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Abstract

This dissertation deals with adaptive learning technologies which aim to optimize Technology
Enhanced Learning (TEL) offerings to fit the individual learner’s needs. Thereby, Recommender
Systems play a key role in supporting the user’s decision process for items of interest. This
works very well for e-commerce and Video on Demand services. However, it is found to be the
case that these traditional Recommender Systems cannot be directly transferred to TEL as the
recommendation of course items follows a particular educational paradigm. The special conditions
of this paradigm are first investigated and then taken into account for the realization of new
algorithms.

In order to allow a broad interoperability of a Recommender System with other technical
components, a set of open standards and specifications results in a reference architecture for
such an adaptive learning environment. Based on the realized architecture, activity data have
been collected from students using course materials available online — the courses themselves
comprising face-to-face lectures backed up by digital representations of the presented contents,
blended learning settings as well as online-only courses. The courses provided access to the
course materials via a novel Learning Companion Application. This app also presents learning
recommendations to make the content selection more efficient and effective.

Thereby, this work indicates that an educational Recommender System should not be evaluated
using standard evaluation frameworks that utilize, for instance, a classical n-fold cross-validation.
For this reason, a time-dependent evaluation framework is defined to investigate the precision of the
Top-N learning recommendations at various points in time. Moreover, a new measure is introduced
to determine the Mean Absolute Timeliness Deviation between an item recommendation and the
time when it is actually accessed by the user.

Subsequently, four major techniques for Recommender Systems are realized and applied to
the collected data, evaluated with the time-dependent evaluation framework and successively
optimized. As a reference implementation, a traditional Collaborative Filtering algorithm is
developed and extended to incorporate time information. The results are then compared to the
results of other time sensitive algorithms: an Item-based Collaborative Filtering approach which
has previously been applied to TEL and a new learning path generator which incorporates a set
of contextual information. Finally, a novel time-weighted Knowledge-based Filtering algorithm is
presented and exhaustively analyzed. The evaluation results indicate that time-dependent filtering

which incorporates multi-contextual activity data can produce the most precise recommendations.
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Zusammenfassung

Die vorliegende Dissertation beschéftigt sich mit adaptiven Lerntechnologien, die sich an die
individuellen Bediirfnisse der Lernenden anpassen. Dabei spielen vor allem Empfehlungssysteme
eine Schliisselrolle, da sie den Entscheidungsprozess der Benutzer unterstiitzen. Das funktioniert
sehr gut fir E-Commerce und Video on Demand-Dienste. Allerdings konnen diese Mechanismen
nicht einfach fiir den Bereich des Technologie-gestiitzten Lernens iibertragen werden, da die
Empfehlungen von Kursinhalten einem sehr speziellen Paradigma folgen. Die Eigenschaften
dieses Paradigmas werden in der Dissertation erst analysiert und anschlieend als Basis fiir neue
Algorithmen beriicksichtigt.

Um eine breite Interoperabilitit des Empfehlungssystems mit anderen technischen Kompo-
nenten zu gewdhrleisten, wurden offene Standards und Spezifikationen umgesetzt, mit deren
Hilfe eine Referenzarchitektur fiir adaptive Lernumgebungen umgesetzt wurde. Basierend dar-
auf wurden Aktivitdtsdaten in Echtwelt-Kursen gesammelt — von Présenzunterricht, welcher
durch digitales Vorlesungsmaterial unterstiitzt wurde, iiber Blended Learning-Umgebungen bis
hin zu ausschliefllichen Online-Kursen. Alle Kursteilnehmer hatten Zugriff auf die Kursmate-
rialien tiber die Lernbegleiter-App. Der Entscheidungsprozess der Lernenden wurde durch ein
Lernempfehlungssystem unterstiitzt.

Dabei hat sich herausgestellt, dass herkdmmliche Evaluationstechniken, wie die n-Fold Cross-
Validation, nicht fiir die Evaluation von Lernempfehlungssystemen geeignet sind. Deshalb wurde ein
zeitabhéngiges Evaluations-Framework definiert, mit dem die Prézision von Top-N-Lernempfehlungen
zu verschiedenen Zeitpunkten analysiert werden kann. Zusétzlich wurde eine neuartige Messgro-
Be eingefiihrt, die ,,Mean Absolute Timeliness Deviation”, die den zeitlichen Abstand zwischen
Empfehlungen und dem spéteren Abruf der Inhalte durch den Benutzer misst.

Darauf basierend konnten vier Haupttechniken fiir Empfehlungssysteme realisiert und auf die
gewonnenen Datensétze angewandt werden. Dann wurden diese mit dem definierten Evaluations-
Framework ausgewertet und sukzessive optimiert. Als Referenzimplementierung diente ein tra-
ditioneller Collaborative Filtering-Algorithmus. Dieser lie sich mit zeitabhéngigen Algorith-
men vergleichen: mit einer Item-based Collaborative Filtering-Methode, welche bereits fiir das
Technologie-gestiitzte Lernen angewandt wurde, sowie mit einem Lernpfad-Generator, der kon-
textabhéngige Informationen verarbeitet. Anschlieend ist ein neuartiger kontextsensitiver und
zeitabhéngiger Knowledge-based Filtering-Algorithmus vorgestellt und ausgewertet worden. Die
Arbeit zeigt, dass die prazisesten Empfehlungen durch zeitabhéngige Filter-Algorithmen produziert

werden, die zusétzlich mehrere Typen von Aktivitdtsdaten verarbeiten.
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Preface

During the realization of this dissertation, I talked to a lot of people — learners, teachers, content
creators and service providers — and asked them for their opinion of our adaptive learning solutions
and whether they found them acceptable. While I received a lot of motivating feedback from the
educational staff, T had the most compelling conversions with the students on the Advanced Web
Technologies (AWT) course at the Technische Universitit Berlin (TU Berlin). At the TU Berlin
as well as at the Beuth University I regularly present some of my work on specialized topics
in guest lectures, including on Recommender Systems and Data Mining. At the beginning of
the lecture term, students frequently asked whether our course offering would fit their ideas on
deepening their skills in the area of web development and personalization. Theses students often
have some basic knowledge of Hypertext Markup Language (HTML), Cascading Style Sheets (CSS)
and JavaScript (JS), but cannot imagine the technological scope of this course. By way of
an answer, I would briefly introduce our Learning Companion Application where the taught
concepts can be directly experienced through a real-world example. With the Learning Companion
Application (LCA), the course participants learn the theoretical background to advanced web
programming and at the same time, observe how those can be realized in a web application. These
explanations go down well with the students and result in a lot of positive feedback. Particularly
interesting appears to be the idea of an application that adapts to the learners’ needs, visualizes
their estimated knowledge levels and recommends appropriate learning materials through our
Smart Learning Recommender (SLR). The course enrollment significantly increased since the
Learning Companion Application was introduced, and at the same time the drop-out rate was
reduced for this course. Even the average mark for the final test at the end of the course slightly
improved?.

While it is not possible for me to to evidence whether this outcome is the result solely of our
adaptive platform (or is additionally affected by other circumstances), it shows the success of
one of the primary goals of this work: learners become motivated because they experience new
ways of learning — via a platform that reacts to the learners’ needs. It assists course participants
in their Self-Regulated Learning (SRL) skills, helps in the understanding of individual studying

behaviors and automatically responds to identified learning weaknesses. Thereby, the Smart

LA first course run without the LCA in the winter semester of the 2015/2016 academic year comprised 72 course
enrollments of which 39 participated in the final test and reached a mark of 2.00 on average. In a second course
run in the winter semester of 2016/2017, the Learning Companion Application was introduced for the first time.
Thereby, 99 students (of 126 enrolled students) used the app of which 83 students participated in the final test
and reached an average mark of 1.90. Finally, a third course run also utilized the LCA and while the course
had not ended before the submission of this dissertation, 118 students were enrolled for the course in the winter
semester 2017/2018 and 78 of these had already used the app by the end of the enrollment period.

Motivation
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Learning Recommender aims at rendering knowledge acquisition more efficient and effective, at
the same time offering an exciting service with innovative interactive digital media.

Since 2010, I have worked and researched in the area of Recommender Systems. At this point,
I was employed as a student research assistant and developed a working Collaborative Filtering
system that is able to identify on-demand videos on a university multimedia platform that fit well
with particular user preferences. In 2012, I received my Master’s degree (graded very good with
distinction) with completion of my thesis titled "Personalized Recommendations to be displayed
on SmartTVs” that was supervised by both colleagues of the Beuth University of Berlin and of
the Fraunhofer-Institute for Open Communication Systems (FOKUS). The latter hired me as
a Research Engineer within the business unit Future Applications and Media (FAME). Since
2013, I have worked there as a Senior Project Manager, undertaking a number of national and
international projects. In 2014, two exciting opportunities came up which enabled me to deepen
my knowledge of Recommender Systems and at the same time transfer this knowledge to a new
application area. The first one was to work on a nationally funded project that has the goal
of introducing digital media to vocational training via an adaptive user interface — the Smart
Learning project. The second project was part of the Software Campus program which aims at
supporting high potential Ph.D. candidates in the realization of self-selected research topics. Both
projects (and later a number of additional funded activities) enabled me to undertake research on
a very focused problem, the problem which has led to this dissertation®. Moreover, they helped
me to network with experts within the academic and industrial communities and to publish my

findings®.

2An overview of the projects and other activities which enabled this dissertation is presented in Appendix B.1.
3A list of relevant publications and other related activities of the author are presented in Appendix A.
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1. Introduction

”"We envision that by 2030, environments will provide truly individualized learning
(optimized for the individual) capable of being completely adaptive and adaptable
to a sufficiently complete representation of the learner (user model)
in order to deliver the most optimized learning experience.”

Woolf et al. (2010) [284, p. 60]

Various educational stakeholders have identified adaptive learning as one of the most promising
and at the same time most challenging trends for Technology Enhanced Learning (TEL) (cf.
[284, 270, 106, 195, 103]). An adaptive system is a digital environment that changes its presentation
interface, its navigation flow and/or its content offering according to its perception of the user’s
needs [49]. This is a well-researched area and is established within the media web sector — including
the e-commerce domain or streaming services for music and movies [209]. Recommender Systems
are designed for users who lose track of the vast quantity of media and products available and
thus need assistance with their content selection [234, p. 158]. In contrast to traditional search
engines, a Recommender System (RS) does not need explicit input and search terms from its users
[146], instead it supports users even when they themselves do not know what they are actually
looking for. While this approach also sounds reasonable for the domain of Technology Enhanced

Learning, the research in this area is still in the very early stages (cf. [191, 94, 92, 269)).

1.1. The Need for Adaptability in Educational Environments

Technology Enhanced Learning platforms utilizes digital learning materials for a variety of
educational approaches and settings. In addition to the traditional ways of formal learning, TEL
enables new paradigms, which allocate a more critical role to Self-Regulated Learning — especially
in entirely or partly informal learning settings [94]. Instructors are less involved in these informal
settings and thus more responsibility is required from the learners regarding self-motivation, self-
control and time management. That is why a learning platform should adapt to the learners needs?.
Verbert et al. note that in TEL ”each learner uses her own tools, methods, paths, collaborations,

and processes. Consequently, guidance within the learning process must be personalized to an

4In 2017, educational experts rated adaptive learning as the second most important trend for digital education
[195]. Appendix B.3 introduces the results of this study.
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extreme extent” [270, p. 319]. An educational Recommender System is crucial when the amount of
content choices might overwhelm the user. "The fact that some choice is good doesn’t necessarily

mean that more choice is better. [... There] is a cost to having an overload of choice” [241].

”It is expected that personalised learning has the potential to reduce delivery costs, to create more

effective learning environments and experiences, to accelerate time to competence development,

and to increase collaboration between learners. Recommender Systems are one of the promising
technologies to support people in finding the most suitable information and peer learners.”

Drachsler et al. (2010) [92, p. 2850]

A lot of research has been done on Recommender Systems for supporting learners (e.g., [21, 231,
270]). However, similar computing tasks may also assist teachers as adaptive learning technologies
can allocate the tasks of traditional educational staff to software components [106]°. According to
Ifenthaler and Schumacher, the use of adaptive learning platforms generates data which lead to

conclusions on four different meta-levels [135, p. 177]:

1. The individual learner’s level for adapting the environment to the personal learning process.
2. The course level for adjustments and content optimization by educators and content creators.
3. The institutional level relating to, for example, decisions across all offered courses.
4

. The political level for inferences on the whole educational system.

In general, adaptive learning platforms enable the collection and processing of the learner’s
activity data which should lead to focused conclusions. The effect and accuracy of such algorithmic
findings for learning environments differ in each topical area, course setting and even for each
learner [269, 103]. Thus, these components can be seen as support tools to make the processes
learning and teaching more personalized and comfortable as well as more effective and more

efficient [135, p. 181].

1.2. Problem Statement

"We believe that Collaborative Filtering and rules can do for Learning Objects what Google did for
the Web. The challenge will be to meet the real (collaborative and inferential) needs expressed by
course creators and students.”

Lemire et al. (2005) [174, p. 187]%

This dissertation focuses on recommendations given in a closed-corpus setting, which means

that the learning environment adapts to the learners’ needs within a self-contained course [191, p.

5An analysis of the most important educational tasks (published by Darabi et al. [78]), and how adaptive learning
technologies can assist them, can be found in Appendix B.4.

6Lemire is the inventor of the Slope One algorithm which will be extended to fit the needs of TEL and analyzed
in this dissertation.
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11 - 12]. The user interface offers content recommendations at particular points in time that fit
with the current needs and the contextual situation of individual course participants. The most
important task of the Recommender System is to support learners in achieving their personal
learning goals. Personal goals are mainly related to formal assessments, but can additionally
refer to informal objectives, such as the acquisition of a particular skill or piece of knowledge.
Thus, an ”appropriate” recommendation aims at making learning more efficient and effective
by supporting the content selection process [220, 264]. This work shows that the generation of
recommendations within an educational environment is a highly time-dependent problem that
requires various contextual data.
The first half of this dissertation introduces different concepts and related work and defines as a  Hypotheses

consequence a list of hypotheses. The overall scientific question which relates to the title of the

dissertation is presented as follows:

Scientific Question /SQ/:
How can a Recommender System predict appropriate items in a closed-corpus course

environment?

Thereby, the important terms, especially those that need further explanations (such as ”appro-
priate”) are defined in following chapters. For clarity, the formulation of the scientific question
(/SQ/) and scientific hypotheses (/SH+#/) follow Balzert’s requirements syntax [27, p. 493-496]. A
scientific hypothesis represents an educated guess regarding a causal relationship [265, p. 179-185]
that is of interest for solving the corresponding scientific question and these will be discussed in

the final chapters of this work.

1.3. Scope of this Dissertation

This work combines two different research areas within the Recommender System domain: Key Contri-
Time-Aware Recommender Systems and Technology Enhanced Learning. It demonstrates that well-  butions
known Recommender System approaches cannot be directly transferred to this kind of specialized
application area. Established Collaborative Filtering (CF) and Content-based Filtering (CbF)
algorithms, as well as commonly applied evaluation procedures, are not appropriate for the
educational domain [94]. Moreover, the dissertation uncovers a lack of academic open datasets
which leads to the necessity of collecting important activity data from real-world courses. Finally,

a Recommender System represents only a part of a complex architecture consisting of different
education-oriented components. The RS must communicate with other technical components
via well-defined interfaces and exchange common data formats. The key contributions of this

dissertation are formulated as follows:

Contribution 1 is the definition of a specialized paradigm for educational Recommender Systems
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that aim at making learning more effective and more efficient. While traditional systems rely
on preferences, an adaptive learning system should support learners in their Self-Regulated
Learning skills and thus it must depend on the user’s learning need.

Contribution 2 comprises the design, realization and evaluation of existing and novel Time-Aware Rec-
ommender Systems. These algorithms are applied for closed-corpus courses in TFEL.
Thereby, diverse methods have been realized, adjusted and iteratively optimized in various
settings. The core approaches comprise the Slope One algorithm [175], a time-aware educa-
tional Recommender System [126], a new time-dependent Learning Path Generator and a
self-devised Knowledge-based Filtering approach, the Smart Learning Recommender [161].

Contribution 3 includes the design and application of a reliable evaluation framework for Time-Aware
Recommender Systems in general, and RSs in Technology Enhanced Learning in particular.
Moreover, a self-devised measurement value — the Mean Absolute Timeliness Deviation
(MATD) - is introduced to determine the timely nature and accuracy of the recommendations.

Contribution 4 consists of the concept and realization of a technical reference architecture for different
educational settings. The architecture allows data processing techniques to be used to
offer learning-oriented adaptive services and time-dependent personalization features in
a re-usable way for various stakeholders. This comprises the definition and selection of
appropriate interfaces and metadata formats.

Contribution 5 is the organization of real-world courses utilizing the realized technical infrastructure and
the collection of learning activity data for the evaluation of the developed algorithms.
The standardized metadata formats are field tested for utilization through time-dependent

educational Recommender Systems.

To achieve these goals, an exhaustive analysis of existing concepts, realized approaches and
applied algorithms is conducted that leads to the identification of the gaps in previous work and
the requirements for current and future research. At the end of this dissertation, the different

algorithmic approaches are compared and the critical outcomes of the evaluations are discussed.

1.4. Organization of the Dissertation

An introduction to the citation and formatting styles that should assist in providing clarity
to the text can be found in Appendix B.2. The remainder of the dissertation is structured as
presented in Figure 1.1 and below.

Chapter two starts with a presentation of the necessity of employing Recommender Systems in
adaptive learning environments and explains the state of the art of typical filtering algorithms.
Thereby, approaches that build the bases for further developments are introduced and classified.

Moreover, typical issues and challenges that also have an impact on the area of Technology
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Figure 1.1.: Organization of the dissertation, where the arrows represent the recommended reading
paths: black arrows show the document structure and gray arrows indicate possible
shortcuts.

Enhanced Learning are discussed. Chapter three defines a special paradigm which must be followed
by educational Recommender Systems that recommend course items. The paradigm’s character
and its aspects are discussed through the analysis of related works in the field of TEL Recommender
Systems, Context-Aware Recommender Systems (CARSs) and Time-Aware Recommender Systems.
Chapter four defines the current standards as well as the established specifications which build the
basis for the realized reference architecture of an adaptive learning environment. Based on this
architecture, different real-world courses are conducted and the learners’ activity-related data are
collected to form three major datasets which are described in Chapter five. The methodological
approach of this work is presented in Chapter six and comprises a time-dependent evaluation
framework and the introduction of common measures as well as the new measure, the Mean
Absolute Timeliness Deviation. Chapter seven contains the evaluation and comparison of different
Collaborative Filtering and Time-Aware Recommender System algorithms that are applied to
the collected data. With the Smart Learning Recommender, a distinct algorithm is evaluated in
Chapter eight that follows in all respects the educational paradigm previously defined. Thereby,
the SLR focuses on the incorporation of context and time information. The hypotheses are
discussed in Chapter nine taking the outcomes of the evaluations into account. Finally, this work

concludes with a summary and an outlook.






2. State of the Art of Recommender

Systems

A web system is defined as adaptive ”if it is able to change its own characteristics automatically
according to the user’s needs” [205]. This feature is called personalization ability as it adapts
to the user’s individual conditions. According to Brusilovsky et al. [49], adaptive systems can
be classified according to the three main adaption technologies: ”Adaptive Content Selection”,
”Adaptive Navigation Support” and ”Adaptive Presentation”. A Recommender System (RS), which
corresponds to a special shape of an adaptive system, may help, particularly for content selection,
to adapt a web service to the user’s preferences and needs. However, it may also recommend better
(digital or analog) navigation strategies and predict the most appropriate interface to present to
the end user.

This chapter introduces basic concepts of RSs, different approaches that may be used to classify
them and the main recommender techniques which form the basis for the design of the new
methods discussed in this work. However, this chapter also focuses on typical metadata and

discusses the main challenges and issues in Recommender Systems.

2.1. Definition of Recommender Systems

As the field of Recommender Systems has been researched for a number of decades”, it has
multiple definitions. Most of these describe the overall task to assist the user in identifying
relevant items among a huge amount of available items, where the user is not able to analyze the
appropriateness of each [234, p. 158]. In contrast to search engines, Recommender Systems do not
necessarily need any explicit input data, such as search terms. Instead, similar to an educational
staff member, it acts as an intelligent advisor, although in this case based on previously collected
data instead of experience®. In a typical RS "people provide recommendations [related to their
preferences| as inputs, which the system then aggregates and directs to appropriate recipients”

[226]. Adomavicius and Tuzhilin [9] distinguish recommender systems from other related areas —

7A brief history of Recommender Systems is presented in Appendix B.5.
8The ten most common tasks of Recommender Systems in general as well as three particular RS tasks for the
educational domain are listed in Appendix B.6.
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such as cognitive science, approximation theory, information retrieval or forecasting theories — by
the main recommender problems that ”explicitly rely on the rating structure” — even though the
users do not see any ratings. In contrast to the rating prediction task, another common definition
focuses on the top-N recommendation task [57, p. 71] which better fits the task of an educational
adaptive system. A Recommender System delivers a list of recommended items that may be
relevant for the user with the help of a numeric score — the relevance score — instead of ratings
[242, p. 2].

The terms Recommender System and Recommender Engine (RE) are often used in the same
context, but they in fact have slightly different meanings. These meanings are defined for this
work as follows: A RS (also Recommendation System) is the overall system that works as an
independent service for the end user. Technically, it consists of the whole needed infrastructure:
user interfaces, service logic layers and databases as well as the mined data and algorithm models.
RSs are "software tools and techniques providing suggestions for items to be of use to a user”
[146] (also mentioned in [187], [53], [226]). The Recommender Engine (also Recommendation
Engine or Engine), in turn, represents the set of technical components needed for the calculation of
recommendations. In most cases, only the core components, such as the algorithms and datasets,
are implied here.

Park et al. [209, p. 10063] analyzed the main application areas in the literature, as shown
in Figure 2.1. Among the 46 journals studied, movie recommendations, as known from Video
on Demand (VoD) services such as Netflix, represent the most researched domain, followed by

shopping recommendations, relating to e-commerce services such as Amazon®

. The category
“others” represents niche item types (including for instance learning materials) as well as work
on generic approaches that are transferrable to other application areas. As can be seen, TEL
Recommender Systems play a minor role in the research literature compared to other item types.

Most commonly, "the recommendation problem is reduced to the problem of estimating ratings
for the items that have not been seen by a user” [9]. Therefore, the problem of recommenda-
tion prediction can be seen as a user- and item-dependent task'?, expressed by the following

mathematical function [57, 9]:

F:UxI—R, (2.1)

where U is a set of users and [ is a set of items. F' is an approximation function that aims
to predict a set of valid ratings R. However, the set of R values does not need to be revealed
to the end user and can represent feedback types other than ratings. For instance, it might be
a Boolean value whether a user is interested in an item or not — or the predicted percentage a

student requires to learn a specific item to pass the final exam. This dissertation uses the term

9The benefits of Recommender Systems from a business perspective are introduced in Appendix B.7.
10 Appendix B.8 introduces the general user and item data as well as the different feedback types processed by
Recommender Engines.
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Figure 2.1.: Main Application Areas of Recommender Systems in Scientific Research (information
taken from [209, p. 10063]).

relevance scores for the values of R, so that it can be used more generically. The rest of the
equation is not affected.

The validity of R depends on the allowed range of the relevance scale of the particular
recommendation engine. For example, a five star rating might be in the range of [0,5] or [1,5] —
depending on the meaning of the 0 value. Each relevance score r,, ; € R represents an element of
feedback for user u € U on item i € I. Predicted, non-real, scores are noted as p,; € PR [57].

In most cases, the user retrieves an ordered set of item predictions that is restricted to the n
most relevant relevance scores, the so-called Top-N list. The items in that list can be represented
by a list of relevance scores TN, where TN C PR [86, 146]. Consequently, in a Top-10 list, the

ten most relevant items are presented to the user ranked in order of their relevance.

2.2. Classification of Recommender Approaches

There are multiple ways to classify recommender approaches. The two main concepts are
Content-based Filtering (CbF'), where only the content of the items is compared, and Collaborative
Filtering (CF), which takes the feedback of other users into account [9, 53]. In addition, some
other concepts exist which are classified in different ways in the literature. An overview of the

different approaches is shown below:

e Content-based Filtering (CbF): Recommendations are based on the features associated with
items and the user ratings for these features [9, 53, 146].

o Collaborative Filtering (CF): Recommendations are based on the rating histories of similar
users [9, 53, 146]. CF can be categorized as Item-based Collaborative Filtering (IbCF) and
User-based Collaborative Filtering (UbCF).

Relevance

Score

Top-N List
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e Hybrid Filtering (HF): Recommendations are based on a combination of the other approaches
[9, 53, 146].

e Knowledge-based Filtering (KbF): Recommendations are based on the extracted understand-
ing of the user’s needs and preferences [53, 146].

e Additional Filtering Approaches: Other approaches, that cannot be directly classified as
CbF, CF or HF, are out of scope for this work'!.

Filtering Approaches

e

Content-based Collaborative Hybrid Others

/\

User-based Item-based

Figure 2.2.: Classification of main filtering approaches in Recommender Systems.

Hybrid Recommender Systems, in turn, aim at combining different filtering techniques to a single

result set'?. Figure 2.2 shows recommender classification taxonomy defined in this work.

2.2.1. Content-based Filtering

Content-based Filtering compares items based on their metadata. The most popular recommender
techniques in this area are Artificial Neural Network (ANN), Bayesian Classifiers, Clustering,
Decision Trees and TF-IDF from information retrieval [9]. To create a mathematical understanding
of the utilized metadata, the primary attribute types are introduced briefly. These attributes will
also be the basis for all the other RS approaches in this dissertation.

2.2.1.1. Attribute Types

Similar to the classical variables in computer science, data mining techniques differentiate
between a set of attribute types which make the attributes reusable and independent from a
particular programming language. However, these attribute types can then be transferred and
implemented as variables during the realization phase of an algorithm. Figure 2.3 shows the
introduced attributes for recommender operations.

The general differentiation is between ordered and unordered types [122, p. 9-10]. Attributes

of an ordered type can be allocated to a reasonable value and sorted in a meaningful manner.

M These rarely used approaches, such as Case-based Filtering [35], Community-based Filtering [176], Demographic
Filtering [212], Learning-based Filtering [282], Preference Filtering [141], Rule-based Filtering [282], Utility-based
Filtering [131] etc. will be handled as sub-classes of the most prominent filtering approaches. For the sake of
completeness, these approaches are introduced in Appendix B.9.

12 A representative example of Hybrid Filtering is the TV Predictor [167] which is introduced in Appendix B.10.
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Figure 2.3.: Important attribute types in Recommender Systems (in black boxes) and examples
(in gray boxes).

While this is the most common and important type of attribute in the area of data mining, some

attributes cannot be sorted reasonably as they have only labels — so for instance for colors!3.

An ordered categorical type, in turn, can have a label, but also might be compared gradually
with other elements of the same attribute'*. Numerical values, in turn, might have an upper or
lower bound, but this is not necessarily the case. A numerical is classified as a numerical without
limitations or a numerical, which might be limited to a range, such as a one to five star rating
system.

During the realization of different data mining projects, one additional type of attribute was
missing — this attribute plays a crucial role for time-dependent systems. A time-dependent
Recommender System needs to compare values of numerical time attributes in an interval (such as
daytime, weekdays, years etc.) that repeats regularly. However, the distance between the upper
and lower bounds should not be the highest possible distance, as for ratings for instance, but
instead the lowest. Given the example of daytime, which is numerical within an interval. The
first minute of the day (00:00 am) is very close to the last minute (11:59 pm or 23:59 on a 24 h
range). In contrast, noon and midnight show the highest possible distance of 12 hours. The same
applies to weekdays, months or seasons of a year. This attribute is called numerical in a repeating

interval.

2.2.1.2. Similarity and Distance

The term Content-based Filtering describes a filtering class that analyzes content and thus
might simply compare metadata attributes of two elements (e.g., two items, two users or of a
user and an item). The attributes can contain item or user descriptions, as well as item feedback

of particular users. The similarity value is in the range [0;1]: 1 represents an absolute equality

13Indeed, it is possible to allocate the frequency of the spectrum to color attributes, but in general, users only
require to differentiate between them: ”red is not green and not yellow”. Categorical attributes are either the
same or distinct.

14For instance, dress sizes, such as small, medium or large, can be related to a value and then be sorted.
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between two attributes and 0 the highest possible diversity [252, p. 678-680].

sim(p,q) =1 - max(lll; : iLin(A)’ (2.2)

p and ¢ are the numerical values taken by two elements of the same attribute. max(A) is the
highest and min(A) is the lowest possible value of that attribute.
For most applications, more than one attribute needs to be compared. Therefore, different
metrics will be introduced, for example, the Cosine-based Similarity.
"The Cosine-based Similarity is used to calculate the similarity of two elements by treating
them as vectors: L
E; - FEy

cSim(eq, ea) = cos(El,Eg) ==
|Eq| x | B

(2.3)

e1 and ey are the elements to be compared like items or users. El and EQ are vectors
representing all [numerical] features of this element, so when n is the number of all attributes
of an element, then E; = (@1,e1,02,61,3.¢15 -, An ey ). (cf. [64, p. 619], [245, p. 929])”

Cf. [167, p. 66]'5.

Classical Ttem-to-Item Similarity Mapping (also called content-to-content mapping) represents
an exception among filtering systems and is classified here as a particular case of Content-based
Filtering — in fact, it is hard to classify at all because it can also be used to improve other filtering
approaches [181]. Service providers might use CbF techniques to recommend similar items to the
one that was just consumed. Using Cosine-based Similarity for instance, the two elements e; and
eo are items that are compared by considering all their item features E, and E».

In contrast to the similarity value, the distance value is used when there is no limit of diversity.
For the distance value, 0 means absolute equality but there is no upper bound. In general, the
distance value can be calculated from the similarity value and vice versa (as long as the similarity
value is restricted to [0;1]):

dist(p,q) =1 — sim(p, q). (2.4)

An example comparison method using the distance value is the Euclidean distance eDist that
is the square root of the sum of the single numerical attribute distances (in this case the range is

not restricted to [0;1]):

N
eDist(eq,e2) = Zdist(ai,el,ai,ez). (2.5)
=0

Each attribute value a; ¢, at position ¢ of element e; is compared using the distance value to the

according attribute value a; ., of element ey [184, p. 305].

15This section is based on an algorithm used in the TV Predictor was written by Christopher Krauss and explains
a well-established Content-based Filtering approach.
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It is recommended to decide, for a single metric, the distance or the similarity, and to use this
metric for the entire application area to avoid transferring errors. The approaches introduced in
this dissertation will mainly focus on the similarity value as most attributes are in the fixed range

[0;1].

2.2.1.3. Challenges for Content-based Filtering

Content-based methods require well-structured machine-readable data. Unstructured datasets
might require pre-processing steps, therefore ”in order to have a sufficient set of features, the
content must either be in a form that can be parsed automatically by a computer (e.g., text) or the
features should be assigned to items manually” [9, p. 737]. The same type of item information, e.g.,
the color of the product, must be tagged with the same keyword. While this sounds obvious, two
item sets of different sources often show different feature structures and tags. Another challenge
relating to content analysis emerges "if two different items are represented by the same set of

features, they are indistinguishable” [9, p. 737].

When the Recommender System only recommends items “that score highly against a user’s
profile, the user is limited to being recommended items that are similar to those already rated”
[9, p. 737]. Transferred to the problem of educational recommendations, learners might skip
the study of particular topics and will then only receive a limited category of recommendations.
The more the users obtain recommendations in one item category, the more feedback data are
generated for this particular category. This intensifies the overspecialization. In some cases, a
previously consumed item is recommended again — which represents a problem for items such as

movies that are less interesting in terms of second consumption.

One solution is serendipity [134], where ”items should not be recommended if they are too similar
to something the user has already seen, such as different news article describing the same event”.
At the worst, the whole community might obtain only certain specific item recommendations,
while the rest of the items will never be recommended. Some services compensate for these effects
by suggesting a low percentage of random items in order to obtain even feedback on less rated

products [52], [134].

Another big challenge occurs when a new user registers at a CbF system. ”"The user has to rate
a sufficient number of items before a content-based recommender system can really understand
the user’s preferences and present the user with reliable recommendations. Therefore, a new user,
having very few ratings, would not be able to get accurate recommendations” [9, p. 737]. Most
services offer a set of items that need to be rated by the user before the service begins to offer
recommendations. The selection process of appropriate first items is a particular RS challenge

[13, 210, 146].
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2.2.2. Collaborative Filtering

Collaborative Filtering means that ”people collaborate to help one another perform filtering by
recording their reactions to documents they read” [113] or any other item feedback. According
to Adomavicius and Tuzhilin [9] commonly deployed Collaborative Filtering techniques are ANN,
Bayesian Networks, Clustering, Graph Theory, Linear Regression and Probabilistic Models. All of
these require a representation of the user feedback on consumed items in a so-called user—item
matrix'6.

As CF represents the most common filtering technique, a lot of different approaches have been

established to predict missing feedback values. These are introduced in the following.

”To find the best fitting items for a user, there are some concrete approaches, such as
Item-based Top-N Recommendation Filtering, that filters the items by including the ratings
of all other users, and User-based Top-N Recommendation Filtering, that first searches for
most similar users and retrieves their best rated items [180]. In contrast to Item-based
Filtering, User-based Top-N Recommendation Filtering focuses on finding similar users —
called neighbours. So the objective of Neighbourhood-based Collaborative Filtering is to find

the nearest neighbour. Afterwards the Top-N items of the nearest neighbours are predicted”

Cf. [163, p. 366]'7.

The proceeding subsections introduce the two Collaborative Filtering approaches in detail:
Item-based Collaborative Filtering (IbCF) and User-based Collaborative Filtering (UbCF). The

presented algorithms are utilized in this work.

2.2.2.1. Item-based Filtering

People tend to prefer similar items to the ones they have previously liked. The power of
Collaborative Filtering comes from its ability to take every item rating of every user within the
community into account. However, there is at some point a bottleneck: the higher the number
of "neighbors among a large user population of potential neighbors” [235, p. 285], the more
time consuming is the search for these neighbors. Item-based Collaborative Filtering, or Item-to-
Item Collaborative Filtering, aims at identifying appropriate items based on the consumption
information of other items. Thus, it avoids ”this bottleneck by exploring the relationships between
items first, rather than the relationships between users” [235, p. 285].

In 2005, Yahoo published an algorithm [175] that will be transferred to the educational domain

in this dissertation:

16 An introduction to and explanation of the user—item matrix is given in Appendix B.11.
17This extract originated from a paper on a social network recommender that uses both Item-based as well as
User-based Collaborative Filtering and was written primarily by Christopher Krauss.
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"The Slope One algorithm (Item-based Filtering) calculates the Top-N items by taking into
account the ratings [or other kinds of feedback scores] of all other users. It is divided into
two parts (cf. [278, p. 153]). First of all there is a method to get the average deviation of

two items:
ZuEUil,;2 (Tu,il - Tu,irz)

2.6
‘Ui1i2| ( )

dev(il, ig) =

Where ¢; and i are the items, r, ;, is the item’s rating user u gave. U;,;, is the set of users
who rated both items and |Uj,;,| is its cardinality. So the result is the ratings deviation of
an item. If the average rating of item ¢; is higher than the average rating of item i the
value is positive, if it is lower the value is negative, or if the average ratings are equal the

value is dev(iq,iz) = 07

Ct. [167, p. 66]'8.

Figure 2.4 illustrates the two calculation steps of the algorithm: The left side represents the
determination of the deviation in step one. In this case, the relevance score of item i5 is determined
for user ue. According to step one, all neighbors are checked for their average rating deviation
from i5. The second step aims at predicting the missing rating by applying the determined rating

deviation of others.

j, 2-35=-15 |, i i,
-
Uy 2 35 uy 2 osins=23D
~~
Uy 05 2 Uy 05 ?

Figure 2.4.: Slope One Algorithm: Step one on the left side, step two on the right side.

"The prediction value pre(u, j) for user u and item j is defined as

Zie]j (Tu,i — dev(i, 7))

L] (27)

pre(u,j) =

Ij is the set of all relevant items to be compared with item j and |Ij| is its cardinality. The
higher |U;,,,|, the better the prediction. 7, ; is the rating of user u for item . (cf. [175, p.
3]) The resulting value is the predicted rating of this user u for the current item j.

The result will be limited to the specific rating interval, just in case, the predicted rating is

not in that range. This might happen when the predicted rating is not in the range of [1,10],

18The implementation of Slope One represents a key algorithm in the publication of the TV Predictor Recommender
System and was implemented by Christopher Krauss. The paper extraction was also written by him and reflects
the work of [175] and [278].
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for instance when the current user always rated the items worse than the average user (e.g.,
a standard deviation of 3.5) and the requested item is rated extremely bad (e.g., 2.1). The

predicted rating will be -1.4, so it must be mapped to the original range — in this case to 1”

Cf. [167, p. 67]19.

The right side of Figure 2.4 shows the transfer of the deviation calculated in step one to
the requested user—item tuple. Slope One is easy to implement, but a robust algorithm to
predict unknown relevance scores (such as ratings or item accessed). The accuracy of the 2013
implementation of the Slope One algorithm in the TV Predictor?® is 80.2% [167, p. 69]. However,
a lot of improvements have made the algorithm even more accurate. These improvements include
the splitting in a good and a bad rating dataset for a bipolar Slope One [175], uncertain neighbor
optimization [177] or the inclusion of time weights [142].

An alternative Item-based Collaborative Filtering algorithm, which builds the basis for the
generation of learning paths in this work, is known from Amazon’s product recommendations:
"Users who bought product A also bought product B and C”. The underlying Association Rules
were also used for program predictions in the TV Predictor engine.

” Association Rules have the goal to find highly represented relations (so-called transactions)

between a user or even a user’s attribute and the items or their attributes (cf. [180, p. 441],

[182, p. 500]). The resulting set of frequent items may, in addition, be scanned for some

rules and afterwards the list of transaction can be divided in causations and consequence.

For instance when a defined number of users have watched the same programs, the resulting

frequent item set could be 'Program 1, program 2 and program 3 are often watched together.

and moreover if a user has watched a subset of these transactions, an association rule could
be: "You watched program 1 and program 2, but you may also like program 3. and can be

written as { Programl, Program2} —> {Program3} or more generally
X =Y (2.8)

The item set X implies the item set Y (cf. [118, p. 1455])”

Cf. [167, p. 67]%L.

As shown above, Item-based Collaborative Filtering can be very powerful, but its performance

9The paper extraction was written by Christopher Krauss and reflects the work of [175] and [278].

20The TV Predictor is a hybrid Recommender System developed by Christopher Krauss as employee of the
Fraunhofer-Institute for Open Communication Systems. It was developed as prototype of his master thesis,
afterwards extended to become a showcase for RTV (a Bertelsmann Arvato company) to be displayed on
SmartTVs (shown at IFA 2012) and afterward realized as website component "Movisto” for www.rtv.de (Dec
2012 until June 2013).

21The paper extraction was written by Christopher Krauss and reflects the work of [180], [182] and [118]. Details
of the algorithm, as well as some interesting mined rules on features in a German TV experiment, are presented
in the Appendix (see Section B.12).
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slows down with an increasing number of users and items. Within this dissertation, some

ideas regarding Association Rules are transferred to the application area of Technology Enhanced

Learning: Based on a list of transactions, a set of frequent, but here sequential, rules are determined.

These learning paths represent the sequence of the next Learning Objects which are essential to

consume to reach the course goal.

2.2.2.2. User-based Filtering

User-based Collaborative Filtering focuses first on finding similar users, the so-called neighbors.
The prediction step, in turn, takes only the ratings of the nearest neighbors into account. Thus,
most algorithms can save calculation steps, as they do not take the whole user—item matrix into
account. The result is a Top-N recommendation list of items that are very popular or frequently
consumed by similar users [80, p. 550].

Clustering is a Machine Learning approach that groups elements by the similarity of their

attributes and can be used to group users according to their behaviors.

”Cluster Analysis is also called Data Segmentation and has the goal to divide a set into
subsets. It aims at finding groups of elements that are similar in one or more criteria (cf. [122,
p. 454]). Amazon, for instance, uses a not further named greedy cluster generation, which
starts with a set of randomly chosen users and searches for their nearest neighbors. Some of
their algorithms classify the users into multiple clusters depending on the users’ behaviors.
(cf. [180, p. 77]) The TV Predictor uses K-Means (cf. [151, p. 675]), a partitional Clustering
algorithm, in order to group users by respecting their likings on different attributes, such as
preferred genre, category, and channel. Partitional means that the resulting clusters consist

of [a] predefined amount of 15 subsets”

Cf. [167, p. 67]22.

Besides Cluster Analysis, the K-Nearest-Neighbour (KNN) approach also identifies similar users?3.
The difference is that KNN determines a fixed number of similar users to a particular one and
K-Means Clustering generates a fixed number of user groups — each with a variable number of
users. Both, Cluster Analysis as well as KNN, are used in this dissertation to identify similar

learners based on their studying activities.

2.2.2.3. Challenges for Collaborative Filtering

The vast amount of collected user and item data brings some challenges?*: ”In any recommender

22The section about K-Means clustering was realized and written by Christopher Krauss.
23 An alternative approach to determine the similarity of users is to use the Pearson Correlation Coefficient. As it
plays a minor role in the context of this work, it is introduced only in Appendix B.13.
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system, the number of ratings already obtained is usually very small compared to the number of
ratings that need to be predicted” [9, p. 740]. The consequence is a lack of the required relations
between users and items2®. The sparsity of the user-item matrices brings trouble to a RS in terms
of performance and accuracy issues. The lower the amount of rating data that exists for specific
users, the worse is their pattern predictability. And the lower the amount of rating data for a

particular item, the lower the chance of its being recommended [302].

”Jia Zhou and Tiejian Luo are grouping the approaches [to overcome sparsity] into two

general classes [303]:

e Dimensionality Reduction: Less important rows and columns of the matrix are ignored.
This implicates a loss of possibly useful information.
e Find and Add Additional Information: By means of the similarity measure rows and

columns are filled with values”

Cf. [163, p. 366]2C.

This problem comes in different flavors: A new service shows a lack of user and item data. An
established service, in contrast, might show only missing data, when new users register to the
service or new items are added. The following sections focus on the main subtopics of the sparsity

problem.

The Cold Start Problem [302], [102] "occurs when a new user or item has just entered the system,
it is difficult to find similar ones because there is not enough information (in some literature,
the cold start problem is also called the new user problem or new item problem” [253]. This
problem is especially present for the closed-corpus recommendations in the TEL domain where
newly enrolled learners start to study the course materials at the beginning of a course. The
main goal is to provoke new users into providing any significant feedback in order to obtain some
information about some of their habits. Therefore, most services present a set of items, right after
the registration process and before starting the actual service. Lam et al. use ”collaborative and
also content data to address cold-start” in a cold-start recommender [171]. Other services show
the most frequently rated items in the system [167], some concentrate on the most meaningful
items (e.g., the most controversial items) [152] and others again show only random items to obtain
data on niche items. In closed-corpus settings, non-personalized item recommendations should

refer to the didactic structure given by the teachers.

24Besides the issues mentioned in this section, Appendix B.14 lists more challenges for CF, such as the "New Item”
problem, the ”"Back, Grey and White Sheep” problem and ”Item Limitations”.

25 Appendix B.15 contains an analysis of the user—item matrices of popular web services and their calculated
sparsity.

26This paper excerpt was written exclusively by Christopher Krauss.
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2.2.3. Knowledge-based Filtering

Another (sub-)class of Recommender Systems is Knowledge-based Filtering (KbF') which "uses
knowledge about users and products to pursue a knowledge-based approach to generating a
recommendation, reasoning about what products meet the user’s requirements” [51, p. 180]. For
Technology Enhanced Learning, Manouselis et al. [191, p. 398] differentiate between Case-based
Reasoning, which learns attributes of items often consumed by the user, and ”Attribute-based
techniques”, which rely on explicitly entered attributes and that might also include non-item
attributes. According to Burke [52], these filter systems do not require rating data — he assumes
that Content-based Filtering requires feedback data from users on items. However, knowledge-based
systems started as a subclass of Case-based Reasoning (CBR) and rely on user inputs regarding
certain features that can subsequently be associated with item metadata. Users define their
preferences for general item features directly in their user profile. Thus, KbF develops "knowledge
about how a particular item meets a particular user need, and can, therefore, reason about the
relationship between a need and a possible recommendation” [52, p. 3]. For instance, learners
tell the system that they are beginners in specific topic areas, and the system starts filtering
appropriate items based on this information. While Burke sees Knowledge-based Filtering as the
"third type of recommender system][s]” [51, p. 180], Manouselis et al. [191, p. 398] are convinced
that such an attribute-based system is preferably a sub-class of Content-based Filtering. This

work follows the proposition of Burke?”, even though CbF also relies on the similarity of item

features (without the necessity for rating data), such as for Item-to-Item Similarity Mapping [181].

However, the actual classification might depend on the main characteristics of the algorithm,
which can also be closer to the characteristics of attribute-based systems, since a KbF approach
can implicitly develop a knowledge-based user profile by consequently training item features as an
alternative to user preferences. Knowledge-based Filtering will play an important role in this work

as it is the class of a self-devised algorithm, called Smart Learning Recommender.

2.2.4. Hybrid Filtering

Although each introduced filtering approach is very accurate in its core domain, a typical web
service offers more than just one recommendation type. For instance, Amazon names the category
of recommendations on their home screen "Recommended for you”. In contrast, recommendations
on a product page are called "Frequently Bought Together”, "Customers Who Bought This Item
Also Bought”, "What Other Items Do Customers Buy After Viewing This Item?” or ”Sponsored

Products Related To This Item”. In total, Amazon shows seven different recommendation types

27In the book "Recommender Systems for Learning”, Manouselis et al. introduces KbF also as an additional
recommender class by following Burkes definition — besides Demographic Filtering and Utility-based Filtering
[190].
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alone on a Blu-Ray product page ?8. The inclusion of different recommendation techniques is

called Hybrid Filtering (HF).

Hybrid Filtering

[ Switching ] [ Cascade ] [ Feature combination ] [ Weighted ]

Figure 2.5.: Sub-classes of hybrid filtering in Recommender Systems.

Hybrid Depending on the request type HF algorithms can be grouped into the following classes (see
Filtering Figure 2.5):
Classes

1. Switching Filtering uses just one available approach.

2. Cascade Filtering sequentially uses different algorithms. Thus, each approach constrains the
resulting set to avoid unnecessary calculations on already rejected items.

3. Feature Combination transfers algorithms from a specific filtering approach to work in
another filtering context.

4. And finally Weighted Filtering merges the single results by weighting them.

Weighted The weighted filtering approach is the basis for the Smart Learning Recommender, which is a
Filtering core algorithm of this work and requires a special formula for the combination of the single results:
N
Sl wp kT
RV VR (2.9)
i=1 Wi

The recommendation value RV results from the summation of each single recommendation value
r multiplied by the according weight w of the N different algorithms and afterwards divided by

the summation of all weights.

2.3. Conclusions for Recommender Systems

As shown above, there are three major classes for filtering items — namely Content-based Filtering,
Collaborative Filtering and Hybrid Filtering — each having its own characteristics, techniques and
challenges. One additional approach, Knowledge-based Filtering, is of particular interest to this
work. As a conclusion, the findings of this chapter and their possible impact for the specialized

area of TEL Recommender Systems are formulated in the following hypothesis.

Scientific Hypothesis /SH1.0/:
Recommender Systems that predict appropriate recommendations for course items

may rely on similar techniques to traditional Recommender Systems. The basis is

283ee Amazon: www.amazon.com (Accessed: 27.08.2016)
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user and item metadata and its algorithms aim at predicting relevance scores in
order to generate Top-N lists. Educational approaches face similar issues, such as

cold start and sparsity, and the algorithms can be classified according to the general

Recommender System taxonomy.

The next chapter discusses related works in the area of Recommender Systems that have been

applied in Technology Enhanced Learning. Thereby, the characteristics of a particular paradigm

for educational RSs are determined.
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3. Related Work on Recommender Systems

for Technology Enhanced Learning

Today, learners frequently do both: learn formally (e.g., explicitly in classrooms) as well as
informally (e.g., implicitly at work)2®. This dissertation aims at supporting a variety of educational

settings, especially Online Courses [115, 68], Blended Learning Courses (which add complementary

digital content to a regular classroom setting [15]) and digitally supported Face-to-Face lectures3C.

These settings represent formal or partly formal learning settings. Learning environments which
are supported by software and/or hardware components are summarized as Technology Enhanced
Learning (TEL). TEL ”generally covers technologies to support teaching and learning activities,
including recommendation technologies that facilitate retrieval of relevant learning resources” [270,
p. 319].

While classical Recommender Systems try to collect as much information as possible for the
prediction user preferences — and perform very well for traditional application areas such as e-
commerce or media services — educational environments follow a particular paradigm. Manouselis
et al. note that ”information retrieval goals that TEL recommenders try to achieve are often
different to the ones identified in other systems” [191, p. 388]. This chapter introduces the
area of Recommender Systems in Technology Enhanced Learning (TEL) that enables adaptability
of learning platforms to the learner’s needs. Moreover, this chapter demonstrates that TFEL
Recommender Systems should be context-aware and time dependent. That is the reason why
two additional Recommender System classes are introduced in this chapter: Context-Aware

Recommender Systems and Time-Aware Recommender Systems.

3.1. Personal Learning Recommendations

A personalized, learner-centric platform in the area of TEL is also called Personal Learning

Environment (PLE) [58]. In contrast to typical Learning Management Systems (LMSs), PLEs

29 An introduction of recent formal and informal learning concepts as well as Online Courses and Massive Open
Online Courses is presented in Appendix B.16.

30There are also other popular course settings, which might be based on different didactic concepts, such as Flipped
Classroom Learning [157, 85], or on a technological basis, such as Massive Open Online Courses (MOOCSs)
[83, 258, 296]. While these will not be part of the evaluation, the introduced RS algorithms might also support
these environments.

About this
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create a "knowledge-pull” environment that meets the individual "needs from a wide range
of high-value knowledge sources” [59, 58]. Recommender Systems help to personalize learning
environments through individual content suggestions that fit the learner’s needs. Thus, RSs
help to identify suitable items for learning and teaching tasks from a wide range of available
learning resources [269, 58]. These recommended items are typically Learning Objects within
a course, which is also the main application area for this work. However, a recommendation
can also refer to other courses offered on the same platform [191] or present other recommended
elements, such as appropriate classmates for group learning [221] or external material in the World
Wide Web (WWW) for further informal learning — these are called open-corpus recommendations
[48]. An analysis of published research by Verbert et al. [270, p. 326] indicates that the most
recommended entities in the area of TEL are: 1) "learning resources” with a coverage of 100%,
"peer helpers”, i.e., other learners, with a coverage of 32%, 3) "messages/ hints/ triggers” at 23%
and finally 4) other courses at 5%.

According to Polsani [218] there are multiple definitions for Learning Objects. For instance, an
LO can be "the smallest independent structural experience that contains an objective, a learning
activity and an assessment” [218]3L. In another definition "a Learning Object is defined as any
entity, digital or non-digital, that may be used for learning, education or training” [218]32. Thereby,
” Learning Objects are a new way of thinking about learning content. Traditionally, content comes
in a several hour chunk. Learning Objects are much smaller units of learning, typically ranging
from 2 minutes to 15 minutes” [218]33. This work follows the first definition (of L’Allier who
defines an LO as the smallest independent learning element). This is sometimes also called a
Learning Nugget. From a Recommender System point of view, a Learning Object is an ”item”
which can receive feedback from the learners and which can be presented as a recommendation.

In the following, two representative examples of a Personal Learning Environments are introduced.
The first one is offered by the industrial learning technology provider IM-C34. In order to
maintain the learner’s motivation at a high level, IM-C introduced individual experience points: a
Gamification element, which represents the course goal (a pre-defined number of points which are
needed to reach the course goals) as well as the learner’s progress within the course (user’s earn
points by performing subtasks). Thereby, learners earn most experience points by completing

formal learning tasks, and a smaller percentage of the total points is earned through informal

31The work of Polsani [218] is a secondary source. The primary source is "L’Allier, James J. (1997) Frame of
Reference: NETg’s Map to the Products, Their Structure and Core Beliefs. NetG.” http://www.netg.com/
research/whitepapers/frameref.asp However, this page is not available anymore.

32The work of Polsani [218] is a secondary source. The primary source is "TEEE Learning Technology Standards
Committee (LTSC) (2001) Draft Standard for Learning Object Metadata Version 6.1” http://ltsc.ieee.org/
doc/. However, also this information is not available anymore.

33The work of Polsani [218] is a secondary source. The primary source is "IEEE Learning Technology
Standards Committee (LTSC) (2001) Draft Standard for Learning Object Metadata Version 6.1.” http:
//www.wisc-online.com/Info/FIPSE)20-720What?20is%20a%20Learning’200bject.htm. This information is
also not available anymore.

34IMC. See: https://www.im-c.com/ (Accessed: 13.04.2017).
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learning tasks. The particular distribution of formal and informal points, as well as the specific
informal tasks, e.g., watching a related video on Youtube, are personalized through the suggestions
of a Recommender System. Surveys at the beginning of a course help to classify the user and, in
turn, predict an individual experience path for each learner 3°.

The second example, PAL3, was developed by Swartout et al. [254] and uses Gamification and
skill level observation. A digital avatar gives hints and recommendations for learning. Thereby,

Swartout et al. identified four mechanisms to increase engagement:

1. "Flow: Promoting interaction and flow by presenting a steady stream of short, varied learning
activities.

2. Gamified Learner Models: Presenting progress and loss-of-progress (forgetting) with open
learner models.

3. Social Motivation: Encouraging social use and competition, such as through leaderboards.

4. Accumulated Rewards: Progress-based system expansion (e.g., unlocking content and

customizations)” [254].

The PAL3 system supports both: “adaptive recommendations [within a course] and open learner
models that are intuitive to students and instructors” [254]. The latter abstracts high level skills

to enable Life-Long Learning.

3.2. The Special Educational Recommendation Paradigm

Educational Recommender Systems follow a particular paradigm that is different from the
e-commerce or entertainment domain. TEL RSs need to consider the special characteristics of
educational settings comprising the learners’ motivation, the learners’ needs, typical user behaviors
and resulting activity data. This section introduces the main parameters of this paradigm. The
following sections, in turn, analyze the related work of Collaborative Filtering, Context-Aware
Recommender Systems, Time-Aware Recommender Systems and Learning Paths with a particular
focus on the determined characteristics.

Felder and Silverman [107] observed different learning and teaching styles in an engineering
education setting. The resulting list of four didactic dimensions3® presents an approach for learning
style classifications that is widely accepted as a universal model for learning and teaching. Thereby,
each learner and teacher can be graded in the four dimensions between "active & reflective”,
"visual & verbal”, "sensing & intuitive” and ”sequential & global” [107, p. 675]. These learning

styles allow for a better understanding of typical learning and studying patterns. A ”verbal”

35IMC — Experience Points for innovative learning. See: https://www.im-c.com/sg/learning-technologies/
innovation-pack-7/. (Accessed: 13.04.2017).

36 Actually, the Felder-Silverman Model comprises five dimensions, but Richard M. Felder later reduced it by the
inductive—deductive dimension [108]. Honey and Mumford devised a similar model [128].
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student, for instance, should receive less ”visual” content recommendations, while a ”sequential”
learner might not want to deviate from the didactic content structure.

In TEL Recommender Systems, ”each learning setting has its own characteristic data sets,
user models, recommendation tasks, and most suitable recommendation algorithm” [92, p. 2850].
Buder and Schwind [50] explicitly identified the need for adaptations of common commercial
Recommender Systems in order for them to be appropriate for learning environments. This is why
most researchers borrow traditional Content-based Filtering and Collaborative Filtering algorithms
and, at least partially, adapt them to the domain of Technology Enhanced Learning instead of
directly applying the same approaches [58]. While some educational RSs utilize Hybrid Filtering
algorithms [110, 267, 150], most can be classified into CF and CbHF.

Bauman and Tuzhilin [29] categorized educational Recommender Systems either as "knowledge
enhancing” which aims at broadening the knowledge to new topics or as "remedial” which aims
at filling identified knowledge gaps of previously studied items. Closed-course RSs, such as the
ones introduced in this work, aim at solving both issues. They assist the learners in reaching their
personal or course-specific goals which require new topics to be learned and the consolidation of
already acquired knowledge.

Learning goals may be defined by different stakeholders and levels — e.g., by individual learners,
by educators and content creators, the institutional staff and even on the political level (see
Ifenthaler and Schumacher’s layered model of educational stakeholders [135, p. 177]). This work
mainly focuses on learning goals given by educators, in terms of formal defined learning objectives
and assessments. The goals of a learner might be similar to those of the teacher — for example
when a student only wants to pass the final exam. However, learners might be interested in only
some of the offered topics or participate in the course for another reason than actually expected
by the educator. Without requesting information about the individual learning goals, it would be
tough to recommend appropriate materials. Thus, the main aim of the closed-course Recommender
Systems in this work is to support an effective and efficient knowledge acquisition of the course
topics. At the same time, the Recommender Systems aim at enabling learners to pass the course
with the highest possible individual results (for example, measured in assessment tests).

Verbert et al. identified an important research question: "how [can] generic algorithms [...] be
modified in order to support learners and teachers” [269, p. 16]. The fundamental differences
between traditional and learner-oriented Recommender Systems investigated in this work are

summarized in the following list and then described in the subsequent sections.

A TEL Recommender System should make learning more efficient and effective for its users.

Educational recommendations should (positively) influence future learning activities.

Instead of preferences, a TEL RS should be based on the learning needs of its users.

Closed-course systems collect more activity data which lead to a fast increasing user—item
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matrix density. This must be taken into account by a TEL Recommender System.
e A TEL Recommender System should incorporate multi-dimensional contextual information.
e Activity data in closed-courses show a high dependency on time, which should be taken into
account by a Recommender System.

e A TEL Recommender System should respect the interdependency of its items.

3.2.1. Learning Efficiency and Effectiveness

Learning, especially Self-Regulated Learning, is a time consuming task that requires responsibility
on the part of the learner. This can be assisted by a Recommender System. An educational
closed-course Recommender System aims at making learning more efficient and more
effective. Thereby, "efficiency” describes the way to achieve a goal in terms of efforts, process
and time. ”Effectiveness”, in turn, directly concerns the result achieved. In terms of learning
in a closed-course setting, a higher efficiency means optimizing the process, saving effort and
time to reach the same course goal. A higher effectiveness means to reach a higher goal, e.g., a
better mark in the exam or longer lasting knowledge. Both can be improved through the decision
support of Recommender Systems. Nava Tintarev et al. [264] present the following criteria for

good recommendations:

e Transparency: Explain how the system works.

Scrutability: Allow users to tell the system it is wrong.

Trust: Increase users’ confidence in the system.

Satisfaction: Increase the ease of usability or enjoyment.

e Persuasiveness: Convince users to try or buy — or in the case of Technology Enhanced
Learning, to motivate the user to learn.

e Efficiency: Help users make decisions faster.

e Effectiveness: Help users make good decisions.

An educational RS must respect all criteria. However, efficiency and effectiveness of Learning
Object recommendations are of particular interest in Technology Enhanced Learning, because
the two criteria directly affect learning and teaching styles [220]. Both are core aspects in this

dissertation and refer to ”appropriate” recommendations.

3.2.2. TEL Recommendations Influence Future Activity Patterns

Manouselis et al. describe studying, learning and recommending Learning Objects for Technology
Enhanced Learning, as ”an effort that takes more time and interactions compared to a commercial
transaction. Learners rarely achieve a final end state after a fixed time. Instead of buying a

product and then owning it, learners achieve different levels of competencies that have various
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levels in different domains” [191, p. 391]. According to these authors, learners find appropriate

contents for the preparation of a lesson in order to:

1. Become motivated.
2. Recall existing knowledge.

3. Mlustrate, visualize and represent new concepts and information .

In contrast to traditional RSs, educational Recommender Systems try to actively change the
user’s future activities. A movie recommender aims at predicting the users’ future activities
based on their current interest in specific aspects — e.g., high rated genres. This information on
their interests is then extrapolated to predict the users’ next interests in new items. Implicitly, a
traditional Recommender System trains past user patterns to predict future item consumption. An
educational Recommender System must additionally fulfill pedagogical tasks, such as
user motivation and support to reach the course goals. Weak learners, for instance, should
not receive recommendations based on their current learning patterns but rather on successful
patterns. Vygotsky notes that "recommended learning objects should have a level slightly above
learners’ current competence” [277] (found in [191, p. 391]). Thus, a challenge for an educational

Recommender System is to determine successful learning patterns.

3.2.3. Relevance Score: Learning Need Instead of Preference Value

The learner’s profile in a learning recommender can show enormous discrepancies compared to
traditional user profiles due to the nature of the learning process "which is closely connected to
educational, psychological, social, and cognitive science” [94, p. 7]. One characteristic comes from
the divergent user motivation. Educational systems generate another kind of interaction data
because of their specialized content offering [223].

An important difference between traditional Recommender Systems and educational Recom-
mender Systems lies in the type of the user—item relation. Closed-course RSs must consider
the users’ knowledge instead of their preferences. The values in the user—item matrix rely
on the type of input data and are consequently used as the recommender’s relevance score. Of
course, preferences help to motivate learners, but to reach a given course goal, users must study
all relevant items irrespective of the items’ popularity. Schatten and Schmidt-Thieme noted that
a typical task of a TEL Recommender System is to retrieve "the knowledge of the student from
the given information, e.g. score, time needed, previous exercises, etc.” [237]. However, these
numeric data are ”just an indirect representation of the knowledge, which cannot be automatically
measured, but needs to be modeled inside the system” [237].

The learner’s model comprises representations of the actual knowledge ActualKnowledge, ;
of learner u about a Learning Object i at a particular point in time ¢. This knowledge can be

presented on a scale from 0% (no knowledge) up to 100% (highest possible knowledge). Experts
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must define the latter, which might be the required knowledge to reach the best mark in a test.
The Fxpected Knowledge; is also the reference for the highest possible knowledge of item i. The
deviation between the actual knowledge and the expected knowledge can be expressed through

the knowledge gap:

KnowledgeGap,, i = Expected Knowledge; — Actual Knowledge,, ; + (3.1)

It is of interest for the learner to obtain suggestions regarding missing knowledge in order
to compensate for these gaps by learning [94, p. 9]. Besides the KnowledgeGap, ; ; which can
be approximated by algorithms [237], educational Recommender Systems might rely on other
relevance scores, as well. For example, the number of LO accesses of similar learners or the
timely relevance of a topic presented in the presence lecture. ”Learning Need” is defined
in this work as the representation of the necessity of learning a particular item at
a particular point in time. The Learning Need can consist of different factors, including
the identified knowledge gap [103, 29]. Both values, preference value and Learning Need, are

sub-classes of a recommender’s relevance score and relate users to items.

3.2.4. Changing Knowledge-Levels and Increasing Matrix Density

The relevance scores are expected to change more frequently in educational RS
because the learner’s knowledge is expected to increase with every item interaction.
Traditional Recommender Systems try to model a user profile, which becomes more stable with
every item consumption. With a sufficient amount of user data, a new rating of a movie is expected
to reflect the recommender’s initial prediction of this particular rating. If the rating differs from
the prediction, the movie recommender slowly adapts to the new preferences — because the user’s
interests are expected to shift only slowly. However, it is unlikely that the users’ preference
will change to the opposite in short time, especially for all items of the huge item set within a
closed-corpus system.

In RS for TEL, less items are offered than in e-commerce systems [94]. User profiles change
frequently in Technology Enhanced Learning [19, p. 138 - 148] [103, p. 327]. Knowledge levels,
and so also the related learning need values, must be adjusted after every learning iteration. At
best, a learner starts without any knowledge and acquires the highest possible knowledge by the
end of the course.

A TEL Recommender System collects more data within a short time period com-
pared to traditional Recommender Systems. Thereby, a course starts with no, or only little,
information on the learners’ previous knowledge. However, during the period of the course, the
learners are expected to study all relevant items or at least provide some feedback on the items

[155, 109]. They can, for instance, provide feedback when they assume that they already have

Learning

Need
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expert knowledge and, consequently, skip those items. Particularly challenging is the fact that
all learners start studying at the same time. Thus, the cold start problem applies for all users
simultaneously.
"Most Recommender Systems need to handle sparse data, which is a big challenge for
Collaborative Filtering. At the beginning of a course, the user-item-time-matrix is sparse as
well, because [the recommender] knows very less about the knowledge of a user. However,
over the period of a course and with increasing user interactions, the matrix becomes dense.
Thus, [the educational recommender| needs to be capable of processing both: sparse user

data during cold-start and rich user data at the end of course”

Cf. [162)%".

A traditional RS rarely processes dense datasets [303], but, especially at the end of a course,
almost all (active) learners should have consumed all relevant learning items. A hybrid approach,
consisting of Collaborative Filtering and Collaborative Filtering, can compensate for the drawbacks
of single methods and phases at different points in time by, for instance, weighting the results of

various algorithms according to the density of the user—item matrix.

3.2.5. Multi-Dimensional Contextual Information

Approximating and predicting the learner’s knowledge requires more contextual
data compared to approximating ratings. While ratings express the users’ opinions on
items, the learners’ self-assessments (which are the equivalent) regarding their knowledge of
particular topics are likely to be inaccurate. Learners are often not aware of the actual learning
requirements and the scope of the assessments. Thus, it is probable that they overestimate or
underestimate their knowledge. Moreover, a reliable value of their actual knowledge is often not
generated until the final assessment at the course end. That means, a Recommender System must
rely on other data in the period before the assessment. Researchers determined that a set of
multiple attributes are appropriate to estimate the learners’ knowledge levels [191, 58, 96]. This

comprises various information on the users, the items, the context and the time [293, 213].

3.2.6. Time-Dependency

Drachsler et al. note that ”learners and LAs [(learning activities)] change over time” [94, p. 6]
which also directly affects the learner’s goal (also see [103, p. 327]). Educational recommen-
dations depend more on time information than do traditional recommendations. In
most traditional Recommender Systems, only the latest feedback of a user regarding an item is

considered for multiple reasons:

37This excerpt was exclusively written and presented by Christopher Krauss at a doctoral consortium.
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1. Users usually consume the same item only once or with significant pauses between the
repetitions.

2. Often, the point in time of an item consumption plays a minor role — or is even not
determinable, as with movie rating systems such as Movielens [120], where the time of rating
is not necessarily the same as the item consumption time.

3. In general, users are not expected to frequently change their opinion on the same item.

4. The last user feedback is of particular interest as it represents the user’s most recent opinion
on an item.

5. Existing two-dimensional prediction models work well on the known user—item relation for

traditional Recommender Systems.

In TEL, the relevance score is expected to change after each learning process. Thus, following a
recommendation of a Learning Object has a direct effect on the items relevance score, because the
user’s knowledge increases with each learning repetition. The consequence is that educational
Recommender Systems need to incorporate also the historical consumption and feedback data from
different points in time in order to transfer learning patterns. Thereby, educational recommenda-
tions show a high degree of time dependency, because these recommendations generally correlate
with the learners’ knowledge levels and the progress of the course. Learning happens in different
stages and phases that directly affect its efficiency and effectiveness [98, 246, 23]. Also courses
run through different phases, e.g., starting with the enrollment and cold start phase, lecture or
assessment periods, holidays and breaks as well as learning phases before the final assessment.

In particular for TEL, certain recommendations become obsolete after a short time span, e.g.,
when the Learning Object has been studied by the students or the next lecture focuses on a
different topic. This leads to the requirement of recommending and measuring timely relevant
items which must be taken into account for the prediction of appropriate Learning Objects.

When considering historical data, the classical user—item matrix becomes insufficient as it just
allows one feedback value per user—item pair to be stored. Time-Aware Recommender System

extend the traditional user—item matrix by a time dimension.

3.2.7. Interdependency of Items

Items in TEL Recommender Systems might have dependencies on other items of the same course
[244, 21, 271, 94] — more than, for example, movies may depend on each other. An LO might
introduce the basics that are needed to understand a subsequent Learning Object which is why
the learner should first focus the basics before studying the second item. Another LO, in turn,
might deepen the knowledge of a previous topic and so on. However, two course items can also
contain separate topics that may be learned independently from each other. Thus, educational

Recommender Systems should take given structural relations between different items
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into account.

3.3. TEL Recommender Systems Utilizing Collaborative
Filtering

After the introduction of the special paradigm for educational Recommender Systems, the
following sections analyze related work with particular respect to the determined characteristics
of Technology Enhanced Learning. Thereby, Collaborative Filtering is an often applied and at the
same time promising approach (cf. [191, 54]).

"Manouselis et al. argue that more than the half of all published Recommender Systems in
the area of Intelligent Learning Technologies were still at a prototyping or concept level and
only 10 have been evaluated in trials with real participants [191]. Most of these systems
are designed to predict items in a closed system using the two-dimensional Collaborative

Filtering user-item-matrix”

Cf. [161, p. 501]38.

In 2015, Erdt et al. [103] published a survey which analyzes 235 articles about TEL Recommender
Systems3®. The survey indicates that Recommender Systems in TEL gain increasing attention in
the last few years. While only 18 related papers have been published between 2000 and 2005, 160
have been published between 2010 and 2015. However, only 13% (30) of all algorithms and systems
have been tested in real life settings and even 42% had no evaluation at all [103, p. 331-336].

Collaborative Filtering is a frequently used approach to educational recommendations. The core
assumption is that learners show similar learning activities for the same items within a course
and thus their learning patterns can be processed to predict future Learning Objects. Obviously,
classical CF-approaches are the first choice to identify appropriate items in Technology Enhanced

Learning systems. Examples are:

”’CourseRank’ [160] [, an unofficial course recommender] of the Stanford University, *Altered
Vista’ [224] that uses Association Rules of frequently used learning objects in courses or
'"RACOFT’, a rule-applying Collaborative Filtering system ’that assists on-line users in the
rating and recommendation of audio (Learning) Objects’ [42]. However, these recommenders
only work on a flat item hierarchy and without time or extended context data. Nevertheless,

it seems to be very important to include the intrinsic and extrinsic motivation of students,

38This paper excerpt was primarily written by Christopher Krauss. However, the study of Manouselis et al. was
published in 2011.

39Note that multiple of the 235 papers describe the same Recommender System and, thus, the number of 235
papers does not reflect the amount of Recommender Systems which is expected to be much lower.
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in terms of 'pedagogical aspects like prior knowledge, learning goals or study time’ [191]”
Cf. [161, p. 501]°.

CF in TEL often utilizes ratings, as known from entertainment or e-commerce recommenders
[170]. Thereby, the appropriateness of learning material for an individual user is not rated, but
instead the learning object quality. The "ReMashed” platform of Drachsler et al. [95] gives access
to different learning resources and recommends content based on preference ratings through the
DUINE Recommender Framework 4'. Rafaeli et al. [221] present an approach which focuses on
learning communities and offers either an automated CF algorithm or follows the real advice of
friends to form suitable learner communities.

Thereby, utilization of an unspecific Collaborative Filtering approach is not necessarily practical.
Sicilia et al. [247] experimented with standard algorithms, such as the Pearson Correlation
Similarity and the Euclidean Distance, to recommend Learning Objects based on the behavior
of similar users. In doing so, they received high error values which is an argument against the
application of unmodified traditional RS approaches for TEL.

Another promising approach to assisting learners is to additionally recommend items that are
not part of the actual course [22, 259] — called open-corpus recommendations. Chatti et al. note
that in open-corpus environments ”learners rarely share the same or similar learning resources
due to the fact that they follow their individual interests and preferences” [58]. Thus they suggest
focusing more on Preference Filtering techniques by incorporating tagged user interests into
traditional Collaborative Filtering. Therefore, Chatti et al. extend the user—item matrix by a new
dimension that represents all user-generated tags, and this can be split into user—item, user—tag,
and item—tag sub-matrices. Each sub-matrix, in turn, is used to calculate user- or item-based

predictions with cosine similarity that are merged subsequently to a single Top-N list*2.

3.4. Context-Awareness in Recommender Systems

Most researchers conclude that Collaborative Filtering for educational Recommender Systems
performs better when more than just one attribute type is incorporated. Manouselis et al.
suggest the inclusion of context-aware aspects "to embed pedagogical reasoning into Collaborative
Filtering driven recommendations” [191]. In addition, multi-criteria input on the items increase the

suitability of the recommendations. These attribute dimensions comprise ratings of prior knowledge,

40The paper excerpt has primarily been written by Christopher Krauss.

41DUINE. See http://www.duineframework.org/ (Accessed: 13.04.2017)
Marginalia: The DUINE Framework is a generic Collaborative Filtering RS and was the first engine the author
used for video recommendations in 2010.

42In 2016, Chatti stated that Social Network Analysis (SNA) is an appropriate approach for professional open-
corpus Recommender Systems [60]. However, this dissertation focuses exclusively on a closed-corpus item
catalog.

Open Corpus



Math.

Description

34 Chapter 3. Related Work on Recommender Systems for Technology Enhanced Learning

presentation styles and even attractiveness [191, p. 12]. That is the reason why a distinct area of
Recommender Systems is introduced in this section — the Context-Aware Recommender Systems.

Pelanek et al. investigated the close correlation between the timing of problem-solving and
multidimensional student skills that "may be useful for automatic problem selection and recom-
mendation in Intelligent Tutoring Systems and for providing feedback to students, teachers, or
authors of educational materials” [213].

The ISIS Recommender System of Drachsler et al. [93] processes the data of other learners as well
as information on the users’ activities and profiles for recommending Learning Objects. Especially
interesting is the fact that they underline the significance of the attribute that represents the time
needed to complete the Learning Objects.

Chatti et al. showed that user-generated tags seem to be useful in the TFEL context, as they
are familiar to the user and represent semantic values associated with an item that might not
be an explicit part of the metadata [58]. Swertz et al. created a "Playground” to apply different
pedagogical ontologies in adaptive e-learning environments, which can be utilized by researchers
for evaluation purposes [256]%3.

Similar to the work of Chatti et al. [58] and Manouselis et al. [191], the Recommender System
”CoFind” analyzes multiple freely available repositories and thereby uses an "N-dimensional
collaborative filtering” approach to detect Learning Objects fitting the user’s preferences [96].

This work builds upon these findings (especially those of Manouselis et al. [191] where Collab-
orative Filtering requires user data of multiple attributes). Recommender Systems focusing on
multi-dimensional contextual attributes are called Context-Aware Recommender System (CARS)

and are frequently used for application areas apart from Technology Enhanced Learning**.

3.4.1. Definition of Context

Yau and Joy note that adaptive learning environments should be context aware and, at best,
adapt to the user’s personal schedule and situation (e.g., regarding location, preferred learning
style and available time) [293]. According to Dey, context is “any information that can be used to
characterize the situation of an entity. An entity is a person, place, or object that is considered
relevant to the interaction between a user and an application, including the user and applications
themselves” [87, p. 4]. Moreover, Dey stated that a system is context aware ”if it uses context to
provide relevant information and/or services to the user, where relevancy depends on the user’s
task” [87, p. 5].

Campos et al. [57] defined the context information of RSs as an extension of the user profile P,

associated with the user ratings of user u. However, in this work, r represents not only ratings,

43 An analysis of additional educational ontology-based Recommender System is presented in Appendix B.17, but
these play only a minor role in this dissertation.
44 A brief overview of popular context-aware services is presented in Appendix B.18.
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but a relevance score as defined in Section 2.1:
Py ={ryiuecUjiclr,,#0}. (3.2)

This information can be associated with any user, item or experience — e.g., location, weather,
device, mood or time [57, p. 72]. The inclusion of context information helps to increase the
recommendation accuracy and thus the users’ trust in the recommender as well as the level of sales
[114, p. 671], [57]. Moreover, Cremonesi et al. note that the quality of a Recommender System
might depend on the season. In their case, only in ”the low season scenario the quality of [the]
non-personalized algorithm is comparable to — or even better than — the quality of personalized
algorithms” [71, p. 342] which underlines the necessity of taking context information into account.

Already in 2005, Adomavicius et al. [8] considered different contextual factors for the calculation
of their recommendations. Their "multidimensional (MD) approach to recommender systems
[...] can provide recommendations based on additional contextual information, [...] multiple
dimensions, profiling information, and hierarchical aggregation of recommendations” [8]. Thereby,

the traditional user—item matrix is extended by a set of context dimensions.

3.4.2. Context Dimensions

Later, Adomavicius and Tuzhilin [10, p. 224] defined a Contexrt-Aware Recommender System

(CARS) as extension of context to the Recommender System definition introduced in Section 2.1:
F:UxIxC—R, (3.3)

where C' is a set of contextual information C; of dimension ¢, that may have its own type and range
of values. Moreover, each contextual dimension C1, Cs, ..., C,, € C may have another representation
of its data reflecting the complex nature of its information [10, p. 224], [57, p. 72]. Taking into
account that U and I can also be represented as contextual dimensions (incorporating user and
item data), the formula can be generalized as a Cartesian product over the space Cq x ... x C),
[10, p. 226]:

F:C; x..xC, = R. (3.4)

The method of incorporating additional contextual dimensions for the generation of recom-
mendations can be manifold [10]. Nevertheless, three main concepts have been established for
Technology Enhanced Learning [270, p. 328]: 1) "recommendation via context-driven querying
and search” which is very similar to ”"contextual prefiltering” that is applied before using tradi-
tional recommender approaches, 2) "contextual post-filtering” that is, consequently applied to the

outcome of traditional Recommender Systems and finally 3) ”contextual modeling”, as the most
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advanced CARS approach, using algorithms for context data in the recommendation of items.
The latter determines contextual dependencies of features which cannot be identified by simply
filtering particular contextual features — an example is a recommendation of a specific item type
in a particular situation (location and point in time) based on the previously trained patterns of
other users.

Different approaches exist to classify general contextual dimensions as proposed by Adomavicius
and Tuzhilin [10]. For Technology Enhanced Learning, some adapted classes have been established,
such as the differentiation between "who” (user), "what” (object), "how” (activities), "where”
(location) and "when” (time) [178]. In this work, the definition of Verbert et al. [270, p. 322 -

324] is adapted to classify the dimensions as follows (an overview is presented in Figure 3.1):

1. A "User” is typically represented by a user profile and contains additional contextual sub-
dimensions (such as interests, prior knowledge, learning goals or emotional status [88] — see
Figure 3.1 for all sub-dimensions of the "User”).

2. An "Item” is the resource that is typically accessed in learning environments and it also
contains a set of sub-dimensions (some of which overlap with the sub-dimensions of the user,
such as [required] knowledge, [media] type of learning and [intended] learning goals).

3. The ”Activity” describes the type of action performed by a "User” typically on an "Item”
which refers to the traditional user—item feedback in Collaborative Filtering.

4. "Time” can be a point in time or a time span and is commonly related to another context
dimension, such as an ”Activity”. State changes over time are introduced in [239].

5. The "Location” can be represented as GPS coordinates or as labels, e.g., a classroom, the
home or a particular city [239].

6. The "Computing Context” represents the characteristics of the used hardware, software and
network (e.g., used devices, available bandwidth or the accuracy of GPS due to the signal
strength [227]).

7. ”Environmental Conditions” describe the relevant physics, such as light, noise or weather
(e.g., temperature [47, 227] or more general weather information [8]).

8. ”Social Relations” are associations between two or more persons or groups of people (e.g.,
friends and communities as well as information from social networks [239, 148, 186]). However,

in a TEL system it can also refer to classmates and learning groups [190].

In reality, a lot of combinations and mixture forms appear that might not be attributed to only
one context dimension. ”"People nearby the user” [239], for instance, incorporates the "User”,
"Location” and ”Social Relations” dimensions and ”"Objects around” [239] comprises "User”,
"Location” and ”Item” information.

The introduced dimensions enable analysis of all-encompassing activity patterns and the deter-

mination of the current situation with the prediction of future interactions. The Smart Learning
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Figure 3.1.: A taxonomy of context elements for Recommender Systems in Technology Enhanced
Learning (ct. [10] and [270, p. 322 - 324]); Black boxes represent the main dimensional
classes and sub-dimensions of a "User” or an "Item”; Examples for the sub-dimensions
are shown in the gray boxes.

Recommender which will be introduced in this work incorporates a set of these different contextual

dimensions for closed-corpus recommendations in a TFEL setting.

3.5. Time-Aware Recommender Systems

As stated above, the time dimension is of particular interest for Technology Enhanced Learning.

That is the reason why this section introduces the distinct RS area of Time-Aware Recommender
Systems which is actually not part of standard educational environments. However, this section
discusses why it makes sense to incorporate time-information for TEL Recommender Systems.

The time dimension T allows for the modeling of transitions from a one-dimensional state to
another — e.g., the interest towards an item at different points in time. Thereby, different data
sources show varying dependencies with time — for instance, web search queries might either show
periodic trends of ”Activities” [272, 32] or temporal correlations of the users’ ”Interests” [65, 301].

A point in time can be used to further describe the status of an element, e.g., a real-world
object, a recommender item or the item’s metadata. In other words, an element has a specific
state at a particular point in time. This state might change and re-occur. The time dimension
is appropriate to describe this process of change and thus determines each element’s state at a
particular time. The timeliness of social data, for instance, ”is very limited as the users’ interests
tend to change quickly over time. Time is considered as an important factor when building social
Recommender Systems” [58].

Campos et al. [57, p. 73] describe the inclusion of time attributes in Context-Aware Recommender

System, such as "time of the day, day of the week, and season of the year”, as an elementary
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aspect of Time-Aware Recommender Systems (TARSs) . Its mathematical representation is:
F:UxIxT— R, (3-5)

where the concrete relevance score r € R depends on the user-item-time triplet < w,?,t >
containing user data u € U, item data ¢ € I and time information ¢t € T. Figure 3.2 shows an
example of a TARS model that determines a relevance score for the user with id = 101, item id = 7
and time label with id = 1 that is R(101,7,1) = 6 (this example is borrowed from Adomavicius
and Tuzhilin [10, p. 227]).

W R(101,7.1)=6

>
-
101 6 H¥
L1
102 ]
User //
103
3
Id Name Ag 104 2
1
101 | John 25 2 3 5 7 )
H—) Time
2 Bob 18
- Id Name
103 | Alice 27 Item
1 | Weekday
104 Mary 21 Id Name Cost
- 2 Weekend

2 | AB17 250.0

3 | Holiday
3 | AB23 2999

5| XY70 150.0

~

Z755 1155

Figure 3.2.: Example of a TARS utilizing a three-dimensional model for User x Item x Time.
This example is taken from Adomavicius and Tuzhilin [10, p. 227] (the user Ids are
corrected due to an error in the original figure).

In 2003, Tang et al. noted as one of the first researchers the importance of considering temporal
effects in the items’ metadata for improving Recommender Systems [260]. They noted the effect
of different movie production years on the users’ rating habits.

Time events can be characterized as ordered numerical attributes. Thereby, they depend on the
application area and unrestricted numerical, numerical in intervals or the new devised numerical
in repeating interval types are used (see Section 2.2.1.1). The last attribute type is applicable for
focusing on specific time units, such as hours, days, months or years, as it forms a hierarchy of
time units, such as 60 minutes represent one hour, 24 hours represent a day, and so on. ”"This
hierarchical structure and the fact that time is a continuum, lead to a cyclic conception of time
where its values repeat periodically” [57, p. 73]. Depending on the application area, it might be

useful to work with the entire available numerical range (e.g., by using timestamps) or to represent
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a point in time or a period by a category label (e.g., "morning”) to cluster similar points in time.

In 2009, Baltrunas et al. introduced a new approach to considering contextual labels, including
for time periods. Thereby, these authors split their items into subsets representing significant
differences in the ratings. "For each of these items, it splits the ratings into two subsets, creating
two new artificial items with ratings assigned to these two subsets” [26]. Later in the same
year, they extended their research and split the users’ feedback data into ”overlapping sub-
profiles” for different context and time labels [25]. This approach increased the accuracy of the
implemented Collaborative Filtering method after identifying the optimal split time and thus
shows the improvement to recommenders given by considering time.

Unfortunately, the approach focuses only on categorical time labels — such as "morning”,
"Wednesday” or "summer” — and does not consider any dynamically and continuously changing
time intervals or even the time in between two labels. Since a category label reduces the information
space that might be useful for further calculations, it would be more flexible to persist with the
exact timestamp of an action instead of a reduced label. The usage of disjunct time labels, in
turn, makes it easier to incorporate other contextual dimensions as well [57, p. 78].

Following similar considerations, Campos et al. classified Time-Aware Recommender Systems
according to "categorical time-aware approaches”, ”continuous time-aware approaches” or ”time
adaptive approaches” [57, p. 76]. The latter approach takes time information into account to
adjust certain algorithm parameters dynamically in a "more subtle way”. In contrast to the other
two approaches, time adaptive systems do not directly influence a rating prediction for the target
recommendation time [57].

In contrast to Campos’ term of Time-Aware Recommender Systems, Lathia et al. formalize ” CF
as a time-dependent, iterative prediction problem. [...] A further evaluation of adaptive-CF would
therefore also encompass the variation in recommendations that results from user parameters being
constantly updated” [172]. Time dependency refers to mathematical functions of time, where it is
possible to determine for each point on the y-axis a point in time on the x-axis. Subsequently, a
Recommender System that allows allocating of a point in time to a timely appropriate relevance

score will be called a Time-Dependent Recommender System.

3.5.1. The Effect of Time on the User Data

As time played a minor role in Technology Enhanced Learning so far, the related work of Time-
Aware Recommender Systems mostly focuses on more general domains. However, some approaches
have been published and the general concepts and findings are also applicable to educational
Recommender Systems.

He et al. [123] analyze users’ preferences and different resulting neighborhood groups over

different time intervals. They underline the importance of context information for forecasting
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user preferences because interests are different when various time intervals are considered and
are "changing along with time rolling around” [123]. They note that existing algorithms focus on
the users’ similarity by considering all history interests. However, a Recommender System should
particularly consider the periods during which users have overlapping interests.

Since time seems to play a crucial role in forecasting activities, why was the time aspect not
considered previously? He et al. noticed that in most cases the "rating’s timestamp is user’s
history impression, not the time when user saw it” [123]. Thus, the rating time is not necessarily
the same as the consumption time. For movie Recommender Systems, for instance, users provided
ratings even years after watching that movie. This circumstance makes it hard to analyze the time
effect in the already obtained datasets as most academic datasets are based on ratings without
any information on the difference between consumption and feedback time. Neither the popular
Netflix Prize [34] nor the academic Movielens dataset [120] contain consumption time information.
Nevertheless, even with these datasets, it is possible to prove the influence of time on ratings.

Koren et al. [159] identified temporal effects in the Netflix Price dataset. One effect emerged
in early 2004 (over four years since the first Netflix rating has been provided) when the average
number of movie ratings increased suddenly. A second temporal phenomenon in the Netflix data
is the correlation between age and the rating of a movie. The older a movie (measured time span
since the first rating), the higher the average rating. Additionally, Xiang et al. identified four

time factors that influence the recommendation of movies [286]:

1. Time bias shifting: The interest of a whole society changes with time. This effect is
particularly present over the limited time period of a course. For instance, at the end of the
course, all learners simultaneously learn the same topics.

2. User bias shifting: Users may change their feedback habits over time. Also this effect is
observable for individual learners.

3. Item bias shifting: The popularity of items changes over time which can be observed
during lectures.

4. User feedback shifting: Users may change their attitude towards some types of items.

Subsequently, the change of Netflix’ average ratings can be classified as an effect of time bias

shifting and similar effects might also be observable in Technology Enhanced Learning.

3.5.2. Existing RS Approaches concerning the Time Dimension

Xiang et al. [287] differentiate between short-term and long-term user preferences in a session-
based temporal graph. Long-term preferences are based, as usual, on all past user ratings.
Short-term preferences, in contrast, consist only of the ratings in the user’s current consumption
session. They proved the effectiveness of the method using two real datasets regarding citations

and social bookmarking and improved the previous state-of-the-art recommender by 15% - 34%.
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”[...] most research on time-dependent recommendation engines have been done in the area
of movie predictions: For instance, a time-context based Collaborative Filtering algorithm,
[123] proposed by Liang He, describes the inclusion of rating time in the computation of
predictions for movie ratings. And Zhang et al. [300] describe an approach to consider
changes in users’ interests when recommending the items for the users. While a novel

K-nearest neighbor algorithm [183] finds time-based neighborhoods of a user”

Cf. [161, p. 502]45.

The MovieLens dataset is used for evaluation of He’s approach and the error and recall mea-
sures prove the good quality of the approach. On each dataset, the proposed TARS algorithm
outperforms the conventional user-based filtering algorithm [123].

Zhang and Liu [300] used a Item-based Collaborative Filtering algorithm ”based on Time Period
Partition” to consider changes in users’ interests in recommending the items for the users. They
identified that most significant patterns only occur over specific time intervals. Therefore, the user’s
rating history was divided into several periods. Each period was treated as a simple sub-community
and recommendations were only calculated based on the data in the given sub-community. The
evaluation of the MovieLens dataset shows that the proposed algorithm outperforms even another

Time-weight Collaborative Filtering algorithm (which was presented in [89]) [300].

3.5.2.1. Time Decay for Past Ratings

The time decay effect is a special form of user bias shifting and is part of Ding and Li’s research
on movie recommendations: Recently rated items "have a bigger impact on the user’s prediction
than an item that was rated [a] long time ago” [89, p. 491]. Thereby, they introduce a time
function f(t) for the weighting process representing ”a monotonic decreasing function, which
reduces uniformly with time ¢ and the value of the time weight lies in the range (0,1)” [89, p. 487]
as shown below:

f(t) =e M, (3.6)

This e-function takes the decay rate \ = T% and the current time ¢ into account. Ty is the half-life

parameter that reduces the total weight of f(t) by % in Ty days. At the same time, Ding and Li’s
algorithm learns ”users’ rating behavior to find the appropriate personalized parameter for each
item cluster” [89, p. 491]. Different error measurements show an accuracy improvement in all
analyzed settings. As this approach sounds reasonable for incorporating a memory effect, it is
considered for the Smart Learning Recommender.

Campos et al. [57] found divergence in the literature when considering the effect of time

45This excerpt is part of the related work section on a time-dependent Learning Recommender System and was
exclusively written by Christopher Krauss.
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decay: While Ding et al. [89] received better recommendations when only considering the latest
ratings of a user, the data processing of the Netflix Prize [159] showed better results without time
decay. Campos shows "that the usage of information near to the recommendation date alone can
help improving recommendation results, with the additional benefit of reducing the information
overload of the recommender engine” [56].

A similar approach concerning time decay is the "Time-Based K-Nearest Neighbor Collaborative
Filtering” [183]. Liu et al. call their decay parameter the "Importance Degree of Items” which
improved the precision by up to 13%. Lu et al. proposed a spatiotemporal model enabling
"an adaptive estimation procedure that emphasizes recent user ratings more than his/her past
behavior” [185, p. 13]. Moreover, they incorporate also extra information, such as demographic
side information and implicit feedback data, as additional user and item factors. These factors are
modeled in a time-dependent manner to represent changing attributes (e.g., preferences) over time.
They applied Matrix Factorization as well as Kalman Filtering [121] and evaluated the system,
among others, on the MovieLens dataset. Thereby, the incorporation of the spatiotemporal model
reduced the prediction errors by 1.4% compared to a traditional model. The Smart Learning
Recommender introduces a similar spatiotemporal data representation, but instead of an exclusive
Collaborative Filtering approach, it is a Hybrid Filtering approach with a major focus on item

attributes (for Content-based Filtering and Knowledge-based Filtering) rather than other learners.

3.5.2.2. Forgetting in Technology Enhanced Learning

The first models that aimed at abstracting and forecasting knowledge decays were developed in
the late 19th century. Thereby, Ebbinghaus developed a first, but in parts still reliable, model
of human forgetting [98]. It is based on observations in experiments regarding random syllables
form fantasy words which have been learned (and forgotten) by humans over three years. In
regular intervals, the gained and still available knowledge is tested which results in an average
progress of forgetting over time. An extension of this approach (that also incorporates some
digital media parameters) is utilized as a context factor for the Smart Learning Recommender in
this dissertation. Moreover, the idea of automated forgetting of information for improving Data
Mining is also incorporated in different variations within this work.

Some research highlights positive aspects of forgetting, especially forgetting in the area of big
data. For instance, "forgetting” or “trashing” might be a necessary instrument when storing or
processing information in huge datasets in order to handle less data in total and to improve the
overall performance [104].

Regarding educational Recommender Systems, "there has been research on forgetting for schedul-
ing practice [140] [, but] no systems [...] have included forgetting into open learner models, as done

in PAL3” [254, p. 492]. PAL3 is a learning platform that presents a digital avatar to the learner
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that gives hints for life-long learning scenarios — even for Learning Objects that might have been
forgotten. Thereby Swartout et al. adapted the forgetting model of Averell [23], an exponential
decay model with a non-zero asymptote which represents the fate of memories. The model of
Swartout et al. "attempts to estimate both the asymptote and the current mastery simultaneously,
where each observation is weighted based on the expected amount of forgetting (i.e., three high
scores each a month apart raise the asymptote greatly, but three high scores a minute apart will
raise current mastery but do little to change the asymptote). Forgetting is applied every time a
new score is added or when calculating mastery after the learner has not practiced [...] at least

one day” [254, p. 494].

3.5.2.3. Time Weights

Adibi and Ladani define the similarity between users as ”group similarity” [7]. Thereby, a group
of items is represented by common attributes, such as the same genre. This means that users are
compared not by their rating of specific items, but their average rating of genres. They analyzed
the effect of weights for rating timestamps in similarity groups. The higher the timestamp, the

higher the weight w(r) for rating r:
w(r) = (t?” - tma.’t + 1)b7 (37)

where t,. is the current rating’s timestamp and ¢, is the timestamp of the oldest rating of the
same user. b adjusts intense of forgetting, the way whatever its value to be higher, recent ratings
will have more influence in calculations” [7, p. 254-255]. Evaluations with the MovieLens dataset
show a significant improvement of the error measures and the coverage values, especially for cold
start users. This approach is borrowed and adapted for the time weighted concept of the Smart
Learning Recommender.

Chen Dongtao [90] used user profile weights as well as time weights to improve the neighborhood-
based recommendations of MovieLens items. In a first step, he takes similar profile information
(such as users’ age, gender and occupation) into account. In a second step, Dongtao gives recent
ratings a higher weight with the help of a "monotonic increasing function [with] forgetting ability”.
The older the ratings, the lower the weight. While each step (incorporation of user profile weights
as well as time weights) outperforms the traditional CF for its own, the combination of both is
even better.

As stated in Section 2.2.2.1, the Slope One algorithm is a frequently used Item-based Collaborative
Filtering approach to predicting the missing user ratings. Jiang and Lu extended the idea of a
Weighted Slope One algorithm introduced by Li et al. [177] and increased "the weight of the user’s
recent behavior and give priority recommended for those items which [are] similar to user’s recently

favorite items” [142, p. 2296]. The resulting improved Time-weighted Slope One Algorithm takes

Time-
weighted

Slope One
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user bias shifting into account and increases the accuracy compared to the original version by
3.1%. A novel comparison of the traditional and the time-weighted Slope One, both applied in

the same TEL setting, is presented in more detail in Section 7.2.1.

3.5.2.4. Time-based Recommender Systems in TEL

Verbert et al. analyzed different Recommender Systems that have been applied in the TEL domain.
They identified also a number of RSs which incorporate time information in the calculation process
[270, p. 325]. Lehsten et al. [173], for instance, store situation-related data (e.g., information
on time and location) for the access of resources within their LMS to further understand these
context dimensions (and without utilizing recommender techniques). Other researchers focused on
the filtering of learning resources according to the available study time [73, 36, 293, 240]. However,
in the strict sense of its definition, they cannot be seen as TARS algorithms.

Hermann [126] published an approach for recommending educational material by incorporating
time features in a "contextual modeling” manner. Verbert et al. noted that Hermann was the sole
author so far who developed a Time-Aware Recommender System for Technology Enhanced Learning
[270]. This algorithm is called Time-based Recommender Approach for Lecture Materials (TBRA).
Hermann determined correlations between the download time of videos, animations (in Flash) as
well as slides and particular dates, such as tutorial deadlines and exams. As the contents can be
accessed independently from specific courses, he collected almost 5 million activity statements,
called "TimePreferences” [126, p. 4] which consist of a user-item-time triplet for each download.

The recommender approach is based on a similarity measurement that is exclusively based on
the point in time of item consumption. The Boolean function p(u, i) becomes true when user u
downloaded item ¢. The algorithm calculates the similarity of the two items S; ; for all users u

who downloaded the two items ¢ and j [126, p. 5]:

Vu € {u | p(u,i) Ap(u,j)} (3-8)
1
Si = Ati;+Adij (3.9)

Thereby, At; ; corresponds to the deviation between the download time ¢; of item ¢ and the
download time ¢; of item j that can be formulated as | t; —¢; |. Ad, ; represents the time deviation
of the first of the two downloads min(t;,t;) and the current point in time tcyrrent that is defined
as | min(t;, t;) — teurrent | [126, p. 4].

The result is a ranked list of similar items. Thus, this Time-Aware Recommender System always
requires a reference item which is consumed by the user initially. In addition to the actual requested

item, the learner gains hints for other materials that have been downloaded recently and often in
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conjunction with an actual requested one. An evaluation shows a slight improvement of precision
(87%) and recall (17%) compared to a classical Collaborative Filtering algorithm (precision = 84%;
recall = 16%) [126, p. 5]. More details on this approach as well as some realization details for
comparison reasons can be found in Section 7.3.1. However, this approach must be adjusted to fit

the needs of a TEL RS without a reference item.

3.5.3. Drawbacks of TARS

A negative example for the incorporation of additional contextual factors in general RS is given
by Van Setten et al. [268]. However, the effects should be similar in specialized TEL Recommender
Systems. They identified a negative perception of the usefulness of their touristic points of interest
recommendations when taking the features of last-time visits into account [268, p. 9]. While most
research on time improved the recommender’s performance significantly, a smaller increase in the
accuracy or acceptance can also be a disadvantage: Xiang et al. use complex matrix factorization
in Collaborative Filtering for low-rank ratings. They used the Netflix and the MovieLens dataset
for testing and evaluation and improved the overall error measurements by a comparably low
value of up to 0.00558 [286]. Given the computational costs incurred, a service provider must
balance benefits and limits of Time-Aware Recommender Systems very well. In the worst case, a
RS without the awareness of time can perform better in total and, thus, should be preferred.

An up-to-date recommendation might have another negative impact when it is recommended
in an inappropriate situation. Betzalel et al. [75] note that the correct timing of proactive
recommendations helps to improve the user acceptance, as — in some situations, e.g., while driving,
chatting or watching a movie — proactive recommendations are inappropriate. Therefore, they
developed and trained a classifier that predicts appropriate recommendation phases. Their Recom-
mender System for points of interests shows the best results when combining a personalized and a
non-personalized approach in a hybrid way. This dissertation will introduce a new measurement

value for determining the timeliness of recommendations.

3.6. Learning Path/Sequence Recommender Systems

When users want to obtain a complete overview of all offered Learning Objects or to see the
recommended order of the next items, traditional CF algorithms need to be extended. The
identification of LO sequences is typically handled by a special group of Recommender Systems,
as it requires knowledge about the relations between items instead of just predicting a relevance
score per item. Shen and Shen [244] introduced a prediction model with a sequencing rule
algorithm by taking a topic ontology into account. When the system identifies a lack of knowledge,

appropriate contents are recommended. In this work, a novel Learning Path algorithm builds on
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this foundation.

A common technique for the presentation of item relations is to create a database with directed
graphs, including nodes for items and edges for their relations [21, 271, 291]. Thereby, different
approaches are frequently utilized to create the needed item sequences. Six key approaches are

described in the following list:

1. Teacher’s Sequence: Teachers and educational staff have the best knowledge of the taught
topics and the intended knowledge transfer. Thus, they model item sequences manually
and in a pedagogical way [94]. Their model results in a high quality for the given learning
setting because the Learning Objects are then curated by experts. However, this approach is
time consuming for the content creators, because of the manual content management [21].
This approach on its own does not allow for the provision of personalized learning paths as
the predefined didactic structure remains static.

2. Content-based Analysis allows for the generation of a topical structure without the super-
vision of humans. It rather analyzes the content, especially textual input, to automatically
generate dependencies. Chen, for instance, uses semantic text analysis approaches (namely
TF-IDF) to identify the most important terms within Learning Objects and, consequently,
to cluster the items according to their topics [61].

3. Constraint-based Approaches are similar to manually defined structures in allowing for
more choice in the personal learning directions with some predefined restrictions [21, 271].
For instance, the learners might appreciate the opportunity to freely choose the next learning
item as long as all prerequisites are fulfilled.

4. The knowledge-based Approach is based on the previously acquired knowledge of the
learner, e.g., by presenting a survey at the beginning of a course or by letting the user answer
some related questions when accessing the content. According to the determined knowledge,
well-known items are filtered out, and items with new topics gain a higher relevance [61, 291].
An alternative is to present learning objectives, as done by the Learning Unit in this work,
according to the taxonomy of Bloom [40], and to allow the learner to provide self-assessments
based on these objectives [305, p. 230]. The knowledge gained, in turn, can be represented
as an ontology [62].

5. Activity-based Analysis: The set of user activities can be utilized to generate Learn-
ing Object dependencies based on the past consumption activities of learners [94]. Some
researchers used the approach of ant colony optimization that corresponds to the traveling
salesman problem [291, 189, 91]. The transition from one learning item to another yields
a lower penalty, the more frequently the items are consumed in a particular order. This
approach requires a sufficient number of users and interactions. Huang et al. [132] used a

Markov Chain Model to identify automatically sequences of learning objects in past courses.
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Moreover, the context of the collected interactions is important, as typical learning behavior
is not necessarily generalizable [17]. Thus, the interactions should be used in the same
context of learning path recommendations.

6. Hybrid Combination: Similar to Hybrid Filtering, the hybrid combination of approaches
represents the most powerful class, as it overcomes the weaknesses of single approaches.
For instance, the time-intensive teacher approach can be assisted by content-based analysis
and interaction-based approaches can be combined with the knowledge-based approach to
overcome the cold start problem [291]. The most common method is a combination of
teacher-based or knowledge-based with a constraint-based approach, providing a curated

but also — to some extent — personalized learning experience [21, 271, 61].

Most publications allocate an important role to user feedback for learning path generations in
terms of the learners’ interests and knowledge levels. Drachsler et al. [93], who mainly focus on
CF, note that explicit user feedback, such as ratings or tags, helps to identify paths in learning
networks in a more efficient way than other input types. Voss et al. developed an adaptive
sequencer that uses Matrix Factorization as the performance predictor [273]. With the same
approach, Schatten and Schmidt-Thieme tried to "keep the contents in the Vygotskis Zone of
Proximal Development (ZPD) [277], i.e., the area where the contents neither bore or overwhelm the
learner” [237]. In each calculation step, the system selects contents with a predicted performance
score that is most similar to the user’s modeled score. Researchers of the Worcester Polytechnic
Institute [288] enhance long-term retention of acquired knowledge by creating a Personalized
Adaptive Scheduling System for retention tests.

Another — very recent — example of learning paths was realized by Nabizadeh et al. [199] which

is introduced in detail in this paragraph: They restricted the item sequence to those Learning

Objects that allow “obtaining the maximum possible learning score in a limited time” [199, p. 153].

Thereby, they focus on three sub-problems: (1) the generation of all possible paths based on the
user’s previous knowledge and a restriction of the total learning time, (2) estimates of the personal
time for the generated paths and (3) scoring predictions for the paths. Thus, the generation is a
knowledge-based approach [199, p. 155]. The previous learning speed of a particular learner is
compared with the median learning time of others and the resulting learning speed is transferred
to other items. The scoring prediction, in turn, is based on the average learner’s assessment
scores (0: fail; 1: pass) per Learning Object. Taking this information into account, the path
generator recommends items with the highest average assessment score and the lowest estimated
learning time out of all possible paths. The evaluation of this learning path approach shows low
error values, but only compares the prediction accuracy of the time and scoring predictions. The

accuracy values of entire recommended paths are not determined.

While path creation algorithms are frequently utilized for the prediction of learning sequences
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[21, 271, 61, 132, 291], none of them consider the presentation of alternative routes with path
branches. However, the idea of a Recommender System is to offer different choices in a particular
situation. This work will focuses on an approach that incorporates paths with branch alternatives

which are recommended to the user.

3.7. Conclusions for Recommender Systems in TEL

This chapter introduced various approaches to educational Recommender Systems and discussed
the main differences to traditional ones known from the entertainment sector and e-commerce
domain. This leads to the definition of a specialized paradigm which should be followed when
recommending learning items in closed courses. Afterward, four particular classes of Recommender
Systems have been analyzed in detail: Collaborative Filtering for Technology Enhanced Learning,
Context-Aware Recommender System, Time-Aware Recommender System and Recommender

Systems for the prediction of learning paths.

Scientific Hypothesis /SH2.0/:

An educational Recommender System that recommends course items should respect
the special paradigm for the recommendation of course materials. The paradigm
comprises various aspects, for instance, a learning-oriented relevance score that is
called the learning need, the necessity of incorporating multi-dimensional context
attributes and the time dependency of the data that impacts the precision of the
recommendations. If a Recommender System, that does not respect, or only partially
respects, the special paradigm, is applied for the recommendation of course items,

it would generate less precise Top-N recommendations.

The next chapter introduces an infrastructure to deploy and evaluate an educational Recom-
mender System in Technology Enhanced Learning. Open standards and specifications are applied

in order to design a reference architecture for adaptive learning environments.
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4. Reference Architecture for Interoperable

Adaptive TEL Environments

Most of the studies included in this dissertation have been performed with the help of a reference

architecture that was created and adapted for use in a number of different learning settings?6.

This chapter focuses on the technical architecture which comprises components of three main

classes: (1) User Interfaces, (2) Middleware and the Service-Logic Layer and (3) Databases and

Repositories. Figure 4.1 gives a simplified overview of the reference architecture — in fact, the real

applied architectures depend on the actual learning setting and the connected components (as

described in this chapter). However, the figure is adequate to list and summarize the components

and their general inter-relationships.

User Interface

Editors &
Authoring Tools

Learner’s
User Interface

Additional
LTI-Consumer(s)

Middleware and
Service Logic

:PI Learning Analytics |
) Payment Solution |
Recommender Engine Middleware Uver Management |
Additional LTI-Provider(s) |
v 1 v

Learning Content Repository

Learning Record Store

User & Enrollment Database

12

Persistence Layer

External Ressources

Figure 4.1.:

Reference architecture for an interoperable adaptive TEL environment; Arrows indicate
the main dependencies between the components. For example, the Learner’s User
Interface is connected to the Middleware which, in turn, requests data from the

Recommender Engine.

All components are encapsulated by the Middleware. User interfaces, such as Editors & Authoring

Tools, the main learning interface as well as additional components which render learning contents,

46 An overview of the projects and other activities which led to this reference architecture is presented in Appendix

B.1.
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are connected to only one component: The Middleware, in turn, is connected to the service
components, such as User Management, Payment Solution, Learning Analytics module and/or the
Recommender Engine. Additionally, the data is stored in three different databases: a Learning
Content Repository, which holds the course media as well as its metadata, a Learning Record Store
for persisting activity data and a User & Enrollment Database for managing course participants.
Learning media can also link to external sources, but the main metadata should be hosted
internally for reasons of consistency. Depending on the implementation, each of the services
may be connected directly to one or more databases. The main components of the reference
architecture, their Application Programming Interfaces (APIs) as well as their data formats are

introduced in the following sections.

4.1. Systems for Accessing and Managing Learning Contents

Learning Management Systems (LMSs) are the central entry points to the educational content
for learners and teachers. An LMS represents “the infrastructure that delivers and manages
instructional content, identifies and assesses individual and organizational learning or training
goals, tracks the progress towards meeting those goals, and collects and presents data for supervising
the learning process of an organization as a whole” [257] (cited in [280]). Moreover, a Learning
Management System ”delivers content but also handles course registration and administration,
skills gap analysis, tracking and reporting” [112] (cited in [280]). Thus, it is a digital presentation
of traditional classroom environments. A Learning Content Management System (LCMS), in
turn, is an extension of an LMS. In allusion to a Content Management System (CMS), where the
creation and management of content are key aspects, an LCMS has an additional focus on the
creation of learning content and its management.

In Europe, Moodle*” is the LMS market leader with about 65% market share in higher education®®,
while in the United States and Canada the market is much more fragmented and Blackboard
Learn?? is the leader®®. An analysis of the market shares in these regions is presented in Appendix
B.19.

Especially for further processing of metadata in learning environments, it is critical to build on
existing standards and specifications in order to provide the best-possible cross-platform support for
the required components [202]. An analysis conducted by LISTedTECH®! indicates that there is an

almost equal distribution between open and proprietary learning technologies in higher education

4"Moodle. See: https://moodle.de/ (Accessed: 20.02.2017).

48Buropean LMS Market. See: http://listedtech.com/european-1lns-market/ (Accessed: 21.11.2017).

49Blackboard Learn. See: http://www.blackboard.com/ (Accessed: 20.02.2017).

50See: http://mfeldstein.com/state-higher-ed-1ms-market-spring-2016/ (Accessed: 21.11.2017).

510verview of "Free LMS or Open Source LMS used in Higher Ed” by LISTedTECH. See http://listedtech.
com/free-1lms-or-open-source-lms-used-in-higher-ed (Accessed: 20.11.2017).
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(51.4% open source and 48.6% proprietary). While some platform providers, such as edX®2, try to
feature their proprietary components and formats by offering them exclusively, an institution that
uses this platform is thus tied to the offering of a particular provider. Transfer of content or data
to another platform often becomes problematic because of lack of interoperability. This is why a
large community of educational institutions supports open specifications. Additionally, Drachsler
et al. [92] raised the issue of missing comparability between educational datasets — which is a
particularly significant issue for Recommender Systems and is why the next section focuses on open

specifications in Technology Enhanced Learning, which are the basis for Recommender Systems.

4.2. Specifications for the Description of Users, Contents and
Activities

The Advanced Distributed Learning Consortium (ADL) published the Sharable Content Object
Reference Model (SCORM) in early 2000. SCORM was the first generally accepted, open specifi-
cation for a unique handling of learning contents and it came with a huge set of definitions [41].

The three core books reference to:

e SCORM Content Aggregation Model (CAM) for managing learning contents, handling its
structure, searching and discovery as well as the definition of content packaging and transfer.

e SCORM Sequencing and Navigation (SN) for handling content sequences, learning activities
and navigation data.

o SCORM Run-Time Environment (RTE) for the definition of requirements for LMS to display
SCORM contents.

With SCORM, learning providers manage their learning contents, render them into supported LMS's
and represent user activities consequently in a standardized way for the first time. However, the
need for new features, such as adaptability and learning analytics in learning platforms, gradually
indicated the inflexibility of these specifications. Even its final, 4th, edition of 2004 could not cover
all upcoming requirements®. Learning Objects, for instance, cannot be accessed independently
from the given didactic structure. This, however, is a key requirement for Recommender Systems.
Moreover, reporting features, such as user tracking, are given less consideration in the 4th edition of
SCORM because ADL was working on another specification that mainly focuses on the collection
of learning activity data.

The new ADL specification is called Ezperience API (zAPI) (formally known as Tin Can).

xA PI was released in 2013 and describes the recording and transfer of all types of learner activities

52edX. See https://wuw.edx.org (Accessed: 20.11.2017).
53See: https://www.efrontlearning.com/blog/2013/04/why-scorm-2004-failed-what-that-means-
for-tin-can.html (Accessed: 07.12.2017).
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within educational software [149]. Thereby, each zAPI statement represents a micro-ontology
that consists of a learner, a verb and a target object regarding the learning content. Moreover,

additional metadata can be added as contextual data:

”A typical statement consists of the three properties: ’Actor’, "Verb’ and 'Object’. An xAPI
statement can also carry the optional properties 'Context’ and 'Results’ containing more

information for new insights like in the following statements:

e 'StudentA (Actor) completed (Verb) Questionl (Object) in the context of Quizl in
Coursel and the result is success with 2 attempts based on the raw score of 80 with a
max score of 100 and a scale of 0.8’

e 'StudentB stopped VideoY started at position 00:01:30 in the context of LearningUnit2

of Coursel resulting in duration of 00:01:42”’

Ct. [166, p. 476]54.

The zAPI activities are the key elements for further adaptability features, as they allow for the
development of complex user profiles with an increasing number of statements®®. In parallel, the
Instructional Management System Global Learning Consortium (IMS) published a specification
that also introduces an ontology (Actor / Action / Activity) for storing user activities — called
Caliper®®. An initial comparison of zAPI and Caliper indicates that there are a lot of similarities
and recommends to both ADL and IMS to better highlight their complementary features: "xAPI
and Caliper are NOT equivalent. Therefore, the adaption of the current versions should not be
"one-or-the-other’, instead it is a "horses-for-courses’ decision” 7. The here introduced reference
architecture builds on xAPI for tracking the learners’ activities.

These activity data need to be stored in a particular database — called the Learning Record
Store (LRS). An LRS collects all of the statements of users regarding learning contents without
recording the user or item metadata but only references to them in other databases. A reference
is presented as Uniform Resource Identifier (URI). A URI links to personal data of the user (e.g.,
username, affiliation, etc.) in a user management system or to learning content data in a Learning

Content Repository. One example of an open source Learning Record Store is Learning Locker®®

54The paper extraction was primarily written by Truong-Sing An who is one of the project partners and describes
zAPI statements in the Smart Learning Project. The collected zAPI statements are processed by a Learning
Recommender to predict appropriate learning objects, which is described by Christopher Krauss in the same
paper.

55 An example of an zA PI statement collected via the Smart Learning Infrastructure is presented in Appendix B.24.

56 Just before the release of zAPI and Caliper, Niemann et al. [203] listed four other usage data formats where
especially the schemes ”Activity Streams” and ”Learning Registry Paradata” show a lot of similarities to A PI
and Caliper regarding the data structure. While the aim of these schemes is similar, they seem to be less
popular than the specifications of ADL and IMS.

57xAPI/Caliper Comparison. See: https://www.imsglobal.org/initial-xapicaliper-comparison (Accessed:
09.05.2017).

58Learning Locker. See: https://www.learninglocker.net (Accessed: 10.03.2017).
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which is based on the document-store MangoDB®%?. For instance in the Smart Learning project,

the A PI activity data are stored as JavaScript Object Notation (JSON) in the Learning Locker.

The previously mentioned Instructional Management System Global Learning Consortium
published the Learning Tools Interoperability Specification (LTI) to provide mechanisms for an
interoperable access to learning materials [5]. Thereby, each Learning Object can be rendered
by an LTI consumer which requests the contents via a standardized Representational State
Transfer (REST) API The parameters for content selection (e.g., the content identifier as
URI), content presentation, user access rights and content protection are transferred to a server-
side component — the LTI provider. The LTI provider, in turn, delivers Fxtensible Markup
Language (XML )-compliant data for the presentation of the learning material on the consumer
side. As HTML is a subset of XML, LTI can be used to provide Learning Objects as World Wide
Web Consortium (W3C) compliant web contents. The idea is to abstract the contents’ persistence
layer and metadata structure from its graphical presentation and thus provide a standardized
interface between the two. LTI allows for the presentation of Learning Objects independently
from any specific LMS or LCMS or even to display learning contents in the absence of a learning
platform. This independence is crucial for Recommender Systems. The middleware which is

essential for the reference architecture offers an A PI which acts as LTI provider.

One of the main aims of SCORM was to provide a reliable format for the persistence of learning
contents and related meta information. However, SCORM is highly complex with all of its
sub-specifications and comes as a one-fits-all solution without the flexibility to replace specific
sub-specifications. Thus, the IMS defined a set of specifications for interoperable and also flexible
handling of learning data. The IMS Common Cartridge Specification (CC), version 1.2 published
in 2015, represents course material in standardized formats to be used in a wide variety of LMS.
It comes in two different settings: as a full profile with the whole range of IMS sub-profiles and
a thin profile only containing the previously introduced LTI specification, Web Links and IMS
Learning Resource Meta-data Specification (LOM) [3]. For the reference architecture, the full
IMS CC profile is of interest, as it includes all important definitions for a TEL RS: For instance,
LOM defines formats and types (in XML) for the standardized description of learning media.
The attributes for content prerequisites, learning goals as well as intended learning time are of
particular interest for TEL Recommender Systems. Similarly to LOM, the IMS Question and Test
Interoperability Specification (QTI) defines the structure of exercises, quizzes and tests. Finally, the
IMS Content Packaging Specification (CP) "focuses on the packaging and transport of resources”
which is critical for the exchange of contents between various platforms "but doesn’t determine

the nature of those resources ... to] aggregate content in an unlimited variety of formats” [2]%°.

59MangoDB. See: https://mangodb.com (Accessed: 10.03.2017).
60 An introduction of alternative specifications by other organizations is presented in Appendix B.20. However,
those contributions are outside of the scope of this dissertation.
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4.3. Example Architecture for the Smart Learning Environment

The technical components of the Smart Learning project build the basis for the collection of
learners’ activity data for further evaluations. At the same time, the predicted recommendations
are presented via the user interfaces. This is why the core components of the environment that
have an impact on the Recommender Systems are introduced in the following subsections. This
comprises the Learning Companion Application (LCA) as a user interface and as an entry point
for the learners and teachers®!, the content repository with media assets and descriptive data
on Learning Objects as well as the Learning Record Store which holds the behavioral data. In
addition, the Recommender Engine is described. However, the actual algorithms are the subject

of special focus in this work and are introduced in subsequent chapters.

4.3.1. Description of the Learning Companion Application

The Smart Learning project was first introduced in 2015 [165, 305] and focuses on meeting the
needs of the Chamber of Crafts in Berlin. The project introduces digital media for vocational
training that will be presented to learners in a novel mobile application — the Learning Companion
Application (LCA). The LCA is a learner and teacher interface and offers some features of a

Learning Management System®?.

”One focus of the Smart Learning project is to provide a reusable generic infrastructure
for various users with different client devices, for different courses covering several topics -
not restricted to institutions like [the] Chamber of Crafts, but also usable by universities
and adult education centers. While users are still managed in the LMS [Moodle], Learning
Objects are stored only once and can be shared by and accessed from various Learning
Management Systems.

[...]| The Learning Companion Application plays a key role. It is the entry point for students
to access courses, Learning Objects, and lecture dates as well as to get recommendations
for the next best contents to be learned and triggers the tracking of all relevant user
interactions. It is a responsive web application to be displayed on regular modern desktop
web environments, but especially on smartphones and tablets to enable mobile learning. The
application gives everywhere-and-everytime-access to all Learning Objects. [...| Moreover,
teachers use the LCA to get access to the Learning Analytics module.

The LMS [Moodle] is used to register and manage all users and offers discussion forums.
In order to allow a consistent interaction with all components, the students (and teachers)

credentials of the existing Learning Management Systems are required to authenticate at

61 Appendix B.21 contains a stakeholder analysis and use-case diagram for the environment.
62 An alternative user interface, which is based on the defined reference architecture, is the FOKUS-Akademie
which is introduced in Appendix B.22.
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the Learning Companion Application. This kind of single-sign-on approach is implemented

in the middleware and transparent to users”
Cf. [168, p. 14-15]%3.

From a technical point of view, the Learning Companion Application is a responsive web
application based on W3C specifications: HTML 5, CSS 3 and JS. It is developed for the node.js
runtime® enabling ECMAScript 6 (it uses the JSPM% package manager and a gulp®® deployment
workflow). A description of the user interfaces, in terms of the visual presentation of the different

components, of the Learning Companion Application is presented in Appendix B.23.

4.3.2. Content Repository and Metadata

A core aspect of the reference architecture is the utilization of open specifications which make
its components exchangeable and re-usable. Thereby, the item assets and metadata are stored in

well-specified, open formats in the learning content repository.

”"The repository acts as a digital asset store, which essentially holds course structures,
Learning Objects and their metadata. At the lowest level, a Learning Object is a simple
document (technically in HTML), a video, a screencast, a test and so on, all with at least
one learning objective. Low-level LOs are stored as LTI-Tools [5] as to integrate them
with different LMS. Moreover, questions and tests are specified according to the IMS QTI
specification [6]. Low-level Learning Objects can be bundled into bigger Learning Objects,
and this iteration can be repeated. In the current energy consultant course, low-level LOs are
combined in Learning Units, Learning Units in sections and a few sections make up the course.
That way low-level LOs can be reused in several courses. A so-called manifest file is created
to bundle the LOs together. A player that is presently stored in the repository renders
the learning units and Q7T specified tests. Further, the player generates automatically
self-assessment questions using the learning objectives contained in a learning unit. The
metadata associated with a low-level LO contains among others its learning objectives, at
least one as mentioned above, average study time defined by instructors and prerequisite
LOs. These data are stored using the LOM specification [1]. When LOs are combined, the
metadata of the whole is generated automatically from the parts. A course structure is

stored following the IMS Common Cartridge Specification [3]”

Cf. [168, p. 15] °7.

63This paper excerpt was written by Christopher Krauss, Prof. Dr. Agathe Merceron and Sinh Truong-An. Stefan
Mueller of the Beuth University worked additionally at the underlying concept at an early project stage.

64Node.js. See: https://nodejs.org/en/ (Accessed: 26.11.2017).

65JSPM. See: https://jspm.io/

66gulp. See: https://gulpjs.com/

Technical

Insights

Item Data


https://nodejs.org/en/
https://jspm.io/
https://gulpjs.com/

Authoring

Tools

56 Chapter 4. Reference Architecture for Interoperable Adaptive TEL Environments

The way of storing Learning Objects is not only crucial for the connected LMSs as it must only
interpret LTI tools, but also for the Recommender System that needs to process item metadata.
The algorithms, especially for Content-based Filtering, need to access descriptive data of the items

to match their attributes. The data are initially created with the help of authoring tools.

"Different editors have been implemented as easy to use web applications for instructional
designers. A LOM-Editor allows specifying the metadata of any existing LO and to store
the corresponding file in the repository. A QTI-editor allows creating questions, to bundle
them into tests following the Q71T specification and to store them in the repository too;
presently seven types of questions are available: choice, choice multiple, extended text, text
entry, numeric, matrix, and order. Finally, a LO-Editor allows bundling LOs into bigger

ones and generating the metadata file automatically as written above”

Cf. [168, p. 15] .

Learning Objects and Learning Units that are presented via a LTI consumer also contain client-
side scripts®® to report the user interactions to a predefined Learning Record Store. This way of

integrating learning materials enables LMS-independent tracking.

4.3.3. Learning Record Store

For the persistence of activity data, such as the learner’s feedback on items as known from
Recommender Systems, the Smart Learning project makes use of established approaches in the

Technology Enhanced Learning domain:

"Users’ interactions with any LO are stored according to the opt-in procedure chosen by the
user. Interactions are persisted using the xAPI specification [149] in the free Learning Record
Store called learning locker. The recommendation engine and the learning analytics service
load the needed interaction data in regular intervals to determine students’ performance.
The [recommender] aims at identifying the next best, most suitable Learning Object for the
requesting student based on the calculated knowledge level and learning need for that item.
The learning analytics service, in contrast, is designed for other stakeholders. So, teachers
can observe the overall progress and performance of students and figure out weaknesses in
learning and understanding.

[...] A key role in connecting the users’ interaction in LCA with the learning analytics

67While Christopher Krauss contributed to this paper excerpt and the general idea, it was realized, first and
foremost, by the team of Beuth University — especially Prof. Dr. Agathe Merceron, Sinh Truong-An and
Francois Dubois. However, these concepts are important for the development of the RS as they describe the
items’ metadata.

68The editors and authoring tools have been implemented by the team of Beuth University. The text excerpt was
also written by them.

69 JavaScript was used to send zAPI statements via Asynchronous JavaScript and XML (AJAX) calls.
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service or recommendation engine is attributed to the formal and informal activity statements
reflecting the collected user data. In recent years, the Experience API [149] with its xAPI

statements continuously moves in the academic focus supporting long-term data mining”

Cf. [168, p. 15]7°.

As the middleware retrieves encapsulated LTI tools, a script for generating and sending zA Pl
statements is directly integrated into the HTML representation of the learning contents. This is
why these tracking data are stored separately from the presenting LMS. However, the LMS (e.g.,
the LCA) can additionally send further A PI statements, such as for logging in/out or clicking on
recommendations. zAPI supports a list of 30 verbs in its ADL Vocabulary”!. Currently, 10 of the

available verbs are triggered in the Smart Learning environment which are described as follows:

1. Initialized: This statement is triggered when a Learning Unit or Learning Object was
opened, or a video was started.

2. Exited: This statement is triggered when a Learning Unit or Learning Object was exited.

3. Abandoned: This statement is triggered when a user exited an Learning Unit (LU) or LO
unexpectedly (e.g., by closing the browser).

4. Answered: A user answered a Q7T question or provided a self-assessment. The context

property contains a score value which describes the level of success on a normalized scale (in

the range [0,1]).

Downloaded: A user downloaded a file, typically a PDF.

Suspended: This statement is triggered when a user paused a video before its end.

Resumed: This statement is triggered when a user resumed a previously paused video.

Completed: This statement is triggered when a user watched a video to its end.

© ® N e o

Waived: This statement is triggered when a user sought material within a video (changed
the position of the progress bar manually).
10. Commented: This statement is triggered when a user wrote a comment in the discussion

forum.

An example of an zA PI statement collected in the Smart Learning Infrastructure can be found
in Appendix B.24. Since these reports represent the learning behavior, they can be seen as user

feedback (the user—item relation in the user—item matrix) of a Recommender System.

70 At the time of developing this paper, first and foremost, Sinh Truong-An was responsible for the design of the
persistence of behavioral data in the open source Learning Record Store. Different requirements of LCA led to
an adaption with some specific verbs that are needed for the learning RS.

71 Advanced Distributed Learning Consortium Vocabulary. See http://xapi.vocab.pub/datasets/adl/ (Accessed:
06.07.2017).
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4.4. Architecture of a TEL Recommender Engine

From a black box perspective, the Recommender System receives item metadata as well as user
activity data as input and provides Top-N lists of item recommendations as output. Additionally,
the relevance scores and the predicted knowledge levels, as well as algorithm explanations, are
also provided as output.

The arrows in Figure 4.2 visualize the dependency direction of the components. For instance, a
Learning Management System (e.g., the LCA) calls the middleware which delegates the request
to the API of the Recommender Engine in order to obtain a list of recommendations. The RS
contains an API layer which delegates the request to the internal service layer. Depending on the
particular algorithm, the service layer loads the required data via Data Access Objects, processes
the data with one or more algorithms and returns the Top-N item list to the API layer that sends
that list as a response to the front end that initially called the RE. In this work, different RS
approaches in numerous settings and adjustments have been developed and analyzed. Details of

the algorithms are presented in Chapter 7 and Chapter 8.

<<LTI-Renderer>> <<LTI-Renderer>>
Learning Companion Application another Learning Management System
<<Server>>
Smart Learning Recommender
<<Java>>
Rest APT \ \
<<Java>>
Service/ Algorithm Layer
<<Database>>
Learning Record Store
R <<Java>>
Data Access Objects
<<Database>>
Content Repository
<<Database>>
Propriatery Recommender Data

Figure 4.2.: Architecture of the Smart Learning Recommender; arrows indicate the dependencies
of components.

While open specifications, such as xA Pl or LOM, are required to exchange data between different
components, the specified data presentation (in XML or JSON) is too exhaustive, complex and

even contains irrelevant data for efficient data processing. The Learning Record Store consists of a
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database where the data of every user—item transaction is stored as a separate JSON document.

This document store does not allow filtering or sorting of the data without parsing each document
separately. A proprietary database, instead, enables the processing of the needed user, item or
user—item data in a way that is optimized for the algorithm. That is why the data are loaded at
regular intervals from the content repository or the Learning Record Store into the recommender’s
database. After a specified interval (in the Smart Learning Recommender every 15 seconds), the
Data Access Object layer of the RE calls the Learning Record Store in order to obtain the latest
xAPI statements. This information is allocated to the user and item data in the recommender’s

database.

4.5. Conclusion of the Reference Architecture

This chapter introduced a reference architecture for adaptive learning environments with a

Recommender System which has been applied in different educational and institutional settings.

The basis is always the utilization of open standards and specifications which aim at making the
whole infrastructure and particular components interoperable. Thereby, the integration of the

Recommender System gained a special focus.

Scientific Hypothesis /SH3.0/:

An educational Recommender System for the recommendation of course items
should build on well-selected open specifications for interfaces and data formats.
If a course is based on monolithic specifications, such as the Sharable Content Ob-
ject Reference Model (SCORM), or on proprietary solutions, such as the XBlocks of
Open edX, it would impede the utilization of a Recommender System for course items.
Thus, the atomicity of specifications, such as given in the Learning Tools Interop-
erability Specification (LTI), the Learning Resource Meta-data Specification (LOM),
the Question and Test Interoperability Specification (QTI), the Common Cartridge
Specification (CC) as well as in the Ezxperience API (xAPI), may be used for the
definition of interfaces and the exchange of the required data for an educational

Recommender System.

The next chapter discusses the issue of appropriate datasets for the evaluation of educational
Time-Aware Recommender Systems and introduces datasets that have been collected through the

use of the Smart Learning environment during teaching.

Next Chapter
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5. Collected Activity Data in Field Trials

Project evaluations and comparisons between different approaches should be performed using
real-world conditions and data to guarantee reliable results. Nevertheless, open access datasets
are not very common in the educational domain as most solutions are either not published or
only partly published and/or the data are not publicly available. Within this chapter, general
considerations regarding academic datasets for Recommender Systems, and especially for RSs in
the area of Technology Enhanced Learning, are presented. A lack of open access data leads to
the need to collect such data by conducting courses based on the realized architecture presented
in the previous chapter. The data from three different courses are presented which subsequently

build the basis for further evaluations.

5.1. Academic Datasets

The practice of using datasets from other domains than education, and in particular from the
movie domain, "lacks the necessary validity for proving recommendation algorithms for TEL”
[269, p. 3]. Reliable datasets need to "capture learner interactions in real settings” and should
give the opportunity for "verification, repeatability, and comparisons of results” [269, p. 2]. These
requirements are a result of the special TEL Recommender System paradigm introduced in Section

3.2.

"Unfortunately, only a few datasets are published (e.g., [69] or [279]) and no data set matches
all requirements of this approach. At least, the challenge data set from KDD Cup 2010
on Educational Data Mining [249] matches some of the requirements. It is divided into 5
different packages (e.g., "Algebra I” and ”Bridge to Algebra” from 2005 and 2008) with
between 575 and 6,043 students per package. It contains a detailed description of the
students’ performances when solving mathematical problems and thus, represents typical
learning behavior. [...] However, the KDD dataset contains a lot of information on the
interaction with Learning Objects as well as the processing time and results in exercises, but
data on other essential factors as well as structured metadata on the hierarchy and topical

sequences of Learning Objects are missing”

About this
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Cf. [161]72.

Because of its lack of Learning Object descriptions and its focus on assessments, the KDD
dataset seems to be inappropriate for an evaluation of the work introduced here. Verbert et
al. [269] started to analyze some further datasets for their appropriateness for the evaluation of
TEL Recommender Systems. They described and evaluated the 6 TEL datasets that have been
submitted to the dataTEL challenge”™. The analyzed collections originate from different learning
settings, such as a library of digital research papers [138], a work-integrated learning system [31]
and a platform for open- [95] and closed-corpus contents from different educational institutions
[192, 283, 275]. Thereby, the qualitative and quantitative coverage of the data differ greatly: from
6 users [31] up to 200,000 users [138] collected over periods between 3 months [31] and 3 years
[283]. Unfortunately, the theoretical datasets that incorporate time information are no longer
available™. However, even these datasets show a very high degree of sparsity, which could only
partly be compensated for by incorporating implicit features (as noted by Verbert et al.) and this
still results in a very low recommender accuracy of under 5% [269, p. 14-16].

Often, researchers argue that there is a lack of open, shareable datasets which incorporate
contextual learning data and allow for a comparison of the results with common measurs [92,
191, 270]. Besides the missing definition of any standardized formats, there is an issue regarding
privacy and legal concerns, which differs on a country by country and institution by institution

basis.

5.2. Data Collection in Real-World Courses

Drachsler et al. further analyzed this gap and developed guidelines for generating suitable data
for Recommender Systems in the area of Technology Enhanced Learning, which contain 3 main

criteria [92, p. 2850]:

1. The dataset should 7realistically reflect[...] the variables of the learning setting”. The
evaluation data should be, therefore, similar to the data in the real application.

2. The dataset should contain a ”sufficiently large set of user profiles”. Obviously, the greater
the number of users, the more reliable the evaluated results, which corresponds to the law
of large numbers. However, this criterion might contradict the first criterion of realistic

settings. In this case, the first criterion is preferred in this work.

72The paper excerpt has been exclusively written by Christopher Krauss.

73The website "TEL Europe: dataTEL Data Set Collection” currently lists 9 TEL datasets (including the 6
described by Verbert et al.) — See http://www.teleurope.eu/pg/pages/view/50630/ (Accessed: 24.07.2017).

741n particular, the two most promising datasets that are also listed on the TELeurope website (MACE dataset
[283] by Fraunhofer FIT and Travel well dataset [275]) are not available online anymore. The responsible persons
have been contacted via e-mail, but, in the case of the MACE dataset, the responsible staff changed employer.
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3. The dataset should be "comparable to others”. The criterion of comparability comprises
quantitative aspects (e.g., the number of learners, Learning Objects and activity data) as
well as qualitative considerations regarding the course setting (face-to-face, online, blended

learning, etc.), the didactic structure of topics and the format of the Learning Objects.

On the one hand, the recommendation tasks should be ”similar to the tasks supported by the
system from which the data was collected” [125, p. 15]. On the other hand, researchers should
“adequately define the reference variables against which the adaptivity of the system will be
evaluated” [191, p. 404]. Thus, it would be inappropriate to use data from a different domain or
from services that do not focus on the same use case. Verbert et al. argued that ”the continuation
of additional small-scale experiments with a limit amount of learners that rate the relevance
of suggested resources only adds little contributions to an evidence driven knowledge base on

Recommender Systems in TEL” [269, p. 16].

5.2.1. Energy-Consultant Training

The Smart Learning environment was initially designed to fit the needs for an Energy-Consultant
Training at the Chamber of Crafts. Thereby, the Learning Companion Application was utilized as
learner interface”™. Consequently, the system is evaluated with participants and institutional staff

of the Chamber of Crafts.

"In Germany, the Chamber of Crafts (Handwerkskammer [Berlin]) provides numerous
vocational training that leads to the obtainment of a certificate. Trainees are full-time
professionals. Until now most of the training is fully face-to-face. The aim of the project
’Smart Learning in Vocational Training’ [168] is to introduce a blended-learning approach in
the training of Energy Consultants. Learning material is currently structured and developed
using different digital media: texts, animations, screencasts, videos. During lecture phases,

trainees learn hands-on with a professional”

Cf. [166, p. 472]7.

The first course run at the Chamber of Crafts Berlin was conducted between September and
December 2016 with eight participants. A second course run took place between March 2017
and July 2017 with six participants and a third course ran from September to December 2017
with another eight participants. The master craftsmen enrolled on the course partly funded this
training in order to receive the permission to issue energy efficiency certificates. It is a Blended

Learning course with lectures in the evening as well as on weekend and a final exam at the end

75 As mentioned in the last chapter the visualization of LCA is introduced in Appendix B.23.
76The text has been written by Prof. Dr. Agathe Merceron. Martin Dinziol was responsible for the course runs at
the Chamber of Crafts.
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that is managed by another institution. The five trainers presented six topics in 14 face-to-face
lectures per course run. In the first course-run, the online material included 14 sub-topics (called
Learning Units) with about 50 Learning Objects as a mixture of texts, videos, animations and
quizzes 7. In the third course-run, the Chamber of Crafts presented about 366 Learning Objects
(including automatically generated LOs, such as self-assessments on learning objectives) in 39

Learning Units.

5.2.2. JavaFX Online Course

In addition to the traditional Blended Learning course at the Chamber of Crafts Berlin the
Smart Learning environment has been utilized for an online-only course that is offered in addition

to the mandatory courses at the Beuth University Berlin.

"The JavaFX online course, available for a period of 11 weeks, offers an introduction into the
FX-Framework for the development of platform-independent Java applications and targets
bachelor computer science students. [...] By taking part in this course, a student did not
earn any mark for her/his studies, only knowledge for herself/himself. In this sense, JavaFX
is similar to a MOOC but without the massive and open part.

It comprises three Learning Units. Each Learning Unit has about 5 learning objectives and
contains about fifteen to thirty LOs (units are not of equal length). About half of the LOs
are texts to explain concepts and exemplary programs, and half are exercises (single/multiple
choice, cloze and so on). The last LO before the self-assessment of the learning objectives is
a comprehensive programming task; students can send their program per email and obtain
a manually commented evaluation. Based on the educational discussion on MOOCs, Daniel
pointed out that ’students seek not merely access, but access to success’ [77]. However,
success can be different for each student. Driven by this consideration, a specific LO has
been added to this course allowing each student to rate her/his motivation on a scale from 0
(do nothing) to 100 (engage thoroughly with everything offered). 51 students enrolled in
this course, however, there were 23 no-shows — people register but never log in to the course
while it is active. Only the remaining 28 students are considered for the analysis in this

paper. The 28 users generated 3624 zAPI statements in total during the course”

Ct. [17]%8.

Appendix B.26 contains an activity overview for the whole period of the 11 course weeks. In

77 Appendix B.25 gives an overview of the approximately 3,000 zAPI statements collected per course. Most of
the activities occurred at the end of the course, right before the final exam. All participants passed the exam.
However, marks are unknown due to privacy issues relating to the external examinations board.

"8This paper excerpt was primarily written by Prof. Dr. Agathe Merceron and Sinh Truong-An who also managed
the course.
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contrast to the massive learning phase at the end of the Energy-Consultant Training, the JavaFX

course shows a more scattered distribution of learning activities over the whole course period.

5.2.3. Advanced Web Technologies Course

The FOKUS research engineers under the lead of Dr. Stephan Steglich offer a standard yearly
course on Advanced Web Technologies (AWT) at the Technische Universitat Berlin (TU Berlin).
On completion of the lectures, students earn 3 credits. In its first iteration, the lecture slides were
offered on Moodle™. For the second and third course runs, the course offered digital media via
the Learning Companion Application.
First Moodle
” Advanced Web Technologies (AWT) targets master computer science students. Technical Course
experts [teach] in 12 weekly presence lectures diverse topics that are of interest for future
web developers — from web technology basics, such as HTML, over media delivery and
content protection, to personalization through Recommender Systems and the Internet of
Things. The lectures are mostly held with slides created in PowerPoint showing definitions,

specifications, and source code, animations for concepts and videos for practical examples”

Cf. [17]%.

The first course run in the winter semester of 2015/2016 did not offer any adaptive functions,
there were no Learning Analytics for the instructors®! and no educational Recommender System
for the learners. The uploaded materials consisted exclusively of files in the Portable Document
Format (PDF) with copies of the presented PowerPoint slides for each lecture — 12 files in total.
Topics were presented weekly, and each lecture slide set was uploaded as a separate file after the
lecture.

”At the end of the course, students can earn credits by completing a one-hour exam consisting
of 50 multiple choice questions and 5 bonus questions. [...] note that the best mark is 1.0

and the worst possible mark is 5.0, which means failing the exam [...]”

Cf. [17)%2.

In this first course run, 39 (of 72) students participated in the final exam (1 failed in the first

attempt and repeated the exam successfully two months later). The average mark was 2.00, which

The TU Berlin instance of Moodle is called Information System for Instructors and Students (ISIS).
See https://isis.tu-berlin.de/ (Accessed: 07.07.2017).

80This paper excerpt was primarily written by Christopher Krauss. The course is hosted by Dr. Stephan Steglich
with the support of 4 scientific employees of the Fraunhofer-Institute for Open Communication Systems — among
whom Christopher Krauss additionally managed the LCA course offering.

81 Although Learning Analytics were theoretically provided by Moodle, the instructors did not have access to
Moodle.

82This paper excerpt was primarily written by the author of this dissertation.
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corresponds to a success rate of 84% in multiple choice tests — see Table 5.1. This course run

serves as the baseline without adaptive features.

Smart For a second iteration of the course, the instructors used the Smart Learning environment to
Learning present lecture materials, a number of quizzes and additional materials. See Figure 5.1 for the
Course course outline of Advanced Web Technologies rendered in the Learning Companion Application.

# / ADVANCED WEB TECHNOLOGIES WS16/17

General

® Open

all statistics
Lernfortschritt: 64%

Angesehen: 32%

* % ¥z ¥z ¥ self-assessment

Web and Media

@® Open
all statistics

Lernfortschritt: 32%
Angesehen: 27%

# ¥ ¥ ¥ ¥ self-assessment

Recommendation En...

& Open

all statistics

Lernfortschritt: 41%
Angesehen: 64%

¥ ¥ % ¥ # self-assessment

Intro

® Open

all statistics

Lernfortschritt: 82%
Angesehen: 50%

* % % % % self-assessment

TV App Development

® Open

all statistics

Lernfortschritt: 27%
Angesehen: 11%

¥ ¥ ¥ ¥ ¥ self-assessment

Web of Things

® Open

all statistics

Lernfortschritt: 27%
Angesehen: 10%

¥ ¥ ¥ ¥ % self-assessment

Web Technology Basics

& Open

all statistics

Lernfortschritt: 33%
Angesehen: 38%

¥ s % % % self-assessment

Multiscreen Technol...

& Open

all statistics

Lernfortschritt: 28%
Angesehen: 15%

¥ ¥ % ¥ ¥ self-assessment

Security and Privacy

& Open

all statistics
Lernfortschritt: 1%
Angesehen: 3%

¥ ¥ % ¥ ¥ self-assessment

Figure 5.1.: Screenshot of the AWT course outline presented in a version of the LCA on a desktop
browser that was translated into English via a third party component.

"The about 1000 presented slides are converted to digital Learning Objects, one slide being
a single LO, and grouped into [106] Learning Units for the representation in LCA — with
videos, animations and additional multiple-choice questions at the end of the Learning Units.
Moreover, as some students still want to learn with a printed version of the slides, the last
LO of the accordion view is a PDF file to be downloaded that contains all the slides of the

unit”

Cf. [17)%.

83This paper excerpt was exclusively written by Christopher Krauss.
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The 92,291 mined 24 PI statements of 99 active users in the second course iteration® with LCA  xAPI

are compounded as follows (for a description of the x4 PI verbs used see Section 4.3.3): Statements

44421 7initialized” zA PI statements
29712 7exited” zAPI statements
8384 "answered” zAPI statements
7636 "abandoned” zA PI statements
1019 "downloaded” zA PI statements
861 "waived” xAPI statements

81 ”suspended” zA PI statements

72 "commented” zAPI statements

B N ol o

63 "resumed” zAPI statements

H
e

42 "completed” zAPI statements

Figure 5.2 shows a visualization of the statements produced per day over the period of the course
from October 24, 2016, until February 12, 2017 (the first lecture was held on October 27, 2016,

and the final exam was on February 09, 2017). Apparently, most of the statements were made at

the end of the course °.
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Figure 5.2.: Learning Locker Activity Chart for AWT for the whole course period (Number of
xAPI Statements per day in blue); x-axis: days of the course; y-axis number of zAPI
statements.

Of the 118 students enrolled for AWT in the winter semester 2016/17, only 99 of them used the  Test Results

Learning Companion Application.

"Especially in the first weeks before the official registration deadline, students frequently
change their mind for participating in specific courses — which might explain the high loss
ratio of the participants. [...] Exactly 75 students completed the final exam (even two who

did not use the LCA) and the average mark was 1.90 [...]”

Cf. [17)%.

84Unfortunately, the third course run did not end before the submission of the dissertation. However, by the end of
the enrollment deadline in November 2017, 116 students registered for the Learning Companion Application.

85 Appendix B.27 contains a visualization of the activities without the statements from the final 3 weeks of the
course. This figure indicates that students are, first and foremost, working with the LCA during the lectures.
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Eight additional students also participated in the exam but without official enrollment. Thus,
for them, the assessment had no official impact. See Table 5.1 for the distribution of marks for
all 83 students — unfortunately, there is no information regarding who of the 83 students did not

enroll but did participate in the exam.

Table 5.1.: Average Marks per student in AWT in winter semester 15/16 and winter semester

16/17
Correctly answered questions | Mark | Students ws15/16 (in %) | Students ws16/17(in %)
> 95% 1.0 9 (23.1%) 16 (19.3%)
90 - 95% 1.3 2 (05.1%) 21 (25.3%)
85 - 90% 1.7 12 (30.8%) 9 (10.8%)
80 - 85% 2.0 3 (07.7%) 8 (09.6%)
75 - 80% 2.3 6 (15.4%) 6 (07.2%)
70 - 75% 2.7 3 (07.7%) 10 (12.0%)
65 - 70% 3.0 1 (02.6%) 3 (03.6%)
60 - 65% 3.3 0 (00.0%) 7 (08.4%)
55 - 60% 3.7 2 (05.1%) 1 (01.2%)
50 - 55% 4.0 0 (00.0%) 0 (00.0%)
< 50% 5.0 1 (02.1%) 2 (02.4%)
Average Mark 2.00 1.90
Exam Participation 39 75 (+ 8)
Course Enrollments 72 118 (+ 8)
Drop-Out Rate 46% 36% (34%)

The analysis of the exam results indicates that the direct conversion of lecture materials that
were presented as digital media had no, or just a small effect, on exam performance®”. However,
the total number of participants and the drop-out rate improved in the second iteration with LCA
and including the recommendations of the Smart Learning Recommender. The mined usage data
allows for a further analysis of the learning activities and yields a deep understanding of different
learning patterns and the impact of each. This knowledge, in turn, is utilized to make learning
more efficient and help in the attainment of the course goals. This is why the datasets are used

for the evaluation.

86 This paper excerpt was primarily written by Christopher Krauss.
87Due to the number of participants, the improvement of the average mark of 0.1 is not significant.
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5.3. Composition of the Collected Datasets

It is common sense that evaluations of Recommender Systems focus on the prediction of the
future behavior of individual users [147, 84, 33]. Thereby, the actual activity data collected in the
past are compared with the predicted activity data. Transferred into the TEL domain this means
that, independent of the learner’s success, the algorithms aim at forecasting the next item for
consumption.

This approach lacks some critical considerations regarding the special TEL Recommender System
paradigm. Thus, an inactive learner would, for instance, only receive recommendations based on
the activities of other infrequent learners, but unfortunately not the needed recommendations
that help to pass the final exam.

Regarding motivation or the probability of success on the course, learners should be given
recommendations that help to reach the course goal (e.g., pass the final exam). Therefore, different
learner types and the success of each must be differentiated. Consequently, a Collaborative Filtering
approach can be extended to take into account only the activities of successful learners — even for
in respect of the recommendations given to weak learners. While an accuracy evaluation based on
this past data would show worse results, learners benefit from more stimulating predictions that
leverage their potential learning efficiency.

This section focus on the identification of different engagement patterns of the user groups
and their overall course success in the collected datasets. Thereby, distinct clustering approaches
are applied and evaluated. The main aim is to identify successful learners and to transfer their
learning patterns to users at risk of failing the course goal such as weak users and even potential
drop-out users to improve their learning efficiency.

A lot of research has focused on the identification of typical learning patterns [156, 204, 155,
109, 17)3. The LCA users also show huge discrepancies in the usage of the app. This can be

observed between the different course settings as well as between different users®®.

”[For the AWT course, a] total amount of 84% of all interactions on LCA were done on
Desktop computers, the rest on mobile devices. In contrast to [the Energy-Consultant
Training] performed with LCA at a Chamber of Crafts where almost 40% of all interactions
were performed using a smartphone or tablet, the AWT usage pattern surprisingly did not
correspond to the paradigm of mobile learning at smartphones or tablets. [...]

LCA is most frequently used during the working hours from 8:00 am to 6:00 pm — with two
major exceptions: Computer science students learn a lot during noon (especially Thursdays

during the lecture times 12 pm — 2 pm) and they start interacting with the app again in the

88 A section on the related work of typical learning patterns can be found in Appendix B.28.
89See Appendix B.29 for a figure presenting the statistics of the following paper excerpt.
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evening between 7 pm and 1 am”

Cf. [169, p. 3]%

Figure 5.3 visualizes the number of Learning Unit accesses per student in the Advanced Web
Technologies course — separated by first visits (blue) and repetitions (orange). The total number
of unique Learning Units is 106 while a single student accessed only 89 Learning Units at most.
Figure 5.4 displays the increasing number of average LU accesses per week. Among the rarely
consumed items are "Introduction”, "Module Information” and "Motivation” which involve the
Learning Units presenting a general introduction to the course and which are not relevant for the

final exam.
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Figure 5.3.: Number of accesses of Learning Units (y-axis) per student (x-axis) via the Learning
Companion Application in Advanced Web Technologies.

As one can see, the AWT learners showed different patterns of usage. In general, the greater the
number of item accesses, the more items have been repeated. In contrast to this, students who
studied less than 100 topics only repeated a low percentage of them and users with less than 20
accesses repeated almost no items. However, there is also an unknown number of cases where
users downloaded the PDF and learned offline. Thus, the analysis can only be seen as evaluation
of an significant part of the learning activities — not on the entire learning progress of all learners.

The learners have additionally been clustered with the idea of grouping the students based on

their interactions with the Learning Companion Application that are stored as zAPI statements.

"The collected zA PI statements [in the AWT course] (on elapsed time per LO and assessment

scores in exercises) have been processed in order to discover typical learning patterns [17].

90The analysis has been made and the paper excerpt was written primarily by Christopher Krauss.
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Figure 5.4.: Average number of accesses of Learning Units (y-axis) per week (x-axis) via the
Learning Companion Application in Advanced Web Technologies.

We identified 3 clusters, labeled as Completers, Strong Starters and Auditors first introduced
by Kizilcec [155]. Subsequently, we calculated the average mark in the final test per cluster.
The Completers’ cluster contains the 26 students who accessed all LOs and solved correctly
all exercises. Their average mark of 1.5 is better than the total average of 1.9. The 9 Strong
Starters had an average mark of 2.0 (almost the total average). At a certain point in the
course, Strong Starters engaged less with LCA than Completers. The Auditors’ cluster,
in contrast, shows students who infrequently used LCA and is the biggest cluster with 64
students — including all students who did not participate in the final test. They reached an

average mark of 2.2 which is less good than the total average”
Cf. [169, p. 3]°L.

While the clustering shows reasonably typical learning behaviors at the end of the AWT course,
this approach cannot be directly transferred to educational Recommender Systems. The RS
requires information regarding favorable patterns right from the beginning of the course as the
algorithms needs to incorporate the information of successful patterns even for the cold start
phase. Thus, an advantageous behavior needs to be taken from comparable course settings, e.g., a
previous course run. More importantly, the classification of current course participants is required
at every point in time during the course period. Unfortunately, this is very challenging because
typical learning clusters are not built until a specific duration has elapsed, particularly for "Nearly
There” users or "Late Completers” [109].

A K-Nearest-Neighbour (KNN) algorithm with cosine similarity on "initialized” zA PI statements

has been applied to predict the final mark through the identification of k similar learners in the

91The paper excerpt has primarily been written by Christopher Krauss. However, the approach of the clustering of
learners with K-Means and X-Means was initialized by Prof. Dr. Agathe Merceron and her team of the Beuth
University. Christopher Krauss contributed with data of the AWT course and the success analysis.

KNN

Prediction
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LCA®2. In contrast to K-Means, where the result is a fixed amount of clusters and each user
is grouped into just one cluster, the KNN approach creates groups of similar users around the
requesting user. That means that each cluster contains the same number k of learners and learners
can appear in multiple clusters. The algorithm performs best with a setting of 10 to 30 neighbors
(which means about 10 to 30% of users). The prediction has an error® of 0.8 (on a scale of 1.0 to
5.0) over the whole course period so that the grade of all k neighbors deviates from the actual
user’s degree by about 0.8 on average®*.

In the last six weeks of the course, smaller values of k (3 to 4) show, however, slightly lower
error values of about 0.75. Moreover, after the final exam, when all users stopped accessing the
learning materials, the setting of k = 1 (only one other user is considered as a neighbor) showed
an error of 0.68. As a conclusion, the longer the course ran, the fewer the number of classmates
needed to produce more accurate grade predictions. However, the KNN approach allows only
rough forecasts of grades during the run of a course and requires historical data from the same

course setting. Thus, it cannot be utilized as an alternative to the clustering approach.

5.4. Conclusions of the Collected Datasets

This chapter described the mined activity data relating to three courses that will enable the

analysis of different educational Recommender Systems.

Scientific Hypothesis /SH4.0/:
The activity data collected during the conducted courses, especially the dataset
relating to the Advanced Web Technologies course, may be utilized to evaluate closed-

corpus Recommender Systems for the prediction of course items.

The next chapter presents the methodological approach for this dissertation which is the basis
for further realization and evaluation steps. Thus, the evaluations build on the collected activity

data.

92Related work of course grade predictions can be found in Appendix B.31. The TU Berlin student Alexandru
Ciobanu participated in the module ”"Project Advanced Web Technologies” with the project "K-Nearest-
Neighbour-Algorithm for Prediction of Course Grades” supervised by Christopher Krauss. The concept were
provided by the supervisor, while Alexandru Ciobanu realized the implementation and evaluation.

93The utilized Root Mean Square Error (RMSE) is introduced in the next chapter.

94When the average course grade of 1.9 is used as prediction value (baseline), the forecast performs only slightly
worse and has an error of about 0.9.
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6. Methodology and Evaluation Design

Evaluation is the "systematic investigation of the worth or merit of an object” [229, p. 3]. In more

detail, it is "the identification, clarification, and application of defensible criteria to determine an

)

evaluation object’s value, quality, utility, effectiveness, or significance in relation to those criteria’

[285, p. 5] (see also [191, p. 404]). This work respects and follows Balzert’s science ethics [28, p.

”»on ” on ” o ”»o»

13-15] comprising "relevance”, "orginality”, "honesty”, "fairness”, "understandability”, "reliability”,

"objectivity”, "validity”, "logical reasoning” and ”confirmability” of scientific evaluations®®.

As introduced in the previous chapter, the experiments of this dissertation start with the
conduction of TFEL courses and a collection of learner activities relating to the content. The
methodology diagram is presented in Figure 6.1. The collected data need to be normalized and, if
necessary, also cleansed. For instance, teachers and other institutional staff need to be removed
from the learners’ activity data. Based on the clean data, a recommendation model is applied that
predicts the item’s relevance. The relevance scores are used for an internal ordering of the items
and this process results in a Top-N recommendation list. In the end, the recommendations are
evaluated, and conclusions are drawn, to optimize the model. This chapter introduces the general
evaluation procedure. The next chapters, in turn, focus on the algorithm design, approximation of
the relevance scores, the prediction of recommendations and its evaluation. The evaluation results
are, then, utilized for proving or disproving the hypotheses®®. Finally, the models are optimized

in an iterative process.

Course Offering/ Data Cleansing/ Approximation of Learning Object Validation of the
User Behavior Tracking Normalization Learning Relevance Recommendations Recommendations

-~
Model Optimization/
Dynamic Weighting

Figure 6.1.: Methodology diagram starting with the course offering to the iterative point where
the recommendations are optimized.

95The list of criteria, which will be the basis for further research and experiments, and the meaning of the latter in
the context of this dissertation are presented in Appendix B.32.
96 Appendix B.33 presents an introduction of qualitative and quantitative hypothesis reasoning.

About this
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6.1. Evaluation Framework

Researchers have noted that besides a standardized dataset definition, there is also a lack of
standardized definitions relating to evaluation procedures for Recommender Systems in Technology
Enhanced Learning [94, 92, 191]. They suggest approaches but also comment that they must be
further researched.

The most important aim of an evaluation ”is to measure a certain property or effect of the
Recommender System” [103, p. 327]. Said and Bellogin evaluated common evaluation frameworks
and protocols. They conclude that the "performance of an algorithm implemented in one [evaluation
framework] cannot be compared to the performance of the same algorithm in another” [228, p. 135].
Their results differ by up to 10% depending on the evaluation framework (LensKit?”, Mahout?®
and MyMediaLite®®). Moreover, there "are no de facto rules or standards on how to evaluate a
recommendation algorithm” [228, p. 135].

Chatti et al. argued that “an implementation of different recommendation algorithms within a
single Recommender System to compare against each other is missing in the TFL recommenders
literature” [58]. Thereby, "further evaluation procedures that complement the technical evaluation
approaches” for the comparison of educational Recommender Systems are needed to produce
reliable and comparable results [191, p. 22]. Campos et al. noticed that the existence of a
huge variety of evaluation approaches for general Recommender Systems results in ”an increasing
impediment to fairly compare results and conclusions reported in different studies” [57] (see also
[33]). Moreover, "variations in user interfaces”, "data selection” and ”situational and personal
characteristics of users” lead to differences between qualitative and quantitative evaluations [57, p.
83]. This is why the underlying evaluation setting must remain the same in each experiment.

Weibelzahl introduced a framework for a four-tiered evaluation procedure [281, p. 50-55]
consisting of ”evaluation of input data”, ”evaluation of the inference mechanism”, ”evaluation
of the adaption decision” and "evaluation of the total interaction”. Manouselis et al. abstracted
this to a multi-layered evaluation approach for RSs in TEL which can also be reduced to only
two layers: the accuracy of the model and the effectiveness of the changes made at the interface
[191, p. 405]. The first layer corresponds to quantitative evaluations, relating to measurements of
the algorithm’s outputs, the second to qualitative assessments regarding user perceptions. This
work has, similar to other RS evaluation procedures, a particular focus on quantitative aspects.
However, qualitative aspects are evaluated with the course participants'??, but due to the sample
size representativeness is not claimed.

According to Said and Bellogin [228], the most important evaluation dimensions are (1) the

97LensKit. See: http://lenskit.org/documentation/evaluator/ (Accessed: 26.11.2017).
98Mahout. See: https://mahout.apache.org/ (Accessed: 26.11.2017).

99MyMediaLite. See: http://www.mymedialite.net/ (Accessed: 26.11.2017).

100 Ap introduction to the qualitative evaluation procedures is presented in Appendix B.34.
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dataset, (2) the data splitting, (3) the evaluation strategies and (4) the metrics (here called
measurement values). This work builds on these four dimensions and follows additionally the
approach of Campos et al. [57] who suggest that the following questions should be answered

during each experiment:

e "MQ1: What base set is used to perform the training-test splitting?

e MQ2: What [scoring] order is used to assign [relevance scores| to the training and test sets?

e MQ3: How [much data] comprise the training and test sets?

e MQ4: What cross-validation method is used to increase the generalization of the evaluation
results?

e MQ5: Which items are considered as target items (in a Top-N recommendation task)?

e MQ6: Which items are considered relevant for each user (in a Top-N recommendation task)?”

57, p. 87]

The required evaluations can be either performed online — directly in a real course — or offline —
with the use of a simulation. The latter can utilize either simulated data or past real-world data
in a simulated environment [57, p. 74].

Since it is cost intensive to conduct experiments in real learning environments ”"most authors
exploit simulated single skill students based on different technologies like Artificial Neural Networks
or self-developed student models [233], [188]” [237]. That is why Schatten and Schmidt-Thieme
used a ”student simulator that partially overcomes the problem of massive testing with real
students” [237]. They first identified different rules of typical learners (e.g., "The total knowledge
at the beginning is different than zero”) and the learning contents (e.g., A content is either of
the correct difficulty for a student, or too easy, or too difficult”). These definitions were strictly
followed when generating random data that could be used for exhaustive evaluations. However,
the weakness comes from the unpredictability of real human behavior. A single person, as well as
a whole community, does not act in a random manner, they act in complex patterns. If today
researchers were able to model these complex patterns, the key task of a Recommender System
would have been solved. Also, Campos et al. note, that ”the majority of past work on TARS |...]
has been focused on offline evaluation protocols” [57, p. 74].

In this dissertation, a mixture of real and simulated evaluation procedures is applied. Each
experiment incorporates the activity data that have been collected in real-world courses (as
presented in Chapter 5). However, the evaluations are not performed online in a live course setting,
but rather offline using past data. Thus, the evaluated recommender algorithm does not influence
the future behaviors of the learners as a live evaluation would do. It aims at forecasting the usage
patterns that are already present in the data. This mixture is very common for evaluations of
general Recommender Systems [197, 57] (and even for the Netflix prize [34]) and has been also
applied for TEL Recommender Systems [191, 269, 103].

Simulated

Students
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6.2. Data Splitting and Cross-Validation

When performing an offline evaluation with historical data, the whole dataset must be split: To
guarantee an objective prediction of data, the training dataset T'r must be separated from the
test dataset Te [125] [57, p. 74]:

TrNnTe=0. (6.1)

It is common sense that the split process happens randomly. With one restriction: at least some
consumption data of the same user u, who will receive recommendations, should exist in T'r and
Te. If there are no data of user u in the training set T'r, a CF algorithm would fail because of the
cold start problem. More importantly, if there are no activity data available in the test set Te,
this user cannot be evaluated since a prediction cannot be compared with real data. Thus, either

the prediction of a relevance score or the evaluation of this prediction would be impossible.

”One method to train and evaluate algorithms is the use of the n-fold cross-validation. This
cross validation type is repeated ten times [for n = 10]. During every iteration the whole
data set is split into another 10% [(corresponds to )] of evaluation data and 90% of training

data [(corresponds to “=1)]. The average value of errors defines the accuracy”

Ct. [167, p. 67]10L.

Until now, TEL Recommender Systems have only been evaluated, if at all, through the standard
cross-validation setting [191, 269]'92. However, this contradicts the specialized RS paradigm in
Technology Enhanced Learning where time plays a key role (as introduced in Section 3.2).

The evaluation of Time-Aware Recommender Systems shows an additional restriction: To
simulate real-world behavior, the split of Tr and Te is not entirely random, but depends on a
particular point in time — which might be chosen randomly in a given time interval [57, p. 75]. This
second restriction makes it unfair to compare TARSs and time-unaware Recommender Systems,
as the latter are mostly evaluated without taking into account time information for splitting.

Lu et al. argued that "most Collaborative Filtering algorithms have been designed and evaluated
based on random split of training and test sets without considering the temporal structure” [185, p.
13]. Therefore, Campos et al. suggest different specialized validation approaches for Time-Aware
Recommender Systems, where only two definitions seem to be appropriate for the evaluation of
learning environments [57, p. 94]. The "increasing-time window” approach splits the whole dataset
Tr and Te according to a variable time threshold thresh so that all data in T'r are older than

thresh and all data in Te are younger. Of course, the time threshold needs to be set within a

101The section about cross-validation was written by Christopher Krauss. However, the concepts are well known
(e.g., referenced in [125] and [33, p. 335]).

102WWhile a time-based evaluation for TEL Recommender Systems was also mentioned in a survey by Erdt et al.
[103, p. 328], there is no information whether this approach has been applied to TEL RS.
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reasonable interval, e.g., for a course, between the start of the course tCouseStart and the end of
the course tCourseEnd, so that Tr and Te are not empty. Appendix B.35 presents an example
of the increasing time-window cross-validation.

Another approach is called the "fixed time-window” approach that works in a similar manner
to the "increasing time-window” approach, but using a fixed time interval int for both the
training dataset and the prediction dataset. In a course, the threshold thresh is still variable,
but the data in Tr are restricted. The time of each training data point ¢y, must to be in the
range of thresh — int < tp, < thresh and the time of each test data point {7, must be in
thresh < tpr, < thresh + int.

Yi et al. [295, p. 119-120] conducted an implicit fixed time-window cross-validation for a search
engine evaluation task (without stating it as such). Thereby, the authors analyzed common
measures for different sizes of the time window: one month, one week and one day. The dataset
composition of the one-month setting is unique, as only the final month data were used as test data
and the consumption data before this time were used as training data. Interestingly, some measures
(e.g., mean absolute precision) were 40 % better for the weekly time windows compared with the
monthly time window. The weekly and daily settings, in contrast, showed almost similar results.
In conclusion, it is clear that researchers must consider that for a Time-Aware Recommender
System evaluation because the selection of the time-window size and splitting approach might
also influence the evaluation results. However, time-window evaluations are not comparable to

standard cross-validation evaluations.

6.3. Algorithmic Measurements of Appropriate

Recommendations

A critical question regarding evaluation is: how to measure ”"appropriate” or "good” recom-
mendations. Campos et al. pointed out that there is no definition of what constitutes a "good”
recommendation, but "a commonly used approach is to establish the quality (goodness) of rec-
ommendations by computing different measures that assess various desired characteristics of an
RS output” [57, p. 74]. Manouselis et al. recommends four high-level measures to define success

criteria of Recommender Systems in TEL [191, p. 406]:

1. Effectiveness describes the percentage of consumed Learning Objects during a learning
phase (here a course).

2. Efficiency indicates the time needed by the user to reach the learning goal.

3. Satisfaction is a subjective measure that must be assessed by discussion with users.

4. Drop-out rates represent the percentage of users who stop participating in the learning

setting and thus do not reach the course goals.

Appropriate
Recommen-

dations
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Erdt et al. [103] classified similar measures in ” Recommender System Performance”, "User-Centric
Effects” and ”Effects on Learning”. According to them, popular performance measures in offline
experiments are Mean Absolute Error, Root Mean Square Error, precision, recall and f-score.
Moreover, Manouselis et al. [191] incorporated some further measures from Social Network
Analysis, such as Variety, Centrality, Closeness and Cohesion, as they seem also to be valid
for learning networks. Due to the course setting of the collected datasets and by following the
considerations of Rada [220], this work has a special focus on efficiency and effectiveness — however,
results regarding satisfaction levels and drop-out rates are also presented. Such measures cannot
be determined by the use of only qualitative or quantitative analysis. According to Bellogin et al.
[33], each measure itself is insufficient for a fair comparison of different approaches. For instance,
"putting more relevant items in the top-N is more important for real recommendation effectiveness

than being accurate with predicted rating values” [33, p. 5].

6.3.1. Prediction Accuracy — The Effectiveness of a Recommender System

The effectiveness of a Recommender System mostly refers to its prediction accuracy [125]13.
Thereby, measurements focus on the accuracy of the predicted relevance score — for instance
through a value often presented as the error [235] or through the precision of the Top-N list [84].

Both approaches are introduced in the following.

6.3.1.1. Error Measurements

Measures to determine the prediction errors of the underlying relevance score, such as Mean
Absolute Error and Root Mean Square Error are commonly applied in the RS domain [57, p. 85],

d1%4, In TEL a relevance

[125]. Remember, the relevance score depends on the algorithm use
score can be a traditional rating, a predicted numerical value representing the knowledge level or
learning need, the number of LO accesses or even a Boolean value indicating whether an item has
been consumed or not. The easiest way to calculate the error in the predicted score of an item 4
for a particular user u is to subtract the real value (e.g., given as a rating by the user) from the

prediction value.

"The Mean Absolute Error (MAE) and the Root Mean Square Error (RMSE) are calculated

as

N
MAE = W (6.2)

103 An analysis of additional measures (that are not part of the evaluation framework employed here) is presented in
Appendix B.36.

104 TR relevance scores have been introduced in Section 3.2.3 and can be classified as one of the attribute types
introduced in Section 2.2.1.1.
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N
N

RMSE =

< pi, q; > is a prediction-real-value pair of NV where p; is the predicted value and g; is the real
value for item i. The lower the error the better the algorithm. Formally, RMSE > MAE
[as long as the relevance score is 1 or higher]. The greater the difference between M AFE and

RMSE the more scattered errors are”

Ct. [167, p. 67]105.

MAFE and RMSE are used to evaluate the prediction accuracy of the underlying relevance
score. Given the example of a star-based Recommender System which collects and predicts item
preferences on a one-to-five star scale. For each item rating r, ; within the test set Te, it is
possible to evaluate a rating prediction for the same item i. Based on the data in the training
set T'r, and in the absence of any knowledge regarding the real rating in the test set ¢;, a rating
prediction p; is calculated. The average deviation between p; and g; represents the average error.
The error values are in the range of the evaluated relevance score [117, p. 2944] which can either
be binary, stating whether a recommendation was successful or not, or, more frequently, in the
range of the predicted score or rating. To normalize errors to a relative scale (for instance to
compare a RS using a five star scale with one that presents recommendations on a percentage

scale), the accuracy value has been introduced [84, p. 792]:

maz(p) — min(p) — MAE
max(p) — min(p)

: (6.4)

accuracy =

where maz(p) corresponds to the maximum value that p (or ¢) can take and min(p) to the
minimum value. This is why the accuracy value is given in the range [0;1] which allows for a

comparison even of recommenders that use different scoring scales.

A weakness when using accuracy measures for evaluating TEL RSs is the lack of comparability.

While error measures are appropriate to compare deviations between predictions and the actual
given relevance scores, they can be only applied for the same type of scoring approach. For
instance, an error for a rating-based algorithm (from one to five stars) should not be compared to
the error of a knowledge-level-based algorithm (with relevance scores given in percent). Due to
the different meanings and ranges of the relevance scores, the resulting errors of the algorithms
differ in their meaning, as well. For example: Is a RMSE of 1.0 in a rating-based algorithm worse
or better than a RMSE of 20.0 in a knowledge-based algorithm (given in percent)? Moreover,
errors do not reveal anything about the appropriateness of the resulting recommendations for

a specific learner nor do they allow for a comparison of different algorithms that are based on

105The section concerning MAE and Root Mean Square Error was written by Christopher Krauss. However, concepts
discussed within it come from [235, p. 290] and [298, p. 63] and are referenced in the paper as such.
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different scoring values. Cremonesi et al. note that "improvements in RMSFE often do not translate
into accuracy improvements” [72, p. 39]. Taking these points into consideration, the following
measures fit better when comparing algorithms in the areas of Time-Aware Recommender Systems

and Technology Enhanced Learning.

6.3.1.2. Ranking Precision

Campos et al. argue that the measure "ranking precision” is more appropriate for Recommender
System tasks than error measures, as the former represent the coverage of relevant recommenda-
tions within the presented Top-N list, which are typically given as precision or recall [57, p. 85].
Del Olmo and Gaudioso [84, p. 793] introduce a confusion matrix to explain the possible states

which a recommendation might have:

Table 6.1.: Confusion matrix for item classification

Relevant Non-relevant

Recommended a b

Non-recommended C d

The confusion matrix shows the 4 item state categories: they can either be recommended (a & b)
or not (¢ & d) and at the same time be relevant (a & c) or not (b & d). Here, the term "relevant”
comes from the Information Retrieval domain and represents ”consumed items” in the case of
a Recommender System. As the TEL RS aims at also predicting the future LO consumption,
a "relevant” and "recommended” item is an LO that has been accessed (here represented as
"initialized” A PI statement) by the learner after it has been recommended. Thus, a relevant item
for user w is an item that has been accessed by the same user in the test set.

Precision is the portion of recommended relevant items in the set of all recommendations (cf.

(274, p. 12], [84, p. 793], [117, p. 2945], [33, p. 334]):

a
recision = ——. 6.5

b a+b (6:5)

Recall, in turn, represents the share of recommended relevant items in the set of all relevant

items (cf. [274, p. 12], [84, p. 793], [117, p. 2945]):

a

recall = .
a-+c

(6.6)

In order to express both values with a single measure, the F-score (also known as the F1l-measure

or F1) is introduced, which represents a harmonic mean of both (cf. [274, p. 12], [84, p. 793],
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[117, p. 2945]):
2 x precision *x recall

Fscore = (6.7)

precision + recall

Nevertheless, a separate analysis of the precision and recall values allows for a more differentiated

interpretation of the results and as such, the F-score plays a minor role in this work.

6.3.2. Timeliness Deviation — Efficiency of a Recommender System

A major aspect of Time-Aware Recommender Systems is to present efficient recommendations
based on time features. This means that recommendations should respect the needs of the learners
in a timely fashion — supporting the decision process with appropriate recommendations for the
given situation. In a time-aware evaluation setting where recommendations should be consumed
after they were recommended, the precision value only indicates how many recommended items
are relevant to the user.

In a closed-course setting, precision values of items that must be consumed at the point in time of
recommendation and those that are relevant at the end of the course would show the same results.
While effectiveness can be reported with precision and recall, efficient TEL recommendations
correspond to the special educational RS paradigm. Thereby, the standard evaluation measures
do not cover the aspect of the timeliness of the analyzed recommendations. This work introduces
a novel, self-devised time-dependent evaluation measure. It borrows established concepts, for
instance from the RMSE and MAE, and represents the "timeliness” measure!®®. The basic idea
is that the new timeliness measure indicates how long it takes between the presentation of a

recommendation and the time at which the user accesses this item.

6.3.2.1. Mean Absolute Timeliness Deviation

The Mean Absolute Timeliness Deviation (MATD), short timeliness, indicates the mean absolute
elapsed time for all existing recommendation—consumption value pairs < tr,tc; > of the presented

Top-N list. Thereby, only item category ”a” of the confusion matrix (which represents all

recommended relevant items) is considered for the analysis of < tr,te; >:

K
i1 tci —1tr

2
MATD = = 7 (6.8)

where tr represents the point in time of the recommendation of item 4 presented to a user u
and tc; represents the point of time of the next consumption of item i by the same user u. K
is the cardinality of the set of recommended and relevant items. Because of the required TARS

cross-validation setting, which splits the prediction and test datasets by a time threshold thresh,

106 Ty the best of the author’s knowledge, such a measure (or a similar one for evaluating Time-Aware Recommender
Systems) has not been published. Thus, it is a new concept, first introduced in this dissertation.

Timeliness
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tr must occur before tc;. All time values must be in the same time unit and refer to the same
relative point in time (e.g., as a Unix Timestamp in seconds since January 1, 1970). Information
on the time unit must be given alongside the timeliness measure. This allows researchers to better
compare different timeliness deviations by converting the given time unit appropriately. In a
course setting with course start tCourseStart and course end tCourseEnd points, the following

definition applies:

tCourseStart < tr < thresh < tc; < tCourseEnd. (6.9)

If an item has not been consumed after being recommended, it must not be considered for this
calculation. The number K reduces in this case to the amount of existing recommendation—
consumption value pairs < tr,tc; >. Formally, an item i is only considered if it has been
recommended and has been consumed after its recommendation. r(u,,tr) is a binary function
that returns true if user v is given a recommendation for item 7 at point in time ¢tr. c(u,1,tc;) is a
binary function that returns true if user u consumed item % at time tc;. The set of recommended

and relevant items has a cardinality of K and is defined as:

{i] r(u,i,tr) Ac(u, j,te;) A (tr < te;)}. (6.10)

If no recommendation of the Top-N list is relevant, the M AT D value should not be considered
for further averaging, e.g., for all Top-N lists of all users. However, the share of the non-relevant
recommendations within the Top-N item list (that is neglected by the timeliness value) is indicated
by the precision value, defined above. This is why a timeliness measure should always be presented
in combination with precision and recall.

Similar to other accuracy measurements, single MATD values can be combined, as the mean
average, to obtain more general results. It might represent the timeliness of all Top-N recommen-
dations for one user, the timeliness of the recommendations of all users at a specific point in time

or even a total timeliness for all Top-N lists of all users over the entire period considered.

6.3.2.2. Cleaned Timeliness Deviation

Practical experiments show that the composition of the dataset can also influence the timeliness
value. In the following example, the dataset comprises only two users. User one accessed one
item per week — every Thursday. Another user accessed items only at the very beginning of the

analyzed period (e.g., during week one) and at the very end (e.g., week 10). Two issues arise:

1. First issue: In a TARS cross-validation with dataset splitting on a per week basis, the
chosen week for the splitting threshold affects the timeliness value. If the data are split

every Friday, the minimum timeliness for user one would be at least one week until the next
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item consumption (from Friday until Thursday). If, in contrast, the chosen splitting day
is a Wednesday, the minimum timeliness would be only one day (from Wednesday until
Thursday). Thus, the chosen splitting threshold would have a huge impact on the timeliness
value.

2. Second issue: When user one (who accessed items on a weekly basis) and user two (who
accessed items only at the beginning and the end of the evaluation) are compared, their
timeliness values would differ dramatically. That means that the timeliness deviation of user
two in week two would be 8 weeks (week 2 until week 10). However, in a real-life setting,
when this user was offline the user would not obtain any recommendations before the next
use of the system (here in week 10). Thus, also the distribution of consumption data over

time affects the evaluation.

Taking both of these extreme cases into account, it makes sense to subtract the time of the next
consumption after the analyzed recommendation tc; from the time of the actual recommendation
tr. Item f is the first item that was consumed after ¢r by the same user (¢tr < tcy). This period

can be formulated per user as:
tFirstConsumption = tcy — tr. (6.11)

On the one hand, the tFirstConsumption can be seen as challenge value for the timeliness
measure, since it is the lowest possible value a timeliness measure can have (tFirstConsumption <
MATD). Thus, a Recommender System aims at forecasting the next consumed item which
corresponds to an MATD of tFirstConsumption. On the other hand, it can also be subtracted
from the MATD in a so-called cleaned timeliness deviation (M AT D jcaned). An example of the
MATD, tFirstConsumption and the cleaned MATD is presented in Appendix B.37. This allows

for a better comparison of the algorithm results independently from the dataset composition'07:

K te; —tr

K
Y iy tei —tey
e ==l

MATDcleaned = K

— (tey —tr) = (6.12)

The intuitive approach to this alternative timeliness version is that the time of a recommendation
is shifted to be the same as the next item consumption by the user. This circumstance enables
researchers to aim at reducing the timeliness measure to zero, which corresponds to the best

possible cleaned Mean Absolute Timeliness Deviation.

6.3.2.3. Additional Information on the Timeliness Deviation

Remember: In an ”increasing time-window” cross-validation setting, the test set size decreases

over time by the same number of activities as the training set increases. When further analyzing

107The mathematical derivation of the formula is given in Appendix B.38.
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the introduced example with 9 weekly splits between the 10 weeks of the course, another issue
arises: the timeliness value decreases by definition according to the ”increasing time-window”
cross-validation. The smaller the test set (after week 1 the test data comprises 9 weeks; after week
9 the test data comprises only 1 week), the smaller the maximum timeliness deviation. This is
why the timeliness can additionally be normalized by taking the total duration of the current test

set Aties: into account. That builds on the definition of the M AT D jcaned:

S tes —tey
MATD,ormalized = —2——-. 6.13
! d K * Attest ( )

As a result, the timeliness is given as a percentage of the total available duration. The normalized
version lacks information regarding the actual time difference (e.g., the time unit), but can be
better expressed in relation to the results of other evaluations. This might help to compare the

performance of algorithms in different course settings — for instance, for various course periods.

Figure 6.2 visualizes a typical example of a course with a period of 10 weeks (100.800 minutes)
and 99 users'%®. As the M AT D values are averaged, the figure only shows the average timeliness
deviation per week for all recommendations within the Top-N lists of all users. On the left side,
the absolute timeliness deviation M AT D, the average duration until the next item consump-
tion tFirstConsumption as well as the resulting M AT D jeqneq are given in minutes. Thereby,
the M ATD value cannot be lower than the tFirstConsumption value. The latter builds the
challenge line for M AT D. On the right side, M AT D jcaneq is additionally normalized by the
maximum duration of the test set, that is, given as M AT D,,ormalizeq in percent. As seen from
MAT D, ormalized, this algorithm performs worst in week 5 and best in week 10 — which is not

obvious when analyzing M AT D jcaneq alone.

100000 1
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80000 0,8

70000 0,7

60000 0,6

50000 0,5
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30000 0,3

20000 0,2

10000

0,1
0 = 0
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

=——=MATD =—=MATDcleaned t_firstconsumption = MATDnormalized

Figure 6.2.: Example for timeliness values over a course period of 10 weeks; left: MATD,
MATD, jcaneq and tFirstConsumption given in minutes; right: M AT D, ormalized
given in percent of maximum available time per week

108The dataset is a simplified version of the AWT dataset.
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6.3.2.4. Root Mean Square Timeliness Deviation

The Root Mean Square Timeliness Deviation (RMSTD), its cleaned version, RM ST D jcaned as
well as its normalized version, RM ST D,,prmalized, are also borrowed from RMSE and are defined

as:

K L 4)2
RMSTD = w (6.14)

SO (tei — tep)?

RMSTDcleaned = \/

6.15
. (6.15)
K
—_(te; —tey)?
RMSTDnormalized = \/leé(* Attestf) (616)

For both, the MATD and the RMSTD, the difference between the relevance score of the predicted
value and the actual value does not matter — only the fact that an item has been consumed
sometime after its recommendation. Thus, the new measure takes the Top-N recommendation
list at a particular point in time as the basis. The evaluation setting should be either an
“increasing-time window” or a "fixed-time window” cross-validation. MATD and RMSTD, in turn,
represent the mean time errors of recommendations, or in other words, the mean deviation between
recommendation and consumption. The calculations are borrowed from MAFE as well as RMSE
and show similar strengths: The greater the difference between MATD and RMSTD (as long as
te; — tr > 1 the following applies: MATD < RM ST D) the more scattered the single deviations.
The goal is to reduce the MATD and RMSTD as much as possible for appropriate time-aware

recommendations.

6.4. Applied Evaluation Settings

Based on the definition of the evaluation framework and the underlying measurement values, two
main evaluation settings will be applied. These follow similar conditions. For instance, both utilize
the Advanced Web Technologies dataset. This dataset comprises the biggest number of users and
xAPI statements. Both settings state numbers on precision, recall and timeliness (cleaned Mean
Absolute Timeliness Deviation). Their main difference is the definition of items within the test and
training set. While Evaluation Setting 1 incorporates the about 1,000 low-level Learning Objects,
Evaluation Setting 2 comprises just about 100 Learning Units. For the sake of comparability, the
data of the JavaFX course and of the the Energy-Consultant Training are additionally analyzed
in a final evaluation at the end of this dissertation.

The main aim is to recommend study material for all items of the course. Thus, it makes sense

to recommend items independently of their hierarchy level. A Learning Object is restricted to

Evaluation

Setting 1
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small learning periods of, at the most, 5 minutes. A Learning Unit groups 10 Learning Objects on
average. In Evaluation Setting 1, the 44,421 7initialized” zA PI statements represent the Learning
Object and Learning Unit accesses of the 99 students. The data comprise 1,006 Learning Objects
and 106 Learning Units. That is on average 449 item accesses per user. Appendix B.39 gives the
formal definition for this evaluation setting. While this seems to be a reasonable dataset for the
evaluation, some algorithms show low performance when processing this amount of data'%?.

This is why a second evaluation setting is defined for the same course, but with only items
from the second hierarchy level. Technically, these are also Learning Objects according to the IMS
LOM, specification. For an easier differentiation, they are called Learning Units, and low-level
items are called Learning Objects. These 106 Learning Units comprise the 1,006 Learning Objects.
However, the "initialized” statements in Evaluation Setting 2 are only considered on the higher
level — with in total 8,241 zAPI statements. Interactions within a Learning Unit are neglected'!?.
The formal definition of Evaluation Setting 2 is given in Appendix B.40.

For both settings, the course is split, according to the ”increasing time-window” validation,
into 17 sub-datasets where the time threshold shifts by seven days and is defined per week to
be on Mondays at 0 pm. The threshold definition is chosen in order to align the training and
test set weeks to calendar weeks. Thereby, with each split, the duration of the training dataset
increases by seven days, and the test dataset decreases by the same amount. Appendix B.39 gives
information on the data per split in Evaluation Setting 1 and Appendix B.40 gives the same for

Evaluation Setting 2.

6.5. Conclusions for Methodology and Evaluation Design

This chapter defined an appropriate evaluation framework for educational Recommender Systems
that is borrowed from Time-Aware Recommender Systems. Thereby, a particular methodology

approach has been described and a novel measure, the timeliness, has been introduced.

Scientific Hypothesis /SH5.0/:

An educational Recommender System for closed-corpus recommendations may be
evaluated by following a specialized evaluation framework in order to produce rele-
vant results. If a traditional evaluation procedure is applied that comprises, e.g., an
n-fold cross-validation, its results would not reflect the time-dependent conditions of
a closed course. Thus, in order to produce relevant results, a specialized evaluation
framework for Recommender Systems that aims at predicting course items may uti-

lize a time-dependent cross-validation procedure and may measure the qualitative

109For instance, the Slope One algorithm needs over 30 hours for the last iterations of the cross-validation. The
complete evaluation over the course with 17 weekly splits took approximately two weeks of calculation time.

H0The cross-validation of the Slope One algorithm took about 40 hours over the whole course period which makes
the algorithm five to ten times faster compared to Evaluation Setting 1.
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composition of Top-N lists as well as the timeliness of its recommendations.

The next chapter focuses on the generation of course item recommendations based on Collabo- Next Chapter
rative Filtering with time dependency and the evaluation of these recommendations. Thereby, all

evaluations follow the defined evaluation framework.






89

7. Design and Evaluation of

Time-dependent Collaborative Filtering

This and the next chapter introduce the RS algorithms that are realized for this dissertation.
This chapter starts with a comparison of the results of traditional and time-dependent Collaborative
Filtering techniques. The idea behind the evaluation procedure is to recommend those learning
items in a Top-N manner that the user would consume next, which is a common practice for the
evaluation of Recommender Systems. The first two approaches are the basic Slope One algorithm
as CF-baseline!!! and the extended version with incorporated time-weights!'2. Moreover, another
Item-based Collaborative Filtering approach, the Time-based Recommender Approach for Lecture
Materials (TBRA ), which is based on time-dependent item similarities for the recommendation of
study materials, is adapted and evaluated''®. Finally, a novel self-devised algorithm is introduced
which generates personalized learning paths based on the activities of classmates and the previous
interactions of the concerned learner. The next items on the predicted learning path are, therefore,
considered as Top-N recommendations. Finally, the four approaches are compared with the help

of the time-dependent evaluation framework.

7.1. Traditional Collaborative Filtering

As baseline algorithm, the Item-based Collaborative Filtering approach ”Slope One” has been
chosen, which was introduced in Section 2.2.2.1. It is a simple-to-implement algorithm that
produces adequate predictions [175, 278]. Moreover, the algorithm can be easily extended, e.g.,

through the integration of time weights [142].

7.1.1. Algorithm Design

Verbert et al. tested the standard Slope One algorithm for the recommendation of Learning

11 The traditional Slope One algorithm has been introduced by Lemire et al. [175]. However, Lemire et al. considered
this approach only theoretically for TEL [174] and, at all, it has only been rarely applied in education contexts
(e.g., by Verbert et al. [269]).

112The time-weighted Slope One algorithm [142] is applied in this dissertation in the context of Technology Enhanced
Learning for the first time.

113 The actual algorithm of presenting similar items [126] has been adapted in this work to fit the recommender’s
goal and the evaluation approach.

About this
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Objects [269, p. 14-15]. Thereby, the Slope One performed similarly to a not further named
User-based Collaborative Filtering approach and better than another Iltem-based Collaborative
Filtering (the Tanimoto-Jaccard Coefficient [261]). Also, Daniel Lemire, who invented Slope One,
and his colleagues tested the algorithm for the prediction of Learning Objects and, thereby showed
its appropriateness for Technology Enhanced Learning [174, p. 183-185]. However, due to a lack of
appropriate TEL data, their evaluation is based on movie datasets and, thus, cannot be generalized
or simply transferred to educational settings.

In a first attempt, the actual algorithm is transferred to the educational domain''4. Since the
Advanced Web Technologies dataset does not contain preference rating data, "initialized” zAPI
statements of the AWT course have been incorporated which represent content accesses per learner.
Thereby, the relevance scores of the user—item matrix represent the number of times item ¢ has
been accessed by user u. In other words: based on the activities of others, the predicted values
indicate the number of expected accesses of the particular user per item. Similar approaches build
the basis of typical music Recommender Systems, such as Spotify [250, 215].

The algorithm predicts the number of item accesses per user for all items, even for those the user
has already accessed. Similar to music recommenders, the basic algorithm is, first and foremost,
based on the activities of others. All items are ordered according to the predicted relevance score,

and the items with the highest values are recommended in Top-N manner.

7.1.2. Evaluation of Traditional Slope One on LOs and LUs

The Slope One algorithm is first evaluated according to Evaluation Setting 1 as introduced in
the last chapter (see Appendix B.39 for its formal definition). The algorithm is written in the
"R” environment % with R Studio'® which seems to be very slow, especially with increasing

117 This is why the results for week 16 are neglected. Different Top-N settings are

matrix density
evaluated where N defines the number of recommended items.

In average the precision values are relatively low and range between 0.1 and 0.35 — see Figure
7.1 (blue line on the left). The precision starts with a value of 0.26 and decreases slowly until 0.1
at the course end. However, the precision progress has a peak at week 5 — where the algorithm
seems to perform best. By this point, 78 users (out of 99) have accessed at least some items. Thus,

the typical cold start phase has ended.

114 The actual algorithm is based on preference ratings. See Section 2.2.2.1 for an introduction of the Slope One
algorithm. Miro Conzelmann initially implemented and started to evaluate this approach as part his AWT
project titled ”Evaluation of Collaborative Filter Systems SlopeOne and Time-weighted SlopeOne Applied To
an Online Learning Platform” supervised by Christopher Krauss. An extended version of the evaluation was
performed by Christopher Krauss (assisted by the students Dominique Jirgensen and Tolga Karaoglu).

15The R Project for Statistical Computing. See: https://www.r-project.org/ (Accessed: 15.08.2017)

116R Studio. See: https://www.rstudio.com/ (Accessed: 15.08.2017).

I7While the predictions of week 15 took about 33 hours, the calculation for the last (the 16th) spit aborted after
almost four days of calculation at 56%. The performance is shown in Figure B.26. The hardware comprises an
Intel Core i5 Quad-Core Processor (4x 3.3 GHz) with 8 GB RAM.
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Precision Timeliness
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Figure 7.1.: Accuracy of the Slope One algorithm; left: average precision and recall per week of
the AWT course; right: timeliness values (according to M AT D jcaneq) for different
Top-N settings (1 to 5) given in minutes.

The average precision of 0.23 indicates that, in general, only almost a quarter of Top-N recom-
mendations refer to relevant items that have sometimes been consumed after their recommendation.
The low precision values might correspond to the fact that the algorithm ignores the information
that a user might have previously accessed a recommended item. Thus, items that have been
studied before but that were not studied again by the same user after the recommendation reduce
the precision dramatically. That effect also explains the reduction at the end of the course, when
the test set contains less interactions than previously.

The recall values range from 0.09 to 0.25 (Figure 7.1: orange line on the left). In contrast to
precision, recall increases slowly over the course period and finally drops off during the last week.
The average of 0.17 indicates that about one sixth of relevant items have been recommended in
the Top-N list. The drop-off in the last week might be associated with the huge gain in statements
during the final learning phase for the exam. Remember, the number of item interactions doubled
within the last ten days before the final exam. As a consequence, different access patterns arose
that cannot be predicted with similar precision and recall as before.

The right side of Figure 7.1 shows the timeliness values (M AT D jcaned) over the course period.
The values are given in minutes, where one day corresponds to 1,440 minutes. The five curves
refer to different Top-N settings (with a 1 up to 5 recommendations per Top-N list) that all show
similar tendencies. In contrast to precision and recall, the timeliness should be as low as possible
as this means that the recommendations better fit to the current point in time. The values are
between 53 days (Top-5) and 58 days (Top-4) at the beginning and continuously decrease to
about five days at the end. The total course period is 112 days (from first access at the Learning
Companion Application to the final exam), where the highest possible timeliness is restricted to the
duration of the test set. The duration of the test set, in turn, is reduced by seven days per week

split until it has seven in the last cross-validation split. As can be seen, at week five the timeliness
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value is also comparatively low, which corresponds to a high precision value at the same time.
Also, the Christmas Holidays (where most users were inactive) can be observed in the timeliness
progress, as around week ten the timeliness stagnates and even slowly increases. In average, Top-2
(MATD.jeanea = 32,308minutes) and Top-3 (M AT D jeanea = 32,473minutes) settings based
on Slope One perform similarly well with different local valleys (Top-3 in week 3 and Top-2 in
week 6). Top-1 recommendations, in contrast, perform worse (M AT D jecaned = 37,486minutes),

as recommendations have in this case been consumed about 3 to 4 days later in average.

7.1.3. Evaluation of Extended Slope One on LUs

In a second attempt, the effect of incorporating only Learning Units instead of Learning Objects
together with Learning Units is analyzed. It corresponds to Evaluation Setting 2 (see Appendix
B.40). Surprisingly, this has a significant effect on the precision — as shown in Figure 7.2. While
this approach shows a similar overall trend including the cold start phase, a slow decrease of
the precision over time and a huge drop-off at the end, the average precision improved by over
23% to an average of 0.459. Moreover, also the timeliness improved but on a smaller scale by
12.2% on average. This is because the user—item matrix for Learning Units is denser than the
original user—item matrix. On a higher level, the users provide more feedback per item on average,
because in LCA users need to first access a high-level item and then decide on a low-level item.
Consequently, there are more interactions per user—item tuple in the database which leads to more
precise recommendations. This comes at the cost of less offered items — each on a higher level and
thus a broader topical scope: One Learning Unit contains about 10 Learning Objects on average.
However, 106 unique Learning Units per course still require the help of a Recommender System

for an efficient item selection.
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Figure 7.2.: Accuracy of the Slope One algorithm on Learning Units (blue) and Learning Objects
(orange); left: average precision per week of the AWT course; right: timeliness values
(according to M AT D jeaned) given in minutes.
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Another improvement comes by considering the specialized TEL paradigm: thus, the Slope
One algorithm should represent a learning need instead of a simple activity forecast. The same
approach as introduced before is applied to predict the number of user u’s accesses to item i based
on similar users — this is called predictedAccesses,, ;. The deviation between this predicted value
and the real number of item accesses realAccesses,, ; for the same user and item represents the

new relevance score:

relevanceScore, ; = predictedAccesses,, ; — real Accesses,, ;. (7.1)

The idea behind this approach is to reduce the prediction value, which reflects the accesses
(implicitly the "interests”) of others, by the number of the user’s actual accesses. In general, a
prediction of an already known rating or access number would not make much sense for e-commerce
or entertainment services, as it is previously known and does not need to be predicted. However,
due to the specialized paradigm, the user—item matrix of a closed-course Recommender System
is expected to be much denser. For the prediction step of this algorithm, the real number of
accesses of a particular user on an item is treated as unknown. This approach helps to compare
the activities of others with the user’s activities. Given the example of a Slope One item score
prediction of 5 for item ¢ and a predicted score of 7 for item j. Thus, based on the behavior of
others, item ¢ should have been accessed 5 times and item j 7 times by now. The traditional
Slope One algorithm would prefer item j since its relevance score is higher — implicitly other users
commonly accessed item j more often than item 4. Nevertheless, when the user has accessed item
i already 2 times and item j has been accessed 5 times, the corresponding relevance score is 3 for
item ¢ and 2 for item j. This deviation value represents the new relevance score: how much a user

must study/access a Learning Unit to keep up with the classmates.
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Figure 7.3.: Accuracy of the extended Slope One algorithm (blue) and the traditional Slope One
(orange); left: average precision per week of the AWT course; right: timeliness values
(according to M AT D jeaned) given in minutes.

This approach has been applied to the Learning Units of Evaluation Setting 2. The results are

Extended
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Extension
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shown in Figure 7.3. As can been see, the extended approach has a positive effect on the precision
which leads to an improvement of on average 1.6% (0.475 compared to before reached 0.459%).
Especially in the beginning of the course, the approach shows its strengths. However, the positive
effect lessens over the period to the course''®. A possible reason for this lies in the dataset: As
discussed in Section 5.3, successful students (of the completing cluster) start earlier to study
the topics compared to the other students. In the beginning, the extended Slope One algorithm
processes more interaction data regarding learners that were frequently active over the entire
course period. The positive effect lessens the more infrequently learners use the LCA. Moreover,
no user accessed all available items and most users consumed only a few of them. Only some
students repeated a before studied item which means that the average number of real Accesses is
very low and a differentiation between the item accesses of users is tough. Finally, the timeliness
in Figure 7.3 indicates an overall negative effect with higher values of MATD when comparing the

Slope One extension with the original algorithm.

7.2. Time-based Slope One Algorithm

The Slope One improvement of Jiang and Lu [142] considers the time of the given item feedback.
Thereby, the Time-based Slope One approach borrows the concept of Li et al. [177] who introduced
different neighbor weights to the original approach.

7.2.1. Algorithm Design

The time-weighted Slope One algorithm is based on the original version presented by Lemire
and Maclachlan [175] (introduced in Section 2.2.2.1). It is divided into two steps: (1) calculation
of the score deviation of other users from the item of interest and (2) prediction of a new score
based on the previously determined deviations.

Jiang and Lu extended the first step and therefore incorporated time weights twy,, ;1 2 that
correspond to the timespan between the accesses of item i1 and i2 (e.g., the point in time when
the user accessed or rated the two items) [142, p. 2296]. According to Jiang and Lu the deviation

of step one is adapted as:

Douets, s, (Pusin = Tujin) * (W i1 a2

devTW(il,ig) = |U ] | s
1112

(7.2)

where 7, ;, is the item’s rating user u gave. U,,;, is the set of users who rated both items and
Ui,i,| is its cardinality. A new function, the time weight tw, ;1 2, has been introduced which
12 El )

transfers the timely deviation of the two times of item accesses t, ;1 and %, ;2 of user u into a

18The incorporation of the real Accesses, ; value can have a huge effect on the Slope One algorithm — even though
a negative when applying the reverse formula accidentally (see Appendix B.43).
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weight. The weight is high when both points in time are similar (up to 1 if they are equal) and

low, the more time lies between the two item accesses.

1

. 7.3
14+ a* Atyg ( )

tWy 1,52 =

At,¢ is defined as the relative deviation between item accesses t,, ;1 and ¢, ;2. Relative means

that the deviation is normalized by the highest possible time value ¢r:

to — 1t
Atrel _ | u,il u712|.
tr

(7.4)
In this implementation, ¢r is the point in time of the recommendation and all three time values
(tr, tuq1 and t,;2) are given in milliseconds since course start. If an item has been accessed
multiple times by the same user, only the last access is considered for t, ;1 or t, ;2.
The parameter « adjusts the effect of time decay. If « = 0, the algorithm works as known from

Lemire and Maclachan [175]. The higher « the faster older ratings are forgotten. Figure 7.4

visualizes the effect of different settings of a.
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Figure 7.4.: Effect of different « settings: the x-axis displays the relative timespan between the
two analyzed items and the y-axis shows the corresponding time weights.

Step two remains the same except for incorporating the adapted time-dependent deviation
devTW instead of the standard Slope One item deviation. The algorithm predicts the relevance

score preT'W (u, j) for user u on item j:

Zielj (ru,i — devTW (i, 7))
1231 '

Ij is the set of all relevant items to be compared with item j and |Ij] is its cardinality.

preTW(u,j) =

7.2.2. Evaluation

The time-weighted Slope-One algorithm is evaluated according to Evaluation Setting 2119, Figure

7.5 visualizes the precision and timeliness results.

119The analysis of the L O activities in Evaluation Setting 1 can be seen in Appendix B.44.

Step Two
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Precision Timeliness
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Figure 7.5.: Comparison of Time-based Slope One algorithm (a > 0) compared with the regular
algorithm (o = 0); left: average precision per week; right: timeliness values (according
to M AT D jeaneq) given in minutes.

As can be seen, the precision has improved by only 0.56% at most (o = 30) and the timeliness
value is even downgraded by up to 11.5%. Additionally, the two extensions have been combined:
the algorithm extension that deviates the real number of item accesses and the extension with
time-weights. The combination brings a total improvement to the precision of 2.6% compared
to the original Slope One on Learning Units. While the performance is similarly slow for both

120

approaches' <", it must be concluded that the extended version and the time-weighted version do

not bring the expected improvements to the algorithm.

7.3. A Time-based Recommender Approach for Lecture

Materials

The Time-based Recommender Approach for Lecture Materials (TBRA) is the only published
Time-Aware Recommender System for course contents [126] — as presented in Section 3.5.2.4. Tt
is based on similar considerations to those of the extended Slope One implementation since it
incorporates the number of accesses per item as well as information on access times. However, it

requires an additional pre-processing step for the generation of an item similarity matrix.

7.3.1. Algorithm Design

Hermann used this approach to present related items to a previously accessed lecture material
[126]. The published approach is extended in this work to recommend items in a Top-N manner

and consists of the following five steps:

120 Appendix B.45 presents a performance comparison of both Slope One settings.
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1. Based on previous item accesses of all learners, an overall similarity matrix is computed.
This relates all course items with each other and comprises the activity data of all learners
in the course. Each item—item tuple < i,j > contains a similarity score S; ; in the range
[0,1]. The similarity score is based on the timespan between the access times of both items
per user. If a user accessed an item several times, only the minimum timespan is considered
for < 4,7 >. This timespan is then averaged for all users who accessed both items, where 1
would mean both items are in average accessed at exactly the same point in time by the
same user and 0 means their access times are totally diverse. An example of the item—item

matrix might look like this:

Table 7.1.: Example of the TBRA similarity matrix averaged over all users
i1 iy | i3
i1 1103101
is | 0.3 1107
i3 | 0.1 | 0.7 1

This matrix indicates which items are frequently accessed in conjunction, e.g., within a
course. In the example, i2 and i3 are more often accessed within a short time compared
to, e.g., il and 3. This step corresponds to the basic approach of Hermann [126]1%!. In
comparison to Slope One, it can be computed offline — as soon as the cold start phase is
over and there is a certain amount of interaction data.

2. In parallel, a user-item matrix is generated (A, ;), where each user-item tuple < w,i >

represents the number of item ¢ accesses of user u. An example is given below:

Table 7.2.: Example of the TBRA user-item-matrix for accesses
i1 | i2 | i3
up | 51 1] 0
us | 2] 0] 0
us | 0] 0] 1

3. In a third step, the item list is cascaded. Instead of recommending similar items to the
actually presented one (as Hermann does [126]), only items that show the lowest access
rates are considered as recommendations. Thereby, the lowest access value per user in the

user—item matrix serves as the threshold for the Top-N recommendations. In other words,

121The students Kumar Awanish, Gaurav Vashisth and Rudresha Gulaganjihalli Parameshappa implemented and
evaluated a version of this algorithm for their AWT project "Realization and Evaluation of a Time-Aware
Recommender System for Lecture Materials” supervised by Christopher Krauss. After the project submission,
Christopher Krauss extended the approach and evaluation to fit the needs of the Top-N evaluation setting
introduced here.
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as long as there is one item that has never been consumed by the current user, the personal
access threshold remains under the value of one and all items that have been consumed at
least once are not recommended.

4. All items with the lowest access value per user obtain a relevance score that refers to the
similarity (given in the similarity matrix) of the most frequently consumed items by the
user:

D imo(Sig * Auy)

TBRAT@ZCUCLRCE(U7 'L) = n ’ (76)

where n is the number of considered items. Items above the threshold are given a relevance
of 0. The resulting user—item matrix with relevance scores for the example is presented

below:

Table 7.3.: Example of the TBRA user-item-matrix with relevance scores

il i2 iS
Uy 0 0 0.1*5+037*1+1*0 =04
Uz 0 O.3*2+1§0+0.7*0 =02 0.1*2-&-0.37*0—&-1*0 = 0.07
us 1*0+0.3§0+0.1*1 =0.03 0.3*0+1§0+0.7*1 =0.23 0

5. Finally, the items are ordered per user according to their relevance score TBRA, cicvance-
Only the Top-N items are recommended. When presenting just the Top-1 item in the example,
user u; is given a recommendation for item i3, user uy for item 75 and, consequently, user

ug should study item is as well.

7.3.2. Evaluation

For reasons of comparability, the evaluation setting follows the rules defined in Setting 2 with
just Learning Units. Figure 7.6 presents the results for precision, recall, and timeliness for Top-3
recommendations which performed best with the Slope One algorithm. Moreover, the Top-10 and
Top-30 results are shown as well, since a higher number of recommendations appears to have a
positive effect on the timeliness.

The three lines at the top of the left side of Figure 7.6 show the precision of TBRA. The Top-3
setting shows the highest coverage of relevant items in the Top-N list. At the beginning of the
course, the precision lies between 0.57 and 0.69. However, these numbers fall continuously over the
course period with some local valleys (e.g., in week 6 and week 12 for Top-3) and a huge drop-off at
the end of the course. Within the final week, the precision is reduced for all settings to about 0.25.
The average precision shows a coverage of 0.51 — which means that half of the recommendations

within the Top-3 item list are not relevant. Two major reasons have been identified:
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Precision & Recall Timeliness
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Figure 7.6.: Evaluation results for the TBRA for Top-3, Top-10 and Top-30 recommendations
considering all users; left: average precision and recall; right: Timeliness values for
averaged M AT D jeaneq given in minutes.

1. Learners who did not provide any feedback cannot obtain any recommendations based on
their behavior — this corresponds to the well-known cold start problem. According to the
algorithm, every item is given a relevance score of 0, and the Top-N list comprises random
elements.

2. Moreover, learners who accessed all items do not necessarily start over and study items right
from the beginning nor in the same order as before. However, the algorithm recommends
items in the same order even for a second learning iteration through all items, because all
items that have been accessed least are considered as recommendation. This circumstance

describes the precision drop-off at the course end.

Considering these two aspects, a second evaluation is performed in a adapted version of Evaluation
Setting 2. Only those learners are considered who accessed at least one item and who did not

1122, Figure 7.7 shows the results of this second attempt. As one can see, the

access them al
analysis shows a very high degree of precision — for the Top-3 setting in average 0.72. That means,
almost three quarter of the items recommended in the Top-3 list are relevant to the user — an
improvement of more than 20%. The Top-3 setting shows three local peaks (in week 4, week 10 and
week 14) and ranges between 0.57 and 0.83 and the Top-10 as well as the Top-30 setting also show
some improvement of about 12% to 14% and a more stable trend compared to the Top-3 setting.
Their average precision values range from 0.57 for Top-10 to 0.54 for Top-30 recommendations. It

can be concluded that the precision of the algorithm depends heavily on the access patterns of

particular users. Since the users accessed 38 unique items on average, the precision is affected by

122The number of considered users per week can be seen in Table B.2 in Appendix B.40 (users of the training and
test set). For example, instead of 99 learners, only 24 learners are considered for split one, 50 for split two, 63
for split three and so on. First users have accessed all items at the beginning of the last two weeks. Thus, only
the last two splits are affected by omitting learners who accessed all items.
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those users who accessed fewer items than recommended in the Top-N list — 22% of users in AWT

accessed less than 10 Learning Units and even 57% of users accessed less than 30 LUs.
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Figure 7.7.: Evaluation results for the optimized TBRA for Top-3, Top-10 and Top-30 recom-
mendations considering only users who accessed at least one item and not all items;
left: average precision and recall; right: Timeliness values for averaged M AT D jcaned
given in minutes.

In contrast to the high precision values, the recall values are comparatively low for both settings.
Of course, the fewer the number of items recommended, the smaller the recall value. Especially
in the Top-3 environment, only 5% of relevant items are part of the Top-N list. Top-30, in turn,
shows an average recall of up to 0.30 in the optimized setting. However, the optimization has only
a small positive impact on the recall value.

The right sides of Figures 7.6 and 7.7 show the timeliness measurements. Besides some differences
in the beginning until the Christmas Holidays (up to week 10), the timeliness measures are almost
similar in both evaluations for the three Top-N settings.

When comparing the attempt with all users and the attempt with well-selected users (only those
learners who accessed at least one item and who did not access them all), another advantage is
uncovered. Especially at the beginning of the course, the optimized version is more accurate in
time as the recommendations have been accessed 28 days, on average, before those of the first
attempt. However, after the first half of the course, this effect decreases and the timeliness of
both versions converge. The timeliness of the Top-3 setting with well-selected learners improves in
average by six days over the entire period.

Top-30 performs best (M AT Dejoanea = 34,235), followed by Top-10 with an almost equal
average Timeliness value (M AT D jeaneqa = 34,515). Thereby, a higher number of recommended
items seems to have a positive effect during the cold start phase, which can be observed until week
4. However, also the Top-3 setting (M AT D jeaned = 36,852) shows a good result that is only one
up to two days behind the other settings.
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Figure 7.8.: Computation times (y-axis) for TBRA for Top-3, Top-10 and Top-30 recommendations
over all users and the mean computation time for the generation of the similarity
matrix given in seconds; x-axis presents the course period in weeks.

The computation time in Figure 7.8 is given in seconds. There is no huge effect of the different
Top-N settings, because a prediction for every user—item tuple has to be computed independently
from the number of recommended items. Taking into account that the similarity matrix can be
computed offline and at regular intervals, the aim would be to perform the recommendation step
online. However, the generation of Top-N recommendations per user is in the worst case slower
than one second (about 120 seconds for 99 users) and with a longer course duration or more items
that need to be studied, the calculation duration increases. Thus, the prediction step should be
performed offline and in regular intervals, as well.

The evaluation of the TBRA algorithm indicates that the information on previously learned
items has a crucial impact on the appropriateness of its recommendations — as shown by the
comparison of all and only well-selected learners. Obviously, learners prefer to access new items

instead of repeating previously accessed ones. When cutting off the users that did not access any

item (which is only a theoretical setting), the precision improves at the cost of worse timeliness.

Taking the high precision value into account, the Top-3 settings performs best in this evaluation

which is similar to the findings of the Slope One evaluation.

7.4. Recommendations through Learning Path Predictions

As the point in time and the information on previously studied items have a significant impact
on the precision and timeliness of recommendations, an additional recommender approach is tested
which focuses more on item sequences. Given the number of about 100 Learning Units within the

Advanced Web Technologies course, there are about 107 possible combinations of item sequences

(100! =~ 9 % 10'57) — not considering the about 1,000 Learning Objects on a lower hierarchy level.

The learner, in turn, only needs to select one appropriate series, that is called learning path, to

Performance

Conclusions

for TBRA
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consume all given items. The approach to predicting these personalized learning paths consists of

two separate steps:

1. The first step handles the definition of the knowledge graph that represents possible routes
through the items. A hybrid combination of teacher-based, constraint-based and user-
interaction-based approaches are utilized for building the knowledge graph'?3. The direct
transitions (edges) from one item (node) to another comprises a probability that describes
the percentage of past transitions. Thereby, each historical path of learners is analyzed to
create a knowledge graph and the probabilities. In other words: the more often users studied
items in a particular order, the higher is the probability that this part of the path will be
recommended to other learners in the future.

2. The second step predicts an individual learning path for each learner in the given situation.
Thereby, the past item accesses are considered for the requesting user to predict a personalized
subpath. This future path starts at the last consumed item node and avoids other, previously
seen, items. The idea is that the algorithm searches for the shortest (and most efficient)

path through all left learning items in the before built knowledge graph.

In general, this approach is different to classical Collaborative Filtering approaches where items
might be recommended independently of the current learning context and direct dependencies on
other topics. However, it incorporates collaborative data and, thus, is treated as a CF approach
in this work. The result is a set of individual paths that lead through all offered items exactly
once. Repeating or skipping items is not possible when consequently following the recommended
route. However, an extension of step 2 might neglect items that are marked as "known” by the

learner — which is not implemented for this evaluation.

7.4.1. Algorithm Design

The algorithm is inspired by routing plan algorithms for public transportation where trains
follow particular schedules [304]'24. The actual route of a passenger, however, is similar to the
learner’s individual learning path in that it needs to follow some constraints (e.g., the lecture
schedule) but allows for decisions at multiple points in time in respect of alternative routes.

The actual algorithm splits step 1 into two parts. At first, the AWT Learning Units are
transferred into a graph database as nodes. Let I be a set of items belonging to the course C.
Prerequisites, given as attributes in the IMS Learning Resource Meta-data Specification [1],

are considered for a primary dependency graph. Prerequisites for the AWT Learning Units are

123 A graph can be built based on different strategies as introduced in Section 3.6.

124This work is part of the Master Thesis of Andreas Salzmann with the title ”Leveraging Time-Dependent Multi-
Modal Routing Plan Algorithms to Create Personalized Learning Paths for Technology Enhanced Learning”.
The idea and the concept of learning path generations as well as the methodology were defined by the day-to-
day-supervisor of the thesis, Christopher Krauss. However, the implementation of the algorithm, as well as the
execution of the evaluation steps, were done by Andreas Salzmann.
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manually defined and can be seen as constraints of a path that must not be violated — for instance
the Learning Unit ”Concepts of Recommender Systems” is a prerequisite for the Learning Unit
"Technical Issues in Recommender Systems”. The result is a dependency graph representing all
allowed learning transitions. See Figure 7.9 for an example of the dependency graph with six items
(LO1,...,LO6) where LO2 is a prerequisite for LO3 (LO3 = LO2 '?°), LO3 is a prerequisite
for LO4 (LO4 = LO3) and LO5 a prerequisite for LO6 (LO6 — LO5).

LO1

SR To - Q) S—— 0V

LO6

Figure 7.9.: Example of a dependency graph with six LOs and three defined prerequisites (LO4 —>
LO3, LO3 = LO2 and LO6 = LO5).

Secondly, based on the defined prerequisite constraints, all allowed combinations of items in
I are listed. The subset s of items in [ represents one possible learning state with all so-far

consumed items. S is the set of all possible states within the course:
S ={s|sC C}. (7.7)

Each transition from one state to another is represented by a directed edge e, s, € F except
where the transition violates the prerequisite definition. An edge connects two states s; and so
where one item is added to s; which results in state so. F is the set of all edges.

The directed transition edges are extended by an attribute that indicates the number of other
learners who used the same transition in the past. More precisely, it represents a ratio of historic
transitions etrqnsitions between exactly the two states (s1 and s2) and the number of all historic
transitions S¢ransitions leaving s1. The result of the probability function p(e) determines the

transition probability per edge e of historic movements of all learners and is given in percent:

(6 _ et'ransitions. (78)
Stransitions
As an intermediate result, a knowledge graph K is generated that represents all possible states

and transitions of the dependency graph between a start state B = (), which does not contain any

125Could be interpreted as ”"LO3 implies / requires the knowledge of LO2".

Knowledge
Graph
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Figure 7.10.: Example of a knowledge graph with the same six example LOs of the dependency
graph example.

item, and a target state T'= C, which contains all items of the course.

K = (B,T,S,E,p). (7.9)

Figure 7.10 visualizes the example knowledge graph with the six items of the dependency graph
example. This graph is computed offline and stored in a database to efficiently calculate individual

paths in the future.

When now a learner requests a path recommendation, all of the so far accessed items of that
user are considered. The learner’s accessed items correspond to a state in the knowledge graph K
reflecting a new starting point B,, ; for user u at time ¢t. When the user, for instance, accessed LO3,
LO2 and LO4, the state {LO2, LO3, LO4} is the starting point for a shortest-path algorithm. If
the user violated the prerequisite definition and studied another item first, the state that shows

the highest agreement of known items is considered as the start state.

The shortest-path algorithm identifies an ideal route r € R from the start to the target point T
in the knowledge graph (marked with ”All” in Figure 7.10). The target point T reflects all studied
items in the course and thus the course goal. R is the set of all possible routes between B and T'.
Thereby, the results of the probability function p(e) per taken edge e on the route are summed.

E, is the number of edges of the route r. The path with the highest total probability p:ota;(r)
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should be preferred.
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Figure 7.11.: Example of a path presented to the learner when LO2, LO3 and LO4 have been
consumed.

The routing plan algorithm of Zografos and Androutsopoulos [304] was used in the evaluation.
It analyzes backwards the transitions from T" to B, by considering the probability p(e) per edge.
Moreover, as the algorithm is designed for public transportation means, it allows incorporating
waiting times, when changing the transportation. Transferred to the learning domain, this feature
is used to penalize switches of the higher-level topics as the learner might better focus when
working on similar topics at a time and encourage switches first when all low-level items belonging
to one high-level item are processed. The result is a list of alternative routes with a number
of branches b per node. Only those b branches are considered that show the highest transition
probability p(e) from one edge to another!2S.

Experts can adjust the total number of considered and presented branches. For the evalua-
tion, different numbers of branches b and also of presented Top-N items are considered. The

implementation is realized as Java server with the graph database neo4j'?”.

7.4.2. Evaluation

In order to be compliant with the defined evaluation settings, the knowledge graph is generated

only by processing the data of the training set. Thus, the transition probabilities have a minor

126 Andreas Salzmann used in his Master Thesis two additional types of sequence alignment algorithms to present
branches, borrowed from bioinformatics: the Needleman-Wunsch algorithm for global alignments [201] and
the Smith-Waterman algorithm for local alignments [248]. However, these algorithms are not applied for this
evaluation and, thus, are outside of the scope for this work.

127heodj. See https://neodj.com/ (Accessed: 22.08.2017).
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effect at the beginning of the course where recommendations rely, first and foremost, on the
defined prerequisite dependencies. However, the more activity data are collected, the higher is the
effect of the transition probabilities. Indeed, in a real-course setting, all available activity data

(especially the data of historic courses) would be incorporated.

Precision, recall, timeliness (given in minutes) as well as performance measures are determined
according to Evaluation Setting 2. Besides the split per week, which lead to 15 different time-
dependent results, different sizes of branches per node are considered, which are given as b
(b=1,2,3,5,10 and 15). Moreover, the Top-N lists are also analyzed with different sizes — 3,5, 10
and 15.

Since the number of branches b and recommendations N are not necessarily equal, the Top-N
list consists of the items with the lowest distance (number of edges) to the last accessed item
(state By¢). When deciding for items with the same number of edges to the last accessed item,
those with the highest transition probability are preferred. This is determined iteratively, starting
with direct connected items. Given the example of b = 3 and N = 4, the 3 direct connected items
(numberO f Edges = 1) are set on the Top-N list in the first iteration. Afterward, all 9 items
(prumberOfEdges) that are connected via 2 edges to the start item are considered as the missing
Top-N items. Thereby, the algorithm prefers the items with the highest transition probability.
This is repeated until the Top-N list consists of NV items where every item of the Top-N list must
be unique. For the defined evaluation setting and in order to produce comparable results with the
other approaches, the connections between the items (the actual learning path) is not of interest
for the measurements (just for the selection process). For the evaluation, only the fact is evaluated
that an item is part of the Top-N list.

Finally, for reasons of comparability, a Top-N list is analyzed consisting of all relevant items
which means the recall value is 1. Remember, an item is relevant if it has been accessed by the
user after the point in time of the recommendation. Thus, the validation was performed in 450

)28, Due to the vast amount of

iterations (15 week splits * 5 Top-N settings * 6 branch settings
experiments, the first figures show the precision and recall of the main settings averaged over the
whole course period. This is done to better compare the different settings. At the end, the best
settings are presented, as already known, over the period of the course.

Figure 7.12 shows the precision and recall of the main settings. In general, the fewer the number
of elements in the Top-N list, the more precise are the recommendations (Top-3 performs best when
b > 2) and the lower the recall (where Top-3 performs worst). Over half of the recommended items

are relevant (precision of up to 0.58) and almost 25% of relevant items have been recommended as

the recall value indicates. Except for the setting with 15 branches (b = 15), the analysis shows a

128Note: as this approach relies on past feedback of other learners and item dependencies, it allows for the
recommendation of learning items right from the beginning and does not require any initial user feedback. That
is why first recommendations are presented before week 1.
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high dependency of precision and recall on the amount of Top-N items.
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Figure 7.12.: Precision (left) and recall (right) for different settings of the Top-N path recommen-
dations.

The number of branches, in contrast, does not have such a massive impact on the precision
measure as the Top-N elements have. Nevertheless, it seems clear that b = 10 is the best setting —
and b =1 and b = 2 perform almost identically low. For recall, the b-settings have practically no
effect. As expected, the number of 15 recommendations in the Top-N list performs best.

The highest F-scores (defined as the harmonic mean of precision and recall) are determined for
b =2 and Top-15 (F1 of 12.319%), b = 1 and Top-10 (F1 of 12.318%) and b = 3 and Top-15 (F1
of 11.500%) due to the significant impact of the recall value.

Keep in mind: in contrast to the prediction measures, the cleaned timeliness should be as low as
possible. Figure 7.13 gives an overview of the measured time deviation between a recommendation
and its consumption by the same user. The values are given in minutes (averaged over the course
period) and range from 16,390 minutes (about 11 days) up to 21,537 minutes (about 15 days)
for a total course period of 110 days. The Top-3 setting, which performs best for precision and
worst for recall, performs best for the timeliness measure (except for b = 15). The learning paths
with one or two branches (b =1 and b = 2) show almost equal and overall the best results for the
timeliness deviation. In general, the more branches, the lower the time-dependent accuracy. The
same applies to the number of Top-N items.

As precision is more important than timeliness, the approaches with b = 10 (which show the
highest precision) are presented for each week split. The Top-3 setting starts with less precision
compared to the other N settings (see the left side of Figure 7.14 for the already known weekly
progress of the results). However, with the beginning of week 5, N = 3 outperforms the other

settings.

Timeliness
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Timeliness
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Figure 7.13.: Timeliness deviation for different settings of the Top-N path recommendations.

The right side of Figure 7.14 shows the visualization of the cleaned timeliness deviation over
the course period for different Top-N settings. The timeliness decreases dramatically from the
course start (ca. 31,000 to 44,000 minutes) to the course end with a cleaned MATD of about one
day (between 1,000 and 2,000 minutes). All approaches show a stable trend. Thereby, Top-3 and
Top-5 recommendations are, except for the beginning, quite similar. The strategy of learning path

recommendations improves over time and works exceptionally well in the second half of the course.
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Figure 7.14.: Evaluation results for learning path recommendations (b = 10); left: average precision;
right: Timeliness values for averaged M AT D jeqneq given in minutes.

A predicted learning path always contains all of the not-yet-studied items. When a learner
strictly follows the recommended learning path, the learner will have consumed all items by the
end of the course — without any item being skipped. For this reason, the recall value can be
neglected, since it only shows the coverage of relevant items in the current Top-N list. When
considering only precision and timeliness, a setting with Top-3 learning recommendations seems

to be the best choice.
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The decision for the best performing number of branches, in contrast, is not that easy: while
b = 10 shows the highest precision, the timeliness for that setting performs poorly. The opposite
applies for b =1 and b = 2. As the precision value is more important for the evaluation and the
timeliness is only measured for recommended and relevant items covered by the precision value,

the setting with b = 10 branches is preferred.
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Figure 7.15.: Computional time in milliseconds for the pre-computation step (blue) that is only
calculated once per course and the prediction step (orange) that is calculated for
each user-request (left: per n-setting; right: over the course period for b=15).

Figure 7.15 indicates the performance, in terms of calculation time, for different branching settings
from b =1 to b =15 (on the left) and over the course period for the most expensive computation
(b = 15 on the right)!?°. As one can see, especially the pre-computational for generating the
knowledge graph shows excellent results, as this step is only required once. However, the prediction
step is even faster but must be performed for every user request separately. That makes it in
sum a higher value. With about 130 milliseconds prediction time in the worst case, it can be still

performed online which makes it the fastest algorithm of the comparison.

7.5. Discussion of the CF Evaluation

Figure 7.16 shows the precision and timeliness for all algorithms evaluated in this chapter. For
a better comparability (and because it shows the best average results), the Top-3 item list setting
is chosen for all approaches. The optimized TBRA is neglected as only a few users would receive
recommendations and thus it distorts the comparison.

At all, the baseline algorithm Slope One on Learning Objects performs worst on average over

all weeks for precision (0.23) and timeliness (34,083 min) which is not surprising considering the

129The evaluation was performed on an Intel Core i7 Quad-Core Processor with 4x 2,6 GHz and 16 GB RAM.
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sparse matrix due to the low average number of accesses per item. Indeed, the utilization of
higher-level Learning Units for the Slope One algorithm brings much better precision (0.46) and
timeliness (26,648 min). The incorporation of time weights and the consideration of the already
consumed items improves the precision by only 2.6% (by degrading the timeliness) and, thus,
is not presented in the figure. The TBRA shows a better precision (0.51) than the Slope One

approaches but with 36,852 min the worst timeliness in total.
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Figure 7.16.: Comparison of the evaluated approaches (each given in the best setting as discussed
before); left: average precision; right: Timeliness values for averaged M AT D jcaned
given in minutes.

The prediction of Learning Paths based on the activities of others performs very well regarding
precision with a value of 0.56: More than the half of Top-N recommendations are directly relevant
to the learning process. In particular, the timeliness of the recommendations shows outstanding
results as it outperforms all other Collaborative Filtering algorithms for almost every weekly split —
except for the beginning. The Mean Absolute Timeliness Deviation is 18,340 minutes. The most
significant strength comes from the cold start phase, where the predicted learning paths rely on
Learning Object metadata that have been entered by educational staff. Thus, even at the beginning
of the course, the recommendations are relevant in respect of timeliness. The disadvantage comes
from its static concept where every item has to be studied exactly once. However, the generation
of learning paths show the best results in this evaluation.

One reason why the approaches reach precision values of only less than 0.70 lies in the composition
of the activity data: The number of unique Learning Units accessed per user per week as well as
the ratio of repeated items is presented in Appendix B.46. Especially for Self-Regulated Learning
phases (e.g., during the Christmas Holidays and at the end of the course) the repetition rates
are higher than during the actual lecture times. On average about 34% of all "initialized” zAPI

statements refer to items that have been accessed previously. Thus, an approach that focuses on
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the recommendation of items only once per course, such as the recommendation of learning paths,
is likely to show a reduced precision of this 34% of repetitions. Moreover, the data even indicate
that the students usually did not study all available items. On average the users studied only
34 of the available 106 Learning Units. Especially, items at the beginning (e.g., for introduction
and motivation purposes) are often skipped by learners — but frequently recommended by the
algorithms.

This chapter evaluated different educational Collaborative Filtering approaches on the collected
activity data and, thereby, raised some issues, such as item repetitions and skipping. Those aspects
are taken into account for the Smart Learning Recommender that is presented and evaluated in

the next chapter.

Next Chapter
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8. Design and Evaluation of the Smart

Learning Recommender

The algorithm of the present chapter incorporates rich activity data which results in a novel
Recommender Systems approach. Thereby, the entire set of gained xzAPI statements is transferred
into the learner’s user profile which then helps to model complex knowledge levels at different
hierarchy levels of items. The idea is to compensate for the typical drawbacks of Collaborative
Filtering, such as the cold-start phase, with more detailed data, and to better adapt the recom-
mendations to the user’s needs. For reasons of simplicity, this context-aware time-dependent
knowledge-based recommender algorithm is called Smart Learning Recommender (SLR).

The previously analyzed CF algorithms utilize just one type of user activities: initialized”
zAPI statements representing the user’s item accesses. However, these data make up only 47% of
the collected zAPI statements (see Section 5.2.3). The remaining data give valuable insights into
“exited” events, "answered” questions and provided self-assessments as well as "downloaded” files.
Taking this information into account, the Smart Learning Recommender additionally determines
information, for instance, on the duration of content access, subjective assessments of the learners’
knowledge levels and verified knowledge levels when users have answered tests and quizzes.

The content creators and teachers provide a lot of metadata on the items when creating
IMS-compliant LOM, QTI and CC elements. Among others, the data comprise attributes on LOs
that are marked as prerequisites (as also considered by the learning paths algorithm), information
on the exam relevance of an item and the typical learning time that is given by educational staff.
The Smart Learning Recommender additionally incorporates the date and time of the lecture
when the topics are presented.

Based on this exhaustive set of information, the SLR aims at predicting personal learning
progresses within a course. Thereby, additional models help to approximate the real knowledge

levels — for instance by incorporating aspects of forgetting.

8.1. Time-dependent Learning Need

As already mentioned, an educational Recommender System should aim at identifying the

learning needs of a user u for an item i. The learning need is a score that takes the currently
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approximated knowledge levels and other related properties (time of the lecture, prerequisites,

etc.) as well as the required amount of knowledge into account.

"The user-item-pair is presented by a relevance score rscore,, ; having the value from 0 to
1, where 0 indicates the lowest relevance and 1 indicates the highest possible relevance.
The relevance score defines a time and context dependent value and is expressed as a time
dependent function:

rSCoT€y it =T fui(t) (8.1)

The relevance function rf, ;(t) of user u for item ¢ is derived from several sub-functions
T fu,i,»(t) of individual factors z1, ..., ,, as a function of time ¢, each representing another

context”

Cf. [161]130,

The sub-functions are based on the previously mentioned item and activity metadata. It turns
out that the representation of user feedback as xAPI statements and the exhaustive LO metadata
structure are too inefficient for a direct processing through recommender algorithms. Due to the
given complexity of the data structure and the requirement to quickly process this information,
the required data are transferred to a proprietary format and retained in a relational database
(MySQL). For the sake of clarity, the following paper excerpt introduce the generated factors. A
detailed description is presented in the subsequent sections. The sub-functions and the resulting

relevance scores are based on real user—item value pairs and are indexed with z:

TSCOT€y it = T fuiz(t). (8.2)

”Since the real learning need changes continuously over time, the factor can be abstracted
as a continuous function, as well. The different factor types and considered formulas per

user, item and time are:

1. Interaction with a learning object: This factor indicates how much of the available
material for a Learning Object was accessed by a student |...]

2. Processing time of a Learning Object: This factor indicates how long the student learned
a Learning Object. It is 0 when the student needed exactly the intended time and
between 0 and 1 if he[/she] needs more or less time as defined in the metadata |...]

3. Self-assessments for this Learning Object: A student can explicitly define his[/her]
knowledge level at particular points in time on a 1 to 5 stars scale [...]

4. Performance in exercises: The percentage of wrong answered questions represents the

130The paper has been exclusively written by Christopher Krauss.
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relevance of the exercise factor [...]

5. Fulfilled prerequisites: The more a student learned the underlying Learning Objects,
the higher the relevance score of the subsequent items |...]

6. The lecture times factor indicates the timely relevance of a Learning Object for face-to-
face lectures |...]

7. Exam relevance: Learning Objects that are more relevant for exams show a higher
relevance score than optional contents — in terms of a constant value defined in the
Learning Resource Meta-data Specification.

8. Forgetting effect: After learning an object, the gained knowledge will slowly decrease
over time. After each learning iteration, the forgetting factor is set to 0 and [then
slowly increases again.]

9. Collaborative learning needs: The relevance functions of similar users on this Learning
Object are taken into account in order to offset underestimations and bad learning

plannings for the current user”
Cf. [161]*31.

All factors are in the range of [0,1] and represent the learning need. While some of these factors
can be directly influenced or adjusted through interactions with items — e.g., a self-assessment
through a rating, the interaction with an item or by giving an answer in an exercise — others are
modified by educational staff, such as lecture times or exam relevance. Finally, implicit factors can
only be partially affected, these include the collaborative learning need as well as the forgetting

effect.

8.2. Calculation of Top-N Recommendations

Before the actual context factors are presented in detail, the mechanism of relevance score
calculation is introduced as well as the generation of the Top-N list. This enables an overview
of the whole system and should allow for a better understanding of the impact and the inter-

dependency of single context factors.

”At the end, all single-factor functions are weighted. The weighted average of all factors
describes the total learning need of the Learning Object [or other items] for that user and is

calculated as "
szl (ww * Tfu,i,a: (t))
ZZ:l Wy

Here w, is the weight of a single factor = in {1, ...,z,} and n is the number of factors”

(8.3)

rfu,i (t) =

131The paper has been exclusively written by Christopher Krauss.
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Cf. [161]132,

At the beginning of the Smart Learning Recommender, the weights were set to a value of 1
in order to have a starting point from which to present recommendations to learners. However,
during the development phase, different settings of the weights have been evaluated to determine
the most appropriate overall relevance score. These evaluations are subject to further optimization
and are presented after a detailed description of the contextual factors in the next section.

While the Smart Learning Recommender typically processes a fixed number n of factors z1, ..., zn,
not all factors are relevant at every point in time. For instance, if users did not access any item,
the factors on interaction and processing time are disregarded for the weighting of the overall
learning need. In some situations, some content never allow for the incorporation of a particular
factor. For example, when an item does not offer any Q71 assessments, that exercise factor must
not be taken into account. In this case, the number n is reduced by the number of factors not
considered.

”The overall recommendation engine analyses the current learning need values of the
requesting student for all contents in the course. Thereby, the model of the SLR can be
created offline: The relevance functions are computed at regular intervals by processing
all existing user-item-time-triplets. When a user requests recommendations, the relevance
scores for all items are calculated on demand by considering the current time value for t.
Afterwards, the items are sorted by their learning need value. The result is a Top-N list
of Learning Objects beginning with the highest relevance scores that represent the most

important topics for the student that needs to be learned at that time”

Cf. [161]233.

The overall Top-N recommendations according to rf;, ;(t) as well as the contextual recommen-
dations presenting the unique factors rf, ; . (t) are presented separately. Appendix B.47 briefly

introduces the presentation of the recommendations in the Learning Companion Application.

” Learning Objects are stored in a multi-level hierarchy in order to topically structure a course
— top-level items represent a container with a set of sub-level items. [The] user may provide
item feedback, in terms of self-assessments, exercises, interactions and processing time, on
all hierarchy levels — even for the same topic. This differentiation allows a representation of
diverging knowledge levels for top- and sub-level items — e.g. a student might have a good
high-level understanding of a [Learning Unit], but misses some details on specific [Learning
Objects| or vice versa. In case the user has not provided the same type of feedback on the

item’s parent before, it is implicitly transferred from the child to the parent object. So, the

132The paper has been exclusively written by Christopher Krauss.
133 This paper excerpt has been exclusively written by Christopher Krauss.
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parent may implicitly represent the average of all child Learning Objects.

Hence, the engine needs to avoid recommending the same topic with different detail levels
within the predicted list. An algorithm iterates over the generated Top-N list, beginning
with the most relevant [item]. An item will be eliminated from the list, in case a related
child or parent [item] that describes the same topic, was recommended before and thus,
shows a higher score. As a result, students will get recommendations for all topics of a

course in a predicted order, but only on an appropriate detail level”
Cf. [161]34.

The Top-N list might comprise Learning Units or low-level Learning Objects which belong to
a different Learning Unit. A previously listed item is not separately presented at another level
for the same topic in the Top-N list to avoid redundancy. Usually, items at lower levels are more
frequently recommended, because learners access some items at a certain level and thus the other

items of this level show a higher learning need than their parent items.

8.3. Context-Factors

The contextual factors introduced in this work are not complete. They represent only the main
classes of different context-sensitive influences which help to identify knowledge levels, knowledge
gaps and appropriate recommendations. A great number of possible inputs (such as assessments
at the course start or questions on individual motivations) are missing here because they are not
covered by the collected data. However, new context factors can be easily added by following the
context factor definition, where every factor represents the learning need of a user for an item at a
specific point in time.

The utilized context factors represent the different dimensions of a Context-Aware Recommender
System. They can either be classified as "User”, "Item” or ”Activity” data according to the context
categories of Adomavicius and Tuzhilin [10] as well as Verbert et al. [270, p. 322 - 324]. However,
a strict differentiation seems to be hard, as all of them incorporate at least a second context

dimension: the progress over time.

8.3.1. Self-Assessments

When a learner starts to use the Learning Companion Application, the learner can provide
self-assessments relating to the items. A self-assessment is given on a one-to-five star scale (zero
when there is no self-assessment), where one represents no knowledge and five stands for expert

knowledge. The rating can be given by clicking on the according star, as is familiar from movie or

134The paper has been exclusively written by Christopher Krauss.
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e-commerce services. The star assessments are available for the hierarchy levels of Learning Units
and modules (parent of an Learning Unit). Moreover, even the learning goals (given in the LOs
metadata) can be rated at the beginning of a Learning Unit and a second time at the end (see
Appendix B.48). Moreover, the learner can visualize the history of their self-assessments with the
help of the statistics view which also helps to analyze the learner’s perception of the knowledge
transfer. The Learning Companion Application encourages learners to provide a lot of personal
information regarding the offered item at various points in time — the more, the better. Thereby,

the following equation applies to the self-assessment factor x1:

currentKnowledgeLevel,, ; +

(8.4)

rSCOT €y ; =
wihtel highest Knowledge Level

Figure 8.1 shows the possible range of learning needs that reflect the self-assessments. The
progress in this chart does not depend on time but on the provided feedback value. The higher the
self-assessment (e.g., a learner is rated as an expert), the lower the learning need. Consequently, a

recommendation of a high rated item is less probable.

rscore
[=l=J=1=]

currentKnowledgelevel=0 currentKnowledgelevel=highestKnowledgelevel

Knowledgelevel

Figure 8.1.: Smart Learning Recommender: Range of relevance values for self-assessments.

A self-assessment is especially helpful if the learner did not provide any other feedback for
that item — for instance, when the learner neither accessed the Learning Unit nor answered any
test questions relating to it. The value reflects the learner’s assumption regarding their existing
knowledge in that area from reading the headline or the related learning goal at the beginning of
a unit. Where the learner did not provide any other assessment feedback, the item level above

automatically represents an average of the assessments of its child items.

8.3.2. Interactions with ltems

A more valuable feedback than just self-assessment is the information on item accesses — as already
presented in the evaluation of the Collaborative Filtering approaches. When users access items,
they potentially consume the offered media (e.g., a text, an animation or a video). Alternatively,
when learners did not provide any additional feedback and not access any items, the algorithm
assumes the user has a lack of knowledge on that topic.

The interaction or access factor 2 indicates how much of the available material availableContent;
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for an item i is accessed by a student u at a specific moment in time ¢:

accessedContent,, ; +

(8.5)

TSCOT€y i t.52 = -
’ availableContent;

This can be the percentage of a watched video or audio item as well as how much the student

scrolled through a text. Figure 8.2 presents the value range for the relevance score.

rscore
coo0o

accessedContent=0 accessedContent=availableContent

accessedContent

Figure 8.2.: Smart Learning Recommender: Range of relevance values for interactions.

This factor represents the number of accesses and is also transferred to higher levels of the
item hierarchy. For instance if only one out of four Learning Objects have been opened, the
relevance score of the parent Learning Unit is 0.75 as three quarters are then missing. The more
Learning Objects have been accessed within a Learning Unit, the lower is the need for learning

that particular unit.

8.3.3. Processing Time of an Item

While the interaction with an item only indicates if it has been opened, it does not directly
reflect that the user has indeed read or consumed the content. The user of the LCA might, for
instance, click on an LO and directly close it again, as the learner had expected something else.
Therefore, the Smart Learning Recommender measures the time between the ”initialized” event
and the "exited” or the "abandoned” zAPI statement. This timespan represents the time between
accessing and leaving the content. A similar data foundation was used by Yi et al. to predict
results of a search engine based on dwell times (time spend on a website) instead of page clicks
[295]. Thereby, Yi et al. improved the mean precision by about 1% compared to the traditional
click-based approach.

Aronson et al. define three categories of time in learning settings: “engaged time”, ”instructional
and non-instructional time” and ”academic learning time” [20] (also cf. [105]). The "engaged
time” can be stopped using the zAPI statements and represents the time the user engages with
the content via the LCA. Allocated ”instructional time” represents the intended time of learning
at the educational institution and the "non-instructional time” stands for the time the user is
expected to spend for Self-Regulated Learning. The latter corresponds to a definition of the typical
required learning time as set by educational staff. In the Smart Learning project, content creators

defined the typical learning time for each LO. The learning time for a high-level item is the sum
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)

of the time of all of the low-level items contained within it. Finally, the "academic learning time’
represents the real timespan of knowledge acquisition, which is often smaller than the "engaged
time”. In a typical Personal Learning Environment, the "engaged time” is hard to measure, as
the user might be distracted and not directly engage with the content — even though the learner
opened that item.

However, the idea of the processing time factor is to relate the "engaged time” of the learner
with the actual ”instructional time” given by the educational staff. The closer the ”engaged time”
is to the intended "instructional time”, the more probable the learner processed the content as
intended.

The processing time factor 3 indicates how long the learners studied items. It is 0 when the
learners spend more or exactly the intended time timelntended; and it is between 0 and 1 if the
spend time timeNeeded,, ;; of user u on item ¢ at time ¢ is less time than defined in the metadata.

1 — timeNeededy iy , if timeNeeded,, ; ; < timelntended,;

timelntended;

(8.6)

TSCOT€y 4 t 23 = .
, if timeNeeded,, ; + > timelntended;

The formula requires that the instructional time timelntended; is not 0. Figure 8.3 visualizes

the range of relevance values for rscore, i ¢ 3.

rscore

timeNeeded=0 timeNeeded=timelntended

TimeNeededForLearning

Figure 8.3.: Smart Learning Recommender: Range of relevance values for processing time.

In an initial phase, the processing time is penalized when learners spend more than the intended
time for studying — as presented in Appendix B.49. However, feedback of learners led to an
adjustment of the formula that better represents the users’ expectations.

This factor does not take the personal learning speed into account, as one learner might have a
slow and another learner might have a fast speed of comprehension. However, as the individual
learning speed might be relatively constant compared to the intended instructional time, the factor

values still give a good indication which items require more time of engagement of the same user.

8.3.4. Performance in Exercises

The latter three factors indicate how much users think they know (in terms of self-assessments)
or how much they interacted with the items. However, these factors do not yield information

regarding the level of comprehension of the studied topics presented through the items.
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Therefore, researchers note the importance of analyzing exercise performance [208, 204, 16]. The
Smart Learning project offers different types of Q71T exercises. First and foremost, multiple-choice
tests (with only one correct answer each) are offered in the AWT course where learners need
to answer questions regarding previously learned topics. Independently from the actual type of
exercise, the results are stored as a value between 0 and 1. Thereby, the learning need given
with the exercise factor x4 is the inverse of the determined knowledge in the exercises. Thus, the
percentage of wrongly answered questions wrongAnswered@,,;: represents the relevance of the

exercise factor:
right AnsweredQ, i +

(8.7)

TSCOT €y t.od = -
allQuestions;

wrongAnsweredQ . i,
allQuestions;

Equation (8.7) is the same as . Questions that are skipped will be treated as
having wrong answers, so that the relevance score is only 0, when a student correctly answered all

questions. Figure 8.4 presents the value range of rscorey ; ¢ 4.

rscore
cooo

rightAnswers=0 rightAnswers=allAnswers

Answers

Figure 8.4.: Smart Learning Recommender: Range of relevance values for exercises.

If there is no question in an LO, this factor is not considered for the overall learning need
weighting. If more than one Q7T assessment is presented in a Learning Object, the relevance
scores are averaged. Moreover, the resulting relevance scores on the Learning Object level are
transferred to the parent Learning Unit also. Thereby, the relevance scores of all lower-level items
are averaged. This allows the user’s comprehension to be observed (in terms of exercise results)

even for higher item levels.

8.3.5. Fulfilled Prerequisites

Besides the activity information collected through direct interactions with learning items, also
instructional metadata play crucial roles for the SLR. Besides their hierarchical structure, contents
often show a didactic structure that is given with the prerequisite setting in the LOM specification.
Transferred to the concept of the learning need value, an item is more relevant at time ¢ when all
prerequisite items have been studied. Therefore, this factor relies on the interaction factors of the

prerequisite items.

The more a student accessed (according to factor 22) the underlying learning objects, the higher
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the relevance score of the subsequent items for the prerequisites factor x5 is:

fulfilledPreRequisites,, ; ¢

allPreRequisites; (88)

TSCOTCy i t 05 =

In case there is no prerequisite for a learning object, the relevance score is 1. Figure 8.5 presents

the value range of factor x5.

rscore
el=t=I=]

fulfilledPreRequisites=0 prerequisites=allPrerequisites

Pre-requisites

Figure 8.5.: Smart Learning Recommender: Range of relevance values for fulfilled prerequisites.

This factor has a similar meaning as a didactic learning path — presented in the previous chapter.
However, a path is not directly presented to the learner but rather plays a role in the calculation

of recommendations.

8.3.6. Lecture times

While the prerequisites factor supports the Self-Regulated Learning skills of learners independently
from the given lectures, the actual course schedule may also play a role in the relevance of items.
Learners should prepare and wrap-up the presented materials to reach the course goals efficiently.

Thereby, the lecture times factor x6 indicates the timely relevance of an item for face-to-face
lectures. The closer the lecture at time timeO f Lecture; where item i is presented, the higher is

the resulting relevance score:

timeO f Lecture; — t) 2

8.9
courseDuration (8.9)

TSCOT€Cy i t.u6 = 1 — (prepPhaseFactor *

1
0,8
0,6
0,4
0,2

0

t=timeOflLecture-prepPhase t=timeOflLecture t=timeOflLecture+prepPhase
Timely relevance

rscore

Figure 8.6.: Smart Learning Recommender: Range of relevance values for lecture times.

Figure 8.6 shows the range of the relevance scores of factor 6. The courseDuration (time of the
course ending minus time of the course start) must be higher than 0, and the timeO f Lecture must
be within the courseDuration. The prepPhaseFactor must be defined by the experts and relates

to the duration of both the preparation as well as the wrap-up phase of a lecture, where the contents
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courseDuration

concerned are more relevant (prepPhase = prepPhascFactor

). For instance, for prepPhaseFactor =
1 the preparation phase is exactly the course duration, for prepPhaseFactor = 2 it is half the
course duration, for prepPhaseFactor = 4 the preparation phase is one quarter of the course
duration and so on. The higher the number is, the later is the start of the preparation phase and,
thus, the later this item is recommended.

For the AWT course, the prepPhaseFactor is set to 2 and thus shows long preparation and
wrap-up phases. This is done in order to recommend lecture materials right from the course start
and to better compensate for the cold start problem. Contents are manually allocated to specific
lectures by educational staff. The learner can access the list of concerned items presented in each
lecture via the course schedule in LCA.

In case the current time ¢ does not fall into either the preparation or wrap-up phase, the relevance
score is set to 0. When an item is presented in two different lectures, the lecture that is closer to

the particular point in time defines the resulting learning need.

8.3.7. Item Relevance for the Course Goal

A parameter that may play an important role in goal-oriented learning is the defined importance
of learning that item, which can be adjusted by the educational staff. For instance, for courses
with an exam at the end, not all topics are equally relevant. Items that are more relevant for
exams show a higher relevance score rscore, ; : »7 for the goal relevance factor 7 than optional
contents — expressed by a constant value defined in the learning object metadata.

The score should allow for a differentiation of the importance of different items. If all items show
the same increasing relevance, their relative importance is still equal. That is why this factor can
be given as a simple constant between 0 and 1 instead of a linear or more complex expression.
With the constant value, the higher the value is, the more important is the item for reaching the

course goal.

8.3.8. Collaborative Learning Need

Besides the collected personal behavioral data and information provided by educational staff,
the interactions of other learners allow for an indication of the item’s relevance. For example, the
greater is the need for classmates to learn a specific item, the more probable is it that the actual
user needs to learn the same item, which is a conventional approach in Collaborative Filtering and
should also be taken into account as a contextual factor x8.

The relevance functions of similar users on this Learning Object are taken into account in order
to offset underestimations and bad planning for the current user. In an initial phase, the mean

average learning need of all other students (but without their collaborative learning need to avoid
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recursion loops) for this Learning Object represent this factor.

S f (1)

TSCOT€y 4 t,08 = T,

(8.10)

where Y is the set of all users of the class without the current user u and |Y| is its cardinality.
rf,.:(t) is the learning need value of a relevant factors (without x8) for the same item i at time ¢.

The idea is that the user also receives recommendations based on the determined learning need
of other learners which cannot directly be provided or adjusted by the user. For instance, students
might believe that they have expert knowledge in a specific area and thus skip the related items.
However, when other students detect some learning issues that result in a higher learning need —

e.g., an exercise question might be hard to solve — the actual user also gets a recommendation

based on the learning weakness of the others.

8.3.9. Human Memory and Forgetting Effect

The most sophisticated factor in the Smart Learning Recommender is the model of forgetting
135 Ebbinghaus started in the late 19th century with the first experiments to model forgetting
within the field of experimental psychology [98].

Based on the findings of other researchers [98, 140, 23, 254] the Smart Learning Recommender
also incorporates the process of forgetting. Therefore, the parameters that influence the knowledge
acquisition and preservation are analyzed. A literature review as well as an initial experiment
resulted in multiple critical parameters that affect forgetting (apart from time): The type of
medium, its difficulty level, prior knowledge of the learner, the learner’s interest in the topic,
personal memory strength, the time and extent of learning repetitions and even knowledge recall
for retention tests. Appendix B.50 introduces these considerations and the experiment that led to
the model. The relevance score of the forgetting factor x9 is restricted to the range [0,1]. Thereby,
the e-function shows the most similar progress of the determined forgetting of the participants in
the survey:

rSCOTCy it 0o =1 — e—(timeFactm’(t)—E,‘ep—ETet-i-Em-&-Ed) +a. (8.11)

Formula 8.11 includes two main parameters: an e-function (with respect to learning times
timeF actor(t) and media metadata, Eyep, Eret, En, and Ey) as well as a personalized parameter
« that adapts the individual forgetting process to the learner. While « has only been considered

in theory, the set of other parameters was analyzed with real participants in a small experiment.

135The experiments on transferring existing forgetting models to the area of educational digital media was part
of the master thesis of Rakesh Chandru with the title ”Oblivion in Recommender Systems — The forgetting
effect in predictions”. Christopher Krauss supervised the thesis. Rakesh Chandru worked as a student employee
at the Smart Learning project led by Christopher Krauss. Rakesh Chandru implemented the algorithm and
conducted the experiments on forgetting with real people.
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The timeF actor represents the forgetting by only taking the time dimension into account:

timeFactor(t) = (8.12)

t—1t; courseDuration
k
courseDuration

durationO f Forgetting

The value t — t; corresponds to the difference between current time ¢ and the first access time of
the learning content ¢;. The courseDuration (time of the course ending minus time of the course
start) must be higher than 0. The duration of forgetting durationO f Forgetting represents the
period in which the content has been totally forgotten (if no other parameter affects it) and is set
in an initial version to courseDuration/2. This means that during a semester, students forget
an item’s content after about half of the course period. This value must be adjusted by experts.

Where learners did not access an item, the forgetting relevance score is set to 1.

=1
b= Ln

Forgetting
o]

[=]
[5)

12345678 9101112131415161718192021222324252627 282930

Days
——\ide0 e T et-E 2y
e T ¢t~ Haird T et~ E 2y~ Retention] every 10 days)

. T i - Eagy-Repetition| every 14 daysi

Figure 8.7.: Examples of the mathematical model for predicted forgetting of different media types
and with retention tests and repetitions on a 0 to 1 scale; figure by Rakesh Chandru.

E,¢p is the repetition effect which is affected by another item access, E,¢; is the retention test
effect affected by answering related exercises, F,, is the media type effect and F; represents the
difficulty level. All parameters, Eyep, Eret, Em and Eq, are in the range of [0,1], where a higher
value accelerates the forgetting progress and a lower value decelerates it. The details on the
parameters are important for the understanding of the forgetting formula and are presented in

Appendix B.51 for the sake of clarity.

Figure 8.7 shows example curves for the forgetting factor under different settings of parameters
but without the inclusion of a personalization parameter. The chart visualizes the findings of an

experiment that resulted in the forgetting model introduced in this work.
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8.4. Detection of Appropriate Time-dependent Weights

In order to evaluate the ideal weights for different factors that will lead to the most appropriate
recommendations, different methods are analyzed. The first one is a naive approach, where every

factor is given equal weight and thus has an equal effect on the overall learning need.

8.4.1. Analysis of Individual Context Factors

To analyze this approach, the effect of each factor is determined independently. All approaches
are based on Evaluation Setting 2 (see Appendix B.40) — with the major difference that all available
activity statements on Learning Units are incorporated. Figure 8.8 shows the results for the Smart
Learning Recommender on the AWT dataset, where only one factor is considered as relevant per
iteration. This means, for instance, that the "ProcessingTime” progress visualizes precision and
timeliness for the Top-N items that show the highest values of the "ProcessingTime” factor. In
other words: only those items are presented to the learner that have been consumed least by
this user. The recommendation list based just on the ”"ForgettingEffect” contains only items that
might have been forgotten and the list based just on the "Lectures” factor presents only items
that are most relevant for the preparation or wrap-up of lectures. The ”OverallLearningNeed”
analysis displays additionally the results for a Top-N list that are based on the average, equally
weighted, values of all factors.

Precision Timeliness
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0,6 70000
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50000
0,4
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0,3
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0,2
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0 0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
—ProcessingTime —SelfAssessments Exercises —ProcessingTime —SelfAssessments Exercises
Interactions —Lectures —ExamRelevance Interactions —Lectures —ExamRelevance
—~ForgettingEffect —CollaborativelLN —OverallLearningNeed —rForgettingEffect —CollaborativeLN —OverallLearningNeed

Figure 8.8.: Precision in percent (left) and timeliness in minutes (right) of the SLR (only Top-3
recommendations) approach with equal weights.

Except for the forgetting factor and the lecture factor, all other factors show similar results for
precision and timeliness, with the interaction factor showing the worst values and the collaborative
factor the best. All of these factors start at a precision of 0.46 and end with a precision of about

0.23 to 0.27 (which is very low). The progress of the lecture factor draws a diverging picture with
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scattered precision values: little in week 4, 7, 8, 11 as well as week 12 and comparably high in all
other weeks. This might be due to the five different teachers who held the 12 face-to-face meetings.
The forgetting factor is especially interesting as it shows a distinct progress and ranges for the
longest time between 0.50 and 0.60 and then drops off to 0.36 at the end of the course. Also,
regarding timeliness, the forgetting factor leads to the most appropriate recommendations!36.

The red line in Figure 8.8 presents the results of the overall learning need that is the average of
all considered factors. This means that the weight w, according to Equation 8.3 for all factors
is set to 1. The overall learning need is dramatically influenced by the lecture factor, as this is
the only factor that comprises data for every item right from the beginning. The influence of the
lecture factor on the overall learning need, however, lessens in the final period (starting in week
12), when the final lecture has been given. The period after this lecture requires Self-Regulated
Learning skill from the users in order to prepare for the final test. The precision of this approach
is very scattered and lies between 0.18 and 0.55. Thereby, the total average precision over the
entire course period is only 0.359.

In a second attempt, the factors were adjusted as follows: all default and approximated values
for the factor’s relevance scores are removed when there is no real feedback from the user. For
example, in the first attempt, the interaction factor showed a relevance score of one until the
item was accessed for the first time by the user and then slowly decreased by the percentage of
consumed sub-items. In the second attempt, the interaction factor was neglected in the averaging
process until the item was accessed for the first time and then slowly decreased, starting with
a value of one. Also, the forgetting factor was ignored until the user processed the related item
for the first time and the exercise factor was neglected until the users started answering exercise
questions instead of having a relevance of one right from the beginning of the course. Only the
lecture time and exam relevance factors which are independent of a personal feedback are available
to the whole time.

One could argue that this reduces the number of items which might be presented in the Top-N
list. Indeed, only those factors are considered which have feedback from the actual user. However,
the lecture time factor is present at every point which allows for the recommendation of every
item with or without feedback from the user. As long as the user has not opened any topic, item
recommendations follow the course schedule implicitly due to the lecture time factor. Figure 8.9

displays a cold start phase where some factors, such as interactions or exercises are missing in the

beginning of the course, but it then shows an improvement of the precision of almost all factors.

Moreover, the equal weighted learning need is also somewhat more stable and shows a precision of

between 0.30 and 0.60 with 0.478 on average.

136 The reason why the timeliness value of the forgetting effect exceeds the maximum of 10,080 minutes in week 16
can be explained by the fact that some users used the Learning Companion Application even after the course
had ended. One learner, for instance, resat an exam about two months after the first test and prepared with
Learning Companion Application for the second test, which influenced the timeliness.

Equal
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Precision Timeliness
1 70000

60000
0,8 \/F},"Q__\

\ 50000
06 \ 40000

0,5

04 30000 <\,

03 20000 /

0,2

10000

0,1

0 0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
—ProcessingTime —SelfAssessments Exercises —ProcessingTime —SelfAssessments Exercises
Interactions —Lectures —ExamRelevance Interactions —Lectures —ExamRelevance
—ForgettingEffect —CollaborativeLN —OverallLearningNeed —ForgettingEffect —CollaborativeLN —OverallLearningNeed

Figure 8.9.: Precision (left) and timeliness (right) of the SLR (only Top-3 recommendations)
approach for factors with user feedback only.

Unfortunately, the timeliness factor draws a less distinct picture. The cleaned Mean Absolute
Timeliness Deviation depend heavily on the type of the factor and are much more scattered:
sometimes the factors are better, for instance for interactions, and sometimes worse, for example
for exercises, compared to the previous attempt. As the precision measure plays a more critical
role than the timeliness, it should obtain a higher focus on optimization. This is why the further
analysis relies on this second approach.

In a first attempt to determine appropriate time-weights, the factor’s precision values per week
(given in Figure 8.9) are utilized as weight for the same factor. The intuitive approach is that
factors with a higher precision of their individual Top-N lists have more influence on the total
recommendations process. Additionally, a power 3 is given to the weights to maximize its effect.

Based on the precision prec,, the weight w, for factor = is calculated as:

w, = (precg)”. (8.13)

The most precise results are reached with a power g = 10. However, the average resulting
precision is only 0.461 and is thus below the precision of equal weights of 0.478 (as presented

before).

8.4.2. Determining appropriate Time Weights with Linear Models

In a second phase, particular factor weights are determined that lead to an improvement of, first
and foremost, the precision and, secondary, the timeliness. Therefore, only activity data of the
training set are processed. These are the z items that user u accessed in the training set Tr. The
training and test set splitting follows the increasing time-window specification of Campos et al.
[57]. Adjustments to the weighting model are evaluated according to Evaluation Setting 2.

To determine precise weights for the SLR model, all historic items’ relevance scores of user u are
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analyzed. The idea is to allocate a higher weight to those factors that help to differentiate the last
accessed items from the rest. In other words: The most important factors of last accessed items
should receive higher weights as they should play more significant roles for recommendations in
the current situation.

A weight is determined for each factor x, user u and time of recommendation ¢ separately.
However, for the evaluation, the factor weights are averaged over all users to obtain a user-
independent weight w, ;. The most precise model is called the "normalized average factor

deviation” approach and is presented in the following formula37:

Zle (decaytiyt * Arscoreuﬁi,t,zﬂ * rscore())

w =
ot 3 i1 (decayy, 1)

(8.14)

The z items of the training set are processed. The calculated weight w, . ; consists of three
major parts: a decay effect decayy, ., a deviation from the average score Arscore, ;;, and a
parameter rscoreg for normalizing the score. The decay effect decayy, ; penalizes older activity
data and prefers younger information. It is given as:

decayy, 1 = M (8.15)

' Lpirst — 1

The decay effect is important because the relevance values change over time according to the

special educational Recommender System paradigm. Thus, the decay value is higher, the younger

the relevance scores at time t;. For instance for the interaction factor, the closer the last item

access is to the current point in time ¢, the more relevant is this data point for the calculation.

tfirst is the first date on which an item access is considered for the weighting (e.g., the course
start).

Arscorey, it o is the deviation of a particular factor value rscore, ; +, from the average value
@rscore, . Thereby, @rscore, ; , is the average relevance score of all items depending on the

user, the time and the factor. Arscore, ;+ is expressed as:

TSCOT €y i t,.x — DTSCOTCY t & if TSCOTCy i t.x > DTSCOTECy t 1
Arscorey itz = .

38,1,

(8.16)
0 , if rscoreyit. < Drscorey i

Only positive values for the deviation are allowed in order to focus on only positive effects of the
Arscore, ; ;. 1f the values were below 0, the consideration of this item would allow for negative
factor weights.

The value S adjusts the power of the relevance value rscore, ;.. This means the higher 3, the

more scattered are the single factor weights. High factor values have an even higher impact (with

137The history of different experiments to determine the most precise weights for the model is presented in Appendix
B.52.
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a high value of 3) and low factor values have a lesser effect.

rscoreg normalizes the weight values according to the average. As a result, a relative average
deviation is calculated instead of an absolute one. By doing this, a factor that normally shows
lower average values has a similar influence on the overall recommendation process as the other

factors, and the effect of factors with high values and just small deviations is alleviated.

1

rscoreg = —————.
arscorey

(8.17)

If, in an unrealistic case, the average factor value @rscore,,  , is zero (which would mean that

the factor values of all items indicate that the topic does not have to be learned at all), rscoreq is

set to 1.
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Figure 8.10.: Evaluation of the accuracy of SLR through the weight detection with a linear model;
left: average precision; right: Timeliness values for averaged M AT D jeqneq given in
minutes.

Figure 8.10 presents the improvements of the linear model compared to the original equal
weighted model. The "normalized average factor deviation” reached an average precision of 0.583
and, thus, is about 10.5% more precise than the equal weighted model. The timeliness, in turn,
is almost equal and improves by only about 8 hours on average (from 21,100 minutes to 20,607

minutes).

8.4.3. Determining appropriate Time Weights with Artificial Neural

Networks

Finally, the determination of time weights is additionally realized with the help of a totally
different approach: by utilizing an Artificial Neural Network (ANN). Therefore, RapidMiner!3® is

138 RapidMiner. See: https://rapidminer.com/ (Accessed: 03.11.2017).
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applied with a convolutional neural network!'3? that contains just one hidden layer. A separate
model is trained for each week split ¢ and the evaluation setting still follows the definition given in

the Appendix B.40 with activities on Learning Units in the AWT course.

One input vector represents a user—item-time triplet. Figure 8.11 presents the inner composition
of a single node k (a neuron of the ANN). An ANN consists of one or more hidden layers — each
layer, in turn, contains a set of nodes. An input vector comprises n + 1 input features which are
the n factor relevance values of the SLR (per user, item and time). Additionally, the first input
value per node is set to a value of one, which makes it a node-specific bias. The node’s output oy
is the predicted value (e.g., the overall learning need) for the user—item—time triplet. The training
values for the output are 1 if this item 7 has been accessed by the user u in the last week before

the split ¢ and 0 if not.

Inputs Weights Transfer Activation Output

Function Function
rscore, ;g ———> @
rscoreu’iltlxz @ Z =@ ” 0k

rscore iz — @
rscore, it xn —>

Figure 8.11.: Composition of a single node k in an ANN that is trained with the factor’s relevance
values as input.

The node’s output is calculated as:

n

Ok = @((Z TSCOT€y itz * MWy k) + bk). (8.18)

r=1

In contrast to the actual intention of an Artificial Neural Network, where the predicted output

values oy are of interest, the approach in this work targets the determined weights of the trained
—

nodes. Thereby, each of the nodes contains a weight vector NW . This weight vector has the same

number n + 1 of dimensions as the ANN has as input features (where the first weight represents

139RapidMiner Neural Nets. See https://docs.rapidminer.com/studio/operators/modeling/predictive/
neural_nets/neural_net.html (Accessed: 03.11.2017).
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—
the bias bg). Thus, each weight vector NW, contains the following values:

by,
NWge1,k

NWg2 k

3
Il

(8.19)
NWg3,k

NWgn, k

The activation function ¢ is a sigmoid function which is common for ANNs that aim at solving

linear problems.

1

1+em (8.20)

p(m)

Since only one hidden layer is utilized, each factor-specific input feature (rscoreq it q1, -,
TSCOT€y i t.on) is directly related to a weight of node k (nwg1 , ..., NWyn k). The fact that the
node’s weights would lose a direct relation to the factor-specific input scores results in the necessity
to utilize only a first hidden layer. As a consequence, the weights fit the requirements of the SLR
weighting formula presented in Formula 8.3. If the hidden layer contains more than one node, the
weights per factor x are averaged according to the node’s bias by which results in a final weight

w, of factor x:

_ Zkl,(zl NWy i, * by,
Zszl b,

K is the number of all nodes in the hidden layer. The determined weight w, for each factor is

(8.21)

Wy

subsequently applied to the factor weight algorithm of the Smart Learning Recommender given in
Formula 8.3. The rest of the evaluation has been conducted as known from Evaluation Setting 2.

Figure 8.12 shows the different precision and timeliness results for varying numbers of nodes
in the hidden layer. With a sample of 50 nodes, the ANN reaches the highest average precision
values of 0.587 and, thus, is 0.4% higher than the precision of the linear model presented before'4°.
The resulting cleaned MATD, in turn, is slightly worse with 20,811 minutes (compared to the

20,607 minutes of the linear model).

8.5. Analysis of the Smart Learning Recommender

This last section of the chapter analyzes the introduced Smart Learning Recommender algorithm.

Figure 8.13 shows the average calculation time for offline data preprocessing and the online

140 Ap attempt to directly predict the learning need value instead of determining time weights as an intermediate
value results in an average precision of only 0.354. The ANN uses the same kind of input values, with two
hidden layers and 50 nodes.
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Figure 8.12.: Weight detection through Artificial Neural Networks with one hidden layer and
different numbers of nodes; left: average precision; right: Timeliness values for
averaged M AT D jcaneq given in minutes.

recommendation step. The preprocessing step is performed at regular intervals and is optimized
to take about half a minute at maximum. One of the cost-intensive tasks is to convert the original
xA PI statements into a proprietary format of the Smart Learning Recommender optimized to allow
fast online recommendations for the user in the demanded situation. These online recommendations
are retrieved on average faster than 25 milliseconds per request for the Advanced Web Technologies

course and thus can compete with the performance of the learning path algorithm.

Offline Preprocessing Time Online Recommendation Retrieval Time
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Figure 8.13.: Average calculation time in milliseconds for offline preprocessing (left) and online
recommendation retrieval (right).

For a cross course comparison, the Smart Learning Recommender algorithm (utilizing the

"normalized average factor deviation”) has been applied to all three courses: the Advanced

1

Web Technologies lecture, the JavaFX online course'*! and the blended learning course of the

Energy-Consultant Training!4?. Figure 8.14 visualizes the precision results. As can be seen, the

141The Smart Learning Recommender applied to the JavaFX course is evaluated according to the evaluation setting
in Appendix B.41.
142The evaluation setting of the Energy-Consultant Training is presented in Appendix B.42.
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incorporation of activities on Learning Units results in more precise recommendations compared
to those on Learning Objects. After a cold-start phase, each of the two courses with face-to-face
meetings (the AWT and the Energy-Consultant Training) reach almost similar precision values
for LUs and LOs. The precision values of the JavaFX experiments on LUs and LOs, in turn, are
more scattered. This might be due to the fact that only three Learning Units are presented which
comprise a high number of up to 30 Learning Objects per LU, while there are much more LUs in
the other two courses which comprise less LOs (10 to 15 on average). At all, the precision values
on Learning Units are much higher for the Energy-Consultant Training (0.815) and for JavaFX
(0.818) than for AWT (0.583). This confirms the findings of Verbert et al. [269] that the precision
results of educational Recommender Systems highly depend on the dataset selection and, thus,

implicitly on the the course setting and the course participants.
Precision (AWT) Precision (GEB) Precision (JavaFX)
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Figure 8.14.: Comparison of the precision for Learning Units and Learning Objects reached in the
three courses: AWT (left), Energy-Consultant Training (middle) and JavaFX (right).
For the sake of comparability, the time presented on the x-axis is given in percent of
the course progress instead of course weeks.

Similar to the Collaborative Filtering analysis, the reasons for the low precision results of the
AWT course are analyzed for the SLR approach. While the Smart Learning Recommender also
takes repetitions (with the forgetting factor) into account, this strategy seems to heavily rely on
a minimum set of user information. Indeed, the lecture factor allows for recommending items
without any individually tailored Top-N list. The precision cannot go beyond the lecture precision
without any user activity data. Based on the findings of the learning pattern analysis (Section 5.3),
only the 26 users of the "Completing” cluster are taken into account in an additional experiment.
Finally, another experiment with just the one third (33) most active users in AWT has been
conducted. Those are the users who interacted at least 106 times with AWT Learning Units —

remember: the course offered 106 unique Learning Units in total.

Figure 8.15 shows an enormous improvement of the precision achieved when only considering

particular students. Thereby, more precise recommendations have been calculated using only the
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Figure 8.15.: Precision of the optimized Smart Learning Recommender approach for all students,
only learners of the completer cluster and the most active users.

most active learners, and not — as initially expected — with the most successful learners of the
completing cluster. The "normalized average factor deviation” algorithm reaches a precision of
0.800 on average (compared to the previous value of 0.583 with all students). Of course, this is
only an artificial setting, because the SLR cannot forecast the most active users at an early point
in time and, more importantly, the Recommender System should provide recommendations for all
users — not only for the most active or most successful users. However, this indicates the potential
of the algorithm, as the Smart Learning Recommender aims at recommending items for all users
based on favorable patterns. These patterns might be, for instance, the activity patterns of the
most active users.

In the context of all evaluated Recommender Systems, the Smart Learning Recommender
performs best on average regarding precision. Figure 8.16 visualizes the precision and timeliness
of all evaluated approaches — each given in the best setting for the Top-3 recommendations for
the AWT course. As seen on the precision chart, on a weekly basis, the SLR (red line) is more

scattered than the Learning Path algorithm that shows a worse but more stable trend. Regarding

timeliness, the Learning Path algorithm still outperforms the Smart Learning Recommender.

However, the Smart Learning Recommender also shows low timeliness values that are the second
best on average.

For practical reasons, the two most promising approaches will be integrated into the Learning
Companion Application in conjunction'#3: The learning path visualization gives a good overview
of already studied items and the thematic opportunities the learner has to explore next. The

possibilities are visualized as branches and thus do not need any further explanation. However,

M3Note that the original Learning Companion Application that was used for the data collection only offered
recommendations of the Smart Learning Recommender.
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Figure 8.16.: Comparison of the evaluated approaches including the Smart Learning Recommender
(each given in the best setting); left: average precision; right: Timeliness values for
averaged M AT D jcaneq given in minutes.

the learning path algorithm shows some weaknesses. Especially for Self-Regulated Learning when
users follow individual approaches to knowledge acquisition and even skip some topics, learning
paths are likely to fail or at least recommend omitted items repeatedly. To compensate for
these weaknesses, the LCA additionally presents the more precise recommendations of the Smart
Learning Recommender. It not only gives precise hints for learning. It, moreover, allows for
detailed insights into the learning progress to be gained in different categories (presented as factors)
and, finally, also offers recommendations for those particular categories. With SLR, learners can
individually decide what aspect they want to focus on next — such as forgotten content, items
with weak exercise results or even topics that are part of the next face-to-face-lecture.

This chapter introduced a distinct approach for recommending course materials through the
incorporation of multi-context attributes, called factors, and time weights that credit the time
dependency of a course. Based on the findings of the evaluations, the next chapter discusses the

presented hypotheses.
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9. Discussion of the Hypotheses

The defined scientific hypotheses follow common formal rules applied to scientific works
[28, 265, 44]. This chapter lists all of the previously stated hypotheses (in reverse order of
the chapters) and discusses their validity based on the conducted experiments, evaluations and

theoretical considerations.

0.1. Evaluation Framework

Scientific Hypothesis /SH5.0/: An educational Recommender System for closed-corpus
recommendations may be evaluated by following a specialized evaluation framework
in order to produce relevant results. If a traditional evaluation procedure is applied
that comprises, e.g., an n-fold cross-validation, its results would not reflect the
time-dependent conditions of a closed course. Thus, in order to produce relevant
results, a specialized evaluation framework for Recommender Systems that aims at
predicting course items may utilize a time-dependent cross-validation procedure and
may measure the qualitative composition of Top-IN lists as well as the timeliness of

its recommendations.

Evaluation results are only comparable when applying the same methodological framework
to all objects of investigations. This is also reflected by the work of Said and Bellogin, who
identified discrepancies in the determined measures due to the following evaluation dimensions:
dataset, data splitting, evaluation strategy and metrics [228, p. 129]. Each of the four evaluation
dimensions can be seen as a variable, where only one variable is allowed to be changed within a
reliable evaluation setting.

When, for example, the analyzed datasets are collected in a different educational context with
other context features than the AWT dataset, an evaluation must apply the same data splitting
approach, the same evaluation strategies (in terms of algorithms) and the same measures in order
to produce reliable results. Moreover, the overall recommendation goal of the algorithms must be
explained. For instance, how does a forecast of a future item’s rating support learners in their
learning process? As the AWT data do not comprise rating data, it should not be compared to
other datasets based on ratings.

The findings of Verbert et al. [269, p. 16] indicate that the measurements of Recommender
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Systems are highly dependent on the dataset. They measured the Fl-score for Top-10 recom-
mendations based on the Tanimoto-Jaccard Coefficient [261] for 4 different datasets (3 TEL
datasets and the MovieLens dataset). The authors state F1-score values which range, depending
on the number of considered users, between about 0.05 up to almost 0.3. In this work, the
Top-10 recommendations through the learning paths algorithm reach a Fl-score of 0.27 (for the
Top-15 even 0.34) and for the optimized TBRA approach a Fl-score of 0.20 (for Top-30 even
0.39). However, this comparison shows the weaknesses of the common evaluation settings that are

presented in the following.

The datasets differ in their application area, service origin, quantity and density — which
massively impact the measurements, as also noticed by Verbert et al. [269]. Therefore, it is
important to evaluate RSs based on common data — which leads to a high demand for open

educational, academic datasets.

The algorithms and feature selections of Verbert’s approach and the analysis in this work
differ significantly. However, evaluations should have at least the same goal when they are
compared: While Verbert et al. want to prove the appropriateness of the analyzed datasets [269],
the evaluation in this work analyzes the appropriateness of different RS algorithms for the same
dataset. As both evaluations do not have consistency between the evaluation setting regarding

algorithm selection and data, the results are not comparable.

While the standard cross-validation setting typically produces reliable results, it does not work
within a course setting, where, for instance, every item is relevant (e.g., because all items must be
learned to pass the final exam). If every item would be relevant, the cross-validation would produce
precision results of 100% every time, because no matter what is recommended, it is automatically
relevant. That is why, it is important to carefully define the set of relevant items — in this case, it
is the set of all items that have been accessed after the point in time of the recommendation (item
accesses in the test set). Thus, results of a traditional evaluation procedure for the analysis of

course item recommendations are not comparable with the results introduced in this work.

The most cross-validation settings are an n-fold cross-validation as known from regular eval-
uations of Recommender Systems [117, 269, 33]. This evaluation is usually time independent.
The observation of measures over time, however, is relevant, as at different points in time the
algorithms produce varying results. A random split might select data that produce excessively
good or bad results for particular approaches. Those temporal effects are disregarded due to the

averaging over time.

The validation procedure in this work is an "increasing time-window” cross-validation that better
represents real-life conditions because it splits the data according to the time sequence of the
collected data [57]. Usually, this manner of splitting gives worse results for precision. However,

it better represents the real-world conditions of courses. For instance, the cold start phase is
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not considered by a time-independent n-fold splitting where user—item activity is always selected
randomly from the whole period of the available data. During the evaluation, different course

phases have been determined that influence the precision:

1. Cold Start Phase: At the beginning of a course, the algorithms show low precision as they
lack the important user feedback.

2. Guided Learning Period: Within the period of the lectures, when teachers present the
actual course materials in face-to-face meetings, or when online educators request assessment
submissions at regular intervals, the didactic structure gives a good clue which items are
of interest. Algorithms that incorporate the didactic dependencies of items (e.g., the
prerequisites or the course schedule — such as the learning path algorithm or the Smart
Learning Recommender) show higher precision values than the those that rely exclusively on
Collaborative Filtering.

3. Holidays and Breaks: When there are no face-to-face meetings, learners are required to learn
on their own. In this phase, approaches that rely on content metadata and schedules show
lower precision values and especially lower timeliness values (as shown by the lecture factor
of the Smart Learning Recommender).

4. Learning Phase: In courses that end with a final assessment, learners usually increase their
learning activities in the last phase before this assessment. These phases produce a massive
amount of diverse activity data which result in a reduction of the precision for all evaluated
algorithms.

5. After Course Phase: Finally, learners sometimes access the course contents again after the
course has ended but with a different goal than to pass the final assessment. Thus, when a
course is still accessible after the course ending, the Recommender System must treat this

phase separately — which is outside of the scope for this work.

The analyzed courses indicate also a high time dependency when analyzing the different course
weeks separately. Therefore, a Recommender System for course items should be evaluated with a
time-dependent evaluation framework.

Error and deviation measurements rely on the numerical range of the feedback data. The
predicted relevance scores often use the same format, which might differ even for the same
application area. While some approaches try to predict preferences based on ratings (as the
original Slope One algorithm does), the introduced educational algorithms aim at predicting
the relevance of learning particular items — which is referred to as learning need. Thus, error
and deviation measures, such as RMSE and MAFE, are not necessarily comparable for different
algorithms. However, precision, recall and F1-score indicate the quality of the Top-N composition
independently of the underlying relevance scores. Thus, the precision value is preferred in order

to produce comparable results.
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Since, especially for settings with a little number of N items in the Top-N list, the recall value
is comparatively low, it has a huge effect on the Fl-score. This effect is demonstrated with the
learning path evaluation. To some extent, the greater the number of items are presented in the
Top-N list, the higher the recall value and the higher the resulting F1-score. Thus, analyses of
recall values in different Top-N settings would lead to a result that it is better to present more
items to the user as higher recall values are reached. However, a very large number of presented
recommendations offered at a single glance is counterproductive to the main aim of a Recommender
System. When the user is overwhelmed by the number of recommendations, the learner’s item
selection process is not supported at all. In the case of a closed-corpus Recommender System, the
recall value can be neglected when the learner should learn all relevant items. Thus, it is not
important to indicate how many of the relevant items are presented in the Top-N list (recall), but

how many presented items are relevant (precision).

Precision, recall and F-measures do not yield information about the timely relevance of the
recommendations. Although relevant items are in the test set, they might only become relevant at
the end of a course. The introduced timeliness measure, Mean Absolute Timeliness Deviation,
takes this point into account and indicates an average time deviation which can be stated as
an absolute value (in order to classify the results as in the cleaned MATD) or as a normalized
value presenting the timeliness in relation to the possible time range (as done via the normalized
MATD). In contrast to precision and recall, the timeliness measure must be as low as possible.
However, it works only in conjunction with the precision value, as all non-relevant (or not-accessed)
recommendations are not covered by the MATD measure. Thus, its main aim is to support the

differentiation between algorithms when they show similar precision results.

The evaluation framework of Campos et al. [57] also has some drawbacks — especially when
the timespan of the dataset is small. For closed-corpus courses, an increasing time-window cross-
validation can only be applied in the time between course start and course end. Thereby, the first
and the last threshold splits are likely to show worse results compared to the rest. This is an effect
of the small dataset sizes: In the case of the conducted courses, the first split (week 1 for training
and the rest for testing) does not allow for an adequate training of the algorithms. Moreover, the
last split (all but the last week for training and just the last week for testing) does not allow the
recommendations to be tested in the same way as done before. The test set comprises a much
smaller dataset than the training set and thus it is challenging to identify items for this week.
In turn, and as shown, e.g., by the Slope One evaluation, the recall value increases, and in the
end indicates the same effect, because there are fewer items in the test set that have a higher
probability of being part of the Top-N list. However, the conducted experiments show that the
number of activities increases in the final few weeks of a course (especially for courses with final

assessments). This lessens the effect at the end. Moreover, the two presented limitations represent
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precisely the conditions of a real course where a Recommender System does not have very much
data at the beginning and where it must recommend very focused items at the end.

These findings will encourage researchers to follow a special formal evaluation framework which
is borrowed from the area of Time-Aware Recommender System as it best represents the setting
of an educational Recommender System for course items. Therefore, researchers must answer the
methodological questions of Campos et al. [57, p. 87] and can use common measures if their
meaning for the evaluation is well defined. For instance, error or deviation measurements can
be applied, but only on the same type of relevance scores. Finally, it might be the case that
the timeliness of recommendations is of interest. Then, the proposed Mean Absolute Timeliness
Deviation represents an appropriate measure to produce comparable and reliable results. Overall,

the findings in this work confirm this hypothesis.

9.2. Collected Activity Data

Scientific Hypothesis /SH4.0/: The activity data collected during the conducted courses,
especially the dataset relating to the Advanced Web Technologies course, may be
utilized to evaluate closed-corpus Recommender Systems for the prediction of course

items.

Due to a lack of appropriate academic datasets, the evaluations are based on the collected data
in the courses on AWT, JavaFX and the Energy-Consultant Training. Since these data have not
yet been utilized for other evaluations, their reliability and generalizability might be arguable.
According to Drachsler et al. [92], a dataset that is used for evaluating educational Recommender
Systems should (1) reflect the characteristics of a real-world setting, (2) contain a sufficient number
of user profiles and (3) be comparable to other learning settings.

All three major datasets represent non-synthetic, real-world courses. They directly reflect the
learning activities collected through the use of the Learning Companion Application. However,
at least some learning activities are probably not covered by the datasets, as course participants
might also learn offline with external material as well as printed versions of the media presented in
the LCA. Tt is hard to measure the amount of offline learning a student engages in, as the system
does not receive any such relevant feedback. Most likely, the ratio of off- to on-line learning also
depends on the particular course setting. The Energy-Consultant Training, for instance, is held
in a Blended Learning setting with presence lectures and a limited number of complementary
contents presented in LCA. The LCA does not collect any information on real presented topics
during that time nor on offline learning. The JavaFX course, in turn, is exclusively offered online.
As students learn specific programming skills, they have to use external tools for programming

which are not monitored for the dataset. And in AWT, the same topics are presented in the LCA
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which are taught during the lectures. Nevertheless, for the course Advanced Web Technologies,
the LCA additionally offered downloadable PDF scripts for all 99 registered students. Thereby,
between 19 and 66 users downloaded the weekly PDFs and, in total, one third of all students
downloaded all offered PDF files [17, p. 224].

Taking the limitation of not-covered learning steps into account, the collected course data
comprise the, in LCA gathered, real-world learning activities. KEspecially for further course

iterations, where the setting is almost equal, the data represent realistic user activities.

Depending on the course setting and course runs, the number of users varies between six
and eight enrolled participants for the Energy-Consultant Training (all passed the exam), 51 for
JavaFX (only 28 used LCA) and 126 for Advanced Web Technologies (99 used LCA and 83 passed
the test).

While the number of LCA users is quite low (especially in comparison to MOOCs), they represent
realistic conditions for the educational institutions, Chamber of Crafts, Beuth University and
TU Berlin. Moreover, the collected activity statements per user are extraordinarily extensive.
In JavaFX, 126 zAPI statements have been collected on average per student, 273 in the first
iteration of the Energy-Consulting course and in AWT an average student produced 932 zAPI
statements. The six analyzed datasets of the dataTEL Challenge [269] show an average number
of between 0.92 and 402 activities per user per dataset. Thus, the collected data describe the

learning activities in a very detailed way.

In the conducted experiments, three different course settings have been analyzed: face-to-
face lectures with a digital offering of the lecture topics, Blended Learning with lectures and
complementary digital media and an online-only course. The data contain typical learning patterns
which are analyzed for JavaFX and in AWT. Both show at least a subset of patterns that also
other researchers have identified in their courses [155, 109]. With the help of these patterns,
the learners can be classified into groups of successful/ ”completing” learners, ”strong starting”
learners or "auditing” learners which are at risk to drop-out when there is a final exam. Moreover,

in the Advanced Web Technologies course, learners that show these patterns receive average course

grades that also reflect their degree of activity [17].

The collected data are appropriate to utilize for evaluating educational Recommender Systems
which are designed for these course settings. The data comprise a qualitative set of zA PI statements
which cover important aspects of learning activities: e.g., self-assessments, content accesses and
exercises. Moreover, the collected data are appropriate for evaluations of different recommender
algorithms — which results in comparable measures, as done in this work. Finally, the data show
typical learning patterns which have been identified also in other course settings. Thus, the
collected datasets are appropriate for evaluations of educational Recommender Systems which

confirms the hypothesis.
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9.3. Learning Environment for Recommender Systems

Scientific Hypothesis /SH3.0/: An educational Recommender System for the recommen-
dation of course items should build on well-selected open specifications for inter-
faces and data formats. If a course is based on monolithic specifications, such as
the Sharable Content Object Reference Model (SCORM), or on proprietary solutions,
such as the XBlocks of Open edX, it would impede the utilization of a Recommender
System for course items. Thus, the atomicity of specifications, such as given in the
Learning Tools Interoperability Specification (LTI), the Learning Resource Meta-data
Specification (LOM), the Question and Test Interoperability Specification (QTI), the
Common Cartridge Specification (CC) as well as in the Ezperience API (zAPI), may
be used for the definition of the interfaces and the exchange of the required data

for an educational Recommender System.

In recent years, ADL SCORM has become popular as a specification for Technology Enhanced
Learning as it covers all essential aspects: from a standard content metadata description, over
content access to the persistence of activity data. However, SCORM is often deemed as too
inflexible for adaptive learning environments, as course contents are treated as complex, monolithic
structures of information that do not allow for the processing of a unique Learning Object separately
from the entire course structure'#4. This, however, is necessary for adaptive learning technologies
and especially for educational Recommender Systems which recommend unique items of interest.

The strength of the LTI is that contents can be requested and displayed independently from
other contents or specific user interfaces. An LTT compliant content server (acting as LTT provider)
provides a REST API for a standardized content access. Content, e.g., an LO, has a unique
identifier that is represented as a specific URI within the Recommender Engine, because most
algorithms, such as the Slope One, just processes these identifiers as well as the users’ activities to
generate recommendations.

While for an educational Recommender System the whole set of metadata of an item is not
directly of interest — for instance, the SLR does not incorporate the given LOM, QTI or CC data —
it makes use of some of its features. The hierarchical structure of Learning Objects, Learning Units
and the entire course is stored in a IMS CC-compliant way in the repository. The Recommender
System loads only the required information, e.g., the information of relationships between items,
from the repository into a proprietary format given by the Recommender System. Other important
item-related features are: prerequisites of an item, the typical learning time and the time at an
item is presented in the face-to-face phase. All other information, particularly the content itself, is

not of interest for the Recommender System. Thus, this part of the hypothesis can be disproved,

144GQee: https://www.efrontlearning.com/blog/2013/04/why-scorm-2004-failed-what-that-means-
for-tin-can.html (Accessed: 07.12.2017).
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as the specification of content metadata is, at least for the realized algorithms in this work, not of

interest for the Recommender System.

The proprietary XBlocks definition of Open edX also represents the course’s content metadata
which are, as already discussed, not directly of interest for an educational Recommender System.
However, the original content structure of edX does not allow for the processing and presenting of
items separately by a Recommender System — which makes it similarly monolithic as SCORM.
This is why Open edX allows for the integration of external LTI tools'4® additionally via an LTI

consumer plug-in. Moreover, Open edX can also offer its contents via an LTI provider'46.

However, if the educational RS would build on a similar, but proprietary, interface as with LTI,
it would not be interoperable with other data sources. Thus, an adapter must be developed for
every new content format which would make the development process ineffective at a certain
point.

One of the most challenging issues in Recommender Systems is the representation of user—item
feedback. While the systems often process representations of user—item matrices that are optimized
to the algorithms, these models are very static and hardly transferable to other systems. Within
the Smart Learning project, different components make use of the same activity data that is
stored externally — for instance, a Learning Analytics module or the learner’s user interface,
to display the last activities, such as wrongly answered questions. That is why the data are
stored in a particular way according to the zAPI specification. The educational Recommender
Systems in this work, however, transfer this information at regular intervals into more efficient

47

(proprietary) databases® This transfer is necessary, as the Fxperience API is designed as

an all-embracing structure with a lot of unimportant information for Recommender Systems'*8.
Moreover, a Learning Record Store, such as Learning Locker, is designed as a document store such
that every document must be accessed and parsed to filter or sort items by specific content values.
This makes zAPI inappropriate for use in a RS and requires the transfer of activity data into

proprietary formats.

The SLR, as well as the other components of the Smart Learning Infrastructure, come as closed
components following the paradigm of "high cohesion and low coupling”. This means that the
Smart Learning Recommender contains all important layers that are required to recommend items;

an interface to load the item and activity data, a database to store and access the data efficiently, a

M51TT in Open edX. See: https://open.edx.org/learning-tools-interoperability (Accessed: 07.12.2017).

160pen edX as an LTI Tool Provider. See: https://open.edx.org/blog/open-edx-1ti-tool-provider (Accessed:
07.12.2017).

147For instance, the Smart Learning Recommender uses MySQL with a proprietary database scheme that is not
known by other Recommender Systems. The Learning Path algorithm uses a Neo4J database and the Slope
One algorithm uses a file-based format of R”. All databases are optimized for the algorithms that process the
data but are not transferable to other systems.

148 Ay export of the zAPI data of the AWT course from Learning Locker comprises about 190 MB JSON data with
about 50 different values per activity — see Appendix B.24 for an example activity statement. The SLR requires
only 5 to 10 of these values.


https://open.edx.org/learning-tools-interoperability
https://open.edx.org/blog/open-edx-lti-tool-provider
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service logic layer to predict recommendations and an interface to return recommendations. While
the database and the service logic layer are presented as a black box for third-party stakeholders,
the interfaces work on the previously mentioned open specifications which makes it interoperable
in all environments following the same specifications. Course contents and recommendations
can be presented as LTI tools in different Learning Management Systems. This would not be
possible with monolithic specifications, such as SCORM, and would result in inflexibility with
proprietary formats. However, the appropriateness of other recent specifications, such as IMS
Caliper, has not been evaluated and thus the utilized specifications represent only one possible
approach. Nevertheless, this work demonstrates the strengths, especially the interoperability of
components and contents, through the incorporation of open specifications of Technology Enhanced
Learning. Thereby, LTI, as well as A PI, are of particular interest, while IMS Learning Resource
Meta-data Specification, Question and Test Interoperability Specification and Common Cartridge
Specification do not directly impact the educational Recommender Systems. Thus, the hypothesis
can be confirmed in general — although the proposed specifications do not represent necessarily

the best nor even an exclusive solution to the problem of interoperability.

9.4. The Special Educational Recommendation Paradigm

Scientific Hypothesis /SH2.0/: An educational Recommender System that recommends
course items should respect the special paradigm for the recommendation of course
materials. The paradigm comprises various aspects, for instance, a learning-oriented
relevance score that is called the learning need, the necessity of incorporating multi-
dimensional context attributes and the time dependency of the data that impact the
precision of the recommendations. If a Recommender System, that does not respect,
or only partially respects, the special paradigm, is applied for the recommendation

of course items, it would generate less precise Top-N recommendations.

The realized Recommender System algorithms are focused on the prediction of items within

a course. Thereby, the recommended items should make learning more efficient and effective.

Efficiency describes the means of knowledge acquisition and effectiveness describes the quantity
and quality of the acquired knowledge.

A preliminary Thinking-Aloud Study with participants of the AWT course indicates that
learners are similarly efficient in accessing items when utilizing the recommendations compared
to the utilization of a search engine, and are more efficient than manually searching for specific

149

Learning Objects'*?. While it is hard to measure whether the Learning Companion Application

with the underlying Smart Learning Recommender really shortens the time needed for knowledge

149 A preliminary Thinking-Aloud Study was conducted where 29 participants of AWT performed typical tasks on
the Learning Companion Application. This study is presented in Appendix B.55.
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acquisition, it allows for an exhaustive understanding of learning patterns. Two course runs of the
Advanced Web Technologies course in two subsequent years were compared: a first without the
Learning Companion Application and a second that offers the LC'A (including the Smart Learning
Recommender). In the course run with the LCA, more students were encouraged to participate in
the final exam compared to the course run without the LCA. This is reflected in the absolute
numbers of participants (83 with LCA compared to 39 without) as well as by the drop-out ratio
(only 34% drop-outs with LCA and 46% without).

The exam results of both AWT runs (the run with and the run without the Learning Companion
Application) were similar, with only a small improvement of the average mark (1.9 with LCA; 2.0
without). These numbers are not significant however because only two courses have been compared
so far — and the improvement might have occurred for other reasons. However, this means that
the LCA has at least no negative effect on the efficiency of the students, which is a very good
result as the number of participants doubled for the course run with the Learning Companion
Application. Moreover, the most prominent advancement comes from the ability to analyze the
learning patterns and draw conclusions for both learners and educators, and, consequently, to

optimize the content offering.

While the theoretical user acceptance of a Recommender System is measured through the
precision and timeliness of the recommendations, a motivational TEL recommender must challenge
or even provoke the user to make the learning process more effective [277, 191]. Otherwise, the
algorithms would just recommend exactly the (appropriate or inappropriate) future activities that
the learner would seek anyway. This might work for successful learners whose learning patterns are
good enough to successfully pass the assessments (even without a Recommender System). Weak
learners and those who are at risk of dropping-out however should not receive recommendations
based on their inappropriate learning patterns, but on the successful learning patterns that have

worked for others.

The work in Section 5.3 indicates that learners on a course can be clustered according to typical
learning activities. Thereby, the work follows clustering approaches and patterns that have been
identified by other researchers [155, 109]. These methods allow for a separation of successful
learners from weak or drop-out learners and their collected activity data. For a motivating and
compelling Recommender System, especially for one that uses Collaborative Filtering, only the
activities of successful learners should be utilized as a training set. As a result, effective and weak
users would both receive recommendations based on the patterns of effective users who achieved
good results at the end. This pattern transfer comes with a decrease of the precision according
to the evaluation framework, because the analyzed recommendations would not represent an
extrapolation of the user’s actual activities and so not match the data in the test sets. Thus, the

consideration of only successful pattern cannot be evaluated with the defined evaluation framework
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— which is a limitation of all evaluation frameworks that are based on historical datasets.

The Smart Learning Recommender introduces a relevance score that represents a numerical value
indicating the need for learning (implicitly the knowledge gap) of a learner. This learning need is
modeled through different factors and the resulting recommendations are presented in particular
factor categories. Therefore, another qualitative study was conducted with the participants of the
Chamber of Crafts!®?. The eight participants of the first Energy-Consultant Training were asked
after end of the course to complete a survey. As one of the most important features that needs
to be offered by an Learning Management System, seven of eight participants (88%) wanted a
Recommender System that gives hints for exam-oriented learning as presented by LCA. The same
number believe that educational recommendations for course items are useful or very useful — and
only one answered neutrally. Six out of eight participants (75%) wanted similar overviews of their
learning progress to those presented in LCA for the future. Figure 9.1 shows the perception of

different SLR factors.

How important is it for you to get recommendations of course contents that...
0 1 2 3 4 5 6 7

o)

... are relevant for the final exam? I
... you might have forgotten? I
... show weak exercise results? I

... seem to be relevant for others? I I
... are part of the next lecture? I
... you have not studied so far? I
... deepen before studied topics? GGG I
... you did not completed? GGG |
... are part of the last lecture? NG |
W Very important Somehow important Neutral B Somehow unimportant B Unimportant

Figure 9.1.: How important are hints for learning contents based on the following factors? (Eight
participants of the Chamber of Crafts Berlin were asked; questions provided by
Christopher Krauss; survey conducted by Dr. Sarah Hackfort from IZT.)

Exam relevance was mentioned as the most important aspect that a Recommender System should
target on. This was followed by items a learner might have forgotten and Learning Objects with
a high ratio of wrongly answered questions. In contrast, Learning Objects that the user did not
completed or contents of the last lecture are of less interest. In general, the participants wanted
support in identifying those aspects of the contents that they are not directly aware of, such as

exam relevance or forgotten items.

From an algorithmic point of view, the ratios between the context dimensions are not static.

150The Smart Learning project partner IZ7T conducted the qualitative survey and included questions of relevance
for this dissertation. The study was conducted by Dr. Michael Scharp and Sarah Hackfort. They included the
presented questions that have been formulated by Christopher Krauss. More answers of this study are shown in
Appendix B.56.
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The SLR shows that precision can be increased dramatically when modeling context factor weights
over time. Thereby, the weights are determined on a weekly interval to understand the best
composition. A dynamic weighting at every point in time allows for the generation of the most
precise Top-N list!®!. The weight detection was developed to dynamically determine the most
appropriate weights based on the most recent activities of the current user.

Table 9.1 compares the aspects of the special paradigm and whether those aspects are taken into
account by the evaluated algorithms (for the sake of clarity the algorithms are abbreviated!52).
The Slope One algorithm is borrowed from traditional domains, such as movie recommendations.
The Smart Learning Recommender follows the defined paradigm and generates more precise

recommendations.

Table 9.1.: Differentiation and Evaluation Results of Algorithms

Aspect of Ed-Paradigm SO LN-SO | TB-SO | TBLN-SO | TBRA LP SLR
Learning Need - X - X X X X
Repetitions Allowed X X X X X - X
Warm Start - - - - - X X
Multi-Attributes - - - - - X X
Item-Interdependency - - - - X X X
Time-Dependency - - X X X X X
Precision 0.459 0.475 0.465 0.485 0.512 | 0.564 | 0.587
MATD in min 26,648 | 32,132 | 30,107 29,390 36,852 | 18,340 | 20,607

In general, the greater the number of aspects of the educational paradigm considered by an
algorithm, the more precise are the recommendations. Additionally, the importance of the
paradigm is also reflected in the Mean Absolute Timeliness Deviation but not in such a clear way.
While this work does not allow for a differentiation as to which aspect of the paradigm is more
important or has a bigger impact on the precision, it does show that algorithms which do not
follow this paradigm yield worse results compared to those that are specialized for Technology

Enhanced Learning. Which is a confirmation of the hypothesis.

9.5. Traditional RS Techniques for TEL

151Dye to the evaluation settings, time weights have only been analyzed at weekly intervals.

152The Abbreviations in Table 9.1 are defined as follows: SO - Slope One on Learning Units; LN-SO - Slope One on
Learning Units that incorporates the learning need; TB-SO - Slope One on Learning Units that incorporates
time-weights; TBLN-SO - Slope One on Learning Units that incorporates time-weights and the learning need;
TBRA - Time-based Recommender Approach for Lecture Materials; LP - Learning Paths; SLR - Smart Learning
Recommender.
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Scientific Hypothesis /SH1.0/: Recommender Systems that predict appropriate recom-
mendations for course items may rely on similar techniques as traditional Recom-
mender Systems. The basis is user and item metadata and its algorithms aim at
predicting relevance scores in order to generate Top-N lists. Educational approaches
face similar issues, such as cold start and sparsity, and the algorithms can be classi-

fied according to the general Recommender System taxonomy.

While the relevance score is not, at least in this work, based on preferences and the ratings
represent only one possible type of feedback, the algorithms process other user—item data than
traditional Recommender Systems which are known from the e-commerce and entertainment
domain. However, one of the most important feedback types is the user’s access to items. This is
typically incorporated by other Recommender Systems, as well. Moreover, the addition of further
dimensions, in terms of time and other multi-context factors, are not TEL specific. Actually, the
concepts of Context-Aware Recommender Systems and Time-Aware Recommender Systems have
been developed separately from the educational domain, but the evaluations indicate that these
approaches also work very well for closed-course recommendations.

The learning path generation also indicates that not every algorithm relies on common relevance
scores to predict recommendations. While the transition probability of this algorithm results in
some kind of relevance score, the Top-N generation does not follow a simple relevance ordering
process. Moreover, the presentation and evaluation of a Top-N list for learning paths do not
credit the strength of the algorithm — to visualize item relations that result in personalized
path recommendations. Moreover, the paths comprise alternative branches. Thus, new types of
recommendations, such as the learning paths, eventually require further evaluation measures in
the future.

In general, all of the algorithms encountered similar problems to traditional RS, but with a

different flavor. The cold start problem, for instance, is a big issue for the recommendation of

course items, especially when the user registered on the system just before the start of the course.

In contrast to e-commerce or entertainment Recommender Systems, initial recommendations can
rely on the intended didactic structure and thus recommend non-personalized items with a high
probability of appropriateness (the lecture factor has a precision of between 0.3 and 0.4 on average
during the cold start phase). However, after the initial phase, when all enrolled participants begin
to interact with the learning platform, the Smart Learning Recommender receives more valuable
activity data, and the recommender’s user—item matrix becomes dense very fast.

Machine Learning, such as Artificial Neural Networks, can additionally improve the algorithm
results and provide even more precise recommendations compared to a linear model, as shown
for the SLR. Thereby, domain-specific knowledge of the data is crucial. For instance, the naive
predication of a relevance score via an ANN results in a precision of only 0.354 while the utilization

of the SLR model with predicted time-dependent weights through an ANN results in a precision
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of 0.587, which represents the most precise approach in this work.

It turns out that traditional Collaborative Filtering approaches, such as the ordinarily proper
performing Slope One algorithm, are likely to fail (or at least offer less precise recommendations)
when they are transferred without adjustment to the TEL domain. The learning path algorithm,
instead, aims at combining the strengths of Content-based Filtering and Collaborative Filtering
and produces more precise recommendations that additionally yield better timeliness results
compared to the exclusive Collaborative Filtering. In addition, the Smart Learning Recommender
uses a Hybrid Filtering approach that is based on features that might be related to the activities
of others (as in Collaborative Filtering), item metadata (as in Content-based Filtering) and
especially the user’s past activities modeled as knowledge and learning need in the user profile (as
known from Knowledge-based Filtering). Thereby, the SLR produces the best precision results
by combining different filtering and Machine Learning approaches which are also common in

traditional Recommender Systems. Thus, this hypothesis also can be confirmed.
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10. Conclusion and Future Work

Within this work, novel approaches for educational Recommender Systems are introduced,

realized and evaluated. The scientific question of this dissertation was:

Scientific Question /SQ/:
How can a Recommender System predict appropriate items in a closed-corpus course

environment?

In order to answer this question, a number of hypotheses have been formulated and ultimately
confirmed. Related works have been analyzed in the area of adaptive Technology Enhanced
Learning, resulting in a specialized paradigm for educational Recommender Systems that
needs to be considered when aiming to make learning more effective and more efficient. Traditional
RS within the e-commerce and entertainment domains try to forecast preferences regarding items.
However, this does not work well for adaptive learning systems which aim at supporting learners in
reaching the course goals. Therefore, an "appropriate” educational Recommender System should
rely on the user’s learning activities to approximate knowledge levels and gaps which consequently
lead to an estimation of the topics requiring study. It turns out that recommending course items
is a problem that depends heavily on time — which affects both the evaluation framework and the
algorithm design.

To recommend course materials, a technical reference architecture has been developed

that allows for the connecting of a Recommender System and which presents personalized content

recommendations in a Learning Management System, such as the Learning Companion Application.

Therefore, appropriate interfaces and metadata formats for adaptive Technology Enhanced
Learning have been identified and tested. From a recommender’s perspective, it makes sense to
create a proprietary data model that can be processed efficiently by the algorithms. However,
it also requires standardized interfaces and data formats to be as interoperable as possible with
other components. The learners’ activity data are transferred from a Learning Record Store as
2API statements into the recommender’s database at regular intervals. Moreover, the content
items are represented as LTI URIs inside and outside of the Smart Learning Recommender.
This work identifies a lack of academic TFEL datasets in general, and in particular for those
attributes and course settings that are required for time-dependent evaluations. This is why

courses are conducted such that they build on the presented architecture and thereby datasets
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are collected that represent typical real-world learning activities. By the end of 2017, three
Blended Learning course runs of the Energy-Consultant training of the Chamber of Crafts in Berlin
had been conducted using this infrastructure and the underlying components, among others, with
the Smart Learning Recommender. Moreover, two courses had also been run at Beuth University:
a JavaFX online course and a Computer Science preparatory course. Finally, data from the two
course runs of the TU Berlin lecture Advanced Web Technologies had been collected where one
was accompanied by the Learning Companion Application. The anonymized activity data of the
particular AWT iteration with LCA were utilized for an exhaustive evaluation of the different

recommender algorithms.

As previously mentioned, recommending course items is a time-dependent problem. Thus, these
recommendations need to be evaluated within an appropriate framework, because traditional
evaluation procedures, such as the common n-fold cross-validation setting, randomly split the
item data regardless of any time constraints. However, a course typically comprises different time
phases that must be taken into account for the evaluation. A reliable evaluation framework is
thus proposed for Time-Aware Recommender Systems in general, and RSs in Technology Enhanced
Learning in particular. It is adapted from other research areas and incorporates qualitative and
quantitative criteria. The goal of presenting "appropriate” recommendations was translated into
measurable values, such as precision and recall calculations. Moreover, a new measurement value
has been devised to indicate the time accuracy of the recommendations. The Mean Absolute
Timeliness Deviation presents the average timespan when a recommended relevant item has been

accessed after its recommendation.

Following the defined methodology, existing and new Time-Aware Recommender System
algorithms for recommending course items have been designed, realized and evaluated
with the aim of making learning more efficient and effective. The evaluation started with a
typical Collaborative Filtering technique, the Slope One algorithm, and experiments with two
extensions, namely the incorporation of time weights (which only slightly increases the accuracy)
and the paradigm shift that was realized through the determination of a learning need value.
Then, the only other published time-aware CF algorithm was applied which had previously been
successfully used in the TFEL context. This algorithm achieved even better results. An entirely
different approach has been realized and evaluated with the learning path detection that not only
recommends appropriate content items but also visualizes the past activity path and presents
new recommendations as branches for future study suggestions. Finally, the Smart Learning
Recommender was introduced as a context-aware and time-dependent Knowledge-based Filtering
system that relies on multiple activity and item factors — such as lecture times, self-assessments and
item accesses but also on even the learning need of others or the user’s predicted memory. Each

context factor represents the learning need in studying a particular Learning Object. Thereby, the
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challenge was to determine appropriate time weights for each factor in the given situation in order
to reach the highest possible accuracy. In the end, the SLR outperforms the other approaches
as it calculates the most precise Top-N lists. However, the learning path algorithm achieves
better results regarding the new measurement MATD and allows learners to better observe the
current course progress. This is why both approaches will be presented in the LCA in the future —
separately to visualize learning paths and to present factor-specific recommendation categories.
At the end of this dissertation, the appropriateness of the algorithms and the key outcomes of
this work have been discussed which represents a good starting point for other researchers and
developers in the future and can act as a decision support mechanism for the selection of

educational recommender techniques.

10.1. Limitations of this Work

Most of the evaluations have been conducted in a simulation environment — with historical
real-world data but in the absence of presenting the recommendations of all evaluated algorithms
to real-world learners. Thus, the effect of the user interface and its usability have not been
compared for the different approaches. Since these aspects have a huge impact on general user
acceptance and user perception of the system as a whole, they require further experiments.

While the different algorithms were evaluated with the help of a novel evaluation framework,
the results can only indicate their various levels of appropriateness for the self-collected datasets.
In general, the approaches should work similarly well on other datasets that offer the same
kind of user, item and activity information. However, due to the lack of published appropriate
datasets, this has not been as yet undertaken. Thus, this work will encourage other researchers or
educational staff having the same kind of data to apply and test the presented and additional
Recommender Systems with the introduced evaluation framework.

Greller and Drachsler [116] note that the key constraints of educational Recommender Systems
can be classified as "legal protection”, "privacy”, "ethics” and “ownership”. However, those are
outside of the scope of this dissertation. While these are important aspects of the application
in established services, it represents a huge additional field of research with a lot of publications
and laws. Moreover, at the time of writing, some existing German laws (e.g., German Bundes-
datenschutzgesetz (BDSG), German Telemediengesetz (TMG)) are going to be replaced by the
EU through the legal validity of the General Data Protection Regulation (GDPR), the as yet
still discussed ePrivacy Directive and even the early version of the Audiovisual Media Services
Directive (AVMSD). At the very least the GDPR will be effective from May 2018 and establishes
two new key paradigms: "Privacy by Design” and "Privacy by Default”, where all users need
to actively agree (via opt-in) before user data can be collected and processed. As the Learning

Companion Application requires a registration anyway, this confirmation should not be a problem.
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However, the legal implications must be discussed with all involved stakeholders.

In parallel, researchers have started to present policies [92, 136] and guidelines for privacy-
compliant data processing, such as "Privacy as Confidentiality”, "Privacy as Control” and "Privacy
as Practice Paradigm” [270, p. 331]. Moreover, Duval even lists that ”the data about a person’s
attention remain the property of that person”, ”it should be possible to move data about a person
out of one system and into another system”, ”a person should be able to sell data about his
attention” and ”it should always be clear to a person that she is being tracked” [97, p. 7).

There are also ethical implications of this work. The Smart Learning Recommender is not
expected to replace teachers or other educational staff, but rather to assist learners in their
knowledge acquisition. However, students might blame these algorithms in future if they fail
at their exams or do not reach the expected course goals. Even the most precise Recommender
Systems (e.g., known from Netflix) can only reach accuracy values of approximately 80% !°3
although these accuracy results represent just a statistical probability for all users and some users
will receive even less precise recommendations. Even worse, learning patterns which worked for
one student will not necessarily work for another. Presenting recommendations means to change
future behaviors [144]. In addition, some researchers argue that "unbiased computational processes
can lead to discriminative decision procedures” [55] and, thus, should be integrated with care [30].

These aspects are not part of this work and must be analyzed in the future.

10.2. Future Work

During this work, a lot of exciting areas have been identified that require further research.
Besides the previously mentioned critical evaluations that would make the results generalizable
and representative, there are a number of other open issues.

In a further research project, the Learning Companion Application is extended via a number of
different features. The learning paths that are still calculated offline at the moment will also be
presented to the learner. The SLR will provide recommendations via the LTI API in order to
make them reusable in other Learning Management Systems. Moreover, users will not only receive
item recommendations when working with the LCA, but also push notifications and e-mails at
regular intervals and in situations that seem to be appropriate for learning.

Other extensions are part of submitted project proposals: For instance for a chatbot that can
be integrated in the LCA and in external messenger applications (such as Slack!®* or Telegram!®°)
that give textual hints in appropriate situations. Moreover, this digital chat avatar should also

respond to user questions regarding the course, present current knowledge levels and/or present

153The team ”BellKor’s Pragmatic Chaos” won the Netflix Prize with a RMSE of 0.8567 on a 1 to 5 stars scale
[158, 217, 266].

154Glack. See https://slack.com (Accessed: 03.11.2017)

155 Telegram. See https://telegram.org/ (Accessed: 03.11.2017).
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simple contents and definitions (e.g., from the glossary). Moreover, Gamification elements are
planned that will improve the learner’s motivation and at the same time enable the collection of
more valuable data for the Recommender System. Some researchers have even evaluated the effect
of observed emotions on learning progress [111] which is an interesting future direction.

The understanding of typical learning patterns, how and when these patterns can be identified
during a course, helps to improve the Recommender Systems as recommendations are then not only
based on the predicted future behavior of the concerned learners but also on successful activity
patterns which should bring further benefits, even to weak students.

The content creation of digital media is a very cost-intensive process. Thus, it makes sense to
share these contents with other organizations, establishing synergies and more efficiently optimizing
of the contents due to a greater audience reach. There are some initiatives, such as "Towards
Global Data Infrastructures” which represent a collection of all available (learning) materials [270],
or the Open Educational Resources (OFR) [81, 82, 143]. The contents of the Smart Learning
project can be shared between organizations similarly, but requires some work on a license model
with the capability to protect content and limit specific institutions, regions or times.

A patent has been submitted (see Appendix A.2) that comprises elements of this work, such as
the time-dependent, context-aware analysis of various factors that is similar to the presented Smart
Learning Recommender. Its evaluation procedure follows the framework definition introduced here.

It would be interesting to see how other application areas benefit from the findings in this work.

10.3. Closing Word

In recent years, I observed a shift in the focus of the educational industry. While some years ago
the most popular term was "mobile learning”, it then became ”adaptive learning”. However, the
meaning of adaptive learning still seems to be a moving target. Some service providers implement
only simple features for content filtering and call this an adaptive system; others follow more
sophisticated approaches by individualizing offerings based on personalized algorithmic forecasts.
With this work, a promising direction has been demonstrated combining two fields: Recommender
Systems and Technology Enhanced Learning. The evaluation results demonstrate the feasibility of
the system, and the reactions of the industry confirm the relevance of this topic. Thus, I forecast:
by 2030 at the latest, learners will not be able to imagine how knowledge acquisition could ever

have taken place without the personalized adaption of software to the individual learning needs.
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B. Extended Texts

In this Chapter, texts are presented that have not been integrated into the actual dissertation.

However, they show exciting aspects or details in particular areas that are worth to be mentioned.

B.1. Realized Adaptive Learning Projects

To understand the technology decisions and the overall research approach, it is essential to know
about the history of the Learning-related technologies and the projects that led to specific stages
of extension. The related projects are listed and described in this section.

The starting point to develop a learning infrastructure was the Smart Learning Project'® which
was originally designed for a specialized course at the Chamber of Crafts in Berlin. The project
started in October 2014 and ended over three years later in December 2017. Within this project,
the general smart learning infrastructure has been developed (including the initial authoring tools,
a Learning Companion Application, a Learning Content Repository, a Learning Record Store,
Learning Analytics, an initial version of the Smart Learning Recommender as well as a Middleware

157). This infrastructure builds the foundation for the collection of learning data

for data exchange
and the integration of educational Recommender Systems. The project is extended in a consecutive
project that focuses on online training for the craft and services sector. The consecutive project
"[SLOW] — Smart Learning for online training” is coordinated by the Fraunhofer-Institute for Open
Commaunication Systems (Christopher Krauss).

In March 2015, a second project, namely ”[SemA] Machine Learning and Semantic Analyses

to improve Predictive Data Mining Algorithms”!%®, focused on the design and evaluation of

156 The Smart Learning project is sponsored by the German Federal Ministry of Education and Research (Bun-
desministerium fuer Bildung und Forschung — BMBF) under the project funding number 01PD14002A. The four
involved project partners are Handwerkskammer Berlin/ Chamber of Crafts Berlin (Coordinator), Fraunhofer
FOKUS, Beuth Hochschule fiir Technik Berlin, Institut fiir Zukunftsstudien und Technologiebewertung.

157The Learning Companion Application as user front-end as well as the Smart Learning Recommender have
been developed primarily by the Fraunhofer FOKUS team led by Christopher Krauss. The Authoring Tools,
Middleware, Learning Content Repository and Learning Analytics have been designed by the team of Beuth
Hochschule fiir Technik Berlin. The Learning Record Store, Learning Locker, as well as the LMS, Moodle, which
was needed for the first user management, are open source technologies.

158 The SemA project is part of the Software Campus program and sponsored by the German Federal Ministry of
Education and Research (Bundesministerium fuer Bildung und Forschung — BMBF) under the project funding
number 01IS12053. This project had a duration of 2.5 years and ended in August 2017.

Software Campus. See: http://www.softwarecampus.de/en/home/ (Accessed: 12.06.2017)
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algorithms for an educational Recommender Systems. The developed algorithms have been
iteratively developed, evaluated and optimized to extend the Smart Learning Recommender.

The Fraunhofer-Institute for Open Communication Systems published a learning platform for
its own that focuses on the training of expert knowledge in a blended-learning manner. This
project builds upon the reference architecture and the expertise of the Smart Learning project. It
further introduces components, such as another LMS, Open Edx, encapsulated user management
for course enrollments and a payment solution for interested learners. With these extensions, the
infrastructure enables learners to inquire, pay and enroll for courses by themselves — without the
involvement of administrative staff.

To merge the learning activities of different Fraunhofer Institutes '°?, an initiative started
in July 2017 to develop a unique Fraunhofer LMS infrastructure based on existing Fraunhofer
technologies. The initiative is called Fraunhofer Common Learning Middleware (CLM). The
Fraunhofer-Institute for Open Commaunication Systems coordinates the activities'®? and supports
the efforts with expertise from and components of the realized Smart Learning project.

The FOKUS expertise is additionally inquired by industry partners for workshops and talks
(e.g., Cornelsen, Holtzbrinck) and by the public sector (e.g., Behérde fir Schule und Berufsbildung
— BSB Hamburg). Besides the funded project activities, especially the teaching assignments of the
partners allowed to optimize and evaluate the developed components. The Beuth University 6!
used the system to organize an online-only course about the Framework Java-FX. Christopher
Krauss, in turn, held guest lectures at the Technische Universitdt Berlin (and additionally at
Beuth University) which enables the team to test and evaluate the learning infrastructure in
other contexts — for teaching computer scientists in a course named Advanced Web Technologies.
Moreover, this educational activity further allowed for supervising related Bachelor and Master

theses as well as student projects in the area of Recommender System and Technology Enhanced

Learning.

B.2. Formatting Styles

This section briefly introduces the citation, reference and formatting styles used in this disser-
tation. The document uses four hierarchy level for headlines, namely chapter (1.), section (1.1),
subsection (1.1.1) and only in some cases paragraphs (1.1.1.1). As customary, these headlines
are shown at the beginning of the text as well as in the Table of Contents. They represent a
classification of the main topics introduced in the following text block. However, as an issue

might be discussed over several pages, Sub-Headlines are shown right next to the beginning of

159Namely the Fraunhofer Zentrale, represented by the Fraunhofer Academy, Fraunhofer FIT, Fraunhofer FOKUS,
Fraunhofer IDMT, Fraunhofer IOSB, Fraunhofer IAIS and Fraunhofer IML

160 Christopher Krauss coordinates the project together with Eva Poxleitner from Fraunhofer Academy.

161Represented by Prof. Dr. Agathe Merceron
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a paragraph and titles the current idea. To avoid unneeded complexity, these sub-headlines are
not shown in the Table of Contents, because they mainly assist the reader’s orientation. See an
example at the beginning of this paragraph.

This thesis discusses a variety of technical terms. Especially longer terms, e.g., consisting of
more than just one word, are abbreviated for better readability. Thereby, new technical terms,
such as Recommender System (RS), are introduced first as long and afterward (in brackets) as
short term. Subsequent, either the short term RS or the long term Recommender System can be
used. All abbreviations show a particular formatting style as they can be found in the List of
Abbreviations at the beginning.

In some cases, only online references show the current state of the art as there is no print
media available for that specific topic. Online references are given in footnotes with the title, the
Uniform Resource Locator (URL), and the access date. Moreover, in between the dissertation text,

some short quotes are given from famous persons on the current topic:

"The power of the Web is in its universality.
Access by everyone regardless of disability is an essential aspect.”

Tim Berners-Lee, W3C Director and inventor of the World Wide Web (WWW) 162

Besides externally cited work, the author already presented parts of this research in international
industrial and academic conferences. The associated papers were published in proceedings or
journals and present research in the areas concerned. A self-reference presents these results and

appears in a special way:

"This is the formatting style of a peer-reviewed and published text of the author! [...]
Each text is longer than three lines and should not exceed a whole page. Citations within
a self-reference are formatted according to the citation format of this dissertation. The
reference to the original paper is given below the citation box. In a footnote, a small
indication of the co-authors and main contributors to that excerpt are listed as well as a

brief introduction describing the context if needed”

Cf. [Reference, Page(s)]'03.

There are several reasons for presenting self-references in a dissertation. First and foremost, a
published text was already peer-reviewed, usually blind (without knowledge of the author names),
by at least two, sometimes up to six, independent experts. Thus, such a paper was already judged

concerning composition, related work, novelty, significance and other academic aspects. Especially

1625ee "edX W3C course”: https://courses.edx.org/courses/course-vl:W3Cx+HTML5 . 1x+3T2016/info (Accessed
01.12.2016)

163This is not a real self-citation, but a short text presenting its format. This text was exclusively written by the
author of the dissertation.
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the date of publication indicates its timely relevance — that the content might be released early
when some of these topics are trending. Each publication focuses on a separate, self-contained
topic with its literature review, concept, evaluation and result discussion. Excerpts presented
in this work will focus only on significant parts and so bring additional value to the underlying
textual description. Of course, a self-citation also helps to avoid redundant writings about topics

that are already published and indirectly, avoids self-plagiarism, as well.

B.3. Learning Trends

Technology Enhanced Learning comes in different flavors. Besides access to LOs, new topics
develop continuously. Figure B.1 shows a rating of learning experts for different technological
directions. The participants of this survey were asked to rate each trend on a scale from 0

(unimportant) to 5 (important).

Technological Trends for digital Education

Mobile Devices I 4,6
Adaptive and intelligent Systems I 3,8
Learning Analytics GG 38
Big Data I 3,7

Automatic Testing I 3,6

Virtual Reality I 3,5
Augmented Reality I 3,4

3D-Visualizations I 3,2
Wearables I 3,1

0 0,5 1 1,5 2 2,5 3 3,5 4 4,5 5
UNIMPORTANT > IMPORTANT

Figure B.1.: 57-66 experts were asked about the importance of different technological trends for
digital education [195].
(©mmb Institut GmbH 2016

As can be seen, learning on mobile devices seems to be a critical aspect of future developments
in the area of TEL. This finding corresponds to the need for anywhere and anytime learning, a
recent trend of the bustling target group, as most learners try to organize their learning periods
whenever they have free time.

Place two up to place four of the most important technological trends can be classified as

topics requiring data analysis. Adaptive and intelligent systems, among others with the help of
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Recommender Systems, are expected to bring enormous potentials for all: learners, content creators,
and teachers. Intelligent Learning Technologies (ILT) and Intelligent Tutoring Systems (ITS), for
instance, bring intelligence into the digital learning environment and can be seen as a subclass
of TEL systems. Learners might organize their learning more efficient and more effective. This
dissertation will focus on Intelligent Learning Technologies, especially for learners. Content
creators, in turn, can benefit from digital assistance during the media creation and compilation.
Last but not least, teachers get hints for general weaknesses and learning topics to focus on
in depth. The latter also interferes with Learning Analytics which also aims at analyzing the
participants’ studying patterns to conclude helpful information for the teacher.

The basis for these prediction tasks is, of course, data. The more data is collected, the more
meaningful are the predictions. Big data stands for the collection and processing of huge information
sets of detailed usage and activity data. Automatic Testing, Virtual Reality, Augmented Reality,
3D as well as Wearables (the less important trends in Figure B.1) play a minor role for this

dissertation but might be very useful for additional content presentations.

B.4. Computer-assisted Educational Tasks

Darabi et al. [78] identified the 54 most important tasks which educators of distance education
settings typically fulfill. Thereby, almost all can be taken over or at least be supported by adaptive
technologies. The following list shows an order of the ten most important tasks that have been
ranked by 148 online-course instructors (cf. [78, p. 111]). It also shows how these tasks can be

supported by software components!64:

1) "Review the course for accuracy”: This can be supported by Learning Analytics which
collect and process the learners’ learning activities automatically and give hints for the
instructional staff.

2) ”Share supplemental learning resources with the learners”: Giving hints and recommendations
for additional and appropriate learning items is a typical task of a Recommender System
which, especially at a particularly course scale, can be done more effectively and better
personalized by algorithms due to the fact that it is expensive for educators to keep track of
all students individually.

3) ”Assess learners’ attainment of learning objectives”: The log of learning activities can be
analyzed by Learning Analytics components to give automatic feedback for both, learners
and instructors.

4, 5) "Maintain expertise in subject areas [... and] in online instructional techniques”: While

this is still the most important task a human instructor needs to solve, the instructor

164The ideas, how these tasks can be supported by software components, comes from the author of this work.

Further TEL
Trends
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can be assisted by semantic search engines and Recommender Systems in order to identify
appropriate resources which help to maintain this knowledge.

6) "Maintain record-keeping related to course activities”: Timetables with lecture dates,
assessment deadlines and exams can be managed once, and the required learning activities
can be observed automatically or at least semi-automated by analyzing the learners’ activities.

7) "Make changes as needed to maintain course accuracy”: While the course should be adjusted
and optimized by educational staff, the hints for possible weaknesses and amendable content
can come from software components that process course activities and learning assessments.

8) "Use strategies to create a friendly and open environment”: The perception of a course can
be influenced by the participating learners and instructors and by the technical environment.
While interpersonal factors cannot be directly affected, the technical environment can adapt
to the users’ needs. That can be done by offering settings for adjusting the look and feel
of the platform according to the users’ needs, by providing helpful information in different
situations or by giving access to appropriate components, such as different internal and
external learning media, personal progress overviews and communication tools.

9) ”Use questions that promote higher order thinking”: This seems to be the most challenging
task for a computer and is still mostly solved by human instructors. However, researchers
keep improving chatbots which might be eligible to take over this task in the future.

10) "Provide feedback on the accuracy of learners’ statements”: The self-reflection of learners
can be requested by a system at particular points in time and be automatically checked for

accordance with a predicted knowledge level which might give a clue on its accuracy.

B.5. Brief History of Recommender Systems

Paul Resnick and Hal R. Varian published an often-cited survey of Recommender Systems in
the end 90’s [226]. They state the first recommender was "Tapestry” in 1992. Goldberg et
al. developed this mail filtering system at the Xerox Palo Alto Research Center that selects
"interesting documents no matter what list they are in [...] by involving humans in the filtering
process” [113, p. 61]. While Goldberg et al. named their approach Collaborative Filtering (CF),
Resnick and Varian introduced the more general term Recommender System for this kind of
intelligent filtering. This mail filtering system gave the starting signal for more research in the
area of personalized filtering: In 1994, Resnick et al. introduced GroupLens — an open architecture
for CF of Netnews articles [225]. One year later, Hill et al. proofed the appropriateness of ”virtual
community recommendations” to select other types of media items [127, p. 194]. They started
with a set of 500 videos but noted that such an approach is also applicable to other domains,
such as ”music, books and catalog products” [127, p. 201]. Later in 1995, an approach was

introduced "for making personalized recommendations from any type of database to a user based
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on similarities between the interest profile of that user and those of other users” [243, p. 210].

Henceforward, the RS domain got increasing attention in numerous sub-areas, first and foremost,
driven by the internet industry that realized its commercial potential.

Content-based Filtering (CbF) techniques are older than the term Recommender System, as CbF
describes a set of methods that try to match the items attributes with the user’s interest towards
the items attributes [9]. The first mail filters used simple CbHF techniques before ratings were
introduced [113]. To "recommend movies to user ¢, the content-based recommender system tries
to understand the commonalities among the movies user ¢ has rated highly in the past (specific
actors, directors, genres, subject matter, etc.). Then, only the movies that have a high degree of
similarity to whatever the user’s preferences are would be recommended” [9, p. 735-736].

Collaborative Filtering (CF) represents the most common Filtering approach as it takes the
interests of other users into account. While Content-based Filtering was frequently used, even
before the first RS was introduced, Tapestry (the mail recommender in 1992) used the reactions
of other users, to filter a huge amount of documents. Unintentionally, the developers of Tapestry,
Goldberg et al., gave the first definition for Collaborative Filtering: ”Collaborative filtering simply
means that people collaborate to help one another perform filtering by recording their reactions

to documents they read” [113].

B.6. Typical (TEL) Recommender Tasks

There are a lot of different definitions of Recommender Systems. However, one could also describe
a recommender by the most common operations. According to Herlocker et al. [125] typical tasks

of Recommender Engines are:

1. Annotation in Context: Items are classified whether they are appropriate in different contexts
for specific users.

2. Find Good Items: Besides the classification of item appropriateness, items are rated and
ranked by considering historical consumption data.

3. Find All Good Items: In some cases, it is important to present not only some good items
but a complete list of these items. Therefore, service providers need not ensure that the
false negative rate is negligibly low.

4. Recommend Sequences: The prediction of an item sequence is different from just ranking
the most appropriate items, as the relevance of a sequence item is directly affected by the
previous item: e.g., when recommending an order of songs.

5. Just Browsing: Some users have no clear motivation for the usage of a web service, but want
to be inspired by recommendations. Therefore, the accuracy of item predictions plays a

minor role, while the presentation is more important for the overall user acceptance.

CbF

Techniques

First CF
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6. Find Credible Recommender: Some users interact with recommender systems just to evaluate
the effect of changes in their user profile. Especially, when new RSs were introduced, users

play around with these systems to check their appropriateness and to create trust in it.

From a user perspective, Herlocker et al. [125] describe some recommender tasks that are a

direct result of the user’s motivation:

7. Improve Profile: Users rate items because they believe in improving their user profile to get
better recommendations.
8. Express Self: Some users, in contrast, do not primarily want to get good recommendations
for themselves, but want to express their opinion on items.
9. Help Others: Some express their opinion to contribute to a community actively which is not
necessarily the same as self-expressing as mentioned above.
10. Influence Others: In contrast to the two previous tasks, a low percentage of users want to

actively influence recommendations of other users to play the role of an adviser.

In addition to that, Manouselis et al. [191] defined the following tasks — especially for TEL
playing a key role in this dissertation — that could also fit for generic Recommender System and

thus, need to be added here:

11. Find Novel Resources: Especially very active users know most of the presented items already.
Moreover, some services, such as news websites, need to present current items. Therefore,
recommenders may present only recent appropriate items.

12. Find Peers: In contrast to finding good items, recommender systems may also support in
finding similar users, such as nearest neighbors or complementary peers.

13. Find Good Pathways: In some cases, recommended sequences don’t represent the best order
for the demanding user or situation. That is why the presentation of alternative sequences
can be of interest — e.g., alternative learning paths through a set of learning resources or

through course contents.

From a user perspective, a RS should effectively support their needs by performing the previously

mentioned tasks and goals very well. Thereby, the interests and needs of the different players (e.g.,

user and service provider) need to be balanced very well to offer valuable services for both [146].

Filtering As the most common operation of a RS is to aggregate a sub-list of most relevant items out
Steps of the fully available item list, the technical task is called filtering. Although, there are many
different approaches to receive the final Top-N item list, in most cases, the starting point is the

complete item data set. Thereby, the calculation process can consist of one or multiple steps like

the following:
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1. Item selection via white- or blacklists: On a whitelist, every item that meets pre-defined
criteria, will stay on the resulting list. In contrast, on a blacklist, every item that does not
meet pre-defined criteria, will be excluded from the resulting list.

2. Item categorization: Gives a label to an item to group multiple elements by similar attribute
values.

3. Item scoring: Determines a score that represents the item’s appropriateness.

4. Ttem set sorting: The list will be sorted by pre-defined criteria, e.g., its determined score.

5. Item set limitation: The resulting list will be limited only to the first n items of the sorted
order or by using a threshold for the determined score — this step is similar to the selection

process at the beginning.

Of course, there can also be a loop of these tasks, to iteratively shrink the resulting list by

applying different approaches.

B.7. Recommender Systems from a Business Perspective

From a business point of view, there are many reasons why service providers should use
Recommender Systems [146]: They increase the number of sold products, as more items are
discovered that fit the users’ needs. Moreover, RSs support to sell more diverse products, since
it could shift the user’s attention from mainstream products to long-tail items. Additionally,
users are more satisfied, because the item selection process is faster and more efficient. When
recommendations are relevant and engaging, the user experience improves. And the better a
service adapts to a user, the more likely the user comes back. As a consequence, more users will
actively try the services. And finally, the bigger the community of a Recommender System is, the
better is the understanding of the customers’ needs which leads to more accurate recommendations
and to more sold products.

Amazon attributes 35% more sales to a Recommender System 16

— which, by the way, is
controversial, because it is still not directly measurable. However, it shows the expected value of

this approach for the e-commerce sector and the benefits for service providers.

B.8. User and Item Relations in Recommender Systems

A Recommender Engine requires data about the community and the items to be recommended.

This information is called metadata and describes aspects of an object (here a user or an item) in

a machine-readable way. Users and items, in turn, need to be related to fit the individuals’ needs.

165See ”Aggregate Knowledge raises USD 5M from Kleiner, on a roll”: http://venturebeat.com/2006/12/10/
aggregate-knowledge-raises-5m-from-kleiner-on-a-roll/ (Accessed: 07.09.2016)
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Figure B.2 illustrates the central relationships between users and items, in terms of feedback, the

similarity between users and users as well as the similarity between items and items.

Similarity (\ f) Similarity
Feedback
User Item

' A W 3
)
| Meta Data | Meta Data

Figure B.2.: Relationship between users and items in Recommender Systems

The five stars scale seems to be the most common feedback type in the web to relate users
and items. Among others it is used by Amazon'®® and Netflix'®7. Indirectly, the five stars scale
refers to the Likert-scale that is a common ”Technique for the Measurement of Attitudes” and
tries to map human opinions to a numerical scale, here to the five-point statements ”strongly
approve, approve, undecided, disapprove, and strongly disapprove” [179, p. 15]. However, a
lot of web services show very creative alternatives: "likes” as known from Facebook!%® "views”
as known from Youtube'%?, 10-Rating points as used by IMDb!'"® or even the TV Predictor in
Movisto developed by Fraunhofer FOKUS Cf. [167]. Besides the so-called explicit feedback, where
a user provides feedback on purpose, there is another feedback type: implicit feedback is collected
without being noticed by the user [146, 270, 57]. For instance, when visiting a product-page of

Amazon or when watching a video on Youtube. The TV Predictor uses both feedback types, as

well:

”In order to calculate recommendations the TV Predictor must know about the users

interests. Therefore the engine differs between two different feedback types |...]:

e Automatically tracked watch behavior: The client sends in regular intervals messages
indicating the watched channel, so the server can lookup for the current playing program
in the database.

e Manually given ratings: The user can explicitly provide ratings for single programs in

range of [1, 10]”

Cf. [167, p. 66]'7L.

166See Amazon: www.amazon.com
167See Netflix: www.netflix.com
168Gee Facebook: www.facebook.com
169Gee Youtube: www.youtube.com
1709e¢e IMDb: www.imdb.com
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In addition to explicit and implicit data, Verbert et al. [270, p. 321] listed a third category of
user feedback — ”inferred data”. This data can be extracted by further processing explicit and
implicit data and matching it with additional parameters, for instance "to estimate the current

task of the user”.

B.9. Additional Recommender Approaches

Besides classical Content-based Filtering and Collaborative Filtering, a lot of other approaches
exist. Mostly, there is neither a common definition nor a common classification for these approaches,
because their concepts may fall into multiple filtering classes. That is why the following approaches
are mentioned without a binding classification.

A lot of recommender systems use Machine Learning (ML) techniques, such as Clustering,
instead of classical Filtering approaches. The main difference is that ML techniques are designed
to perform general regression or classification tasks that do not need to cover recommender aspects
necessarily. However, these online and offline Machine Learning algorithms can perform similar
functions as classical filtering approaches. For that reason, some of them are introduced as filtering
techniques. Another way of classifying ML approaches is in the form of learning: In supervised
learning, a human supervisor needs to label training data, so that an algorithm can learn the
features associated with that label and predict the labels of future items. Unsupervised learning,
instead, tries to find patterns and structures of unlabeled data without any human confirmation

[146, p. 48].

Learning
Unsupervised Supervised
Association Rules Clustering Dt_ercrleszgm Neural Networks SVM

Figure B.3.: Machine Learning approaches for recommender systems

Park et al. [209] also classified often used data mining techniques for Recommender Systems
in the research literature. In 2012, they published the details on the analysis of 210 scientific
papers in 46 journals. The explored papers can be clustered into eight significant machine learning

approaches: Association Rules, Clustering, Decision Trees, k-Nearest Neighbor, Neural Networks,

171 This extract was written by Christopher Krauss. The TV Predictor was developed first as showcase for
Bertelsmann Arvato to be displayed on SmartTVs (shown at IFA 2012) and afterward as website component
"Movisto” for www.rtv.de (Dec 2012 until June 2013).
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Link Analysis, Regression and other heuristic methods.
Preference Machine Learning can also be used for Preference Filterings (PFs) that tries to map the prefer-
Filtering ences of a user to the attributes of an item — so for instance in the TV Predictor recommendation

engine using a Support Vector Machine (SVM) as a binary classifier:

"Its goals are to find items that fit the users’ preferences. These preferences originate from
manual user input or by learning them automatically. Therefore user interests (represented
as attributes) are mapped to the item attributes, such as a sports interest of a user is mapped
according to the category of an item (e.g. a sports program) (cf. [299, p. 244]). Support
Vector Machines (SVMs) create hyperplanes that divide specific space with according points
into two spaces. Each point represents an item, and the according coordinates are its
attributes. The Support Vector Machine will find the best fitting hyperplane that is the
borderline between two classes (spaces). This can be done very effectively in multidimensional

spaces. (cf. [130, p. 147], [289, p. 401-402])”

Cf. [167, p. 68]172.

In the RS of the TV Predictor, each user trains his/ her own SVM with his/ her rated programs
respectively their features. For each user, a threshold is calculated, that splits high and low ratings
into equal parts. This threshold acts as the hyperplane, and the result is a prediction whether an

item would be rated good or bad.

"The input data (the training as well as the prediction data set) are slot metadata of a
watched program that must be converted into a list of numbers. So it is only applicable to

use features that can be mapped to the required numeric range of [-1,1]:

e Slot time: The weekday (0-6), the duration of the slot (0-240 min) as well as the begin
and end time (0-24 hours) are used.

e Program data: The production year (1920-2020) and the country String is used. The
usage of Strings requires a mapping to more than one feature. So there is a feature for
each possible country (D, GB, USA, E, F etc.) with the value 1 (it is this country) or
0 (it is not).

e Channel data: The same procedure as for the countries applies to the main 22 channels.

e Genre data: Same as above for 69 genres.

e Category data: Same as above for 6 categories.

So at all, there are 109 features for each slot. To get a prediction, each training slot has to
be labeled. In this case, the label is numeric and either a 1, when the rating of the current

user for that slot is higher than 7.5, or apart from that, it is a -1”

172This paper has primarily been written by Christopher Krauss.
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Cf. [167, p. 68]'73.

In an experiment, nine participants provided between 15 and 113 ratings on different TV
programs — 28 on average. To evaluate the accuracy of the SVM, a 10-fold cross-validation was
utilized on previously rated items. The accuracy ranges between 60 and 96 % for the different
nine users — 85 % on average.

In the style of Knowledge-based Filtering, Burke sees Utility-based Filtering as special recom-
mender class. Thereby, the user profile is treated as a complex "utility function that the system
has derived for the user, and the system employs constraint satisfaction techniques to locate the
best match” [52, p. 3]. For that reason, Utility-based Filtering can also consider non-product
features "such as vendor reliability and product availability” to calculate better context-aware
recommendations. This approach, for instance, avoids the recommendation of items with shipping
delays when the user’s need for that product is urgent. In contrast to Burke’s interpretation,
this approach is classified as sub-class of Content-based Filtering within this work — similar to
Item-to-Item Similarity Mapping as defined in [181].

Demographic Filtering (DF') can be used either to enrich the user profile with additional (demo-
graphic) data or to add to the existing item attributes some target group specific demographics.
Manouselis et al. [191, p. 398] classifies Stereotypes or demographics filtering in Technology
Enhanced Learning as Collaborative Filtering approach. The processed ”information can be used
to identify the types of users that like a certain object” [212, p. 400] and subsequently, to create
"categories of users having similar demographic characteristics” [14, p. 873]. This approach aims
at identifying first "which category [a new user] belongs and then [at] applying the aggregate
buying preferences of previous users in that category” [14, p. 873]. Thus, DF might improve the
accuracy and performance of predictions in both algorithm classes: Content-based Filtering and
Collaborative Filtering. Thus, it can be handled as a Hybrid Filtering approach.

While the topic of Recommender System and different data mining approaches was exhaustively
analyzed over the last decades (cf. [119, 11, 145, 38, 37]), the topics of data mining for social
media (cf. [230]) and social network analysis [43, 79] play a substantial role in the last few years,
because distributed and big data processing as well as graph-based analysis are more and more of
interest.

Community-based algorithms try to improve data prediction by taking the social connections
into account (cf. [176, 294]). These data can be taken from external social networks (cf. [43, 63])
or own communities (cf. [198]).

SNA allows for re-using existing information to enrich the community data of a closed corpus
recommender system. The significant advantage comes from the circumstance that users do not

want to enter the same information in multiple web services, but service providers can easily access

173This paper presents the results of the Master thesis of Christopher Krauss and has primarily been written by
him.
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existing data via open APIs. Facebook, for instance, offers an API to access entered likes and past

comments. This is used to enrich community data in our TV Predictor Recommender System.

”Our application prototype is a web-based personal Electronic Program Guide (EPG) which
is able to offer TV recommendations just seconds after users log in for the first time with their
Facebook accounts by parsing their personal data. The program data is being delivered by
a recommendation engine called TV Predictor [167]. Moreover, the novel recommendations
based on the users Facebook profile are highlighted, and it is even possible to see what the
user’s friends could like. [...] Basically we want to find out how many of the determined
criteria/attributes are matching a certain program. Since metadata like title or genre might
not always be written the same way throughout Facebook movie pages and various EPG
data provider, we use the Levenshtein distance to improve robustness while matching these
strings that is "The smallest number of insertions, deletions, and substitutions required to
change one string or tree into another” [216]. We calculate a similarity degree which is 1
minus the Levenshtein distance divided by the length (maxLength) of the longest of the
two strings S1 and S2:

1 — distance

sim(S1,52) = maxz Length(S1, 52)

(B.1)

[...] The prototype indicates that using textual analysis of Social Networks could compensate
the cold start and sparsity problems predicting automatically the interest in otherwise
unknown items by 1.8% up to 15.1%. As a result, users can start with a personalized service

without giving explicit feedback and by only logging into a Social Network”

Cf. [164, p. 67]174.

This section introduced Machine Learning as well as some less important or niche filtering

approaches which, moreover, might be classified in different ways.

B.10. An Example of Hybrid Filtering

A representative example of Hybrid Filtering is the TV Predictor [167] introducing a novel

recommendation engine that shows program recommendations directly on a SmartTV:

”The recommendation system uses a set of different criteria to make recommendations
which correspond to the users’ viewing behavior. When users watch TV Predictor enabled
channels, they can open the recommendation menu by pressing the according button on

their remote control. A set of the best and most relevant programs for the current user will

174This paper has been primarily written by Christopher Krauss.
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be shown. These personalized recommendations are based on the automatically tracked
viewing behavior and explicitly defined program ratings of the registered user or - in case

they did not sign up — they will get averaged or well-selected recommendations”
Cf. [167, p. 63-64] 17°.

The TV Predictor introduces an example application area as well as some common collaborative
and content-based filtering techniques for predicting the users individual watching behavior. As a

result, the Top-7 most appropriate TV shows are presented in different categories to the user:

”In order to generate the best and most accurate recommendations, the recommendation
system combines the best fitting algorithms in a hybrid way. The usage of these algorithms

depends on the user’s request:

e Find similar programs to the selected one by using common content-based filtering
algorithms, such as the Cosine Similarity, and by using unsupervised learning algorithms,
such as Association Rules

e Get program highlights for a specific time period based on the favorite programs of
similar users (Pearson Correlation Coefficient) and predictions of program ratings
(Slope One)

e Calculate a personalized program guide changing the channel automatically by using
Clustering to pre-select programs best fitting the user’s interests and rating predictions

e Overlay upcoming program recommendations while watching TV based on recognized
behavior patterns (calculated by a Support Vector Machine) to find user interests, such
as genres and categories, favored actors, directors and producers or even the preferred

channels, weekdays or times to watch specific content”

Cf. [167, p. 64] 176

As shown in the paper extract, the TV Predictor uses, among others, Content-based Filtering in
two different flavors. The first one is a classical item-to-item-comparison: When a user watched
one movie, other movies that are similar are recommended. The second way of CbF is to suggest
new movies by matching the user’s preferences (metadata of watched films collected during past
transactions) with other item’s metadata. The result is a list of new movie recommendations that

fit the users past watched movies.

175The work at the TV Predictor engine started with the master thesis of Christopher Krauss in 2011 — supervised
by Prof. Dr. Agathe Merceron. The publication is the result of an extension of this work under the project
lead of Mr. Krauss at the FOKUS. Arvato RTV (content provider and subsidiary company of Bertelsmann)
used the TV Predictor for about one year under the name Movisto and by Media Broadcast (DVB-T/ DVB-T2
network provider in Germany) in the service multithek. The here shown section was written exclusively by
Christopher Krauss.

176The presented section was written exclusively by Christopher Krauss.
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The TV Predictor combines the introduced Content-based Filtering, Collaborative Filtering and

Preference Filtering approaches in a hybrid way, as described here:

"The TV Predictors recommendation engine uses the benefits of Content-based, Collaborative
and Preference Filtering as well as [...] offline learning algorithms. [...] The starting point
for a typical prediction is the set of all relevant items for the specific situation (e.g. a
group of channels, genres or a specific time period). The system analyses all items and
existing user-item-relations. If such a relation exists, the engine skips the rating prediction.
Otherwise, the introduced algorithms consecutively calculate predictions for the current
item. If the results fit into a specific range (so considered as good proposals), the results are

merged in a weighted way. If not, the result set is decreased by this item”

Cf. [167, p. 68]'77.

B.11. Explanation of the User-ltem-Matrix

For a better visualization and to be prepared for future calculations, the feedback of a user
for an item is stored in a user-item-matrix [180]. This matrix consists of columns for items and
lines for users. Each cell relates an item to a user and contains a value representing the feedback.
Figure B.4 shows an instance of a user-item-matrix with feedback on a one to five stars scale —
the more stars, the higher the preference. The service of this example offers five items i1, ..., 15

and has five customers uq, ..., us.

In most cases, only a meager percentage of cells are filled. The empty cells indicate a missing
knowledge due to a lack of user feedback on these items. This issue results in multiple challenges,
that might bring a lot of trouble to Recommender Systems: for instance when there is too little
data available for a prediction. However, Recommender Systems aim at predicting these missing
values by matching the feedback of others. In the example in Figure B.5, the preference of u; for

i4 is predicted by analyzing other users in the user-item-matrix.

177The TV Predictor engine, developed by Christopher Krauss, predicts the Top-N item for each user in particular
situations and uses a hybrid approach consisting of the following approaches: Content-based Filtering with
the Cosine-based Similarity, Item-based Collaborative Filtering with Slope One, User-based Collaborative
Filtering with Pearson Correlation Coefficient, Neighborhood-based Filter using K-Means Clustering, Rule-based
Recommendations with Association Rules utilizing the Apriori Approach and Preference Filtering with the help
of a Support Vector Machine for each user.
All algorithms are combined in a cascading, switching or weighted way as mentioned previously. Moreover,
an evaluation was conducted to analyze the overall performance as well as the average accuracy.
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Figure B.4.: Instance of a user-item-matrix with five users and five items.
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Figure B.5.: Example of Collaborative Filtering based on the introduced user-item-matrix.

B.12. TV Program Association Rules

The Association Rules algorithm consists of two parts. Part one generates frequent itemsets
containing these items, which have frequently been consumed together — e.g., by the same user on

the same day.

"Therefore, the watch-feedbacks of each user are represented as a transaction. It is also
possible to use other user-item-relations, such as the best-rated items (analyzed with the
help of a rating threshold) for each user, or the watched items for each user and day. The
threshold of total watched time (for genres, programs, etc.) is 20 minutes for the prototype.
When using the frequent itemsets for more than only 300 users, the threshold has to adjust
dynamically to a sound value. So, the frequent item sets are found for the following domain

data objects (the given minimum support values work fine for the test data set):
e Categories (minSupp: 10%)
e Channels (minSupp: 20%)
e Crew Members (minSupp: 11%)
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e Genres (minSupp: 10%)
e Programs (minSupp: 6%)
e Series (minSupp: 6%)”

Cf. [167, p. 67-68]178.

The second step generates the association rules for the calculated frequent itemsets and ranks

them by their confidence value.

"Some thresholds are needed to adjust this algorithm. Especially the support value (supp in
percent or sometimes as absolute value) is necessary and defines the frequency of an item

set.
supp(X UY)

> minsupp (B.2)
T

supp(X = Y) =

|T| is the total number of transactions, so supp(X = Y) is the fraction of all transactions
that contain X and Y. The confidence value expresses the conditional probability of Y

knowing X and is defined as:

supp(X UY)

conf(X = Y)= supp(X)

> minconf (B.3)

The minimum confidence value (minconf) and the minimum support value (minsupp) are
the according thresholds, so the goal is to find rules with a support value equal to or greater

than minsupp and a confidence value equal to or greater than minconf”

Cf. [167, p. 67-68]179.

The results of this algorithm have been evaluated in an online experiment with 40 volunteers.
The participants were asked to document every watched program during a three weeks duration in
an easy to use web interface. As a result, they viewed 522 different programs (most of them were

series and movies) on 36 channels. In total, the summed watch duration result in 311 TV hours.

”All results are based on the values: minimum Confidence (0.5) minimum Lift (1.1) and
minimum Cosine (0.66). Over 500 interesting association rules resulted. Some of the

strongest rules are stated below:

e Genre: 'Docu — Soap’,’ Late — Night — Show’ = 'Soccer’,
e Category: 'Entertainment’, Series’, Other’ = 'Report’,’ Sport’,

e Series: 'TheSimpsons’, Scrubs’ = 'HowIMetY our Mother'”

Cf. [167, p. 67-68]180

178The here introduced experiment was written and conducted by the author.
179The paper extraction was written by the author and reflect the work of [180], [182] and [118].
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Below is a list with more results of that experiment:

e Channels:

e Rule: "ProSieben”, ”Sat.1” = ”"VOX”,
e Rule: "ProSieben”, "VOX” = ”Das Erste”

e Programs:

e Rule: "Die purpurnen Fliisse”, ”Hilfe, mein Mann ist ein Heimwerker!” =— ”Die
Kiichenchefs”,
e Rule: "Tlluminati”, "Wer wird Milliondr?” = "Gute Zeiten, schlechte Zeiten”

e Series:
e Rule: "Freitag, der 13.”, "Das perfekte Dinner” = ”Fufiball”,
e Rule: "Die Simpsons”, "Das perfekte Dinner”, ”Sportschau live” —> ”mieten, kaufen,
wohnen”,
e Rule: "How I Met Your Mother”, "Die Simpsons”, "Scrubs - Die Anfanger” —

”Galileo”
e Crew/ Actors

e Rule: "Eva Mona Rodekirchen”, ”Seyhan Derin” = ”Daniel Fehlow”,
e Rule: ”"Daniel Fehlow”, ”André Siebert” = ”Seyhan Derin”,
e Rule: "Seyhan Derin”, "Daniel Fehlow”, ”André Siebert” —> "Eva Mona Rodekirchen”

Amazon’s Item-to-Item Filtering approach, which produces similar results as Association Rules,
belongs to the class of Item-based Collaborative Filtering and uses the Cosine-based Similarity
measure with ratings instead of attributes. The algorithm searches for similar user ratings based
on the ratings the current item has received [180, p. 79]. However, Amazon uses only an excerpt
of the whole data set for each request as of the vast amount of existing feedback data and the

resulting vector dimensions.

B.13. Pearson Correlation Coefficient

Pearson

”The Pearson correlation coefficient for instance is often used to calculate the similarity of Correlation

users by considering the items both users rated. Coefficient

Zie[uluz (riﬂtl —Tuy )(TLUQ - ?UQ)

\/Zieluluz (Ti7u1 - F711)2(r1',1tz - Fuz)2

pSim(ui,uz) =

180The here introduced experiment was written and conducted by Christopher Krauss.
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i, is the rating of user u; for the item ¢ of item set I,,,, (a set with existing ratings of
both users for each item). 7,, is the average rating of all the items of user us (cf. [9, p.

738], [278, p. 153], [64, p. 619])”

Ct. [167, p. 67]'8L.

B.14. Challenges for Collaborative Filtering

On most platforms, new items are frequently added to a Recommender System due to the
publication of new products, seasonal offerings, and many other circumstances. "Therefore, until
the new item is rated by a substantial number of users, the recommender system would not be
able to recommend it” [9, p. 740]. In some cases, these items are presented to some randomly
chosen users to collect as soon as possible the critically needed amount of information. Others
use approaches from Content-based Filtering to compensate missing data: Schein et al. "make
predictions for unrated items by using content data: averaging the set of content data (e.g. actors)
that associate with an item (e.g. movie)” [238].

The accuracy of the prediction of appropriate items depends first and foremost on the pre-
dictability of single users. Most people follow the mainstream and thus, show similar preferences
— e.g., they may be interested in the latest Hollywood movies, especially in those that lead the
common charts. Those users are called white sheep. Users, in contrast, who are regularly interested
in niche items, such as low-budget productions, are called black sheep. They are using the long
tail item catalog and, typically, represent a still relevant target group. Recommender Systems can
classify this special audience and recommend appropriate niche items as long as there is still a
small number of similar users [194, p. 21]. However, the biggest challenge for RSs comes from
some so-called gray sheep. A gray sheep represents a user that acts sometimes as white sheep and
sometimes as black sheep, but in an unpredictable way. As they combine the interest in both,
mainstream and niche items, these users show the highest failure rate of predictions. A good
approach is to isolate this group from the others — since their feedback might also influence the
prediction for the rest of the community — and treat them in a separate way: For instance by
using only Content-based Filtering. As the accuracy of a system plays a key role:

In order to analyze a Recommender Engine in terms of performance, usability, accuracy and
other important Key Performance Indicators, Chapter 6 will introduce different concepts for an
extensive evaluation.

Recommender Systems work under different conditions that actively affects the recommendation
score: for instance, spontaneous trends, seasonal re-occurrences of conditions or other influence

factors. However, in some cases, the number of the same recommendation for different users has

181 The paper extraction was written by Christopher Krauss and reflect the work of [9, 278, 64].
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an impact on the appropriateness of recommendations. A good example is a travel Recommender
System that predicts the bests sights close to the hotel. This system might also recommend
beaches — and a critical attribute of a beach is represented by the number of visitors. Obviously,
the fewer visitors — at the best no one —, the less noise, the less litter pollution and the better the
beach. On the other hand, each recommendation of the same beach decreases its loveliness and
thus, its recommendation score. This issue is present in many different application areas and must
be tackled for each use case separately. Other use cases are, e.g., the prediction of alternative
streets during a traffic jam in a navigation system, or entirely different in a video portal, the equal
distribution of calls on different videos to avoid peaks on the same content that might overstress a

Content Delivery Network (CDN).

For the planned system, this issue can be neglected, as most learning objects, besides the
mentioned videos, are based on unlimited resources and, thus, do not influence the recommendation

quality.

Although or just because RSs bring a substantial potential for e-commerce services, some of its
users try to manipulate automatically generated recommendations. Competitors might rate some
competing items very low — often with fake accounts — or their items very high. These attacks
"affect the quality of the prediction for many users, resulting in decreasing overall user satisfaction
with the system. Such threats may cost users’ time and money and pose a serious challenge to the
recommender system administrators” [66, p. 67]. Shilling attacks are hard to detect as the given
user might be only very critical, and an exclusion of the concerned user has grave consequences.
Chirita et al. have shown that malicious users do "exhibit special, noticeable rating patterns” [66,
p. 73] regarding the number of prediction differences, the standard deviation in user’s ratings, the
degree of agreement with other users and the degree of similarity with top neighbors. While the
detection of shilling attacks is a time-consuming task, it helps to increase the overall prediction

accuracy and customer satisfaction.

On the one hand, the item catalog that is the base for most recommendations shows a vast
but mostly finite number of elements, so for instance, for movie recommendations at Netflix or
products at Amazon. All items within a service are called closed corpus. On the other hand, some
services also provide recommendations of external sources. ”The open corpus problem applies
when an unlimited set of documents is given that cannot be manually structured and indexed with

domain concepts and metadata from a community” [191] — so, possibly an almost infinite number

of links in the WWW or other items that cannot be processed by a single Recommender System.

Open corpus recommendations bring a lot of power to the prediction: e.g., the recommendation of
up-to-date news or the latest music from various external databases — and for the service provider
without being directly involved in the cost-intensive item aggregation process. However, the

drawback comes from its unpredictability, regarding quality, data structure, and the performance
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of the algorithms when processing unstructured data.

The number of users, items as well as the choice of algorithms directly affect the computing
power. CPU, as well as memory and other hardware resources, must be observed to avoid service
breakdowns. Some algorithms might be distributable for a single calculation or at least for each
new request. And several algorithms show different complexity levels that grow in various manners,
e.g., logarithmic, linear or exponential. In item-based Filtering, for instance, the computational
complexity "grows linearly with the number of customers that in typical commercial applications
can grow to be several million|[...]” [147, p. 247]. To avoid delays for the end-customer, some
pre-processing steps can be performed offline. On the other hand, a user might be disposed to

wait a couple of seconds as long as there is a reasonable explanation for the delay.

Adaptive Systems aim at bringing more convenience to the offered service. In a theoretical
world, users trust such a system and follow the predicted recommendations. In fact, many
reasons make the community suspicious or just less convinced. Especially, since service providers
follow their business agenda, users often fear the risks of being influenced — e.g., by editorial
advertisements. There is a special research area targeting this Influence Analysis. It exists for
specific use cases, such as visitor planning [236] [290], e-commerce [219] and Social Networks [45] —

or even subdomains, such as psychological aspects in Recommender Systems [292].

From a customer point of view, most RSs operate as black boxes with some input data, e.g.,
the ratings, and some output data, the recommendations. Especially, when predictions fail and
recommendations reference inappropriate items, users want to determine the reason for the failure
and, at best, want to correct its cause. Also, "recommendation results might change automatically
when the context of the user changes [... which] can be confusing to the user” [270, p. 331].
However, when services do not explain their recommendations, users get frustrated. Therefore,
Herlocker et al. suggest an explanation facility for Recommender Engines and identified four
main benefits of this transparency [124, p. 243]: (1) justification of recommendations, (2) more
user involvement in the calculation process, (3) education of the user in terms of recommender
strengths and limitations as well as (4) better user acceptance. However, showing the whole
sophisticated mathematical model to a user could overburden him. Thus, the way of presenting
explanations needs to be evaluated for each application area independently. Herlocker determines
"Rating histograms” as the most appropriate way to explain an average algorithm. "In addition,
indications of past performance; comparisons to similar rated items; and domain specific content
features, such the actors and actresses in a movie are also compelling ways to justify a high

recommendation” [124, p. 249].

Nava Tintarev identified seven aims of Recommender Systems and resulting guidelines to
present recommendations comprehensively [264] — among others: transparency, effectiveness,

persuasiveness, efficiency, and satisfaction. However, practical experiments seem to disagree with
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some of these points. A total transparent service telling about the whole processed data, for
instance, can scare the end customer (e.g., because of the vast amount of collected data) instead
of boosting the understanding and so, it might cause adverse effects. Further evaluations need to

be conducted in real life settings.

B.15. Sparsity Analysis

In 2012, the sparsity of 13 Recommender Systems of popular web services have been analyzed!®2

see the Figure B.6. As can be seen, the amounts of users and items per service are usually unequal.
Either there are more users than items. In this case, the item catalog might be experienced as
limited — in fact, beyond a certain threshold, users are not capable of overlooking the whole
repository. Nevertheless, they might not find appropriate products. Or, in turn, the service
manages more items than users, so the probability that every item was rated by at least one user

is relatively small. That corresponds to the so-called new item problem.
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Figure B.6.: Sparsity Analysis from 2012 of popular services with Recommender Systems; y-axis:
the number of items and users on logarithmic scales.

Figure B.7 indicates the possible size of the user-item-matrix (number of users multiplied by

the number of items in light blue) and its actual density (in percent; dark blue) — so the real

182This analysis was part of the Master Thesis of Christopher Krauss with the title ”Personalized Recommendations
to be displayed on SmartTVs” (May 4, 2012).
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number of user-item-associations within the service. The result: the sizes of the matrices are
inversely proportional to their densities. That is due to the human ability to consume only a
fixed amount of products. Just because persons have a broader choice, they are not going to
consume more. With a certain amount of items, the number of feedbacks per user remains the
same, independently from the catalog size. Consequently, with a constant community size, the

more items, the fewer ratings per item.
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Figure B.7.: Sparsity Analysis from 2012 of popular services with Recommender Systems; y-axis:
the feedback density (percentage of existing feedback compared to the total size of
the user-item-matrix) on a logarithmic scale.

"Rashid et al. [222] classify different strategies to tackle the initial sparsity in user data by
offering meaningful items to a new user during the registration process. The user will be
asked to rate at least ten movies which were selected for specific strategic reasons, ranging
from a random selection, to a popularity-based selection, through to a selection of the most
valuable items for the recommendation algorithm. Unfortunately, this process still requires
to browse between 50 and 80 different movies. As a consequence, over 13% of the users

taking part in this experiment aborted the registration”

Cf. [163, p. 366] 183,
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Another approach for compensating sparsity is to collect existing user data from other sources,
such as social networks, where these users are already registered. Middleton et al. [196], for
instance, used ontological inference in the user profiling process and so significantly improved the
recommender performance by taking previously browsed research papers and their classifiers into
account. The author of this dissertation conducted similar experiments, but on the TV program
domain. The usage of a so-called Social Preference Ontology [163, p. 370] converts Facebook
interests into Recommender System data. Thereby, likes but also written texts are analyzed to
enrich the recommender’s user profile. Especially Facebook comments are determined with the
help of a novel Semantic Text Analyzer that identifies both: Semantic keywords representing the
content as well as the sentiment, in terms of a numerical value that represents the author’s opinion
on the content. The extension of a Social Preference Ontology led to a prediction of interests in

otherwise unknown items by 1.8% up to 15.1%.

B.16. Introduction of Different Learning Settings

Education is an essential task for humans as it allows to share and process masses of available
information. Formal learning shall convey backgrounds and prepare for specific tasks, for instance
known from classroom learning with teachers. Additionally, learners often take the control of their
study conditions in Self-Regulated Learning (SRL) settings, where learners chose individually the
topic, place and time of the knowledge acquisition. However, most people learn informally when
trying to solve problems on their own because of personal or professional reasons [74]. Thereby,
they are not necessarily aware that they are learning. Life-Long Learning (LLL) describes the
pursuit of knowledge even after school. Obviously, there are a lot of different educational settings
and their appropriateness depend on the topic, the teachers and especially the learners.

In addition to traditional LMSs for face-to-face courses and blended learning, Online-only
Courses became very popular, primarily for higher education [258]. As universities hold their
presence lectures anyway for their students, they are offering the same or similar contents over
the World Wide Web for a broader target group. It is designed for blended learning courses with
registered students of the same university [83], short-term students who just want to receive a
specific certificate for the course participation or for guest students who are allowed to access the
whole content, but without an official certification.

A Massive Open Online Course (MOOC) is a particular web-only course that is "open” for
everyone and, as a result, is taken by a "massive” number of students. Three major MOOC

platforms, founded in 2011 and 2012, share the market for higher education at the moment

183This extract was primarily written by Christopher Krauss. The main aim of the paper is to overcome the Cold
Start Problem with the help of a Social Preference Ontology.

Formal or

Informal

Online

Learning

MOOCs
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[258, 296]: Coursera'®* is driven by 149 partners, lead by people from Stanford University, and
offers over 2,000 online courses for about 25 million learners. Udacity!'®®, born at Stanford
University, as well, focuses on a lifelong learning experience and offers MOOC courses as well
as industry-oriented "Nanodegree Programs”. Until 2017, Udacity taught over 3m students and
concentrates more on specialized contents and bridges the gap between education and required
employment skills. Another popular MOOC service is edX'®6, founded by MIT and Harvard, and
offers over 1800 courses for over 10 million learners (over 33 million enrollments until end of 2017).
Unfortunately, these educational organizations developed proprietary technical infrastructures,
including self-developed Learning Management Systems containing a lot of sophisticated features,

but as closed sources. Just edX is designed as an open, reusable platform called Open edX'¥7.

B.17. Ontology-based Educational Recommender Systems

In contrast to traditional RS, the classes of Content-based Filtering, as well as Preference
Filtering, are under-represented because it would not make much sense to simply recommend
similar learning objects or just learning objects that are preferred by the learner. Especially the
word "preference” does not make much sense. Educational RSs are more about predicting learning
objects that are of interest for reaching the course goals. That could be one reason, why the
community tends to focus on semantic representations of knowledge in the user profile as well
as semantic representations of learning contents and goals [207]. That could also be the reason,
why most of the researchers introduce learning ontologies, like, for instance, Recker and Wiley
did already in 2001. Their non-authoritative educational metadata ontology is designed to fit the

needs of "filtering and recommending learning objects” [224]. Moreover:

"The ’APOSDLE’ Recommendation Service [251] uses an extended user profile as input for
appropriate content recommendations and a web tool for ontology evaluation for identifying
semantic similarities. The *Multi-Attribute Recommendation Service’ [193], in turn, uses
ratings on different attributes and criteria for the same learning object in order to calculate

proper recommendations”
Cf. [161, p. 501]'88.
Especially for open corpus recommendations, semantic tags are important and seem to bring

a huge benefit for knowledge representations and further calculations, as shown in the area of

"multilingual controlled vocabularies” across language and country borders [276]. And the analysis

184Coursera. See https://www.coursera.org (Accessed: 20.11.2017)
185Udacity. See https://www.udacity.org (Accessed: 20.11.2017)
186edX. See https://www.edx.org (Accessed: 20.11.2017)

1870pen edX. See https://open.edx.org/ (Accessed: 05.05.2017)

188 This paper excerpt has primarily been written by Christopher Krauss.
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of a ”Simulation environment” [200] by Nadolski et al. result in more accurate — but maintain
intensive — recommendations based on ontology-strategies compared to light-weight CF methods.

As already introduced in Section 4.2, even zA PI statements can be seen as an ontology on the
learner’s activity level, and SCORM, LOM and the like are ontologies on the learning content
level. Thus, a TEL Recommender System that builds on these type of data can be classified as

Ontology-based Learning Recommender, as well.

B.18. Practical Examples of Context-Aware Systems

At the moment, the most popular examples of context-aware systems are developments of the big
US technology providers, like Apple, Google, Microsoft or Amazon: for instance, Google Now8? is
a digital everyday-life adviser. It can be asked to switch on the light in the living room or for the
best route to work. Consequently, it processes mined contextual data, such as past and current
geolocations. As a consequence, it knows the current position, predicts the assumed working place

191 work

and the most appropriate route from one to another. Apple’s Siri'®® or Amazon’s Echo
in similar ways but on other data sources. All of them are incorporating user information from
their own services (geo-positions, user interaction data and so on), collaborative data from other
people who use the same service (e.g., for predicting traffic jams) as well as external data from

additional service providers (such as weather data).

B.19. Market Share of Learning Management Systems

Figure B.8 shows the evolution and market share of different Learning Management Systems
from 2000 to 2016 in the European context. According to LISTedTECH.com, Moodle!'%? is the
most used system in Europe since 2006. In 2016, it had a market share of 65%. Blackboard

93 " as the main competitor, reached only 14%. Other services show a global market share

Learn?
of less than 5%. However, when focusing on different domains, such as higher education or
industrial-driven training, or on specific markets, such as USA or Canada, there are different
shares and the market seems to be more fragmented.

Figure B.9 shows the shift from Learning Management Systems to Learning Platforms for higher
education in Northern America. It visualizes the foundation and, sometimes, merges of these

platforms as well as a classification as open source technology. In the US and Canada, Blackboard

has the biggest market share as primary LMS and merged with various platforms. However,

189Google Now. See https://www.google.com/intl/de/landing/now/ (Accessed: 22.12.2016)

190 Apple Siri. See http://www.apple.com/de/ios/siri/ (Accessed: 22.12.2016)

191 Amazon Echo. See https://www.amazon.de/Amazon-SK705DI-Echo-Schwarz/dp/BO1GAGVCUY (Accessed:
22.12.2016)

192Moodle. See: https://moodle.de/ (Accessed: 20.02.2017)

193Blackboard Learn. See: http://www.blackboard.com/ (Accessed: 20.02.2017)

LMS Market
Share
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Figure B.8.: Historical Market Share of Learning Management Systems (2000 until 2016)
©LISTedTECH and e-LITERATE
see: http://listedtech.com/european-lms-market/ (Accessed: 13.02.2017)
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Moodle is a prominent representative of the Open Source community as well as Canvas 4 that
was just founded in 2010 and is growing massively. As one can see from Figures B.8 andB.9, the

domain of Learning Management Systems has some market leaders, but changes regularly.

B.20. Additional Educational Specifications

Similar to IMS with its Learning Resource Meta-data Specification, another initiative started
in 2011 standardizing descriptive data of learning material: The Learning Resource Metadata
Initiative (LRMI) that builds on Resource Description Framework (RDF) [4]. RDF was created
by the W&C and, today is an important component of the semantic web as it builds on concepts,
such as subject, predicate, and object. With the help of LRMI, service providers can describe
their contents with a huge vocabulary designed, first and foremost, for educational material.
However, LRMI seems to be very flexible and light-weight!?® but not widely used, at least for
higher education and by well-established LMS.

194Canvas. See: https://www.canvaslms.com/ (Accessed: 20.02.2017)
9SLRMI, Learning Resource Metadata on the Web. See: https://blogs.pjjk.net/phil/
lrmi-learning-resource-metadata-on-the-web-from-the-1ile2015-workshop/ (Accessed 10.03.2017)
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Figure B.9.: Historical Market Share of Learning Management Systems for US and Canadian
Higher Education (1997 until 2016)
©LISTedTECH, delta initiative and e-LITERATE
see:  http://mfeldstein.com/state-higher-ed-lms-market-spring-2016/ (Accessed:
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An additional association, namely the Aviation Industry Computer-based Training Committee
(AICC), published specifications for computer-based training: HTTP AICC Communication
Protocol (HACP) defines a way to integrate HTML learning contents into LMSs. However, this

specification is less frequently used and, thus, can be neglected for this project.

B.21. Involved Stakeholders

This section introduces the set of important stakeholders and their roles roles in a typical
learning environment. Roles can be taken over by single persons or multiple ones, depending on
the learning context, the size of the institutional team and legal requirements. See Figure B.10 for
an overview of the most important stakeholders with their core use cases in the smart learning

environment. The architecture allows differing between 5 roles:

1. An administrator is the technical expert of the system, maintains the components and

manages all user roles.
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Figure B.10.: Use-Case-Diagram with the core actions that need to be performed by the different

stakeholder of a digital learning environment

. Content creators develop digital media that can be presented as Learning Objects. Learning
Objects, in turn, can be bundled and structured to learning units and whole courses. For
development reasons, they can also access the contents in the actual user front-end.

. A course-administrator can create instances of a previously created course, the so-called
course-runs. A course-run contains additional data, such as start and end date, a particular
instructor and a list of enrolled students, which is also managed by the course-administrator.
. An instructor is a direct contact with the learners. She or he might hold presence lectures
and runs the actual course instance. Besides the communication with course participants,
instructors can also analyze the learning progress and behavior of the learners.

. Learners enroll in courses (e.g., after paying for it), access the Learning Objects and commu-
nicate via discussion forums. Moreover, with the help of a developed Recommender System,
they can keep track of their learning behavior and receive personal recommendations to

overcome learning weaknesses.

It is common sense that instructors can also take the role of content creators to develop new
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and improve existing contents. Additionally they can overtake the role of course-administrators to
manage course enrollments. However, if some institutions might limit the access levels of particular
stakeholders (e.g., a guest lecturer should not get access to course enrollments), the actual roles

are defined in a more restricted way.

B.22. FOKUS-Akademie Front-end

Besides the LCA, the learning infrastructure also allows other LMSs to access once created
Learning Objects. One example is the "FOKUS-Akademie”196, which builds on the Open Source
project "Open edX”197 and was adapted for the use at FOKUS.

-
Z Fraunhofer SCHULUNGEN  UBERUNS Registrieren
FOKUS

S

FOKUS-Akademie

ISTOCKTEINKYPINISY

- Secure Software Engineering
Vertrauen durch Semantic Business Rules and Strategic Open Government Data
Produktzertifizierung Decision Models Provision Das Seminar gibt einen Uberblick uber die
Grundlagen der sicheren Softwareentwicklung.
Der Kurs gibt einen Uberblick Uber gangige Leam about semantic rule technologies to Learn about the knowledge on appropriate
Zertifizierungen im IT-Sektor. accelerate and automate ki dge-based ar ic in
decisions! public administration fostering publication of
Startet: 11. Mai 2017 public data resources as open data and linked
Startet: May 19, 2017 datal

Startet: 2. September 2017

Startet: July 3, 2017

Jber uns Nutzungsbedingungen Impressum Datenschutz Fral

Figure B.11.: Overview of available courses at the FOKUS-Akademie on a desktop Chrome
browser.

Open edX brings a fully-fledged Graphical User Interface that is used by millions of users in
its original version edX (see Section B.16). It is available on Git and can be hosted by every
interested institution. In addition to the features of the Learning Companion Application, it
allows managing course enrollments for both educational staff and the learners directly within the
platform. Its further advantages come from some available components that can be activated as

optional features: among others, a sophisticated authoring tool (called Studio), Learning Analytics

196 The FOKUS-Akademie (English-translation: Academy of Fraunhofer-Institute for Open Communication Systems)
is a LMS designed and developed by a team of FAME led by Christopher Krauss. See https://akademie.fokus.
fraunhofer.de/ (Accessed: 06.07.2017)

1970pen edX. See: https://open.edx.org/ (Accessed: 06.07.2017)

Optional
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and even Payment-Processors that allow interested users to register, pay and enroll for a course
without requiring any action of educational employees.

Open edX uses proprietary content formats — e.g., for exchanging contents between multiple
Open edX instances. This content format is called Open Learning XML (OLX) and presents
an extension of the Fxtensible Markup Language (XML) to be used in an educational context
198 " Course elements, in contrast, are tagged as special components, so-called XBlocks, and can
contain different hierarchical levels up to a whole course. ”"Like HTML <div> tags, XBlocks
can represent pieces as small as a paragraph of text, a video” 1% and so on. To the best of the
author’s knowledge and belief, OLX and XBlocks are not supported by other common LMSs.

As an alternative to Open Learning XML, the Learning Tools Interoperability Specification is
supported in both directions: to access contents hosted in Open edX via the LTI provider interface

in other LMSs and to integrate externally hosted LTI contents in the Open edX front-end as LTT

\ f SAMSUNG \

consumer.

pyr— W Bockmark

Module 1 Quiz Welcome

Course Introduction
Multiple Choice

Prof. Dr. Adrian Paschke

Video

Figure B.12.: Content views (left: multiple choice quizzes; right: introduction video) for the
course "Semantic Business Rules and Decision Models” at the FOKUS-Akademie in
mobile-simulated environments.

The most expensive task, when developing the FOKUS-Akademie, was its branding to appear
in the same corporate design as the official website of FOKUS as this required a lot of testing and
optimization in different environments. Figure B.11 shows the desktop web version. Thereby, the
project team also focused on the mobile design of the website to display the contents on tablets,

smartphones, but also still in a desktop browser. This responsive development is an important

1983ee OLX Description at Open edX Website: http://edx-open-learning-xml.readthedocs.io/en/latest/
what-is-olx.html (Accessed: 06.12.2016)
1998ee XBlocks in Open edX: https://open.edx.org/xblocks (Accessed: 06.12.2016)
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B.23. Graphical User Interface of the Learning Companion Application ci

aspect of the paradigm of mobile and situated learning. Thus, it allows anytime and anywhere
access to the contents. Figure B.12 shows Learning Objects in a mobile-simulated environment on

smartphones and tablets.

B.23. Graphical User Interface of the Learning Companion

Application

In order to allow an understanding of the collected data, the user interface is briefly introduced.

Learners access course materials using the LCA. However, course enrollments are managed by
administrators in a separate system. After logging in, learners and teachers see an institute-specific
welcome note. The main menu refers to the following additional pages (see the left menu in Figure

B.13 for a visualization of the LCA navigation in a Desktop Browser):

e “Learning Recommendations”: This section gives an overview of different Top-N item lists

in different sections (one per approach) and related descriptions for the recommendations.

Clicking on each item refers the user to the content page.

e "Course Overview”: Within this section, the user gains access to the course contents in the
enrolled courses. The contents are structured in different hierarchy levels and presented in a
tile-based layout per level. See the content on the right side in Figure B.13 for all learning
units within the section "Bestandsaufnahme”.

e If a user with the role of an instructor (teacher) logged into the LCA, an additional
navigation point appears that is not available to students: the ”"Teacher’s View”. This
presents an easy-to-use configurator that allows for an analysis of the students’ performances
anonymously.

e The next page allows for particular items to be searched for independently of the hierarchy
level.

e "Help” introduces the components and their meaning of the Learning Companion Application

in textual form.

e "Tmprint” is needed by German Law and can be individualized by the educational institution.

e Also an important aspect of German Law is the "Data Privacy Statement” which can also
be customized.
e Finally, the user can logout. If the user does not use that button to exit the app, the user’s

session will be stored in a cookie to be reactivated for the next usage.

The item levels courses, course sections and Learning Units are presented in a tile layout. An
LU contains a group of low-level Learning Objects. The tiles are ordered in the didactic structure

given by the educational staff (from left to right, top to bottom) and are only presented in sets that

Main

Navigation

Tile Layout
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Figure B.13.: Screenshot of the tile overview of Learning Units (for the topic "Bestandsaufnahme”
of the Energy Consultant Training) at the Learning Companion Application on a
desktop browser.

belong to the same heading. Each tile contains a headline indicating the topic, a circle bar and
some buttons. The circle progress bar shows two default values: The amount of consumed/learned
elements in percent as well as a calculated learning need. The idea is to allow the learner to
determine their learning progress at a glance and to quickly compare different aspects of the same
heading. The more complete the bar, the better the learning progress and the lower the learning
need. However, these two features are just examples and every content-related feature can be
presented in the circle bar. Below the circles is a visualization of the learner’s self-assessment on a
one-to-five stars scale (zero means no self-assessment given, one stands for absolutely no knowledge
and five stands for expert knowledge). The user can click on each star at any hierarchy level —
the more, the better. However, if the user did not provide any self-assessment, it is implicitly

transferred and averaged from lower-level items.

A click on the learning statistics opens a detailed view of all collected data related to the
selected content. This corresponds to the learning dashboard approach proposed by Duval who
visualized ”the total time spent on the course, the average time spent on a document, the number
of documents used and the average time of the day that the students work” [97] to the learner. The
data of that page come from an external module, in which case from the connected Recommender
System. A click on a content tile or on ”open” initializes the next hierarchy level (including an
animation). At the lowest level, an alternative view with a list of all Learning Objects contained

by the selected Learning Unit is presented.
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Figure B.14.: Learning Companion Application in mobile-simulated environments; left: presen-
tation of a Learning Object of type text; right: statistics with personalized course
progress and predicted knowledge levels (for the topic "Luftdichtheit” at the Energy
Consultant Training).

All LOs belonging to the same Learning Unit are displayed on one page in a flat list — one below  Content
the other and with a small icon indicating the media type of the offered LO. The left side of Accordion
Figure B.14 visualizes the app on a smartphone with three Learning Objects. This set of items is
integrated as an LTT tool?°°. A click on one Learning Object expands the content that is typically
short enough for mobile learning. At the same time, the previous LO is closed. This effect of
expanding one item and closing the others is reminiscent of an accordion — which is the reason
why it is called the accordion view. Thus, the learner focuses only on one low-level item, and every
user interaction refers to this one item. Consequently, the system triggers only xA PI statements
which exclusively refer to the Learning Object that is currently learned.

Every Learning Unit offers individual learning statistics. Thereby, all the collected data of the Learning
current user for the related item are visualized and described to allow the users to analyze their  Statistics
learning progress, render the calculation of recommendations understandable and increase the
trust in the system. See the right side of Figure B.14 in the tablet view for a visualization of the

statistics.

B.24. Instance of an xAPI statement

1 A

200The middleware component for presenting LTI-compliant Learning Objects is developed by the partners of Beuth
University.
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’’yersion’’: ’°1.0.0°7,

’2yerb’’: {

’2id’’: ’’http://adlnet.gov/expapi/verbs/initialized’’
¥
’Jactor’’: {
’?’objectType’’: ’’Agent’’,
’’mbox’’: ’’mailto:christopher.krauss@fokus.fraunhofer.de’’
e
>’object’’: {
’’objectType’’: ’’Activity’’,
’23id’’: ’’https://vfh143.beuth-hochschule.de/fokus/fame/openStudio/

middleware/repository/modules/SW50cm9fQWIvdXQ="",

13
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32
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35

36
37
38
39
40
41
42

’?’definition’’:

’’http://adlnet.gov/expapi/activities/module’’,

>>\u0Odcber+Fraunhofer’’

’’context’’:
’’platform’’: ’’slhw.fokus.fraunhofer.de’’,

’’contextActivities’’:

’’objectType’ ’:
’>>https://vfh143.beuth-hochschule.de/fokus/fame/

2 Activity’’,
openStudio/middleware/repository/courses/QVdu’’,

’?’definition’’:

’>http://adlnet.gov/expapi/activities/course’’

’’grouping’’:

’’objectType’’:
’>>https://vfh143.beuth-hochschule.de/fokus/fame/

’?Activity’’,

openStudio/middleware/repository/courses/QVadu’’,
’?’definition’’:
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=2

s>



43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78

B.25. Activity Data of the Energy-Consultant Training cv

’’definition’’: {
>>type’’: ’’http://adlnet.gov/expapi/activities/module’’
}
}
]
1,
’’extensions’’: {
> https://slehwr.beuth-hochschule.de/xapi/extensions/keywords’’: [
’’openLCMS’ ",
’’openPresentation’’,
’?Module’”’
1,
’’https://slehwr.beuth-hochschule.de/xapi/extensions/systeminfo’’: [
’’screen: 768 x 1024°°,
’?’browser: Safari’’,
’’browserVersion: 602.1°°,
’’browserMajorVersion: 602°°,
’’mobile: true’’,
’?o0s: 108’7,
>?osVersion: 10.3.2°7°,
’’cookies: true’’
1,
>’http://adlnet.gov/expapi/activities/course’’: [
722016 -10#AWT >’
]
}
e
’2authority’’: {
’’objectType’’: ’’Agent’’,
’’name’’: 2’77,
’’mbox’’: ’’mailto:truong-sinh.an@beuth-hochschule.de’’
3y
’’stored’’: ’’2017-06-30T09:18:06.887700+02:00° 7,
’’timestamp’’: ’’2017-06-30T09:18:06.887700+02:00’°,
’2id’’: ’’ed3e0ff5-587f-48db-8577-4acab6727989 "’

}

Listing B.1: "Instance of an xAPI statement where Christopher Krauss (Agent:
christopher.krauss@fokus.fraunhofer.de) opened (Verb: initialized) a content ’about

Fraunhofer’ (Object: ’iiber Fraunhofer’) in the ’"AWT’ course at TU Berlin”

B.25. Activity Data of the Energy-Consultant Training

The activity data of the first two course runs of the Energy-Consultant Training at the Chamber
of Crafts is presented in Figure B.15 and B.16. The x-axis displays the days of the course and the
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y-axis the number of activities (per day) due to triggered zAPI statements.

512 .

2161211
Statemant otal: 51

0 .\'\ FNAY /\k / \ /\ Nl /\//.\,--. AVAVAN /\ ] \./\'_
09.09.2016 16.12.2016

Figure B.15.: Learning Locker Activity Chart for GEB September - December 2016 (Number of
xAPI Statements per day in blue)
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Figure B.16.: Learning Locker Activity Chart for GEB March - July 2017 (Number of xAPI
Statements per day in blue)

B.26. Activity Data of the JavaFX Course
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Figure B.17.: Learning Locker Activity Chart for JavaFX (Number of xAPI Statements per day
in blue and number of active users per day in gray)

Similar to the data visualization of the Energy-Consultant Training, Figure B.17 presents the

2API statements collected in the Java FX course.

B.27. Activity Data of the AWT Course

The reduced time interval in Figure B.18 (October 24, 2016, until January 22, 2017) indicates
that there was even significant action in the LCA right before the exam in the course Advanced

Web Technologies.
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Figure B.18.: Learning Locker Activity Chart for AWT until three weeks prior the final exam
(Number of xAPI Statements per day in blue)

B.28. Related Work on Typical Learning Patterns

With the establishment of Massive Open Online Courses, the barrier for a course enrolling by a
potential participant is reduced to a minimum. At the same time, the huge set of participants led
to high drop-out rates. Kloft et al., for instance, noticed a drop-out rate of 81.4% in a MOOC in
the area of psychology with 11,607 enrollments at the beginning but only 3,861 participants at
the end [156, p. 61]. At all, over 20,000 students engaged at some point in time within the 12
weeks course duration. They trained a SVM with different numerical features that describe users
interactions at different points in time to forecast these drop-out rates — which worked well in the
second half of the course.

Onah et al. even notice drop-out rates of up to 87 % (in some learning settings even more) in
a survey of different publications [204, p. 5825 - 5826]. Thereby, the analysis of related work
indicates that the course success rate decreases with higher participation numbers. They present

the following reasons for drop-outs [204, p. 5828 - 5829]:

e Some students have no real intention to complete the course.

e They do not have enough time.

e The course is too difficult and lacks support.

e The student miss required digital skills, regarding media usage and self-learning-management.
e Some students had bad experiences with the content quality or with peers in the course.

e Students might have other expectations of the course.

e Some students might start too late and cannot catch up.

e Peer reviews as applied in some courses are experienced negative and show lower completion

rates.

While dropout users represent a significant class of users due to their percentage and their
negative impact, they represent just one type of learners. The rest of participants are users who
engage with the items until they reach the course objective. Pardos et al. identified correlations
between affect and behavioral engagement in a particular tutoring systems [208]. Therefore, they
stated that the features frustration, confusion, concentration, boredom, gaming and off-tasks had

effects on the final assessments.

Drop-Outs
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Learning

Patterns "Kizilcec et al. [155] investigated learners’ engagement in courses from Coursera which consist

of weekly videos and assessments, and proposed four typical engagement/disengagement

patterns that they call

e Completing: ’learners who completed the majority of the assessments offered in the
class’,

e Auditing: ’learners who did assessments infrequently if at all and engaged instead by
watching video lectures’,

e Disengaging: ’learners who did assessments at the beginning of the course but then
have a marked decrease in engagement (their engagement patterns look like Completing
at the beginning of the course, but then the student either disappears from the course
entirely or sparsely watches video lectures)’ and

e Sampling: ’learners who watched video lectures for only one or two assessment periods’.

These categories have been identified in three courses; however, their proportions differ
in each course. To discover these categories, they have first characterized a student by a
tuple giving her/his status each week: ’on track [T] (did the assessment on time), behind
[B] (turned in the assessment late), auditing [A] (didn’t do the assessment but engaged by
watching a video or doing a quiz), or out [O] (didn’t participate in the course in that week)’
[155)”

Ct. [17, p. 2]20L.

The identification of the ”"completing” class is especially interesting for an educational Rec-
ommender Systems. Learners of this class show successful learning patterns for their learning
methodology. While it does not necessarily represent the best or the only way of completing a
course, it at least shows a higher probability of success. Thus, to reduce drop-outs, it might help
to identify ”"completing” users and treat them as model students. ”Auditing”, ”sampling” and
"disengaging” students, in turn, might need additional impulses for learning and should be treated

individually. Other researchers developed a more fine-granular classification model:

"In an attempt to replicate the work of [155], Ferguson and Clow [109] suggest that the
methodology used to uncover typical learning behaviors in a MOOC’s context does not
necessarily generalize to another MOOC adopting different elements of pedagogy and learning
design. Since the courses analyzed in [109] follow a social constructivist pedagogy, Ferguson

and Clow adapt the methodology of [155]. They consider also participation in discussions

201The section about related work was written by primarily by Prof. Dr. Agathe Merceron with the help of
Truong-Sinh An and Christopher Krauss.
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and end up with 10 values to characterize the weekly status of a student, instead of the four
values T, B, A and O introduced in [155]. They have identified the following typical learning
behaviors: Samplers ('Learners in this cluster visited, but only briefly’; similar to sampling
above), Strong Starters (’these learners completed the first assessment of the course, but
then dropped out’), Returners ("these learners completed the assessment in the first week,
returned to do so again in the second week, and then dropped out’), Mid-way Dropouts
("these learners completed three or four assessments, but dropped out about half-way through
the course’), Nearly There ("these learners consistently completed assessments, but then
dropped out just before the end of the course’), Late Completers (’this cluster includes
learners who completed the final assessment, and submitted most of the other, but were
either late or omitted some’) and Keen Completers ('this cluster consists of learners who
completed the course diligently, engaging actively throughout’ similar to completing above).
The two approaches in [155] and [109] share the same principle of selecting a priori features
that are sensible to describe a student’s individual engagement, and then use K-means

clustering to discover typical learning behaviors”

Cf. [17, p. 2]202.

While these clustering approaches are primarily applied on online and massive online courses, the
patterns seem to be appropriate for a transfer to blended learning and digital assisted face-to-face

courses.

B.29. Comparison of Activity Data in Two Different Course
Settings

Figure B.19 compares the data of the first course-run of the Energy-Consultant Training at the
Chamber of Crafts and the first LCA iteration of the course Advanced Web Technologies at the
TU Berlin.

B.30. Clustering of LCA Users

”[There] are multiple sensible ways to compare students in their learning behaviors. Because
[the presented] time schedule is purely indicative for students and all the materials are
available from the start of the course, we compared students on how they have interacted

with the course independently of time. [...]

202The section about related work was written by primarily by Prof. Dr. Agathe Merceron with the help of
Truong-Sinh An and Christopher Krauss.
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Figure B.19.: Comparison of the LCA usage between the Energy-Consultant (left) and the AWT
participants (right). The data is extracted from PIWIK web analytics; top: activities
over the daytime; bottom: hardware usage.

We used RapidMiner® and applied the X-means clustering algorithm with Euclidean
distance. X-means finds an optimal number of clusters and is known to find fewer clusters
than K-means [214]. [...] To validate that the data does cluster naturally, we also applied
K-means and checked for the drop in the curve plotting K against the sum of squared errors

(which corresponds to the average within distance of RapidMiner)”

Cf. [17, p. 3-4]203.

?Rapid Miner. See: https://rapidminer.com/

Four different promising settings have been applied for the clustering of the users. The clustering
was applied after the end of the course with all interaction data collected during the course. Due
to the random start center points of K-Means and the variable number of clusters in X-Means, we
did not expect any predefined behavior classes — only a typical pattern that shows a high degree
of similarity in the behaviors of comprised neighbors 294

The four approaches of the learner clustering are:

e Clicks only: A student is represented as vector that comprises the number of clicks per
Learning Object.
e Elapsed time: The student vector contains information on the total spend time per Learning

Object.

203The section about methodology was written by primarily by Prof. Dr. Agathe Merceron with the help of
Truong-Sinh An and Christopher Krauss.
204Details of the clustering approach are presented in Appendix B.30.
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e Assessment scores: The student vector contains information on the normalized scores per
Learning Object. LO scores a represented by ratings for self-assessments, answers in Q77
tasks and JavaFX motivational feedback.

e Elapsed time and assessment scores: The student represented by a vector that comprises

both, information on elapsed time and assessment scores (as described previously).

In a second step after the determination of significant learning type clusters, the average marks  JavaFX
per cluster are determined (only for the AWT course) to understand the degree of success per  Evaluation

identified learning type better.

"Because of the small data sets, particularly for the JavaFX course, clustering is challenging.
We found that students do not act at random. In the JavaFX course, we could derive
evidence behaviors that remind of patterns found in [155]]: completing, auditing, and

disengaging”

Cf. [17, p. 5]205.

Particular interesting is the performance of the clustering approaches for the AWT course as  AWT
the dataset also comprises numbers on the drop-out and exam participants as well as for the exam  Evaluation

grades.

"The first three approaches (Clicks only, Elapsed time and Elapsed time and assessment
scores) lead to no meaningful results for the AWT course. |...] In contrast, for the Assessment
scores approach, X-means generated three definite clusters. |...]

Cluster 1 contains 9 students inclusive the one who did not pass the final exam [...].
Students in this cluster provided self-assessments in the first three units, and worked out
exercises but did not achieve good scores. They remind of Strong Starters and Returners
proposed in [109] when this vocabulary is adapted to the sequential order of the units instead
of the first weeks of the course. To some extent, they exhibit also some kind of completing
pattern in terms of exercises, because they completed almost half of them: on average 22
from a total of 48. Their average mark in the final exam is 2.03 which is slightly worse than
the general average of 1.90.

The biggest cluster contains 64 students [...] and is similar to the pattern auditing because
they did exercises infrequently if at all: on average 1 out of 48. However, they did access .pdf
files. All learners who did not participate in the final exam fall into this cluster. The average
mark of the students in this cluster who participated in the final exam is 2.23 (no-shows are
neglected), which is below the general average.

The last cluster contains 26 students and shows a completing pattern [...]. If one sorts

205The discussion section was written by Truong-Sinh An, Prof. Dr. Agathe Merceron and Christopher Krauss.
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the students according to the number of distinct exercises they have solved in the course,
25 of these 26 students are the top 25. They have worked on nearly all the exercises, on
average 42 out of 49, and completed almost all of them correctly. The final exam mark in

this completing cluster reaches 1.50 on average, a better mark than the overall average of
1.90”

Ct. [17, p. 5]20.

B.31. Related Work on Course Grade Predictions

Elbadrawy and Karypis showed that course results of already ended courses might also help to
predict course grades of new starting courses. Those predictions, in turn, are valuable feedback for
the course-selection process and can be incorporated in a course selection Recommender System
[101]. Janssen et al. [139] proved the significant role of completion rates of learning objects in
TEL recommenders.

Thai-Nghe et al. [262] note that a Recommender System based on linear regression (Matrix
Factorization) can better predict student performances than traditional regression methods, such
as logistic regression. Therefore, they utilized the KDD educational dataset [249] and improved
the Root Mean Square Error by up to 3.7% [262, p. 2817].

Cortez and Silva showed that data mining techniques could be utilized to predict (secondary
school) student performances [69]. They compared different methods that work well for specific
courses. However, the accuracy is highly dependent on the kind of approach (they tested Decision
Trees, Random Forest, Neural Networks and Support Vector Machines) as well as from the feature
set selection in each course. A similar kind of research is carried out by Angel F. Agudo-Peregrina
[12], who analyzed the interactions in their LMS for predicting students’ academic performance.
The prediction model is based on the relation feedback for student & student, student & teacher
as well as student & content, the frequency of use (access to learning resources, the creation of
class interactions) and the participation mode in the class (active or passive). They showed that
student performances could also be approximated with the help of other sources, such as student

and teacher activity in discussion forums [206].

B.32. Scientific Quality Criteria

Helmut Balzert formulated a catalog of quality criteria for science ethics [28, p. 13-15], which
will be the basis for further research and experiments. The following list introduces Balzert’s 12

central scientific quality criteria and their meaning for this dissertation:

206The analysis of the AWT results was written by Christopher Krauss, Prof. Dr. Agathe Merceron and Truong-Sinh
An.
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. Relevance: The experiments shall create new insights and knowledge on a specific topic.

Thus, only studies, which have not been published previously, are of interest to be conducted
here. Relevant in the area of TFL is, what can be applied in real-world scenarios, such as
courses with real participants.

Originality: This research aims at developing novel algorithms by following new ways.
However, it is not the idea to invent something different compared to established research
that has been introduced in the last Chapters, nor to just string together existing approaches.
The dissertation identifies gaps and creatively transfers new and existing approaches to solve

the task of appropriate learning recommendations.

3. Honesty: The research will be described truthfully and comprehensible what has been done.

10.

11.

12.

Fairness: Fairness stands for a respectful treatment of work of colleagues, competitors and
other researchers. External ideas will be credited as such.

Understandability: The research must be explained understandably.

Verifiability: Each approach shall be described in a way that it can be verified by external
experts. Therefore, it will be elaborately described and published — as long as it does not
create conflicts with the criteria of responsibility.

Responsibility: The author is responsible for her / his research, possible users and their
privacy, the gained data and its security as well as for social, scientific and global impacts.
Reliability: All approaches must be reproducible in a way that other researchers gain the
same results by reverse engineering the experiments.

Objectivity: Research must be impartial and neutral. For comparisons, the same evaluation
metrics need to be used. Moreover, as student behavior will be analyzed, each student must
be treated in the same way.

Validity: Validity stands for the degree of accuracy of an approach. In the data science
community, different values have been established to validate algorithms, such as Mean
Absolute Error and Root Mean Square Error. These values are described in this Chapter.
Logical reasoning: A conclusion should be based on significant assumptions and confirmed
hypotheses. Therefore, the discussion Chapter will examine the hypotheses based on
conducted experiments and draw appropriate conclusions.

Confirmability: Confirmability is the result of all appropriate followed quality criteria which

have been listed above.
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B.33. Hypotheses Require Quantitative or Qualitative

Evaluations

To prove the correctness of the developed hypotheses, different evaluations are needed. This
work uses deduction in an initial phase, where a theory and resulting hypotheses are evaluated in
a top-down manner — thus, in the beginning, there is a formulation of a pattern that is derived
from observations in multiple iterations. A theory that overcomes a set of falsification attempts
is known as a particular valid theory. In turn, only one proofed falsification is enough to make
an assumption invalid [28, 265, 44]. At the same time, deductive evaluation is used to observe
inductive side effects. That are patterns which occur by accident but result in a new observation
or a new theory [28].

The theory can be subdivided into a set of hypotheses. Some hypotheses require a qualitative
evaluation of the object of investigation, regarding a deep analysis of some aspects [44, pp. 295].
For instance, the acceptance of the recommendations by users will be observed with think-aloud
sessions, where learners perform predefined tasks at the system, while they have to comment
each step. Both, their interaction on the screen, as well as their expressed comments, are being
recorded. The qualitative methods help to observe complex phenomena, which cannot be reduced
to a set of pre-given answers [28].

Quantitative evaluations, in turn, are needed to prove hypotheses in a deductive approach, first
and foremost with numerical results — for instance, by comparing a considerable set of survey

answers or by comparing statistical measurements of the algorithms [44, pp. 137].

B.34. User Studies

Even when proving the appropriateness of a system by performing algorithms measurements,
subjective criteria are equally important. The human perception in general, but also of Recom-
mender Systems, often is affected by external conditions — for instance by the Graphical User
Interface.

In the domain of TV program guides, a Recommender System was developed and applied at

207 is an application that

two industry partners utilizing two different user interfaces. Movisto
was designed to display exclusively top-7 program recommendations for different situations (now,
upcoming tonight, highlights of the day and a personalized program guide). The multithek, in
contrast, uses the same Recommender System for an Electronic Program Guide displaying all
available programs per channel on a time axis. The user can hide inappropriate items by applying

a visual filter. Figure B.20 shows the two services (left: Movisto and right: multithek) based rating

207Movisto: Service of RTV Arvato a company of Bertelsmann.
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CXV

predictions for the same item metadata. Both services are based on user ratings, Movisto on a 1

to 10 rating scale and the multithek on a 1 to 5 stars scale. See [167] for a detailed description of
the algorithms.
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Figure B.20.: User Unterface of Movisto (left) and multithek (right) which are based on the same
recommender algorithms that incorporates rating predictions.
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Figure B.21.: Rating scatter for: Movisto (left) and multithek (right). The x-axis shows the
available ratings, and the y-axis indicates the amount per rating of all users (in
percent) within the service.

Surprisingly, the gained rating data of both services diverge as shown in Figure B.21. While the
multithek shows a rating scatter that reminds on a Gaussian distribution, the Movisto service
shows an almost equal distribution of all ratings except for the lowest possible rating — the one
with a very high percentage. Over one-third of all ratings refer to the lowest possible. After some
considerations, an effect of the Graphical User Interface was identified that represents the most
important influence factor: The list of top-7 recommendations seemed to be too limited to present
the whole set available programs per situation. That is why users tend to give the lowest possible
rating for items they do not like to receive a new list of top-7 recommendations. However, the
not-liked items are not necessarily seen as totally inappropriate, but to make sure they do not
appear again, they are rated low. Similar to these findings, researchers often noted the critical
effect of user interfaces on the actual perception of Recommender Systems [255, 240, 264, 270].

Usability is only one example of the possible effect of external conditions that directly affect
the users’ perception of a Recommender System which cannot be determined with algorithm
measurements. Therefore, qualitative user studies as known from human-computer interaction

research need to be conducted. However, these studies have been rarely applied for Recommender

Importance
of User

Studies
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Systems in TEL [191, p. 405].

In the general recommender domain, some research analyzed subjective factors that might
influence the users’ interaction with the system. Cosley et al. [70], for instance, observed
discrepancies when users re-rated previously rated items again (1) on the same rating scale (mean
deviation of 1%) and (2) on new rating scales (mean deviation of up to 12%). Finally, they also
presented average rating values (mean deviation of 1%) and manipulated average rating values of
+1star for the re-rating process. The latter shows a mean rating deviation of up to 30% (+16%
for and -14%) which indicates the ease of psychological interference by the user interface — an
argument to perform user studies.

For a TEL Recommender System also the overall students’ satisfaction plays a key role [68], [18]
for the acceptance of a service. Kirkpatrick developed a model in the 1970’s to evaluate training
programs [154, p. 486] that consists of four layers of subjective user acceptance which can also be
used for a qualitative evaluation of Recommender Systems as suggested by Manouselis et al. [191,

p. 407]

1. Reaction: What thoughts and feelings occurred using the adaptive system, here including
knowledge level predictions and learning need approximations as well as learning recommen-
dations?

2. Learning: How helpful was the adaptive system in solving learning tasks?

3. Behavior: Does the adaptive system influence positively or negatively the behavior within
and outside of the system?

4. Results: Does adaptive system improve the intended results, concerning reaching the learning

objectives?

For instance, different factors of students’ acceptance of Moodle have been analyzed [76], [39],
[153]. Thereby, a study indicates that students show a higher acceptance "regarding ease of use,

usefulness, access, reliability, and compatibility of the LMS than the educators” [137].

Some approaches have often be applied to evaluate Recommender Systems in a qualitative

manner (cf. [125, 191, 270]).

e Questionnaires and Surveys can be conducted to get the general position on some aspects.
The advantage lies in its scalability, as huge amounts of users can be asked (even at the
same time when performing it online).

e Interviews, in contrast, help to get a better understanding of the individual opinion of a
user, as the questioner can ask further questions on a particular topic if needed.

e In Thinking Aloud Studies, users are asked to perform a task with the help of the object
of investigation. Thereby, the user should comment the perception and thoughts loudly

while performing the task. As a result, usability and acceptance effects can be determined.
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Recording the experiment (e.g., with Screencasts of the interaction with the software as well
as camera-recordings for the comments of the users) is advisable for later confirmability.

e A/B Testing is the comparison of two settings of the same system, only the object of
investigation is different per setting. For instance, El-Bisthouty et al. [100] compared the
effect of their Recommender System for learning material on the user’s knowledge-acquisition.
Thereby, some tasks are performed in various phases with and some without the RS and
the results, concerning performance in questionnaires, are compared to analyze the (here
positive) effects of the approach.

e Trial experiments with analysis of Log Data, in contrast, can also give quantitative results,

regarding general marks, drop-out rates, etc.

In this work surveys with course participants (prior, during and after the course), Thinking-aloud
sessions for overall user acceptance when working with the system, comparisons of different
Learning Management Systems and trial experiments are going to be performed. Moreover, more
generalized surveys will be conducted with externals to analyze a broader spectrum of possible

recipients of learning recommendations.

B.35. Example of an Increasing Time-Window Cross-Validation

Figure B.22 visualizes an example of learning activities with is utilized to explain the approach.
While Userl only consumed one item (i1) at the very beginning and at the very end of the course,

User2 studied 2 in regular intervals. Finally, User3 accesses a variety of items il, ..., 7.
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tCourseStart tCourseEnd

Figure B.22.: Example of activity data over a course period. il to i7 represent different items that
have been consumed at particular points in time (x-axis) by the three users Userl,
User2 and User3.

For an increasing time-window cross-validation, the data can be split according to the threshold

tr per evaluation step into training sets T'r and test sets T'e as shown in Figure B.23.

At the point in time of each threshold tr, a user-specific Top-N list can be recommended based
on the data of the training set Tr. The recommendations can then be evaluated with the help of

the test set Te.
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Figure B.23.: Example of data splits in an increasing time-window cross-validation with three
item splits.

B.36. Additional Measures for Recommender Systems

Recently, additional measures have been introduced which are not focusing on accuracy or
ranking precision tasks: among others novelty, diversity, sensitivity, and specificity as well as
serendipity. However, these measures are listed for the sake of completeness but are optional for
further evaluations in this research.

New added items are of high interest for the users as they might represent the most up-to-date
topics in an item catalog [125, 67, 133]. Unfortunately, it is tough to give these items a high
probability of being recommended, because of the missing user feedback (see the New Item
Problem in Section B.14). Hurley and Zhang presented one approach to analyzing the novelty
of recommended items [133, p. 14:6]. In contrast to the proposed timeliness measure, a novelty
value refers to the age of an item in the item catalog and not to the time span between the
recommendation of an item and its usage. Since in our setting learning objects are rarely added
to a course after the course start, this measure will be neglected. In addition to novelty, the idea
of serendipity is to help “the user find a surprisingly interesting item” [125, p. 43] by adding the
chance of presenting random items.

Sensitivity indicates the ”probability of a randomly selected good item actually being rated
as good” and, thus, is similar to the meaning of precision. Specificity, in contrast, shows the
"probability of a randomly selected bad item actually being rated as bad” [274, p. 12] which is
almost the opposite. Coverage, in turn, corresponds to the share of calculated predictions out of
all available items [274, p. 12]. However, as a course has a fixed amount of items, the calculation
of predictions for all items would be executed in a reasonable time, and the coverage would stay
constant.

Hurley and Zhang [133] also noted that even a very accurate RS could dissatisfy the user, when

its recommendations (e.g., in a Top-N item list) are very similar and refer to almost the same
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contents. That is why the diversity measure indicates the variance in the recommended items [67].
The more diverse the items, the more satisfying the list of recommendations. However, this often
comes with the effect of decreasing the overall accuracy [133, p. 14:2] and plays a more critical
role in entertainment Recommender Systems with a high probability of presenting similar items

than for Technology Enhanced Learning, where all LOs should be elementary distinguishable.

B.37. Example of Cleaned MATD

Figure B.24 presents an example of MATD, tFirstConsumption and the resulting cleaned
MATD. Only one data set splitting is presented for the sake of simplicity. The cleaned MATD for

User3 is 0, because 73 is the recommended item and at the same time the next consumed item.

Top-N List User 1: {i1} MATD
Top-N List User 2: {i2} tFirstConsumption
—_—

Top-N List User 3: {i3} Cleaned MATD
User 1 @ (i2) . @
® =—® ® ®
O—=0 ®

tCourseStart tr tCourseEnd

Figure B.24.: Example of the cleaned MATD for the three users Userl, User2 and User3.

B.38. Mathematical Derivation of the Cleaned MATD

tr is a equal for all K relevant items of the Top-N list — as well as t¢;. That is why both values

can be either a part or not a part of the summation ZiK:f
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B.39. Evaluation Setting 1: AWT with LOs and LUs

According to the evaluation setting proposed by Campos et al. [57], the methodological questions

are answered as follows for Evaluation Setting 1:

MQ1

MQ2

MQ3

What base set is used to perform the training-test splitting?

The 17 weeks AWT course data is used as base data set. The course ran from October 24,
2016, until February 12, 2017. The user-item matrix comprises the number of activities per
Learning Object and per Learning Unit per user, e.g. a user who accessed 3 times the same
item gets a score of 3 in the according user-item-tuple.

What [scoring] order is used to assign [relevance scores] to the training and test sets?

The scoring is based on the algorithm’s relevance score, which is introduced for each approach
separately. The higher the predicted score, the more probable the item appears in the Top-N
list. Top-N items are not ordered internally.

How [much data] comprise the training and test sets?

The test data comprises all 99 active users and 44,421 zA PI statements on all 1,006 Learning
Objects (including the automatically generated one, such as for self-assessments) and on the
106 Learning Units. Table B.1 presents the composition of the training and test data for the
different week splits.

MQ4 What cross-validation method is used for increasing the generalization of the evaluation
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MQ5

MQ6

results?

The course is split according to the "increasing time-window” validation into 17 sub-datasets
where the time threshold shifts by seven days and is defined per week to be on Mondays
at 0 pm. Thereby, with each split, the duration of the training dataset increases by seven
days, and the test dataset decreases by the same amount. Due to the cold start problem, no
evaluation has been performed in the first week.

Which items are considered as target items (in a top-N recommendation task)?

Items are determined according to the algorithm approach which is described separately.
The value N defines the number of recommendations in the Top-N item list. The Number
of N is given per approach.

Which items are considered relevant for each user (in a top-N recommendation task)?

Items are relevant that have been processed by the same user after its recommendations.

Table B.1.: Training and test data splitting in Evaluation Setting 1

Splitting at the | Training Dataset Test Dataset

beginning of Week Users Statements Users Statements
1 0 0 99 44421

2 24 1210 99 43164

3 50 2657 98 41717

4 63 3874 96 40500

5 66 5556 95 38818

6 72 7128 92 37246

7 78 9281 91 35093

8 80 10345 90 34029

9 81 11935 88 32439

10 82 13132 88 31242

11 82 15178 88 29196

12 82 16542 88 27832

13 87 18907 87 25467

14 93 20627 86 23747

15 95 23344 83 21030

16 99 27299 [0) 17075

17 99 33786 63 10588
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B.40. Evaluation Setting 2: AWT with LUs

According to the evaluation setting proposed by Campos et al. [57], the methodological questions

are answered as follows for Evaluation Setting 2:

MQ1

MQ2

MQ3

MQ4

MQ5

MQ6

What base set is used to perform the training-test splitting?

The 17 weeks AWT course data is used as base data set. The course ran from October 24,
2016, until February 12, 2017. The user-item matrix comprises the number of activities per
Learning Unit per user, e.g. a user who accessed 3 times the same LU gets a score of 3 in
the according user-item-tuple. The activities on the low-level LOs are not considered.
What [scoring] order is used to assign [relevance scores] to the training and test sets?

The scoring is based on the algorithm’s relevance score, which is introduced for each approach
separately. The higher the predicted score, the more probable the item appears in the Top-N
list. Top-N items are not ordered internally.

How [much data] comprise the training and test sets?

The test data comprises all 99 active users and 8,241 xAPI statements on all 106 Learning
Units. Table B.2 presents the composition of the training and test data for the different
week splits.

What cross-validation method is used for increasing the generalization of the evaluation
results?

The course is split according to the ”increasing time-window” validation into 17 sub-datasets
where the time threshold shifts by seven days and is defined per week to be on Mondays
at 0 pm. Thereby, with each split, the duration of the training dataset increases by seven
days, and the test dataset decreases by the same amount. Due to the cold start problem, no
evaluation has been performed in the first week.

Which items are considered as target items (in a top-N recommendation task)?

Learning Units are determined according to the algorithm approach which is described
separately. The value N defines the number of recommendations in the Top-N item list.
The Number of N is given per approach.

Which items are considered relevant for each user (in a top-N recommendation task)?

Items are relevant that have been processed by the same user after its recommendations.

Table B.2.: Training and test data splitting in Evaluation Setting 2
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Splitting at the | Training Dataset Test Dataset

beginning of Week Users Statements Users Statements
1 0 0 99 8241

2 24 127 99 8114

3 50 369 98 7875

4 63 538 96 7708

5 66 729 95 7515

6 72 942 92 7301

7 78 1139 91 7107

8 80 1188 90 7058

9 81 1303 88 6940

10 82 1337 88 6906

11 82 1366 88 6876

12 82 1369 88 6873

13 87 1609 87 6636

14 93 1870 86 6377

15 95 2281 83 5962

16 99 3298 75 4945

17 99 5029 63 3215

B.41. Evaluation Setting 3: JavaFX

According to the evaluation setting proposed by Campos et al. [57], the methodological questions

are answered as follows for Evaluation Setting 3:

MQ1

MQ2

MQ3

What base set is used to perform the training-test splitting?

The 12 weeks JavaFX course data is used as base data set. The course ran from December
4, 2016, until February 19, 2017. The user-item matrix comprises the number of activities
per Learning Object and per Learning Unit per user, e.g. a user who accessed 3 times the
same item gets a score of 3 in the according user-item-tuple.

What [scoring] order is used to assign [relevance scores] to the training and test sets?

The scoring is based on the algorithm’s relevance score, which is introduced for each approach
separately. The higher the predicted score, the more probable the item appears in the Top-N
list. Top-N items are not ordered internally.

How [much data] comprise the training and test sets?

The test data comprises all 28 active users and 2,577 zAPI statements (3,624 in total and

2,566 in the 12 week course duration) on 4 Learning Units and 89 Learning Objects (including
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the automatically generated one, such as for self-assessments). Table B.3 presents the
composition of the training and test data for the different week splits.

MQ4 What cross-validation method is used for increasing the generalization of the evaluation
results?
The course is split according to the "increasing time-window” validation into 12 sub-datasets
where the time threshold shifts by seven days and is defined per week to be on Mondays
at 0 pm. Thereby, with each split, the duration of the training dataset increases by seven
days, and the test dataset decreases by the same amount. Due to the cold start problem, no
evaluation has been performed in the first week.

MQ5 Which items are considered as target items (in a top-N recommendation task)?
Learning Units are determined according to the algorithm approach which is described
separately. The value N defines the number of recommendations in the Top-N item list.
The Number of N is given per approach.

MQ6 Which items are considered relevant for each user (in a top-N recommendation task)?
Learning Units are determined which have been accessed by the users after the point in time

of the recommendation (data of the test set).

Table B.3.: Training and test data splitting in Evaluation Setting 3

Splitting at the | Training Dataset Test Dataset

beginning of Week Users Statements Users Statements
1 0 0 28 2577

2 15 340 24 2237

3 16 644 21 1933

4 17 949 18 1628

5 19 1187 15 1390

6 20 1426 13 1151

7 25 1933 7 644

8 26 2094 5 483

9 27 2255 4 322

10 28 2416 2 161

11 28 2566 1 11

B.42. Evaluation Setting 4: Energy-Consultant Training

According to the evaluation setting proposed by Campos et al. [57], the methodological questions

are answered as follows for Evaluation Setting 4:
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MQ1

MQ2

MQ3

MQ4

MQ5

MQ6

What base set is used to perform the training-test splitting?

The 16 weeks Energy-Consultant Training data is used as base data set. The course ran
from March 29, 2017, until July 8, 2017. The user-item matrix comprises the number of
activities per Learning Object and per Learning Unit per user, e.g. a user who accessed 3
times the same item gets a score of 3 in the according user-item-tuple.

What [scoring] order is used to assign [relevance scores] to the training and test sets?

The scoring is based on the algorithm’s relevance score, which is introduced for each approach
separately. The higher the predicted score, the more probable the item appears in the Top-N
list. Top-N items are not ordered internally.

How [much data] comprise the training and test sets?

The test data comprises all 15 active users (8 learners and 7 staff members) and 15,545 xAPI
statements on 39 Learning Units and 366 Learning Objects (including the automatically
generated one, such as for self-assessments). Table B.4 presents the composition of the
training and test data for the different week splits.

What cross-validation method is used for increasing the generalization of the evaluation
results?

The course is split according to the ”increasing time-window” validation into 16 sub-datasets
where the time threshold shifts by seven days and is defined per week to be on Mondays
at 0 pm. Thereby, with each split, the duration of the training dataset increases by seven
days, and the test dataset decreases by the same amount. Due to the cold start problem, no
evaluation has been performed in the first week.

Which items are considered as target items (in a top-N recommendation task)?

Learning Units are determined according to the algorithm approach which is described
separately. The value N defines the number of recommendations in the Top-N item list.
The Number of N is given per approach.

Which items are considered relevant for each user (in a top-N recommendation task)?
Learning Units are determined which have been accessed by the users after the point in time

of the recommendation (data of the test set).

Table B.4.: Training and test data splitting in Evaluation Setting 4
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Splitting at the | Training Dataset Test Dataset

beginning of Week Users Statements Users Statements
1 0 0 15 15545

2 11 1817 15 13728

3 11 2192 15 13353

4 11 2621 15 12924

5 12 3489 15 12056

6 12 4979 15 10566

7 13 5724 15 9821

8 13 6361 15 9184

9 13 6905 14 8640

10 13 7964 14 7581

11 14 9328 14 6217

12 14 10253 13 5292

13 15 11056 13 4489

14 15 12767 13 2778

15 15 14741 11 804

B.43. Slope One Extension — Effect of Wrong Implementation

In a first attempt to evaluate the effect of the equation in Section 7.1.3, the formula was

accidentally adjusted as follows:
relevanceScore,, ; = real Accesses, ; — predicted Accesses,, ; (B.6)

Even though this real Accesses, ; were zero, it would change the relevance score to the opposite.
The meaning behind this would be that the greater the gap is between the prediction and the
personal number of consumption, the lower is the probability that this item is recommended. The
effect is visualized in Figure B.25 and is not only observable by a low precision but also by a high

timeliness value.

B.44. Time-Weighted Slope One evaluated on Learning Objects

The Time-Weighted Slope One algorithm is evaluated according to Evaluation Setting 1 based on
Learning Objects (see Appendix B.39). The results of the first setting are presented in Figure B.26.
As one can see, the time-based approach performs almost similar to the conventional algorithm

for a decay power a of 1.
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Figure B.25.: Accuracy of the extended Slope One algorithm in a false implementation (blue) and
the traditional Slope One (orange) — left: average precision per week of the AWT
course; right: timeliness values (according to M AT D jeqned) given in minutes
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Figure B.26.: Slope One and Time-based Slope One accuracy comparison — left: average precision
and recall; right: Timeliness values for averaged M AT D jcaneq and RM ST D jeaned
given in minutes

B.45. Performance of the Standard and the Time-Weighted
Slope One

Figure B.27 indicates the similar performance (in terms of computing time) for the standard and
the time-weighted Slope One. However, weights with o = 0 have been computed for this analysis
which means the performance of the standard Slope One algorithm is expected to be faster when

neglecting this computation step.

B.46. Number and Percentage of Repeated Item Accesses per

Week
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Figure B.27.: Slope One and Time-based Slope One performance comparison — average duration
for the recommendation prediction given in seconds per user.

Table B.5.: Ratio of Content Repetitions in the AWT course

Week | Consumed Learning Units | Repeated Learning Units | Ratio of Repetitions
1 178 0 0%
2 223 87 39%
3 129 41 32%
4 148 58 39%
5 207 80 39%
6 135 29 21%
7 57 24 42%
8 114 34 30%
9 25 11 44%
10 27 16 59%
11 183 51 28%
12 275 " 28%
13 318 102 32%
14 794 264 33%
15 1089 407 3%
16 1889 878 46%

B.47. Presentation of SLR Recommendations in LCA

In the Learning Companion Application, the recommendations are presented in an overall Top-5

list with the title ”You should learn the following topics” as shown in Figure B.28. As one can
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see, in the beginning, the contents that have not been consumed so far or the ones with highest
possible relevance are preferred by the algorithm. Besides this general Top-5 list, single context

factor recommendations are also presented. These factors are presented to the learner as follows:

e Lecture Time: "You should prepare or wrap-up the following topics of the lecture”
e Collaborative Learning Need: "Classmates currently learn the following”
e Self-Assessments: "You have a low self-assessment in these topics”

e Exercises: "Your exercise results can be improved here”

Interaction & Processing Time: "These are items you have learned insufficiently”

e Forgetting Effect: ”You might have forgotten these Learning Objects”

Diese Themen solltest du als nachstes lernen

Web Security TV App Developm... DIAL Bonjour, HTTP an... Streaming Devices

@ Offnen al statistik ® Offnen ® Oifnen @ Offnen

all statistik il statistik all Statistikc ail Statistik

tt: 0% Lernfortschritt: 0%
0% A 0%

Lernfortschritt: 0% Lernfortschritt: 0%
Angesehen: 0% 0%

« % % % # Selbsteinschatzung % # % # % Selbsteinschatzung *# % % % Selbsteinschatzung * % % # % Selbsteinschatzung % %% Selbsteinschatzung

Figure B.28.: Example of Top-5 recommendations in the LCA

As shown in Figure B.28, the Top-5 list might comprise top-level items, such as "Web Security” or
"TV App Development”. Moreover, it might also contain low-level items, such as "DIAL”, "Bonjour
[...]” and ”Streaming Devices” which belong to another top-level Learning Object ("Multiscreen
Development”). The latter is not separately presented in the Top-N list to avoid redundancy. The
reason, why child items of "Multiscreen Development” are preferred is that learners consumed

other child items of the topic and, thus, they show a smaller learning need.

B.48. SLR Context Factor: Self-Assessments

Selbsteinschatzung

Figure B.29.: Example of self-assessments in the statistic view in LCA.

Figure B.29 visualizes the statics view where learners can observe their activities and Figure

B.30 presents the presented learning goals in a Learning Unit.
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Figure B.30.: Example of self-assessments on learning goals at the beginning of a learning unit in
LCA.

B.49. SLR Context Factor: Processing Time of an Item

As learners can, of course, be interrupted during learning or actively pause the knowledge
acquisition, all learning sessions are summed and just compared to the total intended "instructional”

time as shown in Figure B.31.

Feedback

FEEDBACK UBER DIE BEARBEITUNGSDAUER FEEDBACK UBER DIE LERNEINHEIT FEHLER MELDEN

|hre aktuelle Bearbeitungsdauer dieser Lerneinheit betragt 0 Stunden, 0 Minuten, 31 Sekunden.
|hre bisherige Bearbeitungsdauer dieser Lerneinheit betragt 0 Stunden, 9 Minuten, 4 Sekunden.
Die typische Bearbeitungsdauer fur diese Lerneinheit betragt 2 Stunden, 18 Minuten, 37 Sekunden.

Wie empfinden Sie diese geplante Bearbeitungsdauer?

©@ ©® © © ©

Figure B.31.: Example how the processing time is presented to the learner in LCA

In an initial phase the relevance score has been calculated as follows:

"This factor indicates how long the student learned a Learning Object. It is 0 when the

student needed exactly the intended time and between 0 and 1 if he [/ she] needs more or
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less time than defined in the metadata.

timeNeededFor Learning, ; +
TSCOT€y ;i tp3 = |1 — = (B.7)

timelntendedFor Learning;

In an initial phase, [SLR works] with an upper bound for the time that is needed for learning:
The square root lessens the effect when a student did not exactly learn the intended time. If
the user needed more than 4 times of the time, the learning need is 1. In combination with
the percentage of interaction, the processing time allows a good approximation whether a

student really worked through that content”

Cf. [166]28.
1
2 0e
Q ’
3 04
0,2
0
timeNeeded=0  timeNeeded=timelntended timeNeeded=4*timelntended

TimeNeededForLearning

Figure B.32.: Range of relevance values for processing time

Figure B.32 visualizes the learning need based on the processing time that depends on the
relation to the actual intended time. On the one hand, when a learner did not spend any time for
learning, of course, the learning need is high. On the other hand, the first assumption was that
learners usually do not spend more than four times the expected learning time. In that case, the
learning need became high again. A user might open an item in LCA and then leave the working
place while keeping the Learning Object open or the learner is otherwise distracted. In that case,
the stopped engagement time would still increase, but the user does not acquire any knowledge.
That is why the defined learning need was only low when engagement and instructional time are
similar.

Feedback of course participants, however, indicate an important weakness of that approach.
Learners want to reduce their visually presented learning need actively and, thus, want to optimize
this factor as well. When learners start repeating contents, they expect the learning need values
to decrease continuously, because the knowledge would strengthen due to the repetition. With the
original equation, learners could not actively reduce the learning need, if they first spend more time
than intended by the teacher. That is why the second half of the factor Equation B.7 is cut off and
the first half is adapted to a linear model, where the learning need increases after spending more time

than initially intended. Thus, when timeNeededFor Learning, ; > timelntendedFor Learning;

208 The paper excerpt has exclusively been written by Christopher Krauss.
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the rscore is set to 0.

B.50. Introduction of the Forgetting Effect

The following paper excerpts and texts introduce the forgetting model of Ebbinghaus [99] and
how it is transferred to approximated forgetting of studied digital media. Thereby an experiment

was conducted to identify influences of different parameters.

"Hermann Ebbinghaus [99] gave the first and still representative equation for the forgetting
curve. He noticed that forgetting is high during the initial period after learning and gradually
decreases over time. An experiment was conducted by Harry P. Bahrick [24] to test the
recall and recognition of 50 English-Spanish word pairs over a period of 8 years. The
results showed that the recall and recognition percentage of words is greater in larger
intersession intervals, indicating the influence of spacing on forgetting. In recent years, some
recommender systems re-used the equation from Ebbinghaus to improve predictions for the
e-commerce and entertainment domain [129] [297].

[...] The decay theory [46] states that a person’s memory of a learned content fades
away over time, when it is not used. That is why forgetting represents a special relevance
factor function 7 fy, i forgetting(t) in the Smart Learning Recommender. Apart from time, we

identified the following parameters that influence forgetting:

e Media type: The type of learning objects plays a vital role in remembering (cf. [232]
[263]). In our approach, the media types are text, exercise, audio, graphics/image,
video and multimedia.

e Difficulty level: The learning content represents different difficulty levels [263]. A
common way of categorizing difficulty level is easy, medium and hard. It can be set
based on the amount of content, detail level of information and so on. Forgetting will
increase from difficulty level easy to hard.

e Prior knowledge: Learner’s prior knowledge about the course helps to easily understand
the course as compared to a learner who is new to the course. Hence, with prior
knowledge, the learner remembers more [232] [263].

e Learner’s interest towards the content: If the learner is not interested in a subject,
forgetting tends to be at a higher rate compared to the subject of interest [263].

e Learner’s memory strength: Every person in the world is different from each other, so
their memory. A learner with higher memory strength can remember more, compared
to a learner with lower memory strength.

e Repetition: During repetitions, students learn the offered items again. Repetition is
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very helpful in strengthening the memory of learned content [99, 211].

e Repetition spacing: Constant repetitions at regular intervals will help to retain learned
content. However, when the time spacing between initial learning and repetition is
large, the percentage of increase in memory of the content is also high compared to the
percentage increase with short repetition interval [211].

e Re-remembrance due to retention tests: Most research does not take the effect of
retention tests for the re-remembrance into account: When people are asked about a
topic, the questions in the retention test can act as a retrieval cue and allow the learner
to correlate the words in the question to the previously learned content — thereby,
remembering the forgotten concept as a side-effect.

e Retention test spacing: Similar to the repetition spacing, the gap in time between two
successive retention tests can also have an influence on the re-remembrance. The more

spacing, the smaller the effect of re-remembrance”

Cf. [166]209.

Factors like media type, difficulty level, repetition, learner’s prior knowledge, learner’s memory
strength are studied by many researchers. This study includes previously examined factors as well
as novel factors like learner’s interest towards the content, re-remembrance due to retention tests
and it’s spacing concerning time.
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Figure B.33.: Survey results for forgetting of videos with different complexity levels that have
only been watched at the beginning of the experiment. The y-axis represents the
percentage of wrong or not answered questions per retention test. Thereby each
12.5% stand for one of eight answered questions.

”We conducted an experiment with a group of eight people to confirm and study the effect

of the parameters that could influence forgetting. The duration was eight to ten weeks

209This paper excerpt has primarily been written by Rakesh Chandru and presents his work on the forgetting effect
in his Master Thesis "Oblivion in Recommender Systems — The forgetting effect in predictions” which was
supervised by Christopher Krauss.



CXXXIV Chapter B. Extended Texts

and involved people from different fields like information technology, medicine and business
administration. The eight people learn a learning object at the beginning of the experiment.

In regular intervals, we performed retention tests to observe the learner’s knowledge. 5-8
questions from a group of 10-12 questions that represent the key information of the given
topic are randomly picked and posed at the person to test the percentage of forgetting. The
assumption: the progress of wrongly answered questions (in percent) over time represent
the progress of forgetting. In the experiment, the parameter values are varied, to get a clue
about its effect on forgetting. We presented different media types, in terms of texts and
videos with different complexity levels. In some cases, the learning objects needed to be
learned again at specific points in time to evaluate the repetition effect. Figure B.33 shows
an excerpt from the survey results with the forgetting progress of videos that have been

watched only once and show different lengths and complexity levels”

Cf. [166]210.

We evaluated the in the initial experiments determined formula in another study. Therefore, we
compared the prediction accuracy of the actual Ebbinghaus model with the new generated model

for the Smart Learning Recommender.

”Since this work shows a novel approach on forgetting and only a few data sets were published
(e.g., [249]), which do not match all requirements of this approach, we generated our own
data. We conducted a similar experiment as at the beginning in order to evaluate the
correctness of our thesis. In our evaluation, 11 participants learned a previously unknown
Learning Object just once. Over a period of eight to ten weeks, they had to answer retention
tests in regular intervals. Each questionnaire consisted of four to eight questions and every
single question was just asked once. The evaluation resulted in the analysis of the prediction
accuracy using Mean Absolute Error (MAE) and Root Mean Square Error (RMSE). See
Figure B.34 for error values of different participants.

The results are compared with those from the equation of Hermann Ebbinghaus [99].

Table B.6 shows the average values of MAFE and RMSFE for the results from this study and
from the Ebbinghaus equation for forgetting. It can be noticed that the average MAFE and
average RMSE are nearly 3 times lower in the model developed in the current study compared
to the existing model from Ebbinghaus. This indicates a higher prediction accuracy of the
model developed for forgetting in the current study, but still requires further experiments.
We incorporate the forgetting factor as well as the other factors for a learning object and

thus, predict its overall learning need for the given user”

210This paper excerpt has primarily been written by Rakesh Chandru and presents his work on the forgetting effect
in his Master Thesis "Oblivion in Recommender Systems — The forgetting effect in predictions” which was
supervised by Christopher Krauss.
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Cf. [166]2!1.

Table B.6.: Error values for forgetting models

Equation MAE | RMSE
by Hermann Ebbinghaus | 0.3518 | 0.3896
SLR Forgetting 0.1245 | 0.1461

B MAE ERMSE

Figure B.34.: Error values of the predicted forgetting effect for different participants.

B.51. Explanation of the Forgetting Formula

The following paper excerpt presents details on the parameters of the forgetting model.

”[For the SLR, the| values for F,, are in the range [0,0.1]. For example, media types which
increase the retention by the highest possible value would be assigned 0. In our case, videos
and animations are assigned 0.04 and text with 0.1. The difficulty level F; can vary between
0 and 0.1, as well, where easy is assigned 0 and hard with 0.1.

[...] The equations for the effect of repetition and re-remembrance due to retention tests

are given by Equations (B.8) and (B.9).

Tc - Td,ret
T,

Eret = Nyt *

* Kot (B.8)

Where T, is the total course duration expressed in days and Tg . is the number of days
after the last retention test. n,.; is the retention test count. The constant K,..; at the end

of the equation indicates the weight by which the forgetting is reduced. The ideal value for

211 This paper excerpt has primarily been written by Rakesh Chandru and presents his work on the forgetting effect
in his Master Thesis ”Oblivion in Recommender Systems — The forgetting effect in predictions” which was
supervised by Christopher Krauss.
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the constant is 0.01, based on the observations from the experiment.

T, — Td,rep

E,., = timeFactor * g * Kyep (B.9)

c
E,., includes the timeFactor that was initially given by Formula (8.12), Ty e, is the number
of days elapsed after last repetition. The constant K,., at the end of the equation indicates
the weight by which the forgetting is reduced. In our experiment the ideal value for this
constant is 0.75.

[...] Factors like memory strength and the learner’s interest towards the content are specific
to each learner. These factors make the forgetting curve unique for each learner, but need
further evaluations. The adapting constant a requires the conduction of retention tests. If
there is no retention test planned, the adapting constant is set to 0. The value « personalizes
the forgetting curve by taking the learner’s performance in the retention into account. It is

given by the following formula:

predictedScore — actualScore
o =

B.10
: (B.10)
It represents the deviation between the regular forgetting curve [...] and the real forgetting
progress of a single person — determined by retention tests”

Cf. [166]%12.

B.52. History of Determining Appropriate SLR Weights with a

Linear Model

Average For a more intelligent approach, the influence of the different factors in an equal weighted SLR
Factor Values  setting is analyzed. Therefore, the generated factor values rscore, ;¢ are averages for every item
as Weights i in the training set (with max z items). The average values represent a weight wy , ¢ for factor z,

user u and the time of the recommendation ¢. The decay effect penalizes older data and prefers

younger.
o Soi o (decayyy, * rscorey it .”) (B.11)
z,u, E;O(decayt,ti)
trirst — ti
decay, , — st =t (B.12)
tfirst —1

212This paper excerpt has primarily been written by Rakesh Chandru and presents his work on the forgetting effect
in his Master Thesis "Oblivion in Recommender Systems — The forgetting effect in predictions” which was
supervised by Christopher Krauss.
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The decay decay, ; is higher, the closer the point in time of consumption is to the actual point
in time of recommendation t. ¢y is the first date on which an item access is considered for the
weight (e.g., date of the course start) and ¢; is the date where item i has been consumed?!3. The
value 8 adjusts the power of the relevance value rscore, ;. — the higher 3, the more scattered
are the single factor weights: High factor values get even higher impact (with a high value of 3)
and low factor values have a less effect.

Appendix B.53 presents the determined weights in detail. Interactions (determined weight

of 15%)and the forgetting effect (determined weight of 15%) play minor roles in the weighting.

Moreover, as mentioned previously the exam relevance is a constant and, at least in our AWT
setting, equal for each item with a value of 1. Thus, it should not affect the item filtering process
of the Recommender System, but receives the highest weight. That lead to the conclusion that
the averaged factor values do not make much sense as factor weights.

For the third approach, the deviation of each item’s relevance score from the average factor
scores is determined. The intuitive approach behind that is that factor values with a high positive
deviation from the average in the last days before the recommendation make the difference for
appropriate recommendations and, thus, need to receive a higher weight. Based on the Formula

B.11, the deviation Formula is adjusted as follows:

Yo (decayt’ti * Arscoreummﬁ)
Z?:()(deca’yt7ti)

Where Arscore, ;+ . is the deviation of the factor value rscorey ;+, from the average value

(B.13)

We u,t =

@rscorey t which can be expressed as

ArScorey i g = TSCOT€y i t.o0 — DTSCOTEY ¢ 4 (B.14)

Thereby, @rscore, , stands for the average factor value for factor x of all items for user u at
time of the recommendation ¢. w;, ; must be greater than 0 to avoid negative weights. When
Wz ..+ has a negative value, it is set to 0 so that this factor does not influence at all. In other
words: a factor is more important, the higher its deviation is from the average values of that
factor.

A detailed analysis of this approach is presented in Appendix B.54. This extension shows,
unfortunately, an even worse effect on the precision resulting in only 0.377% on average (a
reduction of almost 20%). It turns out that the relevance scores of a particular factors are typically
in sub ranges smaller than [0,1]. The average value of all exercise relevance scores, for instance, is

0.12, while the average interaction score is 0.30, the average processing time score is 0.35 and the

213By the way, this formula also works in the other direction, for item analysis in the test set. Nevertheless, to
generate reliable results and strictly follow the guidelines of the evaluation framework, just items of the training
set are considered.

Average
Factor
Deviation as

Weights
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average self-assessment score is 0.46.

B.53. Factor Weights of the Average Factor Values Approach

100% 0,25

80% 0,2
60% 0,15
40% 0,1
20% 0,05
0% 0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
® Weight_PROCESSINGTIME ~ ® Weight_SELFASSESSMENTS — Weight_PROCESSINGTIME — Weight_SELFASSESSMENTS
= Weight_EXERCISES Weight_INTERACTION — Weight_EXERCISES Weight_INTERACTION
m Weight_LECTURES ® Weight_EXAMRELEVANCE — Weight_LECTURES — Weight_EXAMRELEVANCE
m Weight_FORGETTINGEFFECT — Weight_FORGETTINGEFFECT

Figure B.35.: Importance of the factors over the course period in AWT as ratio of determined factor
weights according to the average factor values approach (for Top-3 recommendations,
trirst =t —Tdays and B = 1). left: values as stacked area; right: values as line chart

Figure B.35 shows two times the same ratio distribution of the factor weights: on the left for
an overview of all weights and on the right side for a direct comparison of the relative weights
of the analyzed factors in the AWT course. ts;.s; was set to 7 days before the recommendation,
which means that items consumed at this point have the lowest effect and items consumed at the
time of the recommendation ¢ show the highest effect on the weight. The power 3 is set to 1. As
one can see, almost all factor weights start at the same initial weight of about 15% at the course
start. Self-assessments, exercises, and exam relevance have an almost equal influence between
15 and 20% each. Processing time has less influence with about 15% over the whole period and
interactions even less with 13% on average over the course period. The forgetting effect ranges
between 10 and 15% influence.

Interestingly, the impact of lecture times reduces over the course period — starting with 14% and
reducing to under 5% with a local valley of about 1% in weeks 9 and 10. The local valley is the
Christmas time when there was no lecture at all. The overall reduction of the factor influence
might be because the course schedule allows a differentiation during the lecture times, especially
when users start following the course contents at the beginning but shortly after that follow their
individual learning agenda.

Figure B.36 shows the same impact values of the factors grouped for all items that have not
been consumed previously (left) and items that are repeated by the user (right). As one can see,
the exam relevance, self-assessments and partly the lecture times are more important for items

that have been consumed previously. It is undeniable for repeated topics that the lecture time



B.54. Factor Weights of the Average Factor Deviation Approach CXXXix

100% 100%

90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

1

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

® Weight_PROCESSINGTIME ~ m Weight_SELFASSESSMENTS m Weight_EXERCISES ® Weight_PROCESSINGTIME ~ m Weight_SELFASSESSMENTS ® Weight_EXERCISES
Weight_INTERACTION m Weight_LECTURES ® Weight_EXAMRELEVANCE Weight_INTERACTION m Weight_LECTURES ® Weight_EXAMRELEVANCE
m Weight_FORGETTINGEFFECT m Weight_FORGETTINGEFFECT

Figure B.36.: Detailed analysis of importance of the factors over the course period in AWT as
ratio of determined factor weights according to the average factor values approach
(for Top-3 recommendations, ¢ ;s = ¢t — 7days and § = 1); left: for all new items
(that have been consumed for the first time); right: for all repeated items (that have
been consumed previously)

factor influences the recommendations in the first half of the course and starting with week 11

again (after New Year’s Eve) — only those course periods comprised face-to-face lectures.

B.54. Factor Weights of the Average Factor Deviation

Approach
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Figure B.37.: Importance of the factors over the course period in AWT as ratio of determined
factor weights according to the average factor deviation approach (for Top-3 recom-
mendations, tyeievant = tr + 7days and x = 1). left: values as stacked area; right:
values as line chart

Figure B.37 shows the influence of the factor values due to the positive average deviation values.
Thereby, lecture times play a major role in the recommendation selection process — except the
Christmas Holidays. During this free period, in turn, self-assessments and especially exercise
results indicate which items are particular of interest. Interactions and processing time show a

similar progress with slowly increasing influence. As a conclusion, there is not much difference
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between those two factors, as one represents a number of consumed sub-items and the other
represents the time spend on an item — both have a similar influence on the total consumption.
The constant value for exam relevance receives, as expected, a weight of zero because this factor

does not influence the item consumption behavior at all.

B.55. Qualitative Study on LCA in AWT

In order to evaluate the subjective perception of recommendation effectiveness and efficiency,
a qualitative study has been conducted: 29 participants of the AWT course?'* participated
additionally to the course in a Thinking-Aloud Study. The participants performed seven tasks
with the help of the Learning Companion Application and, thereby, were requested to speak loudly
about their user experience and faced issues. Most tasks allowed different strategies to solve the
task — e.g., open the contents of the last lecture via the course overview, the schedule, the search
engine or the list of recommendations. Note: the external conditions (in terms of questioners
and additional support during the tasks) are not well defined and, thus, the results are only
partially meaningful as different test persons encountered different conditions. A new study with
a formal definition of the experimental set-up is in progress, but could not be completed before

the submission of the dissertation. The tasks can be summarized as:

q01. What degree of difficulty did you encounter while solving the tasks?
16

15
14

12

10

o]

o

N

2
2
. 0
0
Very easy Easy Neutral Hard Very hard

Figure B.38.: Survey question on the general difficulty after the thinking aloud session for the
AWT course

e Download last week’s lecture slides (Via recommendations or course overview)

214The participants comprise seven female, 21 male students. One did not provide feedback.
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e Find learning contents presented in the next lecture (Via recommendations or course
overview)

e Find learning contents for "filtering approaches” (Via search or course overview)

e Find learning contents for "HbbTV” (Via search or course overview)

o Identify your lowest self-assessment (Via recommendations or course overview)

e Find recommendations for contents you might have forgotten (Only via recommendations)

e Find the schedule for next week (Via search or course overview)

It took the participants between 4 min 18 sec and 22 min 17 sec to complete all tasks. While
the utilization of the search engine and the page of the recommendations are similarly efficient in
terms of needed time to solve the task (on average about 12 seconds), the recommendation list
was only used in 10% of the cases and the search engine in 79%. Thus, recommendations seem to
be helpful when users do not know what they are looking for (otherwise they would use the search
feature). However, all participants opened the recommendation list at least once, and 83% (24
in total) of the participants appreciated the provided recommendations in the related task. The
other five students (17%) argued about a missing English translation as the main reason for the
encountered problems?'® that also comprises the German-only titles of the recommendations.

q02. Was the task hard to solve?

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7

HYes mNo

Figure B.39.: Survey question on the difficulty per task after the thinking aloud session for the
AWT course

5 participants (17%) encounter problems when searching for a search button, that was expected
to be in the top bar, but it was part of the main menu. 4 participants wished more interactive

learning contents instead of slides and the navigation between contents is too complicated. And 3

215 At the time of this study, the LCA was offered in the German language only.
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q03. How do you like the following aspects of the system?
18

Good; 16
16
14
Normal; 12
12
Good; 10
10
Very good; 8 Good; 8 Bad; 8
8
Very good; Very good; 6
6 Good Norma Bad; 5
Normal; 4 Very good; Norma
4 bad; 3 bad; 3
ad; 2
2 ;2
ad; 0
0
Design Performance Interaction Understandability

Very good Good M Normal mBad MVerybad ™ Noanswer

Figure B.40.: Survey question on the preference for specific aspects after the thinking aloud session
for the AWT course

participants wanted a discussion forum as part of LCA.

After the thinking aloud studies, the participants are asked to answer an online survey that is
presented in Figure B.38 to Figure B.40.

The same 29 participants are asked for a comparison of the Learning Companion Application and
Information System for Instructors and Students (ISIS) which is the TU Berlin branded version of
Moodle used for all course offerings. Only 15 students (out of 29) have completed an ISIS course
so far. That implies that about the half of the participants are newly matriculated at TU Berlin.

21 participants find the navigation of LCA easy, while only 13 find SIS easy regarding navigation.
If they had the choice, 13 participants would decide for LCA and 13 for ISIS, the rest could not
decide. The 6 of the 13 students who preferred ISIS give as a reason the missing English language
of the Learning Companion Application (which is going to be integrated in January 2018).

B.56. Qualitative Study on LCA at Chamber of Crafts

The eight participants of the first energy consultant training with LCA at the chamber of crafts
also participated in an online study. While the course was hosted at the Chamber of Crafts Berlin,
the IZT surveyed with aggregated questions of the partners.

Six of the eight participants prepare and wrap-up the lectures. The time spend is almost equal
for preparation and wrap-up and lies between 30 and 60 minutes per week. On the question, what
the participants wish for future Learning Management Systems, all answered a digital lecture

schedule and access to course materials. Seven of eight also wished recommendations for the
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preparation of the final exam. Six participants want additionally an overview of their personal
learning progress for each Learning Object and four each plead for recommendations for Life-Long
Learning and for lecture preparation and wrap-up. Only two participants wished recommendations
of peers to build learning groups.

On the question about the usefulness of a visualization of the learning progress, six participants
answered with "very useful” and the other two with "useful”. Moreover, all participants answered
yes on the question, if they want to get hints on assumed learning weaknesses.

The IZT also asked open questions, such as ”In your opinion, which advantages show LMSs?”.
Answers are "Better and deeper learning”, ”"the personal mentoring”, "flexibility”, "Every-time
access” and ”"Uncover learning weaknesses respectively deepen learning to counteract on them”.
On the question "Which doubts do you have on the usage of a learning recommender system?”,
the participants answered: "Disregard of data protection”, "Monitoring” and ”As long as it stays

anonymous and nothing is forwarded to third parties, I have no doubts”.
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