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The great popularity of Erno Rubik's ingenious cubical puzzle led to the appearance 
of many variations on Rubik's idea: a 4 x 4 x 4 cube, puzzles in the shape of 
tetrahedra and dodecahedra, etc. One natural variation that never appeared on toy 
store shelves is the four-dimensional version of Rubik's cube-what might be called a 
"Rubik's tesseract." In this paper we consider the mathematics of the 3 X 3 X 3 X 3 
Rubik's tesseract. This has also been studied independently by H. R. Kamack and 
T. R. Keane (see [2]), Joe Buhler, Brad Jackson, and Dave Sibley. 

Of course, the tesseract is somewhat harder to work with than the cube, since we 
can't build a physical model and experiment with it. The results described below 
were discovered with the aid of a simulation of the tesseract on a Macintosh 
computer. In this simulation the computer displays a representation of the tesseract 
on the screen, and the user uses a pointing device (a mouse) to ask the computer to 
twist sides of the tesseract. To understand the graphic representation of the tesseract 
used in this simulation, it might be helpful to consider first the easier problem of 
representing the ordinary three-dimensional Rubik's cube in a way that two-dimen- 
sional people could understand. 

One way to make a two-dimensional representation of the Rubik's cube would be to 
imagine unfolding the surface of the cube in the familiar way illustrated in FIGURE 1. 
(In all of the figures in this paper, the colors of the sides of the cube are represented 
as black-and-white patterns. We will continue to refer to them, however, as colors.) 
Unfortunately, this representation would not be very useful to a two-dimensional 
person trying to solve the cube. The problem is that this representation doesn't show 
clearly which colors are attached to different sides of the same cubie. (The 27 small 
cubes that make up a Rubik's cube are usually called "cubies.") For example, the 
three "colors" attached to the cubie in the front bottom right comer of the cube in 
FIGURE 1 are stripes, gray, and dots, but it takes some thought to figure this out from 
the two-dimensional representation in FIGURE 1. 

FIGURE 1 

Here's a more useful way to make a two-dimensional representation of the cube. 
Imagine slicing the cube horizontally into three layers, and then spreading these 
layers out and viewing them from above (see FIGURE 2). Each layer would look like a 
3 X 3 square, with the same four colors appearing along the sides of all three layers. 
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In addition, two more colors appear in the interiors of all the squares in the first and 
third layers; these are the colors that face down and up on the cube. (You have to 
imagine that you can see through the cubies in the lower layer, to see from above the 
dots on their bottom faces.) A two-dimensional person viewing this picture would not 
be able to visualize how the three square layers should be stacked up vertically to 
form a cube, or the directions in which the colors in the interiors of the first and third 
layers face on this cube. However, this representation has the advantage that the 27 
small squares in this two-dimensional picture correspond to the 27 cubies of the 
Rubik's cube, and the colors attached to each cubie on the Rubik's cube are also 
attached to the corresponding square in the two-dimensional representation. 

FIGURE 2 

Clearly, twisting the bottom or top of the Rubik's cube corresponds in this 
two-dimensional representation to twisting the first or third square layer. Twists of 
the other four sides of the cube look somewhat more complicated in the two-dimen- 
sional representation, since they cause cubies to move between layers, and they cause 
some colors that start out facing up or down on the cube to face toward the sides and 
vice-versa. The reader might enjoy working out how these twists would look to a 
two-dimensional person using this representation of the Rubik's cube. 

By analogy, we can imagine the 3 X 3 X 3 X 3 tesseract as three 3 X 3 X 3 cubes 
that are stacked "up" in the fourth dimension. All three cubes have the same six 
colors assigned to their faces, and in addition there are two more colors assigned to 
the interiors of all of the cubies in the first and third cubes. (We will continue to refer 
to the 81 small cubes in this representation as "cubies," although each actually 
represents one of the 81 small tesseracts that make up the Rubik's tesseract.) We can 
picture it as three Rubik's cubes that are identical, except that the first and third are 
made out of colored plastic instead of the usual black plastic. This is illustrated in 
FIGURE 3; the colored stickers on the sides of the cubies are shown in this figure as 
being smaller than the stickers on the sides of a real Rubik's cube, to allow the colors 
of the plastic of the first and third cubes to show through around the edges. The 
computer simulation of the tesseract mentioned above displays a picture similar to 
FIGURE 3 on the screen of the computer. 

Of course, the computer simulation also maintains internally a mathematical 
description of the Rubik's tesseract in which the positions of the 81 cubies are 

This content downloaded from 65.206.22.38 on Mon, 19 May 2014 12:54:07 PM
All use subject to JSTOR Terms and Conditions



VOL. 65, NO. 1, FEBRUARY 1992 29 

represented by assigning them coordinates in R4. Although this representation will 
not be used in the discussion below, the reader may be interested in a brief 
description of it. The coordinate system is set up in such a way that the centers of the 
81 cubies are the points of R4 all of whose coordinates are -1, 0, or 1. Each cubie 
has an exposed side-and hence a color-facing in the direction of each dimension 
for which the corresponding coordinate of its center is nonzero. The twists of the 
"faces" of the Rubik's tesseract, which are described geometrically below, are 
computed mathematically by the computer by applying appropriate rotations in R4 to 
certain subsets of the tesseract. 

The three-dimensional Rubik's cube has six square faces, each with a different color 
assigned to it; the tesseract has eight cubical "faces." The first and third cubes 
represent two of the faces of the tesseract, and the colors in their interiors face in 
opposite directions in the fourth dimension when the cubes are stacked "up" to form 
a tesseract. The gray stickers on the tops of all three cubes identify the top layers of 
the three cubes as making up another face of the tesseract. Similarly, the fronts, 
backs, bottoms, and left and right sides of the three cubes make up the other five 
faces. 

The Rubik's cube contains three kinds of cubies: corner cubies, which have three 
colors attached to them; edge cubies, with two colors; and cubies in the centers of the 
faces, which have only one color. (We are ignoring the cubie in the center of the 
cube, which has no color attached to it and plays no role in the puzzle. In fact, readers 
who have taken their Rubik's cubes apart know that there actually is no cubie in the 
center.) Note that in some cases cubies of the same type look quite different in the 
two-dimensional representation of the cube described above. For example, the 
corners of the middle square layer and the edges of the first and third layers all 
represent edge cubies. 

The pieces of the tesseract fall into four categories, which can be identified by the 
number of colors attached to them. For example, the corners of the middle cube in 
FIGURE 3 and the edges of the first and third cubes all have three colors attached to 
them, and therefore all belong to the category of three color cubies; we will call these 
3C cubies. Note that again we are ignoring the cubie in the center of the center cube 
in FIGURE 3, but the centers of the first and third cubes have a color assigned to their 
interiors, so they are 1C cubies. The reader can check by studying FIGURE 3 that 
there are a total of 8 1C cubies, 24 2C cubies, 32 3C cubies, and 16 4C cubies. 

The tesseract can be scrambled by twisting any of its eight faces. The twists that 
are easiest to understand in FIGURE 3 involve rotating the first and third cubes, which 
we have already seen represent two of the eight faces. Since the faces are cubical 
rather than square, they can be rotated in many different directions. For example, we 

i ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~~~~~~~~~-- -i~ - - -/ - - i - w 

FIGURE 3 
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could rotate the first cube 900 around a vertical axis to bring the zigzag color on its 
right side to the front. Note that this rotation can be thought of as simultaneously 
twisting the lower, middle, and upper layers of the first cube in the same direction. 
Similarly, we can imagine slicing this cube into either front, middle, and back layers 
or left, middle, and right layers, and there are other rotations of the cube that will 
result in these layers being twisted simultaneously 900 in the same direction. Other 
rotations are also possible, such as rotations around diagonal axes, but note that they 
can all be accomplished by composing the three types of 900 rotations. 

Now let's consider the face consisting of the right sides of all three cubes. These 
sides form another cubical face when the cubes are stacked "up" in the fourth 
dimension, but our inability to visualize this stacking makes some of the possible 
rotations of this face difficult to understand. However, there is one rotation of this face 
that is easy to understand. The remarks in the last paragraph should make it clear that 
there is a way of rotating this face that has the effect of simultaneously twisting the 
right sides of all three cubes in the same direction. Similarly, we can twist any side of 
the three cubes in any direction, as long as we perform the same twist simultaneously 
on all three cubes. There are other rotations of faces of the tesseract that are harder to 
understand because they move some cubies from one cube to another, and they cause 
the colors assigned to the interiors of some cubies to move to their surfaces, and 
vice-versa. Readers who have worked out how twists of the sides of the Rubik's 
cube would look to a two-dimensional person should be able to figure out the effects 
of these more complicated rotations. Fortunately, it is possible to analyze the math- 
ematics of the tesseract without understanding in detail what these rota- 
tions do. 

The key to unscrambling both the cube and the tesseract is to find sequences of 
twists whose net effect is to perform some simple, useful operation on the cube or 
tesseract. Sequences of twists are called processes, and the sets of all processes on the 
cube and tesseract form groups under composition, when processes that have the 
same effect are identified. It should be clear from the last paragraph that any Rubik's 
cube process can be applied simultaneously to all three cubes of the tesseract. 
However, there is a simple trick that makes it possible to perform some cube 
processes on only one cube of the tesseract, without affecting the other two cubes at 
all. Readers who want to solve the tesseract without getting any hints might want to 
try to find this trick for themselves before reading the next paragraph. 

Consider the following three-step tesseract process. First rotate the first cube so 
that the gray stickers that start out on top end up facing to the right, then twist the 
right sides of all three cubes 900 clockwise, and finally undo the first rotation to return 
the gray side of the first cube to the top. The net effect of this process is to twist the 
top of the first cube and the right sides of the other two cubes 900 clockwise. Similar 
processes can be used to twist simultaneously the right sides of the last two cubes and 
any side of the first cube, and by composing such processes we can perform any cube 
process on the first cube, simultaneously twisting the right sides of the other two 
cubes some number of times. Let us define the total twist of a cube process to be the 
total number of 900 clockwise twists in the process. (A 900 counterclockwise twist can 
be treated as three 900 clockwise twists.) Then it should be clear that if this procedure 
is used on a cube process whose total twist is a multiple of 4, then the result will be a 
tesseract process whose net effect is to perform this cube process on the first cube of 
the tesseract, leaving the other two cubes unchanged. A similar procedure can be 
used to apply any cube process whose total twist is a multiple of 4 to any of the three 
cubes of the tesseract, without changing the other two cubes. 
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In fact, any cube process can be applied to the middle cube of the tesseract. The 
reader is invited to try proving this by finding a four-move process that twists a side 
of the middle cube 900, leaving the rest of the tesseract fixed. By a move here we 
mean any reorientation of a face of the tesseract, including 1800 rotations and 
rotations around diagonal axes. (Here's one way to approach this problem: First find a 
four-move process that twists the middle layer of the first cube 900, leaving the rest of 
the tesseract fixed. Then figure out why this is essentially the same as the original 
problem.) Cube processes whose total twist is even can also be applied to the first and 
third cubes of the tesseract, but I know of no easy proof of this. (A somewhat indirect 
proof can be constructed using the analysis of possible positions of the tesseract, 
which is presented below. According to this analysis, the result of applying a cube 
process with even total twist to the first or third cube is a possible position.) The 
shortest tesseract process I have found that twists one face of the first cube 1800 and 
fixes the rest of the tesseract is 35 moves long. 

Fortunately, many useful cube processes have a total twist that is a multiple of 4. 
Some of them are commutators-elements of the process group of the form 
aba - 'b - '-and clearly the total twist of a commutator is always a multiple of 4. For 
both the cube and the tesseract, it is useful to consider two kinds of processes: those 
that change the locations of cubies, and those that leave the locations of all cubies 
fixed but change the orientations of some cubies. In the first category, there are 
well-known commutator cube processes that change the locations of just three corner 
cubies or three edge cubies, leaving the locations and orientations of all other cubies 
fixed (see [1] and [3]); we will use the language of permutation groups and call these 
corner 3-cycles and edge 3-cycles. In the second category, there are commutator 
processes that change the orientations of two edge cubies and others that twist two 
corner cubies 1200 in opposite directions, leaving the rest of the cube unchanged. All 
of these processes have a total twist that is a multiple of 4, so the technique described 
above can be applied to them, resulting in tesseract processes that perform 3-cycles of 
corners or edges of any of the three cubes, processes that flip two edge cubies of any 
cube, and processes that twist two corner cubies of any cube in opposite directions. It 
is not hard to modify these processes slightly to find processes that perform arbitrary 
3-cycles of 2C, 3C, or 4C cubies, and processes that change the orientations of pairs 
of 2C, 3C, or 4C cubies from different cubes. At this point it may seem that the 
tesseract is not very different from the cube, but there are a few surprises still to 
come. 

If we ignore the orientations of the cubies, it is not hard now to analyze which 
permutations of cubies can be achieved by rotating the sides of the tesseract. 
Consider again the rotation of the first cube 900 around a vertical axis, bringing the 
zigzag color on its right side to the front. Looking at the effect of this rotation on the 
different categories of cubies, we see that it results in a 4-cycle of 2C cubies, three 
disjoint 4-cycles of 3C cubies, and two disjoint 4-cycles of 4C cubies. Clearly the 
same would be true of any 900 rotation of any face, so each such rotation results in an 
odd permutation of 2C and 3C cubies and an even permutation of 4C cubies. Note 
that IC cubies are not affected by any rotations, so we can ignore them from now on. 
Since every process can be written as a composition of 900 rotations of faces, every 
process must cause an even permutation of 4C cubies, and permutations of the 2C 
and 3C cubies that are either both even or both odd. 

Since every even permutation can be written as a composition of 3-cycles, we can 
use the tesseract 3-cycle processes derived above to achieve any even permutations of 
the 2C, 3C, and 4C cubies. To reach a configuration in which the permutations of the 
2C and 3C cubies are both odd, first do a 900 rotation of any face. Now the 
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permutations of the 2C and 3C cubies required to reach the desired configuration are 
even, and can therefore be achieved as before. Thus the possible permutations of 
cubies are precisely those that consist of an even permutation of 4C cubies and 
permutations of 2C and 3C cubies that have the same parity. 

To analyze how the orientations of cubies can be changed by rotating sides of the 
tesseract, it will be useful to introduce some notation. First, let us fix a numbering of 
the dimensions of the tesseract. We will let dimension number 1 be the front-to-back 
dimension, dimension 2 the left-to-right dimension, dimension 3 the top-to-bottom 
dimension, and of course dimension 4 will be the fourth dimension, represented in 
FIGURE 3 by the assignment of cubies to different cubes. We define the dimension 
number of any color to be the number of the dimension in which that color faces 
when the tesseract is unscrambled. For example, the gray stickers on all three cubes 
face up when the tesseract is unscrambled, so the dimension number of gray is 3. 
Remember that the colors in the interiors of the first and third cubes face in the 
fourth dimension, so their dimension number is 4. 

Finally, in any position of the tesseract we assign to each cubie an orientation 
vector c (c1, C2, C3, C4), where ci = the dimension number of the color that is facing 
in dimension i on this cubie. If there is no color facing in dimension i, we let ci =0. 
Of course, when the tesseract is unscrambled we always have either ci = i or ci =, 
but when the tesseract is scrambled colors sometimes face in directions other than 
their original directions, so we may have 0 # ci # i. Note that the dimension numbers 
of colors are fixed, but the orientation vectors of cubies can change when sides of the 
tesseract are twisted. 

For example, consider the top right edge cubie of the first cube in FIGURE 3. It has 
no color facing forwards or backwards, so the first coordinate of its orientation vector 
is 0, but it does have colors facing in the other three dimensions. Thus its orientation 
vector is (0, 2, 3, 4). Now suppose we rotate the first cube 900 around a vertical axis, 
bringing this cubie to the front. Then the zigzag color on its right side will move to 
the front, and in this new position there will be no color on this cubie facing toward 
the left or right. Since the dimension number of the zigzag color is 2, the orientation 
vector of this cubie after the twist will be (2,0,3,4). Note that the first two 
coordinates of the orientation vector have been exchanged by this twist. In fact, the 
reader should be able to verify that this twist causes the first two coordinates of the 
orientation vectors of all the cubies it affects to be exchanged. The same is true of 
other 900 rotations of faces, except that different rotations may cause different pairs of 
coordinates to be exchanged. 

Using this notation, we can now analyze the possible orientations of cubies when 
the tesseract is scrambled. Let us first consider the orientations of the 2C cubies. 
Each of these cubies has only two nonzero entries in its orientation vector. We will 
call a 2C cubie sane if the nonzero entries in its orientation vector appear in 
increasing order, and flipped otherwise. Of course, all 2C cubies are sane before the 
tesseract is scrambled. 

When the first cube is rotated 900 around a vertical axis, the four 2C cubies in its 
middle layer are affected. All of them have an interior color that faces in dimension 4 
(and thus the fourth coordinates of their orientation vectors are nonzero), and in 
addition two have colors facing in dimension 1 and two have colors facing in 
dimension 2. The twist exchanges the first two coordinates of the orientation vectors 
of all four cubies. In general, for any 900 rotation of a face of the tesseract there will 
be only four 2C cubies affected, and there will be distinct numbers i, j; and k such 
that the twist exchanges coordinates i and j of the orientation vectors of the cubies, 
all four of the cubies have nonzero kth coordinates in their orientation vectors, and in 
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addition two have nonzero ith coordinates and two have nonzero jth coordinates. 
Clearly if k is between i and j, then all four cubies will have their sanities switched 
by this twist, and otherwise their sanities will be unchanged. It follows that the 
number of flipped 2C cubies will be even in all possible positions of the tesseract. 
Thus if we are told the locations and orientations of all 2C cubies except one in some 
scrambled position of the tesseract, we can deduce the orientation of the last 2C 
cubie. Since we have already seen that there are processes that flip the 2C cubies two 
at a time, this is the only restriction on the possible orientations of the 2C cubies. 

Consider now any 3C cubie. Before the tesseract is scrambled it has an orientation 
vector c = (C1, C2, C3, C4) that has three nonzero entries. After some process has been 
executed, it will have a new orientation vector c' that is a permutation of c. We will 
call the orientation of this cubie even or odd, according to whether this permutation 
is even or odd. Clearly the orientations of all 3C cubies are even before the tesseract 
is scrambled, and a 900 twist of a face affects 12 3C cubies, transposing two 
coordinates of their orientation vectors and therefore changing the parities of their 
orientations. Thus in any position of the tesseract there must be an even number of 
3C cubies whose orientations are odd. Note that, unlike the restriction given above on 
the orientations of 2C cubies, this does not give us enough information to determine 
the orientation of a 3C cubie, even if we know the locations and orientations of all 
other cubies. For example, consider a process that leaves the locations and orienta- 
tions of all cubies fixed, except perhaps for one 3C cubie. We know the orientation of 
this cubie must be even, but the three colors attached to this cubie can be permuted 
in 3! = 6 ways, and 3 of these are even permutations. Thus, either there are other 
restrictions on the possible orientations of the 3C cubies, or there must be processes 
which change the orientation of a single 3C cubie, leaving the rest of the tesseract 
fixed. Experience with the Rubik's cube suggests that the first of these possibilities is 
the most likely, but in fact the second is correct. 

To see how to construct a process that changes the orientation of a single 3C cubie, 
recall that we already know how to flip two edge cubies on the first or third cube. By 
modifying these processes we can in fact exchange any two colors on any two 3C 
cubies, fixing the rest of the tesseract. Now let C1, C2, and C3 be any three 3C 
cubies. Let p be a process that exchanges the first two colors on C and any two 
colors on C2, and let q be a process that exchanges the last two colors on C and any 
two colors on C3. We let the reader verify that the commutator pqp - = (pq )2 
performs a 3-cycle on the colors attached to C1, and has no net effect on C2 or C3. 

(The reader might enjoy trying to find a more efficient process that produces the same 
result. My shortest solution takes 20 moves.) Thus any even permutation can be 
performed on the colors attached to any 3C cubie. Combining this with the fact that 
any two colors on any two 3C cubies can be exchanged, we can conclude that the only 
restriction on the orientations of 3C cubies is the one we have already stated, that the 
number of 3C cubies with odd orientations must be even. 

Finally, consider the 4C cubies. The four colors attached to any 4C cubie can be 
permuted in 4! = 24 ways, but half of these can be ruled out immediately by a parity 
argument. To prove this, we set up a four-dimensional coordinate system in which the 
coordinates of the centers of the 4C cubies are (? 1, + 1, + 1, + 1). We define the 
sign of the location of a 4C cubie to be the product of the coordinates of its center. 
Thus, the location is positive if there are an even number of - l's in the coordinates, 
and negative if there are an odd number of - l's. As before, we also call the 
orientation of a 4C cubie even or odd depending on how its orientation vector has 
been permuted. The reader can now check that a 900 rotation of a face affects eight 
4C cubies, changing both the sign of the location and the parity of the orientation of 
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each. Therefore if a cubie's location has the same sign as it had before the tesseract 
was scrambled, then its orientation must be even, and if not, its orientation must be 
odd. In particular, any process that does not change the locations of any 4C cubies 
can only perform even permutations on their orientation vectors. 

This still leaves us with 12 possible orientations for each 4C cubie. Using processes 
we have already discussed we can simultaneously put 15 of the 16 4C cubies in any of 
these 12 orientations, as follows. We have already found processes that twist two 
corners of the first or third cube 1200 in opposite directions. Variations on these 
processes will allow us to perform any 3-cycle on the orientation vector of any 4C 
cubie, simultaneously performing a 3-cycle on the orientation vector of some other 4C 
cubie as well. Combining these processes we can therefore perform any combination 
of even permutations on the orientation vectors of all the 4C cubies except one. We 
must still determine the possible orientations for this last 4C cubie. 

It will turn out that there are fewer than 12 possible orientations for the last 4C 
cubie, but based on our discussion of 3C cubies the reader can probably guess that 
there will be more than one possibility. In fact, the proof of this is very similar to the 
proof for 3C cubies. Let C1, C2, and C3 be three 4C cubies. Let p be a process that 
performs a 3-cycle on the first three coordinates of the orientation vector of C1, 
simultaneously permuting the orientation vector of C2, and let q be a process that 
performs a similar 3-cycle on the last three coordinates of the orientation vector of C 1, 
simultaneously permuting the orientation vector of C3. Then the commutator 
pqp - q- transposes the first and last coordinates, and also the second and third 
coordinates, of the orientation vector of C1, leaving the rest of the tesseract fixed. 
Similarly we can transpose any two disjoint pairs of coordinates of the orientation 
vector of any 4C cubie. (Again, there are more efficient ways of accomplishing this. 
My shortest process takes 16 moves.) 

Let us say that two orientation vectors are similar if either they are equal, or we 
can transpose two disjoint pairs of coordinates of one to get the other. It is easy to 
check that this is an equivalence relation, and each equivalence class has four 
elements. To complete the analysis of the possible orientations of 4C cubies, it will be 
useful to choose representatives of these equivalence classes, which we do as follows. 
We say that an orientation vector c = (c1, C2, C3, C4) is normal if c4= 4, and we 
define the normal form of c to be the unique vector c- = (, C-2, C3, C) such that c is 
similar to c and c is normal. Since we have shown that the orientation of any 4C cubie 
can be changed to any other similar orientation without changing the rest of the 
tesseract, it suffices now to determine the possible normal forms for the orientation 
vector of the last 4C cubie. 

For future use we observe that if c and c' are similar orientation vectors and we 
transpose the same pair of coordinates of both, then the resulting vectors are still 
similar. Therefore, if we transpose the first and second, first and third, or second and 
third coordinates of c, the normal form of the resulting vector can be found by 
performing the same transposition of E. Transposing the third and fourth coordinates 
of c yields the same result as transposing the first and second coordinates of the 
similar vector (c2, cl, c4, C3), and therefore the normal form of the resulting vector 
can be found by transposing the first and second coordinates of E. Similarly it can be 
shown that any transposition of two coordinates of c causes some two of the first three 
coordinates of the normal form of c to be transposed. 

For an orientation vector c that is normal we define the twist of c to be the value of 
i for which ci =3. If c is not normal, we define the twist of c to be the twist of its 
normal form-i.e., the unique i for which c-i = 3. The twist of a cubie is the twist of 
its orientation vector. We are now ready to state the last restriction on the orienta- 
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tions of 4C cubies. We claim that the sum of the twists of the cubies in positive 
locations and the sum of the twists of cubies in negative locations are always 
congruent mod 3. Equivalently, if we define the signed twist of a cubie to be equal to 
the twist of the cubie times the sign of its location, then the sum of the signed twists 
of all cubies is always a multiple of 3. 

Clearly, before the tesseract is scrambled, all 4C cubies have orientation vector 
(1, 2,3,4), which is normal, so all 4C cubies have a twist of 3. Thus the sum of the 
signed twists of all cubies is 0. Now consider any 900 rotation of a face of 
the tesseract. Recall that such a rotation transposes the same two coordinates of the 
orientation vectors of eight 4C cubies, simultaneously reversing the signs of their 
locations. As we have already observed, the effect of this operation on the normal 
forms of the orientation vectors of these cubies will be to cause some two of the first 
three coordinates of these normal forms to be transposed. Now consider the effect of 
this transposition on the twists of these cubies. The reader can easily check that if the 
twist of some normal orientation vector is t, then transposing the first two coordinates 
of this vector gives a normal orientation vector whose twist is congruent to - t mod 3. 
Similarly, transposing the first and third coordinates results in a twist congruent to 
1 - t mod 3, and transposing the second and third gives a twist congruent to 2 - t 
mod 3. Thus rotating any face 900 will perform one of these three transformations on 
the twists of the eight cubies affected by the rotation. 

Finally, we consider the effect of a 900 rotation on the signed twists of the 4C 
cubies affected. According to the last paragraph, for each such rotation there is a 
constant k such that each affected cubie with a twist of t before the rotation has a 
twist congruent to k - t mod 3 after rotation. Since the sign of the location of each of 
these cubies is reversed by the rotation, a cubie in a positive location whose twist is t 
has its signed twist changed from t to t - k mod 3, while if the location is negative 
then the signed twist changes from - t to k - t mod 3. Since half of the signed twists 
are decreased by k and half are increased by k mod 3, the sum of the signed twists is 
unchanged mod 3. This proves our claim that the sum of the signed twists of the 4C 
cubies is a multiple of 3 in all possible positions of the tesseract. 

If we are told the locations and orientations of 15 of the 16 4C cubies, we can now 
determine what orientations are possible for the last 4C cubie. From the restrictions 
derived above we can determine both the parity and the twist of the orientation. If 
the orientation vector c of this cubie is normal then we know c4 = 4, and the twist of 
the cubie tells us the value of i for which ci = 3. The values of the other two entries 
of the orientation vector are then determined by the parity of the orientation. Thus 
there is only one possible normal orientation vector for the last 4C cubie. Since any 
orientation vector is possible if and only if its normal form is, the possible orientations 
are just the four which are similar to this normal orientation. 

We have now given a complete analysis of the possible scrambled positions of the 
tesseract. Using this analysis we can compute the number of such positions-i.e., the 
order of the process group. Considering first the locations of the cubies and ignoring 
their orientations, the 24 2C cubies, 32 3C cubies, and 16 4C cubies can be permuted 
in 24! X 32! X 16! ways. But only even permutations of the 4C cubies are possible, and 
the parities of the permutations of the 2C and 3C cubies must be the same. Thus the 
number of these permutations that can be achieved by rotating the sides of the 
tesseract is (24! X 32!)/2 X 16!/2. For each of these permutations, 23 of the 2C 
cubies can have either of two orientations, with the orientation of the last 2C cubie 
then being determined. Thirty-one of the 3C cubies can have any of six orientations, 
with the orientation of the last 3C cubie being restricted by its parity to only three 
possibilities, and 15 of the 4C cubies have 12 possible orientations, with the last 
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having only four possibilities. Thus the total number of positions of the tesseract is: 

(24!X32!)/2x 16!/2X223x631 X3X 1215X4 

= 1,756,772,880,709,135,843,168,526,079,081,025,059,614, 
484,630,149,557,651,477,156,021,733,236,798,970,168, 
550,600,274,887,650,082,354,207,129,600,000,000,000, 
000 

_1.76 X 10120. 

For comparison, we note that the number of positions for the Rubik's cube is a measly 
4.33 X 1019. 

The Catalan Numbers and Pi 

JOHN A. EWELL 
Northern Illinois University 
DeKalb, IL 60115 

The Catalan numbers (2i -) /n, n = 1,2,. arise naturally in many problems of 
discrete mathematics. For a vigorous discussion of some of these problems see the 
recent article of R. B. Eggleton and R. K. Guy [3]. The universal constant wr is truly 
ubiquitous throughout mathematics and the empirical sciences. However, the con- 
stant occurs most frequently in elementary calculus, which is the cornerstone of 
continuous mathematics. The following series representation of 1/7r relates the 
Catalan numbers and wr in a curious manner. 

2 

1 3 + 9 E0 2( kSl - 2 4k(k+ )2 (1) 

In [4, pp. 36-38] Ramanujan presented 17 series representations of 1/7r, and within 
the confines of elliptic function theory proved three of these. Apparently, Ramanujan 
had very little interest in combinatorics, and accordingly made no attempt to interpret 
the terms of the series in terms of interesting combinatorial objects. However, several 
of his series have terms that involve the central binomial coefficients (2n), n = 0, 1 ... 
Unlike the series representations of Ramanujan our representation (1) requires no 
advanced machinery for its justification. In fact, all of the tools can be found in any 
good elementary calculus textbook. 
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