Managing Cloud Ecosystems

BROKERING, DEPLOYMENT, AND CONSUMPTION

vorgelegt von
M.Sc.
Mathias Slawik
geb. in Wernigerode

von der Fakultit IV — Elektrotechnik und Informatik
der Technischen Universitit Berlin
zur Erlangung des akademischen Grades

Doktor der Ingenieurwissenschaften
- Dr.-Ing. -

genehmigte Dissertation

Promotionsausschuss:

Vorsitzende: Prof. Dr. Ina Schieferdecker
Gutachter: Prof. Dr. Axel Kiipper
Gutachter: Prof. Dr. J6rn Altmann
Gutachter: Prof. Dr. Guido Wirtz
Gutachter: Prof. Dr. Riidiger Zarnekow

Tag der wissenschaftlichen Aussprache: 12. Juli 2018

Berlin 2018

Zusammenfassung

Die kontinuierlich wachsende Verbreitung von Cloud-Diensten lief§ in den
vergangenen Jahren eine Reihe von grofien Cloud-Okosystemen entstehen. Pro-
minentestes Beispiel ist das Cloud-Okosystem der Amazon Web Services (AWS)
mit mittlerweile tiber 8.000 Partnern und mehr als 18 Mrd. USD Umsatz in 2017.
Neben diesen “Giganten” adressieren viele kleinere Okosysteme speziellere
Herausforderungen. Ein Beispiel hierfiir ist das TRESOR Cloud—Okosystem,
welches sichere Cloud-Dienste fiir den Gesundheitssektor bereitstellt. Ein an-
deres Beispiel ist das CYCLONE Cloud-Okosystem, das einen gut integrierten
“Werkzeugkasten” bietet, um foderierte Multi-Cloud-Losungen einfach und
sicher bereitzustellen und zu verwalten.

Diese Arbeit stellt vier besondere Herausforderungen der Vermittlung, Be-
reitstellung und Verwendung von Cloud-Diensten in Cloud-Okosystemen in
den Mittelpunkt. Diese Herausforderungen werden unter Einbeziehung al-
ler Beteiligten detailliert analysiert, um Liicken in bestehenden Ansétzen zu
identifizieren. Auf Basis dieser Analyse werden mehrere quelloffene Software-
komponenten und Informationssysteme gestaltet und umgesetzt, um Losungen
unter praxisnahen Bedingungen in den beiden genannten Cloud-Okosystemen
bereitzustellen. Durch das Ziel der allgemeinen Anwendbarkeit der Ergebnis-
se der Dissertation sollen konkrete Verbesserungen beim Management von
Cloud-Okosystemen erreicht werden. Dariiber hinaus fordert die umfangrei-
che Evaluierung der Entwicklungen zahlreiche neue Erkenntnisse hervor, die
zukiinftige Forschungs- und Entwicklungstatigkeiten unterstiitzen.

Im Einzelnen sind die vier adressierten Herausforderungen dieser Arbeit:

1. Die Beschreibung und Vermittlung von Cloud-Diensten aus nutzer-
zentrischer Perspektive.

Hierfiir werden auf Basis von sechs Praxis-Anwendungsfillen eine Rei-
he von Informationssystemen erstellt und evaluiert, die potentielle An-
wender beim Finden, Vergleichen und Auswihlen von Cloud-Diensten
unterstiitzen. Basis aller Anwendungssysteme ist eine neu-entwickelte
textuelle doméanenspezifische Sprache, welche zahlreiche Verbesserungen
gegentiber alternativen Ansédtzen mit sich bringt. Unter Einbeziehung
von potentiellen Nutzern werden die entstehenden Losungen qualitativ
und experimentell evaluiert und deren hohe Praxisrelevanz demonstriert.

ii

2. Die Ende-zu-Ende Absicherung von HTTP Nachrichtenkorpern iiber

Cloud Intermediére hinweg.

Solche Intermediére, beispielsweise Proxies, Lastverteiler und Firewalls,
finden sich haufig in modernen Cloud Okosystemen. Sie stellen aus Sicht
der Informationssicherheit besondere Herausforderungen dar, da sie
oftmals TLS-Verbindungen terminieren und daher Zugriff auf den un-
verschliisselten Inhalt der Kommunikation erlangen. Um diese Heraus-
forderungen zu adressieren, wurde das Trusted Cloud Transfer Protocol
(TCTP) entwickelt, welches eine transparente Verschliisselung von HTTP
Nachrichtenkdrpern “Ende-zu-Ende”, d.h., zwischen Browser und Ser-
verprozess ermdglicht. Die Evaluierung des Protokolls in praxisnahen
Szenarien zeigt eine hohe Leistungsfdhigkeit und einfache Implementier-
barkeit.

. Die Einhaltung von Sicherheit und Konformitit der Cloud-Nutzung.

Gerade in sensiblen Bereichen, wie dem Gesundheitswesen, muss die
Nutzung von Cloud-Diensten besonderen Anforderungen beziiglich Si-
cherheit und Konformitét zu rechtlichen und organisatorischen Regu-
larien gerecht werden. Um diese Anforderungen jederzeit umzusetzen
und durchgehend zu kontrollieren, wurde ein verteilter Cloud-Proxy
implementiert, der als vertrauenswiirdiger Mediator in jedwede Cloud-
Nutzung eingebunden ist und eine Vielzahl von funktionalen Modulen
zur Verfiigung stellt. Hierin integriert der Proxy auch die Entwicklun-
gen der beiden vorangegangenen Schwerpunkte: TCTP zur Verankerung
der Nachrichtensicherheit sowie einen Cloud-Broker zur Anbindung der
ausgewdhlten und gebuchten Cloud-Dienste. Weiterhin werden mithil-
fe von XACML Unternehmensrichtlinien abgebildet und wéhrend der
Dienstnutzung durchgesetzt. Die Implementierung des Proxies wurde
im TRESOR Okosystem erfolgreich im praxisnahen Einsatz erprobt und
evaluiert.

. Die sichere Bereitstellung und Verwaltung von Multi-Cloud-Losungen in

foderierten Umgebungen.

Aus der Komplexitdt von Cloud-Infrastrukturen folgt meist auch ein
grofier Mehraufwand fiir ihre sichere Bereitstellung und Verwaltung.
Dies wird besonders in féderierten Umgebungen deutlich, in denen meh-
rere Cloud-Systeme zum Einsatz kommen. Um diese Aufwéande méoglichst
gering zu halten, wurde eine Multi-Cloud-Sicherheitsarchitektur entwi-
ckelt und im CYCLONE-Projekt produktiv umgesetzt. Die Architektur
beinhaltet eine Reihe von integrierten Komponenten, welche insbeson-
dere die Bereitstellung und Verwaltung von Multi-Cloud-Applikationen
sowie die Verwendung foderierter Identitdten in Web-, aber auch Konso-
lenanwendungen erheblich vereinfachen. Um die betriebswirtschaftlichen
Vorteile der Architektur zu ergriinden, wird diese im Anschluss aus 6ko-
nomischer Sicht analysiert. Zuletzt wird eine zentrale Komponente der
Architektur, der CYCLONE Federation Provider, einer tiefgehenden Si-
cherheitsanalyse unterzogen.

Abstract

In recent years, the ever-growing proliferation of cloud services led to the
creation of large cloud ecosystems. The most prominent example is the cloud
ecosystem of Amazon Web Services (AWS), which now has over 8,000 partners
and more than $ 18 billion in revenue in 2017. In addition to these “giants”,
many smaller ecosystems address more specific challenges. An example is
the TRESOR cloud ecosystem, which provides secure cloud services for the
German healthcare sector. Another example is the CYCLONE cloud ecosystem,
which provides a well-integrated “toolbox” to easily and securely deploy and
manage federated multi-cloud applications.

This thesis focuses on four unique challenges of brokering, deploying, and
consuming cloud ecosystem services. These challenges are analyzed in detail
with the involvement of all stakeholders to identify gaps in existing approaches.
Based on this analysis, several open-source software components and infor-
mation systems are designed and implemented to provide solutions under
real-world conditions in the two aforementioned cloud ecosystems. The dis-
sertation’s goal of general applicability should lead to concrete improvements
in the management of cloud ecosystems. In addition, the extensive evalua-
tion activities reveal many new findings that will support future research and
development activities.

The four addressed challenge areas of this thesis are:

1. The description and brokering of cloud services from a user-centric per-
spective.

On the basis of six practical use cases, a series of information systems
are created and evaluated that support potential users in discovering,
assessing and selecting cloud services. The basis of all these systems is a
newly developed textual domain-specific language that features numer-
ous improvements over alternative approaches. Involving potential users,
the qualitative and experimental evaluation of the resulting solutions
demonstrates their outstanding practical relevance.

2. End-to-end protection of HTTP message bodies across cloud intermedi-
aries.

Intermediaries, such as proxies, load balancers, and firewalls, are com-
monly found in modern cloud ecosystems. From an information security

iii

iv

point of view, they present particular challenges, as they often act as TLS
server connection ends and thus gain access to the unencrypted commu-
nication content. To address these challenges, the Trusted Cloud Transfer
Protocol (TCTP) was developed, which enables transparent encryption of
HTTP message bodies “end-to-end” between the browser and the origin
server. The evaluation of the protocol indicates high performance and
easy implementability.

. Secure and compliant cloud service consumption

Especially in sensitive areas, such as the health care sector, the use of
cloud services has to meet special requirements regarding security and
compliance with legal and organizational regulations. In order to imple-
ment these requirements at all times and to control them continuously, a
distributed cloud proxy was implemented that acts as a trusted mediator
in any cloud usage scenario. It provides a variety of functional modules
that also integrate developments of the two previous challenge areas,
i.e.,, TCTP to ensure end-to-end message security and a cloud broker to
integrate selection and booking of cloud services with their consump-
tion through the proxy. Furthermore, corporate regulations are mapped
onto XACML policies for their continuous enforcement during service
usage. The implementation of the proxy was successfully deployed and
evaluated in practice within the TRESOR ecosystem.

. Secure deployment and management of federated multi-cloud applica-

tions.

Rising cloud infrastructure complexity usually leads to increased efforts
for secure application deployment and management. This is particularly
evident in federated multi-cloud environments. To minimize those efforts,
a multi-cloud security architecture was developed and applied in prac-
tice within CYCLONE. It includes a number of integrated components
that greatly simplify the deployment and management of multi-cloud
applications and the utilization of federated identities by web and console
applications. In order to emphasize the reduced management efforts,
the architecture is additionally analyzed from an economic perspective.
Finally, a key component of the architecture, the CYCLONE Federation
Provider, is subjected to a thorough security modelling and threat analy-
sis.

Contents

1 Introduction 1
1.1 Addressing Contemporary Cloud Challenges: The
TRESOR and CYCLONE Ecosystems 2
1.1.1 TRESOR - Providing a Secure Cloud Ecosystem for
the German Healthcare Sector 3
1.1.2 CYCLONE - Ecosystem Middleware for Multi-
cloud and Federated Cloud Applications 5
1.2 Research Questions - Cloud Challenges 7
1.3 Research Method and Thesis Structure 8
1.4 Contributions of thisThesis 11
2 Challenges, Approaches, and Related Work 13
2.1 Establishing User-centric Cloud Service Registries 13
2.1.1 Introduction: Use Cases, Stakeholders and Imple-
mentation Concepts 15
2.1.2 Challenges and Requirements for User-centric Ser-
vice Registries 17
213 RelatedWork 20
21.3.1 TheSemanticWeb 21
2.1.3.2 User-relevant Cloud Service Selection Cri-
teria 23
2.1.3.3 Domain Specific Languages (DSLs) 24
2.1.3.4 Matchmakers, Marketplaces, and Selec-
tionHelpers 24
214 Comparing Use Case Requirements to the Related
Work 25
2.2 Enabling End-to-end Security for HTTP Services with TCTP 27
22.1 Introduction: Technology “Roundup” 27
222 Challenges and Requirements for HTTP Entity-
body Security oo oL 28
2.2.3 Related Approaches to Entity-body Encryption. . . 30
224 TCTP“AtaGlance” 31
225 Comparing TCTP to Related Approaches 32

v

CONTENTS

vi

2.3 Managing Cloud Service Consumption through a
Distributed Cloud Proxy
2.3.1 Requirements for Proxies in Cloud Ecosystems . . .
232 Related Approaches
2.3.3 Distributed Cloud Proxy: Concept

2.4 Secure Management of Federated, Multi-cloud Application
Deployments.

2.4.1 Requirements for Secure Application Deployments
in Cloud Ecosystems
2.4.2 Related Technologies

3 Component Design and Development

3.1 Cloud Service Registry Architecture
311 SDL-NG e
3.1.1.1 Design Considerations
3.1.1.2 Basic Framework Structure
3.1.1.3 SDL-NG Example and Overview
3.1.1.4 Typesand Properties
3.1.15 Predefined instances.
3.1.1.6 ServiceCompendiumClass

3.1.1.7 Implementing the Description Lifecycle
3.1.1.8 Property Classifications
3119 GeneratingURIs
3.1.1.10 SDL-NG Value-Types
3.1.1.11 SDL-NG Value Type Wrappers
3.1.1.12 ExportingData

60

3.1.1.13 SDL-NG Multi-language Self-documentation 61

3.1.1.14 HTMLParsing
3.1.1.15 RDFMapping
3.1.2 Business Vocabularies
313 RailsBackend
314 Client.
3.15 ServiceEvaluator
3.1.6 RedisJobQueue
3.1.7 Constraint-based Matchmaker
318 Database oL
3.1.9 Meeting the Stakeholder Requirements
3.1.10 Registry performance characteristics
3.2 Trusted Cloud Transfer Protocol
3.21 HTTP Application Layer Encryption Channels
(HALEGs). o oo
322 TCTPDiscovery
323 TCTIPHandshake
3.24 TCTP Entity-body Encryption.
3.25 TCTP Implementation
3.3 Distributed Cloud Proxy
3.3.1 Early proxy prototype
3311 Technology
3.3.1.2 Architecture
332 FinalProxy

62

Contents

3321 Introduction
3.3.22 Proxy Communication Sequence
3.3.23 Deployment and Configuration
3.3.24 Source Code Structure
3.3.25 Using EventMachine for the Proxy Imple-
mentation
3.3.2.6 Proxy Facilities

89

3.4 Security Architecture for Federated Multi-cloud Applications 92

3.4.1 Overview: Objectives and Architecture
3.42 The Federation Provider
3.4.3 Managing Multi-cloud Application Deployments .
3.4.4 Federated Authorization for Websites and SSH . . .
3.4.5 Providing Unified Logging

4 Evaluation

4.1 Evaluating the Cloud Service Registry Architecture
411 Motivesand Purpose
4.1.2 Evaluation Activities in the TRESOR Focus Group .
413 Discussing USDL with Leidig and Oberle
414 Trusted Cloud “AG Standards” Focus Group Dis-
CUSSION v v v vttt et
415 Cloud Storage Vocabulary Questionnaire
41.6 Open Cloud Computing Map: Expert Interview
and Findings
4.1.7 Open Service Compendium Face-to-Face Question-
naire
4.1.8 Interpretation of the Evaluation Results Regarding
the Main Requirements
419 Discussion and Follow-up Questions
4.2 Performance Testing the TCTP Rack Middleware

93

116

4.3 Performance and Integration Efforts of the Proxy Prototype 118

4.4 Deploying the TRESOR Components to Production
44.1 Distributed Authorization: PDP, PAP, and Location
Server
4.4.2 Proxy, Federation Provider, Identity Provider and
SkIDentity
4.43 TRESOR Broker and Marketplace
444 PaaS, Cloud Services, and Logging
4.5 Architecture Blueprint for End-to-End Security in Medical
SaaSOfferings
451 Motivation L oL
45.2 Application Characteristics
4.5.3 Blueprint Architecture and Prototype
454 Meeting the Blueprint Stakeholders’ Requirements
455 Summary
46 SecuringCYCLONE

119

130
130
134
135

4.6.1 Applying the Security Architecture within CYCLONE136

4.6.2 Federation Provider Security Modelling and Threat
Analysis o o
4621 Step 1: Decomposing the Application . . .

vii

4.6.22 Steps 2 and 3: Determining Threats and

Countermeasures 144

4.6.3 Economic Benefits of the Security Architecture . . . 148

46.4 Limitations, 149

5 Summary and Outlook 151

5.1 Answers to the Research Questions 151

5.2 Key Takeaways for Cloud Stakeholders and Researchers . . 153

53 Limitationso 154

54 FutureWork 155

6 Bibliography 157

A Further Information About TRESOR and CYCLONE 173

A1l TRESOR Key Components 173

A2 TRESORUseCases 175
A.3 CYCLONE Overview: General Approach and Flagship Use

Case. e 176

A4 CYCLONE Middleware Components 177

A5 CYCLONEinAction 181

List of Figures

1.1 Research Framework 9

12 Thesisstructure L. 10

21 TCTP“ataglance” 32

2.2 Cloud proxy distribution, adapted from own figure in [172] . . 36

3.1 Cloud Service Registry Architecture 42

3.2 Service Registry Communication Diagram 42

3.3 SDL-NG Description life-cycle 52

3.4 OpenCloud ComputingMap 64

3.5 Cloud Storage vocabulary (Figure taken from [87, p. 17]) 66

3.6 Serviceeditor L oL 67

3.7 Cheatsheetexcerpt 68

3.8 Comparisonmodule 68

3.9 Facetedsearchmodule 69

3.10 Proxy Modules and Functional Distribution 81

viii

3.11
3.12
3.13
3.14
3.15
3.16

4.1
42
43
44
4.5

4.6

47
4.8

4.9
4.10
4.11

4.12
4.13
4.14
4.15

Al
A2
A3

Proxy Communication Sequence 82
Security Architecture oo L Lo 94
Federated Authentication 96
Managing multi-cloud deployments 98
Federated Authorization 100
Federated Authorization Mechanisms 101
“Percentage of Selection Criteria by Importance” 108
“Average Importance of Selection Criteria” 112
TCTP Relative Overhead 117
Performance impact of the TRESOR proxy prototype 120
TRESOR Components and Integrations in Production Deploy-

ment 121
TRESOR Marketplace: Service Creation using the SDL-NG

[38,p.91 ... 125
TRESOR Marketplace: Catalog [38,p.9] 126
TRESOR PaaS Platform, translated from a figure by Frank on

[B8p. 11] o 127
The Blueprint Components 131
TCTP Prototype Implementation 132
Fluctuations of completion time for two exemplary workflow

actions 135
Data Flow Diagram 143
ThreatList1of3., 145
ThreatList2of3 146
ThreatList3of3. 147
TRESOR overview, adapted from [181] 173
CYCLONE constituents, adapted from own image in [151] . . 177
Integration of CNSMO with SlipStream 183

List of Tables

21

3.1
3.2
3.3
34

Evaluation of different entity-body encryption technologies . . 33

ServiceCompendium utility methods 51
SDL-NGvaluetypes 60
Business Vocabulary 65
An Example Service Matchmaking Problem 71

ix

List oF TABLES

3.5
3.6
3.7
3.8

4.1
4.2
43

44
4.5
4.6
4.7

List of Proxy Frontend Handlers 88
List of Proxy Backend Handlers 88
Proxy Request Headers 90
Proxy Response Headers 90
TCTP/S overhead in comparison to HTTP/S 117
TU Berlin Testbed Machines 122
Mean communication time of medical workflow in relation to

ACCESS MEANS. .+« v v v e v e e e e e e e e e e e e 134
External Dependencies 140
TrustLevels 141
EntryPoints 141
Assets 142

Chapter 1

Introduction

Within the last decade, the Cloud Computing paradigm has become ubiqui-
tous and fundamentally transformed how computing, storage, and networking
resources are provided. In fact, IDC predicts that “by the end of 2018, over half
of enterprise-class businesses will subscribe to more than five different public
cloud services.”[102] The transformation by the Cloud Computing paradigm
does not only incorporate novel business models of huge public cloud offerings
of Amazon, Microsoft, and Google. The refinement of the techniques and
concepts underpinning those offerings produced many novel concepts to imple-
ment modern applications. For example, immutable application deployments,
containerized microservices, and ubiquitous JavaScript-based frameworks flour-
ished through the emerging of the Cloud. Modern application development
methodologies amplify these stunning changes, for example, the “The Twelve-
Factor App”1 methodology. Recent publications, for example, [25, 40, 39],
suggest that the Cloud is already evolving towards the Intercloud, a “cloud
of clouds”, which will break down the barriers between cloud providers and
consumers.

To harness the Cloud Computing paradigm, “cloud ecosystems” unite
cloud services, providers, consumers, and possibly other stakeholders, for
example, solution partners, auditors, and escrow holders. As an example, the
Amazon cloud ecosystem provides more than 70 cloud services to serve over 1
mio enterprise customers, attracts over 8,000 partner network members, and
generates a projected $18bn revenue in 2017.2

Besides the well-known ubiquitous cloud ecosystems of Amazon, Google,
and Microsoft, there are also non-generic ecosystems which target specific ar-
eas. Two examples of such variety are the TRESOR and CYCLONE ecosystems
wherein many of the contributions of this thesis have been deployed. Both
utilize Cloud Computing innovations to tackle unresolved challenges that are
of high relevance for their specific area. TRESOR provides a secure cloud
computing ecosystem for the German healthcare sector while CYCLONE estab-

1https: / /12factor.net/
thtps: / / expandedramblings.com/index.php /amazon-web-services-statistics-facts /

1

1. INTRODUCTION

lishes a middleware stack to ease the management of multi-cloud and federated
cloud applications. Specifically, both ecosystems address Cloud Computing
challenges faced by small and medium-sized enterprises (SMEs). There are
fundamental reasons for having SMEs as the application domain. First, SMEs
play an important economic role. In Europe, for example, 99.8% of all enter-
prises are SMEs and 66.5% of the EU workforce is employed by an SME [177].
Besides this, TRESOR targets the German health sector, which is dominated
by SMEs. Second, SMEs receive significant benefits from Cloud services as
investigated by Lacity et al. in [92]. This provides a compelling reason for SMEs
to participate in SaaS ecosystems and use federated multi-cloud applications
as targeted by TRESOR and CYCLONE.

The guiding idea of this thesis is to address four main unresolved cloud chal-
lenges that are significant for the management and operation of cloud ecosys-
tems in general, and that are also of particular importance for the stakeholders
of the TRESOR and CYCLONE ecosystems. In comparison to paramount ecosys-
tems such as the Amazon cloud services, TRESOR and CYCLONE demonstrate
an exceptional focus on clearly defined cloud challenges whose practical rele-
vance is ensured by direct stakeholder involvement instead of generic marketing
activities. This thesis incorporates these stakeholders’ requirements when de-
signing and implementing its contributions and also uses these ecosystems as
an evaluation environment. The results of this thesis therefore provide both
advancements for cloud ecosystems in general as well as specific benefits for
the TRESOR and CYCLONE stakeholders.

To introduce this thesis, the remainder of this chapter first presents the target
ecosystems TRESOR and CYCLONE in Section 1.1 before the main research
questions are stated in Section 1.2. Afterwards, the applied research method
and the resulting thesis structure are explained in Section 1.3. The introduction
concludes with a summary of the research contributions in Section 1.4.

1.1 Addressing Contemporary Cloud Challenges: The
TRESOR and CYCLONE Ecosystems

The TRESOR project was conducted from March 2012 till December 2015 to
enable the use of Cloud Computing in the health sector while complying to
strict constraints such as enterprise policies and legal regulations. It created
an infrastructure that allows protection of sensitive data, for example, patient
records, by strict rules as well as integrating previously isolated applications
using a trusted cloud platform. Customer requirements and service capabilities
are mediated through a cloud broker on a trusted marketplace. The two main
tasks of the project were (1.) to build a scalable and standardized exchange of
IT resources and services between different actors in a cloud ecosystem [96, 26]
as well as (2.) providing an adequate level of legal protection and IT security.
The CYCLONE European Innovation Action focuses on three main areas
that present challenges in multi-cloud settings: (1) application deployment
and management, (2) authentication and authorization using federated iden-
tities, and (3) software-defined network management. The project outcome
is a software stack that comprises preexisting production-ready tools as well
as additional extensions tackling multi-cloud issues. It contains solely open-
source software in order to maximize its utility and also provides a basis for

2

1.1. Addressing Contemporary Cloud Challenges: The TRESOR and
CYCLONE Ecosystems

further collaboration. CYCLONE helps application developers and operators
to solve their multi-cloud hardships by providing readily usable software and
accompanying supporting documentation. In fact, all of the developments are
hosted in the project GitHub Repository®>. CYCLONE also provides compre-
hensive documentation on its website*. Another project task is to apply the
stack to enhance diverse use cases in academic and commercial production-
and near-production settings to ensure the eventual applicability of the project
results and highlight CYCLONE'’s utility in existing DevOps environments.
To better understand the contributions of this thesis to these ecosystems
and the general body of knowledge, the following subsections introduce both
ecosystems briefly. For reference, more information about the concepts and
components of TRESOR and CYCLONE can be found in the appendix.

1.1.1 TRESOR - Providing a Secure Cloud Ecosystem for the
German Healthcare Sector®

The German health sector is one of the largest sectors of employment that
provides jobs for around 4 mio people [108]. As technical demands on medical
services rise, providing IT support through systems and services becomes far
more important. However, available resources for investment are short in supply
[31]. The area is defined by a number of small- and medium-sized regional
enterprises, such as practices and hospitals. These enterprises often host their
own IT infrastructure, which leads to incompatibilities and interoperability
challenges. Maintaining these infrastructures is oftentimes not only laborious
and costly but also constrained by substantial legal requirements regarding data
privacy, data safety, compliance, interoperability, scalability, and availability
[31].

All of these considerations provide many reasons for the health sector to look
for alternative methods to implement IT services. One way of doing so is moving
the infrastructure to the Cloud and use computing, storage, and applications
“on demand” over the Internet. As Cloud Computing caused structural changes
in the IT market over the last decade, the health sector expects its application to
deliver the same benefits seen in other areas: cost reduction, better scalability,
higher performance and availability, globally available services with low latency,
and flexible billing of IT resources based on concrete usage [113, 80]. At the
end, it is expected to deliver an increase in quality of service for stationary and
mobile healthcare personnel [31].

However, there are fundamental challenges when applying Cloud Com-
puting: Usually, there is the risk of subjecting cloud consumers to their cloud
providers, e.g., through the use of proprietary APIs and formats, the so called
“lock-in effect” [34]. Moreover, cloud applications sometimes become isolated
and therefore cannot provide much needed interoperability between the dif-
ferent health service platforms [123]. Both cloud providers and customers are
looking for ways how to move and operate cloud applications in accordance
with applicable law. Besides this, lack of trust in existing concepts for data
protection and safety are an obstacle for faster market development in this area

Shttp:/ / github.com/cyclone-project
www.cyclone-project.eu
5TRusted Ecosystem for Standardized and Open cloud-based Resources

1. INTRODUCTION

[26, 90]. At last, there are further unresolved challenges, especially for Cloud
Computing in SMEs and other sectors [44].

Cloud computing promises many advantages, foremost, it is recognized
by the TRESOR use case partners as a viable way to reduce operational costs.
These cost reductions often are associated with a lack of features, industry
standards, interoperable solutions, compliance to legal requirements, as well as
security and privacy functionality. When those shortcomings impact providers
and users, it leads to untrustworthy business relationships [191].

TRESOR has identified disadvantages and risks within Cloud Computing
that are the main reasons for the slow cloud adoption within the sensitive
domain of the German health sector:

* Privacy, Legal, and Compliance Issues

Sensitive domains require a number of assurances regarding, for exam-
ple, data privacy, legal compliance, and secure auditing. Some of them
are reflected within acts, such as Payment Card Industry - Data Security
Standards (PCI DSS), Sarbanes-Oxley (SOX), and the Health Insurance
Portability and Accountability Act (HIPAA). Using prominent Cloud
Computing platforms could be classified as “operations outsourcing over
organizational and country borders”. Therefore, as [147, 67, 35] point out,
special care has to be taken that the outsourcing provider fulfills these
requirements. Furthermore, hardware virtualization, storage abstraction,
multi-tenancy, and container technologies allow flexible utility computing
models, yet contribute to these issues themselves [29, 9, 147]. At last, the
jurisdictions of most laws and provisions are limited to certain national
borders and regions. As globally distributed Cloud Computing environ-
ments cause these borders to become indistinct, the risk for enterprises
not being compliant to these requirements is increasing.

* High Integration Efforts and Lock-in Effects

As with most other IT services, migrating to and using Cloud Computing
services introduces follow-up costs, as shown in [85] and [66]. Some of
these costs are hidden, for example, costs for making services compli-
ant to regulations, backup, restore, and disaster recovery procedures.
Furthermore, there is a manifold of possible scenarios and associated
requirements to integrate cloud services into existing enterprise archi-
tectures. When cloud services are not adaptable, varied, and extensible
enough, integration becomes a hardship. Lock-in effects, on the other
hand, arise from the lack of industry standards enforcement and make
migration to other providers difficult. The bankruptcy of a cloud service
provider is still a partially unresolved issue, see for example the case
study found in [43].

* Lack of Transparency

Many cloud consumers from sensitive sectors need to diligently asses a
wealth of aspects about specific cloud services. In order to do so, they
need to have as much information as possible about the cloud services
and their providers, for example, contingency procedures, such as their
backup, restore, and disaster recovery. However, these are almost never

1.1. Addressing Contemporary Cloud Challenges: The TRESOR and
CYCLONE Ecosystems

made transparent to the cloud consumer, making it challenging and
troublesome to assess and select cloud services.

1.1.2 CYCLONE - Ecosystem Middleware for Multi-cloud and
Federated Cloud Applications

DevOps teams have to consider a lot when working in the cloud: deployments
need to work everywhere, identities need to come from anywhere, and net-
works need to connect to anyone. Understandably, a life in DevOps is complex
when everything needs to work anytime on any cloud and stakeholders expect
continuous high productivity. Just as the weather system known as “cyclone”
bridges many clouds, the holistic middleware stack of the CYCLONE ecosystem
prevents multicloud-induced headaches. It supplies a comprehensive manage-
ment stack, for example, a deployment manager, a practical identity federation,
as well as a network manager that connects VMs independent of any specific
infrastructure. This section explains the ecosystem as well as the stakeholders
and main project requirements. The appendix and the project deliverables [173]
provide further details.

There are countless ways to deploy and manage applications running on
any cloud on a single VM. Most providers and tool vendors put special empha-
sis in their marketing material how easy this is on their platform using their
tools. Nowadays simple docker pull, aws ec2 run-instances, and kubectl
run commands achieve more impressive results much faster than years before.
However, the highest barriers that need to be surmounted prevail when deploy-
ing and managing a large number of heterogeneous application components on
multiple VMs on different clouds. This multi-cloud challenge presents unmet
requirements that are not yet addressed satisfactory for cloud practitioners.

Various cloud layers have to work in concert in order to manage and de-
ploy complex multi-cloud applications, executing sophisticated workflows for
cloud resource deployment, activation, adjustment, interaction, and monitoring.
While there are ample solutions for managing individual cloud aspects (e.g. net-
work controllers, deployment tools, and application security software), there
are no well-integrated suites for managing the entire cloud stack, especially
within multi-cloud and multi-provider scenarios. Therefore, the establishment
of ecosystems without having such integrated suites proves a very challenging
endeavour.

At last, the “Intercloud” is trending: a globally integrated Cloud of Clouds
sharing APIs, protocols, and data formats. A proposal to use existing stan-
dards and common mechanisms to achieve the “Intercloud Root” was made
by Bernstein, et al. in [25]. Demchenko®, et al. defined the Intercloud Archi-
tecture Framework in [40], addressing Intercloud issues, as well as defining
models and architecture patterns for federated access control within Inter-
cloud environments in [39]. A future Intercloud could incorporate tightly inte-
grated cloud platforms, such as OpenStack” and the VMWare Software-Defined
Data Center®. While these tools provide integrated Cloud management, they
fail to deliver open and standardized APIs, protocols, and data formats, and

6 Also involved in CYCLONE
"https:/ /www.openstack.org
8h’r’rp: / /www.vmware.com/software-defined-datacenter/

1. INTRODUCTION

their components are difficult to replace. Furthermore, Intercloud scenarios
require cross-cloud (e.g., public-private) interoperability, compatibility, and
interchangeability which is currently challenging to implement. Thus, Applica-
tion Service Providers (ASPs) as well as their customers are constricted in their
deployment of well-integrated Cloud solutions, and the Intercloud awaits its
implementation in practice.

Within the CYCLONE ecosystem cloud application service providers use
CYCLONE components to offer diverse functionality to cloud developers and
cloud operators who implement, deploy, and manage cloud applications for
cloud application end-users. For CYCLONE to address the challenges faced in
federated environments and multi-cloud applications, it needs to provide
components within the following areas:

¢ Federated identity. Multi-cloud security can be best achieved when there
is a common authentication system that is used by the cloud application
end-users to log in using their federated identities.

¢ End-to-end encryption. Common HTTP intermediaries found in cloud
ecosystems, such as reverse proxies and load balancers, often act as TLS
server connection ends, accessing HTTP/TLS plaintext. To secure this
communication, there has to be an end-to-end encryption of sensitive
HTTP entity bodies, i.e., an encryption of data between user agent and
origin server.

* Distributed logging. Managing multi-cloud applications effectively re-
quires consolidating all event logs of the involved software, that is, a
distributed logging system.

* Deployment description. There has to be a method of describing cloud
application deployments, at best supporting scripting, multi-cloud de-
ployment, orchestration, as well as custom application lifecycle hooks.

* Management APIs. Any laaS solution should provide an easy to use,
comprehensible, and rich set of management APIs for computing, storage,
and network.

* VM marketplace. To allow collaboration between end-users, VM appli-
ance creators, and DevOps engineers, the IaaS solution should incorporate
a comprehensive VM marketplace.

* Network service management platform. As cloud applications have lim-
ited control and visibility of network resources, it is challenging to achieve
service delivery automation, resource management, and on-demand net-
work connectivity. To implement advanced network services, there has to
be a network service management platform, integrated into the employed
Iaa$ offering.

* Brokering. To support cloud application developers in finding suitable
services in the vast Intercloud, there has to be a service formalization,
a service vocabulary, and a brokering component. It should adapt to
dynamically changing Intercloud services” properties.

1.2. Research Questions - Cloud Challenges

1.2 Research Questions - Cloud Challenges

This thesis provides answers to the following four main research questions
which represent cloud challenges that have neither been answered satisfactory
for cloud ecosystems in general nor for the specific demands of the target
ecosystems.

RQ1: How can cloud services be discovered, assessed, and selected
using user-centric cloud service registries?

Many potential cloud consumers are overburdened by the persistent challenges
of discovering, assessing, and selecting contemporary Cloud Service offerings:
the cloud market is vast and fast-moving, the selection criteria are ambiguous,
service knowledge is scattered through the Internet, and features and prices
are complex and incomparable.[155, 160] As Section 2.1.3 explains in detail,
much research has been carried out to create cloud service registries that help
users select cloud services for eventual consumption, especially within the field
of Semantic Web services. However, the question remains how contemporary
cloud ecosystems can feature a cloud service registry that is user-centric, i.e.,
that caters to the needs of the specific businesses and private users within such
ecosystems, instead of rather generic concerns as it is often observed in the
related work. Reducing efforts for cloud service brokering is especially relevant
for SMEs that operate under tight resource constraints. At last, having such
user-centric registries allows advanced matchmaking scenarios as proposed by
Zilci et al. in [195, 196].

RQ2: How can HTTP entity-bodies be secured end-to-end through
HTTP intermediaries?

Contemporary cloud ecosystems incorporate HTTP intermediaries, such as
reverse proxies, load balancers, intrusion prevention systems, and web appli-
cation firewalls (WAF). These act as TLS server connection ends and access
HTTP/TLS plaintext to carry out their functions. This raises many concerns:
increased security efforts, the risk of losing confidentiality and integrity, and
potentially unauthorized data access.[152]

The analysis in Section 2.2 shows how current HTTP entity-body encryption
technologies address these concerns by providing end-to-end security between
user agents and origin servers through HTTP intermediaries. However, they
are associated with disparate deficiencies, for example, inefficient presenta-
tion languages, message-flow vulnerabilities, and the circumvention of HTTP
streaming. To provide well-secured cloud ecosystems, there needs to be a novel
protocol that can overcome these shortcomings.

RQ3: How can cloud proxies ensure secure and compliant cloud
service consumption?

The biggest challenge when consuming cloud services in sensitive areas, such
as the healthcare sector, is constantly ensuring compliance to the large set
of governing legal regulations and enterprise policies. This challenge can be

7

1. INTRODUCTION

addressed by establishing trusted ecosystems that provide compliance guaran-
tees to all participants through a consistent implementation of cross-cutting
functions, for example, authentication, authorization, accounting, monitoring,
and auditing. As stated by Thatmann in [172, 171], this consistency can be
achieved through a trusted mediator that is always involved when end-users
consume cloud services. The RESTful architecture[54], which is typical for SaaS
solutions, suggests implementing such mediator as a versatile HTTP cloud
proxy. However, this thesis needs to work out in detail how such a proxy can
effectively manage cloud service consumption according to the constraints of
sensitive sectors.

RQ4: How can applications be deployed and managed securely in
federated, multi-cloud environments?

There is widespread usage of cloud technologies within contemporary applica-
tion deployments, for example, using VMs and containers for componentization
of applications, relying on highly scalable public cloud infrastructures, and
embracing the immutable infrastructure paradigm to structure scalable cloud
services, possibly deployed to multiple clouds.[158] As the architecture of these
applications becomes increasingly distributed and complex, the corresponding
security architectures need to be refined and extended further, especially within
federated environments spanning multiple clouds.[156] However, there is a
lack of security architectures that consist of well-integrated components that
make federated identities easily accessible and that allow DevOps engineers to
deploy applications transparently to multiple clouds.

1.3 Research Method and Thesis Structure

The research presented in this dissertation is grounded in a comprehensive
research framework, “Design Science in Information Systems Research”[75] by
Hevner et al., visualized in Figure 1.1. It provides a definition of IS research as
the development of new theories and artifacts, rigorously applying previous
knowledge to address business needs within an appropriate application en-
vironment. These theories and artifacts are iteratively justified and evaluated
using methods such as case studies, experiments, and simulations.

The thesis structure shown in Figure 1.2 represents the application of the
research method proposed by Hevner et al. onto the four research questions,
i.e., the targeted cloud challenges. Each challenge is consistently approached
using three main steps that are explicated in the following:

1. Requirements & Related work

As the first research activity, Section 2 provides a detailed analysis of each
respective cloud challenge. Based on the observations in the contempo-
rary cloud ecosystems presented in Section 1.1, this analysis includes a
clear definition of the stakeholder requirements as well as an introduction
of other related works. Contrasting both discloses the relevant gaps in the
knowledge base that the subsequently created artifacts should respond
to.

1.3. Research Method and Thesis Structure

aseg abpajmouy
8} 0} suonippy

SIoMaweL] YdI1easay 1T 2InJi]

juswuoliaug ajendosddy
8y} ul uoneol|ddy

BLSJID uoneplie .
SaINSEd\e
Swis|[ewJo.
sanbjuyoa |
sisAleuy ejeqe
saibojopoyjain

suonenue)sule
SPOUYIeNe
S|9PO|Ale
SJONJISUOD.
sjuaWINLsuU|e
SYIOMBWE.I e
sel0ay].
suoljepuno4

aseg abpajmouy

abpajmouyy
8|qeoyddy

1061y

uoneINWIS.
Apmig piaige
|eluswiiadx3e
Apnis aseD.
|eonAjeuy.
ajenjeag/Asnpe

auley ssassy

SJoBJIHYe
SalIodY] e
piing/dojaneq

yosJeasay S|

spasN
ssauisng

sapiiqeden
juswdojanae
2Inj08yIY
SUOIIEDIUNWWOD e
suoneolddye.
ainjonuiselus
KBojouyoa]

$9S5900.de

aInynD B aInjonuS.
salbajenS.
suoneziuebiQ

sofjsiaoBIBY D
sanliqedeD.
S9|0Ye

a|doad

9JUBAJI93Y | JUBWUOIIAUT

1.

INTRODUCTION

10

("Te 39 I2UAJH) SS320IJ YdIeasay

Research Questions (Cloud Challenges)

Service HTTP End-to- | Consumption | Application
Brokering End Security Management Security
Requirements &
211 27 2.3 24
Related Work
3.1 3.2 S 3.4
Develop & Service Registry Trusted Cloud Distributed Multi-cloud
Build Architecture and | Transfer Protocol Cloud Security
Implementations (TCTP) Proxy Architecture
4.1 42 43 4.6
Use-case Focus TCTP Rack Cloud Proxy Securing
Groups, Expert Middleware Performance CYCLONE
Interviews, and Benchmark 44
Justify & . . :
i Questionnaires Cloud Consum-
valuate ption in TRESOR
4.5
Saa$S Blueprint (TCTP + Proxy):
Architecture and Benchmark
Figure 1.2: Thesis structure
. Develop & Build

To provide adequate solutions for the observed challenges, this disserta-
tion establishes a number of artifacts that are subsequently deployed to
real-world ecosystems. Section 3 provides an in-depth explanation of the
design and the implementation of the four main artifacts:

* A user-centric cloud service registry architecture and its implemen-
tations (Section 3.1)

¢ The Trusted Cloud Transfer Protocol (TCTP) that enables end-to-end
entity-body security through HTTP intermediaries (Section 3.2)

¢ The distributed cloud proxy which ensures secure and compliant
cloud service consumption (Section 3.3)

* A security architecture for federated, multi-cloud applications (Sec-
tion 3.4)

. Justify & Evaluate

Section 4 presents a detailed use case-driven evaluation of the created
artifacts using appropriate evaluation activities. It explains how they have
been deployed within the target ecosystems to determine their suitability
to address the challenges in practice. Most of the evaluation was done
with direct stakeholder involvement, e.g., through project workshops,
instead of purely theoretical or unrelated considerations. Some evaluation
activities targeted additional professionals that were not directly involved
with the projects, further strengthening the relevance of this dissertation.

1.4. Contributions of this Thesis

1.4 Contributions of this Thesis

This thesis provides four main contributions to the state-of-the-art that result
from addressing each of the research questions:

User-centric Cloud Service Registries for Real-World Use Cases

The analysis of real-world requirements of six use cases in Section 2.1.4
highlights the lack of user-centric registries in the related work, where most
approaches are rather generic and unspecific. This dissertation offers a service
registry architecture (see Section 3.1) that provides a textual domain specific
language (SDL-NG) to let any user describe services easily (see Section 3.1.1) as
well as business vocabularies that reflect common service selection criteria (see
Section 3.1.2).

This architecture is subsequently employed in novel service brokering and
matchmaking scenarios that support users in their selection process. For exam-
ple, one implementation of the architecture is the Open Service Compendium
(OSC), a crowd-sourced cloud service registry. The evaluation activities that
are explained in Section 4.1 attest how all of this solves real-world challenges
in diverse near-production settings well.

The implication is that a substantial benefit for service registry users can
be created by following a simple architecture that is focused on their concrete
needs instead of aiming for highest sophistication and broadest applicability as
observed in many of the related works.

TCTP, A Secure Communication Protocol for Common Cloud Ecosystems

In Section 3.2, this dissertation introduces the Trusted Cloud Transfer Pro-
tocol (TCTP), which is a novel approach to entity-body encryption that over-
comes contemporary deficiencies when cloud service consumption is carried
out through HTTP intermediaries. The pivotal idea of TCTP, which is explained
in Section 2.2.4, are HTTP application layer encryption channels (HALECs) that
offer TLS functionality on the HTTP application layer. Such HTTP application
layer TLS has never been observed in any related work.

The evaluation in Section 4.2 additionally reveals beneficial performance
characteristics of the principal TCTP implementation while Section 4.5 demon-
strates the suitability of TCTP to secure Saa$S services in medical cloud ecosys-
tems.

A Distributed Cloud Proxy for Secure and Compliant Cloud Service Con-
sumption

This thesis contributes a distributed cloud proxy that provides cross-cutting
security functionality to all ecosystem constituents, for example, federated
authentication, XACML-based authorization, as well as facilities for monitoring
and auditing. The proxy makes use of other thesis developments, for example,
it relies on TCTP to prevent access of confidential data. When integrated
with a service registry implementation, such as the TRESOR Broker, it also
manages the runtime consumption of services that were brokered and booked
in the service registry. The evaluation of the proxy deployment in Section 4.4
demonstrates the technical feasibility of the concept as well as the usefulness
of its implementation in a real-world ecosystem.

11

1. INTRODUCTION

A Readily Instantiable Cloud Security Architecture Featuring Open Source
Components

This dissertation establishes a comprehensive economical security archi-
tecture that builds upon up-to-date protocols and open-source software and
is readily instantiable and pertinent to requirements of concrete users (see
Section 3.4). The feasibility of the architecture is highlighted in Section 4.6
by applying it within the CYCLONE ecosystem, deploying federated Bioin-
formatics applications within a cloud production environment. Section 4.6.3
additionally emphasizes the reduced management efforts in order to highlight
the economic benefits of the architecture.

12

Chapter 2

Challenges, Approaches, and
Related Work

The following subsections detail the four main challenges that are addressed
by this dissertation. These challenges are related to the main TRESOR and
CYCLONE project goals, the work items that I have been responsible for in the
last years, as well as the publications that were authored in this period.

Each of the following sections first introduces the challenge in a general
way before explicating its requirements and the related work in these areas. In
order to provide a better understanding for the subsequent component design
and development in Section 3, this section also summarizes how this thesis
tackles these challenges.

2.1 Establishing User-centric Cloud Service Registries

When enterprises contract and consume cloud services, three activities need to
be carried out: First, the services have to be discovered within the vastness of the
Internet. Afterwards, the discovered services need to be assessed by matching
them against business requirements. Finally, services need to be selected, that is,
the best service has to be identified for subsequent booking and consumption.
This can be done, for example, by making a shortlist and ranking services.

All of these activities present challenges for potential customers: First, the
fast-moving, vast cloud market hampers the discovery of potential services.
Second, highly ambiguous cloud service selection criteria contribute to labo-
rious service assessment. At last, complex and opaque price structures and
feature combinations contribute to ambitious comparison efforts.

As one of the major characteristics of Cloud Computing [107] is on-demand
self-service, cloud consumers and providers are exempt from having human
interaction in order to provision computing resources. Therefore, the descrip-
tion of cloud offerings becomes a crucial basis for service selection by cloud
consumers. These service descriptions found within high-volume SaaS market-
places, such as Salesforce AppExchange [144] and the Google Apps Marketplace

13

2. CHALLENGES, APPROACHES, AND RELATED WORK

[68], rely on non-formalized information, e.g., free text, images, and some struc-
tured fields, e.g., author and category. While such content is appropriate for
marketing purposes, other uses are impeded as unstructured text is insuffi-
cient for comprehensive search and uniform service comparison. Therefore, to
carry out service selection activities in a satisfactory manner, the description of
services needs to be formalized.

There are many proposals for cloud service registries that help users with
these challenges, for example, cloud selection helpers, such as PlanForCloud!
and CloudHarmony?. Additionally, there are approaches by academics, such
as the service registry presented by Spillner and Schill in [165]. However, none
of the existing proposals sufficiently meets common cloud user requirements:
business pertinence, tooling simplicity and adaptability, versatile data retrieval,
modeling capabilities, and service matchmaking functions.

It can be observed that approaches from the field of Semantic Web services
are often based on abstract requirements and the application of generic concepts
onto imaginary use cases. Instead, this thesis provides specific service registries
based on concrete requirements of real-world use cases that are evaluated with
stakeholders and potential end users. A good label for this philosophy is user-
centric, which means that the business needs of concrete users are addressed
by the results of this thesis: a comprehensive service description language,
simple and adaptable software components, versatile data retrieval mechanisms,
sufficient modeling capabilities for the target domain, and a constraint-based
service matchmaker.

In line with Hevner’s research method, this work focuses on the applica-
bility of the research results, mainly through the involvement of all related
stakeholders. This involvement includes group discussions at project meetings,
partaking in a focus group on cloud service assessment, as well as presenting
and discussing the work at diverse events as well as academic conferences. At
last, some implementation and evaluation tasks were supported by students
whose theses were supervised in the context of TRESOR and CYCLONE, such
as [17], the integration of a service registry with a geographical information
system, and [5], the creation and evaluation of a service selection questionnaire.

All evaluation methods gathered feedback that continuously refined and
maturated the approach and helped in focussing on the main challenges, re-
quirements, and constraints of practitioners in real-world use cases. These use
cases also help to identify research gaps in existing approaches that do not fit
well to the main practical challenges.

Adhering to the research method of Hevner et al., “progress is made itera-
tively as the scope of the design problem is expanded. As means, ends, and laws
are refined and made more realistic, the design artifact becomes more relevant
and valuable.” [75]. Consequently, the research initially adressed the first use
case before the work was iteratively expanded to the other five, continually
broadening the scope of the approach as well as increasing the number of users
for whom it provides a relevant contribution. Each additional use case can
further grow the target group and therefore the value and significance of our
approach.

1https: / /planforcloud.rightscale.com
2https: / /cloudharmony.com

14

https://planforcloud.rightscale.com
https://cloudharmony.com

2.1. Establishing User-centric Cloud Service Registries

The main contribution in the area of this challenge is therefore the descrip-
tion and evaluation of a novel service registry architecture and its implemen-
tation in diverse use cases, based on a thorough exposition and analysis of
contemporary cloud service challenges. In effect, this contribution addition-
ally supports other researchers and practitioners who are also tasked with the
implementation of cloud service registries. In summary, the research implies
that the simple and focused manner in which the registry architecture and its
components are designed and implemented provides an expedient way to help
users discover, assess, and select cloud services.

To affirm the applicability of the work, the following subsections clearly
specify the challenge environment: first, the use cases in which the contribu-
tions were devised are described as well as the involved stakeholders. Second,
the main challenge areas and stakeholder requirements that guide the subse-
quent activities are explained also. This section concludes with a summary
and analysis of the work related to service registries. Later in this thesis, Sec-
tion 3 also describes the proposed service registry components while Section 4
includes the performed evaluation activities.

2.1.1 Introduction: Use Cases, Stakeholders and Implementation
Concepts

There are in total six main use cases in which cloud service registries were
designed, developed, and evaluated in order to address related requirements
and challenges. They represent both original use cases of the targeted projects
as well as extensions thereof, for example, as a result of collaborations with
other researchers and the supervision of student projects and theses in related
areas.

Use Case 1: TRESOR Service Broker and Marketplace

Within TRESOR, a service registry was created that contains the descriptions
of medical Saa$S services so that the health centers can assess the suitability of
these services to their specific requirements in detail. Throughout the project,
this service registry was called the “TRESOR Broker”. The implementation is
supported by the SDL-NG, a flexible service description language, as well as
a domain-specific business vocabulary that is focused on relevant aspects of
medical Saa$S offerings. The service registry provided an API for the “TRESOR
Marketplace”, a user-facing website where health centers can initiate, manage,
and settle their service bookings.

Use Case 2: Cloud Storage Broker

The Cloud Storage Broker helps business and private consumers to better
understand and compare cloud storage offerings, allowing them to select an
optimal service for eventual booking. It is based upon the TRESOR Broker
which was extended with a storage vocabulary and additional user interfaces
for filtering and service comparison. The resulting implementation is partly
based on the work of Knaack [87].

15

2. CHALLENGES, APPROACHES, AND RELATED WORK

Use Case 3: CYCLONE Iaa$S Registry

In CYCLONE, DevOps engineers create deployment descriptions of their ap-
plications within the Nuvla Application Deployment Platform>. Nuvla queries
a service registry for appropriate Infrastructure-as-a-Service (laaS) offerings
to allow DevOps teams to assess and choose a target service that meets their
application deployment requirements in terms of, for example, CPU cores,
memory, or network bandwidth. To create this registry, the TRESOR Service
Broker was extended with additional APIs to interface with Nuvla as well as a
domain-specific business vocabulary describing laaS offerings, such as Amazon
EC2 and Microsoft Azure.

Use Case 4: Open Cloud Computing Map

The Open Cloud Computing Map (OCCM)* displays and persists knowledge
about geographical locations of cloud services. More specifically, it provides
cloud service providers’ computing centers’ locations to its users as easily
consumable graphical maps. The service registry was integrated into the OCCM
by creating an OCCM data retrieval component which queries the registry for
service information. Additionally, a way to map SDL-NG descriptions onto the
RDF schemas used by the OCCM was also built. Implementation details can
be found in [17].

Use Case 5: Open Service Compendium

The Open Service Compendium (OSC) allows any Internet user to describe,
search for, and compare service offerings through a state-of-the-art interface. It
provides a wiki-like experience for authoring service descriptions and therefore
utilizes crowd-sourcing to extend the reach and impact of the approach.

Use Case 6: Dynamic Questionnaires and Property Statistics in the OSC

To help potential cloud service consumers to assess and select services in the
OSC, it was extended by “static” and “dynamic questionnaires”. The former are
created manually by the cloud registry operators according to their knowledge
about the services and the way their users select them. They are supported
by a statistics module that allows analyzing the data to create meaningful
questionnaires. The latter are created automatically on-the-fly, based on the
available repository data as well as the answers given to previous questions.
As a result of both questionnaires, users are presented a list of services that
is filtered based on the given answers. Users can also go to the list and filter it
according to their needs. Implementation details can be found in [5].

Stakeholders and Implementation Concepts

The concrete stakeholders of each use case addressed by this thesis are general-
ized into three distinct stakeholder groups: cloud service consumers, cloud service
providers, and cloud service registry operators. Cloud service consumers are poten-
tial customers of the cloud services offered by cloud service providers. Both rely

3https: //nuv.la
4http:/ /opencloudcomputingmap.org/

16

https://nuv.la
http://opencloudcomputingmap.org/

2.1. Establishing User-centric Cloud Service Registries

on a service registry that persists the service descriptions for each offering and
supports discovery, assessment, and selection activities. A service description
is a formal representation that describes properties of service offerings in the
form of service attributes. These descriptions can be created by the cloud service
provider or other interested parties. A service description language (SDL) specifies
the underlying syntax, especially the way service attributes are defined and
used. Each business vocabulary contains a set of concrete attributes that fit to
its respective kind of service, e.g., storage or infrastructure services. Given
these prerequisites, a cloud service consumer can interact with descriptions in
different ways, ranging from simple browsing to complex service matchmaking.
The latter is based on queries that are defined by consumers who are in need
for particular cloud services. They can specify a set of constraints on attribute
values that are desirable from their perspective. The evaluation of these con-
straints on a set of services and the subsequent creation of a ranked list is called
service matchmaking.

The use cases feature two kinds of cloud service consumers: businesses
and private individuals. For example, in Use Case 1, health center employees
research about privacy-compliant operating room scheduling services, while
Use Case 2 supports private individuals in their search for cheap cloud storage
services to be used, for example, to store funny cat videos. Use Case 3 supports
DevOps engineers looking for the cheapest cloud to deploy their applications.
While the cloud service providers in all use cases are commercial, the compo-
nents can also support non-commercial providers, such as internal departments
or community clouds such as Cloudy [12]. In each of the use cases, the registry
is operated by different entities. In Use Case 1, for example, the responsible
company for the TRESOR ecosystem would also host the registry while the
storage broker (Use Case 2) and the OSC (Use Case 5) should be hosted on
community-donated resources in order to provide a system that is independent
from any specific provider.

In the course of the work on this thesis, both a generic as well as several
use-case-specific vocabularies were created. Attributes shared by all use cases
are, for example, the service name, a textual description, the cloud model, and
information about the provider. Each use case additionally features a domain-
specific vocabulary. For example, cloud storage properties such as supported
file types, maximum capacity, or available sharing and encryption mechanisms
for Use Case 2. In Use Case 4, the vocabulary represents data center locations
and distinctions between head office and subsidiaries.

2.1.2 Challenges and Requirements for User-centric Service
Registries

After having presented the use cases, this section briefly describes the scope of
this part of the thesis by iterating the challenges as well as the requirements
for user-centric service registries. In [128], Pohjola and Kilkki show that a few
essential features provide the majority of perceived user benefits of communi-
cation services. Every feature added on top contributes less to the perceived
value than those before, while adding complexity to the service, impacting
maintenance efforts, and making user interactions more laborious. Therefore,
the implementation focused on the avoidance of feature creep and the resulting
complex and hard to maintain bloatware.

17

2. CHALLENGES, APPROACHES, AND RELATED WORK

In [155], insight is given how the scope of the approach presented in this
thesis was continually limited to three main target challenges and five main
requirements that are presented in the next subsections. The first step was a for-
mal UML-based modeling process for analyzing user requirements. The project
stakeholders and all involved programmers repetitively defined, presented, and
refined the set of requirements, resulting in 186 reconciled project requirements.
Still, for the limited project resources these were too many and additionally
too broad in scope. Therefore, further prioritization lead to the selection of
challenges and requirements that would be the target of the performed work.
Three factors guided this process: the use case stakeholders’ statements at
project meetings and workshops, the feedback from other researchers and prac-
titioners about external presentations, and the results of all supervised theses.
In effect, this thesis does not address every conceivable challenge, yet it is on
track to create a system that provides major benefits without being too bloated
or complex to use.

The following sections detail the main challenges which resulted from the
iterative concentration of the scope. Afterwards, the requirements of the stake-
holders that should be met in order to address the aforementioned challenges
are detailed.

Challenge 1: Fast-moving Vastness

The cloud market is vast and fast-moving. Current forecasts demonstrate its
increasing vastness: the total end-user spending on public cloud services is
expected to grow by almost 60% between 2015 and 2018 to a staggering $290bn°.
Some cloud vendors are also astonishingly large: Amazon Web Services, for
example, has more than 1 million customers, achieved more than 40 percent
year-over-year revenue growth, and generates an estimated yearly revenue of $4
billion®. The Google Memorial” highlights the velocity of a fast-moving cloud
market participant: it lists 66 discontinued services which were sometimes
highly popular, for example, the Google Reader service had more than 24
million users® before it was suddenly discontinued in 2013. These examples
highlight that the cloud market is too vast to obtain an optimal overview and it
is too fast-moving to keep up with ever-changing service offerings.

Challenge 2: Ambiguous Criteria and Scattered Knowledge

Assessing service offerings raises two questions: what criteria to use and where
to get the required information. Deciding what criteria to use is hard: they are
sometimes highly ambiguous, for example, data privacy criteria as shown by
Selzer [146]. Additionally, they are sometimes identified empirically, yet neither
integrated into service description languages, nor existing marketplaces and
registries. Gathering information about these criteria is also a challenging task:
First of all, companies conceal knowledge about unfavorable service aspects.
For example, cloud backup providers label services “unlimited”, while they

5 http:/ /www.ft.com/cms/s/2/b3d40e7a-ceea-11e3-ac8d-00144feabdc0.html

6http: / /www.geekwire.com/2014/amazon-web-services-passes-milestone-1m-customers/

"http:/ /www.lemonde.fr/pixels /visuel /2015/03/06 / google-memorial-le-petit-musee-des-
projets-google-abandonnes_4588392_4408996.html

Shttp:/ /googlesystem.blogspot.de/2013/03/google-reader-data-points.html

18

http://www.ft.com/cms/s/2/b3d40e7a-ceea-11e3-ac8d-00144feabdc0.html
http://www.geekwire.com/2014/amazon-web-services-passes-milestone-1m-customers/
http://www.lemonde.fr/pixels/visuel/2015/03/06/google-memorial-le-petit-musee-des-projets-google-abandonnes_4588392_4408996.html
http://www.lemonde.fr/pixels/visuel/2015/03/06/google-memorial-le-petit-musee-des-projets-google-abandonnes_4588392_4408996.html
http://googlesystem.blogspot.de/2013/03/google-reader-data-points.html

2.1. Establishing User-centric Cloud Service Registries

have in fact bandwidth and storage limits’. Some of them do not state explicit
limits, but instead impose a fair use clause that allows this provider to cancel the
contract with a user anytime if this user, for example, reaches a user-unknown
threshold. Other backup providers conceal their service limits deep in their End
User License Agreements (EULA). Second, some companies provide insufficient
information in order to follow strategic goals. Sometimes, only external websites
such as private blogs offer workarounds, which are not always discovered by
companies assessing these cloud services.

Challenge 3: Complex and Incomparable Features and Prices

In his seminal 1956 paper, Smith outlined that product differentiation and
market segmentation are viable marketing strategies [161]. This observation
still holds true more than sixty years later: to compete with cloud market
leaders, service providers differentiate products and segment their market. One
example is on-line storage, which is segmented into highly related categories,
such as remote backup, cloud storage, and file sharing.

Different needs of consumers are addressed by several features and pricing
schemes. For example, cloud storage services often allow flexible sharing of
data but incur additional costs for extending the free quota. Backup service
providers, on the other hand, allow unlimited data storage for a fixed price
but have only limited sharing functionality. Thus, comparing different services
becomes challenging if cloud consumers need to both share and backup large
volumes of data. The price structure and feature combinations can also become
complex: for example, when considering all VM sizes, regions, OS, and booking
options (on-demand, 1Y/3Y reserved), there are over 10,000 different Amazon
EC2 configuration variants and resulting costs.

Requirement 1: Business Pertinence

An important key requirement of all stakeholders is the business-pertinence of
information systems. This denotes that service descriptions, business vocabu-
laries, and the registry functionality are pertinent to the business domains, use
cases, and related requirements of the targeted users. This thesis argues that
this should be achieved through a thorough analysis of concrete use cases and
the adoption of empirical insights such as studies on user behavior.

Requirement 2: Tooling Simplicity and Adaptability

Especially within resource-restricted environments, such as the health sector,
any tooling complexity that leads to additional efforts has to be avoided. Ex-
amples are counter-intuitive and complex editors, service models that are far
more extensive than they need to be, and a poorly maintained language imple-
mentation which is hard to install, maintain, and use. In this line of thought,
[183] summarizes the impact of complexity and simplicity on implementation
difficulty in in the context of Extreme Programming.

Furthermore, all parts of the information system need to be also adaptable
to the rapidly changing aspects of cloud computing — with reasonable efforts.
Besides the obvious area of service descriptions, the vocabulary is also subject

9h’r’rp: / /pcsupport.about.com/od/software-tools/tp /unlimited-online-backup.htm

19

http://pcsupport.about.com/od/software-tools/tp/unlimited-online-backup.htm

2. CHALLENGES, APPROACHES, AND RELATED WORK

to change. At best, both should be easily modifiable using the same concept,
for example, by using a textual domain-specific language.

Requirement 3: Versatile Data Retrieval

For every service, there are multiple data sources, often in a human-readable
format, that should be included in the formal service description. For example,
on-demand self-service cloud computing offerings often feature a user-pertinent
documentation in the form of HTML pages. Furthermore, the different service
prices, for example, spot prices, are published on the cloud service provider’s
website, making them a prime target for inclusion in a formal service description
and their automated update on changes.

This reuse of existing data sources considerably reduces the creation and
management effort of service descriptions. Therefore, the approach should
include scraping functions that can extract data from human-readable sources
as a dynamic part of a service description.

Requirement 4: Sophisticated modeling capabilities

Service descriptions may include complex attributes which require sophisti-
cated capabilities to implement, mainly cost calculation and handling service
variants.

When looking at the details of cost calculation in contemporary Cloud
Computing, InfoWorld’s contributing editor Peter Wayner states that “in some
cases, the cost engineering can be more complex than the software engineer-
ing.” [185]. Section [sec:theonewithamazon] previously illustrated the service
variants’ complexity of existing cloud offerings using the example of Amazon
EC2 with its 10,000+ different variants.

Requirement 5: Service Matchmaking Functions

In the majority of cases, cloud service providers and consumers have incom-
plete knowledge and hence not all attribute values are included in the service
descriptions and queries. Moreover, cloud consumers need the flexibility to
express attribute values fuzzily, set priorities, and take the final service selection
decision based on the ordered and evaluated list of services. All these require-
ments need to be integrated into the service matchmaking as they should be
considered to find the most fitting services for a specific query.

2.1.3 Related Work

This section summarizes other works from related fields and contrasts them
with the approach of this thesis. First, it gives an overview of the Semantic
Web as this area features many works having similar goals. It is also most
often mentioned by stakeholders, reviewers, and other experts when the work
is presented to them. Secondly, existing user-relevant cloud service selection
criteria are described that could be incorporated into the description language.
As the approach includes domain-specific vocabularies and related service
matchmaking, an overview about these topics is given as well. At last, com-
mercial services are described that cover parts of the challenge areas before an

20

2.1. Establishing User-centric Cloud Service Registries

overall analysis of the related work regarding the requirements concludes this
section.

2.1.3.1 The Semantic Web

The Semantic Web was brought forward by Berners-Lee as early as 1994 as an
extension to the then-emergent World Wide Web. The general idea is “allowing
documents which have information in machine-readable forms, and allowing
links to be created with relationship values” [24]. Nowadays, the W3C serves as
an umbrella for Semantic Web technologies, for example, through the Semantic
Web Interest Group'® and the W3C data activity'!. The following subsections
describe a number of approaches relevant to this dissertation:

Semantic Web Services (SWS)

Service registries similar to those presented in this thesis play a major role in
Semantic Web Services (SWS). There are seminal works about SWS by Fensel et al.
[51] as well as Studer et al. [168]. Studer et al. summarize the focus areas of SWS
as reasoning-based matching of service functionality, harmonizing data formats
and protocols, as well as automated Web Service composition [168]. The basis
of SWSs are semantic service description languages, which exist in quite a
large number, for example, the Web Ontology Language for Web Services (OWL-S)
[103], the Web Service Modeling Ontology (WSMO) [143], Semantic Annotations
for WSDL and XML Schema (SAWSDL) [49], the Web Service Semantics (WSDL-S)
[3], and the Semantic Web Services Language (SWSL) [15], to name only a few.
Furthermore, there were prominent European research projects maturating the
area of SWS in the past, especially DIP [174], SUPER [37], and SOA4AlI [162].

Semantic Marketplaces

SWSs are envisioned to be traded on future cloud marketplaces, for ex-
ample, on those postulated by Akolkar et al. [4], who emphasize the need
for intelligence. Akolkar proposes to apply semantic technologies in “a vast
knowledge base” using “recent advances in NLP (Natural Language Process-
ing), Information Retrieval, and Machine Learning to interpret and reason
over huge volumes” [4]. An example technology for this set of skills is the
DeepQA software architecture for content analysis and reasoning [78] that is
used in the famous IBM Watson computer program for artificial intelligence
[77]. While this postulation has only limited immediate business-pertinence,
Akolkar refers to the previous work of Legner [94], who asserts the need for
“more sophisticated classification schemes which reflect the vocabulary of the
target customers”.

Recent research approaches sharing the mindset of Akolkar et al. are the Web
Service Modelling Ontology for the Internet of Services (WSMOA410S) and the Linked
Unified Service Description Language (Linked-USDL). WSMOA4IoS is based on the
Web Service Modeling Language (WSML) and has been developed by Spillner and
Schill with the goal to be “easily usable, freely available, versatile, extensible,
and scalable” [165]. The authors claim that other languages fail to deliver these
properties.

Ohttps:/ /www.w3.org/2001/sw/interest/
11h’r’rps: / /www.w3.0org/2013/data/

21

https://www.w3.org/2001/sw/interest/
https://www.w3.org/2013/data/

2. CHALLENGES, APPROACHES, AND RELATED WORK

Linked-USDL is proposed by Pedrinaci et al. in [125] and extends its prede-
cessor USDL presented by Oberle et al. in [117]. USDL is based on the Eclipse
Modeling Framework [175] and was merged into the FI-Ware Marketplace and
Repository Generic Enablers, which is a European initiative for building software
ecosystems. These enablers provide APIs to manage USDL service descriptions
and perform service matchmaking [55]. However, according to Pedrinaci et al.,
USDL failed to gain adoption due to “complexity, difficulties for sharing and
extending the model” [126]. Because of these supposed flaws, they developed
the advanced Linked-USDL, which is based on the Web Ontology Language
(OWL) [184] and enables the integration of existing technologies.

Finally, Breskovic et al. propose to create standardized descriptions in order
to establish electronic commodity markets for cloud services [30] by using
formal concepts like the Computing Resource Definition Language (CRDL) [139].
Other work focuses on specific aspects of semantic service descriptions, for
example, price and cost modeling as addressed by Kashef and Altmann [85, 6].

Other Semantic Applications

Hepp proposed the GoodRelations OWL [73], which contains a vocabulary
for product, price, store, and company data. It is meant to be used as “an
e-commerce extension for the schema.org vocabulary” [72]. In [141], Rodriguez-
Garcia et al. use natural language processing to automatically annotate cloud
service descriptions as a basis for creating a semantic registry. However, search-
ing is limited to topic-based queries instead of selection criteria. In [189], Zhang
et al. create a declarative cloud recommender system based on a mash-up on-
tology using simple SQL queries on a relational database. In [190], the authors
use a simplified analytical hierarchical process to find optimal Iaa$S offerings.
However, their service descriptions only incorporate a limited set of numeric
cloud characteristics and do not consider pertinent selection criteria. Further-
more, they neither iterate the requirements and constraints of their application
area nor evaluate their system with concrete users.

Discussion of Semantic Web Research

Compared to the research presented in this thesis, the related Semantic
Web research mainly differs in its scope and requirements. It can be observed
that the majority tends to aim for the highest conceivable sophistication. For
example, Fensel states in [51] the need to offer a significant automation degree
of service discovery, ranking, selection, composition, invocation, as well as
mediation facilities for data, protocols, and processes. Studer explains that the
basis for SWSs should be “powerful, logic-based, representation languages”
and that the general goal is to make these “semantics machine-processable”
[168]. Recent implementations follow this mindset: Linked-USDL aims “to
maximise to the extent possible the level of automation that can be achieved
during the life-cycle of services” [125]. WSMO4IoS has the goal of “covering as
many XaaS domains as possible” and “unify these services as much as possible
while restricting the domain-specific service characteristics as little as possible”
[165].

Additionally, there are fundamental issues with SWS. For example, in [86]
Klan highlights the challenges of SWS technologies when used for service elici-
tation, for example, the argument why formal logic-based SWS languages are

22

2.1. Establishing User-centric Cloud Service Registries

not appropriate for end-users. Following this view, the SDL-NG description
language refrains from using any procedural representation of service knowl-
edge. Instead, it solely relies on simple attribute/value assignments using
properties that are relevant for the targeted stakeholders. Klan also states that
the elicitation process needs to be incremental, as users “typically do not have
a complete picture of the service functionality they desire”. Especially the
questionnaires in Use Case 6 provide such an incremental process.

This thesis assumes that the broad scope and the far-reaching aims of SWS
research prevent the kind of solution simplicity and fitness for concrete chal-
lenges that is aimed for in this work. Considering this, the service registry
research in this thesis results in simple tools and uses methods that limit its
requirements to the essential needs of concrete end users. Even if it then cannot
rely on advanced capabilities of semantic technologies, such as automated rea-
soning or ontology mediation, it also does not bear the associated complexity
that occurs with a more comprehensive feature set.

The evaluation shows that this decision did not prevent the creation of
repositories fitting well to the requirements of its users. Furthermore, the
performance characteristics of the service registry components suggest both
good scalability and resource efficiency. All of this highlights that user-centric
service registries can be created well without relying on SWS technologies.

To conclude, there is an ongoing debate about the usefulness and feasibil-
ity of the Semantic Web in general: in [100], Floridi carries out an in-depth
philosophical assessment and explains “why the Semantic Web won’t work”,
citing issues such as its reliance on strong artificial intelligence if ambitious
(and therefore technically unfeasible) or being a descendant of Leibnitz’s “lin-
gua characteristica” if being modest. There was also an intense public debate
between Shirky [148] and Ford [56] about the promises and capabilities of the
Semantic Web.

2.1.3.2 User-relevant Cloud Service Selection Criteria

Repschlédger et al. have conducted two studies regarding relevant selection
criteria of cloud consumers. In [135], they present selection criteria for SaaS
based on literature review, an extensive market analysis, and an evaluation
guided by expert interviews. The insights of these studies resulted in the
development of a Cloud Requirements Framework (CRF), which is outlined in
[136]. It provides a well-grounded conceptual basis for structuring SaaS, PaaS,
and IaaS selection criteria. Another approach is the Cloud Service Check [57],
which is a German catalog of cloud selection criteria with an extensive rationale
providing guidance to assess different cloud service offerings. It is a result of
the German research project Value4Cloud [58].

The Service Measurement Index (SMI) is provided by the Cloud Service Mea-
surement Initiative Consortium [33]. It is far more extensive than similar ap-
proaches and, depending on consumer requirements, awards scores for each
key performance indicator (KPI) a cloud service achieves. For example, the
score for the scalability KPI represents the capacity of the service to handle the
expected request volume, ranging from 0, a meager 10% capacity, and 10, an
outstanding 190% capacity, being able to handle almost double the expected
request volume.

23

2. CHALLENGES, APPROACHES, AND RELATED WORK

As one of the requirements is business pertinence, the business vocabulary
incorporates the selection criteria enumerated in the CRF. The rationale given in
the Cloud Service Check could allow a registry to provide more comprehensive
selection support to end users than just showing the raw data. For example,
explaining users why and when offline capability is important for them is
more beneficial than just informing them that a service can be used offline. At
last, the data within service registries can provide the basis for implementing
a partially automated service measurement according to the SMI, reducing
required efforts of conducting such a measurement.

2.1.3.3 Domain Specific Languages (DSLs)

The presented approach relies on domain-specific languages (DSLs) to persist
service descriptions and business vocabularies. Fowler defines a DSL as “a
computer programming language of limited expressiveness focused on a par-
ticular domain” [59]. It is usually based on a host language such as C++, Scala,
or Ruby, which leads to the differentiation between external and internal DSLs.
An external DSL is a dedicated language having its own syntax, for example,
regular expressions, SQL, and XML. It requires code translation into the host
language to be understood. An internal DSL, on the other hand, uses the host
language as a meta-model for its implementation and thus basically forces
the developer to use the host language in a particular business-pertinent style.
Examples are “fluid APIs” [48] and C++ template metaprogramming. Fowler
recognizes a strong DSL culture in the programming language Ruby.

Specifically, the service registry architecture relies on an internal Ruby DSL
as both the limited expressiveness, which results in reduced complexity, and the
focus on a particular domain, for example, selection criteria or service attributes,
matches very well with the overall scope and requirements.

2.1.3.4 Matchmakers, Marketplaces, and Selection Helpers

Service matchmakers focus either on numeric QoS properties or apply ontology-
based matchmaking. The challenges for numeric approaches are the efficiency
of interval comparison, partial matching, eliminating non-matching values,
and comparing the distance of nodes, as highlighted in the works of Kritikos
and Plexousakis in [91], Eleyan and Zhao in [47] as well as Zilci et al. [196].
Fuzzy set theory based approaches, such as [111] by Mobedpour and Ding,
enhance numeric QoS approaches to allow service consumers to specify QoS
queries as good, medium, and poor instead of specific values. Ontology-based
approaches focus on matching the APIs and method signatures rather than
QoS properties. Exemplary approaches are shown by Liu et al. in [98] and by
Jie et al. in [82].

Representative high-volume SaaS marketplaces are Salesforce AppExchange
[144] and the Google Apps Marketplace [68], based on their revenue and the
number of users. Instead of an elaborate cloud service formalization, they
utilize data models with a few attributes, such as free-text, images, provider
info, and a categorization.

Cloud selection helpers support cloud users in assessing different aspects of
cloud providers. One example is PlanForCloud!? which allows users to create

2https:/ /planforcloud.rightscale.com

24

https://planforcloud.rightscale.com

2.1. Establishing User-centric Cloud Service Registries

deployment descriptions and specify their planned usage of servers, storage,
and databases. CloudHarmony!3 is a bundle of services offered by Gartner
and consists of a provider directory, a benchmark database for network perfor-
mance, and a service status dashboard. CloudSpectator!* offers performance
measurements for different IaaS providers. Cloudorado!® provides another
selection helper for computing and storage with a high number of selection
criteria.

214 Comparing Use Case Requirements to the Related Work

As a conclusion, this section now analyzes how the use case requirements relate
to the work presented previously.

Requirement 1: Business Pertinence

The presented works in Section 2.1.3.2 are highly pertinent to the needs
of businesses as they were elicited and validated in close collaboration with
both users and consumers of cloud services. However, most of them cannot be
modeled using ontologies from SWS and other fields as they are lacking the
required classes and properties.

Furthermore, no prominent SWS project did focus on business pertinence
for service consumers, providers, or operators. For example, the SUPER project
enabled semantic modeling of business processes, but did not consider market-
places or specific customer requirements [74]. The SOA4All project proposed
the Minimal Service Model [127] that provides a lightweight high-level model
for service operations and messages. The drawback of such high-level models
is that they are far too broad to express specific service criteria such as payment
methods and supported data formats. The authors address this issue by stating
that other ontologies should be referenced for that purpose. However, they do
not suggest any concrete ontology. Therefore, the presented high-level models
do not provide an immediate benefit to the respective use case. At last, while
the DIP project established an SWS broker [32] within a seemingly realistic e-
government use case, there are some shortcomings: there is neither an in-depth
requirements analysis nor do the authors iterate any design constraints of their
target application area. The authors’ “main aim was to test the advantages of
SWS in term of interoperability” [140] and not how well the system performs
under realistic design constraints.

Limitations in business pertinence also persist for cloud selection helpers.
PlanForCloud contains only services supported by RightScale software. Cloud-
Harmony is quite extensive, yet lacks information about pricing and other
business-pertinent selection criteria. The criteria that are available to potential
users are also limited, for example, PlanForCloud offers only price, while Cloud-
Spectator supports only a multi core score. Cloudorado features an extensive
list of criteria, some reflecting those from Section 2.1.3.2. Yet, there is neither an
imprint nor any information about the company behind it. Furthermore, the
comparison always favors servers from a specific provider (atlantic.net), so the
neutrality can be put into question. None of these platforms offers matchmaking
functionality.

3https:/ /cloudharmony.com
14http: / /cloudspectator.com
15h’r’rps: / /www.cloudorado.com/

25

https://cloudharmony.com
http://cloudspectator.com
https://www.cloudorado.com/

2. CHALLENGES, APPROACHES, AND RELATED WORK

Requirement 2: Tooling simplicity and adaptability

In [59], Fowler assembles a wealth of examples for both internal and external
DSLs, emphasizing how DSLs enable adaptable software systems and raise
developer productivity substantially. Quite a lot of DSLs show how the reduc-
tion of application scope creates a simple tooling. Examples are the Sinatra
Ruby DSL!® for creating simple web applications or the Apache Thrift Type
and Interface Definition Language!”.

In the area of Semantic Web research there are many existing service editors
and tools, for example, WSMO Studio [149], OWL-S Editor [46], Linked-USDL
Editor [95], and the Internet Reasoning Services III (IRS-IIT) broker [32]. All
of them are not aimed at regular Internet users, but should be used by other
SWS researchers. This has severe implications on their simplicity and adaptabil-
ity. Meanwhile, almost all aforementioned SDLs and related tools have been
abandoned, including OWL-S Editor (2005), OWL-S (2006), SAWSDL (2007),
WSMO (2008), IRS-III (2011), and USDL (2011). This has serious consequences
for their use and adaptation in current and future technologies and platforms,
due to the accrued technological debt in the years since their development
discontinuation.

Requirement 3: Versatile data retrieval

Linked Data Principles [23] establish how to retrieve and aggregate data
from external sources and use it to interlink thousands of datasets, for example,
in the Open Mobile Network [182]. However, Linked Data is based on con-
temporary ontologies and query languages that do not allow the definition of
scraping within a service description. Instead, all of it has to be performed using
code that is separated from the service description. This has many drawbacks
such as increased maintenance overhead and isolated repositories for either
scraping code or service descriptions. In contrast to this, the proposed SDL-NG
is based on an internal DSL and thereby allows the integration of program code
and scraping logic into service descriptions very easily.

Requirement 4: Modeling capabilities

The general modeling capabilities within service marketplaces are very lim-
ited, as most employ merely unstructured text. Modeling service variants with
structured languages such as DSLs, XML, or JSON, presents some challenges.
Without having a rich variant model, describing real world cloud services
becomes a major challenge, which has been imposingly demonstrated by a
Linked-USDL service description for Amazon’s EC2 service!8. Although con-
sidering only one type of instance in one of Amazon’s computing centers, the
service description comprises not less than 1899 lines of semantic data. For the
whole EC2 offering, the resulting service description length can be estimated
to be in the range of 300.000 lines. This underlines the prohibitive complexity
of real world semantic variance descriptions leading to inefficient processing
and low comprehensibility. GoodRelations supports the modeling of product
variants, which can reduce redundancies when different variants share the

16http: / /www.sinatrarb.com/

http:/ /thrift.apache.org/

18https: / / github.com/service-business-framework /Marketplace-RI/blob/master/src/
main/webapp/rdf/cloudServices/ Amazon_EC2_001.rdf

26

http://www.sinatrarb.com/
http://thrift.apache.org/
https://github.com/service-business-framework/Marketplace-RI/blob/master/src/main/webapp/rdf/cloudServices/Amazon_EC2_001.rdf
https://github.com/service-business-framework/Marketplace-RI/blob/master/src/main/webapp/rdf/cloudServices/Amazon_EC2_001.rdf

2.2. Enabling End-to-end Security for HTTP Services with TCTP

same attributes, but still requires the manual coverage of all variants separately.
A promising approach is to use feature models to handle variability as pro-
posed by Kang et al. in [84], which has been used for an external DSL in the
FAMILIAR project proposed by Acher et al. [2]. A feature model represents
the configurable qualities of services and their dependencies. As an example,
it could be used to model the free and paid versions of a cloud service offering,
containing the shared and distinct properties. However, so far no contemporary
SWS approach relies on such feature models.

Requirement 5: Matchmaking

In [196], Zilci compares and analyzes the suggested service matching ap-
proaches to related requirements. The main observation is that the related
work from academia has a strong focus on numeric Quality of Service (QoS)
properties such as availability and response time [104], while the application
areas of the use cases employ mostly textual descriptions, keywords, and cate-
gory searches. Moreover, the related work on numeric QoS properties is highly
fragmented: although each approach solves parts of the intervals and fuzzy
QoS requests problems, there is no integrated solution for all query types.
Service selection criteria that include enumerated types, for example, a list of
predefined payment types, are not considered in related work. Moreover, the
different types of constraints should be solved in a single constraint satisfaction
problem (CSP).

2.2 Enabling End-to-end Security for HTTP Services with
TCTP

This section begins with a technology “roundup” to introduce the problem
area before analyzing the challenges and deriving relevant requirements. As
a conclusion, TCTP is introduced “at a glance” and compared to the related
work. In the course of this dissertation, Section 3.2 provides a detailed descrip-
tion of the designed protocol while Section 4.2 evaluates the implementation
performance.

2.2.1 Introduction: Technology “Roundup”

This section provides a short technology “roundup” of the most pertinent
technologies TLS, HTTP, and HTTP/S to prepare the subsequent content.

Transport Layer Security (TLS)

Transport Layer Security (TLS), which evolved from Secure Sockets Layer
(SSL) [61], is a protocol that provides “privacy and data integrity between two
communicating applications”.[42] Besides encryption, it also includes the TLS
Handshake Protocol which provides reliable authentication of both communi-
cating parties as well as the secure negotiation of an encryption algorithm and
cryptographic keys. The RFC states that TLS is “application protocol indepen-
dent”, and “does not specify how protocols add security with TLS”. In effect,
TLS is not confined to any conceptual layer of communication, for example,
the OSI presentation layer, as it transforms arbitrary data into encrypted and
authenticated TLS records.

27

2. CHALLENGES, APPROACHES, AND RELATED WORK

Hypertext Transfer Protocol (HTTP)

“The Hypertext Transfer Protocol (HTTP) is a stateless application-level
request/response protocol that uses extensible semantics and self-descriptive
message payloads for flexible interaction with network-based hypertext infor-
mation systems.” [52, sec. 1]. Most often, HTTP is used with client/server
messaging, that is, between “a program that establishes a connection to a server
for the purpose of sending one or more HTTP requests” [52, sec. 2.1] (the client)
and “a program that accepts connections in order to service HTTP requests by
sending HTTP responses” [52, sec. 2.1].

In this scenario, two kinds of HTTP software interact:

* User agents: “any of the various client programs that initiate a request,
including (but not limited to) browsers, spiders (web-based robots),
command-line tools, custom applications, and mobile apps” [52, sec. 2.1]

* Origin servers: “the program that can originate authoritative responses
for a given target resource” [52, sec. 2.1]

HTTP over TLS (HTTP/S)

HTTP/S was “designed to provide channel-oriented security” for HTTP
[137, sec. 1]. “Conceptually, HTTP/TLS is very simple. Simply use HTTP over
TLS precisely as you would use HTTP over TCP.” [137, sec. 2]. The RFC is in
fact very short, having only four pages of text in its main body. It contains some
clarifications about client and server behavior when using HTTP/S, as well as
the definition of endpoint identification and the “https” URI scheme.

2.2.2 Challenges and Requirements for HTTP Entity-body Security

The HTTP protocol also “enables the use of intermediaries to satisfy requests
through a chain of connections” [52, sec. 2.3] and designates “proxies” and
“gateways” (a.k.a. “reverse proxies”) to reside between user agents and origin
servers. Contemporary RESTful Cloud Computing ecosystems very often
incorporate HTTP intermediaries, such as the Amazon Cloud Load Balancer
[7], HAProxy [170], and the distributed cloud proxy presented in Section 3.3.
Examples for intermediary functionality includes: load balancing, reverse
proxying, SLA monitoring, audit logging, intrusion prevention, and request-
based billing.

When a cloud service is accessed through HTTP/S these intermediaries
have to act as the TLS server connection ends as they need to access the HTTP
plaintext to operate on its contents. As current cloud management functions
require access to URLs, HTTP methods, headers, and response codes, those
could not be implemented if the intermediary would tunnel HTTPS traffic[101].
Repealing these intermediaries is also no viable option in contemporary cloud
solutions, as this severely diminishes the capabilities for managing cloud con-
sumption.

Challenges with TLS Server Connection Ends

Even though TLS connections achieve security on the transport layer, there
are many issues with them having access to message plaintext. It is important to
recognize here that none of the following concerns is limited to public, private,
single-, or multi-stakeholder clouds:

28

2.2. Enabling End-to-end Security for HTTP Services with TCTP

* Risk of losing confidentiality and integrity.

When intermediaries act as TLS server connection ends, the confidentiality
and integrity of all HTTP communication is dependent on each of those
intermediaries. As architectures become more complex and sophisticated,
the risks rise with each additional intermediary.

* Increased security efforts.

Intermediaries, as well as origin servers have to be protected with similar
effort. Every additional service that is accessed through an intermediary
makes a security attack onto these systems more worthwhile. Thus, the
overall efforts of securing such architectures rise.

* Legal obligations.

Within sensitive areas, provisions require end-to-end confidentiality of
exchanged data records, such as those contained in an HTTP payload.
Under German law, for example, disclosing health records contained in
the HTTP payload to these intermediaries would be a criminal act[64].

¢ Risk of unauthorized access.

The risk of unauthorized access using session hijacking and reusing inter-
cepted credentials rises as intermediaries process cookies or HTTP Basic
authentication as plaintext.

* Need-to-know principle.

The basic need-to-know principle denotes that every component should
only have access to the information that it needs to carry out its function.
This principle is not met by such Cloud Computing architectures, as only
the origin servers need to have access to the entity-body and not the
intermediaries. However, most of the management functions carried out
by intermediaries only need information contained in the HTTP headers
and not the whole HTTP entity-body.

Requirements for Entity-body Encryption

In order to address the preceding issues, the entity-body encryption
achieved by TCTP needs to meet the following seven requirements. These are
detailed specializations of rather generic demands for TCTP: that it should
be efficient, secure enough, and usable for TRESOR, CYCLONE, and similar
project contexts:

¢ Efficient presentation (R1)

Every decrease of transmitted or processed data positively impacts the
performance of network applications. Thus, any entity-body encryption
should employ the most efficient presentation language for the encrypted
data.

¢ Message-flow protection (R2)

Keyed hashing such as the HMAC scheme used in TLS (see [18]) can detect
and prevent replayed or reordered encrypted content by authenticating
messages. Any entity-body encryption should likewise avert these kinds
of behavior to prevent security vulnerabilities.

29

2. CHALLENGES, APPROACHES, AND RELATED WORK

* Encryption capability discovery (R3)

To prevent additional round-trips for messages declining or requiring
encryption, the encryption capabilities of a server should be discoverable
before exchanging application data. This allows a user agent to decide for
which URLs it is acceptable, required, or forbidden to send an encrypted
entity-body.

¢ Streaming capabilities (R4)

Entity-body encryption should not prevent HTTP streaming. That is,
it should have the ability to authenticate and process fragments of an
entity-body. This also permits handling messages as they arrive, which is
more efficient than waiting until they are received completely.

¢ Secure key exchange (R5)

The secure exchange of keys is a most basic requirement for an entity-body
encryption. At best, this exchange should happen “in-band”, for example,
using the same communication channel as the subsequent encryption.

e Algorithm negotiation (R6)

Different security algorithms should be negotiable to allow distinct ca-
pabilities and prevent using algorithms that are at a later time found to
offer insufficient security.

¢ Implementation support by existing software (R7)

Any mechanism for entity-body encryption would have to be added to
user agents and origin servers. These implementation efforts can be con-
siderably decreased if supporting libraries and components are available
for applying the technology.

Further Considerations

Any secure on-line exchange of keys requires at least one round-trip to the
server. Furthermore, unnecessary round-trips for failed requests, for example,
requests where encryption is required but not applied or vice versa, can be
reduced by an encryption capability discovery mechanism - at the cost of an
additional one-time round-trip to the server. As the required number of round-
trips for those functions is a conceptual constraint, further round-trip reduction
is not considered as a requirement for HTTP entity-body encryption.

2.2.3 Related Approaches to Entity-body Encryption

There are in general two approaches to achieve end-to-end security for HTTP-
based applications. Both are explicated in the following paragraphs.

Applying an Encryption Scheme within the HTTP Application

In this approach, applications use an established encryption scheme before
transmitting ciphertext over a regular HTTP or HTTP/S connection. Two
methods come to mind: S/MIME and XML Encryption and Signature:

30

2.2. Enabling End-to-end Security for HTTP Services with TCTP

* Secure/Multipurpose Internet Mail Extensions (S/MIME)

S/MIME, as defined in [131], provides methods to sign and encrypt
arbitrary data. Most often, it is used within electronic mail. However, it
is not conceptually limited to this use case and therefore also applicable
for HTTP communication.

¢ XML Encryption [79] and Signature [14]

Both protocols are W3C recommendations for cryptographic functions
on XML and arbitrary data. They are applied as SOAP [70] message
encryption and signing within the WS-Security extensions[114]. As exem-
plified in the WS-Security based OSCI [89] protocol, TLS is often applied
additionally in order to achieve transport layer security.

Using a Modified Communication Protocol

Additionally, there are some proposals for extended hypertext transfer
protocols that address the issue of end-to-end security. The HTTPSec protocol
provides a number of mechanisms to realize HTTP entity-body encryption,
while being compatible to HTTP/1.1. The specification is not available on-line
anymore, but still accessible through the Internet Archive in [60]. S-HTTP as
defined in [138] is a protocol encapsulating and encrypting an HTTP request
in an S-HTTP request. While this contradicts the basic prerequisite of giving
intermediaries access to the HTTP plaintext for management, a modified version
of S-HTTP is conceivable. It should be noted that there is no sign of these
protocols being used at the moment, making those approaches quite obscure.

2.2.4 TCTP “At a Glance”

Before describing TCTP in detail in Section 3.2, this section provides a high-level
overview providing enough detail for the subsequent analysis of the related
work.

TCTP encrypts and authenticates the HTTP payload using TLS at the ap-
plication layer. In effect, all headers are still accessible by Cloud Computing
intermediaries while all of the issues mentioned in the preceding section are
addressed by the entity-body encryption. Encryption keys and cipher suites are
negotiated by wrapping the TLS Handshake Protocol into HTTP payload and
sending it through the intermediaries. The reliance on this secure handshake
minimizes the risk that any intermediary intercepting these messages can act
as a man-in-the-middle and compromise TCTP security. The term “cloud”
was included into the name of the protocol to highlight the most compelling
application domain and not to limit TCTP to cloud environments.

Figure 2.1 provides an overview of communication secured by TCTP. The
payloads of all HTTP messages are transformed into encrypted and authenti-
cated TLS records, whose communication paths are represented by the black
line. This encryption employs keys exchanged between user agent and origin
server through the intermediary, denoted by the grey lines. The HTTP messages
containing an unencrypted HTTP header and payload encrypted by TCTP are
sent through HTTP/TLS connections, so that the headers are also secured on
the transport layer. The intermediary has access to the HTTP headers which
allow it to perform management functions while the transmission of the entity

31

2. CHALLENGES, APPROACHES, AND RELATED WORK

User Agent
HTTP Header ? HTTP Header T TLS Record
M rj M TLSRecord 3 LS e
° S~
PaHT(EZd = TLS Record = TLS Record
wm
y = TLS Record TLS Record
: | |
HTTP/TLS
| |
Key exchange through = HTTP Header
intermediary, without ®
a direct connection 3 TLS Record
between user agent = TLS Record
and origin server. 2 TLS Record
|
HTTP/TLS
' |
HTTP Header ‘? HTTP Header | | o | [TLS Record
j TLS Record -:U’ L [REEEE
° S~
Pla-:;zzd W A TLS Record |l a TLS Record
3 TLS Record 1 TLS Record

Origin Server

Figure 2.1: TCTP “at a glance”

body, for example, sensitive patient data, stays private between the origin server
and the user agent.
In summary, there are four main benefits of using TCTP:

1. TCTP can be deployed immediately, as it is fully HTTP compliant

2. TCTP can be rapidly implemented, as required TLS libraries are widely
available

3. TCTP does not introduce unknown security risks, as it relies on the mature
TLS protocol

4. TCTP can be highly efficient, for the same reasons TLS is efficient in its
binary message format, its key exchange as well as its encryption, which
is even accelerated by specific instructions of modern CPUs

2.2.5 Comparing TCTP to Related Approaches

All of the related technologies present disparate deficiencies regarding the
requirements for entity-body encryption, as summarized in Table 2.1. The

32

2.2. Enabling End-to-end Security for HTTP Services with TCTP

symbols @, ®, and © specify the degree of requirement fulfillment, respectively
“full”, “partial” and “none”.

Table 2.1: Evaluation of different entity-body encryption technologies

Req. TCTP S/MIME XML Enc/Sig HTTPSEC S-HTTP

R1 S © S S S
R2 5] S S O] S
R3 53] O] O] O] O]
R4 53] O] O] o ©
R5 5] S) S 2] S2)
R6 5] S) S S S2]
R7) 53] 5] S S

The following paragraphs detail the information contained in the table in
the form [RX@®], where RX stands for the requirement and @, © or ® specify
the degree of fulfillment.

TCTP

TCTP fulfills all of the requirements: The TLS presentation language em-
ployed by TCTP is the most space efficient of all investigated technologies
[R1®]. HTTP application layer encryption channels protect the message-flow
[R2@]. The TCTP discovery mechanism allows encryption capability discovery
[R3®]. As the entity-bodies are fragmented by TLS, they can be processed in a
streaming fashion [R4®]. The TCTP handshake provides in-band secure key
exchange with forward secrecy [R5®], and algorithm negotiation [R6®]. The
implementation is supported by mature libraries (for example, OpenSSL [180]),
operating system components (for example, Microsoft Windows Secure Chan-
nel [109]), and programming language integrations (for example, Java Secure
Socket Extension (JSSE) [120]) [R7@®]. Building upon widely used software
accelerates the implementation of TCTP, as shown by the TCTP prototype in
Section 4.2.

Secure/Multipurpose Internet Mail Extensions

The verbose headers and message structure of S/MIME are not as efficient
as TCTP [R10]. Binary representation is possible, but 7bit encoding is rec-
ommended by the RFC. Signing operates only on single messages [R20]. A
discovery mechanism is not specified, but could be realized by HTTP content
negotiation, which would require additional round-trips to the server [R30].
To support streaming, messages would have to be separated into MIME multi-
part segments incurring additional effort [R4©]. The RFC does neither specify
secure key exchange [R5G] nor algorithm negotiation [R6C]. There are a num-
ber of S/MIME libraries, for example the JBoss RESTEasy framework [81] for
entity-body encryption in RESTful applications [R76].

XML Encryption and Signature
XML Encryption and Signature embodies XML and either Base64 or XML-
BOP MIME overhead [R16]. Signing operates only on single messages [R2S].

33

2. CHALLENGES, APPROACHES, AND RELATED WORK

Regarding Discovery the same conclusions as for S/MIME hold true [R30].
As with S/MIME, XML data has to be costly separated to be processable in a
streaming fashion [R4®]. “XML Encryption does not provide an on-line key
agreement negotiation protocol” [79, sec. 5.5, par. 2] [R5&]. Algorithms cannot
be negotiated [R6C]. The implementation is supported by a number of libraries
[R73].

HTTPSec

HTTPSec uses verbose HTTP headers containing Base64 encoded content
[R1€]. The encrypted data can be in binary form. For message-flow protection
only a weak message counter is fed to the MAC computation [R2®]. Only
ad-hoc discovery is specified [R3®]. Streaming is not possible, as the MAC
is part of the HTTPSec header [R4C]. Secure key exchange is possible [R5@],
but not algorithm negotiation [R6©]. There are neither existing HTTPSec
implementations nor supporting libraries [R7C].

Secure HTTP

First of all, SSHTTP messages are not compatible to HTTP and therefore
cannot be processed by any Cloud Computing intermediary. As of now, this
would prohibit its use for entity-body encryption. However, it is certainly a
related technology that can be sensibly analyzed. S-HTTP security headers are
verbose [R10] while encrypted data can also be in binary form. S-HTTP does
not protect the message flow [R20]. S-HTTP only allows for ad-hoc discovery
[R3©]. S-HTTP specifies a MAC header computed over the whole entity, which
prevents streaming, but the underlying CMS by now supports the fragmentation
of data and could therefore allow streaming processing, if the RFC would be
updated [R4©]. Secure key exchange [R5®] and algorithm negotiation [R6]
are supported. No implementation of S-HTTP, nor supporting libraries could
be found [R7S].

2.3 Managing Cloud Service Consumption through a
Distributed Cloud Proxy

One of the main challenge areas in cloud ecosystems is providing required
assurances to all stakeholders to allow secure and trustworthy cloud computing,
for example, in the health domain. This requires management of the end-
users’ cloud consumption by introducing cloud proxies as trusted and secure
mediators. Before presenting the approach of this thesis, this section highlights
the requirements that need to be met in this challenge area.

2.3.1 Requirements for Proxies in Cloud Ecosystems

There are four fundamental requirements for cloud proxies that need to be met
in order to use them successfully within cloud ecosystems. These requirements
were extracted and generalized from the 178 TRESOR project requirements
which have been compiled in diverse workshops. Through this involvement of
cloud stakeholders, they can be considered well grounded in practice.

34

2.3. Managing Cloud Service Consumption through a Distributed Cloud
Proxy

Requirement 1: REST-compliant HTTP processing

One of the constraints of cloud proxies is that they need to be compliant to
RESTful applications [54] and JSON APIs that use HTTP as a communication
protocol. When starting the work in this area in 2012, the largest directory of
public cloud APIs identified 70% of all listed as being based on REST. [129]
Currently, in 2017, the prevalent rise of Microservices and JSON APIs continues
the trend of avoiding SOAP in common cloud APIs, see for example [116].

Requirement 2: Managing cloud consumption

HTTP is well suited to control service consumption by proxies, for example, re-
sources are addressed by URIs which allows enforcement of authorization rules
based on matching those URIs. Using HTTP in a RESTful manner provides a
unified mechanism making proxies universally applicable for any cloud service.
This is unlike SOAP/RPC which employs application-specific interfaces which
would require extensive modification of proxies for each service. Meaningful
REST URIs also allow generic capabilities, such as resource-based logging and
accounting for any service. Furthermore, HTTP includes information that can
be integrated into the SLA monitoring, for example, the HTTP status code
which conveys the distinction between successful and failed requests.

Requirement 3: Provide implicit security guarantees

The management of cloud service consumption through cloud proxies enables
service providers to rely on implicit guarantees, such as the correct client
authentication or the compliance to all policies of service clients. This can
release cloud services that are accessed through such proxies from many duties,
for example, the implementation of AAA functionality. In this case, the proxy
would either locally authenticate users or rely on existing single sign-on (SSO)
solutions, such as Open ID Connect [118].

Requirement 4: Independent management

Cloud proxies should be distributed in such a manner that management capa-
bilities can be fulfilled by a 3rd party that is independent from consumer and
provider. This is beneficial especially for the monitoring of SLAs: as pointed
out by Koller et al. [88], an independent party can monitor and enforce SLAs
more trustfully than the participating parties could do by themselves. Having
an independent party also helps with the debugging of problems, as it can help
pinpointing potential issues to either the consumer or the provider.

2.3.2 Related Approaches

Weissman et al. stated in [186] that “enabling proxies to assume multiple roles
is key to the performance and reliability of distributed data-intensive multi-
cloud applications”. In line with this thought, some multi-role distributed
proxies can be found in literature, for example, to mitigate constraints of mobile
devices as shown by Zhu, et al. in [192], and realizing a certificate-less re-
encryption scheme, demonstrated by Wu, et al. in [187]. In practice, there are
many useful proxy implementations limited to certain tasks, such as HAProxy

35

2. CHALLENGES, APPROACHES, AND RELATED WORK

[170], a widely used load-balancer, Squid [166], a content cache, and Tor [130],
an anonymization software.

2.3.3 Distributed Cloud Proxy: Concept

The main idea behind the distributed cloud proxy is the establishment of three
instances of the same proxy at each involved party, the cloud consumer, trusted
party, and the cloud provider. Each instance provides complementary func-
tions, for example, TCTP client and server facilities, monitoring of stakeholder-
relevant information, and backend integration (e.g., AAA systems). The com-
munication is secured end-to-end with TCTP while the point-to-point commu-
nication uses TLS. Figure 2.2 presents an overview about this concept.

Local integration of AAA systems and existing

o user databases (e.g. LDAP, Active Directory) Rs
B E Regular S
= é Service . HTTP(S) 44
@) S End-user Client Traffic 24 Sy
proxy D 4[)1(6,%:

i Trusted Cloud|Transfer Protocol (TCTP) i

3 Monitoring and enforcement

= % Trusted of legal regulations, enterprise
2 & proxy policies, compliance rules,

= location-based access, and SLAs

i Trusted Cloud|Transfer Protocol (TCTP) i

Cloud
= .
T 5 Managed cloud Services
g% Service service consumption
@ proxy Regular HTTP(S)
Traffic

Figure 2.2: Cloud proxy distribution, adapted from own figure in [172]

From a conceptual point of view, the distribution of functionality is the
following;:

* The proxy at the cloud consumer serves as an integration point to the local
systems - without exposing these to the Internet. There are many potential
services the could be integrated with the client proxy, for example, local
AAA systems, a local policy store, and a company auditing system. This
client proxy is accessed via regular HTTP(S) traffic and invokes the TCTP
key exchange and encryption with the service proxy.

* The proxy at the trusted party provides centralized security functions,
such as monitoring and enforcement of legal regulations, implementing
enterprise policies, and supervising Service Level Agreements (SLAs). As
the traffic is protected by TCTD, it can manage the traffic without having
access to the confidential parts of the traffic, the HTTP entity-bodies.

36

2.4. Secure Management of Federated, Multi-cloud Application Deployments

¢ The proxy at the cloud provider is the TCTP server connection end. There
are implicit guarantees given about the traffic coming to this proxy, for
example, that the preceding proxies have relayed communication compli-
ant to all legal and organizational requirements of the cloud consumers.
The provider proxy decrypts TCTP traffic so that the communication
encryption is transparent to the cloud services. This transparency is very
beneficial for the cloud services as they do not need to be extended, for
example, with TCTP server components.

2.4 Secure Management of Federated, Multi-cloud
Application Deployments

Providing an architecture to securely manage federated, multi-cloud application
deployments is the main challenge in this area. Such an architecture is highly
relevant to realize two important characteristics of contemporary cloud services:
multi-cloud deployment, for example, to increase resiliency and reduce latency,
and authentication and authorization using federated identities, for example, to
reuse identities provided by academia (eduGAIN) and social networks (e.g.,
Facebook). Within this area, three stakeholder groups are interacting: Cloud
Infrastructure Providers who provide cloud resources to Application Service
Providers to deploy applications for Cloud Application End Users.

2.4.1 Requirements for Secure Application Deployments in Cloud
Ecosystems

This section presents the three most pertinent requirements for the challenge
area. They originate from the CYCLONE innovation action and represent some
of its goals. Having also been observed by all project partners in practice, they
can therefore be considered highly relevant for contemporary cloud ecosystems.

Requirement 1: Federated authentication and authorization

Federated academic identities are quite common in cloud environments to
access scientific online libraries and shared research infrastructures. Using
Facebook and Google identities to access personal cloud applications is also
quite popular nowadays. In fact, all stakeholder groups require their use: cloud
infrastructure providers for reusing preexisting identities for administrative
log-ins as well as application service providers to attract end users who can
easily reuse their identities in a practical and secure manner. Especially for data
sharing by end users, authorization by federated identities can be way more
trusted than anonymous username/password pairs.

Requirement 2: Secure multi-cloud application deployment

Multi-cloud deployment by Application Service Providers offers many bene-
fits, for example, lower latency through global server distribution, and higher
resiliency when using more than one cloud provider.

37

2. CHALLENGES, APPROACHES, AND RELATED WORK

Requirement 3: Unified logging for distributed systems

As both the cloud infrastructure as well as many cloud applications are ex-
tensively distributed, gathering diagnostic messages and performance metrics
from all of these applications in a unified system is very challenging. This
requirement is especially relevant for any cloud ecosystem as providing service
logs is oftentimes a very important functionality for ecosystem participants.
Without this functionality, debugging applications and providing audit trails
for data privacy reasons becomes a very tedious endeavour.

Nonfunctional requirements: solution qualities

There are four main solution qualities that qualify as nonfunctional require-
ments:

* Business relevance: A high relevance for contemporary cloud environ-
ments should be achieved through a requirements analysis of concrete
use cases instead of conceptual considerations.

e Immediate instantiability: All components of the security architecture
should be published as open source to make the instantiation almost
instant.

¢ Comprehensibility: To make it easy to follow the underlying ideas and
take up the security architecture, there should be a large volume of com-
prehensible supporting material.

e Maturity: To build a stable and mature architecture that can be applied
within production environments, it should rely on established software
as well as common protocols and libraries.

2.4.2 Related Technologies

After establishing the stakeholders and their requirements, the next subsections
give an overview about the technologies related to the challenge area.

OpenlD, OAuth, and OpenlID Connect

Accessing resources on Web 2.0 platforms on behalf of other resource owners -
without handing over usernames and passwords - provided the first use case
for federated web-authentication and authorization. For this purpose, OAuth,
OpenlD, and the recent OpenID Connect were introduced: OpenID'® specifies
how relying parties “prove that an end user controls an identifier” without
disclosing credentials to relying parties.

Resource access requests can be expressed by OAuth[71] which enables “a
third-party application to obtain limited access to an HTTP service, either on
behalf of a resource owner [...] or by allowing the third-party application
to obtain access on its own behalf”, most commonly through the OAuth Au-
thorization Code Grant flow. Basically, relying parties use HTTP redirection to
request an access token from the resource server. If users accept this request,
the resource server issues a token that allows relying parties access to users’
resources (see 4.1 of [71]).

19http: / /openid.net/specs/openid-authentication-2_0.html

38

http://openid.net/specs/openid-authentication-2_0.html

2.4. Secure Management of Federated, Multi-cloud Application Deployments

The most recent authentication protocol, OpenID Connect, focuses on solv-
ing security issues when using OAuth for authentication?. OpenID Connect
uses JSON Web Tokens (JWTs)?! for transmitting user claims. As a result,
the OpenlD Connect Authentication Code Flow (OIDCACF) combines JWT
and OAuth to provide secure web-based single sign-on for contemporary web
applications.

SAML, eduGAIN, and Compatible Implementations

The OASIS Security Assertion and Markup Language (SAML)?? “defines the
syntax and processing semantics of assertions made about a subject by a system
entity”. It incorporates Web Service technologies, such as XML, XML Encryp-
tion & Signature, and SOAP. Version 2.0 adds HTTP bindings to use SAML
without SOAP. The GEANT eduGAIN service “interconnects identity federa-
tions around the world” through providing a metadata aggregator for inter-
federation service access between 38 participating federations, 2093 Identity-,
and 1208 Service Providers.

Shibboleth?? is an open source Discovery Service, Identity-, and Service
Provider implementation, based on SAML 2.0, extensively deployed in academic
institutions worldwide. The SimpleSAMLphp?* 1dentity- and Service Provider
additionally supports OpenlD and OAuth. Keycloak® provides “Integrated
SSO and IDM for browser apps and RESTful web services” and implements
all standards previously mentioned. It offers an Identity Broker, integration
with Active Directory and LDAP, as well as a rich set of libraries for different
implementation platforms.

PAM, XACML & Moonshot

The Linux Pluggable Authentication Modules (PAM)2® subsystem provides a
simple API to offer policy-compliant authentication, authorization, and account-
ing to relying software, such as Secure Shell Server (SSH) or getty processes.
The Extensible Access Control Markup Language (XACML)? provides an XML-
based policy language and a distributed access control architecture. It uses
a set of subject attributes, for example, group membership or confidentiality
level, to authorize actions carried out on arbitrary resources, which is called
attribute-based authorization. The Moonshot project®® “aims to enable federated
access to virtually any application or service”. One of its main components is a
federation-enabled version of OpenSSH. However, relevant work ceased at the
end of the last pilot in March 2015. Now, Moonshot-provided software packages
are outdated and insecure due to a lack of patches for recent vulnerabilities
and therefore unsuitable for any production environment.

20For a comprehensive discussion, see http://oauth.net/articles/authentication
21See http:/ /jwt.io and [83]

22http: / /saml.xml.org/saml-specifications

23ht’rp: / /shibboleth.net/

Zhttps:/ /simplesamlphp.org/

Bhttp:/ /keycloak.jboss.org/

26ht’(p: / /www.linux-pam.org/

2 https:/ /www.oasis-open.org/committees /xacml/

28h’r’rps: / /wiki.moonshot.ja.net/

39

http://oauth.net/articles/authentication
http://jwt.io
http://saml.xml.org/saml-specifications
http://shibboleth.net/
https://simplesamlphp.org/
http://keycloak.jboss.org/
http://www.linux-pam.org/
https://www.oasis-open.org/committees/xacml/
https://wiki.moonshot.ja.net/

2. CHALLENGES, APPROACHES, AND RELATED WORK

ELK distributed logging stack

The ELK logging stack is one of the most widely used software stacks to imple-
ment distributed logging. It consists of three software components which form
the ELK abbreviation:

e Elasticsearch?®

Elasticsearch is an open-source distributed search engine, based on
Apache Lucene®. It operates on schema-free JSON documents and
is therefore highly flexible. Within the ELK stack, Logstash uses
Elasticsearch to persist log messages while Kibana uses it to retrieve
these logs.

* Logstash

Logstash is a well-performing logging middleware which is used to uni-
formly receive, transform, and persist log messages from a diverse set
of backend services. Out of the box, Logstash supports over 40 different
inputs, for example, Syslog, “JSON data over a socket”, Twitter Streams,
and any JDBC data source. It converts each input message into a com-
mon format which can be persisted in diverse back ends, most often
Elasticsearch.

e Kibana

Kibana can be used to offer comprehensible and highly functional log-
ging dashboards when provided with a configuration that fits well to
the available logging data in Elasticsearch. Available dashboard compo-
nents include line, area, bar, and pie charts, data tables, heatmaps, and
others. These components can add dynamic filters to the displayed data,
effectively providing a “drill-down” functionality.

40

Phttps:/ /www.elastic.co/products/elasticsearch
30https:/ /lucene.apache.org/

Chapter 3

Component Design and
Development

After providing the application environments as well as the challenges, ap-
proaches, and the related work, the following subsections provide details about
the components that were developed in the context of this thesis: the cloud
registry architecture, the Trusted Cloud Transfer Protocol, the distributed cloud
proxy, and the multi-cloud security architecture.

3.1 Cloud Service Registry Architecture

After iterating the application domain and the user requirements as well as
describing and analyzing the related work in Section 2.1, this section now
explicates the design of the cloud service registry as well as its implementation
in the diverse use cases. Afterwards, it presents an analysis how the resulting
architecture meets the stakeholder requirements by contrasting each other. The
conclusion consists of providing some further remarks to help understand the
performance characteristics of the service registry architecture.

The service registry architecture that is shown in Figure 3.1 includes six main
components that are explained in detail in the following subsections, along
with their implementation in the use cases. As the components are loosely
coupled they can be scaled independently, based on the concrete performance
demands of the use cases.

Figure 3.2 presents an overview of the interactions between these compo-
nents in the form of a UML communication diagram. This diagram presents
the two main interactions “Service Modification” (1.) and “Service Query” (2.).

To create or modify services, users instruct the client to send an HTTP POST
request to the Rails backend (1.1). The backend receives the description and
pushes it to the Redis Job Queue for processing (1.2). The service evaluator
pops the queue (1.3) and pushes the resulting service description document to
the database (1.4).

41

3. ComPONENT DESIGN AND DEVELOPMENT

Service Evaluator @ Database (MongoDB)@

SDLNG 3 | ™

Evaluation
Results

MongoDB
(BSON)

Client

Business @

Vocabularies

g]

Persisted
— MongoDB Versions HTTP
Redis (BSON) REST
API calls
MongoD
Redis (BSON) HTTP
LI L
Redis Job Queue Rails Backend
Q @ SDL to evaluate @
[] ©
Redis Redis [
O/u IPC
Matchmaking
IPC Queries and
L Results
Matchmaker @
Figure 3.1: Cloud Service Registry Architecture
1 Senice 2 Service Redis Job Queue 1.3 POP queue ESve;;lez)r
Modification Query

1.4 Push result
to database

User 1.2 Push

description
1.1 HTTP POST
Client Rails Backend (2.2 Query for Service Database
2.1 HTTP GET
2.3 Rank
services
Matchmaker

Figure 3.2: Service Registry Communication Diagram

42

3.1. Cloud Service Registry Architecture

After services are persisted in the registry, it can be queried (2.). Similarto 1.,
the client transmits an HTTP GET request to the Rails backend (2.1). The Rails
backend transforms the GET query parameters into database filters, which it
includes in the database query (2.2). As an optional step, the services can be
ranked using the matchmaker (2.3) before returning them to the client.

3.1.1 SDL-NG

The SDL-NG is a Ruby-based internal service description language featuring a
terse syntax, rich type system, utility functions for scraping HTML documents,
and export facilities for XML, JSON, HTML, and RDF. It is used to specify
service vocabularies well as using these for the description of cloud service
offerings.

The following subsections provide a thorough explanation of the SDL-NG
as its creation was one of the most time-consuming undertakings that were
followed through this dissertation. First, the design and basic framework
structure are explained, before detailing the implementation of the diverse
functions and providing examples for SDL-NG use.

3.1.1.1 Design Considerations

The design of the SDL-NG framework is mainly motivated by Requirement 2,
enabling simplicity and adaptability. A DSL lowers description and language
definition efforts considerably, especially in relation to service description lan-
guages using semantic technologies. From past experience using Ruby as well
as other programming languages comes the presumption that a Ruby-based
DSL can provide a simpler and more usable tooling than the language tools of
WSMO4IoS and Linked-USDL. As the service description is in fact program
code, it can be augmented by libraries to implement the integration of existing
sources, for example, by scraping HTML documents for feature descriptions.
Another benefit of using Ruby is the low “syntactic noise”, that is, the overhead
characters not conveying semantic meaning (semicolons, brackets, etc.) are
considerably lower in Ruby than in other programming languages, such as
Java and C++, providing less distractions when reading and understanding
program code.

3.1.1.2 Basic Framework Structure

The SDL-NG uses the very common RubyGems! package management system,
included in every major Ruby distribution, for packaging and deployment.
Within a . gemspec file, Ruby libraries define a rich set of metadata, for ex-
ample, their dependencies, name, license, and version. The main source for
Ruby libraries is the RubyGems community hosting service that also hosts
the SDL-NG?. After installing Ruby, potential library users can issue a simple
gem install sdl-ng command to download and install the SDL-NG and all
required libraries.

The framework consists of five directories that are explained in the following:

https:/ /rubygems.org
Zhttps:/ /rubygems.org/gems/sdl-ng

43

3. ComPONENT DESIGN AND DEVELOPMENT

bin

A common convention for RubyGems is having all executable scripts inside
the bin directory. As the SDL-NG is rather a framework used within other
programs, it does not provide any immediately executable program that would
provide any usable function to the end-user. Instead, the bin directory contains
the process_service_descriptions script which allows to “testdrive” the
SDL-NG. It recursively loads all vocabulary files (*.sdl.rb) from the current
directory before instantiating all service descriptions (*.service.rb). After-
wards, it exports the vocabulary as JSONSchema and XSD and all services as
XML, JSON, RDF, and HTML. This script has shown to be quite helpful for un-
derstanding and studying the SDL-NG, for example, by students who authored
theses using the SDL-NG. It was also modified to provide some performance
figures about the SDL-NG in Section 3.1.10.

examples

This directory contains all SDL-NG artifacts that have been created over
the course of the last years: service descriptions (services), vocabularies
(vocabulary), translations (translations), and RDF mappers (rdf _mappers).
More information about the examples can be found in Section 3.1.2 which ex-
plains the structure of the vocabularies and Section 3.1.1.15 which highlights
the RDF mapping mechanism.

spec
The spec directory contains a suite of behaviour-driven tests, based on the
widely used Ruby RSpec BDD library®. Throughout the development, having
such a suite was beneficial in two aspects: first, it allowed to start develop-
ment with the definition of the expected behavior of the SDL-NG which closely
matched the established design ideas before working on their implementation.
Second, it helped with iteratively extending the framework with new function-
ality while still ensuring compatibility to the services described previously.

1ib

The 1ib directory contains the code of the framework, structured so that
it is compatible to the autoload mechanism implemented by ActiveSupport?.
Autoload eases the programming in Ruby by automatically loading unknown
modules on their first use from source files that are named similarly, for example,
the class SDL: :Base: : Type will be loaded on first use automatically from the
file 1ib/sd1l/base/type.rb.

The modules of the framework are structured according to their responsi-
bilities:

e SDL: :Base defines the most basic framework classes Type and Propery.
Section 3.1.1.4 explains this basic relationship. The module also contains
additional utility classes:

- ServiceCompendium is a facade that eases interacting with the SDL-
NG (see Section 3.1.1.6)

Shttp:/ /rspec.info/
4http:/ /api.rubyonrails.org/classes/ ActiveSupport/ Autoload.html

44

3.1. Cloud Service Registry Architecture

— PropertyClassification provides a classification scheme for ser-
vice properties (see Section 3.1.1.8)
— URIMappedResource maps SDL classes to URIs (see Section 3.1.1.9).

* SDL: :Exporters hosts all classes responsible for exporting SDL-NG data
to HTML, XML /XSD, JSON /JSONSchema, and RDF. The mechanisms
for exporting data is brought forward in Section 3.1.1.12.

® SDL::Receivers is designated to the TypeInstanceReceiver class that
provides the execution context for service and vocabulary description
files. Section 3.1.1.7 explains the relationship of this class to the lifecycle
of service descriptions and vocabulary definitions.

* SDL: :Types contains classes to reflect commonly used value types, e.g.,
boolean, numerical, and strings. Section 3.1.1.10 iterates all classes avail-
able for use in a description.

util
The util directory contains two Ruby source files that provide utility func-
tions to the framework:

* documentation.rb implements all functions related to the documenta-
tion mechanisms of the SDL-NG. It is explained in more detail in Sec-
tion 3.1.1.13.

* nokogiri.rb provides the fetch_from_url function that can be used to
scrape HTML documents for description content. More details can be
found in Section 3.1.1.14.

translations

The translations directory provides English translations for framework-
defined documentation keys, e.g., comments explaining the structure of the
XML Schema Definition for better comprehension by potential users.

3.1.1.3 SDL-NG Example and Overview

Listing Listing 3.1 provides an excerpt of the service description for Google
Drive for Business. After a first look, the language appears to consist of space-
separated key/value pairs. However, it is in fact a Ruby program that con-
tains invocations of instance methods of the Service class which is provided
by the SDL-NG. For example, the first line in the listing invokes the Ser-
vice#service_name instance method and provides it with the “Google Drive
for Business” parameter. This method was dynamically defined by the SDL-NG
framework when it loaded the business vocabulary at an earlier stage. All
these dynamic methods are responsible for setting the instance variables to
the value of the given parameter, similar to “setter” methods found in other
programming languages, such as Java and C#. In this example, the method
sets the @service_name instance variable of the respective Service instance to
“Google Drive for Business”.

The SDL-NG supports different value types: simple types (such as strings
and booleans), complex types (such as ChargingUnit or AddOnRepository),
and lists of both types. The example listing shows all of them: a simple string
for the service_name property, a complex type CloudServiceModel for the

45

O 0 N G = W =

NN N R s s e s s
PN R, S v ®» N G A& ® N = o

3. ComPONENT DESIGN AND DEVELOPMENT

cloud_service_model property, as well as the list of compatible browsers for
the compatible_browsers property.

For easier use of predefined type instances, they can be referenced by a
simple identifier, for example, saas (as a CloudServiceModel instance) and
firefox (as an instance of Browser). Here, saas is a method invocation that
returns a predefined instance of the same name. Some type instances can be
created on the fly, for example, the AddOnRepository type that is instantiated
in the listing with a list of two values: a string for the repository url as well as
an integer to represent the number of addons in the repository.

In addition, the lower part of the excerpt shows how scraping external
resources through Ruby code is seamlessly integrated into the SDL-NG. First,
the the method fetch_from_url is invoked, which fetches an HTML document
from a URL and invokes an anonymous function for each element that matches
a selector. The example uses *h3’ which returns a list of headings. For each
heading the feature property setter is invoked, which adds a new feature
to the service, taking the content of the heading as a title and the following
paragraph (’\simp’ matcher) as the feature description. The result of the
SDL file invocation is a new Service instance that contains a wealth of static
information as well as a comprehensive textual feature description that was
dynamically scraped from the Internet.

Listing 3.1 Service description excerpt (truncated URLs for readability)

service_name 'Google Drive for Business'
cloud_service_model saas

add_on_repository 'https://...', 1000
status_page 'http://...'
public_service_level_agreement 'http://...'
documentation 'http://..."

rest_interface 'https://...'

is_charged_by user_account
is_billed monthly
is_charged in_advance
payment_option credit_card

compatible_browser firefox
compatible_browser chrome
compatible_browser internet_explorer, 'O

fetch_from_url('https://..."', 'h3')[1..4].each do |header|

feature header.content.strip, header.search('~p') [0]
end

46

N Ul e @ N e

3.1. Cloud Service Registry Architecture

3.1.1.4 Types and Properties

Type and Property, the foundational classes of the SDL-NG, are regular Ruby
Class descendants. In the SDL-NG, Type descendants represent any structured
information, for example, Services, Providers, and Locations. The attributes
of each Type are represented by Property instances. Properties can be “multi-
valued”, that is, they can represent a list of values. In general, properties
represent either “simple values” (e.g., a number, string, or boolean value) or
“complex values”, that is, Type instances. The syntax for type and property
definition is as follows®:

¢ Adding properties to any type definition

type :<identifier> do <definitions> end

* Alternative syntax for adding properties to Service
service_properties do <definitions> end

* Adding a single property to a type
<type> <name>

¢ Adding a multi-valued property to a type

list_of_<plural type name> <name>

¢ Setting a property value of a type instance

<property> <value>

* Setting a multi-value property of a type instance
<singular property name> <value 1>
<singular property name> <value 2>

<singular property name> <value n>

¢ Setting a complex value for a property of a type instance

<property> do ... end

To exemplify the definition of types and properties the next listings explain
possible combinations for property types.

Listing 3.2 Single, simple value

service_properties do
string :service_name
end

service_name 'Google Drive for Business'

5The detailed explication how the instructions are implemented follows in Section 3.1.1.7

47

O 0 N G = W =

ey
L N = o

O 00 N o Ul = W =

3. ComPONENT DESIGN AND DEVELOPMENT

Listing 3.2 shows the most basic case: defining a single, simple value prop-
erty. In the example, Line 3 adds a service_name string property to the Service
type. Line 7 shows how this property can be later set on a Service instance to
a string value quite easily.

Listing 3.3 Single, complex value

Vocabulary definition
type :provider do

string :provider_name
end

service_properties do
provider
end

Service description
provider do

provider_name "Amazon.com, Inc."
end

Listing 3.3 highlights a more complex example. First, Lines 2-4 define a
new Provider type and add the provider name as a simple string property
to this type. Lines 6-8 add a new provider property with a type of Provider
to the Service type. In this case, as the type Provider has the same name as
the property provider, the SDL-NG allows shortening provider :provider
to provider.

Listing 3.4 Multiple, simple values

Vocabulary definition
service_properties do

list_of_strings :service_tags
end

Service description
service_tag '"great"
service_tag "fantastic"
service_tag "you'll love it"

Listing 3.4 shows the definition of a multi-value property. Line 3 adds the
service_tags property, a list of strings, to the Service type. Then, multiple
values can be added as service tags using the singular name of the property,
as seen in Lines 7-9. Complex types are set using the same syntax, as seen in
Listing 3.5.

Listing 3.5 is the last example, showing the definition of a multi-valued
property with a complex type. Lines 2-5 define the Initiative type, repre-
senting social initiatives of a provider. Initiative has two properties: the

48

O ® N G e W N e

W W W W W W NN NN N NN NN N s s s s e s s s
AR O RN R, S Y ® NS AR YN R, S v ® N U R W N R O

3.1. Cloud Service Registry Architecture

Listing 3.5 Multiple, complex values

Vocabulary definition
initiative do

string :name

url
end

type :provider do
string :provider_name

list_of_initiatives
end

service_properties do
provider
end

Service description
provider do
provider_name "Google, Inc."

initiative do

name "Google Digital Unlocked"

url "https://learndigital.withgoogle.com/digitalunlocked"
end

initiative do

name "Google Internet Saathi"

url "https://www.google.com/about/values-in-action/.../"
end

initiative do
name "Google for Entrepreneurs"
url "https://www.googleforentrepreneurs.com/"
end
end

name string property and the url URL property. Lines 18-35 define Google as
the provider and add some information about Google’s social initiatives to the
service description.

3.1.1.5 Predefined instances

In contrast to defining type instances directly in the service description (as done
in the listings in the preceding chapter), the SDL-NG also allows “predefining”
Type instances in the vocabulary that can be used in multiple service descrip-
tions. These instances can be easily referred to by their identifier, creating a

49

© ® N G R W N =

o
@ N = o

3. ComPONENT DESIGN AND DEVELOPMENT

straightforward enumeration mechanism. Listing 3.6 shows this facility on
the example of the cloud service model of a service. The second line of the
listing defines the CloudServiceModel type. Afterwards, lines 4-6 predefine
a set of CloudServiceModel instances and associate them with the identifiers
saas, paas, and iaas. Line 9 adds the cloud_service_model property to the
Service type. In the service description on line 13, they can be used easily for
setting service properties.

Listing 3.6 Predefined instances

type :cloud_service_model

cloud_service_model :saas
cloud_service_model :paas
cloud_service_model :iaas

service_properties do

cloud_service_model
end

cloud_service_model iaas

3.1.1.6 ServiceCompendium Class

The ServiceCompendium class provides a simple interface to SDL-NG function-
ality. There are mainly two areas of functionality where the ServiceCompendium
class provides helpful methods:

Loading and unloading services and vocabulary

The ServiceCompendium class provides two utility functions for recursively
loading vocabulary files (*.sdl.rb) and service descriptions (*.service.rb),
named load_vocabulary_from_path and load_service_from_path. When
loading, it generates URIs based on the source files and assigns them to the
newly defined SDL-NG classes and instances.

“Unloading” is also supported: either using unload(uri) to unload specific
instances, or using clear! to unload any previously loaded file. This unload
mechanism is helpful for development and testing purposes. For example,
the TRESOR Broker reloads any changed vocabulary items in development,
making a restart of the whole Rails application unnecessary. At last, the RSpec
tests load and unload services to test the defined behaviour of the framework.

After loading, all Type descendants are scoped under the SDL: :Base: : Type
class in order to prevent name clashes with standard Ruby classes. If required,
the ServiceCompendium provides the register_classes_globally method
that can register all loaded types under Object. This allows referencing them
in any scope, easing their use in many scenarios.

50

3.1. Cloud Service Registry Architecture

Retrieving all SDL-NG classes and instances

The ServiceCompendium additionally provides access to any SDL-NG class
and instance that was loaded. Table 3.1 shows the four methods that can be
used for this purpose:

Table 3.1: ServiceCompendium utility methods

Method Returns

loaded_items All loaded SDL-NG classes and instances
types All Type descendants

type_instances All Type instance and their identifier as a Hash
services All loaded services (Service instances)

3.1.1.7 Implementing the Description Lifecycle

After explaining the basic functionality of the framework, the next subsections
explain in detail how vocabulary definition, service description, and persistence
are implemented in the SDL-NG. First, Figure 3.3 presents an overview about
the general life-cycle of SDL-NG service descriptions. As already mentioned,
executing vocabulary definition files create descendants of Type that are refer-
enced when executing service descriptions to create Service instances. These
service description can use any Ruby code, for example, to dynamically retrieve
information from external systems. Section 3.1.2 provides more information
about the employed vocabulary of the use cases. All classes can be exported to
a number of formats and persisted to a database.

Implementing the vocabulary definition
This section guides through the implementation of the vocabulary definition.
There are two groups of instructions within the files that define the vocabulary:

1. Definition of a new type

As Ruby classes are always open for modification, the same mechanism
is also used to extend an existing type, such as the Service type.

2. Definition of a new predefined instance

They can be used to implement enumerations for restricting the possible
values for a certain property.

Those two options are explicated after providing details about the steps
required before:

1. ServiceCompendium#load_vocabulary_from_path(<path_or_file-
name>)

This method is the first step towards loading the vocabulary definition.
The <path_or_filename> specifies either the path containing vocabulary
files (*.sdl.rb) that should be loaded recursively, or it can specify the
path to a single file. The method iterates through them, creating a URL
for each item, reading the file contents, and passing any content of these
files to the next method.

51

XmE \\9@\; E%& Hmoz\mh

Vocabulary

M—

MongoDB

uonyenueIsuy

3. ComPONENT DESIGN AND DEVELOPMENT

Instances of Type Memory
descendants
Filesystem

Service
description

t tt t t eeee——)
5 5 5 5

o o) o) o other

= = = = — _—

Figure 3.3: SDL-NG Description life-cycle

52

3.1. Cloud Service Registry Architecture

2.

ServiceCompendium#load_vocabulary_from_string(<definition>,
<uri>, <filename>)

This method receives file content, the URI, and the filename and passes
them to self.instance_eval. It also implements a kind of “transaction”
mechanism: when the load fails, for example, because of syntax errors, it
instructs the ServiceCompendium to unload all contents from this URI to
prevent errors resulting from only partially loaded files. Afterwards, it
raises a RuntimeError and adds the error backtrace to its own backtrace
so that SDL-NG users get the specific vocabulary instruction that failed.
Otherwise, users would only be instructed that #load_vocabulary_-
from_string failed, instead of the specific part of the definition that was
executed at that moment.

. self.instance_eval(<definition>, <filename>, 1)

instance_eval executes the loaded file in the scope of the Ser-
viceCompendium instance. Any unqualified instruction, for example,
type :cloud_service_model, is therefore a call to ServiceCom-
pendium: : type. The next subsections explain the two possible groups of
vocabulary definition instructions.

Option 1: Definition or extension of a new or existing type (for example,
Service)

1.

ServiceCompendium#type (<symbol>, &type_definition)

There are two instructions that are used to define or extend an SDL-
NG Type descendant: either calling type (<symbol>), for example, type
:cloud_service_model or using the shorthand service_properties for
type (:service). Both instructions are calls to the ServiceCompendium
method type which delegates the type definition to the subtype method
of SDL: :Base: : Type.

. SDL: :Base: :Type.subtype (<symbol>, &type_definition)

This method first calls SDL::Base::Type.define_type(<symbol>,
self) which creates a descendant of the current class. This method can
also be called later to define additional subtypes of SDL-NG types, as for
example in the definition of the RestInterface which is a subtype of the
Interface typeé.

. <type>.instance_eval (&type_definition)

If a block (&type_definition) was given to the initial ServiceCom-
pendium#type invocation, it is evaluated in the context of the created
or existing Type descendant. This block contains the definitions of
the properties that should be added to the created or existing Type
descendant.

. <type>.method_missing(<name>, <args>, &block)

The property definitions of the type, for example, string :service_name
are in fact calls to class methods of the respective Type descendant. The

6See examples/vocabulary/1_crf/interop.sdl.rb

53

3. ComPONENT DESIGN AND DEVELOPMENT

SDL-NG uses the method_missing mechanism of Ruby which enables
a quite flexible property definition. For example, the method detects a
list_of_<type plural> invocation which creates a multi-valued prop-
erty. Also, it is used to implement the shorthand definition explained in
Listing 3.3, for example, using provider instead of provider :provider.

5. <type>.add_property(<symbol>, <type>, <multi>)

After method_missing determined the type, name, and multiplicity of the
new property, it calls the add_property method of the respective Type.
This creates a new instance of Property with the given attributes and
adds it to the list of properties of the class.

Option 2: Definition of a new predefined type instance

A new predefined type instance is created by calling a method of
ServiceCompendium that is named similar to the requested type of the
new instance. For example, calling cloud_service_model :saas creates a
CloudServiceModel instance and assign it the identifier :saas. This facility
does not use the method_mising mechanism. Instead, it defines the cloud_-
service_model method as the last activity of ServiceCompendium#type. After
completing the other steps of Option 1, ServiceCompendium#type calls regis-
ter_sdltype (type) which defines a method that is named similar to the type
using self.class.send(:define_method, type.local_name.underscore)
do ... end. This newly defined method in turn delegates to ServiceCom-
pendium#create_type_instance(<type>, <identifier>, &block) which
uses a TypeInstanceReceiver to create the instance and assigns it the given
identifier.

Implementing the service description

The main goal of the SDL-NG service description mechanism is easing
the service description in contrast to existing approaches. The conception of
“easiness” here is having a syntax that is as free as possible from specifics of its
implementation such as “Class.new(...)"” to create objects to use for property
values. In fact, using Ruby as the implementation language leads to a clean
syntax itself and allows leaving out semicolons, brackets, and other “semantic
noise” from the service description as would be required in other languages
(for example, Java). Following this idea, property setting in the SDL-NG should
follow a <property name> <property value> syntax. As service descriptions
are program code, this translates to self . send (<property name>, <property
value>), which is an invocation of the method “<property name>” on the
current scope object (self, an instance of TypeInstanceReceiver), providing
<property value> as a method argument.

In detail, a service definition is implemented as follows:

1. ServiceCompendium#load_service_from_path(<path_or_filename>)

This method is used to load a single or multiple service definitions.
The <path_or_filename> specifies the path containing service files
(*.service.rb) that should be loaded recursively or a single file. It
iterates through the files and extracts the symbolic service name
from the filename, for example, google_drive_for_business from

54

3.1. Cloud Service Registry Architecture

google_drive_for_business.service.rb. It then reads the file and
calls the following method.

2. ServiceCompendium#load_service_from_string(<definition>,
<name>, <filename>)

This method receives the contents of the loaded service definition, the
name of the service, and the filename. It should be obvious now that
a “service description” is just a predefined instance of the Service
class. Therefore, it uses the same mechanism as described in vocabulary
Option 2, the definition of a predefined instance, using Service as the
Type. In effect, this invokes the ServiceCompendium#create_type_-
instance(Service, <name>) to create a new instance of the Service
type. However, it hands over the loaded service definition by calling
eval(<definition>, <binding>, <filename>, 1) which causes the
service description instructions to be invoked in the scope of a new
TypelInstanceReceiver instance.

3. SDL: :Receivers: :TypeInstanceReceiver.new(Service.new)

In order to implement the property setting syntax, the TypeInstanceRe-
ceiver instance needs to provide methods to set any property of a Type
instance or its descendants (here: Service). These methods are defined
at the time of object construction through iterating all properties of the
instance’s class. These methods take arguments representing the values
to which the respective properties should be set.

4. SDL: :Receivers: :TypeInstanceReceiver.instance_eval(&block)

The created TypeInstanceReceiver serves as the scope object (self) for
the service description that is passed on through the &block. Calls to,
for example, service_name "Google Drive for Business" in fact call
those singleton methods created by the TypeInstanceReceiver construc-
tor.

The singleton methods on TypeInstanceReceiver support many different
cases of setting properties in order to achieve a high level of intuitiveness. Sec-
tion 3.1.1.10 provides more information about SDL-NG value types, including
how the provided Ruby objects are converted to SDLType instances.

If the property is single-valued, each invocation of <property> overwrites
the properties value. If the property is multi-valued, calling the “singularized”
name adds a new value to the current list of values. For example, adding
to the add_on_repositories list is done through add_on_repository. This
“singularization” is implemented by the verbs RubyGem that provides “English
verb conjugation for Ruby (and Rails)””. The following paragraphs explain the
functionality of the different variants of arguments that can be provided to the
singleton methods:

<value> (simple type)
This is the most basic syntax and straightforward: the property is set to the
provided value. For example service_name "Google Drive for Business".

7https: / / github.com/rossmeissl/ verbs

55

3. ComPONENT DESIGN AND DEVELOPMENT

<identifier> (complex type)

Here, the TypeInstanceReceiver first resolves the identifier to the corre-
sponding predefined type instance before setting the property, for example,
cloud_service_model saas resolves saas to the predefined instance created
previously by cloud_service_model :saas and uses this object for setting the
property value. “Resolving” is implemented in two steps:

1. saas results in trying to invoke an unknown method, therefore calling
method_missingon TypeInstanceReceiver. This returns a new instance
of the internal SDL-NG class InstanceReference which contains the
identifier.

2. This InstanceReference object is passed to the singleton method that
now can use the property type and the identifier to select the matching
predefined instance. In effect, the SDL-NG supports multiple predefined
instances with the same identifier differing by their type.

do <block of instructions> end (complex type)

This syntax creates a new instance of the property type and uses a new
TypeInstanceReceiver to evaluate the block to set the properties of the new ob-
ject, for example, when calling provider do provider_name "Google, Inc."
end.

<value 1>, <value 2>, <value n> (complex type)

Here, a new instance of the property type is created and its properties are
set to the list of values in the order of the property definition. When there
are only one or two properties, this can improve readability of the service
description. As an example, an add-on repository (Type AddOnRepository) has
two properties: url and number_of_add_ons. A new add-on repository can be
added through add_on_repository "http://www.example.com", 1000.

<name>: <value>, <name>: <value>, ... (complex type)

This syntax provides a Ruby hash in the form {<property name> =>
<property value>} to the singleton method of TypeInstanceReceiver to set
the properties of a newly created property type instance to the respective
values. This alternative syntax can be used to make it more explicit which
properties are set, or to set properties in a different order than they were
defined in the vocabulary.

Implementing persistence

The result of the vocabulary definition and the service description are a
number of Ruby objects that are bound to the lifetime of the Ruby VM. In-
teracting with the SDL-NG in such a way provides the best performance, as
everything is done within the memory space of the Ruby process. SDL-NG ob-
jects are also serializable using standard Ruby persistence options, for example,
Marshal and YAML. However, having services persisted using these methods is
inefficient with respect to space, as the serialization formats are quite extensive,
and performance, as filtering the list of services requires reading every file.

When the amount of services rise or the lifetime of service descriptions need
to be longer than that of the Ruby VM, there needs to be a way of persisting

56

3.1. Cloud Service Registry Architecture

services beyond Marshal. As all use cases are derived from the TRESOR broker,
which uses MongoDB persistence, it is the only persistence option that supports
dumping and loading services. Interfacing with MongoDB is implemented
using the Mongoid® Framework. From an implementation perspective, cer-
tain methods of the SDL-NG are overridden to enable MongoDB persistence,
mainly:’

® SDL::Base::Type.class_definition_string

This method returns a string that is evaluated to define a Type descendant,
for example, Service. To implement MongoDB persistence, it is overwrit-
ten to also include the Mongoid: :Document class which provides helpful
abstractions to work with Type instances as MongoDB documents.

e raw_value and raw_value=in SDL: : Types: : SDLSimpleType

These methods now use the mongoize and demongoize to convert certain
Ruby objects to MongoDB data types that could otherwise not be saved
to the database.

e SDL::Base::Type#add_property_setters

When using memory-based persistence, the values of properties corre-
spond to the values of the instance variables. This method is responsible
for adding simple property setters to the respective Type descendant to
change these instance variables. In the MongoDB persistence, add_prop-
erty_setters instead calls embeds_many and embeds_one!? to instruct
Mongoid to define complex setter methods that treat property values as
embedded subdocuments.

® SDL::Receivers: :TypelnstanceReceiver#refer_or_copy

In the case of memory-based persistence, predefined instances are duped
(deeply copied) before setting them as property values. The Mongoid
library requires calling clone on them instead. This ensures correct copy-
ing and reinitialization of Mongoid internal data structures required for
correct functioning of the framework.

3.1.1.8 Property Classifications

Property classification denotes the facility of the SDL-NG to define metadata on
properties to classify them, for example, according to the criteria of the CREF, for
example, “Characteristics”, “Charging”, “Compliance”, “Delivery”, etcetera.
Depending on the concrete use case, there are two circumstances where having
a property classification is beneficial: first, there could be quite a few properties
for a certain Type descendant. The Service class, for example, has currently
more than 30 properties defined, which makes grouping properties by their
categories quite helpful for rapid understanding of the property structure and
their meanings. Second, the properties could be defined in many different

8h’r’rps: / / github.com/mongodb /mongoid
For all, see https:/ / github.com/TU-Berlin-SNET / open-service-
compendium/tree/master/lib/sdl-ng-overrides/sdl
0 defined in Mongoid: :Relations: :Macros: :ClassMethods

57

3. ComPONENT DESIGN AND DEVELOPMENT

vocabulary files. In this case, knowing where the property definition belongs
certainly helps maintaining lucidity in the vocabulary.

Multiple classification schemes are conceivable, for example, partitioning
into “essential” and “optional” properties, or “tagging” properties with ar-
bitrary values. Currently, the SDL-NG implements the “category” scheme,
implemented in SDL: :Base: :PropertyClassification: :PropertyCategory.
This class uses the loaded_from attribute to derive a category identifier from
the relative path of the file where the property was defined!!'. For example,
the properties defined in 1_crf/characteristics.sdl.rb are assigned the
crf.characteristics property.

Some SDL-NG methods were implemented to help using property
categories. First of all, the category of a property can be retrieved by
SDL: :Base: :Property#category. Second, the key_category_map class
method of PropertyCategory provides a hash of all known keys to their
PropertyCategory object. At last, the returned PropertyCategory object
provides the properties method that returns all properties from the same
category.

3.1.1.9 Generating URIs

Assigning URISs to conceptual things has been shown to be a useful approach
to enable data consumers to query and interact with information systems. This
is especially highlighted in the Linked Data Principles, set by Berners-Lee [23].
There are many different parts of the SDL-NG requiring URIs, for example, the
identification of nodes within the RDF output. Furthermore, the way these
URIs are generated differs between the “standalone” SDL-NG library and the in-
formation systems based on it. Therefore the SDL: :Base: : URIMappedResource
adds a uri method to the classes that include this module. The specific strategy
for deriving a URI for SDL-NG objects and classes is implemented using a URI
mapping object which responds to the method uri (<object>) returning the
URI. Currently, there are two URI mappers:

1. DefaultURIMapper is used in the SDL-NG itself, for example, to generate
the URLs in the exemplary outputs of process_service_descrip-
tions. It appends to the static URL http://www.open-service-
compendium. org the identifiers for the objects and classes, for example,
/types/Service for the Service Type and /services/google_drive_-
for_business for the respective service.

2. OSBURIMapper is used by all cloud service registry implementations. It
has two additional features: first, it uses the value of the HTTP Host
header to create the first part of the URL. Second, it includes the specific
version of a service description in the URL.

3.1.1.10 SDL-NG Value-Types

The main goal of the SDL-NG value type system is providing an extensible
mechanism to use Ruby objects to represent property values in the service
descriptions. SDL-NG value types allows the authoring of service descriptions

11fi]lename.gsub (%r [#{path_or_filename}|.sdl.rbl\d_]1, '')[1..-1]

58

O ® N U R W N e

N < =
N o Uk W N R o

3.1. Cloud Service Registry Architecture

without knowing specifically how, for example, monetary values are repre-
sented in Ruby. This is achieved by offering wrappers around Ruby classes that
define conversion methods from simple literals to wrapped types, for example,
from "$ 1" to a new instance of the Money class. To explain this mechanism,
Listing 3.7 shows the SDL-NG value type SDLMoney which wraps the Money
class provided by the money Rubygem.

Listing 3.7 Example SDL-NG value type ‘SDLMoney’

require 'money'
require 'monetize’
class SDL::Types::SDLMoney < SDL::Types::SDLSimpleType
include SDL: :Types: :SDLType
wraps Money
codes :money
def from_string(string_value)
begin
@value = Monetize.parse(string_value)
rescue ArgumentError
throw "Invalid Money value: #{string_valuel}"
end
end
end

Line 1 imports the money Rubygem, a “Ruby library for dealing with money
and currency conversion”!? which is used to implement all money-related
functions of the SDL-NG. The following Line 2 references the monetize gem,
a “library for converting various objects into Money objects”!3. It is used for
parsing the strings provided in the service descriptions and converting them to
Money objects.

The subsequent class definition in Lines 4-17 shows how SDL-NG value
types are created. First of all, any value type class inherits from SDLSimpleType
which implements functionality shared between all instances. It mainly declares
the two class attributes value, holding the wrapped type instance, and raw_-
value, holding the value given in the service description. The constructor of
any SDLSimpleType descendant invokes a conversion method which transforms
the provided value in the service description to the wrapped Ruby type. The
constructor derives the name of this method from the name of the provided
object class, for example, it calls from_string for String instances and from_-
nokogiri_xml_element for scraped HTML data (NokogiriXmlElement). In the
example, Lines 10-16 contain such conversion method that takes a string and
uses the monetize gem to parse and convert it. An Error is raised when this
conversion fails.

Zhttps:/ / github.com/RubyMoney /money
13h’r’rps: / / github.com/RubyMoney/monetize

59

3. ComPONENT DESIGN AND DEVELOPMENT

3.1.1.11 SDL-NG Value Type Wrappers

Another part of the SDL-NG value type system is the SDLType module which
provides two class methods. The first, wraps, declares which specific Ruby
class is wrapped. In the example (Line 7) it is the Money class provided by the
money gem. The other, codes, specifies the identifiers that can be used in the
vocabulary definition to reference this value type. In the example (Line 8), the
wrapper is registered under the money identifier. In effect, the vocabulary can
now contain the instruction money :last_years_revenue, allowing easy to
read statements in the service description, such as last_years_revenue "1M
€" which correctly creates a Money instance representing the amount of one
million Euros. The following Table 3.2 presents an overview about the existing
SDL-NG value types, which Ruby class they wrap, their codes, and conversion
methods (if any).

Table 3.2: SDL-NG value types

SDL Type Wraps Codes Conv. Meth.
Boolean Object14 bool, boolean None
Description String description from_nokogiri_xml_-
element!®

Duration Duration'® duration None
Money Money money from_string
Number Numeric number, int, None

integer
String String string, str from_symbol
Time Time time None
Url URI uri, url from_string17

3.1.1.12 Exporting Data

To allow other information systems to consume the vocabulary and descriptions,
the SDL-NG can export service descriptions as well as the vocabulary in a
multitude of formats: XML and XSD, JSON and JSON Schema, and RDF. To
explain service describers how to use the SDL-NG, the registry implementations
in the use cases also provide a complementary HTML “cheat sheet” which is
shown in Section 3.1.4.

The implementation of the exporters is based on two base classes:
ServiceExporter and SchemaExporter. They provide the self-explanatory
methods export_service_to_file(<service>, <path>) and export_-
schema_to_file(<path>) respectively. For each format there are independent
implementations:

¢ Exporting to XML and XSD

“There is no Boolean class in Ruby, only TrueClass and FalseClass.

15Used to persist parts of HTML documents as service descriptions

16Part of the active_support gem. Contains shorthand expressions such as 3.minutes and
2.hours.

17Uses URI . parse to parse the String, ensuring its validity

60

3.1. Cloud Service Registry Architecture

Due to the comprehensive nature of XML and the XML Schema Defi-
nition Language [164], the combination of XML /XSD preserves most
of the semantics of the service descriptions. Furthermore, the use of
XSD enumerations and restrictions provides a mechanism to convey to
a service description consumer which predefined instances can be ex-
pected in the XML output. However, as some XML libraries, such as
Microsoft .NET used by the TRESOR Marketplace, cannot understand
this fully valid construct, a new exporter, XSDSimpleSchemaExporter,
was implemented besides the XSDSchemaExporter to output a simpler
version of the schema. Both the schema exporters as well as the XML
service exporter (XMLServiceExporter) make use of the xml_mapping.rb
file. This file contains extension methods for the SDL-NG classes that
derive XML /XSD specific values, for example, corresponding XSD types
for SDL-NG value types, element identifiers, and values for XML nodes.

Exporting to JSON and JSON Schema

The implementation for these exporters follows roughly the same struc-
ture as the XML/XSD exporters. The JSONExporter and JSONSchemaEx-
porter provide the exporter implementation while the json_mapping.rb
contains SDL-NG extensions to derive corresponding JSON Schema types
and JSON identifiers. As the functional scope of JSON Schema is more
limited than XSD, the SDL-NG adds two additional fields to the schema,
conveying the properties’ category (category) as well as the set of prede-
fined instance identifiers (enum).

Exporting to RDF

Most of the functions required for the RDF export are provided by the
RDF.rb library!8. It provides support for many common RDF serializa-
tions, such as RDF-XML, RDFa, and Turtle. As with the other formats, the
RDFExporter class generates RDF service descriptions while the rdf_-
mapping.rb generates the RDF literal values for SDL-NG values and the
type and property URLs. Generating an RDF graph using RDFE.rb is quite
straightforward, as the source for this graph is a simple Ruby array, con-
taining RDF [<subject>, <predicate>, <object>] triples. There is no
schema exporter yet, for example, to create RDF-Schema or OWL files.
Section 3.1.1.15 explains how the SDL-NG can map complex types on
existing RDF vocabularies.

3.1.1.13 SDL-NG Multi-language Self-documentation

The util/documentation.rb file provides facilities to manage descriptions
for types, properties, property categories, and instances. These are used, for
example, by the Open Service Compendium to generate a comprehensible ser-
vice description for the potential service consumers. The required underlying
functions to manage multi-language documentation are provided by the 118n
gem, the same used by Ruby on Rails. From an implementation point of view,
loading this file extends each of the documentable objects and classes with two
methods: the documentation_key method generates an identifier to retrieve the

18h’r’rp: / /ruby-rdf.github.com/

61

3. ComPONENT DESIGN AND DEVELOPMENT

specific documentation, for example, sdl.property.type.service.cloud_-
service_model for the property cloud_service_model of the Service SDL-
NG type. The other added method, documentation, provides this key to the
I18n module to retrieve the respective documentation in the current language.
The 118n gem supports different repositories, mainly databases, JSON, and the
YAML format used by the SDL-NG to persist the documentation. The repos-
itories are chained so that multiple files are sourced for the documentation.
This allows each vocabulary to define its documentation separately from the
documentation of the SDL-NG itself.

In effect, using the self-documentation features creates a clear correlation
between SDL-NG objects and a specific documentation, preventing redundant
information and ensuring consistency. Furthermore, the implementation of
the Open Service Compendium is simpler, as the user-facing service output
can be implemented in a generic way, relying on the self-documentation of
the SDL-NG classes and objects instead of requiring modification of the view
templates for each vocabulary.

3.1.1.14 HTML Parsing

One of the benefits of a dynamic DSL is the possibility to include arbitrary
commands in the service descriptions, for example, retrieval of data from
external sources. As cloud services are most often described using content on
websites, HTML parsing presented the most obvious functionality to implement
first in the SDL-NG. The file util/nokogiri.rb provides the fetch_from_-
url(<url>, *<search>) method which retrieves the website accessible via
<url>, applies one or more CSS or XPath selectors contained in <search>, and
returns a set of matching document nodes. Two additional processing steps
were added: first, all relative URLs are converted to absolute URLs in order to
preserve hyperlink targets. Second, any a element gains the target attribute
with the assigned _new value. This causes the browser to not leave the current
website and instead open the link in a new window.

3.1.1.15 RDF Mapping

As mentioned before, the SDL-NG supports exporting services as RDF in order
to support different data consumers. Before implementing the Open Cloud
Computing Map (OCCM), it did not refer to any existing schema and instead
used an automatically generated, registry-internal schema. However, this pre-
vents easy interlinking with other data repositories as the semantics of the
dataset are not clearly defined. To alleviate this issue and enable interlinking,
for example, between the OCCM and the Open Service Compendium, the SDL-
NG was extended with mappings between established schemas, for example,
the Schema.org RDF schemas, and the internal SDL-NG types and attributes.
Specifically for the OCCM, it maps location-related types and properties onto
the GeoNames schema®.

The SDL-NG type definition as well as its mapping to an RDF schema is
done using very concise code, as shown in the example listings in this section:
Listing Listing 3.8 exemplifies the definition of the SDL-NG type Location. This
type uses strings to represent common location attributes, such as street address

19http: / /www.geonames.org/

62

http://www.geonames.org/

© 0 N G ke W N =

=
S

O ® N G e W N e

e
G kR W N = O

3.1. Cloud Service Registry Architecture

and postoffice number. Listing Listing 3.9 shows the mapping of this type to
the Schema.org RDF type PostalAddress®, for example, from the po_number
SDL-NG property to the post0fficeBoxNumber Schema.org property.

Listing 3.8 SDL Location Type Definition

type :location do
string :name

string :country_code

string :region

string :locality

string :po_number

string :postal_code

string :street_address
end

Listing 3.9 RDF mapping SDL Location to Schema.org

require 'rdf/vocab/schema’

class SDL::Base::Type::Location
require 'sdl/exporters/rdf_mapping'

map_rdf_type (RDF: :SCHEMA.PostalAddress)

map_rdf_property('name', RDF::SCHEMA.name)
map_rdf_property('country_code', RDF::SCHEMA.addressCountry)
map_rdf_property('region', RDF::SCHEMA.addressRegion)
map_rdf_property('locality', RDF::SCHEMA.addressLocality)
map_rdf_property('po_number', RDF::SCHEMA.post0fficeBoxNumber)
map_rdf_property('postal_code', RDF::SCHEMA.postalCode)
map_rdf_property('street_address', RDF::SCHEMA.streetAddress)
end

The SDL-NG employs both the RDF.rb library?! as well as an accompanying
set of RDF vocabularies?? to ease the implementation of the RDF mapping.
There are two central instructions that need to be invoked: First, map_rdf_-
type (Listing Listing 3.9) defines the corresponding RDF type for the SDL-NG
type, here PostalAddress (Listing Listing 3.8). Second, map_rdf_property
(Listing Listing 3.9) defines the mappings from the SDL-NG properties (Listing
Listing 3.8) to the Geonames RDF properties (Listing Listing 3.9). Figure 3.4
illustrates the resulting Open Cloud Computing Map which uses RDF data

2 https:/ /schema.org/Postal Address
2 https:/ /github.com/ruby-rdf/rdf
22 https:/ /github.com/ruby-rdf/rdf-vocab

63

https://schema.org/PostalAddress
https://github.com/ruby-rdf/rdf
https://github.com/ruby-rdf/rdf-vocab

3. ComPONENT DESIGN AND DEVELOPMENT

from the service registry to display a map, presenting geospatial data about
cloud services, for example, data centers and cloud provider’s subsidiaries.

UwT U Y

Open Gothenburg
f Cloud a2iborg
Computing Denmark
Map we\smgborg
e Malmo
+ NL Amsterdam
,’1 - SoftLayer Technologies, Inc. Koszaline

- Tvﬂamrprge

Leeuwa

9Ber|in

«Ely

» Szczeci D-triples rdf/xml turtle json-Id

oV .

Services e
Amazon Elastic Compute Cloud -
(Amazon EC2)

Microsoft One Drive Business

IBM SoftLayer -
Download

rt
sTorun

ThunderForest

9 Neg"erlaqu&
stol 9 9 9

P
? Poland osM zy
erMany Wroctaw e Provider (11) @

v
) Belgi 0 9 9 %,gos ¥ Subsidiaries (9) @
Mannheim e v Czech qu- Krakow : E(a;aczegfgef(18J°
aene emws- 9 ? (Jv

9 On Kosice T

Au&burg- 9 1[1
= Orléans & Al si

]
9 9 9 Africa {
. Frgnce éwitzerland 9{ Asia ju
9L q QJUDUQ EU ;
d 99 Monoq North America 3]
. | Qceania
I Q e Savona 9 o Forli South America ﬁ
QI'oulouse

10 Marseille

Il Dubrovnik® A Tsulgaria
v Y Leaflet | Maps © Thunderforest, Data © OpenStreetMap contributors

Open Cloud Computing Map | Copyright 2014 -727016'\ Licenses | Curcuma Project | Technische Universitat Berlin | Telekom Innovation

Laboratories | Software Campus | Contact + Imprint | @ﬁ%’#&‘.‘,’.&?{.‘ﬂ‘é

Figure 3.4: Open Cloud Computing Map

3.1.2 Business Vocabularies

The business vocabularies define the SDL-NG classes, properties, and value
types that are used to describe services. There is a generic vocabulary rep-
resenting common Cloud Requirement Framework (CRF) criteria as well as
specific vocabularies for each of the implemented use cases, for example, the
cloud storage vocabulary implemented for Use Case 2. The generic business
vocabulary consists of elements that represent evaluation criteria from the
CREF: 37 classes (e.g., CloudServiceModel, PaymentMethod, and Browser), 31
Service properties (e.g., cloud_service_model, payment_methods, and com-
patible_browsers), and 52 instances (e.g., saas, credit_card, and firefox).
Conditions for including elements in the vocabularies are their relevance to
some or all of the use cases, a meaningful and simple formal modeling, and
enough information to use them.

To provide a short overview of the vocabulary, Table Table 3.3 presents
the CRF requirement area and exemplary properties, for example the “billing
and payment options” property in the “delivery” area. The table leaves out

64

3.1. Cloud Service Registry Architecture

implementation details for brevity reasons, for example, the property types,
their multiplicity, and acceptable enumeration values.

For easier maintenance, the source files of the vocabulary are structured
according to the CRF hierarchy?®. For example, to represent the first CRF
criteria cloud service model, the vocabulary defines the CloudServiceModel SDL-
NG type and includes four predefined instances saas, paas, iaas, and haas
(Hardware-as-a-Service). As they belong to the CRF abstract requirement
characteristics, these definitions are contained in the file 1_crf/characteris-
tics.sdl.rb.

Table 3.3: Business Vocabulary

CRF Requirement CREF Criteria in Business Vocabulary

Characteristics Cloud service model, service categories
Charging Charge unit (user account, floating license)
Compliance Data location, audit options (e.g. audit logging)
Delivery Billing and payment options

Dynamics Duration for provisioning an end user
Interop Features, interfaces, and compatible browsers
Optimizing Maintenance windows and future roadmaps
Portability Exportable and importable data formats
Protection Communication protection (HTTPS, VPN)
Provider mgmt. Support availability

Reliability Offline capabilities

Reputation Year of service establishment

Trust Financial statement, reference customers

The Cloud Storage Broker (Use Case 2) uses a vocabulary that reflects the
defining characteristics of storage offerings in order to describe services within
this market. Figure 3.5 provides a highly visual representation of the storage
vocabulary to provide an overview about the covered service aspects. The
details of this vocabulary can be found in [87].

3.1.3 Rails Backend

The functionality of the service registry is offered through a RESTful API, im-
plemented using Ruby on Rails. Fundamentally, it allows to manage service
descriptions through create, read, update, and delete (CRUD) operations. Cre-
ating and updating services is done by receiving SDL-NG documents from
clients and putting them in a Redis Job Queue for eventual evaluation. The
services persisted in the MongoDB database can be represented as HTML,
XML, JSON, and RDEF. The backend also allows retrieving the schema of these
documents as XML Schema Definition (XSD) and JSON Schema.

While all other use cases are based on the described backend, additional
Rails controllers were created to implement the TRESOR Service Broker (Use
Case 1). These controllers provide services for the TRESOR marketplace and the
medical PaaS platform. The TRESOR marketplace uses Service Broker facilities

23 https://github.com/TU-Berlin-SNET /sdl-ng/tree/master/examples/vocabulary

65

https://github.com/TU-Berlin-SNET/sdl-ng/tree/master/examples/vocabulary

3. CoMPONENT DESIGN AND DEVELOPMENT

TLS 1.2

TS 11 transmission encryption replication
HIPAA

TLS 1.0 law / act . delta encoding

SSL 3.0 I
FERPA max file size

SSL 2.0

file locking max storage capacity
authorization
container based V method
directory based

(auto) expiration / revocation data storage U_.O—umz_mw

granular permission

(physical) location

version control

RSA . .

Slowiieh authentication o factor auth
owfis P u
s type monitoring A S compression
corporate single sign on
Serpent R .
. audit control / log recovering

Twofish

security

ISAE 3402 Typ Il SOC 2

level A block level
file level

SSAE 16 -
certification .
1SO 27001 :mmqh single user
deduplication cross user
SLA enmmm— C— Cloud Storage .,
availability Ammzm_.m_ e
durability side client-side
fault tolerance T customer references
reliability
response time / delay duration contact information
packet loss payment options support
throughput / bandwidth licenses collaboration
glacier
reduced redundancy storage
free
standard . max user
charging features
delete
put incoming programming framework
request
get :m:wﬁquoceo_:m Lo os
platform compatibility mobile device

Figure 3.5: Cloud Storage vocabulary (Figure taken from [87, p. 17])

66

3.1. Cloud Service Registry Architecture

to manage information about cloud service users and providers. Furthermore,
limited booking and cancellation features to be used by business users were
implemented. This booking also includes instructing the PaaS platform to de-
ploy a new instance of the respective service for those users. This functionality
relies on the deployment APIs of the RedHat OpenShift PaaS platform?*. The
resulting TRESOR Service Broker implementation is available on GitHub?.
However, it was not updated yet to reflect recent changes in the public APIs
of OpenShift. More information about the integration between the TRESOR
Broker and Marketplace can be found in Section 4.4.3.

The concept, requirements, architecture, and APIs of the CYCLONE laaS
Registry (Use Case 3) are defined in detail within a public project deliverable
[99]. In summary, an extended version of the Rails backend serves as an addi-
tional data source for the Nuv.la Application Deployment Platform, which uses
the information contained in the registry to propose alternative cloud platforms
for the eventual deployment of complex applications.

3.1.4 Client

The architecture anticipates that clients consume the RESTful HTTP API of
the Rails backend to invoke service registry functions. The use cases feature
a variety of different clients: Within the TRESOR Service Broker (Use Case 1),
the Rails ActionView view layer serves pages containing regular HTML forms
to interact with the registry. There is also a service editor (see Figure 3.6) and
a “cheat sheet” showing the available description elements (see Figure 3.7) to
ease the management of service descriptions.

Services > Edit '‘Google Drive for Business'

Service description (Syntax)

service_name 'Google Drive for Business'
is_billed monthly, iniadval
in_advance local

cloud_service_model saas

Figure 3.6: Service editor

The Cloud Storage Broker (Use Case 2) extends the TRESOR Service Broker
(Use Case 1) backend with two new Rails Controller/View modules. First, a
comparison module (see Figure 3.8) that allows potential cloud customers to
view two services side-by-side to compare the property values of both services.
Second, a faceted search module (see Figure 3.9) that allows a fine-grained
exploration of the services contained in the service registry.

The view layer of the Rails backend was replaced to realize the OSC (Use
Case 5). More concretely, the Ruby ERB templates were substituted with a
Single Page JavaScript Application based on Angular]S. Especially for browsing
and comparing services this provides a much swifter user experience, as the
browser can render the interface itself, often without a roundtrip to the server.
The sources of the OSC can be found on GitHub?®.

24ht’(ps: / /www.openshift.com/
25 https://github.com/TU-Berlin-SNET/ tresor-broker
26 https://github.com/TU-Berlin-SNET / open-service-compendium

67

https://www.openshift.com/
https://github.com/TU-Berlin-SNET/tresor-broker
https://github.com/TU-Berlin-SNET/open-service-compendium

3. ComPONENT DESIGN AND DEVELOPMENT

Service

A service

Properties

service_name Service name (SDLString)
cloud_service_model Cloud service model (CloudServiceModel)
service_categories[] Categories (ServiceCategory)
service_tags[] Tags (SDLString)
add_on_repository Service Add-On Repository (AddOnRepository)
is_charged_by Charging unit (ChargeUnit)
data_location Data location (Location)
data_deletion_policy Data deletion policy (SDLUrI)
status_page The status page URL (SDLUrl)

Figure 3.7: Cheat sheet excerpt

Search « Service comparison

Service name Amazon Simple Storage Service (Amazon 53) Microsoft Azure

The cloud service model Infrastructure as a Service (laaS) Platform as a Service (PaaS)
Categories ® Cloud Storage * Cloud Storage

Service established in 2006 2010

Storage Features

Platform Compatibility

Programming interfaces e Google Android * NET Platform
(SDK) * Apple i0S * Oracle Java Platform
® Oracle Java Platform ® PHP
® JavaScript * Ruby
* _NET Platfcrm * Python
* PHP * JavaScript
* Python
® Ruby
Data Deduplication type Block Level deduplication * Block Level deduplication
* Single User Deduplication * Single User Deduplication
* Server Side Deduplication * Server Side Deduplication

Figure 3.8: Comparison module

N

8

3.1. Cloud Service Registry Architecture

a[NPpOW oIeas pajade :¢'¢ 2Ly

LODLZ QSI) NOLSYSL) 9LIVSSNNI0SI 9L3IVsSI120S L) €20S |1 Z0FE VS suopedyala)

uopeajIuayIny uQ ud|s ajduls sapiqedea Supjdo) 3|14 UOIIEI[IUBYINY J0IIES OML

uojssasdwo]y P3|qeus |oJ3uUo] UDISIIA pasn Sujpoauz-eljag @ uopelday a8esol5

SUOYd SMOPUIM, [BIpuDj] Pedi(| suoyqi[| Ausgyie|g(| ploJpuy | sadaap 3|iqon
Aqmy | uouphg (| dHd | XSQa|ddy | wuopeld 13N dudsene([| wuopeld ene[apesg | sQiaddy | ploupuy 8jB00n | (¥gs) seaeysaiu) SujwwesSosg

[EUIBIUI paJBys AJE s3I [yuljdijgnd e ypm padeys aue s3)i4 || sa3yqedes Suueys

UQ|SS|WIad JEjnueIn aunjead Aoueus] 3NW _| uonewaoyu Apqedes aulyo

uond3UUD Ndp (| uondflious sdliH | sueaw uojiaajosd asjalas
|edAed | aoaul| anbayl | piealpail || suopdo juswied
_| Buozuon Jo|31pny | suopdo ypne ayL
ysyom] () wuadias | wSy L ysumo|g (| s3IV wyioS|e uopdioug
paseq Auojoauig | paseqJsuleluo] | aseq uopdAisug
uawadeuey diysuone|ay Jawolsn) | a8esoi1g pnoD @ sajiofaged
(5EBH) 83)MJa5 B SE aUBMPIEH | (SEE|) 801AJa5 B SE aunjornulsenyu| @ (SEed) a01nas B se WIofield @ (SEES) 301/J385 B SE SIEMY0S | | |2poLUI 3J)Alas pnojd ay L

uonesodiosu) | Auedwo] sieaud | fuedwo)dgng) Auedwod pajiwi sngngd | adKy Auedwo)

v Aaenlig pue s1yBiy [euocneonpd Aiweq) Py uswaFeuepy £1IN385 UOKEWIOU| [BIBpa]
1y Ajigelunoaoy pue AljigeLIod a3UBINsU| yljeaH || JogieH ajes | uojun ueadoini || iapun sjjey £13unod ay3 suop3djpspan| ayL

sa1e1s paaun) Aueuwan | Anunod

yoseeg

69

3. ComPONENT DESIGN AND DEVELOPMENT

3.1.5 Service Evaluator

As SDL-NG service descriptions are program code, they should be invoked in
a secure environment when they originate from untrustworthy sources. This
is the case with the Open Service Compendium (Use Case 5), as it receives
descriptions from any user on the Internet. Such a secure environment can be
created using containers or virtual machines that are set up with read-only file
systems and restricted host resource access. The SDL-NG as well as the Business
Vocabularies should be bundled to allow standalone service evaluation in these
separated environments. After SDL-NG code is executed securely, the resulting
service descriptions are persisted in the MongoDB.

As all use cases were deployed in a trusted setting with selected users on
disposable VMs, the service evaluator was not yet deployed within an addi-
tionally secured execution environment. For simplification, service evaluation
is currently carried out within the Rails backend before persisting it in the
MongoDB.

3.1.6 Redis Job Queue

The goal of the Redis Job Queue is to decouple the potentially long-running
secure service execution from the other functionality of the Rails Backend.
Whenever a service description needs to be evaluated, the Rails Backend pushes
an evaluation job to the queue. A service evaluator regularly polls this queue
and invokes a worker process to handle the job. The queue is also used for other
job types, for example, to implement the TRESOR Broker service booking.

3.1.7 Constraint-based Matchmaker

The implementation of the constraint-based matchmaker was fully carried out
by Zilci. We discussed how it can be reasonably integrated with the components
that were created for this thesis. The following explanation was created by
Zilci and paraphrased here in order to provide a better understanding of the
relationship between our components. More details can be found in [195] as
well as the GitHub sources?” .

The matchmaker communicates with the Rails Backend via inter-process
communication (for example, a pipe) and provides clients constraint-based
matchmaking facilities through the RESTful APL It uses the Java Constraint Pro-
gramming API Standard JSR-331 [50] with Choco Solver 2 [115] to implement
two constraint models for service matching. The first model realizes discrete
value matching with hard constraints, interval matching for negative and posi-
tive tendencies, as well as feature list matching. The second model implements
discrete value matching with soft constraints. Table 3.4 shows an example
service matchmaking problem. Here, a service request posts constraints on the
property values of three exemplary services. In order to create a satisfactory
matchmaking result, both constraint models have to be applied, as there is a
high diversity in the types of values and constraints.

27https: / / github.com/TU-Berlin-SNET/ cloud-service-matcher

70

https://github.com/TU-Berlin-SNET/cloud-service-matcher

3.1. Cloud Service Registry Architecture

Table 3.4: An Example Service Matchmaking Problem

QoS Service 1, Service 2, Service 3, Service

Property Provider A Provider B Provider C Request

Version 5.5 5.6 5.6 =5.6?

Response < 120ms < 200ms < 400ms < 300ms

time

Storage in 0GB 15GB 20GB > 5GB

Free Version

Availability > 99.99% > 99.95% > 99.95% > 99%

Establishment 2010 2005 2012 > 2009

Year

Pricing per per number of per hour per hour
dyno-hour requests

Compatible Explorer, Explorer, Explorer, Explorer,

Browsers Chrome, Chrome, Firefox, Safari Firefox,
Firefox Safari Safari

3.1.8 Database

Service records are persisted in a MongoDB database as this allows flexible
evolution of the underlying schema. Each service evaluator invocation result is
saved together with a timestamp, so that historic descriptions can be retrieved.
Future analytical use cases can be envisioned based on this feature, for example,
analyzing trends in cloud pricing over time. The resulting data could augment
related research on cloud pricing, as described in the work of Rohitratana and
Altmann [142] who analyze the impact of pricing schemes on a market for SaaS.

3.1.9 Meeting the Stakeholder Requirements

The following subsections iterate each requirement and discuss how the result-
ing service registry architecture meets them.

Business pertinence (Requirement 1)

Business pertinence is ensured by incorporating relevant empiric research
on users’ cloud service selection criteria, for example, by modelling the busi-
ness vocabularies in accordance with the Cloud Requirement Framework (CRF)
[136]. The authors of the CRF use well-grounded empirical research to compile
a set of relevant service selection criteria for comparable stakeholders. Besides
conceptual considerations, there have been regular checks if the resulting vocab-
ularies can describe existing cloud services that are pertinent to the stakeholders
of the use cases. This denotes going through the list of service properties and
evaluate if and how they would be applicable to prominent cloud services.

Tooling simplicity and adaptability (Requirement 2)
To realize this requirement, the design strives to apply two constraints
commonly associated with extreme programming: DTSTTCPW and YAGNI.?

2Beck’s seminal book on extreme programming [16] provides a comprehensive summary.

71

3. ComPONENT DESIGN AND DEVELOPMENT

DTSTTCPW stands for “Do the simplest thing that could possibly work” and
reflects the best practice of only implementing the actual needed functionality,
instead of creating over-engineered solution architectures trying to fit use cases
not yet realized. YAGNI is the abbreviation for “you aren’t gonna need it”, sum-
marizing the empiric knowledge that many people not following DTSTTCPW
spend time on functionality that they only foresee, yet at the end oftentimes
never need or require in another form than they initially thought.

In order to create simple tooling, the architecture employs an internal Ruby
DSL for service description and vocabulary definition as the Ruby language
is especially well suited for DSLs. It is very terse and the resulting service
descriptions resemble ordinary text files. In comparison to RDF, JSON, and
XML, such a simple text format should better support regular Internet users
in authoring descriptions and registry operators in extending the vocabulary.
Furthermore, a concise DSL keeps the intricacies of the internal data repre-
sentation and the type system away from the users. For example, users can
use literal representations, such as “is_billed monthly” or “last_years_-
revenue ’6224000000 $’” instead of learning about a type system and how
to correctly instantiate typed values. Furthermore, the use of a DSL for the
vocabulary eases its gradual evolution with each new use case. It is very hard
to further assess tooling simplicity objectively. One possible measure is the size
of the library. At around 1.500 lines of code?, the current size of the SDL-NG
library can be regarded quite small in relation to its feature set. Following
YAGN], there is no code that is not used within any use case implementation.

To make the architecture applicable within all use cases, a RESTful APl is
provided that offers the complete registry functionality to any external con-
sumers. The API supports multiple media-types (HTML, XML, JSON, RDF,
and SDL-NG) as there are diverse data consumers requiring different service
representations. For example, while the Open Service Compendium (Use Case
5) lets users interact directly with the service registry through a web interface,
the external TRESOR Marketplace consumes the RESTful TRESOR Service
Broker API to manage services using the SDL-NG and retrieve them via XML
for further processing.

Versatile data retrieval (Requirement 3)

As already pointed out, an internal DSL can incorporate both static infor-
mation and scraping logic, creating a versatile tool for externally retrieving
service information. The effort for implementing this logic is reduced by the
wealth of stable and mature Ruby libraries for needed functionality, such as
HTML parsing and querying external databases and semantic datastores. The
example descriptions® use scrapers to extract the textual description of SaaS
features from the websites of Google and Salesforce and combine them with
other static service knowledge in a single file.

Modeling capabilities (Requirement 4)

As plain Ruby classes and objects represent the vocabulary and services,
extending the modeling capabilities of the description language is quite straight-
forward. This is demonstrated by implementing a simple feature model in the

2 Counted by CLOC (https://github.com/AlDanial/cloc)
30https: / / github.com/TU-Berlin-SNET /sdl-ng/ tree /master /examples /services

72

https://github.com/AlDanial/cloc
https://github.com/TU-Berlin-SNET/sdl-ng/tree/master/examples/services

3.1. Cloud Service Registry Architecture

service description to ease the modeling of services having multiple variants.
The next step are cost calculations based on a feature model-based variant mod-
eling as a part of the CYCLONE IaaS Registry implementation in Use Case 3. It
is expected that additional use cases within the application area could require
extended modeling, for example, to represent commonly encountered feature
matrices or to map complex pricing schemes. This leads to the anticipation that
the plain model representation should help reduce the implementation effort
of further extensions in the future.

Matchmaking (Requirement 5)

The matchmaker uses constraint programming (CP) methods as this is a
proven method to handle the complexity of the service matching problem. With
CP the problem definition stays intact in the code, which ensures that the busi-
ness logic is documented as code. Due to the requirements of soft constraints
and detailed rankings for services, CP is especially suitable for the problem
as it has built-in mechanisms to support these features. However, the CP ser-
vice matching approaches suggested so far cover only numeric QoS properties.
Therefore, the registry extends constraint programming with constraint models
for feature lists. The implementation of the CP-based matchmaker by Zilci
implements all the relevant functionality for matchmaking in service registries,
as described in [195].

3.1.10 Registry performance characteristics

It should be fairly obvious that the performance of the registry is dependent on
the request volume and the sizing. As each component can be scaled indepen-
dently from the others, the service registry architecture can support almost any
performance requirement. For example, “read heavy” scenarios with many
queries but few updates would benefit from additional web servers and caches,
while “write heavy” use cases are implemented best using additional backend,
evaluator, and database nodes.

The next subsections iterate all components and describe their specific
performance characteristics. This should help to estimate what performance
to expect from any use case implementation and how to adjust the sizing of
components, if necessary.

SDL-NG and Business Vocabularies

The performance of both depends mainly on the efficiency of the SDL-NG
framework implementation to load services and execute service descriptions.
Both the load operation and the execution of a service description is imple-
mented using common Ruby methods, relying on very basic language functions
such as defining classes and objects and setting instance properties. Thus, the
actual performance of these functions is directly correspondent to the perfor-
mance of the Ruby implementation.

While Ruby has shown a substantial performance improvement over the last
years, the language maintainer Matsumoto established further improvements
in Ruby performance as one of the three main goals for the language evolution
in the coming years [145].

The time it takes to load the vocabularies and services was measured in
the current version of the Open Service Compendium to provide a rough

73

3. ComPONENT DESIGN AND DEVELOPMENT

estimation of the service evaluation performance. For this, the process_-
service_descriptions script was amended by two calls to the Benchmark
module of Ruby, benchmarking the load_vocabulary_from_path and load_-
service_from_path methods. The benchmark was executed using the x86_-
64 version of Ruby 2.4.1 running under 64-bit Archlinux on an Intel Core
i7-6700 CPU using a Samsung SSD 950 PRO 512GB. On this setup, loading the
vocabulary requires on average 20ms of CPU time while evaluating a single
service description is performed in 2.5ms on average. Using a single thread, this
machine would be capable of evaluating approximately 400 service descriptions
per second, providing enough performance for even more intensive service
registry use cases.

Rails Backend

There is no complex business logic implemented in the Rails Backend con-
trollers. Instead, most HTTP requests are transformed directly into database
queries to retrieve services or into push operations to the Redis Job Queue to
update services. Therefore, similar performance can be expected from the Rails
backend as for other typical Ruby on Rails-based applications. Beneficial for the
performance of the backend is the good cacheability of the responses, especially
the list of services and the service output. As both are stateless operations, their
output can also be served from either a load-balanced web cluster or a globally
distributed content delivery network. This would enhance the performance of
the backend substantially.

Client

The view templates that are used by the TRESOR Broker are quite simple,
as they consist of plain elements such as forms and tables. As they are not
dependent on any user-specific state, they are also highly cacheable. However,
the perceived performance of the registry is impacted by the delay that is
introduced by the network round trips to the server. Their amount is dependent
on the network latency between the end user and the location of the registry.

In contrast, the OSC Angular]S frontend allows the client to render the
interface, leading to very quick reactions. In this case however, the performance
of the user agents directly impacts the overall UI performance. Yet, as the
frontend implementation is quite simple and both JavaScript engines and client
PCs are getting more powerful, this is not expected to be a major performance
aspect of the service registry. At last, it should be noted that the frontend is
quite usable even on a modern smart phone.

Service Evaluator

There are different trade-offs between performance and security in the
implementation options for the service evaluator. On the one hand, using
virtual machines, for example, provided on a public IaaS platform, would
be the most secure option. However, there are certain CPU overheads and
memory inefficiencies which become a considerable aspect as the number of
evaluators rises to meet high request demands. On the other hand, using
containers or evaluating service descriptions directly in the backend provides
better performance as, for example, there are no communication overheads and
different evaluator instances can share memory and disk space very efficiently.

74

3.2. Trusted Cloud Transfer Protocol

This option, however, provides very few protection measures against malicious
service requests, making it only viable in fully trusted environments.

Redis Job Queue

Compared to the other components, the role of the Redis job queue in the
registry architecture is only marginal. The main performance aspects to con-
sider are memory consumption and CPU requirements. Regarding memory
consumption, as Redis is an in-memory database, the maximum size of the
queue is dependent on the amount of available memory on the target system.
In turn, the size of a single queue element is mainly dependent on the size of
the service description to be evaluated. As an example, the service descrip-
tions in Use Case 2 (Cloud Storage Broker) are at max 5kB in size, resulting in
approximately 6kB Redis key size, including metadata. Assuming 1.5GB free
RAM on an Amazon EC2 “small” instance, this would allow a tremendously
large queue of 262k service evaluation requests. Regarding CPU requirements,
it should be noted that Redis performs very well due to its in-memory nature,
achieving 100k+ transactions per second, even on older hardware.

Constraint-based Matchmaker

The performance of the constraint-based Matchmaker is defined mostly by
the performance of the Choco Solver 2 [115] and the underlying Java platform.
The matchmaking is performed in-memory and consists of iterating the list of
services and ranking them based on how well they fit to the given constraints.
This can be executed very efficiently when the list of services is first filtered
externally (e.g., by selecting only services within a certain category) and then
applying constraints in a Java VM that has been “warmed up” by preceding
requests.

Database

There are many resources on the Internet that describe the performance
characteristics of MongoDB. Furthermore, the official manual also provides
information about different performance aspects in [112]. The main issue to
consider here is the property of MongoDB to perform best when there is a bit
more free memory than the size of the stored dataset. The dataset size of the
service registry is dependent on the complexity of the service descriptions and
the amount of previous service versions that are preserved. As an example,
the average size of a MongoDB document in the Open Service Compendium is
15kB. In use cases featuring a similar service description complexity, this would
allow persisting around 70k service versions per 1 GByte of RAM.

3.2 Trusted Cloud Transfer Protocol

After Section 2.2.4 provided a general overview of TCTP, this chapter details the
protocol in detail by iterating the different parts of the protocol and showing
the corresponding HTTP messages. It concludes with a short overview of
its implementation. For simplification purposes, the HTTP Content-Length
headers are left out within all listings and the messages are not chunked.

75

3. ComPONENT DESIGN AND DEVELOPMENT

3.21 HTTP Application Layer Encryption Channels (HALECs).

HALECs wrap regular TLS connections and represent their transmissions as
regular HTTP messages. They are created by the TCTP handshake, which is
a regular TLS handshake wrapped in HTTP. HALECs transform the stream
of HTTP entity-bodies into encrypted and authenticated TLS records which
are sent instead of the plaintext entity-body and can be authenticated and
decrypted by the receiving side of the communication. HALECs are identified
by URLSs that can be used in a RESTful manner, for example, DELETEing the
channel via its URL to disconnect the wrapped TLS connection.

As HTTP does not guarantee an unvarying order of HTTP messages sent in
parallel, an out-of-order TCTP response would invalidate the TLS HMAC and
render the HALEC unusable. Parallel processing of TCTP traffic is therefore
only possible when more than one HALEC is created and each parallel message
uses a different HALEC.

HALECs are persisted by saving their TLS session state and security pa-
rameters. Therefore, they do not need to be “closed”. TCTP implementations
may invalidate HALECs to release resources that were required for HALEC
persistence. In this case, user agents would repeat the TCTP handshake to
create new HALECs.

3.2.2 TCTP Discovery

The TCTP discovery allows TCTP clients to retrieve information on how to
create HALECs for accessing protected resources. Instead of defining static
paths, using a discovery procedure enables every origin server to establish
its own URLs. It is performed by the HTTP OPTIONS method to the asterisk
(“#”) URL sending the Accept: text/prs.tctp-discovery request-header, as
shown in Listing 3.10.

Listing 3.10 TCTP Discovery

OPTIONS * HTTP/1.1
Host: www.example.com
Accept: text/prs.tctp-discovery

The TCTP discovery information consists of 2-tuples separated by colons.
The first element is a regular expressions that matches URLs of one or more
protected resource. The second element is a regular expression replacement
string that returns the URL which should be used to establish a HALEC to
communicate with the resource matched by the first elements regex. URLs that
are not protected are indicated by an empty second element. The expressions
are matched from top to bottom, where the first matched pattern decides the
outcome of the discovery.

In Listing 3.11, the root URL, the service root URLs and all static assets are
unprotected. The use of regular expression replacement strings allow a very
flexible definition of recovery information, as represented by the fourth tuple.
Here, different HALEC creation URIs are conveyed for different services. For
example, the resource /servicea/home would have its HALECs created using

76

3.2. Trusted Cloud Transfer Protocol

/servicea/halecs while /serviceb/home using /serviceb/halecs. These
URIs could be reverse proxied and operated by different parties, each having
control over their own secret TLS session states - a highly relevant scenario for
cloud ecosystems.

Listing 3.11 Extended TCTP Discovery

HTTP/1.1 200 OK
Content-Type: text/prs.tctp-discovery

/:

/(service(.+7))7:
/(service(.+7)/)7static.*:
/(service(.+?)/)7.%:/\1/halecs

3.2.3 TCTP Handshake

The creation of an HALEC is performed by an HTTP POST request to the HALEC
creation URL containing a TLS client_hello record. After an HALEC is
created, the origin server sends the HTTP response code 201 Created and a
Location response-header field containing the URL of the new HALEC.

This handshake sequence closely follows the POST method definition in
the HTTP specification [53, sec. 4.3.4]. The HTTP response contains the TLS
handshake response record as an entity-body. Both handshake request and
response are shown in Listing 3.12.

Listing 3.12 HALEC Creation Request and Response

POST /halecs HTTP/1.1
Host: www.example.com

<TLS client_hello record>

HTTP/1.1 201 Created
Location: http://www.example.com/halecs/1kX28fAms

<TLS server_hello, certificate, server_key_exchange>

The remaining handshake is executed by sending an HTTP POST request to
the HALEC URL containing the remaining TLS handshake records, for exam-
ple, client_key_exchange, change_cipher_spec, and finished. Listing 3.13
illustrates this behavior.

The HALEC URL can later be used to send TLS closure alerts, to perform a
TLS renegotiation, and to close the HALEC by sending an HTTP DELETE.

77

3. ComPONENT DESIGN AND DEVELOPMENT

Listing 3.13 TCTP Handshake Request and Response

POST /halecs/1kX28fAms HTTP/1.1
Host: www.example.com

<TLS client_key_exchange, change_cipher_spec, finished>

HTTP/1.1 200 OK

<TLS change_cipher_spec, finished>

3.24 TCTP Entity-body Encryption

After the handshake establishes an appropriate TLS state, the HALEC is used to
secure HTTP entity-bodies. The header field Content-Encoding: encrypted
designates such encrypted messages. User agents request encrypted content
through the Accept-Encoding: encrypted header. If an HTTP message con-
tains a payload, the HALEC URL is sent as the first line of the payload, pre-
ceded by the encrypted entity-body. The user agent and origin server should
be required to send a Cache-Control header of the value no-cache, so that no
intermediary returns an encrypted server response from cache, as this would
invalidate the HMAC.

Listing 3.14 TCTP-encrypted Communication

POST /patients/070386/details HTTP/1.1
Host: www.example.com

Accept-Encoding: encrypted
Content-Type: application/json
Content-Encoding: encrypted
Cache-Control: no-cache

http://www.example.com/halecs/1kX28fAms
<TLS application data records>

HTTP/1.1 200 OK
Content-Encoding: encrypted
Cache-Control: no-cache

http://www.example.com/halecs/1kX28fAms
<TLS application data records>

Listing 3.14 shows how HTTP applications can be designed in such a way
that their HTTP communication shows varying information confidentiality: while
the header signifies a general “update details of patient 070386”, the entity-

78

3.3. Distributed Cloud Proxy

body can convey sensitive medical information that is protected by TCTP.

3.2.5 TCTP Implementation

TCTP was implemented using Ruby and published as the tctp-rack Ruby gem.
This library provides three essential features:

1. An SSL “engine” that relies on OpenSSL for the encryption primitives,
providing a fast and well-tested implementation basis. It is written as a
Ruby extension in C to achieve high performance. Its main responsibili-
ties are invoking OpenSSL methods to conduct TLS communication and
providing the data that would be sent over the network as regular Ruby
strings. The engine implementation is based on a similar component of
the stable and mature Ruby Puma web server which is the default web
server for newly created Ruby on Rails applications and is used on the
popular Heroku PaaS.

2. A Ruby implementation of server and client HALECs which interface
with the SSL engine and offer asynchronous methods to decrypt and
encrypt Ruby strings in a background thread. The server HALEC imple-
mentation can either use an existing cryptographic certificate or create a
new certificate on the fly.

3. A middleware for the Ruby Rack web server interface. All popular Ruby
web frameworks, for example, Ruby on Rails and Sinatra, are based on
Ruby Rack so that TCTP can be added seamlessly through tctp-rack
to any application written for these frameworks. To prevent session
hijacking using intercepted cookies, the middleware contains a mapping
that allows the use of HALECs only within the same sessions they have
been created. This prevents the use of intercepted authentication cookies
with self-created HALECs and strengthens the cookie hijacking protection
of web applications.

To reduce the effort of porting this TCTP implementation to other program-
ming environments, it only relies on common classes, and features a simple
architecture. Thus, it presents a reference implementation that shows a generic
solution design that is not too specific to Ruby.

3.3 Distributed Cloud Proxy

This section provides an overview about the two implemented versions of the
distributed cloud proxy. The first is a Java prototype implemented in the early
phase of TRESOR. The second “final” proxy was implemented using the Ruby
programming language and was deployed to production.

3.3.1 Early proxy prototype

Before implementing the final version of the distributed cloud proxy, a proto-
type was created in order to gain experience with custom HTTP-based proxying
based on non-blocking I/O. An evaluation of this implementation can be found
in Section 4.3. The proxy source is available on GitHub in [153].

79

3. ComPONENT DESIGN AND DEVELOPMENT

3.3.1.1 Technology

The proxy uses non-blocking and asynchronous functions to enable highly
scalable I/O operations using the Java New 1/O (NIO) API [134]. It relies
on the Grizzly Framework [121] which provides abstractions for those rather
“low-level” functions. Performance being one of the major concerns, Grizzly
has shown impressive characteristics, for example, in [110] where it was used
to implement a Network File System (NFS) server and performed better than
the standard Linux kernel-based implementation. At last, it provides functions
for HTTP processing as well as a customizable TLS engine that assists in the
implementation of the proxy.

The industry standard OSGi [124], more specifically, the OSGi application
server platform Eclipse Virgo [176] provides a modularized base for the proxy. It
also lowers the deployment effort considerably, as the OSGi application modules
can be independently reconfigured, updated, and replaced at runtime.

3.3.1.2 Architecture

The proof of concept implementation consists of two main OSGi bundles: the
proxy core, containing the proxy runtime, as well as the proxy model which
persists its configuration. The prototype supports the following functionality:

¢ Authentication. The proxy matches URI patterns to authentication rules
and authenticates users through a password database.

* Relaying identities. After users are authenticated, the proxy relays their
identities to the downstream proxies by using a special HTTP header.

* Routing and SSL. The proxies can encrypt traffic using SSL and route
incoming messages as defined by the proxy configuration.

3.3.2 Final Proxy

The final proxy was written in Ruby to better integrate the Ruby TCTP im-
plementation and to provide a concise and well-maintainable code base. It
makes use of the eventmachine Ruby gem which provides an “event-driven
1/0 and lightweight concurrency library for Ruby” 3! using the Reactor pattern.
The proxy combines protocol-logic written in comprehensible Ruby code with
performance-critical I/O written as C++ ruby extension, creating a fast, yet
easy to extend implementation.

After an introductory section, this section explains the proxy in detail, ex-
plicating the deployment and configuration options before giving an overview
about the code structure. The last section iterates all functions that have been
implemented and explains their use.

3.3.2.1 Introduction

As explained in the proxy concept in Section 2.3.3, there are three proxy in-
stances, each serving a different role in enabling managed cloud service con-
sumption. To enable significant code reuse between the instances when imple-
menting this concept, the final proxy features a highly modular architecture

31https: / / github.com/eventmachine/eventmachine

80

3.3. Distributed Cloud Proxy

Client Proxy Central Proxy

TLS TLS TLS
[] [HTTP Reverse] [HTTP Reverse]
HTTP Forward
(TCTP Client |
TCTP Server
[]

Single-Sign-On

XACML

Logging

Broker Integration

e [[
—J L _J

Figure 3.10: Proxy Modules and Functional Distribution

where each module can be enabled and configured independently from the
others. This allows a flexible distribution of functionality between the three
instances and supports future use cases that possibly have a different func-
tional distribution. Figure 3.10 shows which modules are enabled for the three
different instances. The available proxy modules are:

¢ TLS transport security (point-to-point)

e HTTP reverse and forward proxying

o TCTP client and server

* Web-based single sign-on

¢ Distributed authorization using XACML

* Remote logging

¢ Integration with the cloud service registry

While the common case for the proxy distribution are those three parties,
other deployment scenarios could see any number of involved parties, as a
modular cloud proxy architecture allows flexible configuration of the different
instances.

3.3.2.2 Proxy Communication Sequence

Figure 3.11 presents the communication sequence when a cloud consumer
accesses a booked service within an ecosystem featuring a central proxy. This
access is presumed to be the first after booking the service, therefore requiring
authentication and authorization. The central proxy acts as the reverse proxy
for one or more cloud services. The proxy is integrated with a Federation Provider
which homogenizes the user identities of the different Identity Providers par-
taking in the respective ecosystem, for example, the universities and other
institutions partaking in a national research and education network. The proxy
also communicates with a service broker that persists information about booked
services, most importantly, the identifiers and the URL to the cloud consumer’s

81

3. ComPONENT DESIGN AND DEVELOPMENT

Identity Federation Service
Provider Provider Broker
3. Redirect to IP
< 6. Send FP token to Proxy
5. Send IP token to FP
S > S o
A
4. Authenticate 7. Retrieve UUIDs
user 2. Redirect to FP - and instance URL
1. Service request Remote
11. Service response & additional headers > ‘ = _ommmsmv
< - p "~ <
Central Proxy 8. Authorize B@:mﬂ*
A
>
&, ‘
0 & -< 9. Service request & additional headers Q
® N
@&v\&, 10. Service response XACML PDP

G

Additional cloud service authorization & logging

A

Logstash

.)

S

Cloud Service=========ceecccccccccccccccccccccesieleccnccncccnboccnncnns

Figure 3.11: Proxy Communication Sequence

82

3.3. Distributed Cloud Proxy

service instance. Distributed access control is provided through the integration
with a XACML Policy Decision Point (PDP). At last, the proxy supports logging
into an ELK distribution. The following list provides a detailed explanation of
the whole sequence:

1.

User request to service URL

The sequence is initiated by the first HTTP request of service con-
sumers to the service URL through their browsers, for example,
http://demo.service.example.com. The DNS entry of this host name
should point to the proxy, effectively making it a reverse proxy for the
services. The dotted grey line in the figure indicates the potential TCTP
key exchange and encryption that is established by other proxies.

. Proxy redirect to the Federation Provider

As there is no existing proxy session for this browser, the Proxy redirects
the user to the Federation Provider. The proxy appends a “where do you
come from” parameter to the redirect URL so that the Federation Provider
can redirect the user back to the current URL after authentication.

. Federation Provider redirect to the Identity Provider

As the browser also does not have a session with the Federation Provider,
it uses the SAML WebSSO mechanism to create an authentication request
and POSTs it through a hidden form to the respective Identity Provider
of the user. There are different mechanisms how the Federation Provider
could decide where to POST this form, for example, using a mapping
between a range of user IPs and the responsible Identity Provider.

. User authentication with the Identity Provider

After the Identity Provider validates the authentication request, it initiates
the user authentication process. The Proxy workflow is agnostic to the
concrete mechanism that is used for user authentication, for example,
username/password pairs or smart card authentication.

. Identity Provider SAML token transmission to Federation Provider

Regardless of the authentication mechanism, its result is returned as a
signed SAML token to the Federation Provider. This token contains the
identity of the user as well as any number of user attributes, for example,
group memberships.

. Federation Provider SAML token transmission to the Proxy

After validating the token, the Federation Provider transforms the specific
Identity Provider attributes into a set of common ecosystem attributes.
This offers a generic mechanism to consume those attributes by the cloud
applications as well as the XACML components. After the mapping,
the Federation Provider returns a signed SAML token with the mapped
attributes to the proxy.

. Retrieval of service instance UUID and URL from the service broker by

the proxy

83

3. ComPONENT DESIGN AND DEVELOPMENT

After a user session is established, the proxy uses the identity of the users
to query the service broker for two important information: first, it uses
the symbolic name of the service contained in the HTTP host name (for
example, “demo”) as well as the name of the user organization to retrieve
the UUIDs of the service and the organizations. These UUIDs serve as a
persistent identifier in subsequent calls to the broker, Logstash, and the
XACML PDP, as both names can potentially change. As a second step, it
uses those UUIDs to query the URL where the booked instance for this
specific organization is deployed.

8. Authorization of the request using the XACML PDP

The proxy asks the XACML PDP to authorize the request, based on all
information available at this point: the service and organization UUIDs,
the user ID, all user attributes, the HTTP method, and the HTTP path.
The XACML PDP uses a set of rules defined by the organizations to arrive
at an allow/deny decision.

9. Relaying the service request and additional headers to the cloud service

Authenticated and authorized requests are relayed to the previously re-
trieved service instance URL. They are augmented with a set of headers
conveying information about the request, for example, the user ID and
the user attributes (see Table 3.7).

10. Responding to the cloud service request

The cloud service can now respond to the request. As the request already
contains a lot of information, the cloud service does not have to query
external services in many cases, for example, for authentication. However,
the cloud service can use backend services for additional purposes, for
example, logging application messages and applying service-specific
authorization rules.

11. Relaying the service response and additional headers to the user

After receiving the response, the proxy relays it to the user, augmenting it
with a set of HTTP headers (see Table 3.8). These can be used, for example,
to debug the XACML and broker integration if there are any problems.
As the user has authenticated, the proxy also adds a Cookie header to
the response. This creates a proxy single sign-on session which persists
the transmitted user attributes for the lifetime of this session.

Besides the augmented HTTP headers, the proxy additionally uses the
logging system to persist diagnostic messages. When available, these include
the UUIDs of the services and organizations which can be used to filter the logs
for improved debugging facilities.

3.3.2.3 Deployment and Configuration

In order to support different target environments, there are two options how
the proxy can be deployed and executed:

1. Deploying from source

84

3.3. Distributed Cloud Proxy

The source code of the proxy contains a Gemfile that specifies the depen-
dencies of the proxy on certain versions of other gems. Before the proxy
can be executed, these dependencies need to be downloaded using the
bundle command, provided by the bundler gem. Afterwards, there are
two scripts available for executing the Proxy: bin/proxy.rb for running
it as a standalone application, and bin/proxy_daemon.rb for execution
as a daemon.

2. Deploying via Docker

The source also contains a Dockerfile that builds an Ubuntu-based con-
tainer and installs the Ruby Version Manager (RVM)32, bundler, and the
proxy dependencies. The Docker container entrypoint is the bin/proxy_-
docker. sh script which loads RVM and executes bin/proxy.rb.

The proxy configuration is provided on the command line. When specifying
the --help option, the proxy outputs all possible configuration options, as
shown in Listing 3.15.

3.3.2.4 Source Code Structure

The classes of the proxy belong to four main modules:

1. Proxy

This module contains four classes that implement common functional-
ity: Connection, that delegates HTTP handling, ConnectionPool, accel-
erating HTTP processing through connection pooling of backend con-
nections, Request, abstracting information about proxied requests, and
TresorProxy, the main program.

2. Frontend

The classes in this module implement the actions that should be carried
out with incoming connections, for example, relaying them to backend
servers, and conducting TCTP server functions.

3. Backend

The module classes specify the messages that should be sent to upstream
servers, for example, relayed HTTP messages, XACML authorization
requests, and TCTP client functions.

4. TCTP
Provides auxiliary functions to implement TCTP, for example, a HALEC

registry.

Additionally, loading lib/tresor/logging.rb extends all other classes
with the log and log_remote methods which provide a console output as well
as a remote Logstash logging facility respectively.

32h’r’rps: //rvm.io

85

3. ComPONENT DESIGN AND DEVELOPMENT

Listing 3.15 Proxy Configuration Options

Usage: proxy.rb [options]

-b, —--broker The URL of the TRESOR broker
-i, --ip The ip address to bind to
(default: all)
-p, —-port The port number (default: 80)
-n, --—hostname The HTTP hostname of the proxy
(default: proxy.local)
-P, --threadpool The Eventmachine thread pool size
(default: 20)
-t, -—trace Enable tracing
-1, --loglevel Specify log level (FATAL, ERROR, WARN,
INFO, DEBUG - default INFO)
--logfile Specify log file
--logserver Specify remote logstash server uri,
e.g., tcp://example.org:12345
-C, -—tctp_client Enable TCTP client
-S, ——tctp_server Enable TCTP server
--tls Enable TLS
--tls_key Path to TLS key
-—tls_crt Path to TLS server certificate
--reverse Load reverse proxy settings from YAML
file
--raw_output Output RAW data on console
--880 Perform claims based authentication
--xacml Perform XACML
-—pdpurl The PDP URL
--fpurl The SSO federation provider URL
--hrurl The 5SSO home realm URL
-h, --help Display this help message.

3.3.2.5 Using EventMachine for the Proxy Implementation

Implementing an EventMachine server requires writing a class that in-
herits from EventMachine::Connection, in the case of the proxy, the
Proxy: :Connection class. Whenever EventMachine receives a new connection,
it instantiates this class and calls instance methods on important events. The
crucial methods here are post_init, called immediately after the network
connection has been established, receive_data, when data is ready to be
processed, and unbind, whenever a connection is closed. EventMachine does
not enforce any message boundaries and also coalesces multiple network
packets into a single string for performance reasons. Thus, there is no guarantee
that the calls provide sensible data for immediate processing. In effect, this
provides an efficient manner of implementing network servers while it also
requires some thoughts how to cope with the increased complexity of the
implementation.

The proxy uses an HTTP parser to impose message boundaries onto the

86

3.3. Distributed Cloud Proxy

stream of network data to handle it sensibly. The proxy Connection class passes
all received data to an instance of the HTTP parser provided by the http_-
parser.rb gem>3, which is a Ruby wrapper around the Node.JS HTTP parser>*.
As this parser was written in C and is widely used, it is very efficient in terms
of CPU and memory use.

There are three HTTP parser callback methods that are implemented by the
proxy, which carry out all handling of network traffic:

® on_headers_complete

When all headers have been received, the HTTP parser passes them
as a Ruby Hash to this method. It then decides which proxy facility
to involve, for example, if it relays the message to an upstream server,
encrypts it through TCTD, or provides TCTP server functions. Each
Proxy facility is implemented in a different class that is derived from
Frontend: :FrontendHandler. These classes provide two callback meth-
ods that are called from Proxy: : Connection: on_body and on_message_-
complete. These receive the data from the HTTP parser and implement
a strategy for handling it.

The Proxy: :Connection class delegates the decision if a certain handler
should be used to the handler by calling all can_handle? class methods
of every handler and using the first that returns true. For example, the
HTTPRelayFrontendHandler#can_handle? method returns true only if
the Proxy was configured as a forward Proxy or there is a configured
mapping from the requested HTTP Host to a backend service. The cre-
ation of the respective handler is deferred using promises as it can take
some time and would thus block the reactor thread.

¢ on_body and on_message_complete

When HTTP body parts are received, the HTTP parser provides them
as strings to the on_body callback. The callback on_message_complete
signals the complete reception of the HTTP message. In both cases, the
Proxy: :Connection instance delegates both methods to the frontend
handler by invoking similarly named methods on the handler instances.
If the handler has not been constructed, these calls are also deferred, thus
creating a kind of buffer for received messages. This is the case when,
for example, the proxy receives requests for hosts to which it has not yet
established a backend connection.

Table 3.5 provides a list of all frontend handlers, their purpose, as well as a
categorization into Single-sign on (SSO), distributed authorization (XACML),
TCTP, and regular HTTP handling.

3Bhttps:/ /rubygems.org/gems/http_parser.rb
34https:/ / github.com /nodejs/ http-parser

87

88

Table 3.5: List of Proxy Frontend Handlers

Area Name Purpose
SSO RedirectToSSOFrontendHandler Redirects to the single sign-on server
SSO ProcessSAMLResponseFrontendHandler ~ Processes the SAML response from the single sign-on server
XACML DenylfNotAuthorizedHandler Denies the request if it cannot be authorized via XACML
TCTP TCTPDiscoveryFrontendHandler Returns TCTP discovery information
TCTP TCTPHalecCreationFrontendHandler Creates TCTP HALECs
TCTP TCTPHandshakeFrontendHandler Handles TCTP handshakes
TCTP HTTPEncryptingRelayFrontendHandler ~ Encrypts messages using TCTP before relaying them
HTTP HTTPRelayFrontendHandler Relays HTTP messages to an upstream server
HTTP NotSupportedRequestHandler Returns an error message when receiving unsupported requests
HTTP TresorProxyFrontendHandler Sends a simple “Hello” message for testing purposes.
Table 3.6: List of Proxy Backend Handlers
Area Name Purpose
TCTP TCTPDiscoveryBackendHandler Queries upstream servers for their TCTP abilities
TCTP TCTPHandshakeBackendHandler Conducts a TCTP handshake with upstream servers
TCTP TCTPEncryptToBackendHandler Encrypts HTTP messages before relaying them
HTTP RelayingBackendHandler Relays HTTP messages to upstream servers

INHNJOTIAH(] ANV NDISH(] LNINOJIINOD) €

3.3. Distributed Cloud Proxy

The frontend handlers that relay HTTP messages to upstream servers
(HTTPRelayFrontendHandler and HTTPEncryptingRelayFrontendHandler)
use descendants of the Backend: :BackendHandler class to implement the
different communication strategies. Table 3.6 provides an overview about the
implemented backend handlers. For performance reasons, the proxy contains
the connection pool class Proxy: : ConnectionPool which reuses connections
to backend servers instead of creating one upstream connection for each client.
Like the creation of frontend handlers, in order to prevent blocking the reactor
thread, the backend handler creation is deferred and the data to be relayed is
buffered in a backend connection promise.

3.3.2.6 Proxy Facilities

The following subsections iterate the different facilities that the proxy offers,
along with a description of their implementation.

HTTP Proxying: Reverse and Forward

The default operating mode for HTTP proxying is forward proxying, where
the HTTP client is aware of the proxy and instructs it to forward requests to
client-defined HTTP servers. Additionally, the proxy supports reverse proxying,
where the proxy itself transparently forwards HTTP requests to upstream
servers without client knowledge. To create a performant and reliable proxy,
the handlers HTTPRelayFrontendHandler and RelayingBackendHandler
make use of buffering and connection pooling.

To know which upstream server to contact, the proxy needs “reverse map-
pings” from incoming HTTP Host values to the respective upstream server URL.
These are provided in a YAML file whose path is specified using the --reverse
command line option. The structure of this file is exemplified in Listing 3.16
showing its quite simple syntax: the start of the document is signified by the
---string. Afterwards, there can be any number of mappings, each of the form
'host': 'url' where host specifies the value of the Host HTTP header that
should be proxied and url the full URL, including “http://”, of the upstream
server.

Listing 3.16 Proxy reverse mappings

'"<HOST 1>': '<URL 1>'
'"<HOST 2>': '<URL 2>'
'<HOST n>': '<URL n>'

The relaying handlers provide facilities to register “request” HTTP headers
that are additionally sent to the upstream servers as well as “response” headers
that are returned to the clients. These can be used for a wide range of pur-
poses, for example, authentication, authorization, or debugging. Table 3.7 and
Table 3.8 present a list of all possible headers, divided into the areas HTTP
proxying, Single Sign-on (SSO), distributed access control (XACML) and broker
integration.

89

06

Table 3.7: Proxy Request Headers

Area Header name Description

HTTP X-Forwarded-Host The HTTP Host sent by the client

SSO TRESOR-Attribute Attributes of the authenticated subject in the form “<URL> <value>”

S5O TRESOR-Identity The identity of the authenticated subject, e.g., DHZB\JStock

SSO TRESOR-Organization The identifier of the organization of the authenticated subject, e.g., MEDISITE

Broker TRESOR-Service-UUID The TRESOR broker service UUID that this request tries to invoke

Broker TRESOR-Organization-UUID The TRESOR broker organization UUID that the current subject belongs to
Table 3.8: Proxy Response Headers

Area Header name Description

Broker TRESOR-Broker-Exception An exception in the broker integration

Broker TRESOR-Broker-Requested-Name The symbolic name of the service in the broker, e.g. demo

Broker TRESOR-Broker-Response The response of the broker

XACML TRESOR-XACML-Decision The XACML decision (“Permit”, “Deny”, or “Intermediate”)

XACML TRESOR-XACML-Error The XACML error description

XACML TRESOR-XACML-HTTP-Error An XACML HTTP error, e.g., if parsing the response failed

XACML TRESOR-XACML-Exception An exception in the XACML module

XACML TRESOR-XACML-Response The response from the PDP

XACML TRESOR-XACML-Request The proxy PEP request that was sent to the PDP.

INHNJOTIAH(] ANV NDISH(] LNINOJIINOD) €

3.3. Distributed Cloud Proxy

TCTP Client & Server

For implementing the TCTP client and server functionality, the proxy makes
use of the rack-tctp gem which was presented in Section 3.2.5. There are TCTP
frontend and backend handlers which provide TCTP discovery, handshaking,
and encryption as both client and server. At last, there are auxiliary classes con-
tained in the Tresor: : TCTP module which provide some minor functionality,
such as an internally-used HALEC registry. Configuring the proxy for TCTP is
quite straightforward: -C enables the TCTP client, -S enables the TCTP server.
The debug output of the proxy provides comprehensive status information
about the TCTP subsystem.

Web Single Sign-On
There are three constituents of the web single sign-on functionality:

1. Redirecting users to the Federation Provider

The proxy uses the RedirectToSSOFrontendHandler to redirect users to
the Federation Provider, when configured accordingly. The redirection
target contains two further URLs: wtrealm, a URL where the authen-
tication results should be sent as well as whr, an internal identifier for
the proxy. The wtrealm URL furthermore contains a “Where do you
come from?” URL that the proxy uses to redirect users to their initially
requested URL.

2. Processing Federation Provider responses

After the Federation Provider authentication workflow is complete,
the proxy receives an HTTP POST request to the wtrealm URL and
uses the ProcessSAMLResponseFrontendHandler to handle this re-
quest. Parsing the received SAML token is implemented through the
ClaimSSOSecurityToken which provides a wrapper around the received
XML. It allows to retrieve the SAML NameID assertion, the organization,
as well as a hash of user attributes. After the SAML token is processed,
the proxy redirects to the “Where do you come from?” URL, in effect
resuming the service consumption.

3. Managing SSO sessions

After authentication, the proxy additionally issues a tresor_sso_id
cookie which corresponds to a key of an internal Hash persisting the
attributes of the authenticated user. As long as the cookie is not expired
and the proxy was not restarted, these user attributes will be relayed to
the cloud services as additional request headers, sparing the users from
needing to log-in again.

XACML-based Authorization

The proxy can act as an XACML Policy Enforcement Point (PEP), asking
an external Policy Decision Point (PDP) if requests are authorized or not. The
proxy PEP is compatible to the template-based policy generation interface for
RESTful web services which was devised by Raschke and Zickau and presented
in [132]. The PEP is implemented in the DenyIfNotAuthorizedHandler which
asynchronously creates the authorization request and sends it to the PDP. To

91

3. ComPONENT DESIGN AND DEVELOPMENT

ensure good maintainability, the request template is provided as a Ruby ERB
file 3° which is easy to comprehend and modify.

Logging & Monitoring

There are two methods in the proxy that provide logging functionality. The
first (1og) relies on the Logger class that is contained in the Ruby standard
library to output debug messages to the console. The other method, log_-
remote, transmits a structured log message to a Logstash instance. This is used
for auditing and diagnostic purposes.

3.4 Security Architecture for Federated Multi-cloud
Applications

Computer security is an enormously varied field of computer science. It is
obvious that the limited resources available for creating this dissertation prevent
creating an architecture to address security in an all-embracing manner. Taking
up the general direction of the associated research projects, this thesis focuses
on providing specific, missing functionality and validating it in use cases of an existing
ecosystem, especially authentication and authorization on ALL cloud layers
using federated identities in academic settings, for example, to enable both
web-based single sign-on as well as SSH login using the same mechanisms.

In general, the functionality that the architecture provides should bene-
fit both end-users, as well as their corresponding organizations by meeting
relevant requirements and offering a set of best-practice and ready-to-use com-
ponents. This is in line with the general goal of easing the management and
deployment of multi-cloud applications.

The security architecture is not a holistic and generic security architecture,
but more of a collection of practical tools that can be adapted and applied for
related uses — either singularly or in combination. The components are designed
for reusability as they rely on simplicity, that is, doing one thing and this thing
well, as well as production-grade tools and established industry-recognized
standards, for example, Keycloak and OpenID Connect.

Following the extreme programming approach of “You ain’t gonna need
it” and “Do the simplest thing that could possibly work” the architecture was
built upon no other sources than the requirements of the use cases that were
implemented. It would be impractical if it would try to meet requirements
whose specifics are not known and whose realization cannot be validated having
no clear use cases for them.

One example is the substantial area of “compliance”: while “compliance”
plays a major role for many corporations and other entities, there have been no
concrete requirements in this area in any of the use cases that were addressed.
Therefore, compliance is not addressed directly by any of the developments as
there are no specific rules and regulations pertinent to the use cases.

This section first explains the objectives before presenting an overview
about the security architecture. Afterwards, the three main focus areas of the
architecture are explained in further detail.

35lib/tresor/frontend/xacml/xacml_request .erb

92

3.4. Security Architecture for Federated Multi-cloud Applications

3.4.1 Overview: Objectives and Architecture

There is a great diversity in the IT security infrastructures of different organi-
zations. It is therefore a challenging task to create a security infrastructure in
a generic way, as the adaptability of the infrastructure components is highly
dependent on the maturity and the scope of the IT security infrastructure of
the organizations adopting it. This thesis follows the method of incrementally
refining requirements with the stakeholders, especially the use case owners
from the Bioinformatics domain. After conducting face-to-face meetings and
security workshops, a number of security objectives were defined that the
architecture needs to take up, divided into global, cloud application, and cloud
deployment objectives. These objectives provide a good indicator to assess if the
security architecture would provide benefits to other potential users, that is,
taking up the architecture is far more beneficial to those potential users who
share the same objectives.

Global Objectives

There are two main global security objectives. First of all, it should allow
federated log-in to reuse existing identities, for example, eduGAIN federated
user identities. The main rationale is helping non-technical end-users, for exam-
ple, bioinformaticians, to log in to cloud resources using the same credentials
they use for logging into their workstations. The second objective is providing
distributed logging for debugging and auditing purposes. As explained be-
fore, this should help diagnosing problems and keeping an audit trail of users’
activities.

Cloud Application Objectives

First of all, the architecture should provide easy-to-use mechanisms for
federated authentication as well as federated authorization in order to raise
the applications’ security level by integrating a secure and tested web authenti-
cation solution. It should also secure the transmission of sensitive data, such
as the biomedical data. At last, cloud applications should use the distributed
logging for gathering their log output.

Cloud Deployment Objectives

One of the objectives is to allow federated log-in to the deployment man-
ager. It should furthermore use the federated identities within ACLs used
for controlling authorization of deployment actions (for example, creating a
new application instance). At last a deployment manager should deploy all the
security components and use the distributed logging, for example, to debug
deployments or audit usage of cloud resources.

Security Architecture Overview

Figure 3.12 provides an overview about the constituents of the architecture.
From an operations perspective, the main interaction is between the cloud
service and the cloud service user. As with all ecosystems, there are multiple
usable services, for example, deployed applications and containers, the de-
ployment manager, the logging distribution, an IaaS platform, and an optional
self-service portal. There are also different cloud service users, for example,

93

3. ComPONENT DESIGN AND DEVELOPMENT

@ Authentication (e.g.,
SAML2.0)

HITPS
Backend Module @ \\VﬁU\m

Federation Provider

Identity Provider

)

3

HTTPS User Agent @

HITPS

— HITPS

IP Metadata

Identity Broker @
HITPS

HITPS

MU SP Metadata

&]

«optionab
Metadata
<= — HITPS Provider
OIDCACF

/ \
/
I%\ «optional» @

User Credentials

Deployment Manager @

Login @

TCP
REST API
Logging HITPS
HITPS
HITPS A
bz -
VM / Container —~ @
P / HTTPS | Deployment API
T £ laaS Connector @
J
O__.osw. @ 7\HM>MS_ @ «optional» @ (e.g. OpenStack)
Application odule Self-service Portal
N ; — HITPS \
\ _ TCP \| HITPS
/W TCP
TCP Syslog Logging %\/
HITPS TaaS APIs
Logging Middleware @ % V IaaS Platform @
)—

Tcp Losging

94

Figure 3.12: Security Architecture

3.4. Security Architecture for Federated Multi-cloud Applications

end-users, VM developers, and cloud operators. As the architecture should be
independent of any specific cloud model (public, private, hybrid, etc.) it dies
not consider the specific role of cloud service providers.

One of the cornerstones of the architecture is the Federation Provider®
which issues uniform user claims to relying applications, for example, users’
identifiers, email addresses, and their home organizations. These claims are
contained within JWTs retrieved using the OIDCACF. The Federation Provider
contains the Identity Broker, letting users select the identity to be used for
authentication, as well as the Backend Modules, implementing SAML 2.0 and
OpenID Connect. The SAML 2.0 functionality is used to communicate with
the Identity Providers, using an optional Metadata Provider, for example,
eduGAIN. As the end user’s User Agents communicate directly with the iden-
tity providers, credentials are never transmitted to 3rd parties. Furthermore,
end users can reuse their login sessions to achieve web-based single sign-on.

The Logging Middleware, for example, an ELK stack, unifies distributed
log messages and should support, besides others, TCP-based and Syslog-
compatible log receivers. Not shown in the figure are the Logging Frontend,
allowing end user log consumption, as well as the Logging Backend, for exam-
ple, a database or flat files, to persist the logs.

Deployed Cloud Applications rely on the OIDCACEF to authenticate and
authorize users - both on the application layer, through OpenID Connect li-
braries, as well as the OS layer, through the PAM Module. Depending on the
concrete requirements, the PAM module maps identities either to a respective
local user account, or to a shared user account. In contrast to Moonshot, the
PAM module does not need a modified SSH client or server.>”

The Deployment Manager supports multi-cloud application deployment,
that is, it models application topologies, connects to different [aaS APIs, and
offers a web- and a RESTful interface. It also allows end users to use the
OIDCACEF for logging in and writes its log messages to the logging middleware.

There is an optional architectural element, the Self-service Portal. It al-
lows end users without technical background to use the deployment manager
for instantiating VMSs on the IaaS platform. This portal uses OIDCACF for
authentication and authorization and logs to the network interfaces of the log-
ging middleware. It communicates with the RESTful API of the deployment
manager in order to deploy and scale applications on preconfigured clouds.

3.4.2 The Federation Provider

Figure 3.13 depicts the use of the Federation Provider for federated authentica-
tion: any system actor can perform federated user authentication: the deployed
cloud applications, the deployment manager, the logging system, the IaaS plat-
form, as well as the self-service portal. The Federation Provider relies on the
local Identity Providers to authenticate users and provide assertions to the
Federation Provider via the SAML 2.0 Web Authentication Workflow.

The cloud applications rely on the OpenID Connect authentication code flow
(OIDCACEF) to use federated identities for authentication and authorization.

36We use this term as “Federated Identity Provider” would be ambiguous: “provider of a
federated identity” or “identity provider in a federation”?
37More details at https:/ /github.com/cyclone-project/cyclone-python-pam

95

https://github.com/cyclone-project/cyclone-python-pam

3. ComPONENT DESIGN AND DEVELOPMENT

W w v“ “A “ w ., Application Cloud Operator WW

i I Platf Self-service Portal
Logging 12as Platform End-User VM Developer

Deployment
Manager 5 4 v V B\
/P Authenticate User
—> — —
Cloud Application Cloud Service / Cloud Service User

X

Local Identity Provider

N

- ———— — = Provide User Identity

Federation Provider

Provide Federated
Identity

User Attribute
Mapping

«include»

Figure 3.13: Federated Authentication

96

3.4. Security Architecture for Federated Multi-cloud Applications

They transmit signed authentication requests and retrieve signed user identity
claims to and from the Federation Provider. The Federation Provider uses the
Identity Broker to display a list of Identity Providers for the users to chose from.
The exchange of credentials is done solely between the clients and their Identity
Provider, preventing disclosure of them to any system outside of the home
realm.

User Attribute Mapping and OpenID Subject ID generation

Providing a federated identity includes user attribute mapping, transform-
ing SAML user assertions into JSON Web Token claims, possibly using global,
client-, or service specific configuration. One of the most relevant attributes for
relying applications is the OpenlD Subject ID (JWT sub claim) which represents
a persistent user identifier. These are important for consistent mapping of
federated accounts to application accounts, for example, to retain user data
even when, for example, email addresses change.

3.4.3 Managing Multi-cloud Application Deployments

Figure 3.14 depicts how VM deployment is handled in the security architec-
ture. First, deployment descriptions need to be created containing all the steps
necessary to create new application instances. For example, SlipStream, the
deployment manager used by CYCLONE, uses base images (e.g., “Ubuntu
Linux LTS”) as well as deployment scripts to describe how to install the respec-
tive application components on newly instantiated VMs. After all application
modules have been prepared, the deployment manager calls the respective laaS
platform APIs to instantiate the cloud application, either for initial deployment,
for subsequent scaling, or to tear down the application. This instantiation could
be either initiated by cloud operators or through a self-service portal by regular
end users.

Designing, creating, and integrating a multi-cloud application deployment
lifecycle was not a focal point of the work done in the context of this thesis.
However, this section derives a generalized life-cycle from the concrete im-
plementation in CYCLONE which was done by an involved company®®. The
life-cycle is exemplified in the following four phases:

Phase 1: “Preparation”

In phase 1, the VM developer creates a deployable application module. This
module is parameterized, that is, it can use deployment parameters to configure
the instance-specifics, for example, the permitted users and groups. These
parameters can be also used to configure the integration of the applications
with other backend systems, for example, by providing URLSs to the logging
distribution or the Federation Provider.

Phase 2: Deployment and Configuration

Phase 2 can be initiated by an end-user who instructs the self-service por-
tal to deploy the prepared application module as a new VM on the target
cloud. It can also be initiated by a DevOps engineer who interacts with the
deployment manager API directly. Both the self-service portal and the DevOps

38Details about this can be found in the CYCLONE deliverables D3.1, D6.1, D6.2, and D7.2

97

3. ComPONENT DESIGN AND DEVELOPMENT

Initiate VM

Application

End-User Deployment

Self-service Portal

Create or reuse VM

image

VM Developer

Figure 3.14

«precedes»

«invokes»

Application) "7 > VM Instantiation

Deployment

N

IaaS Platform
Create Deployment
Description
Deployment Aﬁﬂmnm.mmmz

| Manager “
| |
| |

«include» ! !
| | Cloud Application
| |
| |

/

Run Deployment
Scripts

Create Deployment
Scripts

AAﬂ:.manmmvv

: Managing multi-cloud deployments

98

3.4. Security Architecture for Federated Multi-cloud Applications

engineer need to provide all required deployment parameters, for example,
authorization-related parameters, and the target cloud platform credentials.

Phase 3: Operation, Scaling and Configuration Changes

In this phase, the deployed VM can be used by authorized end users. Aslong
as it is running, the application can be scaled up or down by the deployment
manager. Scaling scripts can also be used to update the machine configuration
by issuing a scale command without changing the number of VMs (so called
null scaling).

Phase 4: VM tear-down

Like phase 2, phase 4 can also be initiated by an end-user who instructs the
self-service portal to invoke the deployment manager to tear down the VMs or
a DevOps engineer interacting directly with the SlipStream API. A best practice
is ensuring the complete and thorough removal of any sensitive and personal
data on the target cloud when a VM is torn down.

3.4.4 Federated Authorization for Websites and SSH

Figure 3.15 highlights the interplay of actors and use cases that enable federated
authorization. As a first step, VM developers have to prepare their VMs to use
authorization based on federated user identities, as described in more detail
in the next paragraph. The deployment scripts refer to parameters regarding
federated authorization, for example, a list of users and groups that should be
able to have access to the machines. Those can be either specified by DevOps
engineers directly or through the self-service portal.

Figure 3.16 shows the four different methods that the security architecture
designates to authorize federated identities:

PAM Module

In multicloud environments, every new cloud introduces new user accounts,
increasing the number of passwords that end users must deal with. This
overhead can be reduced by Single Sign On (SSO) with federated identities.
However, there is no satisfying SSO implementation for Secure Shell Login that
can be used web scale. While there are solutions, such as Kerberos+SSH, there
are ample challenges when applying it in federated ecosystems.®.

The challenge of implementing SSO using federated identities is the main
motivation of the PAM Module. For academic end-users, employing federated
eduGAIN identities for SSH login is the most obvious way of implementing
SSO, since each researcher already has an EduGAIN identity, bound to their
institutional email address. The PAM module was implemented by Berdonces-
Bonelo who provides details in [21].

The PAM module involves two actors, the DevOps engineer who initiates the
deployment and the end-user who requires access to the deployed VMs. In order
to highlight the benefit of the PAM module, both workflows are contrasted:
with and without use of the module.

% An iteration of such challenges is written down by Thatmann and Zilci in [157]

99

3. ComPONENT DESIGN AND DEVELOPMENT

Initiate VM
I Deployment — —> <+

Application
i VM Developer
Self-service Porta «include» | End-User Cloud Service User P

Configure

Define Authorization _- Authorization on

Deployment Parameters

Prepare
Authorization on
VMs

Create Deployment
Scripts
Cloud Application

Authorize Users

Federation Provider

7
/

Provide Federated 7

User Attributes

/
/
/

4 «precedes»

/
/ O
4 -

Run Deployment
Scripts

Orchestrator VM

Local Identity Provider™~~_

Provide Local User
Attributes

Deployment
Manager

Figure 3.15: Federated Authorization

100

3.4. Security Architecture for Federated Multi-cloud Applications

VM Developer Orchestrator VM
Cloud Application

Prepare Configure
Authorization <o - —-—-"—-—-—-—-"——-———— — — — — Authorization

on VMs

Conﬁgur'e SSH for Manage Authorized
Public Key =
Authentication

Configure Apache
HTTP Server

Implement
Application-specific <z """ —"——-—————— — — Manage ACLs
ACLs

Figure 3.16: Federated Authorization Mechanisms

Manage .htaccess

Conventional approach: Relying on SSH keys or passwords

First, the engineers deploy and instantiate one or multiple images. Af-
terwards, they log in via SSH to each VM using their public key that they
previously deposited on a self-service portal and that was added to the SSH
configuration by the deployment manager. After they are logged in to the
machine, they add new accounts for all end-users who require access via SSH
and add the public SSH keys to the authorized_users file. After this is done,
those end-users can log in to the VM, for example, for collaboration, debugging
problems, and providing support.

The scheme described above poses three main problems:

1. Many end-users prefer not to use public key authentication due to usabil-
ity issues.

2. Engineers have to know and use the somewhat complex and low-level
SSH configuration mechanisms to manage and map end-users to system
accounts.

3. In multi-cloud deployments, manual key distribution by engineers is not
feasible, especially within clustered deployments of possibly dozens of
machines.

The engineers could alternatively configure password authentication for
SSH. However, this has pitfalls both in terms of security and usability which
makes it no viable alternative option:

101

3. ComPONENT DESIGN AND DEVELOPMENT

1. Each end-user receives new credentials for each VM instance, which are
tiresome to manage.

2. If end-users reuse the same credentials on different systems (which is
quite common), it would invite security breaches with each additional
system sharing the same username/password combination.

3. The engineers must securely share the credentials with the end-users,
which is a challenge in itself.

4. The engineer would have to manage all the usernames and passwords of
end-users who received access to VMs.

Using the PAM module

The PAM module makes use of the keyboard-interactive mode of SSH
to interactively communicate with connecting clients. The module starts an
embedded web server and transmits its URL through the yet unauthenticated
SSH connection. By following the link in a web browser on their machines,
they can authenticate via the Federation Provider through the regular OpenID
Connect flow. The identity contained in the JWT that is returned to the embed-
ded web server is compared to a file that contains a list of identities that are
allowed to login. This list can be modified manually, for example, by engineers,
or it can be provided through the application deployment parameters to the
deployment manager.

In summary, using the PAM module has the following advantages:

1. The password does not leave the end-user’s domain, securing it against
exposure to external systems.

2. Engineers can configure rules more easily by modifying a simple text file

3. End-users can authenticate with one click if they already have an au-
thentication session with the Federation Provider, for example, after they
logged on to the self-service portal.

4. The file containing the end-user’s accounts can be easily distributed by
the deployment manager.

Yet, the limitation of requiring the client devices to have a browser and an
SSH client installed still persists. However, as this was always the case in the
analyzed use case, it can be presumed to be common in others as well.

Apache HTTP Server Authentication & Authorization

The mod_auth_openidc?’ module provides OpenID Connect authenti-
cation for the Apache HTTP Server. When configured, it allows end-users to
access protected websites and applications using their federated identity with
the Federation Provider. When the module is used, authorization rules are
defined using the customary Require-Statements*! as with any other authen-
tication mechanism. The commonly used .htaccess file*? could be used to
define conditions on user attribute values that must be met for authorizing
users, for example, their name, the membership in institutional groups, or the
issuing organization. In effect, this mechanism allows easy AA functionality

“Ohttps:/ / github.com/pingidentity /mod/_auth/_openidc
41 https:/ /httpd.apache.org/docs/2.4/en/mod/mod/_authz/_core html/#require
42https: / /httpd.apache.org/docs/2.4/howto/htaccess.html

102

https://github.com/pingidentity/mod/_auth/_openidc
https://httpd.apache.org/docs/2.4/en/mod/mod/_authz/_core.html/#require
https://httpd.apache.org/docs/2.4/howto/htaccess.html

3.4. Security Architecture for Federated Multi-cloud Applications

for all Apache-hosted applications and websites, for example, PHP and Python
solutions such as WordPress. The evaluation section 4.6.1 presents an example
configuration to secure WordPress using federated identities.

Application-specific ACLs

Any OpenlD Connect-compatible application is free to implement their own
ACLs. For example, the login module of the deployment manager could rely
on the values of the federated user attributes to enforce deployment ACLs.

3.4.5 Providing Unified Logging

Multi-cloud environments provide challenging environments for logging, au-
diting, and monitoring. Especially when applications span multiple clouds,
there are several requirements regarding these functions:

¢ Common mapping for heterogeneous sources. In multi-cloud environ-
ments, log messages can originate from a diverse set of systems and
services. Thus, the logging system needs to provide means to map those
messages onto a common set of attributes.

* Flexible deployment for manifold topologies. Cloud applications can
be deployed in a diverse range of topologies that impact the performance
of logging services. Logs should be sent to the nearest consumer to
keep the logging system performing well. Therefore, the topologies of
logging systems need to be flexible enough to be in line with application
topologies.

¢ Keeping log access control in line with application access control. Log
messages can contain sensitive and possibly personal data which always
needs special protection. At best, the access control to the logging system
should reflect the same access control that is applied for the service access.

The security architecture incorporates the ELK stack which is especially
suited for solving multi-cloud challenges, as it features many characteristics
addressing the iterated challenges, especially:

* Flexible input and filter plugins. These provide both a comprehensive
interface to many of the potential services, for example, a Syslog interface
for daemon logs, connectors for common database management systems,
as well as generic JSON APIs for application specific log subsystems,
for example, Log4j. Flexible processing of these logs using modifying
Logstash filters such as the mutate filter*? also provides an easy to use
method for mapping heterogeneous data sources onto a common schema.

* Relaying and aggregation. As Logstash can upload its logs to another
Logstash instance, creating a cascaded log system that relays log mes-
sages to upstream log servers is easily implementable using differently
configured instances of the same logging distribution. Logstash can also
aggregate data so that, for example, multiple data-center-local instances
would keep the raw logs and at the same time a company-wide instance
would collect statistics over all Logstash instances.

43 https:/ /www.elastic.co/guide/en/logstash/current/plugins-filters-mutate. html

103

https://www.elastic.co/guide/en/logstash/current/plugins-filters-mutate.html

3. ComPONENT DESIGN AND DEVELOPMENT

* Flexible access control. The access control mechanisms and rules are
quite flexible and can be defined and customized by the operators of the
logging dashboard, Kibana. For example, an access control rule could
compare the Kibana user’s domain with the value of a certain field in the
log data representing the domain where the log originated. If they match,
access would be granted. Other access control rules comparing tags or
user names are equally simple to implement.

There are however simpler approaches for scenarios requiring less function-
ality, for example, using a remote-capable syslogger, such as rsyslog**. This
works quite well when applications homogeneously support syslog, run all in
the same data center, and when they don't require sophisticated access control
mechanisms. Another approach is using systemd’s journald together with
systemd-journal-remote*> which supports collecting logs from other systems
using either a simple line-based format or JSON. Journald features a compact
on-disk representation as well as a good set of tools for interacting with the ser-
vice. However, as the capabilities of both approaches are limited, they require
a lot of effort to support multi-cloud scenarios with the same ease of use as the
ELK stack. However, the approaches are complementary as both solutions can
also relay their messages to Logstash.

Some alternative solutions focus on the monitoring part, such as Nagios*,
Icinga®’, and Munin*®. The main purpose of those tools is aggregation of
metrics from diverse systems and displaying it in miscellaneous graphs. Most
often, SNMP is used to connect to diverse devices, such as routers and printers.
However, these tools cannot be used for logging anything else than numeric
values and predefined states (e.g., “OK” and “ERROR”).

“http:/ /www.rsyslog.com/storing-and-forwarding-remote-messages/

“https:/ /www.freedesktop.org/software/systemd /man/systemd-journal-remote.html
46htt’ps: / /www.nagios.org/

471'1ttps: //www.icinga.com/

48http: / /munin-monitoring.org/

104

http://www.rsyslog.com/storing-and-forwarding-remote-messages/

Chapter 4

Evaluation

The following subsections describe the respective evaluation activities that
were undertaken to validate the components that were described in the pre-
ceding section. Each component was evaluated using a method that should
fit its intended benefits. For example, the Cloud Service Registry Architecture
was discussed with its prospective users to get feedback on its qualities and
practical usefulness as explained in Section 4.1. In contrast, the Trusted Cloud
Transfer Protocol and the proxy prototype underwent thorough performance
benchmarks that are presented in Section 4.2 and Section 4.3. Section 4.4 pro-
vides extensive information how the TRESOR components were deployed in a
production environment to gain an understanding of their usefulness to create
a secure cloud ecosystem. Furthermore, TCTP and the distributed cloud proxy
were used to create an architecture blueprint for end-to-end secured medical
SaaS offerings and were in turn also benchmarked in a realistic cloud setting,
as carried out in Section 4.5. As a conclusion, Section 4.6 evaluates the security
architecture by applying it to secure the CYCLONE use cases.

4.1 Evaluating the Cloud Service Registry Architecture

There were a number of evaluation activities to analyze how well the estab-
lished cloud service registries and their components meet the stakeholder
requirements. These activities can be divided into two categories based on their
association: either they were conducted as part of the initial implementation of
the TRESOR Use Case 1 (Section 4.1.2 to Section 4.1.4), or as part of further use
cases (Section 4.1.5 to Section 4.1.7).

The aim of the selection of activities and focus groups was to gather a
variety of feedback, to evaluate a diverse set of aspects, and to apply both
qualitative and quantitative methods. After outlining the motives and purposes
of these evaluation activities, the following subsections provide further details.
This section is concluded by deriving follow-up questions from the evaluation
results.

105

4. EvALuATION

It should be noted that no undertaking applied the description language to
services that are non-existing, as often observed in the field of Semantic Web
Services. This is based on the presumption that using imaginary services for
exemplary purposes does not serve the intended target of business pertinence
well. Instead, the inability to apply a property to describe a service can hint at a
potentially superfluous vocabulary element. That is one of the reasons to take
27 prominent cloud services and use the SDL-NG to describe them, for example,
Google Drive, Salesforce Sales Cloud, and Amazon EC2. It can be observed
that there were no challenges in applying the business vocabulary to create a
meaningful service description. As a result, vocabulary can be considered to
be well suited for applying it to describe prominent cloud services. All service
descriptions can be found on GitHub'.

At last, works within the related research area of information retrieval sys-
tems often include an assessment of the effectiveness of a specific approach
using statistical methods. For example, in [22] Bergamaschi et al. solve keyword
queries over relational databases and analyze the effectiveness of the proposed
algorithm using precision and recall, as these are common evaluation measures
for keyword-based search engines. However, there are large differences be-
tween such search engines and the service registry presented in this thesis: first
of all, service registry queries are not expressed using self-determined free-text
keywords. Instead, they employ a fixed structure that is predetermined by
the business vocabulary. This structure consists of constraints on the permis-
sible value of a service property, for example, it constrains the value of the
payment_option property to credit_card. Furthermore, the data format of
the service descriptions persisted in the registry directly corresponds to the
query format utilized by the users. At the end, “service retrieval” boils down to
transforming each constraint to a corresponding database selector and using it
to filter the set of services persisted in the database.? These database selectors
effectively implement the user query and guarantee that only matching services
are returned and no service is missed, rendering the measures of precision and
recall meaningless for evaluating the service registry.

4.1.1 Motives and Purpose

The TRESOR focus group evaluation (Section 4.1.2) allowed a better under-
standing of the importance of the properties for the service selection, the ideal
criteria of a service registry, as well as the differences between the initial ideas
and the views of the stakeholders. The focus group consisted of experts from
the health sector to strengthen the applicability of the resulting registry for
subsequent adoption in this area. The discussion with two lead authors of an-
other service description language permitted learning from their past findings,
contrast the different concepts of service description languages, and get design
recommendations for the TRESOR broker and the SDL-NG (Section 4.1.3). A
further strengthening of the work’s evaluation was the participation in the “AG
Standards” focus group which comprised researchers from other projects of the
“Trusted Cloud” research program who were working on approaches related

https:/ / github.com/TU-Berlin-SNET /sdl-ng/ tree/master /examples/services
%In the case of the example, the “payment_option:$in: [’credit_card]” MongoDB query
selector

106

https://github.com/TU-Berlin-SNET/sdl-ng/tree/master/examples/services

4.1. Evaluating the Cloud Service Registry Architecture

to service description and brokering. Section 4.1.4 presents the received feed-
back on the SDL-NG and its perceived advancements in relation to previous
approaches.

After concluding the work on the prime Use Case 1 and the associated
TRESOR project, the evaluation of the other use cases continued. Section 4.1.5
details a quantitative evaluation with potential users of the Cloud Storage Bro-
ker (Use Case 2) through an on-line survey to gain insights into the concrete
service selection process of typical cloud storage consumers. As such quantita-
tive evaluation is limited in its depth, there was an additional topic-focused
expert interview which is abridged and interpreted in Section 4.1.6. It provides
in-depth knowledge about the concrete laaS service selection process at a com-
mercial IT provider pertaining to Use Case 4. To better contrast both types of
evaluation and to cover commercial and private perspectives, the evaluation is
concluded with five face-to-face interviews with both students and software
developers, which were conducted in Use Case 6, in Section 4.1.7.

4.1.2 Evaluation Activities in the TRESOR Focus Group

The TRESOR focus group consisted of four IT specialists from the health care
sector who were partners in the TRESOR research project: the health center
CIO and three IT professionals from the same institution.

Method and Objectives

To evaluate the business vocabulary and the service registry approach, a
two-hour meeting in the final phase of the project was scheduled. Participants
were three researchers from the SNET chair of TU Berlin, including me, and the
whole focus group. First, there was a presentation about the TRESOR broker
and the business vocabulary in order to ensure the mutual understanding of the
evaluation subject. Afterwards, interviews were conducted that went through
preconceived questions. Another regular evaluation activity was discussing
the general approach with the focus group at the project consortium meetings.

As the business vocabulary was developed on the basis of regular project
workshop results with the two health centers, it was quite obvious that they
could determine best if it fits their needs. However, as we had worked to-
gether for quite some time, their neutrality in answering the questions could
be disputed. This was compensated by including the health center CIO in the
evaluation who was only seldom involved in the project and took a leading role
in answering our questions. Furthermore, the questions were formulated such
as “How important is criteria X for your typical service selection?”, making it
meaningless for them to favorably rate the importance higher or lower.

Results and Analysis

All in all, there were no major concerns regarding the general concept of the
TRESOR service broker and the business vocabulary. The focus group defined
three main characteristics of an expedient service registry:

1. It should reflect their selection criteria
2. The descriptions should be easily understandable

3. The service differences should be made clear

107

4. EvALuATION

The first characteristic was evaluated by going through the whole business
vocabulary and asking the health professionals to come up with a mutual
importance rating of each individual criteria on a 5-step scale from “indispens-
able” (1) to “irrelevant” (5). They were also asked for further feedback on each
property in order to get ideas for an eventual refinement of the vocabulary. The
pie chart in Figure 4.1 groups the service properties by their rated importance:
86.5% of the 52 criteria were rated important and higher, while only 13.5%
were rated irrelevant or less important. These results show that the generic
business vocabulary captures some of the most important selection criteria of
those users.

To address the second point, the group provided detailed feedback on how
to present each of the properties to the users to make the service descriptions
easily understandable. The most frequent remark was that the system should
explain the consequences for the service selection instead of just factually de-
scribing the properties. Regarding off-line capabilities of cloud services, for
example, it is more advisable to illustrate when and why this functionality
is needed and what consequences missing capabilities could have instead of
potentially simply defining what the term represents. All recommendations
will be considered as part of the ongoing efforts to implement the Open Service
Compendium. Regarding the third point, making the differences clear was
covered later by the comparison view of the Cloud Storage Broker.

M Indispensible
O Very Important
O Important

O Less important

E Irrelevant

Figure 4.1: “Percentage of Selection Criteria by Importance”

There are two major topics where discussions with the focus group, espe-
cially the health care sector specialists, lead to changes in the approach from
the initial ideas to their subsequent implementation. The following subsections
present both topics and explain their impact on the work.

Topic 1: Reasoning about compliance

Initial conceptions of the description language included compliance infor-
mation, so that in the best case a software component could reason about the
suitability of a service from legal and compliance perspectives. However, this
was deemed highly unrealistic by the focus group: Even if an algorithm would
come up with a fitness decision, the health center would ultimately be liable so
it would need to double-check the results. However, as health centers face high
cost pressures they do not have the time, resources, and knowledge to check
whether their provider’s software fulfills all relevant constraints. Therefore,
they have to rely on the provider or, in the case of TRESOR, the marketplace

108

4.1. Evaluating the Cloud Service Registry Architecture

operator to ensure that only compliant services are offered on the marketplace.
This is covered by insurances and legal provisions, so there is in practice no
incentive for providers to actively become rouge and circumvent those con-
straints.

Second, due to the large extent of legal constraints and service aspects to
consider, checking compliance is economically more sensible to do manually
by a trained specialist instead of implementing an algorithm for this: both the
ontology to describe services and the service descriptions themselves would
have to be extremely detailed to cover all relevant aspects. Furthermore, many
assessments are highly subjective and therefore unable to be implemented by a
computer, at least with the technology currently available.

Topic 2: Role of Service-level Agreements

At the beginning of the project, the inclusion of an SLA formalization into
the description language was envisioned. Yet, based on the discussions with
the focus group, this was not followed through. First, the previous experience
of the health centers showed that SLA assurances for non-critical services, such
as those addressed by TRESOR, don’t have a meaningful role. On the one
hand it was always difficult to pinpoint whose SLA was violated, as there are
always many systems involved in the service delivery. On the other hand, most
SLAs are not formulated precise enough to really hold the service provider
accountable. This is also supported by research: in [76] Hogben and Pannetrat
show that for the same service state history (available/unavailable) the SLA
definitions of Amazon EC2, Microsoft Azure, and others can lead to 0% reported
availability for one provider and 100% for another. Therefore, unless SLA
definitions are standardized between all cloud providers, there is low utility
value in any single SLA. However, the health centers stated that information
about past service failures would give them a far better estimation of expected
service quality, even if inferring future results based on past measures is always
associated with certain inaccuracies.

4.1.3 Discussing USDL with Leidig and Oberle

The goal of this evaluation was to present the project requirements and get de-
sign recommendations from Leidig and Oberle, two experts on service registries
and the lead authors of USDL [117].

Method and Objectives

At the beginning of TRESOR, there was a telephone call with the Trusted
Cloud accompanying research leader as well as Leidig and Oberle. At the time
of the call, there was first an overview about TRESOR before the two experts
referred about the history, the current state, and the future plans for USDL.
After this, a discussion ensued about some aspects communicated to them
before the meeting:

¢ How can USDL be applied in general and for specific project challenges?
¢ How will they address current issues in the implementation?
* Do they have any other remarks about the research?

109

4. EvALuATION

Results and Analysis

Both researchers recommended to rely on Linked-USDL, the successor of
USDL, as the main description language and create or reuse domain specific
ontologies for all TRESOR project challenges that are not yet covered by it.
They explained why USDL would not be developed further and that it also will
not receive any fixes for existing implementation issues. Then, more aspects
of the research were discussed on a high level without arriving at concrete
conclusions.

Later in the project, an in-depth requirements analysis revealed the short-
comings of related approaches, especially the lack of business pertinence and
tooling simplicity in popular works from the field of semantic web services,
including the Linked-USDL and related ontologies.

4.1.4 Trusted Cloud “AG Standards” Focus Group Discussion

The “AG Standards” focus group consisted of participants from all research
projects of the “Trusted Cloud” research program. After getting together mul-
tiple times over the course of the funding period, there was a closing full-day
workshop in May 2014 which was focused on approaches to cloud service
assessment and description.

Method and Objectives

After the focus group leader summarized the challenge area, the user-
centric cloud service registry approach of this thesis was presented before
other participants presented their proposals as well. A subsequent lengthy and
deep discussion uncovered meaningful directions of future research.

Results and Analysis

The focus group expects the business vocabulary and the description lan-
guage to be a potential basis for a common cloud offering description language
in the future, making cloud offerings portable over multiple marketplaces. How-
ever, some partners objected that cloud services are not “traded” on market-
places but are directly offered through the Internet. In this context, a potential
language for tradable services would be redundant. At last, it became clear that
most participants had previous experience with the USDL [117], comparing it
to the results of this thesis.

In summary, three areas were identified where the presented service archi-
tecture is seen as an advancement to previous works:

Concreteness. A major advancement of the approach is limiting the descrip-
tions to real-world services using properties pertinent to concrete users. This is
in contrast to describing synthetic services with “abstract” properties deemed
to be pertinent to non-existing users, as often observed by other participants in
the related work. This is in line with a remark at a former focus group meeting
that most of the existing USDL descriptions are not usable for any concrete
use case, as they do not model any existing business service and none of the
projects saw their requirements covered by the vocabulary.

External data retrieval. The need for a specialized USDL editor was pre-
sumed to be futile, as most of the service description should in principle be
retrieved from external data sources, for example, the textual description of

110

4.1. Evaluating the Cloud Service Registry Architecture

the service should just be scraped from its website. This idea was taken up by
making easy scraping of external resources one of the main concerns for the
description language.

Use of a textual DSL. Based on their practical experience in using a Ruby
DSL for other purposes, some researchers of the focus group supported the
view that using a textual DSL can achieve a higher degree of simplicity and
adaptability when using it for describing services.

4.1.5 Cloud Storage Vocabulary Questionnaire

In [87], an intermediate version of the Cloud Storage Vocabulary was evaluated
using an on-line questionnaire. Its “main goal was to identify the relevance,
usability, and suitability of the design approach in daily life” [87, p.28].

Method and Objectives

After refining the question structure, the survey was sent to around fifty
students, a university institute with roughly twenty employees, and some small
local businesses. The survey first asked about the respondents’ experiences
and intended use of storage services. Then, the participants had to rate the
importance of 27 criteria for their selection of a cloud storage service on a five
point scale from irrelevant up to indispensable.

Results and Analysis

The results were “very sparse and diverse”[87, p.29] as there was only a
small number of completions. Of 35 respondents that began the questionnaire,
18 (51.4%) completed it.

However, the survey provided first valuable insight into the vocabulary
usefulness for generic Internet users, as most other people previously involved
in the research are either professionals or academics. Figure 4.2 shows the
average importance distribution of all criteria, which is grouped into 1 — 1.5
(indispensable), 1.5 — 2.5 (very important), and 2.5 — 3.5 (important).

In general, security properties were almost always deemed as highly impor-
tant. The other results promise a high relevance of the vocabulary for Internet
users, yet the absence of less important and irrelevant criteria could also point
at the inability of the respondents to differentiate the importance of their cri-
teria. The low completion rate could also imply that people either could not
understand the criteria or did not know their cloud provider selection process.

4.1.6 Open Cloud Computing Map: Expert Interview and Findings

The goal of the semi-structured expert interview was to identify the require-
ments of an exemplary customer and to compare it with the OCCM concept
and implementation. The following paragraphs abridge the expert interview
explanation [17, p.37-38].

Method and Objectives

The interview was conducted with the data protection official and software
architect at a technology provider for business analytics and marketing automa-
tion. The expert had worked for 17 years in the IT industry and had ten years

111

4. EvALuATION

[Indispensable

69.2% O Very Important

O Important
26.9%

Figure 4.2: “Average Importance of Selection Criteria”

experience in evaluating and choosing infrastructure solutions, such as cloud
infrastructure, storage, and platform services. His target companies expect very
high availability, performance, and data privacy.

Results and Analysis

The survey was structured around three key questions that left room for
discussion and follow up questions:

Question 1: How are cloud service selection processes performed? The cloud
service selection process starts with a large amount of research work, the com-
parison of basic features and different offers, and the consideration of other
service consumers’ experiences. This allows obtaining an overview about
the strengths and weaknesses regarding particular requirements. At a more
advanced stage, providers are contacted for further information about how se-
curity and performance requirements are realized and guaranteed. The release
of this information is often bound to a non-disclosure agreement.

Question 2: Which service characteristics are considered for service selection, and
are data center locations crucial in this consideration? Before a cloud service is
selected, it is evaluated using concrete tests, for example, parts of the software
that should be moved to the cloud are deployed to the target environment. The
expert stated that data center locations are an important factor in the selection
of a service: first of all, privacy laws often differ between the customers’ and
providers’ countries. Second, seismographic and political circumstances have
to be also considered. At last, connections to large Internet exchanges need to
be ensured.

From a legal point of view, the headquarters and subsidiary locations also
play a major role, due to their jurisdictions. As an example, US companies can
use their EU subsidiaries to offer contracts in the same jurisdiction as their EU
customers. When companies offer this, the position of data centers is considered
during the whole selection process.

Question 3: Can a selection process be improved by a tool and, if so, how? A
software solution would reduce the research efforts greatly since a lot of the
considered information is available on-line, yet it has to be gathered again
for each selection process, due to the dynamic nature of the cloud market. In
contrast, a solution such as the OCCM, providing comprehensive information
and comparison facilities, should support different cloud consumers, each
having different priorities and views on cloud services.

112

4.1. Evaluating the Cloud Service Registry Architecture

Summary The expert confirmed the main assumption about the expected
usefulness of the cloud service registry approach. However, he also pointed out
that the registry data will not be the only basis for selecting services. This leads
to a future research question: which specific service selection processes can
be supported by the registry and potential additions, for example, automated
deployment of cloud components for evaluating service offers?

4.1.7 Open Service Compendium Face-to-Face Questionnaire

Five face-to-face interviews were conducted to question potential OSC users
regarding their opinion on the Open Service Compendium as well as the exten-
sions of Use Case 6. The participants were a bachelor and a master student of
computer science, a master student of technical computer science, as well as a
junior and a senior software developer.

Method and Objectives

At the beginning of each interview, the Open Service Compendium was
presented as well as a brief introduction of its components. Afterwards, the
interviewees tried out the OSC without assistance, allowing them to gain per-
sonal user experience. The following subsection abridges the explanation of
these interviews [5, p.29-31].

Results and Analysis

All participants were asked three main questions and surveyed about their
general remarks on the OSC.

Question 1: How well did the different components of the OSC system support
you in selecting cloud services? Possible answers were: Bad, Acceptable, Good, and
Very good. The majority of interviewees evaluated the support by the OSC as
good, one person considered it as very good. Overall, they indicated a good user
experience as well. However, all interviewed persons had complaints about
insufficient data as the overall low number of services in the registry hindered
their ability to test the interface using different properties.

Question 2: How helpful were both types of questionnaires? Possible answers
were: Not helpful, Could be better, Acceptable, and Very helpful. One intervie-
wee indicated that the questionnaire could be better: in several cases the static
questionnaire provided questions that, regardless of the answer, selected no
services at all, due to the limited registry data. For example, among all cloud
services only two services provide a free trial. Due to these limitations, the
dynamic questionnaire sometimes cannot reliably create alternate questions as
the available data is not diverse enough. At last, the types of questions should
be extended to also cover further data types, for example, numerical values,
such as the number of service add-ons. Another interviewee considered the
questionnaire acceptable: the questions are quite general, and the step-by-step
process through the questions could potentially be time-consuming.

On the other hand, the remaining three persons considered the question-
naire very helpful. Those with limited knowledge about cloud services pointed
out the ease of use and the questionnaire perspicuity, which helped them find
cloud services matching their needs. Persons with good IT background were
interested in knowing how the dynamic questionnaire works and agreed that

113

4. EvALuATION

the applied concepts of generating the questions are logical and made sense to
them. One interviewee pointed out that he presumes the questionnaire to be
easier to use by people with limited IT background; however, IT experts would
certainly prefer filtering the list of services directly, instead of going through a
questionnaire.

Question 3: What do you think of the filter options? Possible options are: Over-
loaded/illegible, Could be less, Various, and I could filter according to all my require-
ments (fulfilling). In line with the last remark to Question 2, one interviewee with
limited IT knowledge criticized the filtering as being overloaded with options
that are unimportant and excessively in-depth for him as a normal user. Con-
trary, all other interviewees evaluated it as various or fulfilling. From the latter
group, some interviewees considered filters easier to use and straight-forward
as they include more specific properties than the questionnaires. Compared to
other selection helpers, they also praised that the filtered services are updated
immediately when selecting options, instead of requiring them to manually
update the list of results. The remaining interviewees considered the filters
helpful, especially that they can be reached in two ways: either as the result of
the questionnaires, as well as directly from the OSC homepage.

In general, the interviews indicated a potentially highly usable system. All
interviewees were willing to use it and emphasized the importance of providing
more data than currently available.

Moreover, they provided three main suggestions:

1. Service ratings. After going through the questionnaire and filtering the
services, a rating of each filtered service would support their decision-
making.

2. User entries. The dynamic questionnaire could be extended to consider
the most often answered questions when deciding which to ask the users.

3. Data standardization and providers’ data support. To improve the sys-
tem usability, all services should have a complete description with no
unset property value for any service. A possible solution would be to
convince the cloud providers to keep the descriptions up-to-date.

Although the number of interviewed persons is insufficient for a complete
validation, the proposed approaches were seen as useful and able to address
the challenges of this small group of people. Moreover, the diversity in both
the professional backgrounds and the proficiency of the interviewees provided
a notable insight into the usability of the approach for its potential user groups.

4.1.8 Interpretation of the Evaluation Results Regarding the Main
Requirements

The previous Section 3.1.9 presents conceptual considerations how the registry
architecture should meet the stakeholders’ requirements. The following para-
graphs extend this explanation by adopting the viewpoint of the prospective
users, relating the evaluation results to their own requirements.

114

4.1. Evaluating the Cloud Service Registry Architecture

Requirement 1: Business Pertinence

In summary, the evaluation activities indicate that the work is mostly perti-
nent to the needs of businesses: The TRESOR focus group concluded that only
a low 13.5% of vocabulary properties are not pertinent to their needs. On the
one hand this shows the predominant pertinence of the vocabulary. On the
other hand it reveals an area for future improvement: removing properties that
are not important to the users. For use cases involving regular Internet users, a
high relevance of the vocabulary can be also seen, as highlighted by the cloud
storage questionnaire results: all properties were regarded as indispensable,
very important, and important. At last, the “AG Standards” also applauded the
concreteness of the approach: that real business services are described instead
of purely abstract ones as often observed in the related work.

Requirement 2: Tooling simplicity and adaptability

The discussion with the “AG Standards” reassured that Ruby is an optimal
basis for achieving tooling simplicity and adaptability of the SDL-NG. The Use
Case 6 interviewees also regarded the user experience as good. Another insight
of the interviews was that making the interface adapt to the different cloud
computing experience levels of the prospective users should be considered, for
example, hiding detailed properties that regular users infrequently use in order
to prevent “information overload” of novice cloud users. On the other side,
then it should be made sure that “power users” are not deprived of detailed
interactions. At last, none of the use cases that were built with the service
registry components showed any challenges in adapting it for specific needs.

Requirement 3: Versatile data retrieval

The need for external data retrieval was notably highlighted by the “AG
Standards” group, as most of the descriptions should not be manually authored.
An important issue was highlighted by the expert interviewed in [87]: the
dynamic nature of the cloud market requires that at each imminent selection
decision, service information has to be gathered again. This would mean
that there should be an automated process to update the registry data, for
example, through either automated data retrieval or establishing a manual
update workflow with the providers.

Requirements 4 and 5: Modeling capabilities and service matchmaking
functions

There is already a basic variants model implemented which is used in
the cloud storage description. However, it was neither evaluated with more
complex descriptions, nor compared to other modeling approaches for service
variants. At last, cost calculation and service matchmaking were not evaluated,
as the CYCLONE IaaS Registry (Use Case 3) and the integrated CP matchmaker
within are not ready for deployment.

4.1.9 Discussion and Follow-up Questions

While there was quite positive feedback on the pertinence, simplicity, adapt-
ability, and versatility of the approach, the scope and depth of the evaluation is
limited. Until now, there was no large-scale evaluation to verify the findings in

115

4. EvALuATION

a broader scope. However, the implementation of the six use cases hints at a
general usefulness for the challenges at hand. At the end, there are two main
follow-up questions that surfaced as a result of the evaluation:

1. Which additional activities can be best supported by the registry?

At the moment, the main functions of the registry are finding and compar-
ing services through browsing. However, there are multiple additional
activities that could also be supported, for example, benchmarking, rating,
deploying, and functionally testing services. To answer these questions,
those activities need to be collected and analyzed with regard to the
impact of their implementation to the registry.

2. How to fill the registry with many services?

The main hindrance for fully leveraging the service registry is the low
number of services and the sparseness of property values. While, in
theory, every Internet user is able to author service descriptions to fill this
gap, in practice, there are two challenges: first, the adoption of the OSC
does not happen automatically. In fact, there is a large effort required to
attract OSC visitors, e.g., defining a clear content and marketing strategy,
investing in advertisement, connecting with business partners, search-
engine optimization, and more.

At the moment, there are not enough resources to undertake these ef-
forts. Secondly, typical cloud service consumers and providers are not
motivated by altruism alone: there needs to be a clear value proposition
for them to commit resources to the OSC. This could be, for example,
financial compensations for providing service descriptions or generating
referrals of potential users to cloud providers. All of this needs to be
worked out if the OSC and any other use case should be successfully
introduced to the general cloud market.

4.2 Performance Testing the TCTP Rack Middleware

This section evaluates the performance characteristics of TCTP on the basis
of various TCTP implementations and provides an outlook on the further
evolution of TCTP.

Performance Evaluation

The middleware is accessed by a custom script using the same HALEC
implementation as the middleware in order to evaluate the performance over-
head of TCTP. The script accesses resources varying between 1kb and 10kb in
size, as those represent the average HTML transfer characteristics [163]. The
HTTPS request/response processing times are compared to TCTP over HTTPS
(denoted as TCTP/S in the table), averaged over 20 test runs. The benchmark
client is an Intel Core i7-3520M Laptop running Windows 8.1. The average
processing times and the respective TCTP/S overhead are shown in Table 4.1.

116

4.2. Performance Testing the TCTP Rack Middleware

Table 4.1: TCTP/S overhead in comparison to HTTP/S

Req. Size HTTPS TCTP/S Overhead
1kB 3549ms 37.14ms 4.63%
25kB 3441ms 36.11ms 4.94%
5kB 35.12ms 35.65ms 1.50%
75kB 33.81ms 37.65ms 11.38%
10kB 34.72ms 35.45ms 2.08%

Table 4.1 shows only fixed processing times for TCTP encryption and de-
cryption, and does not include handshake and network round-trips. To assess
the relative overhead of TCTDP, the additional round-trips for the TLS and TCTP
handshake have to be considered, as well as the handshake processing. In the
benchmark setup, the average TCTP handshake took 129 ms, while the average
TLS handshake took 23 ms. At last, network latency has also be taken into
account when assessing the relative overhead of an end-to-end entity-body
encryption. Figure 4.3 shows the resulting relative overhead of TCTP/S with
respect to different network latencies and a varying number of requests.

150%
Re)
o 100%
<
o
>
o
%
S~
E 50%
U (]
|.—
0%
1lreq 10 req 100 req 1k req
=50 ms 133,77% 40,66% 9,21% 5,30%
100 ms 103,36% 30,87% 7,97% 5,18%
==fe=250 ms 82,94% 24,83% 7,22% 5,10%

Figure 4.3: TCTP Relative Overhead

The TCTP overhead adds up to a considerable 133,77% when requesting only
one resource over a fast connection. As the number of requests made through
an established TCTP/S connection rises, the relative overhead approaches the
average processing overhead of 4.86%, which is not substantial. Especially the
non-linear increase of the processing overhead suggests improvement opportu-
nities within the prototype implementation.

117

4. EvALuATION

Further Development

Next steps for further development are TCTP user agents, e.g., common
browsers and HTTP libraries, TCTP origin servers, and TCTP application frame-
works. Furthermore, intermediaries could also be extended by TCTP functionality.
Such intermediaries could securely and transparently bridge clients from a
protected company network to TCTP enabled cloud services with the additional
benefit of not having to adjust any user agent on the company network:

¢ Streaming optimization

TCTP processing overhead could be reduced by aligning the fragmen-
tation introduced by the HTTP chunked transfer coding to the size of
TLSPlaintext blocks, so that they are not separated into two or more
HTTP chunks.

e Peer certificate validation

Besides securely validating peer certificates, as presented by Georgiev,
et al. [63], TCTP implementations should issue a warning, if both the
HTTPS connection and the TCTP entity-body encryption use the same
certificate. Cloud computing intermediaries have access to the private key
of the HTTP/TLS certificate and therefore could also access the plaintext
of the entity-bodies secured by TCTP.

e TCTP discovery circumvention

There are some measures to mitigate the circumvention of TCTP discov-
ery: Pre-seeded discovery information, comparable to [45], DNS TXT
records containing the discovery information or their cryptographic hash,
and using historic data to detect important changes of TCTP discovery in-
formation, e.g., an origin server suddenly ceasing to offer TCTP discovery
information.

* Support for HTTP/2.0

The next version of HTTP, HTTP/2.0, is a notable transport protocol for
future RESTful Cloud Computing services. It requires the use of TLS,
but does not consider any encryption for entity-bodies specifically. As
the semantics of the Content-Encoding entity-header prevail, TCTP is
equally applicable to this protocol. How TCTP would fit conceptually
here is unclear and needs to be examined carefully.

4.3 Performance and Integration Efforts of the Proxy
Prototype

This section evaluates the performance characteristics, the integration efforts,
and the lessons learned of the early proxy prototype whose architecture was
presented in Section 3.3.1. As the Grizzly-based prototype was the very first
component to be implemented, the evaluation was limited to giving a rough
estimation if it would be feasible to implement the final proxy according to the
envisioned architecture.

118

4.4. Deploying the TRESOR Components to Production

Proxy performance characteristics

To analyze the performance of the proxy, a very simple Ruby on Rails web
application is accessed through the proxy using the Apache JMeter [8] load test
tool. The application is deployed on a Linux server (Debian 6.0) with an Intel
Core i7 930 CPU, and 24 GByte of RAM. JMeter runs on an HP EliteBook 8440p
notebook PC (Core i7 620M, 8GByte RAM).

In order to evaluate the performance overhead of the proxy, the application
throughput (requests per minute) and the client CPU usage are measured for
both direct communication as well as through the proxy. The number of [Meter
threads are varied to simulate different parallel workloads. To cut out network
impact, the proxy is running on the machine used to access the service. At last,
SSL is deactivated to exclude encryption overhead.

The results are illustrated in Figure 4.4:

* The proxy impacts the application throughput 9% at most

¢ The server CPU starts to saturate when using 50 parallel threads

* The overall application throughput does not increase significantly if the
number of threads is increased

Summarizing: the proxy prototype highlights that the chosen technology
as well as the architecture does not impact the overall performance of the proxy
in a substantial way.

Integration effort

A sample Ruby on Rails application was modified to use the relayed identity
of a service user to analyze how the proxy authentication could be integrated
into existing cloud services. The evaluation shows that it is very easy to mod-
ify such a contemporary RESTful web application to use the supplied proxy
authentication information. If this holds true for other web frameworks, this
mechanism could therefore lead to reduced implementation efforts for proxy-
compatible applications.

4.4 Deploying the TRESOR Components to Production

This section provides details about the production deployment of TRESOR
to relate the development of the service registry and the cloud proxy to all
other ecosystem components, especially in their functional integration. Fig-
ure 4.5 provides an overview about all components and their interactions in the
production deployment of TRESOR. The components for whose development
SNET was responsible are highlighted in red.

The production deployment included VMs that were hosted in a private
VMMWare vSphere cloud at TU Berlin. The different machines are listed in
Table 4.2. In general, there are three distinct testbed responsibility areas:

1. Authentication and Marketplace

There were a number of Windows Server 2012 VMs maintained by
T-Systems MMS which are related to the TRESOR Federation Provider
and Marketplace. These include the fp-mp VM which hosts both
the Federation Provider as well as the Marketplace. Additionally,

119

80000 40 %
Throughput Performance
inreq/ min impact
60000 — 30 %
40000 — 20 %
20000 - L — 10 %
0 - 0%
10 20 30 40 50 60 70 80
Threads | Threads | Threads | Threads | Threads | Threads | Threads | Threads
I Direct 21354 41605 58877 70166 75184 76998 78522 79443
Proxy 20793 39106 53656 65146 71990 74419 76655 76718
Perf. Impact| -3% -6% - 9% -7% -4% -3% -2% -3%
e CPU Load 2% 4% 3% 8 % 8 % 6 % 15 % 21 %

4. EvALuATION

Figure 4.4: Performance impact of the TRESOR proxy prototype

120

4.4. Deploying the TRESOR Components to Production

yuswihordaq uonodnpoi g ur suoneidsiuy pue syusuodwo)) YOSHL §F 93]

oerd IdIAIRG
SEV] geeq pnopo

Sur330

° /),

3unsoy

DIAIDG

s

uonezienu

I9PIAOL]J
Amuapg
»

Ad1jog

UOT)RZLIOYINY
[JLSHI

SADIAIIG PAJOOq

0} Sunnoy

djorg

Idp1A0I]
uoneIdpaq

Policy
Management

Amuaapis

uogedyjuayiny
Suong

VY

uoned0| dvd

121

4. EvALuATION

there are two combinations of ActiveDirectory server and Test Client
VM for each of the involved hospitals, ad-herz/client-herz and
ad-pauline/client-pauline. Using these VMs, developers could test
how the systems would interact when accessed through a hypothetical
client PC that would have been part of a company ActiveDirectory. These
machines were also beneficial for project presentations. At last, there
was the ad machine which hosted an ActiveDirectory for the fp-mp
Federation Provider / Marketplace machine.

. TRESOR PaaS

The TRESOR PaaS was hosted on two VMs in the testbed. The
paas-broker VM provided the management functions of the PaaS
platform, for example, the user interface, management APIs, monitoring,
distribution of applications, etcetera. The paas-node VM served as a
PaaS computing node responsible for executing the two cloud services
offered in the ecosystem.

. SNET Components

The remaining VMs provided the components that were developed by
SNET: the broker and proxy VM which provide the TRESOR Broker and
Proxy, as well as the xacml VM which provides the distributed authoriza-
tion components PDP and PAP. The xacml VM also hosts the ELK logging
stack deployment that was used by TRESOR as well as the TRESOR demo
application.

Table 4.2: TU Berlin Testbed Machines

Purpose (OF Name
TRESOR Federation Provider and Win 2012 fp-mp
Marketplace
ActiveDirectory for TRESOR Win 2012 ad
ActiveDirectory Testserver 1 Win 2012 ad-herz
ActiveDirectory Testserver 2 Win 2012 ad-pauline
Test Client German Heart Institute Win 2012 client-herz
Test Client Paulinenkrankenhaus Win 2012 client-pauline
TRESOR Paa$S Broker CentOS 6.5 paas-broker
TRESOR PaaS Computing Node CentOS 6.5 paas-node
TRESOR Broker Ubuntu 14.04 broker

LTS
TRESOR Proxy Ubuntu 14.04 proxy

LTS
TRESOR XACML test server Ubuntu 14.04 xacml

LTS

Following the rising popularity of Docker towards the end of TRESOR,
containers for the SNET components as well as an integrated Docker Compose

122

4.4. Deploying the TRESOR Components to Production

compilation were created. It includes dockerized versions of the TRESOR Bro-
ker, Proxy, PDP, PAP, and the logging distribution. This provides a helpful tool
to demonstrate those components as well as reproducibly test their integration.
At last, publishing both the components’ code as well as instructions how to
execute it supports potential users of the TRESOR results to make use of them
in further use cases.

4.4.1 Distributed Authorization: PDP, PAP, and Location Server

The TRESOR production deployment features a distributed authorization archi-
tecture that consists of a Policy Administration Point (PAP), a Policy Decision
Point (PDP), and a Location Server (LS). End-users can instantiate policy tem-
plates for each booked service and use the PAP to manage the access policies
persisted in the PDP. This template mechanism was devised by Raschke and
Zickau and presented in [132]. An example policy template was created for the
TRESOR demo application*. It can be used to define authorization rules for
each of the different exemplary data types in the demo, for example, patients
and vital data.

Another component in the production deployment is the TRESOR Location
Server which provides location information to the PDP so that it can evaluate
geo-fences in the access policies. These geo-fences are also managed by the PAP.
End-users’ location information are provided by the TRESOR Location Client,
an Android application that needs to be installed on the users” phones. Much
more detail about the location-based access control mechanism can be found
in the papers by Zickau et al. in [194, 69, 193].

4.4.2 Proxy, Federation Provider, Identity Provider and SkIDentity

The production deployment of the proxy features a configuration that enables
all relevant modules, in effect leading to an implementation of the full commu-
nication sequence as explained in Section 3.3.2.2. It authenticates users through
the Federation Provider, routes to booked services as retrieved from the service
registry, carries out RESTful authentication with the PDP and augments HTTP
traffic with additional HTTP headers.

In the production environment, there are multiple Identity Providers that
can be used for authentication:

¢ A test provider that allows to select an identity from a list of test identities
to simulate different user accounts

* An OpenLDAP installation that is used for development and testing at
the German Heart Institute

* The production deployment of the ActiveDirectory of the “Pauli-
nenkrankenhaus” health center which is not available to other
participants

* Two ActiveDirectory test domains that simulate the production environ-
ments of the two health centers

Shttps:/ / github.com / TU-Berlin-SNET/ tresor-ecosystem
4https:/ / github.com/TU-Berlin-SNET/ tresor-pap /blob /master/xml-
templates/template.xml

123

4. EvALuATION

The sixth identity provider was created in another project of the
Trusted Cloud research programme, SkIDentity>. SkIDentity provides a
SAML-compliant identity provider for “strong” smart card authentication
mechanisms. The project supports a number of German developments, such as
the electronic ID (“Neuer Personalausweis”) the electronic health insurance
card (“Elektronische Gesundheitskarte”) and the Health Professional Card
(“Elektronischer Heilberufsausweis”).

The PAP can designate certain application resources to require strong au-
thentication, for example, viewing and editing patient data. When such con-
straints are in place, the PDP returns an Indeterminate authorization response
that indicates missing SkIDentity user attributes. The proxy was extended to
restart the authentication process in this case with a different whr value that indi-
cates to the Federation Provider the requirement for SkIDentity authentication.
After the users authenticate, the Federation Provider adds SkIDentity attributes
to the existing set of user attributes. These include, for example, which mecha-
nism was used for authentication, information about the smart card, and the
resulting identifier. A security feature is the configurable “pseudonymization”
of the user identifier. While the same user would be assigned the same ID on
subsequent authentications, this ID is different for each service, preventing
disclosure of personal identification to the cloud services. Strong authentica-
tion is also quite beneficial for auditing purposes as applications can log a user
identity that was asserted by trusted entities outside of TRESOR.

Unlike the Federation Provider used in CYCLONE which lets the users
choose their Identity Provider, the TRESOR Federation Provider always redi-
rects users to the same host (tresor-dev-ip.<domain>). By creating an entry
for this host name in the local DNS, customers can replace the default identity
provider with their own system. In the production deployment, the DNS was
mapped to the test provider.

4.4.3 TRESOR Broker and Marketplace

Within the TRESOR production deployment, the TRESOR Marketplace serves as
the user-facing service while the TRESOR Broker, based on the service registry
architecture, provides the backend functions for managing the essential entities:

e Services

The two production services (“media-break free medical history docu-
mentation” and “drug interaction check”) were described by the TRESOR
Marketplace developers from T-Systems MMS. Furthermore, they used
the other service descriptions (Google Drive for Business and Salesforce
Sales Cloud) for testing the compatibility of the Marketplace to the SDL-
NG, as shown in Figure 4.6. At last, the internal TRESOR services were
also described in the Broker, for example, the logging distribution and
the TRESOR PAP. Figure 4.7 shows the resulting Marketplace directory.
The XSD export of the service vocabulary which was provided by the
Broker was quite important for the integration between both systems as
it allows the automated creation of .NET classes that considerably ease
the handling of retrieved data by the Marketplace backend.

5 https:/ /www.skidentity.de/

124

4.4. Deploying the TRESOR Components to Production

E) Seivic n
Serviceld: -
Serviceldentifier A
RawDefinition:

Service Gberprifen

Service wird konfiguriert
Servicekoahguralion wird abgeschiossan
Senice Dedel Zum reschalten

Service st akliv

Service eingesiell

Figure 4.6: TRESOR Marketplace: Service Creation using the SDL-NG [38, p. 9]

e Service versions

The TRESOR Broker provides versioning capabilities for the service de-
scriptions. This has a number of uses, for example, to make any service
change explicit and open to scrutiny, to provide dependable service-level
agreements, and to provide a transparent history of any service on the
marketplace.

e Service filters

Initially, the conception of the TRESOR Marketplace included a filter that
would prevent client organizations from booking certain services that
did not meet their requirements, for example, regarding data protection.
That’s why the TRESOR Broker includes a facility to post client-specific
filters that are applied when retrieving services. However, the use case
partners determined that one of the main benefits of the TRESOR Market-
place should be that it provides only services that are pre-checked if they
are compliant to the common laws and regulations regarding medical
cloud services. Therefore, the filters were not used in production.

¢ Clients and providers

125

4. EvALuATION

Katalog

Name = IT Immediate Booking = Il Anbigter = 1] Bewertung = I
o TRESOR SNET Dema Appik ation 1 SYSTEM
[n] Mms1 keine Daten SYSTEM
(] TRESOR Logging Inerface | SYSTEM
o MMV Demo i | SYSTEM
(] TRESOR Medizie Demd ADplcakon if SYSTEM
o TRESOR Homepage EYSTEM
=] Mma Test1 keine Daten SYSTEM
[a] TRESOR Policy Adminisiration Point [PAF) SYSTEM
[n] TRESOR Brodker i b SYSTEM

O 2015 - Tresor - Markeiplace (1.0.205 1)

Figure 4.7: TRESOR Marketplace: Catalog [38, p. 9]

The TRESOR Broker also maintains the TRESOR client and provider
information. Service descriptions are linked to the providers while clients
are associated with service bookings. As further information about clients
and providers is rather relevant to TRESOR users instead of other backend
services, it is managed by the Marketplace instead of the Broker. As a
result, the TRESOR Broker solemnly maintains identifiers and a limited
set of metadata.

* Service bookings

A booking is a relationship between a client and a specific service version.
The initial conception of the Broker, Marketplace, and the PaaS designated
the Broker to asynchronously invoke an API of the Paa$S platform to create
a new service instance for a specific client. As a result of this invocation,
the PaaS platform should return the public URL to this specific instance
and the Broker should persist it afterwards. However, as this API was not
available in the project, the broker contains a workaround to always use
the same instance URL after service booking. Still, the URL is retrieved
on demand by the proxy to route traffic to the service.

4.4.4 PaaS, Cloud Services, and Logging

Figure 4.8 provides an overview about the TRESOR PaaS which was imple-
mented by the company “Medisite”. It is a highly modularized Paa$S platform
comprising four layers, each featuring a number of modules. The PaaS Platform

126

4.4. Deploying the TRESOR Components to Production

Web UI

Base Ul Module Security ul I | Module-based
Mgmt. Ul Integration | Components Modules ... Web Framework

Enterprise API

System- and

User Settings Persistence Encryption User Mgmt.

| Module-based
Enterprise Service APIs

Cata}og & Search and . Business
Terminology Indexing Reporting Workflow
Service

Enterprise Application Runtime

. - OSGi Enterprise
Configuration Lifecycle DB Interfaces Application Event R i
& Management Deployment Management untime

Paa$S Layer

- o) Datab | Generic Platform Layer
Provisioning Development Monitoring Runtime atabase (easily exten dable)

Figure 4.8: TRESOR PaaS Platform, translated from a figure by Frank on [38,
p-11]

is marketed as “PaaS+" as it does not only provide the basic platform services
expected from any PaaS, but also a large number of domain-specific modules,
for example, to interact with health data formats such as the widely-used stan-
dard HL7°. The TRESOR Paa$ is based on RedHat OpenShift’, an open-source
PaaS solution. The two example services were packaged as application bundles
and deployed by “Medisite”.

For testing purposes, Medisite installed and configured a TCTP-enabled
instance of the proxy on the PaaS node server. Creating a TCTP-secured connec-
tion from a development machine to the production deployment was successful.
However, this set-up was not repeated with the production services for two
reasons: first, the “media-break free medical history documentation” did not re-
quire TCTP as the transmitted data was already encrypted. Second, the “drug
interaction check” client was the productive SAP installation of the “Pauli-
nenkrankenhaus”. Routing the SAP communication of the production system
through a local proxy was not feasible.

TRESOR Logging

The TRESOR logging consists of a regular ELK stack that receives log data
from all components. It was customized for the specific requirements of the
project:

* Logstash was configured to accept JSON data via a regular TCP socket as
this was the most commonly supported option by all components.

¢ Kibana was integrated with the Federation Provider to allow au-
thenticated access to the logs by checking the presence of the

6http: //www.hl7.org/
7https: / /www.openshift.com/

127

4. EvALuATION

TRESOR-Organization-UUID header which indicates that authenti-
cation with the TRESOR proxy was performed.

* There is a static log data filter unchangeable by the users which compares
the TRESOR-Organization-UUID header with the respective field in the
log messages. As it restricts log viewing to only those entries that belong
to the respective client organization, it makes the logging deployment
multi-tenancy capable.

¢ The Kibana dashboard contains UI elements to filter the log data based on
two additional TRESOR-specific log fields: tresor-component, designat-
ing the respective TRESOR component (“Proxy”, “Broker”, “PDP”, etc.),
and subject-id containing the user identifier (for example, “DHZB/]JS-
tock”).

4.5 Architecture Blueprint for End-to-End Security in
Medical SaaS Offerings

This section presents a generalization of the concrete TRESOR deployment of
the components that have been developed in the context of this thesis. This
architecture blueprint serves as a guidance to other researchers and practitioners
how to implement trustful and secure SaaS applications in medical settings in
general, without being too specific to the concepts of TRESOR.

The following subsections first outline the motivation of the blueprint as well
as the application characteristics that it is especially well suited for. Afterwards,
the architecture and a prototypical implementation are explained. The section
concludes with an explication how the main requirements of the end-users are
met as well as a performance evaluation of the implementation.

4.5.1 Motivation

Despite the currently observable advances in healthcare information technolo-
gies and electronic health (e-health), decisions about treatments and diagnostic
procedures are still commonly delayed as medical records from other health-
care providers are being transferred by casual means, instead of using IT. As
a consequence, healthcare centers consider adopting new IT paradigms, such
Cloud Computing.

Public Cloud Software-as-a-Service (SaaS) offerings, such as Salesforce Sales
Cloud and Google Drive for Business, have been adopted among a considerable
number of users in their respective application domain. In healthcare, they
could enjoy a high adoption as well. Especially in terms of medical records
sharing, Cloud Computing promises substantial improvements as shown by
Chen et al. in [36]. Nevertheless, as argued by Li et al. and Chen et al. in
[97, 36] the affected parties can be concerned about patient data security and
privacy. Thereupon, sensitive medical records are the subject of individuals’
protection plans issued by lawmakers and implemented by healthcare centers.
In particular, the regulations require the prevention of patient data access
by illegitimate parties, such as Cloud Computing intermediaries which are
found within most public cloud offerings. There are a number of proposed
countermeasures to address these issues in the related work as summarized by
Abbas and Khan in [1].

128

4.5. Architecture Blueprint for End-to-End Security in Medical SaaS Offerings

However, the end-to-end security of medical records communication with
medical SaaS solutions has not been the scope of research so far. This sec-
tion uses TCTP to design and implement a blueprint for e-health solution
architectures that establish end-to-end security mechanism to prevent inter-
mediary data access and therefore to ensure appropriate patient data privacy
and security. The evaluation of this approach demonstrates its fulfilment of
healthcare-specific security and privacy requirements, low implementation
efforts, and no measurable performance overhead in a practical benchmark.

4.5.2 Application Characteristics

There are three main characteristics of medical hypermedia applications that
the application blueprint fits best to: they are RESTful HTTP applications (1),
are accessed through HTTP management proxies (2), and deployed as SaaS in
a shared environment (3).

RESTful design (1)

Besides utilizing HTTP as a transfer protocol, the applications follow the
conceptual framework laid out in the work of Fielding [54], that is, the interac-
tion with these applications through user agents should represent operations on
resourceful abstractions of health data, for example, patient records, treatment
journals, or medication plans. Following these concepts allows the blueprint to
make generalized assumptions about application characteristics, such as the
semantics of HTTP operations. All of this leads to a generalized solution for
securing almost any RESTful application, instead of potentially developing a
singular solution for a specific application.

Communication through HTTP management proxies (2)

If a user agent and an origin server would be connected directly, transport
layer protocols, such as Transport Layer Security (TLS) provide end-to-end
security [167]. However, most Cloud Computing environments include inter-
mediary management proxies, such as load balancers, reverse proxies, and
caching cloud optimizers. Furthermore, many organizations opt to filter outgo-
ing internet traffic to impose restrictions on their employees’ internet access,
introducing yet another intermediary. To carry out their tasks, proxies need
to have access to communication plaintext, which is only possible if they act
as TLS server connection ends. This violates the “Need-to-know-Principle”,
as those intermediaries do not need to have access to the HTTP entity-body to
carry out their functions, yet can access it at any time.

Deployment in a shared environment (3)

Shared environments, for example, public cloud platforms, feature addi-
tional ramifications of security breaches at HTTP management proxies, in
comparison to private solutions. Many have a high visibility, such as Amazon
EC2 or Microsoft Azure, making these offerings and the solutions deployed on
them especially worthwhile targets for security attacks. Furthermore, when
security breaches happen, there is a potentially large and diverse group of
affected tenants. Still, the application of end-to-end encryption through the

129

4. EvALuATION

blueprint carries security benefits for any solution architecture, for example, by
preventing the access by intermediaries to communication plaintext.

4.5.3 Blueprint Architecture and Prototype

The blueprint consists of two parts: first, the security technology that enables
end-to-end HTTP entity body encryption, second, the software on both client
and server that implements this technology. The client and server security
software should handle the encryption of HTTP entity bodies. Client security
software can be instantiated as browser add-ons, HTTP client library extensions,
and local HTTP proxies. Server software can be integrated into application
frameworks, server middleware, HTTP servers, and remote HTTP proxies. The
components of the blueprint are depicted in Figure 4.9, along with a short
description of their roles.

The implementation of the blueprint that is described in the following
is shown in Figure 4.10 and comprises: a user agent (e.g., a browser) on a
client (e.g., a health center PC) that communicates with a locally installed
TCTP proxy that was presented in Section 3.3.2. This proxy communicates
with the Redhat OpenShift platform that hosts a PaaS container (an OpenShift
“gear”) in turn hosting a RESTful HTTP application. This demo application
imitates a contemporary cloud-based patient data management system. It was
implemented by one of the students working for TRESOR.

The demo application contains the TCTP Rack middleware which was
introduced in Section 4.2 acting as the TCTP server. Every OpenShift compute
node features a cloud intermediary, an HTTP reverse proxy, in addition to a
potentially also existing company proxy at the health center. While TCTP,
the TCTP proxy, and the middleware are specific instantiations of blueprint
components, RedHat OpenShift and the demo application are selected for
illustrative purposes of contemporary Paa$S solutions and RESTful applications.

4.54 Meeting the Blueprint Stakeholders” Requirements

Based on the application characteristics, the following subsections iterate the
main requirements for the blueprint as well as how the implementation fits
to them. The requirements were gathered in multiple stakeholder workshops
in the context of TRESOR and mainly reflect the statements of the use case
partners from the two German health centers.

Health Data End-to-end Security

Confidentiality. Within medical RESTful applications, health data is con-
tained in the entity bodies of HTTP requests and responses. Considering this,
confidentiality of health data is achieved if unauthorized intermediaries are
prevented from accessing those entities that are transferred between the work-
station and the origin server. To achieve this confidentiality, entity-bodies need
to be encrypted with keys exchanged between the client and the origin server.
Otherwise, the confidentiality would not be “end-to-end”, for example, when
just encrypting hop-to-hop by establishing a TLS connection from the client to
a cloud intermediary.

TCTP encapsulates the TLS handshaking protocols to set up encapsulated
TLS channels (HALECs), as explicated in Section 3.2.3. This design enables the

130

4.5. Architecture Blueprint for End-to-End Security in Medical SaaS Offerings

syusuodwo) yurrdenyg ayJ, ;¢ 231

"ssad0e Apoq ‘Arexqry
“JUSWUOIIAUS PAIBYS B Ul I9AIDS -Ay3us syuanaid aremyjos £31mdag d1LLH I0 19smoiq 39
pazipeniaia A[qrssod uo pakordap uoresridde ny1SHY ‘PUS UOT}OUUOD ISAISS ST uade Josn JI.LH Ten3ay

|

IIAIIG-E S1eMHOS £ dLIH oMo
-mm-m.w.:?m o Aymoag R A o yuadyiIesn
HOS I9AIOG pnorD JLIND3G JULID)
IDAISG UI3LIO)
JUaD
JUSWUOIIAUY paleys

‘Axoxd J11H

‘Axo1d J11H 10 “Jromauwrery
uonyeorjdde ay3 ur payerdajuy

‘“A3o[ouyda} A3LINdas pua-0}-pud
Sursn sarpog-£A3us sajednUIYINE pue SaINdAg

[€20] IO “UOISua}xo
juade 1asn 19Uy

131

4. EvALuATION

Client RedHat OpenShift PaaS
OpenShift Gear
TCTP . TCTP
UserAgent C HTTP OpenShift | | | Middle- Demo
Proxy Node Proxy A
ware PP

Figure 4.10: TCTP Prototype Implementation

secure on-line exchange of encryption keys as well as the negotiation of encryp-
tion algorithms. The exchange itself can rely on strong encryption algorithms,
such as Elliptic Curve Diffie-Hellman [167, p.304-308], adding further strength
to the security of the encryption.

Integrity. Besides the confidentiality, the integrity of the transferred health
data should also be ensured by the blueprint. As it is relayed through possibly
multiple HTTP management proxies, there are ample possibilities for integrity
violations. These include, for example, altering the data, reordering messages,
and replaying previously transmitted data.

All of these threats are mitigated by relying on the secure authentication of
encrypted records included in the TLS protocol and therefore available to the
medical applications via TCTP. The notion of a channel with an associated TLS
session state enables the discovery of replayed and reordered HTTP messages
through the TLS HMAC [167, p.372-376] mechanism.

Full HTTP Compliance

As the blueprint should be applicable to all RESTful applications, the com-
munication between all components needs to be fully compliant to HTTP, that
is, any cloud intermediary is able to process exchanged messages for maximum
compatibility. Furthermore, the client and server security software should
also be able to decide when to use encryption and when unencrypted commu-
nication is sufficient, for example, when transferring static HTML, CSS, and
JavaScript assets.

The reliance of TCTP on standards-compliant use of the HTTP protocol,
especially using the Content-Encoding header as well as an encapsulation
of the TLS protocol in HTTP entity-bodies, ensures that the messages can be
understood by any standards-compliant HTTP intermediary. Furthermore,
TCTP supports the fragmentation of HTTP messages. If TCTP would only
operate on complete entities, this would prevent media streaming applications
such as telemedicine and HTTP comet technologies such as HTTP server push.

The decision when to use encryption is based on the TCTP discovery mech-
anism, presented in Section 3.2.2. This allows specifying differentiated encryp-
tion: for example, encrypting sensitive operations, such as updating patient
records, while transferring interface assets, such as style sheets or icons, in
plaintext. It can also discover if an origin server supports TCTP, preventing
potentially unnecessary round trips for sending encrypted content to a server

132

4.5. Architecture Blueprint for End-to-End Security in Medical SaaS Offerings

that lacks the server security software. In effect, the discovery mechanism can
considerably lower the overall TCTP overhead.

Customer Control over Encryption Keys

The keys that are used for encrypting medical data need to be under the
control of the customer to prevent attacks on the encryption by the provider and
other parties who can potentially gain access. The stakeholders emphasized
that other procedures, such as provider-issued encryption keys, would be
unacceptable from a practical security viewpoint. Additionally, they would
violate legal provisions that require certain security guarantees that could not
be met if the provider could access the encryption keys. These issues prevent
health centers to use cloud load balancers that act as a TLS server connection
end, such as the Amazon Cloud Load Balancer [7].

Using TCTP, the key exchange is carried out between computing nodes that
are under the control of the health centers: the user’s workstations, as well as
the origin servers. The health centers can therefore configure the TCTP server
software to use certificates for key exchange that they have issued themselves,
thus integrating TCTP into the PKI infrastructure of the health centers.

Low Implementation Efforts and Performance Overheads {#sec:tctp-ecis-
benchmark}

To ensure the practical applicability of the blueprint, its components should
impose a low overhead for encryption and authentication, possibly relying on
hardware encryption functionality, such as AES-NI [167, p.139-167]. Further-
more, the effort for implementing such architectures should be reduced, for
example, by reusing existing components, extensive modularization, or relying
on established and mature technologies.

The TLS implementations used for implementing TCTP in the TRESOR
proxy and the Rack TCTP middleware are based on the OpenSSL library [180],
which is a very mature and widely used security library that uses hardware
acceleration, where possible. When implementing the employed software, both
DTSTTCPW and YAGNI paradigms were followed in a similar way than within
the service registry implementation, as explained in Section 3.1.9. Therefore,
the source code is restricted to the essential features, resulting in a quite short
and concise implementation.

Implementation efforts. The implementation efforts for similar architecture
instantiations include installing the TCTP proxy on the client, and adding the
TCTP middleware to the Rack configuration file (in case of Ruby based applica-
tions), or installing the TCTP proxy on the server (in case of other programming
environments). The experience in setting up the benchmark environment lead
to the assumption that performing these actions would require an experienced
programmer at most one person hour. As the TCTP proxy is implemented using
the Ruby programming language, it is compatible to a wide range of operating
systems: Microsoft Windows, Linux, Mac OS X, Solaris, and FreeBSD.

Performance overhead. A synthetic analysis of the performance overhead
introduced by TCTP was explained earlier in Section 4.2. This analysis hints
at an expected performance impact between 5% and 10%. In the following,
the communication overhead is assessed in a realistic setting - the interaction
of a user agent with the demo application, hosted on the OpenShift platform,

133

4. EvALuATION

secured by TCTP. The benchmark script simulates a common workflow for
medical personnel: logging in, getting a list of patients, creating patient records
(five in the benchmark), updating those records with medication and illness
information, and logging out.

There are three communication scenarios that are compared to each other
regarding the execution duration of the example workflow:

1. Direct communication between demo script and application
2. Proxy communication without TCTP
3. Proxy communication with TCTP

The goal is to evaluate how the expected variance in performance of a
shared cloud environment relates to the overhead introduced by the proxy
and TCTP. The measured values are averaged over ten consecutive repetitions.
The benchmark is also repeated six and twelve hours later to get samples
from different times of the day, and therefore different utilization of the cloud
platform. The benchmark client is a desktop workstation equipped with an
Intel Core 2 Duo E8400 CPU, running Debian Wheezy 64bit. The network at
the SNET labs features a 1 GBit/s link to the Internet.

Table 4.3: Mean communication time of medical workflow in relation to access
means.

Run Direct Proxy Proxy OH Proxy+TCTP P+T OH

18t 9,26s 10,31s +11,3% 10,42s +12,5%
2nd 12535 9,56 -23,7% 11,57 s -7,7%
3d 14,625 10,97 s -25,0% 10,45 s -28,5%

The benchmark results are shown in Table 4.3. In this realistic benchmark
setting, the anticipated performance variations of a shared cloud environment
conceal any communication overhead of the proxy and TCTP. In fact, the com-
munication time fluctuates also within the ten repetitions of the workflow,
which is exemplified by Figure 4.11 showing these time variations for two
exemplary workflow actions: listing patients and saving a patient record.

These observations can be used to conclude that the application blueprint
can be applied in a realistic setting without impacting the performance in a
way that would be distinguishable from the usual performance fluctuations of
public cloud offerings.

4.5.5 Summary

The evaluation shows that the beneficial impacts of TCTP fit quite well to
the requirements and constraints of medical Software-as-a-Service solutions.
When implementing the blueprint, cloud-based health solutions can transmit
sensitive medical records between healthcare providers securely using end-to-
end encryption, thus meeting legal requirements, for example, German privacy
law. In particular, the proposed blueprint guarantees the confidentiality and

8Use of violin plot first proposed by Ermakova for [159], who also provided the first draft of
this figure.

134

4.6. Securing CYCLONE

Openshift Standalone Server

120
|

100
|

80
|

Response Time in Milliseconds
60
|

200 300 400 500 600 700 800 900

— (=]
T T <

HTTP TCTP HTTP TCTP

Figure 4.11: Fluctuations of completion time for two exemplary workflow
actions®

integrity of transferred medical records between cloud services and the health
centers; all of this while having very low implementation efforts and only a
small performance overhead.

Still, several challenges need to be addressed in future work. While the
blueprint presumes that confidential medical records are transmitted as a part
of the HTTP entity-bodies, some information in the HTTP headers potentially
also contain sensitive data that would be accessible by Cloud Computing in-
termediaries. An example are patient identifiers in the URLs of GET requests.
This challenge can be mitigated by different methods, for example, encrypting
those parts of the URLs, using pseudonymous identifiers that are unique for
each end user, and forming encrypted POST requests for transmitting those
identifiers. Furthermore, there is no TCTP-specific approach to authenticity,
as it relies on the security of the certificates used for authenticating the TCTP
server and potentially also the client. While this was sulfficient for the TRESOR
stakeholders, there was no thorough analysis conducted in this area regarding
other end-users.

At last, as almost all SaaS cloud applications implement a RESTful design,
there was never the goal to provide a blueprint for non-RESTful applications.
Still, all communication protocols that use HTTP can be secured by TCTP, yet
there are already existing end-to-end technologies for some protocols, such
as WS-Security for SOAP-based solutions. Nevertheless, TCTP can provide
additional functionality, for example, data-flow protection.

4.6 Securing CYCLONE
This section presents the evaluation of the security architecture that was pro-

posed in Section 3.4 using three methods: first, the architecture is applied
within CYCLONE to solve specific issues in multi-cloud deployments that

135

4. EvALuATION

manifest themselves within the CYCLONE use cases. This provides insights
into the applicability and future direction of the contribution. Second, the
main component of the architecture, the CYCLONE Federation Provider, is
subjected to a thorough application threat analysis, resulting in a list of risks
and mitigations. At last, the security architecture is analyzed with respect to its
economic benefits in order to provide arguments for its take-up by the industry.
The last subsection concludes this part with presenting the existing limitations
in the approach.

4.6.1 Applying the Security Architecture within CYCLONE

The following subsections summarize the diverse activities that needed to be
carried out to apply the security architecture within CYCLONE.

Establishing the Federation Provider in eduGAIN

As a prerequisite for being able to use federated identities in the use cases,
the Federation Provider was first set up within the development environment at
SNET and registered with eduGAIN through the TUBIt, the IT service depart-
ment of TU Berlin. Specifically, “registering” denotes importing the Federation
Provider metadata® as a Service Provider (SP) through an internal DFN portal
which only appointed people from TUBit have access to.

To allow the retrieval of further identity attributes from other eduGAIN-
participating institutions, for example, the display name of the user, the Fed-
eration Provider follows the “Data Protection Code of Conduct Cookbook”10.
However, there are two major difficulties: first of all, not every Identity Provider
(IdP) is fully accustomed with all of the accompanying technologies and pro-
cedures - requiring manual coordination effort to get user attributes. Second,
there are only recommendations but no requirements for the attribute release.
Some IdPs chose to release all attributes, some only when SPs follow the Data
Protection CoC, some implement diverse approval processes, and some release
no attributes at all.

Additionally, there is a set of attributes recommended for every eduGAIN
identity provider!!, for example, display name and home organization. The
research institutions are free to implement any number of these attributes
and can also introduce additional ones, for example, group membership. To
resume testing the Federation Provider in spite of all these circumstances, the
Federation Provider also supports creating local user accounts and could use
an LDAP server for special cases not involving federated identities.

In contrast to earlier goals of CYCLONE, all of these circumstances provide
such high barriers that it was not possible to create a single Federation Provider
that would support all of the 2400+ Identity Providers in eduGAIN. In the
end, the consortium focused its efforts on providing the best support for the
institutions that were involved in the project.

Mapping eduGAIN Attributes onto JWT Claims

“https:/ /technical.edugain.org/show_entity_details.php?entity_row_id=213
10https: / /wiki.edugain.org/Data_Protection_Code_of_Conduct_Cookbook
11https: / /wiki.edugain.org/IDP_Attribute_Profile:_recommended_attributes

136

https://technical.edugain.org/show_entity_details.php?entity_row_id=213
https://wiki.edugain.org/Data_Protection_Code_of_Conduct_Cookbook
https://wiki.edugain.org/IDP_Attribute_Profile:_recommended_attributes

4.6. Securing CYCLONE

The following essential claims are mapped from eduGAIN attributes onto
JWT claims:

* A unique user identifier (eduPersonPrincipalName)

* The home organization’s domain name (schacHomeOrganization)
* User’s relationship(s) to their institution (eduPersonAffiliation)
¢ The preferred name when displaying entries (displayName)

The main challenge when generating the JWT sub claim, which identifies
users, is the variety of ways how eduGAIN Identity Providers issue identifiers
and other data that can be used to generate this claim. As the concrete manner
is not known to the Federation Provider beforehand, it iteratively checks for the
existence of any attribute that could be used from the most to the least reliable
ID. The algorithm it uses can be found in the source code!2.

Deploying the Federation Provider to Production

The Federation Provider is deployed from a Docker-based GitHub repository
13 and configured using certificates and metadata registered with eduGAIN.
For deployments in other projects, CYCLONE provides a SlipStream module as
well as an example Keycloak configuration file (keycloak-export. json) that
contains default and exemplary roles, clients, and users.

The Federation Provider relies on the PHP library SimpleSAMLphp!*
for integration with eduGAIN. This library solves two important issues of
Keycloak: First, when importing eduGAIN metadata, Keycloak creates one
AssertionConsumerService for each of the 2400+ SAML identity providers
instead of one service for all of them, analogous to SimpleSAMLphp and
Shibboleth. This substantially enlarges the service provider metadata of the
Federation Provider, raising interoperability and management issues. Second,
the identity broker user interface of SimpleSAMLphp is more sophisticated
and performs better overall than the basic interface of Keycloak. For example,
SimpleSAMLphp provides “search as you type” for the list of IdPs as well as
bookmarking for the preferred IdPs, making IdP selection far more rapid in
subsequent authentication processes, than the basic interface of Keycloak.

There are two additional areas that have been considered when deploying
the Federation Provider:

Periodic Removal of Personal Data

The European Data Protection Directive specifies that computer systems
processing personal data should not keep it longer than needed, for exam-
ple, the SAML assertions that are issued by the eduGAIN Identity Providers.
Based on the recommendations of the data protection officer of TU Berlin, the
CYCLONE Federation Provider contains a removal solution that runs peri-
odically and deletes this data from the database.!> There are plans for the
underlying Keycloak Identity Server to also provide this feature out-of-the-box
in a later version. However, there is no concrete progress on this issue.

12Please see components/samlbridge/config/config/config. php in the Federation Provider
source

B3https:/ / github.com/cyclone-project/ cyclone-federation-provider-apache-oidc-demo

4https:/ /simplesamlphp.org/

15See https:/ /github.com/cyclone-project/cyclone-federation-provider/tree/master /
components/cache-clean

137

https://github.com/cyclone-project/cyclone-federation-provider-apache-oidc-demo
https://simplesamlphp.org/
https://github.com/cyclone-project/cyclone-federation-provider/tree/master/components/cache-clean
https://github.com/cyclone-project/cyclone-federation-provider/tree/master/components/cache-clean

4. EvALuATION

Consent Screen

Many Service Providers will be registered with the CYCLONE Federation
Provider, each having different people responsible for their operation as well as
different data protection officers. By default, Keycloak presents users a consent
screen before their attributes are relayed to the services. This default screen
was extended with comprehensive information about the Service Providers so
that end users can make a more informed decision, especially regarding the
terms of use, data protection rules, and the people responsible for the service
that users log in to.

Self-service Registration

When a new application is deployed that should use the CYCLONE Fed-
eration Provider for authentication, it needs to have a new client account for
OpenlD Connect created. At the beginning of the project, this was a manual
process, requiring the Federation Provider operator to create a new client in the
back end. Berdonces-Bonelo extended the Keycloak server with a self-service
registration API which allows application DevOps to create new OpenlD Con-
nect clients by themselves [21]. While Keycloak already had internal Java classes
to create clients provided by a REST AP], this API did not feature user access
control and was not multi-tenant capable. His extension adds this multi-tenant
capability for the client registration API, assigning created clients to eduGAIN
users.

Federated Authentication for the Biomedical Data Analysis VM

The Biomedical data analysis VM allows Bioinformaticians to upload data
and retrieve analysis results at a later point in time, both via an HTTP inter-
face. Extending this upload form with federated authentication proved quite
straightforward: as the form was presented using the Apache HTTP server, the
server module mod_auth_openidc!® was used to implement OpenID Connect.

PAM-based Federated Authorization

Bioinformaticians collaboratively use the “microbial genomes analysis” as
well as the “live remote cloud sequencing data processing” VMs and require
simple data sharing between them. As they access the VMs using SSH and
the SSH-based X2Go remote desktop, enforcing access control using Linux file
system ACLs suggested itself. CYCLONE integrated the PAM module into the
VMs to map federated identities to local user accounts. Now the bioinformati-
cians can, for example, securely assign access rights to any collaborator using
their email address, creating a highly usable and simple procedure.

Extending SlipStream with Federated Login

Within CYCLONIE, SlipStream is used for deployment of applications on
the respective clouds, configuring federated authorization through deployment
parameters, logging in users via the OIDCACEF, and logging all relevant output
in the distributed logging system. For reference, the whole deployment and
configuration workflow as well as information about scaling applications is

described in detail in the SlipStream documentation'”.

16https: / / github.com/pingidentity /mod_auth_openidc
17http: / /ssdocs.sixsq.com/en/latest/index.html

138

https://github.com/pingidentity/mod_auth_openidc

4.6. Securing CYCLONE

Up until the start of CYCLONE, SlipStream relied on simple username/-
password combinations to authenticate users. In order to also allow federated
identities to authenticate, the SlipStream login service was made compati-
ble to the CYCLONE Federation Provider. The SlipStream UI now features a
CYCLONE icon which users can click on to initiate federated authentication.
The details about this integration can be found in [28, sec. 3.2.1].

Demonstrating Federation Provider integration

Within CYCLONE, two tools were developed to demonstrate the use of fed-
erated identities through the Federation Provider in a simple manner. First, the
cyclone-federat ion—provider—apache-oidc-demo18 provides a Dockerfile
as well as further configuration to create a Docker container running an Apache
HTTP server that uses the mod_auth_openidc to authenticate and authorize
users. This represents the most straightforward use of federated identities for
simple static file serving.

In addition, cyclone-federation-provider-apache-oidc-dj ango19 illus-
trates how this setup can be used in conjunction with a web application platform,
in this case Python Django. The demonstrators are related to other CYCLONE
developments, for example, as many Bioinformatics applications also rely on
Apache and Django, the demos were quite helpful for the developers that also
needed to include federated identities in their applications.

Securing Wordpress with the Federation Provider {#sec:wordpress}

CYCLONE provides a Docker container that demonstrates the integration
of WordPress, a widely used web application, with the CYCLONE Federation
Provider?’. The Dockerfile first installs WordPress before adding and con-
figuring the “Generic OpenID Connect Plugin”?!. This plugin implements
the OIDCACEF that lets users log into the service using their federated identi-
ties. Especially in academic environments, this integration can be beneficial,
for example, to provide collaborative websites for research projects or to let
Bioinformaticians share their research results through a state-of-the-art content
management system.

Establishing the CYCLONE Logging

CYCLONE relies on a modified version of the logging distribution that
was presented in Section 4.4.4. The logging dashboard is integrated with the
CYCLONE Federation Provider to let end users login with their federated
identities. Instead of the TRESOR-Organization-UUID HTTP header which was
sent by the TRESOR proxy before, it now extracts the name of the organization
from the schacHomeOrganization attribute of the JSON web token it receives
from the CYCLONE Federation Provider through the Open ID Connect flow.
This preserves the mandatory filtering based on matching the organization
names from the users’ attributes and the log data. The main use cases for this
service are diagnosis of errors and providing data for potential security audits.

Bhttps:/ / github.com/cyclone-project/cyclone-federation-provider-apache-oidc-demo

https:/ / github.com/cyclone-project/cyclone-federation-provider-apache-oidc-django-
demo

Dhttps:/ / github.com/cyclone-project/ cyclone-demo-wp-docker

Zlhttps:/ /wordpress.org/plugins/ generic-OpenID-Connect /

139

4. EvALuATION

As the CYCLONE implementation progresses, the logging distribution will be
adjusted to additional requirements of the CYCLONE use cases.

4.6.2 Federation Provider Security Modelling and Threat Analysis

This section applies the OWASP Application Threat Modelling method on the
Federation Provider to establish a security threat analysis and possible miti-
gations. The documentation of the method [178] designates three “high level
steps” for the analysis: “Decompose the application”, “Determine and rank
threats” and “Determine countermeasures and mitigation”. The following
subsections explain these steps and the result of applying them onto the Fed-
eration Provider. Unless noted otherwise, all direct quotations cite the official
documentation of the method [178].

4.6.2.1 Step 1: Decomposing the Application

“The goal of this step is to gain an understanding of the application and how it
interacts with external entities. This goal is achieved by information gathering
and documentation. The information gathering process is carried out using a
clearly defined structure, which ensures the correct information is collected.
This structure also defines how the information should be documented to
produce the Threat Model.”[178]

Section 3.4 should be examined to better comprehend the application de-
composition, as Section 3.4.1 presents a general overview about the security
architecture and Section 3.4.2 explains the Federation Provider in detail. The
following paragraphs explain the aspects of the application that need to be
analyzed in order to determine and rank threats in the subsequent phase.

Table 4.4: External Dependencies

ID Dependency

D1 The Federation Provider is deployed on a hardened VM with
sufficient security for login and file system access.

D2 The database of the FP is an embedded H2 database with
persistent disk-based tables.

D3 The Federation Provider Deployment relies on a Docker Compose
deployment.

D4 A securely managed SSL reverse proxy is in front of the Wildfly
Application Server.

The external dependencies are the first aspect that needs to be described. The
OWASP threat model defines them as “items external to the code of the appli-
cation that may pose a threat to the application. These items are typically still
within the control of the organization, but possibly not within the control of the
development team. The first area to look at when investigating external depen-
dencies is how the application will be deployed in a production environment,
and what are the requirements surrounding this. This involves looking at how
the application is or is not intended to be run. For example if the application
is expected to be run on a server that has been hardened to the organization’s

140

4.6. Securing CYCLONE

hardening standard and it is expected to sit behind a firewall, then this infor-
mation should be documented in the external dependencies section.”. Table 4.4
contains those of the Federation Provider, mainly referring to the way it is
deployed.

Table 4.5: Trust Levels

ID Name Description

T1 Anonymous A non-authenticated user connected to the
Web User Federation Provider

T2 User with A user who has authenticated via eduGAIN
eduGAIN
Identity

T3 Relying Party A third party relying on the Federation
Provider for authenticating users

T4 FP Admin A Federation Provider administrator

T5 FP DevOp A Federation Provider DevOps engineer

The trust levels “represent the access rights that the application will grant to
external entities”. They are “cross referenced with the entry points and assets”,
explained later in this section. Table 4.5 contains the different trust levels of the
Federation Provider.

Table 4.6: Entry Points

Trust
ID Name Description Levels

El Wildfly Application Server The HTTP interface to the
(HTTP) Wildfly application server
powering the FP. It is
reverse proxied by a secure
SSL proxy.
E1.1 OpenlD Connect API The API used by relying T3
parties to authenticate
federated users via the FP
E1.2 Administration Console The Servlet used for T4
administering the FP
E1.3 Log-in Screen The FP log-in screen T1,T2,T4
E1.4 Account Manager The Servlet used to manage T2,T4
users’ own accounts
E2 Apache The HTTP interface to an
Apache HTTP server
containing the
SimpleSamIPHP bridge to
eduGAIN
E21 SimpleSamIPHP Bridge The SimpleSamIPHP T1,12,T4
Bridge (SP) to connect to
eduGAIN

141

4. EvALuATION

The entry points “define the interfaces through which potential attackers
can interact with the application or supply it with data. In order for a potential
attacker to attack an application, entry points must exist. Entry points in an
application can be layered, for example each web page in a web application
may contain multiple entry points.”. Table 4.6 contains those of the Federation
Provider. In general, there are two entry points: the Wildfly HTTP Application
Server, mainly executing Keycloak, and the Apache HTTP Server that provides
the SimpleSamIPHP bridge to eduGAIN.

Table 4.7: Assets

Trust
ID Name Description Levels
Al FP Database Assets regarding the H2 database of
the FP
All User List A list of all known users and their T4
home organizations
Al.2 Client List A list of all OpenlD clients, T4
containing their certificates, redirect
URIs, etc.
Al13 Keycloak Config The general configuration of Keycloak T5
A2 OpenlD Connect Assets regarding the OpenlD
API Connect API
A21 Personal Data The personal data of the logged in T3
users, provided by their home
organizations via eduGAIN
A3 SimpleSamIPHP Assets regarding the SimpleSamIPHP
Bridge to eduGAIN
A31 SAML The certificate and metadata for the T5
configuration eduGAIN integration

Finally, Table 4.7 provides the assets within the Federation Provider that
need to be protected. “The system must have something that the attacker is
interested in; these items/areas of interest are defined as assets. Assets are
essentially threat targets, i.e. they are the reason threats will exist. Assets can be
both physical assets and abstract assets. For example, an asset of an application
might be a list of clients and their personal information; this is a physical asset.
An abstract asset might be the reputation of an organization.”

All of these information provide the basis for the modelling of the data flow
within a data flow diagram (DFD), as is shown for the Federation Provider in
Figure 4.12. The main rationale for this is to “gain a better understanding of
the application by providing a visual representation of how the application
processes data. The focus of the DFDs is on how data moves through the
application and what happens to the data as it moves. DFDs are hierarchical in
structure, so they can be used to decompose the application into subsystems
and lower-level subsystems. The high level DFD will allow us to clarify the
scope of the application being modeled. The lower level iterations will allow
us to focus on the specific processes involved when processing specific data.”

The DFD contains five distinct Security Domains:

142

4.6. Securing CYCLONE

SAML Assertions

Identity

Provider

Relying
Application

Application

Configuration :

Authentication Codes /
JWT User Claims

DevOp / Admin

Authentication Requests /
Userinfo Queries
TUB Internal Network

Federation Provider VM

SAML
Assertions

Active Ds r Sessions

Keycloak Configuration

HTTPS Keycloak

Identity Broker

SSL Reverse
Proxy

Traffic

SimpleSamIPHP Configuration

& Certificates

Proxy
Configuration

SimpleSamIPHP
Configuration

Figure 4.12: Data Flow Diagram

. TU Berlin Internal Network. The network between the reverse proxy

VM and the Federation Provider VM. It is exclusively owned, managed,
and secured by TU Berlin. The communication path between both VMs
can be considered secure, that is, there are a number of controls in place
so that eavesdropping on the communication is not possible, allowing
the use of HTTP for inter-VM traffic.

. Reverse Proxy VM. The reverse proxy VM serves as a TLS reverse-proxy

for all SNET-managed publicly accessible services.

. Federation Provider VM. The Federation Provider VM hosts both the Key-

cloak identity broker as well as the SimpleSamIPHP bridge to eduGAIN
identity providers. It is accessed via reverse-proxied HTTP requests from
the reverse proxy VM.

. LAL Cloud. All bioinformatics applications are deployed within VMs on

the LAL cloud.

143

4. EvALuATION

5. Local Networks (e.g., UvA). Most eduGAIN users access cloud applica-
tions from a local network, for example, from the University of Amsterdam
(UvA).

In order to authenticate against relying applications, eduGAIN users inter-
act with the Federation Provider through the SSL reverse proxy. The proxy
retrieves its configuration (SSL certificates, reverse IPs, etc.) from the local file
system and relays traffic to the Keycloak identity broker as well as the Sim-
pleSamIPHP bridge. On the Federation Provider VM, the Keycloak identity
broker handles the main functionality, for example, creating and signing JWTs,
attribute mapping, as well as implementing the OpenID Connect Authentica-
tion Code Flow. It is accompanied by the SimpleSamIPHP bridge, which offers
SAML-based eduGAIN federation. The identity broker persists local users
(FP DevOps / Admins) as well as its configuration from a local H2 database.
Active Federation Provider user sessions are also persisted there. According to
OpenlD Connect, relying applications initiate authentication requests, which
cause eduGAIN users to authenticate against their local identity providers.
Those providers return SAML assertions to the SimpleSamIPHP bridge, which
relays them to the identity broker. It returns authentication codes in response
to the authentication requests that allow the relying applications to query the
identity broker for user information.

4.6.2.2 Steps 2 and 3: Determining Threats and Countermeasures

Tables 4.13, 4.14, and 4.15 contain a list of threats, their possible causes as
well as a mitigation strategy. These were modeled systematically based on the
information derived from the system in Step 1. Furthermore, the tables take up
the OWASP Treat Risk Modelling recommendations from [179] to include the
level of attacker to defend against.

The threat analysis uses the DREAD classification scheme for “quantifying,
comparing and prioritizing the amount of risk presented by each evaluated
threat”. DREAD was first proposed by Microsoft in [106] and proposes to
classify security threats into five categories:

1. Damage potential: “How great is the damage if the vulnerability is ex-
ploited?”

Reproducibility: “How easy is it to reproduce the attack?”
Exploitability: “How easy is it to launch an attack?”

Affected users: “As a rough percentage, how many users are affected?”
Discoverability: “How easy is it to find the vulnerability?”

Ol PN

The designated ratings 1, 2, and 3 for each of the categories follow the
definition laid out in the Threat Rating Table [106, fig. 3.6]. These ratings are
summed up to a 1-15 rating allowing to categorize threats in low (1-9), medium
(10-12), and high (13-15) priority. As the main security facilities of the Federation
Provider rely on the OpenID Connect protocol and its flawless implementation,
it is hard to differentiate between Federation Provider-specific threats and
threats originating from the protocol. Therefore, the last column in the threat
table provides a distinction into threats that are either more implementation-
related (I) or more design-related (D).

144

4.6. Securing CYCLONE

Des. / Impl.

e

Hi/Me/Lo

€Jo 1 3sr]3eary], g1y 23]

*S9}EOYI}ID
DId 10 19103S pareys e 3uIsn suaxo0} JuaIP
vLiele|gle € XX POAISDAI OS[e PUe J 9} 0} UOI3ULOd | 0} uoneuosiadur 19A19G
1SS a3 depI[eA PINoys JUSI AI9AH
suoneoridde Surkiax
'suorssas (paydAoua Ajqrssod) asn 's309[qns 10 s1ansst 03 198N NIVONPd
ATuo nq ‘susy0} WY} puss 03 syuade Iasn JURISTTP Ym paddems Jo uoneuosIaduy
MOT[e IaAsu pnoys suonedrdde ‘@10je1ay] | I0 ‘painjoejnuewt aq pnod ’
stiejelejefe)x X "SUX0) OJuT wiIoJsuer} ued uonedrdde | suayOT, "I 93 UIIM WA
Y} ATuo Yotym ‘sapod jnq ‘suado} | SUIAJLIoA JNOPIM ‘SUD0)
A1ddns jou op syusde 1asn ‘IDOVDOAIO Ul jdaooe suopeorddy
Adonus a1y 003 y3nox
6|tlelt|r|e]|x|x ‘seomos Adomue Arenb-ySiy jo o N ot wosoa suoneoydde
- 0 v 3urA7a1 03 198N
- PIERRIR LMIAROPAN | fyre y0 uoneuosiaduw
grlz|ele|e|e|X|X|X|X]|X WA pauspiey uo juswdojdaq e —— jouon I
olzlgl 2zl el<|<|2] 2w uoneSnIA asne)) yeary],
SlE|SlEE|%| El=| gl E|E
AEIEIEEIRE R -
AMEIE R ER IR
2z &1 E(S (S€1Y8] |<
A a5] M A p= N

145

4. EvALuATION

el
W o | .ﬂ
> 1Z1nlE] _FIEE 2|2 g
2lzlElElEI0lE 121E]5 8 o |E|2
S8 RSB |EEIEIEIRISIZZ2S
2l @ | |C|alT|e|s|& =
515128 2|58 |g|&| 2| o3
SAHEENEREEEEE N
Threat Cause Mitigation =TT &= °
Strong password policy, Fail2Ban
Password guessing b integration, Increasing Hash Iterations,
brute mow.nmm &0y and possibly enforcing Keycloak two- X|X|{X[|3]3|3|3]|3
Impersonation of factor authentication with time-based one-
DevOps and Admins time pass.
S o Usage of X-Frame-Options and Content-
m_mwumwfwm on Keycloak Security-Policy by Keycloak to protect X[X|X[|3[3[2|3]|2
SN pag against clickjacking.
Access Token should be audience and
Access Token Redirect scope restricted, Keycloak has to validate | X [X |X | X[X|X |23 2|3 |1 [11|{M]|I
Leaking user audience and scope.
information (user Stolen access token b Enforce SSL on all connections, use trusted
name, email address, Man-in-the-Middle mw\ﬂmow server certificates, use secure networks if X[X|2|3[1[|3|1|10{M]|I
user organisation, user possible.
affiliation [staff, Cryptographically strong random value
student, ...]) Compromised / replayed | prevents guessing. Access codes cannot be xixlal1l1lal1lslLlt

keycloak access code

reused, preventing replay attacks. Also,
the lifetime of access codes is very short.

Figure 4.14: Threat List 2 of 3

146

4.6. Securing CYCLONE

€Jo g 3sr3eary], Gy 23]

Des. / Impl.

Hi/Me/Lo

6 € -191owrered
IlTlz|c|-|Xx|X 9)e)s paprwsuen) jsurede paypjewt PR @) P
1 dIe SATJ00D 9J¥)S YeoPAY pue ('Z ymneQ POPARN U0 PERE NS Sjealyy
Adeand pue £j1moas
€ 193owrered L jsanbaix 0} a1nsodxa Iy,
clelelel-|IXIXIX|X|X]|X| pueisenbaroy unpm 1 Mm[pordLmous ue aansopsIp jsanbay
I ur 3sanbai 30suu0) ruadQ jo uondAnuyg
“I9AISS UO UOTjepI[eA jsenbar 11y udis
cleleleltT|X]|X arnyeudrs padIojuy JUSIP Aq A | Jou Op SHULRIP uayMm “3°d asnqe I9AIdG
d[qeyerpndar-uou ypm 3urtudis 3sanbay] | ‘vonerpndai 3sanbai juar)
*JUSI[D UO UOTjepI[eA -asuodsaz oy Surudrs
cleleleltr|X]|X arnjeulrs paoiojuy ‘I9AISS Aq A9y jou £q “3'9 “‘uonerpndar asnge JuarD
a1qererpndar-uou yym Surudis asuodsay asuodsar 19a19G
“JUaI uonepIeA 1030311pay uadQ
ELTIE[E| | X[X|X[X]|X|X oea I0J ST 3991Ipal ogads mofre ATuQ TN IP2IIPSI ON] | S YeoAdY JO ISNSIA
(* “pasn ST UL YoTYyM
sysanbai yosuuo uad(jo uondAnu CTEETAIEEY 'PassaE S1 DIAISS
ElElE|E|CX XXX XX i E O I4edo yo uon d PauU0) (qruadQ 1xaure[J | yeym “3°3) uonewIour
QATJISUAS JO SUT[EaAY
alzlglelzlal<<| el ez uoneSnIA asne)) yeary],
S EEEE P EEE:
AP I R
AR EIE R =
AR m&.;wu.mle
2z &1 E(S (S€1Y8] |<
A a5] M A p= N

147

4. EvALuATION

Besides all the other threats, two can be seen as most important. The first is
a brute-force attack on administrators” passwords, allowing an attacker to gain
quite extensive control over the Federation Provider. The second threat is the
lack of correct JSON Web Token validation by cloud applications. This threat
was highlighted by McLean in his famous blog article [105] which revealed
critical vulnerabilities in many JWT libraries allowing attackers to bypass the
verification step. In order to better evaluate the security of popular libraries,
Auth0 provides jwt.io, a website containing an overview about the supported
JWT verification steps in different programming libraries and platforms.

4.6.3 Economic Benefits of the Security Architecture

This subsection discusses the economic benefits of the security architecture, con-
trasting them with the required upfront efforts. These efforts can be reduced by
preparing ready-to-deploy modules, practical demos, as well as comprehensive
documentation. However, not every user will realize all of the benefits as there
are a number of impacting factors, for example, how many relying applications
there are and how well the users are versed in the technologies.

Significantly Reduced Client Registration Efforts

Once the Federation Provider is initially set-up and registered in eduGAIN,
further applications are registered in minutes instead of weeks. Before intro-
ducing the Federation Provider, registering every cloud application instance
with eduGAIN was simply not feasible for a large number of applications: first,
the process itself is manual and can take days to complete. In fact, registering
the first Federation Provider instance took weeks, a duration deemed typical by
other project partners that have completed such an undertaking before. Second,
eduGAIN requires publishing every Service Provider’s metadata??. Adding
every cloud application instance would enlarge this document considerably,
raising memory and processing requirements for all eduGAIN participants. In
contrast, registration of new OpenID Connect clients at the Federation Provider
is a straightforward process: logging into the administrative interface and en-
tering the details of the new client. This OpenID Connect client registration
effort are further reduced by relying on the self-service registration capabilities
implemented by Berdonces-Bonelo [21].

Simplified Technology Stack

Using OpenID Connect libraries and handling JWTs proves far more easier
than using the Shibboleth SP and SAML; of course, after investing effort in
learning the technologies. This observation is based on experience as well as
the observations of the use case partners. Reasons include: the token format
is simpler, the documentation is more abundant and comprehensive, there is
a larger number of libraries available for a wider range of platforms, and the
protocols and data formats are less complex.

Easier Integration of Additional Identity Sources
After setting up the Federation Provider and integrating all relying applica-
tions through OpenID Connect, the extensive identity brokering available at the

22Currently 1206 SPs, see https:/ /technical.edugain.org/entities

148

https://technical.edugain.org/entities

4.6. Securing CYCLONE

Federation Provider saves the effort of integrating another identity source into
each application. For example, Keycloak supports LDAP, Google, Facebook,
Twitter, GitHub, LinkedIn, Microsoft, and Stack Overflow as identity sources.
The economic benefit of using the Federation Provider as a kind of authentica-
tion proxy are most extensive if there are a large number of applications in need
of this functionality, as it needs to be integrated just once into the Federation
Provider instead of every application.

Enhanced User Experience for both End-Users as well as Administrators

After the PAM module is installed and set-up, end users reuse their existing
identities instead of learning about SSH, or remembering yet another credential.
Furthermore, federated authorization management is very simple for admin-
istrators as they only need to modify a simple JSON file. Before CYCLONE,
Bioinformaticians were required to either learn how to manage SSH keys or
memorize yet another local account in order to access their VMs. Now, they can
just reuse their existing federated identities, thus reducing identity manage-
ment overheads and simplifying account management on the cloud provider’s
side. This effect is magnified when there are a large number of machines where
the end users have access to. Permitting access to a VM is also very simple: VM
owners just need to add the mail address of the other account to a certain file
on the VM.

Easier Debugging of Multi-cloud Applications

Debugging distributed applications becomes far more easier after setting up
the distributed logging and changing the configuration of relying applications.
Additionally, merging application- as well as infrastructure log messages eases
the debugging process considerably. As the logging middleware supports a
large number of input sources, integrating applications is oftentimes as easy
as changing some lines of a configuration file, for example, when using the
popular Log4j Java library.?

4.6.4 Limitations

Even with all of the benefits of the security architecture, there are still limitations
observed while implementing multi-cloud security. These are iterated in the
following subsections.

Using Federated Identities in Non-Browser Scenarios.

OpenlD Connect is best used in browser-based scenarios, for example, web
single sign-on. For command line usage, the OpenID Connect Direct Access
Grant was designed to query for a token directly, specifying the account name
and password in the request. However, implementing this would require sup-
port by the EduGAIN Identity Providers that is not existing yet. For SAML 2.0
there is the “Enhanced Client Profile” (ECP) which was designed for enabling
federated identities to be used on the command line, for example, for SSH
login. However, while Shibboleth supports SAML 2.0 ECP, none of the 1,446
Identity Providers in EQuGAIN support the “Reverse SOAP (PAOS) Binding”
(urn:oasis:names:tc:SAML:2.0:bindings:PAOS) required for ECP.

Zhttps:/ /www.elastic.co/ guide/en /logstash /current/plugins-inputs-log4j.html

149

https://www.elastic.co/guide/en/logstash/current/plugins-inputs-log4j.html

4. EvALuATION

Multi-cloud Account Management

SlipStream currently manages clouds on behalf of the users, persisting their
credentials for later use, such as instantiating applications on different clouds.
SlipStream could implement yet more management functions, for example,
updating credit card details and analysing cloud invoices. However, it would
be very challenging to implement this in a reliable and secure manner as no
public cloud exposes those functions via APIs.

Federated Access Delegation

Another limitation is highlighted by the use of the IFB Bioinformatics Cloud
self-service portal: as the resource quotas on the underlying IaaS solution
are enforced based on user accounts, all portal end-users need to have their
own account on the IFB cloud. This IaaS account is created on the fly by the
portal whenever the end-users initiate their first deployment using a random
username and password. However, the IaaS credentials are neither disclosed to
the end-users nor linked to their federated identity. Ideally, there would be an
auto-registration process at the IaaS cloud that end-users could use with their
federated identities to create accounts and delegate access to their accounts to
the portal. Complicating the scenario, SlipStream needs to be also integrated
in this workflow.

PAM Module Deployment Issues

The deployment in the CYCLONE testbed at CNRS LAL highlights some
of the issues that could possibly be observed in other clouds as well. First of
all, the firewall at the LAL cloud restricts TCP/UDP access to only two ports at
maximum. This required modification of the module to replace the random
allocation of ports for the internal web server with a configuration option to
specify a singular port that is always used. While not required by the use case,
this issue prevents login by multiple users concurrently.

The second issue is caused by the very low use of the underlying python_-
pam module by the Internet community. The module is included in the Ubuntu
and Debian Linux repositories, however it is not provided for CentOS which
is used at IFB. CentOS requires both a small source code patch as well as
further modification of certain configuration files, for example, the SSH daemon
configuration.

150

Chapter 5

Summary and Outlook

This thesis presents the analysis of real-world stakeholder requirements to pro-
vide a clear design rationale for the subsequent implementation of a number of
cloud components. Their thorough validation reveals considerable advantages
when they are used to tackle contemporary cloud challenges in production
settings. They are integrated well with contributions of other project partners,
providing the foundation for the two cloud ecosystems TRESOR and CYCLONE.
At last, the dissertation not only observes interworking contemporary technolo-
gies. It also provides readily instantiable software under an open source license
so that practitioners and researchers can directly benefit from their use and
examination.

This section first provides answers to the research questions and summarizes
key takeaways for cloud stakeholders and researchers. As a conclusion, it
summarizes current limitations and provides starting points for future work.

5.1 Answers to the Research Questions

The preceding thesis’ content contains detailed elucidations how the research
questions were addressed that were raised in the introduction. The following
paragraphs contain a summary of the thesis” answers to the research questions:

1. Using the proposed service registry architecture, cloud services can be
discovered, assessed, and selected easily while following a user-centric

philosophy.

Without relying on any previous approach, the thesis presents a novel ser-
vice registry architecture whose design centers around three essential features,
setting it apart from the related work: first, instead of proposing a generic
solution for a range of use cases, the registry architecture was built from scratch
to meet real-world requirements of concrete stakeholders in practical use cases,
leaving out features that were neither required nor essential for the target
environment.

151

5. SuMMARY AND OUTLOOK

Secondly, instead of relying on the technology with the highest sophistica-
tion or the largest feature set, the approach focuses on simplicity, adaptability,
and usability by the stakeholders. For example, the service descriptions in the
registry build upon a text-based “next generation” domain specific language
(SDL-NG) as well as structured vocabularies that capture the essential prop-
erties of service offerings most pertinent to the specific use case stakeholders.
The architecture does not rely on semantic technologies, such as ontology tools
and automated reasoners, as they are little-known to the stakeholders, who
additionally favor a more simple tooling.

At last, the service registry implementations are deployed to near-
production environments and are evaluated in practice by prospective users.
This evaluation provides feedback to optimize the developments. These three
aspects form a user-centric philosophy, which means that the business needs of
concrete users are set at the center of the work when designing, implementing,
and validating the architecture and its constituents.

2. Using TCTP, HTTP entity-bodies can be secured end-to-end in a depend-
able and well-performing manner, even through HTTP intermediaries.

This thesis introduces the novel TCTP protocol which provides an HTTP-
compatible wrapper around TLS to enable end-to-end security for HTTP entity-
bodies. As the HI'TP headers are unencrypted, HTTP intermediaries, such as
the distributed cloud proxy, can use their plaintext information for manage-
ment functions, such as routing, load balancing, and application-layer firewall
protection. The evaluation of the TCTP implementations shows beneficial
performance characteristics, as the underlying TLS libraries have been highly
optimized for efficiency. Furthermore, the design of TCTP addresses many
existing shortcomings in other approaches, for example, message-flow vulnera-
bilities and the prevention of HTTP streaming applications.

3. When cloud proxies are distributed between stakeholders and integrated
with other ecosystem components, they provide secure and compliant
cloud service consumption.

The concepts brought forward in this thesis envision cloud proxies that
are distributed between the users, ecosystem operators, and service providers.
They should be integrated with other cloud ecosystem components and also
leverage the capabilities of TCTP. Through the implementation of such a proxy
and its integration with TRESOR, this thesis demonstrates wholistic cloud
consumption management that is secure and compliant to security policies and
company regulations.

4. The multi-cloud security architecture supports application deployment,
management, and the utilization of federated identities.

This dissertation establishes an economical and comprehensive security
architecture that is readily instantiable, pertinent to concrete users’ require-
ments, and relying upon up-to-date protocols and software. The feasibility of
the architecture is highlighted by applying it within the CYCLONE ecosystem,
deploying federated Bioinformatics applications within a cloud production
environment. At last, special emphasis is put on the reduced management
efforts in order to highlight the economic benefit of the architecture.

152

5.2. Key Takeaways for Cloud Stakeholders and Researchers

5.2 Key Takeaways for Cloud Stakeholders and Researchers

As the guiding idea of this thesis is addressing significant cloud challenges,
there are key takeaways for the involved stakeholders as well as other re-
searchers:

Enhanced Cloud Service Description, Discovery, Assessment, and Selection

The thesis provides a set of interacting software components that should
help diverse cloud stakeholders in their quest for easy and usable cloud service
description, discovery, assessment, and selection.

First of all, the provided information systems, for example, the TRESOR
Service Broker and the Open Service Compendium, offer many helpful func-
tions to cloud service users for better service discovery, assessment, and selection.
Additionally, the customization of the TRESOR Service Broker allows cloud
ecosystem operators to globally coordinate the requirements of the ecosystem
users with the capabilities of the ecosystem services by offering a consistent
service description language and comprehensive brokering functions. As all
developments are provided as immediately usable open source components,
new service registries are rapidly instantiable.

Service providers can use the business vocabularies to streamline the public
descriptions of their services by focussing on the most important aspects for
service selection and thus provide highly appropriate information to potential
customers. Cloud researchers are able to contrast the practical knowledge gained
through this thesis with rather theoretical research considerations to better
understand how their work can be applied in practical settings. This should
improve the business pertinence of proposals related to the topics of this thesis.

Improved Cloud Communication Security

TCTP offers transparent end-to-end encryption for HTTP communication.
Within TRESOR, it has demonstrated considerably raising the security level of
cloud service consumption. Especially in highly sensitive areas, such as the
health sector, Cloud service users benefit greatly from an additional protection
layer for their data. Cloud ecosystem operators and cloud service providers can use
the heightened security to protect ecosystems and services against data leaks
and also raise the trustfulness of their offerings.

The transparent manner in which TCTP operates helps DevOps Engineers
to provide simpler solution architectures that rely on HTTP proxies encrypt-
ing transmissions instead of rather complex alternative technologies, such as
SOAP with XML Encryption & Signature. It would be quite helpful if cloud
security researchers would analyze the protocol to thoroughly model its security
characteristics and also reveal potentially hidden security flaws.

Reliable and Policy-compliant Cloud Consumption

Through its diverse modules, the distributed cloud proxy offers a wide
range of functionality to manage the consumption of cloud services in a reliable
and policy-compliant manner, benefiting all ecosystem stakeholders. Cloud
service users profit notably from the single sign-on module which simplifies
the authentication within cloud ecosystems, especially when consuming many

153

5. SuMMARY AND OUTLOOK

different services within a single login session. They also gain reliable policy en-
forcement through the XACML-based distributed authorization module, which
ensures service consumption that is compliant to their company regulations
and other legal frameworks.

Cloud ecosystem operators mostly benefit from the integration of the proxy
with their backend systems, possibly through custom modules. In TRESOR,
for example, the integration of the proxy with the service broker provided
coordination of service consumption with booking and billing workflows. Fur-
thermore, a combination of the remote logging module with a logging system
is useful for many stakeholders, for example, cloud service users obtain a com-
prehensive audit trail while DevOps engineers of operators and providers can
use the combined log output to better troubleshoot their services.

Having such a management proxy also supports diverse research endeav-
ours. For example, Zickau et al. show how the distributed cloud proxy is used
in TRESOR to enable location-based policies in [194].

Simplified and Secure Multi-cloud Application Deployment

The multi-cloud security architecture depicted in this dissertation simplifies
the required activities for the secure deployment of multi-cloud applications as
well as their management. In this, it materializes advantages for all involved
stakeholders.

First of all, the management of accounts and credentials of cloud service
users and DevOps engineers is eased, as the CYCLONE Federation Provider and
the PAM module allow using a sole identity for many different purposes, for
example, logging into websites or administering systems through SSH. Provi-
sioning and deprovisioning workflows at cloud ecosystem operators also condense
considerably with each saved account - even more so when new customers
reuse existing company accounts for their ecosystem access, as demonstrated
in TRESOR. A reduced number of provided accounts furthermore reduces
support overheads at cloud service providers.

By following the application deployment procedure that is implemented by
Nuv.la, many tasks of DevOps engineers are supported well, for example, scaling
applications over multiple clouds. This potentially increases the resiliency and
lowers the latency of cloud services, thus increasing their perceived quality of
experience for potential customers.

The usefulness of capabilities for unified logging of distributed applications
has already been observed in TRESOR. It is further amplified through the
multi-cloud security architecture, especially when considering large topologies
that span multiple clouds. There, service providers benefit from the reduced
efforts for managing and troubleshooting cloud services.

At last, researchers also profit from taking up the architecture. The bioin-
formatics use case of CYCLONE exhibits advantages when relying on the
architecture, for example, the simplified collaboration between researchers and
the improved utilization of research infrastructures.

5.3 Limitations

The work presented in this thesis is mainly limited by the conditions, resources,
and stakeholders of the research projects that served as its application area. For

154

5.4. Future Work

example, the cloud service registry architecture has proven quite successful to
implement the requirements of TRESOR and the other use cases. However, all
of them are still quite limited in depth, as typical for research projects. Realizing
the far-reaching vision of the Open Service Compendium requires much more
time and effort than available at the moment. Limited resources and changed
circumstances were also the reason for the lack of progress on the CYCLONE
Iaa$ registry which could not be realized within the duration of CYCLONE.

While benchmarks for the TRESOR proxy and TCTP are quite good, produc-
tion environments not only require high performance, but also mature software
with possibly larger functional scope. As the YAGNI principle was followed
while implementing the components, functionality is missing that was not
required in the current use cases. This includes, for example, OpenlD Connect
integration of the distributed cloud proxy or the implementation of TCTP as a
JavaScript library to be run in the web browser. However, as there is currently
no project supporting the extension and maintenance of the components, po-
tentially required functions for a practical use can only be implemented by the
future users of the software.

It is obvious that the design constraints of a software dictate its eventual
capabilities. Thus, each potential future use case needs to separately evaluate if
it shares similar constraints than those used in the design of each component.
Therefore, potential benefits of using the created components can only be
realized in scenarios where the stakeholder requirements are similar to those
recognized by TRESOR and CYCLONE.

5.4 Future Work

Three main areas provide ample opportunity to perpetuate the work of this
thesis:

General Data Protection Regulation (GDPR)

May 2018 marks the beginning of new EU-wide regulations regarding data
protection. Key changes are increased territorial scope, far higher penalties,
and the requirement for clear and always withdrawable consent.! The results
of this thesis can help adhering to these regulations. For example, the end-to-
end security provided by TCTP contributes towards “privacy by design”, a
requirement of the GDPR. The XACML policies that are enforced by the cloud
proxy allow querying external information systems when consuming services.
One of such Policy Information Points (PIPs) could persist the users’ consent or
opposition for processing of their personal data for specific purposes. Such a
GDPR PIP would prevent any personal data processing in a cloud ecosystem
that is not in accordance with the declared intention of the affected users. At
last, some GDPR-related demands have already been implemented in the multi-
cloud security architecture, for example, removing personal data after the end
of the login session. Nevertheless, a more detailed analysis of the impacts of
the GDPR on the deployment of the thesis” developments constitutes future
work.

Thttps:/ /www.eugdpr.org /key-changes.html

155

5. SuMMARY AND OUTLOOK

Decentralization: Fog / Edge Computing, Distributed Ledger (Blockchain)

Besides centralized cloud computing, there is an ongoing drive towards
decentralized architectures. The concept of Fog / Edge Computing, for exam-
ple, seeks to move computing to the edges of the network, forming a highly
distributed and resilient computing platform. One example is the Cloudy
community cloud distribution, presented in [13], which is used within the
guifi.net community network, providing computing resources at the network
edge. In fact, a potentially beneficial deployment of the user-centric cloud
service registry has already been discussed with one of the co-authors of the
article. Additionally, distributing the proxy at the network edges could form an
extra management layer that would unify certain functions, for example, edge
services login, monitoring, and logging.

Peer-to-peer distributed ledger technologies, such as the Blockchain pow-
ering Bitcoin, prove to be quite disruptive for computing in general. It would
be quite useful to transfer the benefits that have been achieved for multi-cloud
application deployment to the area of peer-to-peer application deployment and
management. Also, user-centric Blockchain registries would be able to cap-
ture the specific characteristics of each chain and help distributed application
developers to make the right technology choice.

Intercloud Computing

The cloud computing paradigm is continually evolving towards the Inter-
cloud, which is envisioned to be an interconnected “cloud of clouds”. This
evolution commences new research addressing the challenges in Intercloud
scenarios. As a starting point, together with Demchenko et al., [41] extends the
multi-cloud security architecture to form an “Intercloud Security Framework”.

The other challenges also require extended solutions. For example, Inter-
cloud service brokers could be even more utilized than cloud brokers as the
targeted challenge is amplified as, for example, discovering services in the Inter-
cloud could pose far more difficult. Intercloud communication topologies are
potentially also far more complex, highlighting the need for secure end-to-end
communication, possibly provided by an “Trusted Intercloud Communication
Protocol” (TICP). At last, addressing the challenges related to the management
of Intercloud service consumption and the secure deployment of Intercloud
applications constitutes a consequential continuation of the activities of this
thesis.

156

Chapter 6

Bibliography

(1]

Assad Abbas and Samee U Khan. “A review on the state-of-the-art
privacy-preserving approaches in the e-health clouds”. In: IEEE Journal
of Biomedical and Health Informatics 18.4 (2014), pp. 1431-1441.

Mathieu Acher et al. “FAMILIAR: A domain-specific language for large
scale management of feature models”. In: Special section: The Program-
ming Languages track at the 26th ACM Symposium on Applied Computing
(SAC 2011) & Special section on Agent-oriented Design Methods and Pro-
gramming Techniques for Distributed Computing in Dynamic and Complex
Environments 78.6 (2013), pp. 657—681. 1ssn: 0167-6423. por: 10.1016 /.
scico.2012.12.004.

R. Akkiraju et al. Web Service Semantics - WSDL-S: W3C Member Submis-
sion. 2005. URL: http:/ /www.w3.org/Submission/WSDL-S.

R. Akolkar et al. “The Future of Service Marketplaces in the Cloud”.
In: 2012 IEEE 8th World Congress on Services. 2012, pp. 262-269. por:
10.1109/SERVICES.2012.59.

Luna Alrawas. “Simple Cloud Service Selection in the Open Service
Compendium Based on Dynamic Questionnaires and Property Statis-
tics”. Bachelor thesis. Berlin: Technische Universitiat Berlin, 2016. URL:
http:/ /www.snet.tu-berlin.de / fileadmin / fg220 / theses / archive /
Alrawas_2016_-_Simple_Cloud_Service_Selection.pdf.

Jorn Altmann and Mohammad Mahdi Kashef. “Cost model based ser-
vice placement in federated hybrid clouds”. In: Future Generation Com-
puter Systems 41 (2014), pp. 79-90. 1ssn: 0167-739X.

Amazon Web Services, Inc. Elastic Load Balancing: Cloud-Load Balancer.
2016. urL: http:/ /aws.amazon.com/elasticloadbalancing/ (visited on
11/15/2016).

Apache Software Foundation. Apache JMeter. 2016. urL: http:/ /jmeter.
apache.org/ (visited on 11,/10/2016).

157

https://doi.org/10.1016/j.scico.2012.12.004
https://doi.org/10.1016/j.scico.2012.12.004
http://www.w3.org/Submission/WSDL-S
https://doi.org/10.1109/SERVICES.2012.59
http://www.snet.tu-berlin.de/fileadmin/fg220/theses/archive/Alrawas_2016_-_Simple_Cloud_Service_Selection.pdf
http://www.snet.tu-berlin.de/fileadmin/fg220/theses/archive/Alrawas_2016_-_Simple_Cloud_Service_Selection.pdf
http://aws.amazon.com/elasticloadbalancing/
http://jmeter.apache.org/
http://jmeter.apache.org/

6. BIBLIOGRAPHY

[9]

(10]

(11]

(12]

(13]

(14]

[15]

[16]

(17]

(18]

(19]

(20]

(21]

(22]

158

Michael Armbrust et al. “A view of cloud computing”. In: Commun. ACM
53.4 (2010), pp. 50-58. 1ssn: 0001-0782. por: 10.1145/1721654.1721672.

J. Aznar et al. “CNSMO: A Network Services Manager/Orchestrator tool
for cloud federated environments”. In: 2016 Mediterranean Ad Hoc Net-
working Workshop (Med-Hoc-Net). 2016, pp. 1-5. por: 10.1109/MedHocNet.
2016.7528422.

J. Aznar et al. Specification of network management and service abstraction.
CYCLONE Deliverable D5.2. 2016. urL: http: / / www.cyclone-project.
eu/ assets / images / deliverables / Specification % 200f % 20network %
20management % 20and % 20service % 20abstraction . pdf (visited on
01/06/2017).

R. Baig et al. “Cloud-based community services in community net-
works”. In: International Conference on Computing, Networking and Commu-
nications (ICNC 2016). 2016, pp. 1-5. por: 10.1109/ICCNC.2016.7440621.

Roger Baig, Felix Freitag, and Leandro Navarro. “Cloudy in guifi.net:
Establishing and sustaining a community cloud as open commons”. In:
Future Generation Computer Systems (2018). 1ssnx: 0167-739X. por: 10.1016/
j-future.2017.12.017.

Mark Bartel et al. XML-Signature Syntax and Processing. 2001. urr: http:
/ /www.w3.org/TR/2001/PR-xmldsig-core-20010820/ .

Steve Battle et al. Semantic Web Services Framework (SWSF). 2005. URL:
http:/ /www.w3.org/Submission/SWSF/ .

Kent Beck. Extreme programming explained: embrace change. Addison-
Wesley Longman Publishing Co., Inc, 1999. 1sBN: 0-201-61641-6.

Alexander Becker. “Linked and Semantically Enriched Crowdsourced
Cloud Computing Location Data”. Bachelor thesis. Berlin: Technische
Universitét Berlin, 2015. urt: http:/ /www.snet.tu-berlin.de/fileadmin/
£g220 / theses / archive / Becker _2015_-_Linked _and_Semantically _
Enriched_Crowdsourced.pdf.

Mihir Bellare, Ran Canetti, and Hugo Krawczyk. “Keying Hash Func-
tions for Message Authentication”. In: Advances in Cryptology CRYPTO
'96. Ed. by Neal Koblitz. Vol. 1109. Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 1996, pp. 1-15. 1sBn: 978-3-540-61512-5. por:
10.1007 /3-540-68697-5_1.

E. Berdonces Bonelo. xpra-electron-client. 2017. urc: https:/ /github.com/
cyclone-project/xpra-electron-client (visited on 01,/11/2017).

E. Berdonces Bonelo and B. Brancotte. pam_openid_connect module. 2017.
urL: https:/ /github.com/cyclone-project/ cyclone-python-pam (visited
on 01/11/2017).

Erik Berdonces-Bonelo. “OpenlD Connect Client Registration API for
Federated Cloud Platforms”. Master thesis. Berlin: Technische Univer-
sitdt Berlin, 2016.

Sonia Bergamaschi et al. “Combining user and database perspective
for solving keyword queries over relational databases”. In: Inf. Syst. 55
(2016), pp. 1-19.

https://doi.org/10.1145/1721654.1721672
https://doi.org/10.1109/MedHocNet.2016.7528422
https://doi.org/10.1109/MedHocNet.2016.7528422
http://www.cyclone-project.eu/assets/images/deliverables/Specification%20of%20network%20management%20and%20service%20abstraction.pdf
http://www.cyclone-project.eu/assets/images/deliverables/Specification%20of%20network%20management%20and%20service%20abstraction.pdf
http://www.cyclone-project.eu/assets/images/deliverables/Specification%20of%20network%20management%20and%20service%20abstraction.pdf
https://doi.org/10.1109/ICCNC.2016.7440621
https://doi.org/10.1016/j.future.2017.12.017
https://doi.org/10.1016/j.future.2017.12.017
http://www.w3.org/TR/2001/PR-xmldsig-core-20010820/
http://www.w3.org/TR/2001/PR-xmldsig-core-20010820/
http://www.w3.org/Submission/SWSF/
http://www.snet.tu-berlin.de/fileadmin/fg220/theses/archive/Becker_2015_-_Linked_and_Semantically_Enriched_Crowdsourced.pdf
http://www.snet.tu-berlin.de/fileadmin/fg220/theses/archive/Becker_2015_-_Linked_and_Semantically_Enriched_Crowdsourced.pdf
http://www.snet.tu-berlin.de/fileadmin/fg220/theses/archive/Becker_2015_-_Linked_and_Semantically_Enriched_Crowdsourced.pdf
https://doi.org/10.1007/3-540-68697-5_1
https://github.com/cyclone-project/xpra-electron-client
https://github.com/cyclone-project/xpra-electron-client
https://github.com/cyclone-project/cyclone-python-pam

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

Tim Berners-Lee. Linked Data - Design Issues. 2006. urL: http:/ /www.w3.
org/Designlssues/LinkedData.html.

Tim Berners-Lee. W3 future directions. 1994. urL: https:/ /www.w3.org/
Talks/WWW94Tim/.

David Bernstein et al. “Blueprint for the Intercloud - Protocols and
Formats for Cloud Computing Interoperability”. In: 2009 Fourth Interna-
tional Conference on Internet and Web Applications and Services (ICIW 2009).
Ed. by Institute of Electrical and Electronics Engineers. 2009, pp. 328-336.
1sBN: 9781424438518. por: 10.1109/ICIW.2009.55.

BITKOM. Cloud Computing - Evolution in der Technik, Revolution im Busi-
ness. BITKOM-Leitfaden. 2009. urL: http:/ / www.bitkom.org / files /
documents/BITKOM- Leitfaden-CloudComputing_Web.pdf.

S. Blank. Perfection By Subtraction — The Minimum Feature Set. 2010. URL:
https:/ /steveblank.com/2010/03/04/ perfection-by-subtraction-the-
minimum-feature-set (visited on 01/10/2017).

Charles Branchat Roberta dn Loomis et al. CYCLONE Deliverable D4.3:
CYCLONE Secure Action and Resource Models. Ed. by CYCLONE Project.
2016. urc: http:/ /www.cyclone-project.eu/deliverables.html.

I. Brandic et al. “Compliant Cloud Computing (C3): Architecture
and Language Support for User-Driven Compliance Management in
Clouds”. In: Cloud Computing (CLOUD), 2010 IEEE 3rd International
Conference on. 2010, pp. 244-251. por: 10.1109/CLOUD.2010.42.

Ivan Breskovic, Jérn Altmann, and Ivona Brandic. “Creating standard-
ized products for electronic markets”. In: Future Generation Computer
Systems 29.4 (2013), pp. 1000-1011. 1ssn: 0167-739X. por: 10.1016/j.future.
2012.06.007.

Wolfgang Brocker and Joseph Walenta. Experteninterview zum Thema
"Motivation Cloud Computing im Gesundheitswesen: Krankenhausperspek-
tive” mit Wolfgang Brdcker (Paulinenkrankenhaus Berlin, Leiter EDV) und
Joseph Walenta (Deutsches Herzzentrum Berlin, IT-Projektleiter). Apr. 2012.
urL: http:/ /www.cloud-tresor.de/2012/05/14 /experteninterview.

Liliana Cabral et al. “IRS-III: A Broker for Semantic Web Services Based
Applications”. In: The semantic Web. Ed. by Isabel Cruz. Vol. 4273. Lecture
Notes in Computer Science. Berlin: Springer, 2006, pp. 201-214. 1sBN:
978-3-540-49055-5. por: 10.1007/11926078_15.

Carnegie Mellon University. CSMIC: Cloud Service Measurement Initiative
Consortium. 2012. urL: http:/ /csmic.org/.

Daniele Catteddu and Giles Hogben. Cloud Computing Benefits, risks and
recommendations for information security. ENISA Europeam Network and
Information Security Agency, 2009. urL: http://www.enisa.europa.eu/.

Lingfeng Chen and D. B. Hoang. “Novel Data Protection Model in
Healthcare Cloud”. In: High Performance Computing and Communications
(HPCC), 2011 IEEE 13th International Conference on. 2011, pp. 550-555.
por: 10.1109/HPCC.2011.148.

159

http://www.w3.org/DesignIssues/LinkedData.html
http://www.w3.org/DesignIssues/LinkedData.html
https://www.w3.org/Talks/WWW94Tim/
https://www.w3.org/Talks/WWW94Tim/
https://doi.org/10.1109/ICIW.2009.55
http://www.bitkom.org/files/documents/BITKOM-Leitfaden-CloudComputing_Web.pdf
http://www.bitkom.org/files/documents/BITKOM-Leitfaden-CloudComputing_Web.pdf
https://steveblank.com/2010/03/04/perfection-by-subtraction-the-minimum-feature-set
https://steveblank.com/2010/03/04/perfection-by-subtraction-the-minimum-feature-set
http://www.cyclone-project.eu/deliverables.html
https://doi.org/10.1109/CLOUD.2010.42
https://doi.org/10.1016/j.future.2012.06.007
https://doi.org/10.1016/j.future.2012.06.007
http://www.cloud-tresor.de/2012/05/14/experteninterview
https://doi.org/10.1007/11926078_15
http://csmic.org/
http://www.enisa.europa.eu/
https://doi.org/10.1109/HPCC.2011.148

6. BIBLIOGRAPHY

(36]

(37]

(38]

(39]

[40]

[41]

[42]

(43]

(44]

[45]

[46]

[47]

(48]

160

Tzer-Shyong Chen et al. “Secure Dynamic Access Control Scheme of
PHR in Cloud Computing”. In: Journal of Medical Systems 36.6 (2012),
pp. 4005-4020.

SUPER Consortium. SUPER: Semantics Utilised for Process management
within and between EnterPrises. 2009. urt: http: / / cordis.europa.eu/
project/rcn/105285_en.html.

TRESOR project consortium. TRESOR - Sichere Cloud-Infrastruktur fiir
das Gesundheitswesen. Presentation at the closing event of the Trusted
Cloud Programme. 2015. ure: http:/ /www.aktionsprogramm-cloud-
computing.de/media/content/02-16-Frank.pdf.

Y. Demchenko et al. “Federated Access Control in Heterogeneous In-
tercloud Environment: Basic Models and Architecture Patterns”. In:
Proceedings of IC2E 2014. 2014.

Y. Demchenko et al. “Intercloud Architecture Framework for Heteroge-
neous Cloud Based Infrastructure Services Provisioning On-Demand”.
In: 2013 27th International Conference on Advanced Information Networking
and Applications Workshops. 2013, pp. 777-784. por: 10.1109 / WAINA.
2013.237.

Yuri Demchenko et al. “Defining Intercloud Security Framework and
Architecture Components for Multi-Cloud Data Intensive Applications”.
In: 2017 6th Intercloud 2017 Workshop as part of CCGrid 2017. 2017.

T. Dierks and E. Rescorla. The Transport Layer Security (TLS) Protocol
Version 1.2. REC 5246 (Proposed Standard). Updated by RFCs 5746, 5878,
6176, 7465, 7507, 7568, 7627, 7685, 7905, 7919. Internet Engineering Task
Force, Aug. 2008. urL: http:/ /www.ietf.org/rfc/rfc5246.txt.

Derek Du Preez. A CIO’s worst nightmare: When your cloud provider goes
bankrupt. 2015. urc: http:/ /diginomica.com/2015/01/06/ cios-worst-
nightmare-cloud-provider-goes-bankrupt/.

Nicole Dulfft. Reality Check Cloud Computing 2012: Wirklichkeit oder
Wolkenkuckucksheim? 2012. urc: http:/ /www.cloud-practice.de/sites/
default/files/downloads/live/07_1000_dufft_pac.pdf.

Electronic Frontier Foundation. HTTPS Everywhere. 2013. urL: https:
/ /www.eff.org /https-everywhere.

Daniel Elenius et al. “The OWL-S Editor: A Development Tool for Se-
mantic Web Services”. In: Proceedings of the Second Semantic Web Confer-
ence, ESWC 2005. Ed. by Asuncién Gémez-Pérez and Jérome Euzenat.
Vol. 3532. Lecture Notes in Computer Science. Heidelberg: Springer,
2005, pp. 78-92. 1sBN: 3-540-26124-9. urL: http:/ / www.csl.sri.com /
papers/owlseditor-eswc05/.

Amna Eleyan and Liping Zhao. “Service Selection Using Quality Match-
making”. In: International Conference on Communications and Information
Technology (ICCIT), 2011. IEEE. 2011, pp. 107-115.

Eric Evans. Domain-Driven Design: Tackling Complexity in the Heart of
Software. Addison-Wesley, 2003. 1sen: 978-0-321-12521-7.

http://cordis.europa.eu/project/rcn/105285_en.html
http://cordis.europa.eu/project/rcn/105285_en.html
http://www.aktionsprogramm-cloud-computing.de/media/content/02-16-Frank.pdf
http://www.aktionsprogramm-cloud-computing.de/media/content/02-16-Frank.pdf
https://doi.org/10.1109/WAINA.2013.237
https://doi.org/10.1109/WAINA.2013.237
http://www.ietf.org/rfc/rfc5246.txt
http://diginomica.com/2015/01/06/cios-worst-nightmare-cloud-provider-goes-bankrupt/
http://diginomica.com/2015/01/06/cios-worst-nightmare-cloud-provider-goes-bankrupt/
http://www.cloud-practice.de/sites/default/files/downloads/live/07_1000_dufft_pac.pdf
http://www.cloud-practice.de/sites/default/files/downloads/live/07_1000_dufft_pac.pdf
https://www.eff.org/https-everywhere
https://www.eff.org/https-everywhere
http://www.csl.sri.com/papers/owlseditor-eswc05/
http://www.csl.sri.com/papers/owlseditor-eswc05/

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]
[59]

[60]

[61]

[62]

[63]

[64]

Joel Farrell and Holger Lausen. Semantic Annotations for WSDL and XML
Schema: W3C Recommendation. 2007. urr: https:/ /www.w3.org/TR/
2007 /REC-sawsdl-20070828.

Jacob Feldman. JSR 331: Constraint Programming API, Version: 1.0.0. 2012.
urL: https:/ /jcp.org/en/jsr/detail?id=331.

Dieter Fensel et al. Semantic Web Services. Heidelberg and New York:
Springer, 2011. 1sBN: 3642191932.

R. Fielding and J. Reschke. Hypertext Transfer Protocol (HTTP/1.1): Message
Syntax and Routing. RFC 7230 (Proposed Standard). Internet Engineering
Task Force, June 2014. urt: http:/ /www.ietf.org/rfc/rfc7230.txt.

R. Fielding and J. Reschke. Hypertext Transfer Protocol (HTTP/1.1): Seman-
tics and Content. RFC 7231 (Proposed Standard). Internet Engineering
Task Force, June 2014. urL: http:/ /www.ietf.org /rfc/rfc7231.txt.

Roy Thomas Fielding. “Architectural Styles and the Design of Network-
based Software Architectures”. Dissertation. Irvine, California: Univer-
sity of California, 2000. urt: http:/ /www.ics.uci.edu/ %7Efielding /
pubs/dissertation/top.htm (visited on 11/09/2016).

FIWARE. Apps and Services Ecosystem goes Open Source. 2012. urL: https:
/ /www.fiware.org/2012/11/23/apps-and-services-ecosystem-goes-
open-source/ (visited on 03/09/2016).

Paul Ford. A Response to Clay Shirky’s “The Semantic Web, Syllogism,
and Worldview” (Ftrain.com). 2003. urL: http: / / www . ftrain. com /
ContraShirky.html (visited on 08/19/2014).

fortiss GmbH. CloudServiceCheck. 2014. urv: http:/ /www.value4cloud.
de/de/cloudservicecheck.

fortiss GmbH. Value4Cloud. 2014. urt: http:/ /www.valuedcloud.de.

Martin Fowler. Domain-Specific Languages. Addison-Wesley, 2011. 1sBN:
0-321-71294-3.

Stephan Fowler. HTTPsec: Public key authentication for HTTP. 2006. URL:
https:/ /web.archive.org/web/20100926084623 /http:/ /www.httpsec.
org/ (visited on 11/15/2016).

A. Freier, P. Karlton, and P. Kocher. The Secure Sockets Layer (SSL) Protocol
Version 3.0. RFC 6101 (Historic). Internet Engineering Task Force, Aug.
2011. urc: http:/ /www.ietf.org/rfc/rfc6101.txt.

GEANT. eduGAIN. 2017. urt: http:/ /www.geant.org /Services / Trust_
identity_and_security/eduGAIN (visited on 01/11/2017).

Martin Georgiev et al. “The most dangerous code in the world: validating
SSL certificates in non-browser software”. In: Proceedings of the 2012 ACM
conference on Computer and communications security. CCS "12. New York,
NY, USA: ACM, 2012, pp. 38—49. 1sN: 978-1-4503-1651-4. por: 10.1145/
2382196.2382204.

German Federal Ministry of Justice. StGB § 203: Verletzung von Privatge-
heimnissen. 2013. urL: http:/ /www.gesetze-im-internet.de/stgb/__203.
html.

161

https://www.w3.org/TR/2007/REC-sawsdl-20070828
https://www.w3.org/TR/2007/REC-sawsdl-20070828
https://jcp.org/en/jsr/detail?id=331
http://www.ietf.org/rfc/rfc7230.txt
http://www.ietf.org/rfc/rfc7231.txt
http://www.ics.uci.edu/%7Efielding/pubs/dissertation/top.htm
http://www.ics.uci.edu/%7Efielding/pubs/dissertation/top.htm
https://www.fiware.org/2012/11/23/apps-and-services-ecosystem-goes-open-source/
https://www.fiware.org/2012/11/23/apps-and-services-ecosystem-goes-open-source/
https://www.fiware.org/2012/11/23/apps-and-services-ecosystem-goes-open-source/
http://www.ftrain.com/ContraShirky.html
http://www.ftrain.com/ContraShirky.html
http://www.value4cloud.de/de/cloudservicecheck
http://www.value4cloud.de/de/cloudservicecheck
http://www.value4cloud.de
https://web.archive.org/web/20100926084623/http://www.httpsec.org/
https://web.archive.org/web/20100926084623/http://www.httpsec.org/
http://www.ietf.org/rfc/rfc6101.txt
http://www.geant.org/Services/Trust_identity_and_security/eduGAIN
http://www.geant.org/Services/Trust_identity_and_security/eduGAIN
https://doi.org/10.1145/2382196.2382204
https://doi.org/10.1145/2382196.2382204
http://www.gesetze-im-internet.de/stgb/__203.html
http://www.gesetze-im-internet.de/stgb/__203.html

6. BIBLIOGRAPHY

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

(73]

(74]

[75]

[76]

[77]

(78]

[79]

162

GitHub. Electron - Build cross platform desktop apps with JavaScript, HTML,
and CSS. 2018. urc: http:/ /electron.atom.io/ (visited on 01/18/2017).

D. Gmach, J. Rolia, and L. Cherkasova. “Comparing efficiency and costs
of cloud computing models”. In: Network Operations and Management
Symposium (NOMS), 2012 IEEE. 2012, pp. 647-650. por: 10.1109/NOMS.
2012.6211977.

Reyes Gonzalez, Jose Gasco, and Juan Llopis. “Information Systems
Outsourcing Reasons and Risks: An Empirical Study”. In: Industrial
Management and Data Systems 110.2 (2009), pp. 284-303.

Google. Google Apps Marketplace. 2014. urL: https:/ /www.google.com/
enterprise/marketplace/home/apps/?pli=1 (visited on 06/10/2014).

T. Graf, S. Zickau, and A. Kiipper. “Enabling Location-based Services
on Stationary Devices using Smartphone Capabilities”. In: Mobile Web
Information Systems. Vol. 8093. Lecture Notes in Computer Science. Pa-
phos, Cyprus: Springer, Aug. 2013, pp. 49-63. por: 10.1007 /978-3-642-
40276-0_5.

Martin Gudgin et al. SOAP Version 1.2 Part 1: Messaging Framework. 2007.
URrL: http:/ /www.w3.org/TR/soapl2-partl (visited on 11/15/2016).

D. Hardt. The OAuth 2.0 Authorization Framework. Internet Engineering
Task Force. Oct. 2012. urL: http:/ /www.ietf.org/rfc/rfc6749.txt.

Martin Hepp. GoodRelations Language Reference. 2011. urw: http:/ /www.
heppnetz.de/ontologies/goodrelations/v1.html#references.

Martin Hepp. “GoodRelations: An Ontology for Describing Products
and Services Offers on the Web”. In: Knowledge engineering: practice and
patterns. Ed. by Aldo Gangemi and Jérome Euzenat. Vol. 5268. Lecture
notes in computer science Lecture notes in artificial intelligence. Berlin:
Springer, 2008, pp. 329-346. 1sBN: 978-3-540-87696-0. por: 10.1007 /978-3-
540-87696-0_29.

Martin Hepp and Roman Dumitru. “An Ontology Framework for Seman-
tic Business Process Management”. In: Wirtschaftsinformatik Proceedings
2007. ais, 2007, Paper 27. urt: http:/ /aisel.aisnet.org/wi2007/27/.

Alan R. Hevner et al. “Design science in information systems research”.
In: MIS quarterly 28.1 (2004), pp. 75-105.

Giles Hogben and Alain Pannetrat. “Mutant Apples: A Critical Exami-
nation of Cloud SLA Availability Definitions”. In: 5th International Con-
ference on Cloud Computing Technology and Science (CloudCom). Ed. by
IEEE. Vol. 1. IEEE, 2013, pp. 379-386. 1sBN: 9781479915484 por: 10.1109/
CloudCom.2013.56.

IBM. Watson. 2014. urL: http:/ /www.ibm.com /smarterplanet/us/en/
ibmwatson.

IBM Research. The DeepQA Research Team. 2013. urL: http: / / www.
research.ibm.com/deepqa.

Takeshi Imamura, Blair Dillaway, and Ed Simon. XML Encryption Syntax
and Processing. 2002.

http://electron.atom.io/
https://doi.org/10.1109/NOMS.2012.6211977
https://doi.org/10.1109/NOMS.2012.6211977
https://www.google.com/enterprise/marketplace/home/apps/?pli=1
https://www.google.com/enterprise/marketplace/home/apps/?pli=1
https://doi.org/10.1007/978-3-642-40276-0_5
https://doi.org/10.1007/978-3-642-40276-0_5
http://www.w3.org/TR/soap12-part1
http://www.ietf.org/rfc/rfc6749.txt
http://www.heppnetz.de/ontologies/goodrelations/v1.html#references
http://www.heppnetz.de/ontologies/goodrelations/v1.html#references
https://doi.org/10.1007/978-3-540-87696-0_29
https://doi.org/10.1007/978-3-540-87696-0_29
http://aisel.aisnet.org/wi2007/27/
https://doi.org/10.1109/CloudCom.2013.56
https://doi.org/10.1109/CloudCom.2013.56
http://www.ibm.com/smarterplanet/us/en/ibmwatson
http://www.ibm.com/smarterplanet/us/en/ibmwatson
http://www.research.ibm.com/deepqa
http://www.research.ibm.com/deepqa

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]
[91]

[92]

[93]

Bala Iyer and John C. Henderson. “Preparing for the future: Under-
standing the seven capabilities of Cloud Computing”. In: MIS Quarterly
Executive 9.2 (2010).

jboss.org. RESTEasy: Distributed peace of mind. 2016. urL: http:/ /resteasy.
jboss.org (visited on 11,/25/2016).

Lim Yuan Jie, Rajaraman Kanagasabai, et al. “Dynamic Discovery of
Complex Constraint-Based Semantic Web Services”. In: Fifth IEEE In-
ternational Conference on Semantic Computing (ICSC), 2011. IEEE. 2011,
pp. 51-58.

M. Jones, J. Bradley, and N. Sakimura. [SON Web Token (JWT). Updated
by RFC 7797. Internet Engineering Task Force. May 2015. urL: http:
/ /www.ietf.org/rfc/rfc7519.txt.

Kyo C. Kang et al. Feature-Oriented Domain Analysis (FODA): Technical
Report. Ed. by Software Engineering Institute. Pittsburgh, Pennsylvania,
USA, 1990.

Mohammad Mahdi Kashef and Jérn Altmann. “A Cost Model for Hybrid
Clouds”. In: Economics of Grids, Clouds, Systems, and Services. Ed. by Kurt
Vanmechelen, Jorn Altmann, and Omer F. Rana. Vol. 7150. Lecture Notes
in Computer Science. Springer Berlin Heidelberg, 2011, pp. 46—60. 1sBN:
978-3-642-28674-2.

Friederike Klan. “Effective Decision Support for Semantic Web Service
Selection”. PhD thesis. Jena: Friedrich-Schiller-Universitat, 2012.

Fabian Knaack. “Towards an Open Service Compendium: Evaluation
and Extension of Brokering Technologies”. Bachelor Thesis. Berlin: Tech-
nische Universitdt Berlin, 2015. urc: http:/ / www.snet.tu-berlin.de /
fileadmin / fg220 / theses / archive / Knaack _2015_-_Towards_an _
Open_Service_Compendium.pdf.

Bastian Koller and Lutz Schubert. “Towards autonomous SLA manage-
ment using a proxy-like approach”. In: Multiagent Grid Syst 3.3 (2007),
pp- 313-325. 1ssn: 1574-1702.

Koordinierungsstelle fiir IT-Standards. OSCI: Startseite. 2013. urL: http:
/ /www.osci.de (visited on 11/15/2016).

KPMG and BITKOM. Cloud Monitor 2012. Mar. 2012.

Kyriakos Kritikos and Dimitris Plexousakis. “Mixed-Integer Program-
ming for QoS-Based Web Service Matchmaking”. In: IEEE Trans. Serv.
Comput. 2.2 (Apr. 2009), pp. 122-139. 1ssn: 1939-1374. por: 10.1109/TSC.
2009.10.

Mary Lacity and Peter Reynolds. “Cloud Services Practices for Small
and Medium-sized Enterprises”. In: MIS Quarterly Executive. Vol. 13:1.
Minneapolis: Management Information Systems Research Center, 2014,
pp. 31-44.

Thomas Lacroix1 et al. “Insyght: navigating amongst abundant homo-
logues, syntenies and gene functional annotations in bacteria, it’s that
symbol!” In: Nucleic Acids Research (2014). por: 10.1093 /nar/gku867.

163

http://resteasy.jboss.org
http://resteasy.jboss.org
http://www.ietf.org/rfc/rfc7519.txt
http://www.ietf.org/rfc/rfc7519.txt
http://www.snet.tu-berlin.de/fileadmin/fg220/theses/archive/Knaack_2015_-_Towards_an_Open_Service_Compendium.pdf
http://www.snet.tu-berlin.de/fileadmin/fg220/theses/archive/Knaack_2015_-_Towards_an_Open_Service_Compendium.pdf
http://www.snet.tu-berlin.de/fileadmin/fg220/theses/archive/Knaack_2015_-_Towards_an_Open_Service_Compendium.pdf
http://www.osci.de
http://www.osci.de
https://doi.org/10.1109/TSC.2009.10
https://doi.org/10.1109/TSC.2009.10
https://doi.org/10.1093/nar/gku867

6. BIBLIOGRAPHY

[94]

[95]

[96]

[97]

(98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

164

Christine Legner. “Is There a Market for Web Services?” In: Service-
Oriented Computing - ICSOC 2007 Workshops. Ed. by Elisabetta Di Nitto
and Matei Ripeanu. Vol. 4907. Lecture Notes in Computer Science. Berlin,
Heidelberg: Springer, 2009, pp. 29-42. 1sBn: 978-3-540-93850-7. por: 10.
1007 /978-3-540-93851-4_4.

Torsten Leidig. Simple editor for Linked USDL descriptions. 2013. urc: https:
/ /github.com/linked-usdl/usdl-editor.

Stefanie Leimeister et al. “The Business Perspective of Cloud Comput-
ing: Actors, Roles and Value Networks”. In: The European Conference on
Information Systems (ECIS). 2010.

Ming Li et al. “Scalable and secure sharing of personal health records in
cloud computing using attribute-based encryption”. In: IEEE transactions
on parallel and distributed systems 24.1 (2013), pp. 131-143.

Min Liu et al. “An Weighted Ontology-Based Semantic Similarity Algo-
rithm for Web Service”. In: Expert Syst. Appl. 36.10 (Dec. 2009), pp. 12480-
12490. 1ssn: 0957-4174. por: 10.1016/j.eswa.2009.04.034.

Charles Loomis et al. CYCLONE Deliverable D6.2: Specification of Interfaces
for Brokering, Deployment, and Management. Ed. by CYCLONE Project.
2015. ure: http:/ /www.cyclone-project.eu/deliverables.html.

Luciano Floridi. “Web 2.0 vs. the Semantic Web: A Philosophical Assess-
ment”. In: Episteme 6.01 (2009), pp- 25-37. 1ssN: 1750-0117. por: 10.3366/
E174236000800052X.

Ari Luotonen. Tunneling TCP based protocols through Web proxy servers.
1998. urL: http:/ / tools.ietf.org / html / draft- luotonen-web- proxy-
tunneling-01.

Robert P. Mahowald et al. IDC FutureScape: Worldwide Cloud 2017 Predic-
tions. study. International Data Corporation, 2017.

David Martin et al. “Bringing Semantics to Web Services: The OWL-S
Approach”. In: Semantic Web Services and Web Process Composition. Ed. by
Jorge Cardoso and Amit Sheth. Vol. 3387. Lecture Notes in Computer
Science. Springer Berlin / Heidelberg, 2005, pp. 26—42. 1sBN: 978-3-540-
24328-1.

Eyhab Al-Masri and Qusay H Mahmoud. The QWS Dataset. Oct. 2014.
URL: http:/ / www.uoguelph.ca / %7Eqmahmoud / qws/ (visited on
10/10/2014).

Tim McLean. Critical vulnerabilities in [SON Web Token libraries. Which
libraries are vulnerable to attacks and how to prevent them. 2015. urL: https:
/ / authO.com / blog / critical - vulnerabilities - in - json - web - token -
libraries/ (visited on 05/04/2017).

J.D. Meier et al. Threat Modeling - Rate the Threats. 2003. urL: https:
/ / msdn.microsoft.com / en-us / library / ff648644 . aspx (visited on
05/03/2017).

Peter Mell and Timothy Grance. The NIST Definition of Cloud Computing.
Ed. by National Institute of Standards and Technology. 2011.

Friedrich Merz. Wachstumsmotor Gesundheit: Die Zukunft unseres Gesund-
heitswesens. Miinchen: Carl Hanser Verlag, 2008.

https://doi.org/10.1007/978-3-540-93851-4_4
https://doi.org/10.1007/978-3-540-93851-4_4
https://github.com/linked-usdl/usdl-editor
https://github.com/linked-usdl/usdl-editor
https://doi.org/10.1016/j.eswa.2009.04.034
http://www.cyclone-project.eu/deliverables.html
https://doi.org/10.3366/E174236000800052X
https://doi.org/10.3366/E174236000800052X
http://tools.ietf.org/html/draft-luotonen-web-proxy-tunneling-01
http://tools.ietf.org/html/draft-luotonen-web-proxy-tunneling-01
http://www.uoguelph.ca/%7Eqmahmoud/qws/
https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries/
https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries/
https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries/
https://msdn.microsoft.com/en-us/library/ff648644.aspx
https://msdn.microsoft.com/en-us/library/ff648644.aspx

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]
[119]
[120]
[121]

[122]

[123]
[124]

[125]

Microsoft Inc. Transport Layer Security Protocol (Windows). 2016. urL: http:
/ /msdn.microsoft.com/en-us/library/aa380516(v=vs.85).aspx (visited
on 11/25/2016).

Tigran Mkrtchyan. “dCache: implementing a high-end NFSv4.1 service
using a Java NIO framework”. In: Computing in High Energy and Nuclear
Physics (CHEP) (2012).

Delnavaz Mobedpour and Chen Ding. “User-centered Design of a QoS-

based Web Service Selection System”. In: Service Oriented Computing and
Applications (2013), pp. 1-11.

MongoDB. MongoDB Performance. 2017. urL: https:/ /docs.mongodb.
com / manual / administration / analyzing - mongodb - performance /
(visited on 08/21/2017).

Giinter Miiller et al. “Sustainable Cloud Computing”. In: Business &
Information Systems Engineering (BISE) 5 (2011).

Anthony Nadalin et al. Web Services Security: SOAP Message Security
1.1 (WS-Security 2004). 2006. urL: https: / / www . oasis - open. org /
committees / download . php / 21257 / wss - v1.1 - spec - errata - os -
SOAPMessageSecurity.htm (visited on 11/15/2016).

Mines Nantes. Choco Solver. Oct. 2014. urL: http:/ /www.emn.fr / z-
info/choco-solver/ (visited on 10/10/2014).

Nordic APIs AB. SOAP vs. REST: A NordicAPIs infographic. 2016. urL: http:
/ /nordicapis.com/rest-vs-soap-nordic-apis-infographic-comparison
(visited on 11/09/2016).

Daniel Oberle et al. “A unified description language for human to auto-
mated services”. In: Information Systems 38.1 (2013), pp. 155-181. 1ssn:
0306-4379.

OpenlD. OpenID Connect. 2016. urL: http:/ /openid.net/connect (visited
on 11/08/2016).

OpenNaaS. OpenNaaS CNSMO. 2016. urL: http: / / opennaas . org /
opennaas-cnsmo/ (visited on 01/06/2017).

Oracle. JSSE Reference Guide. 2016. urL: http:/ /docs.oracle.com/javase/
8/docs/technotes/guides/security /jsse/JSSERefGuide.html.

Oracle Technology Network. Project Grizzly: NIO Event Development
Simplified. 2016. urL: https:/ /grizzlyjava.net/ (visited on 11/09/2016).
Organization for the Advancement of Structured Information Standards.
OASIS eXtensible Access Control Markup Language (XACML). 2017. urL:
https:/ /www.oasis-open.org/committees/xacml.

Sixto Jr. Ortiz. “The Problem with Cloud-Computing Standardization”.
In: Computer 44.7 (2011), pp. 13-16.

OSGi Alliance. OSGi Alliance: The Dynamic Module System for Java. 2016.
urL: http:/ /www.osgi.org (visited on 11/08/2016).

Carlos Pedrinaci, Jorge Cardoso, and Torsten Leidig. “Linked USDL: A
Vocabulary for Web-Scale Service Trading”. In: The Semantic Web: Trends
and Challenges. Ed. by Valentina Presutti et al. Vol. 8465. Lecture Notes
in Computer Science. Springer International Publishing, 2014, pp. 68-82.
1sBN: 978-3-319-07442-9. por: 10.1007 /978-3-319-07443-6_6.

165

http://msdn.microsoft.com/en-us/library/aa380516(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/aa380516(v=vs.85).aspx
https://docs.mongodb.com/manual/administration/analyzing-mongodb-performance/
https://docs.mongodb.com/manual/administration/analyzing-mongodb-performance/
https://www.oasis-open.org/committees/download.php/21257/wss-v1.1-spec-errata-os-SOAPMessageSecurity.htm
https://www.oasis-open.org/committees/download.php/21257/wss-v1.1-spec-errata-os-SOAPMessageSecurity.htm
https://www.oasis-open.org/committees/download.php/21257/wss-v1.1-spec-errata-os-SOAPMessageSecurity.htm
http://www.emn.fr/z-info/choco-solver/
http://www.emn.fr/z-info/choco-solver/
http://nordicapis.com/rest-vs-soap-nordic-apis-infographic-comparison
http://nordicapis.com/rest-vs-soap-nordic-apis-infographic-comparison
http://openid.net/connect
http://opennaas.org/opennaas-cnsmo/
http://opennaas.org/opennaas-cnsmo/
http://docs.oracle.com/javase/8/docs/technotes/guides/security/jsse/JSSERefGuide.html
http://docs.oracle.com/javase/8/docs/technotes/guides/security/jsse/JSSERefGuide.html
https://grizzly.java.net/
https://www.oasis-open.org/committees/xacml
http://www.osgi.org
https://doi.org/10.1007/978-3-319-07443-6_6

6. BIBLIOGRAPHY

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

[138]

166

Carlos Pedrinaci, Jorge Cardoso, and Torsten Leidig. Presentation: Linked
USDL: a Vocabulary for Web-scale Service Trading. 2014. urc: http: / /
slideshare.net/ cpedrinaci/linked-usdl-a-vocabulary-for-webscale-
service-trading.

Carlos Pedrinaci and John Domingue. “Toward the Next Wave of Ser-
vices: Linked Services for the Web of Data”. In: Journal of Universal
Computer Science 16.13 (2010). Ed. by J.UCS Consortium, pp. 1694-1719.
por: 10.3217 /jucs-016-13-1694.

Olli-Pekka Pohjola and Kalevi Kilkki. “Value-based methodology to
analyze communication services”. In: NETNOMICS: Economic Research
and Electronic Networking 8.1-2 (Oct. 1, 2007), p. 135. 1ssn: 1573-7071. por:
10.1007 /s11066-008-9013-2.

Programmable Web. Protocol usage by APIs. 2012. urL: http:/ / www.
programmableweb .com / images / charts / TopProtocolsAlltime. png
(visited on 11/09/2016).

TOR Project. Tor Project: Anonymity Online. 2016. urL: https:/ / www.
torproject.org/ (visited on 11/11/2016).

B. Ramsdell and S. Turner. Secure/Multipurpose Internet Mail Extensions
(S/MIME) Version 3.2 Message Specification. RFC 5751 (Proposed Stan-
dard). Internet Engineering Task Force, Jan. 2010. urL: http:/ /www.ietf.
org/rfc/rfc5751. txt.

P. Raschke and S. Zickau. “ A Template-Based Policy Generation Interface
for RESTful Web Services”. In: On the Move to Meaningful Internet Systems:
OTM 2014 Workshops. Vol. 8842. Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 2014, pp. 137-153. 1sBN: 978-3-662-45549-4.
por: 10.1007 /978-3-662-45550-0_17.

RedHat. Keycloak Open Source Identity and Access Management. 2018. URL:
http:/ /www.keycloak.org/ (visited on 01/09/2017).

Mark Reinhold. JSR-51: New I/O APIs for the Java Platform. 2002. URL:
http:/ /www.jcp.org/en/jsr/detail?id=51 (visited on 11/09/2016).

J. Repschldger et al. “Selection Criteria for Software as a Service: An
Explorative Analysis of Provider Requirements”. In: Proceedings of the
AMCIS 2012. 2012, n/a.

Jonas Repschldger et al. “Cloud Requirement Framework: Requirements
and Evaluation Criteria to adopt Cloud Solutions”. In: Proceedings of the
20th European Conference on Information Systems. Ed. by Jan Pries-Heje
et al. 2012. 1sBN: 978-84-88971-54-8.

E. Rescorla. HTTP Owver TLS. RFC 2818 (Informational). Updated by

RFCs 5785, 7230. Internet Engineering Task Force, May 2000. urt: http:
/ /www.ietf.org/rfc/rfc2818.txt.

E. Rescorla and A. Schiffman. The Secure HyperText Transfer Protocol. REC
2660 (Experimental). Internet Engineering Task Force, Aug. 1999. UrL:
http:/ /www.ietf.org/rfc/rfc2660.txt.

http://slideshare.net/cpedrinaci/linked-usdl-a-vocabulary-for-webscale-service-trading
http://slideshare.net/cpedrinaci/linked-usdl-a-vocabulary-for-webscale-service-trading
http://slideshare.net/cpedrinaci/linked-usdl-a-vocabulary-for-webscale-service-trading
https://doi.org/10.3217/jucs-016-13-1694
https://doi.org/10.1007/s11066-008-9013-2
http://www.programmableweb.com/images/charts/TopProtocolsAlltime.png
http://www.programmableweb.com/images/charts/TopProtocolsAlltime.png
https://www.torproject.org/
https://www.torproject.org/
http://www.ietf.org/rfc/rfc5751.txt
http://www.ietf.org/rfc/rfc5751.txt
https://doi.org/10.1007/978-3-662-45550-0_17
http://www.keycloak.org/
http://www.jcp.org/en/jsr/detail?id=51
http://www.ietf.org/rfc/rfc2818.txt
http://www.ietf.org/rfc/rfc2818.txt
http://www.ietf.org/rfc/rfc2660.txt

[139]

[140]

[141]

[142]

[143]

[144]

[145]

[146]

[147]

[148]

[149]

[150]
[151]

Marcel Risch and Jérn Altmann. “Enabling Open Cloud Markets
Through WS-Agreement Extensions”. In: Grids and Service-Oriented
Architectures for Service Level Agreements. Ed. by Philipp Wieder, Ramin
Yahyapour, and Wolfgang Ziegler. Boston, MA: Springer US, 2010,
pp- 105-117. 1sBN: 978-1-4419-7319-1. por: 10.1007 /978-1-4419-7320-7_10.

V. Roberto et al. “A semantic web service-based architecture for the
interoperability of e-Government services”. In: Web Information Systems
Modeling Workshop (WISM 2005) / 5th International Conference on Web
Engineering (ICWE 2005). The Open University, 2005, n/a. UrL: http:
/ /oro.open.ac.uk/3005/.

Miguel dngel Rodriguez-Garcia et al. “Creating a semantically-enhanced
cloud services environment through ontology evolution”. In: Special
Section: The Management of Cloud Systems, Special Section: Cyber-Physical
Society and Special Section: Special Issue on Exploiting Semantic Technologies
with Particularization on Linked Data over Grid and Cloud Architectures 32
(2014), pp. 295-306. 1ssN: 0167-739X. por: 10.1016/j.future.2013.08.003.

Juthasit Rohitratana and Jérn Altmann. “Impact of pricing schemes on
a market for Software-as-a-Service and perpetual software”. In: Future
Generation Comp. Syst. 28.8 (2012), pp. 1328-1339. por: 10.1016/j.future.
2012.03.019.

Dumitru Roman et al. “Web Service Modeling Ontology”. In: Applied
Ontology. Vol. 1. 10S Press, 2005, pp. 77-106.

Salesforce. AppExchange. 2014. urL: https:/ /appexchange.salesforce.com
(visited on 06/10/2014).

Jonan Scheffler. Ruby 3x3: Matz, Koichi, and Tenderlove on the future of
Ruby Performance. 2016. urL: https:/ /blog.heroku.com/ruby-3-by-3
(visited on 08/17/2017).

Annika Selzer. “Datenschutz bei internationalen Cloud Computing
Services”. In: Datenschutz und Datensicherheit - DuD 38.7 (2014), pp. 470-
474. 1ssN: 1862-2607.

S. Sengupta, V. Kaulgud, and V. S. Sharma. “Cloud Computing Security—
Trends and Research Directions”. In: IEEE World Congress on Services
(SERVICES 2011). 2011, pp. 524-531. por: 10.1109/SERVICES.2011.20.

Clay Shirky. Shirky: The Semantic Web, Syllogism, and Worldview. 2014. urL:
http:/ /www.shirky.com /writings /semantic_syllogism.html (visited
on 08/19/2014).

Alex Simov and Marin Dimitrov. WSMO Studio. 2008. urL: http:/ /
sourceforge.net/projects/wsmostudio/files.
SixSq. Nuvla. 2017. ure: https:/ /nuv.la (visited on 01/18/2017).

M. Slawik et al. “CYCLONE: The Multi-Cloud Middleware Stack for
Application Deployment and Management”. In: 7th Workshop on Network
Infrastructure Services as part of Cloud Computing (NetCloud 2017) in con-
junction with CloudCom 2017. 2017, pp. 347-352. por: 10.1109/CloudCom.
2017.56.

167

https://doi.org/10.1007/978-1-4419-7320-7_10
http://oro.open.ac.uk/3005/
http://oro.open.ac.uk/3005/
https://doi.org/10.1016/j.future.2013.08.003
https://doi.org/10.1016/j.future.2012.03.019
https://doi.org/10.1016/j.future.2012.03.019
https://appexchange.salesforce.com
https://blog.heroku.com/ruby-3-by-3
https://doi.org/10.1109/SERVICES.2011.20
http://www.shirky.com/writings/semantic_syllogism.html
http://sourceforge.net/projects/wsmostudio/files
http://sourceforge.net/projects/wsmostudio/files
https://nuv.la
https://doi.org/10.1109/CloudCom.2017.56
https://doi.org/10.1109/CloudCom.2017.56

6. BIBLIOGRAPHY

[152]

[153]

[154]

[155]

[156]

[157]

[158]

[159]

[160]

[161]

[162]

[163]

168

Mathias Slawik. “The Trusted Cloud Transfer Protocol”. In: 5th Interna-
tional Conference on Cloud Computing Technology and Science (CloudCom).
Ed. by IEEE. Vol. 2. 2014. 1sen: 9781479915484 por: 10.1109/CloudCom.
2013.126.

Mathias Slawik. TU-Berlin-SNET /tresor-proxy-prototype: The Grizzly NIO-
based prototype of the TRESOR proxy. 2012. urt: https://github.com/TU-
Berlin-SNET /tresor-proxy-prototype (visited on 11/09/2016).

Mathias Slawik and Yuri Demchenko. CYCLONE Deliverable D4.1:
Security Infrastructure Specification and Initial Implementation. Ed. by
CYCLONE Project. 2015. ure: http: / / www . cyclone - project .. eu /
deliverables.html.

Mathias Slawik and Axel Kiipper. “A Domain Specific Language and
a Pertinent Business Vocabulary for Cloud Service Selection”. In: Eco-
nomics of Grids, Clouds, Systems, and Services. Ed. by Jorn Altmann, Kurt
Vanmechelen, and Omer F. Rana. Vol. 8914. Lecture Notes in Computer
Science. Springer International Publishing, 2014, pp. 172-185. 1sBn: 978-
3-319-14608-9.

Mathias Slawik et al. “An Economical Security Architecture for Multi-
cloud Application Deployments in Federated Environments”. In: Pro-
ceedings of the 13th International Conference on Grids, Clouds, Systems and
Services. Ed. by Jorn Altmann. Springer, 2016.

Mathias Slawik et al. CYCLONE Deliverable D4.2: Multi-cloud Security.
Ed. by CYCLONE Project. 2016. urL: http:/ /www.cyclone-project.eu/
deliverables.html.

Mathias Slawik et al. “CYCLONE: Unified Deployment and Manage-
ment of Federated, Multi-Cloud Applications”. In: 2015 IEEE/ACM 8th
International Conference on Utility and Cloud Computing (UCC). IEEE, 2015,
pp. 453-457. por: 10.1109/UCC.2015.81.

Mathias Slawik et al. “Securing Medical SaaS Solutions Using a Novel
End-to-end Encryption Protocol”. In: ECIS 2014 proceedings. Ed. by
Michel Avital, Jan Marco Leimeister, and Ulrike Schultze. AIS Electronic
Library, 2014. 1sBN: 9780991556700.

Mathias Slawik et al. “The Open Service Compendium. Business-
Pertinent Cloud Service Discovery, Assessment, and Selection”. In:
Economics of Grids, Clouds, Systems, and Services: 12th International
Conference, GECON 2015, Cluj-Napoca, Romania, September 15-17, 2015,
Revised Selected Papers. Ed. by Jorn Altmann, Gheorghe Cosmin Silaghi,
and Omer F. Rana. Cham: Springer International Publishing, 2016,
pp- 115-129. 1sBN: 978-3-319-43177-2. por: 10.1007 /978-3-319-43177-2_8.

Wendell R. Smith. “Product differentiation and market segmentation
as alternative marketing strategies”. In: The Journal of Marketing (1956),
pp- 3-8. 1ssN: 0022-2429.

SOA4ALL Consortium. SOA4ALL: Service Oriented Architectures for All.
2011. ure: http://cordis.europa.eu/project/rcn/85536_en.html.

Steve Souders. The HTTP archive. 2013. urL: http:/ /httparchive.org/.

https://doi.org/10.1109/CloudCom.2013.126
https://doi.org/10.1109/CloudCom.2013.126
https://github.com/TU-Berlin-SNET/tresor-proxy-prototype
https://github.com/TU-Berlin-SNET/tresor-proxy-prototype
http://www.cyclone-project.eu/deliverables.html
http://www.cyclone-project.eu/deliverables.html
http://www.cyclone-project.eu/deliverables.html
http://www.cyclone-project.eu/deliverables.html
https://doi.org/10.1109/UCC.2015.81
https://doi.org/10.1007/978-3-319-43177-2_8
http://cordis.europa.eu/project/rcn/85536_en.html
http://httparchive.org/

[164]

[165]

[166]

[167]

[168]

[169]

[170]

[171]

[172]

[173]

[174]

[175]

[176]

[177]

[178]

[179]

[180]

[181]

C. M. Sperberg-McQueen and Henry Thompson. XML Schema. 2014.
urL: http:/ /www.w3.org/XML/Schema.

Josef Spillner and Alexander Schill. “A Versatile and Scalable
Everything-as-a-Service Registry and Discovery”. In: CLOSER 2013
Proceedings. Ed. by Frédéric Desprez et al. SciTePress, 2013, pp. 175-183.
1sBN: 978-989-8565-52-5.

Squid. Squid: Optimising Web Delivery. 2016. urL: http:/ /www.squid-
cache.org/ (visited on 11/11/2016).

William Stallings. Cryptography and network security: principles and prac-
tices. Pearson Education India, 2006.

Rudi Studer, Stephan Grimm, and Andreas Abecker. Semantic web
services: Concepts, technologies, and applications. Berlin and New York:
Springer, 2007. 1sen: 9783540708933.

G. Succi and M. Marchesi. Extreme Programming Examined (XP). Addison-
Wesley Longman, Amsterdam, 2001.

Willy Tarreau. HAProxy - The Reliable, High Performance TCP/HTTP Load
Balancer. 2016. urL: http:/ /www.haproxy.org.

Dirk Thatmann et al. “Deriving a Distributed Cloud Proxy Architecture
for Managed Cloud Service Consumption”. In: CLOUD 2013 Proceedings.
IEEE, 2013, pp. 614-620. 1sBN: 978-0-7695-5028-2.

Dirk Thatmann et al. “Towards a Federated Cloud Ecosystem: Enabling
Managed Cloud Service Consumption”. In: Economics of Grids, Clouds,
Systems, and Services. Berlin, Germany: Springer-Verlag, 2012, pp. 223—
233.

The CYCLONE project. CYCLONE - Home. 2017. urL: http: / / www.
cyclone-project.eu/ (visited on 01/17/2017).

The DIP consortium. Data, Information, and Process Integration with Seman-
tic Web Services - Project DIP -. 2008. urL: http:/ /dip.semanticweb.org/.

The Eclipse Foundation. Eclipse Modeling Framework Project (EMF). 2014.
UrL: http:/ /www.eclipse.org/modeling /emf.

The Eclipse Foundation. Virgo - Home. 2012. urt: http:/ /www.eclipse.
org/virgo/ (visited on 11/09/2016).

The European Commission. A Recovery On The Horizon: Annual Report
on European SMEs 2012/2013. Ed. by Deborah Cox et al. 2013.

The Open Web Application Security Project. Application Threat Modeling.
2015. ure: https:/ /www.owasp.org/index.php/Application_Threat_
Modeling.

The Open Web Application Security Project. Threat Risk Modeling. 2015.
urL: https:/ /www.owasp.org/index.php/Threat_Risk_Modeling.

The OpenSSL project. OpenSSL: Cryptography and SSL/TLS Toolkit. 2016.
URL: https:/ /www.openssl.org/ (visited on 11/25/2016).

TRESOR Consortium. About TRESOR. 2012. urt: http:/ /www.cloud-
tresor.com (visited on 11/08/2016).

169

http://www.w3.org/XML/Schema
http://www.squid-cache.org/
http://www.squid-cache.org/
http://www.haproxy.org
http://www.cyclone-project.eu/
http://www.cyclone-project.eu/
http://dip.semanticweb.org/
http://www.eclipse.org/modeling/emf
http://www.eclipse.org/virgo/
http://www.eclipse.org/virgo/
https://www.owasp.org/index.php/Application_Threat_Modeling
https://www.owasp.org/index.php/Application_Threat_Modeling
https://www.owasp.org/index.php/Threat_Risk_Modeling
https://www.openssl.org/
http://www.cloud-tresor.com
http://www.cloud-tresor.com

6. BIBLIOGRAPHY

[182]

[183]

[184]

[185]

[186]

[187]

[188]

[189]

[190]

[191]

[192]

[193]

170

Abdulbaki Uzun, Eric Neidhardt, and Axel Kiipper. “OpenMobileNet-
work: A Platform for Providing Estimated Semantic Network Topology
Data”. In: International Journal of Business Data Communications and Net-
working (IIBDCN) 9.4 (2013), pp. 46-64. 1ssN: 1548-0631. por: 10.4018 /
ijbdcn.2013100103.

Bill Venners. The Simplest Thing that Could Possibly Work: A Conversation
with Ward Cunningham, Part V. 2004. urc: http:/ /www.artima.com /
intv/simplest.html.

W3C OWL Working Group. OWL 2 Web Ontology Language Document
Overview: W3C Recommendation 11/12/2012. 2012. urc: http:/ /www.w3.
org/TR/owl2-overview.

Peter Wayner. “13 ways the cloud has changed (since last you looked)”.
In: InfoWorld 2016 (2016). urL: http:/ / www.infoworld.com / article /
3030138/ cloud-computing / 13-ways- the-cloud-has-changed-since-
last-you-looked.html.

Jon Weissman and Siddharth Ramakrishnan. “Using Proxies to Acceler-
ate Cloud Applications”. In: Proceedings of HotCloud 09 - Workshop on Hot
Topics in Cloud Computing. 2009. urL: https:/ /www.usenix.org/legacy/
event/hotcloud09/tech/full_papers/weissman.pdf.

Xiaoxin Wu, Lei Xu, and Xinwen Zhang. “Poster: a certificateless proxy
re-encryption scheme for cloud-based data sharing”. In: Proceedings of
the 18th ACM conference on Computer and communications security. CCS "11.
New York, NY, USA: ACM, 2011, pp. 869-872. 1sBN: 978-1-4503-0948-6.
por: 10.1145/2093476.2093514.

Xpra. xpra home page. 2014. urL: http : / / xpra . org/ (visited on
01/17/2017).

Miranda Zhang et al. “A Declarative Recommender System for Cloud
Infrastructure Services Selection”. In: Economics of grids, clouds, systems,
and services. Ed. by Kurt Vanmechelen, Jorn Altmann, and Omer F. Rana.
Vol. 7714. Lecture Notes in Computer Science. Berlin: Springer, 2012,
pp- 102-113. 1sBN: 978-3-642-35194-5. por: 10.1007 /978-3-642-35194-5_8.

Miranda Zhang et al. “An Infrastructure Service Recommendation Sys-
tem for Cloud Applications with Real-time QoS Requirement Con-
straints”. In: IEEE Systems Journal 11.4 (2017), pp. 2960-2970. 1ssn: 1932-
8184. por: 10.1109/JSYST.2015.2427338.

Qi Zhang, Lu Cheng, and Raouf Boutaba. “Cloud computing: state-
of-the-art and research challenges”. In: Journal of Internet Services and
Applications 1 (2010), pp. 7-18.

Wenwu Zhu et al. “Multimedia Cloud Computing”. In: Signal Processing
Magazine, IEEE 28.3 (2011), pp. 59-69. 1ssn: 1053-5888. por: 10.1109/MSP.
2011.940269.

S. Zickau and A. Kiipper. “Towards Location-based Services in a Cloud
Computing Ecosystem”. In: Ortsbezogene Anwendungen und Dienste - 9.
Fachgesprich der GI/ITG-Fachgruppe Kommunikation und Verteilte Systeme.
Vol. 9. Chemnitz, Germany: Universitdtsverlag Chemnitz, Sept. 2012,
pp- 187-190. 1sBN: 978-3-941003-77-4. urL: http:/ /nbn-resolving.de /urn:
nbn:de:bsz:chl-qucosa-104609.

https://doi.org/10.4018/ijbdcn.2013100103
https://doi.org/10.4018/ijbdcn.2013100103
http://www.artima.com/intv/simplest.html
http://www.artima.com/intv/simplest.html
http://www.w3.org/TR/owl2-overview
http://www.w3.org/TR/owl2-overview
http://www.infoworld.com/article/3030138/cloud-computing/13-ways-the-cloud-has-changed-since-last-you-looked.html
http://www.infoworld.com/article/3030138/cloud-computing/13-ways-the-cloud-has-changed-since-last-you-looked.html
http://www.infoworld.com/article/3030138/cloud-computing/13-ways-the-cloud-has-changed-since-last-you-looked.html
https://www.usenix.org/legacy/event/hotcloud09/tech/full_papers/weissman.pdf
https://www.usenix.org/legacy/event/hotcloud09/tech/full_papers/weissman.pdf
https://doi.org/10.1145/2093476.2093514
http://xpra.org/
https://doi.org/10.1007/978-3-642-35194-5_8
https://doi.org/10.1109/JSYST.2015.2427338
https://doi.org/10.1109/MSP.2011.940269
https://doi.org/10.1109/MSP.2011.940269
http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-104609
http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-104609

[194]

[195]

[196]

S. Zickau et al. “Enabling Location-based Policies in a Healthcare Cloud
Computing Environment”. In: Proceedings of the 3rd IEEE International
Conference on Cloud Networking (IEEE CloudNet). IEEE, 2014, pp. 333-338.
por: 10.1109/CloudNet.2014.6969017.

Begiim Ilke Zilci, Mathias Slawik, and Axel Kupper. “Cloud Service
Matchmaking using Constraint Programming”. In: 2015 IEEE 24th Inter-
national Conference on Enabling Technologies: Infrastructure for Collaborative
Enterprises (WETICE). IEEE. 2015, pp. 63-68.

Begiim ilke Zilci, Mathias Slawik, and Axel Kiipper. “Cloud Service
Matchmaking Approaches: A Systematic Literature Survey”. In: 2015
26th International Workshop on Database and Expert Systems Applications
(DEXA). IEEE, 2015, pp. 181-185. por: 10.1109/DEXA.2015.50.

171

https://doi.org/10.1109/CloudNet.2014.6969017
https://doi.org/10.1109/DEXA.2015.50

Appendix A

Further Information About
TRESOR and CYCLONE

This appendix provides further information on TRESOR and CYCLONE, espe-
cially the respective key concepts and use cases.

A.1 TRESOR Key Components

Cloud service brokering, con-
sidering sensitive require- _4§
ments of the Cloud

consumers. R
Krankenhaus

SaaS deployed End-user
on TRESOR PaaS consumption,
managed by TRESOR Proxy

Figure A.1: TRESOR overview, adapted from [181]

The three key TRESOR components Broker, Proxy, and Paa$S are depicted in
Figure A.1 and explained in the following paragraphs. At the end of this sec-
tion, the TRESOR Federation Provider as well as the distributed authorization
components are also presented.

TRESOR Broker
The TRESOR Broker serves as a mediator of medical services between health
centers and cloud providers, especially considering sensitive requirements of

173

A. FurtHER INFORMATION ABOUT TRESOR anp CYCLONE

the users. The brokering functionality is based on an extensive cloud service
repository as well as a comprehensive cloud service description language. It
covers diverse description areas, such as technical interfaces, legal constraints,
business models, service-level agreements (SLAs), compliance, and price mod-
els. All in all, it eases the cloud service discovery, assessment, and selection of
the health centers considerably.

TRESOR Proxy

The TRESOR Proxy completely manages end user’s cloud consumption - all
service requests are made to the proxy (instead of the cloud service). The proxy
provides a comprehensive set of features, for example, guaranteeing regulatory
compliance through applying XACML-based access policies [122], extensive
monitoring, as well as integration with enterprise SSO and the other TRESOR
components. Common lock-in effects, such as vendor tool dependencies and
proprietary protocols are avoided, as the proxy provides open APIs and is based
on regular HTTP(S) communication, fitting for the REST-based architectures
found in Cloud Computing.

TRESOR PaaS

The TRESOR PaaS$ is a secure platform used to deliver medical Saa$S in a
trustworthy manner. It relies on OSGi [124] to provide modularity and offers a
number of supporting services to cloud applications.

TRESOR Federation Provider

When multiple institutions, such as the two hospitals involved in TRESOR,
share data through a common service, it is beneficial to integrate their respective
identity providers so that end-users can reuse their existing identities. This in-
cludes other potential personal identification mechanisms as well, for examples,
personalized smart cards. In order to prevent each service to separately inte-
grate each accessing organization, TRESOR relies on the Federation Provider
which provides a uniform user identity representation to all consuming ser-
vices. As most health centers use Microsoft ActiveDirectory, the Federation
Provider is based on the “ActiveDirectory Federation Services”, following the
“Claims-based Authentication”! paradigm proposed by Microsoft.

Distributed Authorization Components

Accessing medical cloud services is often governed by access policies that,
for example, restrict access to patient data to a set of users on certain times
from certain locations. Furthermore, compliance requirements require that
each access and modification of personal data should be auditable. TRESOR
includes distributed authorization components that enable the separation of
the policy definition from its decision and enforcement. Policies can be shared
with multiple services and the service providers are exempt from laboriously
implementing access control mechanisms that are flexible enough for each cloud
consumer. TRESOR follows the Extensible Access Control Markup Language
(XACML) which is explained in Section 2.4.2.

1http: / /claimsid.codeplex.com/

174

A.2. TRESOR Use Cases

A.2 TRESOR Use Cases

Two Berlin hospitals ensured relevance and applicability of the proposed Cloud
ecosystem and its components: the “Deutsches Herzzentrum Berlin”, a “spe-
cialized hospital for the diagnosis and treatment of cardiovascular disease”?
and the “Paulinenkrankenhaus”, focusing on “post-operative treatment of pa-
tients of the German Heart Institute Berlin and of the Charité, on prevention,
and on the comprehensive treatment of cardiac conditions”3. Based on expert
interviews, TRESOR identified two fields of application for potentially helpful
Cloud Computing solutions [31]: medical history documentation without any
media breaks as well as checking drug interactions.

Use Case 1: Medical History Documentation Avoiding Media Breaks

One of the greatest challenges of cross-hospital medical treatment is the
design of a documentation process that is free of media breaks, continuous,
self-contained, and compliant to data protection directives. This process would
directly benefit patients and their attending physicians. Even after inpatient
stay, this process could be used to diagnose mandatory changes in therapy at an
early stage and allow immediate intervention. Related approaches do not scale
well and are associated with interoperability and data protection challenges.

The TRESOR standards-compliant PaaS platform as well as a privacy
requirements-aware cloud broker address those issues. Additional value could
be created by adopting, selecting, and presenting additional patient data, for
example, blood pressure, weight, self-, and third-party-observations, and
providing a combined view to healthcare staff independent of date and means
of access via a secure channel. This channel can also be used by patients to
voluntarily share their position and to allow target-oriented treatment.

Use Case 2: Optimizing the Treatment Chain Using the Example of Check-
ing Drug Interactions

Undesirable drug effects are often attributed to non-coordinated drug com-
binations and dosages. They play a key role in patient care complication rates
and mortality. The demographic and clinical patient data, such as age, sex,
weight, body surface, allergies, as well as kidney and liver functions, are also
decisive for the occurrence of such problems. In addition, complex questions
often arise along with the treatment process, which are dependent on attributes
to be specified, such as care diagnoses, procedures, and other medical data.
They can be answered by means of nursing guidelines, specialist information,
and scientific publications. To display unwanted drug interactions or other
information offers, today, locally installed information systems are used, whose
data is updated with a time lag in a laborious process. These systems also have
the disadvantage that media breaks occur during the input of the mentioned
patient data.

A cloud ecosystem that gives access to drug discovery databases and other
personalized information to different actors, such as hospitals, physicians’ prac-
tices, and pharmacies, can solve these problems. TRESOR established a cloud-
based information service for drug interaction testing, which can be invoked

thtps: //www.dhzb.de/en/
3h’r’rps: / /www.paulinenkrankenhaus.de/home.html

175

A. FurtHER INFORMATION ABOUT TRESOR anp CYCLONE

by locally installed medical systems and which can be orchestrated with other
application services of the cloud ecosystem, for example for anonymous access
to patient data. Access to this information service by the different actors is
managed and controlled by the cloud proxy.

A.3 CYCLONE Overview: General Approach and Flagship
Use Case

For the work that TU Berlin was responsible which I was coordinating, we ap-
plied a bottom-up approach, consisting of a thorough analysis of the CYCLONE
use cases and deriving requirements together with the involved stakeholders.
This includes the functional and non-functional requirements that provide the
constraints for our work. Borrowing from product development, we started
with the “Minimum Feature Set” as summarized well by Blank in [27], that is,
with the smallest multi-cloud problem that the use case users would use the
CYCLONE stack for. Then, we continually built upon these requirements and
the implementation to further extend the software stack. The limited project
resources caused us to focus the implementation on the main requirements in
the following areas:

1. Deployment of multi-cloud applications, especially handling the deploy-
ment of bioinformatics clusters

2. Using federated identities for authentication and authorization in web
applications as well as for SSH login

3. Securely interconnecting VMs of cloud application deployments, provid-
ing multi-cloud VPN, firewalling, and load balancing services

The strategies from Extreme Programming (XP) guide our work, for example,
the DTSTTCPW and YAGNI strategies, as summarized by Succi et al. in [169,
p-208]: “... we must learn to let designs emerge and not anticipate what will be.
XP says ‘do the simplest thing that could possibly work” (DTSTTCPW) because
‘you aren’t gonna need it.” (YAGNI).”. The effect of following these strategies is
the leaning of CYCLONE towards applying simple solutions fitting well to the
use cases instead of trying to use highly sophisticated generic solutions that
would first have to be streamlined for their application.

CYCLONE Flagship Use Case: Bioinformatics

Using current technology, sequencing bacterial genomes is very cheap,
costing only a few hundred Euros. Therefore, many end users from the bioin-
formatics domain are no longer satisfied with analyzing just single genomes:
they additionally require comparing collections of related genomes, so called
“strains”. Faced with an ever-increasing number of sequenced genomes, bi-
ologists need efficient and user-friendly tools to assist them in their analyses.
In this context, tools that facilitate comparative genomics analyses of large
amounts of data are needed. This includes the conservation of gene neigh-
borhood, presence/absence of orthologous genes, phylogenetic profiling, and
other specialized functions.

One of the CYCLONE use case partners, the French Institute of Bioinfor-
matics (L'Institut Frangais de Bioinformatique), consists of 36 bioinformatics

176

A.4. CYCLONE Middleware Components

platforms (PF) spanning the entire French territory as well as a national hub,
the “UMS 3601-1FB-core”, which is the representative in the CYCLONE project.
The IFB has deployed a cloud infrastructure on its own premises at IFB-core
and aims to deploy a federated cloud infrastructure over the regional PFs. This
cloud infrastructure is devoted to the French life science community, research,
and industry, with services for the management and analysis of life science data.
More concretely, bioinformaticians can use this “IFB Bioinformatics Cloud” to
deploy VMs containing useful bioinformatics research tools.

The CYCLONE middleware stack is fully utilized in the use case, man-
aging the deployment of the applications, using the federated identity for
authenticating and authorizing application users, as well as interconnecting
the components of clustered tools securely. Therefore, the Bioinformatics use
case is an excellent fit to the challenge areas addressed by CYCLONE.*

A.4 CYCLONE Middleware Components

There is a lot of information already available about the components of the
CYCLONE cloud middleware, for example, on the website [173] and within
other publications of the project. The following content concentrates on the
most important components for the integration into the bioinformatics use case
and explain them briefly. This will guide the explanation of the subsequent
“CYCLONE in Action” section.

Stakeholders (8 Middleware
N
90040 v
Bioinformatics
=5 &0 Researchers ‘o
ENE =

Fede;ated Idéntity

DevOps teams Components
e - -
% P b ol
* V "\ ¥
@ OpenNaa$ - CNSM@
Cloud ASPs
Amazon EC2 OpenStack
Interoute Italy
. @ gl OpenStack OpenStack QSC
@ °© CNRS LAL France Germany = @
Pg H A
e Publicloud | - @ 9 | ﬁ»' 1l Private clov ‘ E)
g ¢ L -
Testbed

Figure A.2: CYCLONE constituents, adapted from own image in [151]

4The content for this section was mainly provided by Christophe Blanchet (IFB) for [151] and
edited by me to fit to the narrative of this thesis.

177

A. FurtHER INFORMATION ABOUT TRESOR anp CYCLONE

Figure A.2 provides an overall view of the main CYCLONE constituents:
use case stakeholders (e.g., bioinformaticians) which use the CYCLONE mid-
dleware stack and validate it within the testbed infrastructure. The testbed
infrastructure comprises both private and public clouds to demonstrate the
deployment of hybrid multi-cloud applications.

Nuvla: Deploy Applications on any Cloud

SlipStream, a cloud application management platform, allows developers to
define portable cloud applications and operators to deploy automatically those
applications on multiple cloud infrastructures. With SlipStream, the operators
can manage the full lifecycle of cloud applications, including provisioning, scal-
ing, migration, and clean up. SixSq releases the SlipStream Community Edition
under the Apache 2 license and the source code can be found in the SlipStream
organization in GitHub. In addition, SixSq operates a free SlipStream SaaS
called Nuvla [150] which can be used to access a number of public clouds.

Managing virtual machines as large binary files complicates cloud applica-
tion management and portability. The large files, typically tens of gigabytes, are
costly to transport. The binary files hide the knowledge about the virtual ma-
chine service configuration. Use on multiple platforms requires conversion that
is both time-consuming and error-prone. To avoid these problems, SlipStream
uses a “recipe”-based model for defining and managing applications.

Developers define an application in SlipStream by referencing a base image
(typically a minimal distribution of a common operating system) and provid-
ing a set of “recipes” that are executed at various points in a VM’s lifecycle.
These recipes describe the software installation and configuration process to
transform a minimal machine into the desired application component. This
process captures the deployment knowledge for everyone on a DevOps team
and ensures that the application can be deployed on any cloud. Recipes can
also be defined for scaling actions, allowing an application to adapt to changes
in load or performance.

Most production services contain many components; for example, typical
web applications have stateless frontends, load balancers, and databases for
persistent storage. SlipStream provides a “parameter database” for each de-
ployment which allows an application’s components to share information (e.g.,
the database address) and to coordinate themselves (e.g., ensure the database
is available before starting a client). This provides a simple but effective mecha-
nism for reliable and automated application deployment. Developers can even
provide tests to their recipes to validate the service before opening it to users.

The Service Catalog, a core feature of SlipStream, contains “offers” from
cloud service providers, detailing VM resource configurations, locations, prices,
and other information. Developers and operators can attach “policies” that
describe constraints to an application. SlipStream then uses those policies to
filter the available offers to eliminate those that do not meet the application
requirements. The operator can then select any acceptable offer manually or
allow SlipStream to choose the least costly offer automatically. These policies
are completely general and can be used, for example, to deploy an application
to a particular country for legal reasons or to choose a particular combination
of CPU cores, RAM, and disk space.

178

A.4. CYCLONE Middleware Components

For DevOps teams, SlipStream provides a convenient, collaborative platform
that allows both developers and operators to take advantage of multiple cloud
services while simplifying and automating their workflows.>

CYCLONE Federation Provider: Use Federated Identities with Ease

Identity Management is a challenge area often faced by application develop-
ers and operators. When applications using federated identities are deployed
on multiple clouds, the secure design and rapid implementation becomes a
complex endeavour. CYCLONE provides the CYCLONE Federation Provider to
ease the hardships of federated multi-cloud identity management. The project
also makes special arrangements to ease the integration of preexisting academic
identities that are federated through eduGAIN [62], as the end-users in many
implemented CYCLONE use cases are academic researchers.

From a conceptual perspective, using a centralized authentication server
decouples the application authentication and reduces the functional footprint
of application nodes. As the Federation Provider relies on widely used stan-
dards, the integration of Web-based SSO is easier as supporting libraries are
widely available. Furthermore, the Federation Provider transforms different
user identities into a consistent attribute format (JSON Web Token), decou-
pling the application node authentication, OpenlD Connect, from the different
authentication methods used at the Federation Provider.

From an implementation perspective, the CYCLONE Federation Provider ex-
tends and enriches the Keycloak identity and access management solution [133]
which is sponsored by RedHat. Keycloak has a rich feature set, mainly single
sign-on, supporting both SAML2 (as used by eduGAIN) as well as OpenID Con-
nect (as used by many cloud applications). Keycloak can also broker identities,
allowing end users to select which credentials they want to use for authentica-
tion, even supporting social network logins such as Facebook. The CYCLONE
extensions to Keycloak comprise a data privacy aware session removal, an
interface for self-service registration, as well as templates that include terms of
conditions and data privacy statements for each OpenID connect tenant. They
were explained in detail in Section 3.4.2.

There is a shared Federation Provider Instance in the CYCLONE testbed
which is integrated with eduGAIN. Using such a shared instance is beneficial
in two ways: first of all, integrating an application with eduGAIN is a manual
process that, from experience, can take weeks and differs for each university.
Second, CYCLONE offers the eduGAIN identities within an OpenlID Connect
flow, thus easing the implementation of relying cloud applications. In addition,
CYCLONE also provides software sources so that, for example, other ASPs can
implement their own Federation Providers with less efforts.

Besides the similar name, the CYCLONE Federation Provider does not share
much similarities with the TRESOR Federation Provider which was introduced
in Section A.1. Instead of proprietary Microsoft technology, CYCLONE relies
on open source software. Furthermore, CYCLONE relies on Open ID Connect
instead of SAML for its authentication APL

PAM Module and Xpra Wrapper: WebSSO for Fun and Profit

5The content for this section was mainly provided by Charles Loomis (SixSq) for [151] and
edited by me to fit to the narrative of this thesis.

179

A. FurtHER INFORMATION ABOUT TRESOR anp CYCLONE

Many users that leverage multiple clouds face the problem of having a large
number of user accounts with different services. As detailed in the last chapter,
this problem can be reduced using web-based single sign-on. However, no SSO
implementation can be used satisfyingly for Secure Shell Login. This problem
is amplified in the Bioinformatics use case as researchers share datasets and
results by letting other people log into the VMs. Currently, involved researchers
need to create a new user account for every person whom they share data with.

The CYCLONE PAM module pam_openid_connect [20] allows SSH logins
using the federated identities of the end users, for example, the Bioinformatics
researchers. It is integrated with the SSH server through the PAM subsystem.
The keyboard-interactive mode of SSH allows the PAM module to display a
URL of an ephemeral web server started for this particular login session. When
users follow this link, it initiates a regular Open ID Connect Authentication
Code Flow with the CYCLONE Federation Provider that returns user attributes
as a JSON Web Token to this ephemeral web server. The current implementation
compares the user’s email with a list of allowed emails in a file. This file can
be edited by the bioinformaticians as well as created at deployment time by
SlipStream.

Other bioinformatics software is provided as regular desktop applications.
There are some preexisting tools that allow remote access to desktop applica-
tions, for example, Xpra [188]. The Xpra client and server can communicate via
an SSH connection, potentially established using the CYCLONE PAM module.
However, the manual setup and coordination of Xpra and SSH is not always
easy for the end users. To provide such an easy way for the bioinformaticians
to use remote desktop applications authenticated with their federated identity,
CYCLONE provides a desktop “wrapper” around both tools, available at [19]. It
uses Electron [65], a tool provided by GitHub to “build cross platform desktop
apps with JavaScript, HTML, and CSS” in order to lower the implementation
effort and to provide the wrapper to a large range of different users and devices.

OpenNaaS CNSMO: Connect all the Clouds

Modern computing platforms span multiple cloud infrastructures in order
to achieve resilience, responsiveness, and elasticity. Most often, they require
secure network connectivity, at best automatically managed and available on-
demand. However, unless companies pay a significant amount of money for
customized cloud infrastructure, many limitations persist in the network ser-
vices offered by common public cloud vendors: first of all, the networking APIs
and procedures differ widely between cloud providers, oftentimes to an incom-
patible degree. Secondly, tenants have little control over network services and
limited visibility over networking resources that were made available to them.
This severely limits tenants’ flexibility and prevents them from implementing
application logic in the network.

CYCLONE provides network services to cloud-based applications using
OpenNaaS CNSMO (CYCLONE Network Services Manager and Orchestrator)
which was presented in [10], available online at [119]. It is far more lightweight
than comparable solutions such as Apache Mesos while still providing the
essential network management APIs. The system is capable of deploying,
configuring, and running multiple network services in both private and public
environments. The most significant CNSMO feature is that it is agnostic to the

180

A.5. CYCLONE in Action

underlying Iaa$S provider, running on top of any cloud service and being OS
independent. It avoids the need to gain access and control of IaaS infrastructures
since it works on top of network overlays. Thus, CNSMO integrates networking
aspects over federated clouds and allows tenants to request network services
and manage them. CNSMO leverages Docker containers for easy deployment
and management.

The CNSMO services are stateless, independent, and can invoke them-
selves. Any CNSMO service can potentially launch any other service. In effect,
CNSMO is lightweight, distributed, and modular: Lightweight service agents
coordinate themselves by communicating through a distributed system state.
CNSMO features a modular micro-service architecture which is scalable and
extendable: agents are atomic, single-purpose units. The CNSMO architecture
is detailed in [11].6

Additional Components

There are additional constituents of CYCLONE that are not presented here,
mainly the extension of the existing middleware with an Intercloud Access Control
Infrastructure as well as Trust Bootstrapping components. The general idea is
to offer the Use Case owners both a far more sophisticated, XACML-based
authorization infrastructure, as well as components to bootstrap trust in multi-
cloud deployments. As I have not been involved in their development and
deployment and they are not ready by the time this thesis was written, they are
not explained in detail at this point. The project deliverables [154, 157] explain
the motivation as well as the planned integration of these components within
CYCLONE.

A.5 CYCLONE in Action

One of the cornerstones of CYCLONE is the application of the CYCLONE
middleware stack within a broad range of use cases. The following paragraphs
highlight some use cases and show how well the stack fits to the requirements
of the use case stakeholders.

Deploying Bioinformatics Software

In [93] Lacroix, et al. present Insyght, which is a comparative genomic visu-
alization tool consisting of 3 components: a pipeline of Perl scripts to compute
required data, a relational database for persisting data, and the visualization
tool itself which queries the relational databases and presents the data in a
user-friendly way. The platform automatically launches a set of bioinformatics
tools (BLAST, PSI-BLAST, INTERPROScan, etc.) to analyse the data and stores
the results of the tools in the relational PostgreSQL database. These tools use
several public reference data collections. A web interface allows the end-users
to consult the results and perform the manual annotation, which means manu-
ally adding metadata and biological knowledge to the genome sequence. The
popularity and vast functionality make Insyght a prime candidate for offering
it on the IFB Bioinformatics Cloud.

®The content for this section was mainly provided by José Aznar (i2Cat) for [151] and signifi-
cantly edited by me to fit to the narrative of this thesis.

181

A. FurtHER INFORMATION ABOUT TRESOR anp CYCLONE

The Insyght deployment comprises two components: a master running the
workflow, scheduling the genomes comparisons and storing the result, and
several nodes to perform the genomes comparisons. Previously, they were both
deployed within a single image that needs to be imported to the target cloud.
However, many clouds either do not allow importing custom VM images or do
not support images built for other clouds. This challenge can be easily solved
using the CYCLONE middleware: using SlipStream, IFB developers can create
generic deployment recipes that can be deployed to all major cloud platforms,
such as the OpenStack cloud used in the CYCLONE testbed.

Deploying each component to different nodes requires one master and
several worker nodes according to the size of the genomes dataset to analyze.
The CYCLONE middleware stack also helps making this task easy, as Slipstream
provides the facilities to deploy and scale heterogeneous applications consisting
of different types of VMs. This set of VMs and their data exchange needs to be
isolated from other cloud users and VMs for security and operating purposes,
for example, to ease the management of the data exchange between the nodes
or the NFS exports and mounts. For this purpose, CYCLONE leverages the
VPN service offered by CNSMO.

Within the Bioinformatics use case, the CYCLONE Federation Provider and
the PAM module provide easy and secure access management for the deployed
VMs. They also provide reliable and ubiquitous identity management using
user identities from eduGAIN federated identity providers. The PAM module
has simplified the access of the Bioinformaticians to their VMs by liberating
them of managing the SSH keys, which can be problematic according to the
computing skill of the user and the operating system that is used by them.
At last, the PAM module simplified the security of the Bioinformatics cloud
infrastructure from both the end-user and the cloud provider point of view.”

Creating VPNs Over any Cloud

CNSMO is integrated with Slipstream and relies on its facilities to deploy the
underlying VM image as well as execute scripts to set it up. A single SlipStream
application component can run any number of CNSMO agents (one agent in
each of the application VMs), depending on the network services that have
been selected to be deployed together with the application. Figure A.3 shows
the integration of CNSMO in the SlipStream market place.

There are three network services in CYCLONE: a multi-cloud VPN, a firewall,
and a load balancer. They were the first to be requested within the flagship use
cases and have been fully implemented, tested, integrated, and validated over
several cloud infrastructures. The following items explain the use of CNSMO on
the example of the VPN service by iterating the general bootstrapping process
(see Figure A.3):

1. Before deploying an application, its SlipStream recipe is created which
includes the network services that should be deployed.

2. When the application deployment is initiated through SlipStream, the
SlipStream Orchestrator VM instantiates the application VM images as
new VMs on the target cloud and executes the respective deployment

"The content for this section was mainly provided by Christophe Blanchet (IFB) for [151] and
edited by me to fit to the narrative of this thesis.

182

A.5. CYCLONE in Action

-
ﬁ DevOps Engineer

o Recipe creation " omts i E

SlipStream application deploy-
ment, VM preparation and

CNSMO instantiation VPN server @xc““‘:]%
T ‘ 'Y Openl N S CNSM?’
e CNSMO deploys VPN service \:J 5
CNSMO creates
o * VPN server VM Q Q
* VPN clients (dockerized)
+ VPN connection Cloud 1 Cloud 2

Figure A.3: Integration of CNSMO with SlipStream

recipes. Part of this deployment is the CNSMO image which contains a
systemd unit that executes CNSMO as a system service.

3. Once CNSMO is launched, it provides an API so that SlipStream can
control the deployment of the network services. To this end, the CNSMO
SlipStream application uses a deployment recipe that includes the appro-
priate instructions for CNSMO to deploy the chosen networking services,
in this case a VPN. It is important to clarify that the recipe is run by
SlipStream inside the CNSMO VM. For instance, for the concrete case
of a VPN network service, the SlipStream command line client calls the
CNSMO API to deploy the VPN service, consisting of a VPN server as
well as VPN clients.

4. The SlipStream deployment parameters are used by CNSMO to determine
which services to deploy. For the exemplary distributed VPN service,
CNSMO carries out the following steps:

¢ It creates the VPN server VM.

e It creates the VPN clients inside the VMs of the application that has
been deployed by SlipStream.

e Itlaunches the VPN server to configure the VPN clients and establish
the VPN service.

¢ Finally, it uses the SlipStream command line client to announce to the
rest of the components that the networking service has been set up,

183

A. FurtHER INFORMATION ABOUT TRESOR anp CYCLONE

so that SlipStream can resume the deployment of other application
constituents.®

Using Academic Identities in Research Prototypes

The “Internet of Services Lab” (IoSL) is a teaching project of TU Berlin

where students work in groups of three to six, implementing software related
to numerous research projects and other topics. This type of teaching project is
quite popular in other study paths related to computer science as well as at other
universities. Within the IoSL, there are different areas where the application of
CYCLONE provides numerous benefits:

* Rapid Provisioning of Resources for Student Projects

Students require resources for conducting their projects, mostly virtual
machines. In the current set-up it is a manual procedure to provision
those resources. By leveraging the testbed as well as the deployment
tools, CYCLONE minimizes the required effort of the student supervisors
to create new student VMs considerably.

Utilization of SlipStream Modules for Reproducible Application Deploy-
ments

After students finish their course it is often problematic for other students
and their supervisors to pick up their work. Most often, documenta-
tion is lacking and software versioning is not reliable, if it is available at
all. By building upon SlipStream modules, students can create applica-
tion deployments that can be easily reproduced, extended, and scaled.
Also, students will learn how to structure their applications to leverage
cloud characteristics, for example, how to create immutable application
deployments.

Integration of the CYCLONE Federation Provider for Simplified Account
Management

Teaching experience shows that every built demonstrator has its own
user management, oftentimes not following security best practices. By
integrating the Federation Provider into each demonstrator, students
learn about federated identity and are also liberated from implementing
their own user management, as all students and supervisors will be able
to login to the demonstrators via their eduGAIN identities.

8The content for this section was mainly provided by José Aznar (i2Cat) for [151] and signifi-
cantly edited by me to fit to the narrative of this thesis.

184

Danksagung

Obwohl ich das vorliegende Werk als rein wissenschaftliche Arbeit betrachte, so
mochte ich der Gepflogenheit einer Danksagung an dieser Stelle nachkommen.

Auf privater Seite mochte ich mich zuerst bei meinen Eltern bedanken, dass
sie stets mit groSem Nachdruck an meiner akademischen Laufbahn interessiert
waren und erhebliche Miihen fiir meine Unterstiitzung aufgebracht haben.
Gleich danach danke ich meiner Frau, dass sie mir trotz zwei gemeinsamer Kin-
der oft den Riicken freigehalten und mir unerldsslich moralische Unterstiitzung
zukommen lassen hat.

Auf akademischer Seite bedanke ich mich bei meinem Betreuer,
Prof. Dr. Axel Kiipper, fiir seine Unterstiitzung und die Einrichtung
von Freirdumen fiir die Arbeit an der Dissertation. Weiterhin danke ich allen
meinen ehemaligen Kollegen am Lehrstuhl fiir den intensiven und fruchtbaren
Austausch in den letzten Jahren. AufSerdem geht mein Dank an die weiteren
Gutachter, dass sie sich die Zeit genommen haben, um mir hilfreiches Feedback
zum Entwurf zu geben.

Zuletzt bedanke ich mich bei Torsten Frank und der medisite GmbH, dass
sie mir durch einen flexiblen Arbeitsvertrag den ziigigen Abschluss dieser
Arbeit ermoglicht haben.

185

	Title Page
	Zusammenfassung
	Abstract
	Contents
	List of Figures
	List of Tables
	Introduction
	Addressing Contemporary Cloud Challenges: The TRESOR and CYCLONE Ecosystems
	TRESOR - Providing a Secure Cloud Ecosystem for the German Healthcare Sector
	CYCLONE - Ecosystem Middleware for Multi-cloud and Federated Cloud Applications

	Research Questions - Cloud Challenges
	Research Method and Thesis Structure
	Contributions of this Thesis

	Challenges, Approaches, and Related Work
	Establishing User-centric Cloud Service Registries
	Introduction: Use Cases, Stakeholders and Implementation Concepts
	Challenges and Requirements for User-centric Service Registries
	Related Work
	The Semantic Web
	User-relevant Cloud Service Selection Criteria
	Domain Specific Languages (DSLs)
	Matchmakers, Marketplaces, and Selection Helpers

	Comparing Use Case Requirements to the Related Work

	Enabling End-to-end Security for HTTP Services with TCTP
	Introduction: Technology ``Roundup''
	Challenges and Requirements for HTTP Entity-body Security
	Related Approaches to Entity-body Encryption
	TCTP ``At a Glance''
	Comparing TCTP to Related Approaches

	Managing Cloud Service Consumption through a Distributed Cloud Proxy
	Requirements for Proxies in Cloud Ecosystems
	Related Approaches
	Distributed Cloud Proxy: Concept

	Secure Management of Federated, Multi-cloud Application Deployments
	Requirements for Secure Application Deployments in Cloud Ecosystems
	Related Technologies

	Component Design and Development
	Cloud Service Registry Architecture
	SDL-NG
	Design Considerations
	Basic Framework Structure
	SDL-NG Example and Overview
	Types and Properties
	Predefined instances
	ServiceCompendium Class
	Implementing the Description Lifecycle
	Property Classifications
	Generating URIs
	SDL-NG Value-Types
	SDL-NG Value Type Wrappers
	Exporting Data
	SDL-NG Multi-language Self-documentation
	HTML Parsing
	RDF Mapping

	Business Vocabularies
	Rails Backend
	Client
	Service Evaluator
	Redis Job Queue
	Constraint-based Matchmaker
	Database
	Meeting the Stakeholder Requirements
	Registry performance characteristics

	Trusted Cloud Transfer Protocol
	HTTP Application Layer Encryption Channels (HALECs).
	TCTP Discovery
	TCTP Handshake
	TCTP Entity-body Encryption
	TCTP Implementation

	Distributed Cloud Proxy
	Early proxy prototype
	Technology
	Architecture

	Final Proxy
	Introduction
	Proxy Communication Sequence
	Deployment and Configuration
	Source Code Structure
	Using EventMachine for the Proxy Implementation
	Proxy Facilities

	Security Architecture for Federated Multi-cloud Applications
	Overview: Objectives and Architecture
	The Federation Provider
	Managing Multi-cloud Application Deployments
	Federated Authorization for Websites and SSH
	Providing Unified Logging

	Evaluation
	Evaluating the Cloud Service Registry Architecture
	Motives and Purpose
	Evaluation Activities in the TRESOR Focus Group
	Discussing USDL with Leidig and Oberle
	Trusted Cloud ``AG Standards'' Focus Group Discussion
	Cloud Storage Vocabulary Questionnaire
	Open Cloud Computing Map: Expert Interview and Findings
	Open Service Compendium Face-to-Face Questionnaire
	Interpretation of the Evaluation Results Regarding the Main Requirements
	Discussion and Follow-up Questions

	Performance Testing the TCTP Rack Middleware
	Performance and Integration Efforts of the Proxy Prototype
	Deploying the TRESOR Components to Production
	Distributed Authorization: PDP, PAP, and Location Server
	Proxy, Federation Provider, Identity Provider and SkIDentity
	TRESOR Broker and Marketplace
	PaaS, Cloud Services, and Logging

	Architecture Blueprint for End-to-End Security in Medical SaaS Offerings
	Motivation
	Application Characteristics
	Blueprint Architecture and Prototype
	Meeting the Blueprint Stakeholders' Requirements
	Summary

	Securing CYCLONE
	Applying the Security Architecture within CYCLONE
	Federation Provider Security Modelling and Threat Analysis
	Step 1: Decomposing the Application
	Steps 2 and 3: Determining Threats and Countermeasures

	Economic Benefits of the Security Architecture
	Limitations

	Summary and Outlook
	Answers to the Research Questions
	Key Takeaways for Cloud Stakeholders and Researchers
	Limitations
	Future Work

	Bibliography
	Further Information About TRESOR and CYCLONE
	TRESOR Key Components
	TRESOR Use Cases
	CYCLONE Overview: General Approach and Flagship Use Case
	CYCLONE Middleware Components
	CYCLONE in Action

