICALP (2). Ed. by Artur Czumaj
et al. Vol. 7392. Lecture Notes in Computer Science.
Springer, 2012, pp. 189–200. isbn: 978-3-642-31584-
8. doi: 10.1007/978-3-642-31585-5_20.

[FV59] Solomon Feferman and Robert L. Vaught. “The
first-order properties of algebraic systems”. In: Fun-
damenta Mathematicae 47 (1959), pp. 57–103.

[Gaj+15] Jakub Gajarský et al. “Parameterized Algorithms
for Parity Games”. In: Mathematical Foundations
of Computer Science 2015 - 40th International
Symposium, MFCS 2015, Milan, Italy, August 24-
28, 2015, Proceedings, Part II. Ed. by Giuseppe
F. Italiano, Giovanni Pighizzini, and Donald San-
nella. Vol. 9235. Lecture Notes in Computer Science.
Springer, 2015, pp. 336–347. isbn: 978-3-662-48053-
3. doi: 10.1007/978-3-662-48054-0_28.

[Gan15] Moses Ganardi. “Parity Games of Bounded Tree-
and Clique-Width”. In: Foundations of Software
Science and Computation Structures - 18th Inter-
national Conference, FoSSaCS 2015, Held as Part
of the European Joint Conferences on Theory and
Practice of Software, ETAPS 2015, London, UK,
April 11-18, 2015. Proceedings. Ed. by Andrew M.
Pitts. Vol. 9034. Lecture Notes in Computer Sci-
ence. Springer, 2015, pp. 390–404. isbn: 978-3-662-
46677-3. doi: 10.1007/978-3-662-46678-0_25.

252

http://dx.doi.org/10.1007/978-3-642-31585-5_20
http://dx.doi.org/10.1007/978-3-662-48054-0_28
http://dx.doi.org/10.1007/978-3-662-46678-0_25

Bibliography

[GKS14] Martin Grohe, Stephan Kreutzer, and Sebastian
Siebertz. “Deciding first-order properties of nowhere
dense graphs”. In: Symposium on Theory of Com-
puting, STOC 2014, New York, NY, USA, May 31
- June 03, 2014. Ed. by David B. Shmoys. ACM,
2014, pp. 89–98. isbn: 978-1-4503-2710-7. doi: 10.
1145/2591796.2591851. url: http://dl.acm.
org/citation.cfm?id=2591796.

[Gon07] Georges Gonthier. “The Four Colour Theorem: En-
gineering of a Formal Proof”. In: Computer Mathe-
matics, 8th Asian Symposium, ASCM 2007, Singa-
pore, December 15-17, 2007. Revised and Invited
Papers. Ed. by Deepak Kapur. Vol. 5081. Lecture
Notes in Computer Science. Springer, 2007, p. 333.
isbn: 978-3-540-87826-1. doi: 10.1007/978- 3-
540-87827-8_28.

[Gon08] Georges Gonthier. “Formal Proof—The Four-Color
Theorem”. In: Notices of the AMS 55.11 (2008),
pp. 1382–1393. url: http://www.ams.org/notices/
200811/tx081101382p.pdf.

[Grä+07] Erich Grädel et al. Finite Model Theory and Its Ap-
plications. Texts in Theoretical Computer Science.
An EATCS Series. Springer, 2007. isbn: 978-3-540-
00428-8. doi: 10.1007/3-540-68804-8.

[GTW02] Erich Grädel, Wolfgang Thomas, and Thomas Wilke,
eds. Automata, Logics, and Infinite Games: A Guide
to Current Research [outcome of a Dagstuhl sem-
inar, February 2001]. Vol. 2500. Lecture Notes

253

http://dx.doi.org/10.1145/2591796.2591851
http://dx.doi.org/10.1145/2591796.2591851
http://dl.acm.org/citation.cfm?id=2591796
http://dl.acm.org/citation.cfm?id=2591796
http://dx.doi.org/10.1007/978-3-540-87827-8_28
http://dx.doi.org/10.1007/978-3-540-87827-8_28
http://www.ams.org/notices/200811/tx081101382p.pdf
http://www.ams.org/notices/200811/tx081101382p.pdf
http://dx.doi.org/10.1007/3-540-68804-8

Bibliography

in Computer Science. Springer, 2002. isbn: 3-540-
00388-6.

[GW06] Erich Grädel and Igor Walukiewicz. “Positional
Determinacy of Games with Infinitely Many Pri-
orities”. In: Logical Methods in Computer Science
2.4 (2006). doi: 10.2168/LMCS-2(4:6)2006.

[Hel+12] Keijo Heljanko et al. “Solving parity games by a
reduction to SAT”. In: J. Comput. Syst. Sci. 78.2
(2012), pp. 430–440. doi: 10.1016/j.jcss.2011.
05.004.

[Hil22] David Hilbert. Neubegründung der Mathematik: Er-
ste Mitteilung. Printed in [Hil35]. 1922. url: http:
/ / resolver . sub . uni - goettingen . de / purl ?
PPN237834022.

[Hil35] David Hilbert. Gesammelte Abhandlungen. Vol. 3.
Berlin: Springer, 1935. url: http://resolver.
sub.uni-goettingen.de/purl?PPN237820250.

[HK08] Paul Hunter and Stephan Kreutzer. “Digraph mea-
sures: Kelly decompositions, games, and orderings”.
In: Theor. Comput. Sci. 399.3 (2008), pp. 206–219.
doi: 10.1016/j.tcs.2008.02.038.

[Hol93] Gerard J. Holzmann. “Design and Validation of
Protocols: A Tutorial”. In: Computer Networks
and ISDN Systems 25.9 (1993), pp. 981–1017. doi:
10.1016/0169-7552(93)90095-L.

[HT73] John E. Hopcroft and Robert Endre Tarjan. “Effi-
cient Algorithms for Graph Manipulation [H] (Al-
gorithm 447)”. In: Commun. ACM 16.6 (1973),
pp. 372–378. doi: 10.1145/362248.362272.

254

http://dx.doi.org/10.2168/LMCS-2(4:6)2006
http://dx.doi.org/10.1016/j.jcss.2011.05.004
http://dx.doi.org/10.1016/j.jcss.2011.05.004
http://resolver.sub.uni-goettingen.de/purl?PPN237834022
http://resolver.sub.uni-goettingen.de/purl?PPN237834022
http://resolver.sub.uni-goettingen.de/purl?PPN237834022
http://resolver.sub.uni-goettingen.de/purl?PPN237820250
http://resolver.sub.uni-goettingen.de/purl?PPN237820250
http://dx.doi.org/10.1016/j.tcs.2008.02.038
http://dx.doi.org/10.1016/0169-7552(93)90095-L
http://dx.doi.org/10.1145/362248.362272

Bibliography

[Joh+01] Thor Johnson et al. “Directed tree-width”. In: J.
Comb. Theory Ser. B 82.1 (May 2001), pp. 138–154.
issn: 0095-8956. doi: 10.1006/jctb.2000.2031.

[JPZ06] Marcin Jurdziński, Mike Paterson, and Uri Zwick.
“A deterministic subexponential algorithm for solv-
ing parity games”. In: Proceedings of the seven-
teenth annual ACM-SIAM symposium on Discrete
algorithm. SODA ’06. New York, NY, USA: ACM,
2006, pp. 117–123. isbn: 0-89871-605-5. doi: 10.
1145/1109557.1109571.

[Jsc] JSCert. https://github.com/jscert/jscert,
Commit 8e1b8a39. 2015.

[Jur00] Marcin Jurdziński. “Small Progress Measures for
Solving Parity Games”. In: STACS 2000. Ed. by
Horst Reichel and Sophie Tison. Vol. 1770. Lec-
ture Notes in Computer Science. Springer Berlin
/ Heidelberg, 2000, pp. 290–301. isbn: 978-3-540-
67141-1. doi: 10.1007/3-540-46541-3_24.

[Jur98] Marcin Jurdziński. “Deciding the Winner in Parity
Games is in UP ∩ co-UP”. In: Inf. Process. Lett.
68.3 (1998), pp. 119–124. doi: 10.1016/S0020-
0190(98)00150-1.

[JW96] David Janin and Igor Walukiewicz. “On the Expres-
sive Completeness of the Propositional mu-Calculus
with Respect to Monadic Second Order Logic”. In:
CONCUR. Ed. by Ugo Montanari and Vladimiro
Sassone. Vol. 1119. Lecture Notes in Computer
Science. Springer, 1996, pp. 263–277. isbn: 3-540-
61604-7. doi: 10.1007/3-540-61604-7_60.

255

http://dx.doi.org/10.1006/jctb.2000.2031
http://dx.doi.org/10.1145/1109557.1109571
http://dx.doi.org/10.1145/1109557.1109571
https://github.com/jscert/jscert
https://github.com/jscert/jscert/commit/8e1b8a39da4fa51f4d727af4607bf3dd765f6e1c
http://dx.doi.org/10.1007/3-540-46541-3_24
http://dx.doi.org/10.1016/S0020-0190(98)00150-1
http://dx.doi.org/10.1016/S0020-0190(98)00150-1
http://dx.doi.org/10.1007/3-540-61604-7_60

Bibliography

[Kal92] Gil Kalai. “A Subexponential Randomized Simplex
Algorithm (Extended Abstract)”. In: Proceedings
of the 24th Annual ACM Symposium on Theory
of Computing, May 4-6, 1992, Victoria, British
Columbia, Canada. Ed. by S. Rao Kosaraju et al.
ACM, 1992, pp. 475–482. isbn: 0-89791-511-9. doi:
10.1145/129712.129759.

[KD09] Stephan Kreutzer and Anuj Dawar. “Parameterized
Complexity of First-Order Logic”. In: Electronic
Colloquium on Computational Complexity (ECCC)
16 (2009), p. 131. url: http://eccc.hpi-web.
de/report/2009/131.

[Klo94] Ton Kloks. Treewidth, Computations and Approx-
imations. Vol. 842. Lecture Notes in Computer
Science. Springer, 1994. isbn: 3-540-58356-4. doi:
10.1007/BFb0045375.

[KM08] Michael Kaminski and Simone Martini, eds. Com-
puter Science Logic, 22nd International Workshop,
CSL 2008, 17th Annual Conference of the EACSL,
Bertinoro, Italy, September 16-19, 2008. Proceed-
ings. Vol. 5213. Lecture Notes in Computer Science.
Springer, 2008. isbn: 978-3-540-87530-7.

[Koz83] Dexter Kozen. “Results on the propositional µ-
calculus”. In: Theoretical Computer Science 27.3
(1983). Special Issue Ninth International Collo-
quium on Automata, Languages and Programming
(ICALP) Aarhus, Summer 1982, pp. 333–354. issn:
0304-3975. doi: 10.1016/0304-3975(82)90125-
6.

256

http://dx.doi.org/10.1145/129712.129759
http://eccc.hpi-web.de/report/2009/131
http://eccc.hpi-web.de/report/2009/131
http://dx.doi.org/10.1007/BFb0045375
http://dx.doi.org/10.1016/0304-3975(82)90125-6
http://dx.doi.org/10.1016/0304-3975(82)90125-6

Bibliography

[Kre15] Stephan Kreutzer. Logik, Spiele und Automaten.
http://logic.las.tu-berlin.de/Teaching/
index.html. Unpublished lecture notes for a mas-
ter’s course on mathematical logic and games at
Technische Universität Berlin. 2015.

[Küs01] Ralf Küsters. “Memoryless Determinacy of Par-
ity Games”. In: Automata, Logics, and Infinite
Games. Ed. by Erich Grädel, Wolfgang Thomas,
and Thomas Wilke. Vol. 2500. Lecture Notes in
Computer Science. Springer, 2001, pp. 95–106. isbn:
3-540-00388-6. doi: 10.1007/3-540-36387-4_6.

[Loc10] Andreas Lochbihler. “Coinductive”. In: Archive of
Formal Proofs (Feb. 2010). http://www.isa-afp.
org/entries/Coinductive.shtml, Formal proof
development. issn: 2150-914x.

[Lon+94] David E. Long et al. “An Improved Algorithm for
the Evaluation of Fixpoint Expressions”. In: Com-
puter Aided Verification, 6th International Confer-
ence, CAV ’94, Stanford, California, USA, June 21-
23, 1994, Proceedings. Ed. by David L. Dill. Vol. 818.
Lecture Notes in Computer Science. Springer, 1994,
pp. 338–350. isbn: 3-540-58179-0. doi: 10.1007/3-
540-58179-0_66.

[Lud95] Walter Ludwig. “A Subexponential Randomized
Algorithm for the Simple Stochastic Game Prob-
lem”. In: Inf. Comput. 117.1 (1995), pp. 151–155.
doi: 10.1006/inco.1995.1035.

[Mak04] Johann A. Makowsky. “Algorithmic uses of the
Feferman-Vaught Theorem”. In: Ann. Pure Appl.

257

http://logic.las.tu-berlin.de/Teaching/index.html
http://logic.las.tu-berlin.de/Teaching/index.html
http://dx.doi.org/10.1007/3-540-36387-4_6
http://www.isa-afp.org/entries/Coinductive.shtml
http://www.isa-afp.org/entries/Coinductive.shtml
http://dx.doi.org/10.1007/3-540-58179-0_66
http://dx.doi.org/10.1007/3-540-58179-0_66
http://dx.doi.org/10.1006/inco.1995.1035

Bibliography

Logic 126.1-3 (2004), pp. 159–213. doi: 10.1016/
j.apal.2003.11.002.

[Mat] Matita Theorem Prover. http://matita.cs.unibo.
it/. Last accessed June 2016.

[McN93] Robert McNaughton. “Infinite Games Played on
Finite Graphs”. In: Ann. Pure Appl. Logic 65.2
(1993), pp. 149–184. doi: 10.1016/0168-0072(93)
90036-D.

[MRR16] Matthias Mnich, Heiko Röglin, and Clemens Rösner.
“New Deterministic Algorithms for Solving Parity
Games”. In: LATIN 2016: Theoretical Informat-
ics - 12th Latin American Symposium, Ensenada,
Mexico, April 11-15, 2016, Proceedings. Ed. by
Evangelos Kranakis, Gonzalo Navarro, and Edgar
Chávez. Vol. 9644. Lecture Notes in Computer Sci-
ence. Springer, 2016, pp. 634–645. isbn: 978-3-662-
49528-5. doi: 10.1007/978-3-662-49529-2_47.

[MS06] Nicolas Markey and Philippe Schnoebelen. “Mu-
calculus path checking”. In: Inf. Process. Lett. 97.6
(2006), pp. 225–230. doi: 10.1016/j.ipl.2005.
11.010.

[NPW02] Tobias Nipkow, Lawrence C. Paulson, and Markus
Wenzel. Isabelle/HOL – A Proof Assistant for Higher-
Order Logic. Vol. 2283. Lecture Notes in Computer
Science. Springer, 2002. isbn: 3-540-43376-7. doi:
10.1007/3-540-45949-9.

[NPW16] Tobias Nipkow, Lawrence C. Paulson, and Markus
Wenzel. Isabelle/HOL – A Proof Assistant for Higher-
Order Logic. Part of the Isabelle documentation,

258

http://dx.doi.org/10.1016/j.apal.2003.11.002
http://dx.doi.org/10.1016/j.apal.2003.11.002
http://matita.cs.unibo.it/
http://matita.cs.unibo.it/
http://dx.doi.org/10.1016/0168-0072(93)90036-D
http://dx.doi.org/10.1016/0168-0072(93)90036-D
http://dx.doi.org/10.1007/978-3-662-49529-2_47
http://dx.doi.org/10.1016/j.ipl.2005.11.010
http://dx.doi.org/10.1016/j.ipl.2005.11.010
http://dx.doi.org/10.1007/3-540-45949-9

Bibliography

http://isabelle.in.tum.de/dist/Isabelle2016/
doc/tutorial.pdf. Feb. 2016.

[Nus] NuSMV: a new symbolic model checker. http://
nusmv.fbk.eu/. Last accessed June 2016.

[Obd03] Jan Obdržálek. “Fast Mu-Calculus Model Check-
ing when Tree-Width Is Bounded”. In: Computer
Aided Verification, 15th International Conference,
CAV 2003, Boulder, CO, USA, July 8-12, 2003,
Proceedings. Ed. by Warren A. Hunt Jr. and Fabio
Somenzi. Vol. 2725. Lecture Notes in Computer
Science. Springer, 2003, pp. 80–92. isbn: 3-540-
40524-0. doi: 10.1007/978-3-540-45069-6_7.

[Obd07] Jan Obdržálek. “Clique-Width and Parity Games”.
In: CSL. Ed. by Jacques Duparc and Thomas A.
Henzinger. Vol. 4646. Lecture Notes in Computer
Science. Springer, 2007, pp. 54–68. isbn: 978-3-540-
74914-1. doi: 10.1007/978-3-540-74915-8_8.

[Pau11] Christine Paulin-Mohring. “Introduction to the
Coq Proof-Assistant for Practical Software Ver-
ification”. In: Tools for Practical Software Verifica-
tion, LASER, International Summer School 2011,
Elba Island, Italy, Revised Tutorial Lectures. Ed.
by Bertrand Meyer and Martin Nordio. Vol. 7682.
Lecture Notes in Computer Science. Springer, 2011,
pp. 45–95. isbn: 978-3-642-35745-9. doi: 10.1007/
978-3-642-35746-6_3.

[Pgs] PGSolver: A collection of tools for generating, ma-
nipulating and – most of all – solving parity games.

259

http://isabelle.in.tum.de/dist/Isabelle2016/doc/tutorial.pdf
http://isabelle.in.tum.de/dist/Isabelle2016/doc/tutorial.pdf
http://nusmv.fbk.eu/
http://nusmv.fbk.eu/
http://dx.doi.org/10.1007/978-3-540-45069-6_7
http://dx.doi.org/10.1007/978-3-540-74915-8_8
http://dx.doi.org/10.1007/978-3-642-35746-6_3
http://dx.doi.org/10.1007/978-3-642-35746-6_3

Bibliography

https://github.com/tcsprojects/pgsolver,
Commit e651e609. 2016.

[QS82] Jean-Pierre Queille and Joseph Sifakis. “Specifi-
cation and verification of concurrent systems in
CESAR”. In: International Symposium on Pro-
gramming, 5th Colloquium, Torino, Italy, April
6-8, 1982, Proceedings. Ed. by Mariangiola Dezani-
Ciancaglini and Ugo Montanari. Vol. 137. Lecture
Notes in Computer Science. Springer, 1982, pp. 337–
351. isbn: 3-540-11494-7. doi: 10.1007/3-540-
11494-7_22.

[RS84] Neil Robertson and Paul D. Seymour. “Graph mi-
nors. III. Planar tree-width”. In: J. Comb. Theory,
Ser. B 36.1 (1984), pp. 49–64. doi: 10.1016/0095-
8956(84)90013-3.

[RS86] Neil Robertson and Paul D. Seymour. “Graph Mi-
nors. II. Algorithmic Aspects of Tree-Width”. In: J.
Algorithms 7.3 (1986), pp. 309–322. doi: 10.1016/
0196-6774(86)90023-4.

[Saf05] Mohammad Ali Safari. “D-Width: A More Natu-
ral Measure for Directed Tree Width”. In: MFCS.
Ed. by Joanna Jedrzejowicz and Andrzej Szepi-
etowski. Vol. 3618. Lecture Notes in Computer
Science. Springer, 2005, pp. 745–756. isbn: 3-540-
28702-7. doi: 10.1007/11549345_64.

[Sch07] Sven Schewe. “Solving Parity Games in Big Steps”.
In: FSTTCS 2007: Foundations of Software Tech-
nology and Theoretical Computer Science. Ed. by
V. Arvind and Sanjiva Prasad. Vol. 4855. Lecture

260

https://github.com/tcsprojects/pgsolver
https://github.com/tcsprojects/pgsolver/commit/e651e609124cb3352a58c072f403831153744401
http://dx.doi.org/10.1007/3-540-11494-7_22
http://dx.doi.org/10.1007/3-540-11494-7_22
http://dx.doi.org/10.1016/0095-8956(84)90013-3
http://dx.doi.org/10.1016/0095-8956(84)90013-3
http://dx.doi.org/10.1016/0196-6774(86)90023-4
http://dx.doi.org/10.1016/0196-6774(86)90023-4
http://dx.doi.org/10.1007/11549345_64

Bibliography

Notes in Computer Science. Springer Berlin / Hei-
delberg, 2007, pp. 449–460. isbn: 978-3-540-77049-7.
doi: 10.1007/978-3-540-77050-3_37.

[Sch08] Sven Schewe. “An Optimal Strategy Improvement
Algorithm for Solving Parity and Payoff Games”. In:
Computer Science Logic, 22nd International Work-
shop, CSL 2008, 17th Annual Conference of the
EACSL, Bertinoro, Italy, September 16-19, 2008.
Proceedings. Ed. by Michael Kaminski and Simone
Martini. Vol. 5213. Lecture Notes in Computer
Science. Springer, 2008, pp. 369–384. isbn: 978-3-
540-87530-7. doi: 10.1007/978-3-540-87531-
4_27.

[SE89] Robert S. Streett and E. Allen Emerson. “An Au-
tomata Theoretic Decision Procedure for the Propo-
sitional Mu-Calculus”. In: Inf. Comput. 81.3 (1989),
pp. 249–264. doi: 10.1016/0890-5401(89)90031-
X.

[Sei96] Helmut Seidl. “Fast and Simple Nested Fixpoints”.
In: Inf. Process. Lett. 59.6 (1996), pp. 303–308. doi:
10.1016/0020-0190(96)00130-5.

[Spi] Spin, a Verifier for Multi-threaded Software. http:
//spinroot.com/. Last accessed June 2016.

[SS98] Perdita Stevens and Colin Stirling. “Practical Model-
Checking Using Games”. In: Tools and Algorithms
for Construction and Analysis of Systems, 4th In-
ternational Conference, TACAS ’98, Held as Part
of the European Joint Conferences on the Theory
and Practice of Software, ETAPS’98, Lisbon, Por-

261

http://dx.doi.org/10.1007/978-3-540-77050-3_37
http://dx.doi.org/10.1007/978-3-540-87531-4_27
http://dx.doi.org/10.1007/978-3-540-87531-4_27
http://dx.doi.org/10.1016/0890-5401(89)90031-X
http://dx.doi.org/10.1016/0890-5401(89)90031-X
http://dx.doi.org/10.1016/0020-0190(96)00130-5
http://spinroot.com/
http://spinroot.com/

Bibliography

tugal, March 28 - April 4, 1998, Proceedings. Ed. by
Bernhard Steffen. Vol. 1384. Lecture Notes in Com-
puter Science. Springer, 1998, pp. 85–101. isbn:
3-540-64356-7. doi: 10.1007/BFb0054166.

[Tar55] Alfred Tarski. “A lattice-theoretical fixpoint the-
orem and its applications”. In: Pacific Journal of
Mathematics 5.2 (1955), pp. 285–309. url: http:
//projecteuclid.org/euclid.pjm/1103044538.

[TPB12] Dmitriy Traytel, Andrei Popescu, and Jasmin Chris-
tian Blanchette. “Foundational, Compositional (Co)-
datatypes for Higher-Order Logic: Category The-
ory Applied to Theorem Proving”. In: Proceedings
of the 27th Annual IEEE Symposium on Logic in
Computer Science, LICS 2012, Dubrovnik, Croa-
tia, June 25-28, 2012. IEEE Computer Society,
2012, pp. 596–605. isbn: 978-1-4673-2263-8. doi:
10.1109/LICS.2012.75.

[VJ00] Jens Vöge and Marcin Jurdziński. “A Discrete
Strategy Improvement Algorithm for Solving Parity
Games”. In: Computer Aided Verification. Ed. by
E. Emerson and Aravinda Sistla. Vol. 1855. Lec-
ture Notes in Computer Science. Springer Berlin
/ Heidelberg, 2000, pp. 202–215. isbn: 978-3-540-
67770-3. doi: 10.1007/10722167_18.

[Wal96] Igor Walukiewicz. “Monadic Second Order Logic on
Tree-Like Structures”. In: STACS 96, 13th Annual
Symposium on Theoretical Aspects of Computer
Science, Grenoble, France, February 22-24, 1996,
Proceedings. Ed. by Claude Puech and Rüdiger

262

http://dx.doi.org/10.1007/BFb0054166
http://projecteuclid.org/euclid.pjm/1103044538
http://projecteuclid.org/euclid.pjm/1103044538
http://dx.doi.org/10.1109/LICS.2012.75
http://dx.doi.org/10.1007/10722167_18

Bibliography

Reischuk. Vol. 1046. Lecture Notes in Computer
Science. Springer, 1996, pp. 401–413. isbn: 3-540-
60922-9. doi: 10.1007/3-540-60922-9_33.

[WPN08] Makarius Wenzel, Lawrence C. Paulson, and Tobias
Nipkow. “The Isabelle Framework”. In: Theorem
Proving in Higher Order Logics, 21st International
Conference, TPHOLs 2008, Montreal, Canada, Au-
gust 18-21, 2008. Proceedings. Ed. by Otmane Aı̈t
Mohamed, César A. Muñoz, and Sofiène Tahar.
Vol. 5170. Lecture Notes in Computer Science.
Springer, 2008, pp. 33–38. isbn: 978-3-540-71065-3.
doi: 10.1007/978-3-540-71067-7_7.

[XZU13] Jian Xu, Xingyuan Zhang, and Christian Urban.
“Mechanising Turing Machines and Computability
Theory in Isabelle/HOL”. In: Interactive Theorem
Proving - 4th International Conference, ITP 2013,
Rennes, France, July 22-26, 2013. Proceedings. Ed.
by Sandrine Blazy, Christine Paulin-Mohring, and
David Pichardie. Vol. 7998. Lecture Notes in Com-
puter Science. Springer, 2013, pp. 147–162. isbn:
978-3-642-39633-5. doi: 10 . 1007 / 978 - 3 - 642 -
39634-2_13.

[Zap01] Júlia Zappe. “Modal µ-Calculus and Alternating
Tree Automata”. In: Automata, Logics, and Infinite
Games. Ed. by Erich Grädel, Wolfgang Thomas,
and Thomas Wilke. Vol. 2500. Lecture Notes in
Computer Science. Springer, 2001, pp. 171–184.
isbn: 3-540-00388-6. doi: 10.1007/3-540-36387-
4_10.

263

http://dx.doi.org/10.1007/3-540-60922-9_33
http://dx.doi.org/10.1007/978-3-540-71067-7_7
http://dx.doi.org/10.1007/978-3-642-39634-2_13
http://dx.doi.org/10.1007/978-3-642-39634-2_13
http://dx.doi.org/10.1007/3-540-36387-4_10
http://dx.doi.org/10.1007/3-540-36387-4_10

Bibliography

[Zie98] Wieslaw Zielonka. “Infinite Games on Finitely Col-
oured Graphs with Applications to Automata on
Infinite Trees”. In: Theor. Comput. Sci. 200.1-2
(1998), pp. 135–183. doi: 10.1016/S0304-3975(98)
00009-7.

264

http://dx.doi.org/10.1016/S0304-3975(98)00009-7
http://dx.doi.org/10.1016/S0304-3975(98)00009-7

Index

AddVertex(C), 187
HalfJoini(C), 177
RepeatedPasting(C), 183

A
alphabet, 78
annotated formula, 59
apex graph, 96
α-approximant, 22
apply style, 226
arc crossing gadget, 86, 90
arcs, 12
at least as good as, 119
atomic formula, 17
attractor set, 53
attractor strategy, 56
attri(A), 53

B
basic modal logic, 17
biorientation, 164
bisimilar, 31
bisimulation, 31
bisimulation invariant, 31

block graph, 164, 187
def, 222
bound variable, 17
bounded natural functor, 233

C
cactus graph, 164, 187
calculus, 192
CL(φ), 35
CL(L), 38
CL+(φ), 35
closureφ(ψ, i), 35
CLP (L), 113
codatatype keyword, 232
coinduction, 233
complete bipartite graph, 12
complete graph, 12
connected components, 77
Cons constructor, 231
consistent formula, 40
consistent with δ, 44
consistent with X, 39
context, 203, 215

local –, 203

265

Index

theory –, 203
Coq, 194
coUP, 72

D
DAG decomposition, 157
DAG-width, 157
datatype keyword, 232
definition in φ, 35
definitions, 221
δ-equivalent, 103
δ-type, 44
descriptive complexity, 73
digraph, 12
directed separation, 101
discounted mean payoff game,

72
disjoint separation, 105
distance, 95
domain, 11

E
edges, 12
encoding procedure, 78
entanglement, 77
equivalent, 20
exceedingly inefficient

encoding, 78
existential quantification, 217

F
facts, 203

Failed to apply initial proof
method, 211

Feferman-Vaught Theorem,
99

final proof methods, 225
Fischer-Ladner closure, 37
fixed-parameter tractable, 80
fixpoint, 20
fixpoint operators, 17
FLC(φ), 37
formal proof, 192
formula, 192
FPT, 80
FPT-reducible, 80
free variable, 17
function, 11

G
generalized single-player join,

179
G-join, 179
goals, 203
graph, 12
guarding set, 152

H
HalfJoin, 170
HalfJoinG, 179
half-solving parity games, 166
hereditary class, 165

266

Index

I
i-attractor set, 53
image, 11
inconsistent, 40
informal proof, 192
initial proof method, 224
inner syntax, 202
interface of a partial game,

116
interface of a separation, 101
Isabelle/HOL, 194
Isabelle/Pure, 195
Isar, 195

J
Join, 170
join of two games, 169

K
Kelly decomposition, 153
Kelly-width, 153
known facts, 203

L
(L,P)-type of v in M, X, 114
lambda function, 222
LCons constructor, 232
length of φ, 17
L-equivalent, 103
list, 231

coinductive –, 231
lazy –, 232

LNil constructor, 232
local context, 203
locale, 223
locally bounded treewidth, 95
loops, 12
L-type, 44

M
Matita, 241
minor, 92
modal operators, 17
mode, 203
model-checking game, 60
monadic second order logic,

32
monotone, 20
MSO, 32
µ-depth, 44

N
negation normal form, 23
Nil constructor, 231
node, 153
NG
r (v), 95

O
one-step attractor, 53
operator priority, 17
option type, 231
orientation, 164
outer syntax, 202

267

Index

P
parallel edges/arcs, 12
parameterization, 79
parameterized problem, 79
parentheses, 17
parity game, 47

single-player –, 165
winning a –, 50

partial function, 11
partial model-checking game,

118
partial parity game, 116
partial strategy, 117
partial winning strategy, 117
pasting, 183
path, 13

π-conforming –, 50
winning –, 48

PGSolver, 77
planar gadget, 86, 90
planar graph, 85
play, 47

π-conforming –, 50
winning –, 48

polynomial-time decidable,
177

positional determinacy, 52
positive normal form, 23
possible profile, 119
preimage, 11
preprofile(π, v1), 119

prioφ(ψ ↝ χ), 127
priority, 47
priority sequence, 59
priority tracking variants of φ,

112
problem, 79
profile(π, v1), 119
profiles(P), 118
proof assistant, 193
proper subgame, 165
prove mode, 203
PTP (L), 113
PTP (φ), 112
ptypeP (v), 122

R
randomized subexponential,

76
raw proof blocks, 225
reboot, 43
record keyword, 228
relevant occurrence, 141
restriction, 165
reward ordering, 118
r-neighborhood of v, 95
rooted at v, 154
rule, 212

S
SAT, 76
σ-structure, 18

268

Index

signature, 16
simulation, 123
Simulation Lemma, 123
single-player game, 165
sledgehammer, 214
small progress measures, 75
standard depth, 38
state mode, 203
strategy, 48

attractor –, 235
good –, 235
minimal –, 238
positional –, 50
uniform –, 235
winning –, 50, 235

strategy improvement, 75
strategy-targets(P), 118
strongly connected

components, 77
sub(φ), 35
sub+(φ), 35
subexponential, 76
substitution (graph

operation), 189

T
THE, 238
theorem prover, 193
theory context, 203
total function, 11
tournament, 177

tpL,P (M, v,X), 114
tree decomposition, 91
treewidth, 92
Turing machine, 240
tw(G), 92
type variable, 229
types, 219

U
unification, 213
universal quantification, 217
UP, 72

V
Var, 16
vertices, 12

W
weak directed separation, 147
weak tournament, 175
width

of a DAG decomposition,
157

of a Kelly decomposition,
153

of a tree decomposition,
92

winning region, 52

X
X-depth, 43

269

Symbols

General
f [x ↦→ y] Function update; 11⋀

. The universal quantifier in Isabelle/Pure;
217

Graphs and their Decompositions
G A graph; 12
E The set of edges of a graph G; 12
V The set of vertices of a graph G; 12
G[X] The subgraph induced by X; 12
v A possibly infinite sequence of vertices, v1, v2, . . .;

13
d(v, w) The distance between vertices v and w; 95
NG
r (v) The r-neighborhood of v, defined as {w ∈ V |

d(v, w) ≤ r}; 95
tw(G) The treewidth of G; 92
X A finite sequence of vertices; 101; see also X

in the context of the modal µ-calculus
B↓
t The union of the bags of a subtree in a Kelly

decomposition; 153

271

Symbols

⪯ The transitive/reflexive closure of the arc
relation on DAGs; 152

Xd A bag of a DAG decomposition; 157
X⪰d The union of a sub-DAG of a DAG decom-

position; 157

Lµ, the Modal µ-Calculus
σ A signature, that is, a set of proposition

symbols; 16
Lµ[σ] The set of formulas of the modal µ-calculus

over the signature σ; 16
⊤ “Top”, always true; 16
⊥ “Bottom”, always false; 16
□ Lµ operator “for all successors”; 16
◇ Lµ operator “for some successor”; 16
µX.φ Lµ operator for the least fixed point of φ; 17
νX.φ Lµ operator for the greatest fixed point of

φ; 17
|φ| The length of φ; 17
M A σ-structure; 18
[[φ]]MV The set of vertices of M where φ is true; 19
µXα.φ The α-approximant of µX.φ; 22
νXα.φ The α-approximant of νX.φ; 22
FXφ One fixed point iteration of φ(X), that is,

FXφ : 2M → 2M, S ↦→ [[φ]]MV[X ↦→S]; 20
sub(φ) The set of indexed subformulas of φ; 35

272

Symbols

CL(φ) The closure of φ, that is, the set of all closed
subformulas; 35

CL+(φ) Defined as CL(φ) \ {(φ, 0)}; 35
FLC(φ) The Fischer-Ladner Closure of φ; 37
PTP (φ) The set of priority tracking variants of φ;

112
CLP (φ) Defined as PTP (CL(φ)); 113
X A finite sequence of fixpoint variables; 39;

see also X in the context of graphs
P A finite sequence of proposition symbols; 102
∂P (M, X) M with colored interface; 102
tpL,P (M, v,X) The (L,P)-type of v in M, X, defined as

{φ ∈ CLP (L) | ∂P (M, X), v |= φ}; 114
TL,P (M, X) . . The set of (L,P)-types realized in M, de-

fined as
{tpL,P (M, v,X) | v ∈ V (M)}; 114

TL(P) The set of all candidates for (L,P)-types,
defined as 2CLP (L); 114

prioφ(ψ ↝ χ) . The minimum priority of all fixpoint opera-
tors enclosing χ in ψ; 127

ψ′y True on x′ iff a profile y′ ⊑ y is possible on
(P, (x′, ψ)); 127

Parity Games
◇ The parity game player “even”; 47
□ The parity game player “odd”; 47

273

Symbols

i The other player, that is, ◇ = □ and □ = ◇;
47

V◇ The set of vertices of player ◇; 47
V□ The set of vertices of player □; 47
ω The priority function V → N; 47
M⋉ φ The model-checking game; 60
M⋉X φ The partial model-checking game with inter-

face
{(v, ψ) ∈ X×CL(φ) | ψ starts with ◇ or □};
118

⊑ The reward ordering on priorities. The “at
least as good” relation on profiles; 118, 119

Pφ A game that simulates M⋉X φ; 132

274

Schriftenreihe Foundations of computing
Hrsg.: Prof. Dr. Stephan Kreutzer, Prof. Dr. Uwe Nestmann,
Prof. Dr. Rolf Niedermeier
ISSN 2199-5249 (print)
ISSN 2199-5257 (online)

01: Bevern, René van:
Fixed-Parameter Linear-Time Algorithms for NP-hard
Graph and Hypergraph Problems Arising in Industrial
Applications. — 2014. — 225 S.
ISBN 978-3-7983-2705-4 (print) EUR 12,00
ISBN 978-3-7983-2706-1 (online)

02: Nichterlein, André:
Degree-Constrained Editing of Small-Degree Graphs. —
2015. — xiv, 225 S.
ISBN 978-3-7983-2705-4 (print) EUR 12,00
ISBN 978-3-7983-2706-1 (online)

03: Bredereck, Robert:
Multivariate Complexity Analysis of Team Management
Problems. — 2015. — xix, 228 S.
ISBN 978-3-7983-2764-1 (print) EUR 12,00
ISBN 978-3-7983-2765-8 (online)

04: Talmon, Nimrod:
Algorithmic Aspects of Manipulation and Anonymization
in Social Choice and Social Networks. — 2016. — xiv, 275 S.
ISBN 978-3-7983-2804-4 (print) EUR 13,00
ISBN 978-3-7983-2805-1 (online)

05: Siebertz, Sebastian:
Nowhere Dense Classes of Graphs. Characterisations and
Algorithmic Meta-Theorems. — 2016. — xxii, 149 S.
ISBN 978-3-7983-2818-1 (print) EUR 11,00
ISBN 978-3-7983-2819-8 (online)

06: Chen, Jiehua:
Exploiting Structure in Computationally Hard Voting
Problems. — 2016. — xxi, 255 S.
ISBN 978-3-7983-2825-9 (print) EUR 13,00
ISBN 978-3-7983-2826-6 (online)

07: Arbach, Youssef:
On the Foundations of dynamic coalitions. Modeling
changes and evolution of workflows in healthcare
scenarios. — 2016. — xv, 171 S.
ISBN 978-3-7983-2856-3 (print) EUR 12,00
ISBN 978-3-7983-2857-0 (online)

08: noch nicht erschienen

Pa
rit

y
G

am
es

, S
ep

ar
ati

on
s,

 a
nd

 th
e

M
od

al
 μ

-C
al

cu
lu

s

Universitätsverlag der TU Berlin

Universitätsverlag der TU Berlin

Foundations of computing Volume 9

The topics of this thesis are the modal μ-calculus and parity games. The modal μ-calculus is a
common logic for model-checking in computer science. The model-checking problem of the mo-
dal μ-calculus is polynomial time equivalent to solving parity games, a 2-player game on labeled
directed graphs.
We present the first FPT algorithms (fixed-parameter tractable) for the model-checking prob-
lem of the modal μ-calculus on restricted classes of graphs, specifically on classes of bounded
Kelly-width or bounded DAG-width. In this process we also prove a general decomposition
theorem for the modal μ-calculus and define a useful notion of type for this logic.
Then, assuming a class of parity games has a polynomial time algorithm solving it, we consider
the problem of extending this algorithm to larger classes of parity games. In particular, we show
that joining games, pasting games, or adding single vertices preserves polynomial-time solvabi-
lity. It follows that parity games can be solved in polynomial time if their underlying undirected
graph is a tournament, a complete bipartite graph, or a block graph.
In the last chapter we present the first non-trivial formal proof about parity games. We explain
a formal proof of positional determinacy of parity games in the proof assistant Isabelle/HOL.

Ch
ris

to
ph

 D
itt

m
an

n

9

Parity Games, Separations, and the Modal μ-Calculus

http://verlag.tu-berlin.de

ISBN 978-3-7983-2887-7 (print)
ISBN 978-3-7983-2888-4 (online)

9 783798 328877I S B N 9 7 8 - 3 - 7 9 8 3 - 2 8 8 7 - 7

Christoph Dittmann

Parity Games, Separations, and the Modal μ-Calculus

Umschlag_Dummy_FoC 9_Dittmann, Chr.indd 1 09.02.2017 12:02:13

	Frontcover
	Title page
	Imprint
	Abstract
	Zusammenfassung
	Contents
	List of Figures
	1 Introduction
	2 Preliminaries
	3 The Modal μ-Calculus and Parity Games
	3.1 The Modal μ-Calculus
	3.1.1 Syntax
	3.1.2 Semantics
	3.1.3 Negation Normal Form
	3.1.4 Recursion
	3.1.5 Examples
	3.1.6 Bisimulation Invariance
	3.1.7 Subformulas and Closure
	3.1.8 Formula Depth

	3.2 Parity Games
	3.2.1 Definition
	3.2.2 Positional Determinacy
	3.2.3 Attractor Sets

	3.3 Relation to the Modal mu-Calculus
	3.3.1 Annotated Formulas
	3.3.2 Model-Checking Game

	4 Computational Complexity
	4.1 The Complexity of Parity Games
	4.1.1 General Algorithms
	4.1.2 Algorithms on Restricted Classes
	4.1.3 Fixed-parameter Tractability

	4.2 The Lμ Model-Checking Problem
	4.3 Difficulty of Restricted Classes
	4.3.1 Hardness
	4.3.2 Planar Graphs
	4.3.3 Treewidth
	4.3.4 Locally Bounded Treewidth

	5 Lμ Types
	5.1 A Feferman-Vaught Theorem
	5.1.1 Directed Separations

	5.2 Proof of the Main Theorem
	5.2.1 An Easy Case
	5.2.2 A Slightly More General Case
	5.2.3 Priority Tracking
	5.2.4 The General Case
	5.2.5 Parity Games
	5.2.6 Profiles and Types
	5.2.7 Definable Profiles
	5.2.8 A Small Parity Game
	5.2.9 Finishing the Proof

	5.3 Running Time
	5.3.1 Upper Bound
	5.3.2 Lower Bound

	5.4 FPT Algorithms for Lμ Model Checking
	5.4.1 Weak Separations
	5.4.2 Kelly-Width
	5.4.3 DAG-width

	5.5 Conclusions

	6 Graph Operations on Parity Games
	6.1 Preliminaries
	6.1.1 Basic Definitions
	6.1.2 Half-Solving Parity Games
	6.1.3 Recognizing Winning Regions

	6.2 The Join of Two Parity Games
	6.2.1 Adjoining Vertices Belonging to One Player
	6.2.2 Joining Two Parity Games

	6.3 Pasting of Parity Games
	6.4 Adding a Single Vertex
	6.5 Conclusions

	7 A Formal Proof of Positional Determinacy
	7.1 Background
	7.1.1 Formal Proofs
	7.1.2 Computer-Assisted Proofs
	7.1.3 Isabelle/HOL

	7.2 The Informal Proof
	7.3 Isabelle Primer
	7.3.1 Syntax
	7.3.2 Context
	7.3.3 Adding New Facts
	7.3.4 Solving Goals
	7.3.5 Assumptions
	7.3.6 Proving Facts
	7.3.7 Proof Methods
	7.3.8 Rules
	7.3.9 Naming Facts
	7.3.10 Finding Facts
	7.3.11 Quantification
	7.3.12 Types
	7.3.13 Exploring Facts
	7.3.14 Definitions
	7.3.15 Locales
	7.3.16 Further Reading

	7.4 The Formal Proof
	7.5 Technical Aspects
	7.5.1 Graphs
	7.5.2 Paths
	7.5.3 Well-Ordered Strategies

	7.6 Conclusions
	7.6.1 Time Complexity
	7.6.2 Turing Machines
	7.6.3 Restricted Graph Classes

	Bibliography
	Index
	Symbols
	Backcover

