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Abstract 

Protein interaction networks aim to provide the scaffold maps for systematic studies of the 

complex molecular machinery in the cell. The complexity of protein interactions poses, 

however, large experimental and computational challenges regarding their identification, 

validation and annotation. Additionally, storage and linking is demanding since new data are 

rapidly accumulating. In this research work, I addressed these issues and provided solutions to 

overcome the limitations of current human protein-protein interaction (PPI) maps. In 

particular, my thesis can be partitioned into two parts:  

• In the first part, I conducted a comparative assessment of eight recently constructed 

human protein-protein interaction networks to identify experimental biases. To this 

end, I scrutinized PPI networks with respect to their overlap, functional composition 

and topological properties. Results showed strong selection and detection biases which 

are necessary to take into consideration in future applications of these maps. One of 

the important conclusions of this study was that the current human interaction 

networks contain complementary information; hence, their integration could be 

beneficial. To this end, a database was developed, termed as Unified Human 

Interactome (UniHI), integrating human PPI data from twelve major sources. Several 

new tools were included for querying, analyzing and visualizing human PPI networks, 

enabling researchers to target their analysis and prioritize candidates for follow-up 

studies. 

• In the second part of this research work, I applied the data from UniHI to study the 

two aspects. First, I aimed to study the modular organization of human interactome. 

Results from this study showed a larger number of modules including many known 

protein complexes, linked via many overlapping key proteins. Further functional and 

expression analysis of detected modules enabled a direct comparison between stable 

and dynamic modules. Second, UniHI dataset was applied to characterize the genetic 

modifiers involved in a specific disease: Chorea Huntington (HD), an autosomal 

dominant neurodegenerative disease. To find the modifiers, a network-based modeling 

approach was implemented by integrating huntingtin-specific protein interaction 

network with gene expression data from HD patients in multiple steps. Using this 

approach, a Caudate Nucleus-specific HD protein interaction (PPI) network was 

predicted, connecting 14 potentially dysregulated proteins directly or indirectly to the 
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disease protein. Follow-up analysis showed the highly significant overrepresentation 

of network proteins participating in pro-apoptotic pathways, cell survival, anti-

apoptotic, growth, and neuronal diseases, demonstrating the essentiality of this 

prediction approach.  
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Zusammenfassung 

Protein-Protein Interaktions (PPI) Netzwerke liefern ein Grundgerüst für systematische 

Untersuchungen der komplexen molekularen Maschinerie in der Zelle. Die Komplexität von 

Protein-Wechselwirkungen stellt jedoch in Bezug auf ihre Identifizierung, Validierung und 

Annotation eine große experimentelle und rechnerische Herausforderung dar. Darüber hinaus 

ist die Speicherung und Verknüpfung anspruchsvoll, da die Menge der relevanten Daten rasch 

anwächst. In dieser Arbeit analysierte ich  diese Probleme und lieferte Lösungen, um die 

Limitierungen  aktueller humanen PPI Netzwerke zu überwinden. Meine  Arbeit kann in zwei 

Teile aufgeteilt werden: 

• Im ersten Teil führte ich eine kritischen Vergleich  von acht unabhängig konstruierten 

humanen PPI Netzwerke durch, um mögliche  experimentellen Verzerrungen zu 

erkennen. Zu diesem Zweck habe ich PPI Netzwerke hinsichtlich  ihrer Überlappung, 

funktionalen Zusammensetzung und topologischen Eigenschaften geprüft. Die 

Ergebnisse zeigten starke Tendenzen bezüglich der Selektion und Detektion von 

Interaktionen, die in zukünftigen Anwendungen dieser Netzwerke berücksichtigt 

werden sollten. Einer der wichtigsten Schlussfolgerungen dieser Studie war, dass die 

derzeitigen humanen  Interaktions Netzwerke komplementär sind und deshalb kann 

eine Integration von diesen Karten von großen Nutzen sein. Zu diesem Zweck wurde 

eine Datenbank mit der Bezeichnung  Unified Human Interaktome (UniHI) entwickelt, 

die menschliche PPI Daten aus zwölf wichtigsten Quellen integriert. Mehrere neue 

Tools wurden für die Abfrage, Analyse und Visualisierung von Protein Interaktionen 

entwickelt. Diese Tools ermöglichen Forschern die  Analyse von Interaktions-

Netzwerken und Auswahl der interessanter  Kandidaten für weiterführende  Studien. 

• Im zweiten Teil dieser Forschungsarbeit benutzte  ich die Daten aus der UniHI 

Datenbank, um zwei Aspekte zu untersuchen. Erstens wurde  die modulare Struktur 

der menschlichen Interaktoms von mir analysiert. Als Ergebnis dieser Studie ergab 

sich die Detektion  einer größeren Zahl von Modulen, darunter viele bekannte Protein-

Komplexe,  die über einzelne Proteinen verknüpft waren. Weitere funktionelle Studien 

und  Expressions-Analysen hinsichtlich der  gefunden Module ermöglichten eine 

Unterscheidung  zwischen stabilen und dynamischen Modulen. Zweitens wurde der  

UniHI Datensatz von mir angewandt, um die genetischen Modifikatoren in einer 

bestimmten Krankheit, Chorea Huntington (HD) eine autosomal dominante 
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neurodegenerative Erkrankung, zu charakterisieren. Um die Proteine zu identifizieren, 

die den Krankheitsverlauf modifizieren können, wurde eine netzwerk-basierte 

Methode implementiert. Diese baisert auf  das Integration von Interaktionsdaten für 

das Huntingtin-Protein und Genexpressionsdaten von HD-Patienten in Kombination 

mit einem Mehrschritt-Filterungsverfahren. Mit dem neuartigen Ansatz wurde ein 

Nucleus caudatus-spezifische Protein-Interaktion HD (PPI)-Netzwerk vorhergesagt, 

das 14 potentiell dysregulierten Proteine direkt oder indirekt mit dem Huntingtin-

Protein  verlinkt. Funktionelle Analysen zeigten, dass die Proteine dieses Netzwerk auf 

hoch-signifikante Weise zu wichtigen molekulare Prozessen wie z.B. Apoptose, 

Metabolismus, neuronale Entwicklung assoziert sind. 
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1 INTRODUCTION 

1.1 Cell: Network of Networks 

A cell is the fundamental unit of all known living organisms, and is often referred as 

the building block of life. Its basic functions result from complex networks of 

interacting constituents such as DNA, RNA, proteins, and small molecules. Advances 

in high-throughput experimental methods have enabled the study of complex 

interactions on a global genome-wide level and have generated different types of 

biological networks. In particular they comprise protein-protein, protein-DNA, protein-

metabolite and genetic interactions networks. However, these networks do not work 

in isolation, but carefully constitute a network of networks at different space and time 

that is responsible for functions and the structure of the cell (Barabasi and Oltvai, 

2004). Therefore, a key challenge is to understand the role of these diverse networks 

and the interactions between them that solely define the behaviour of the cell. This 

especially requires the development of a framework for the study of the cellular 

systems as a whole and thus helps us to reveal the complex nature of the biological 

systems.  

1.2 Systems Biology: a framework to study the behaviour of the 
Cell 

Recently, a new discipline has emerged with the advent of large-scale biological data 

sets, termed Systems Biology. It can be viewed as a complementary - but not 

opposing – approach to the classical reductionist strategy for the study of the 

biological processes. In contrast to reductionist approaches based on the dissection 

of processes into their most elementary levels, systems biology is more holistically 

orientated. The guiding principle of systems biology is that the total system can be 

more than the sum of its parts and can acquire properties that are not implicated in 

the single components.  

Following this principle, we seek to study a biological system as a whole. The aim is 

to determine the rules governing its behaviour and eventually to generate qualitative 

and quantitative predictions concerning its response to potential perturbations and 

modifications. To achieve this, two requirements have to be fulfilled: i) a sufficient 



 2  

amount of data and information describing the system has to be available and ii) a 

computational model of the system has to be designed. Whereas the first 

requirement is increasingly met with the development of new high-throughput 

techniques, the second necessity still demands considerable efforts. For instance, 

when we aim to represent the whole system, we need to choose an adequate level of 

resolution. Finding this level is challenging, since there is usually a trade-off between 

computational feasibility and detailed representation of the molecular systems due to 

their mere size and complexity. The inclusion of too many components can lead to ill-

determined models of the system with many parameters unknown, whereas a too 

severe restriction can results in an incomplete model with a lack of coherence.  In 

fact, the choice of a suitable model depends not only on the research objective, but 

also, more practically, on the quality and quantity of data and information present.   

1.3 Network Biology: a key component of Systems Biology 

In response to the challenges posed by systems biology, various methodologies for 

different levels of resolution have been brought forward to date.  A nowadays very 

popular approach is based on the representation of biological systems as 

mathematical graphs and has laid the ground for the blooming field called network 

biology. In the context of molecular systems, for instance, the molecules are typically 

represented as nodes and their interactions as edges (figure 1.1). Although this type 

of representation is clearly a strong simplification of the underlying physical system, a 

major advantage of this approach is that the analysis of large networks becomes 

feasible. Also, the underlying graph-theory has been well developed and offers 

researchers a variety of tools.  In fact, with its beginning dating back to Leonard Euler 

in 1736, graph theory has made profound impact in social, physical and computer 

sciences (Euler, 1736). The application of graph-theory to biology seems to be well 

suited where large networks are involved in the process of interest. Thus, it is not 

surprising that the concepts of network biology have been especially applied to 

elucidate the complex processes during several diseases and to consolidate the 

hitherto divergent observations (Wachi et al., 2005; Jonsson and Bates, 2006; 

Hernandez et al., 2007; Platzer et al., 2007). 

Before we can study any complex disease within a network-based framework, we 

need to assess the availability of data and information necessary for such endeavour. 
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Currently, most disease-related data are produced in large sequencing and 

transcriptional profiling projects. Although their output has given us unprecedented 

details of the molecular changes during pathogenesis, they cannot give us per se 

causal relationships leading to the observed changes. To gain new insights, the 

knowledge of the relationships (i.e. interactions) between the involved biomolecules 

is crucial.  Ideally, we would like to have the complete set of molecular interactions 

(i.e. interactome) that take place within the human body. Such human interactome 

would include a variety of different types of interactions such as transient or 

constitutive protein-DNA, RNA-RNA, protein-protein and protein-ligand interactions. 

Similarly to the sequencing of the human genome which supply us with a catalogue 

of the molecular parts of a cell, the charting of the human interactome would give us 

the blueprints how they are put together to function. In reality, however, we are still 

far away from a complete map of molecular interactions within the human body.  

Thus, at a practical level, most network-based approaches to decipher most of the 

diseases are restricted to certain types of interactions between a limited set of 

molecular entities. For example, in the context of cancer, most research efforts to 

date have been focused on the analysis of physical protein-protein and regulatory 

DNA-protein interaction networks. In particular, protein-protein interaction (PPI) 

networks have been extensively scrutinized with tools of network biology to advance 

our understanding of the complex molecular processes involved in diseases (Chuang 

et al., 2007; Ergun et al., 2007; Pujana et al., 2007).  

1.4 PPI Networks: core of the Network Biology 

In a living organism, proteins interact with other proteins to carry out vital cellular 

functions, such as signal transduction, DNA replication, transcription, protein 

transport, or metabolic catalysis. Also, many major diseases such as neurological 

disorders or cancer are characterized by complex interactions of multiple proteins 

(Goehler et al., 2004; Calvano et al., 2005; Lim et al., 2006; Oti et al., 2006; Ideker 

and Sharan, 2008).  The study of human protein interactions may therefore help (i) to 

improve our general understanding of biological processes (Figure 1.1) and (ii) to 

decipher the molecular basis of complex diseases and to provide new potential 

therapeutic targets.  
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For many years, interactions between proteins have been studied in small-scale 

experiments. This situation has however dramatically changed in the last decade. 

The availability of fully sequenced genomes (Ruder and Winstead) and advances in 

high-throughput approaches (Fields and Song, 1989; Figeys et al., 2001; Puig et al., 

2001; Koegl and Uetz, 2007) have led to large-scale studies of protein–protein 

interactions on a genome-wide scale and to efforts to map the complete PPI network 

for an organism, termed also as interactome. Indeed, we have recently witnessed 

many large-scale protein interaction mapping projects in several model organisms 

such as S. cerevisiae (Schwikowski et al., 2000; Uetz et al., 2000; Ito et al., 2001; Ho 

et al., 2002), D. melanogaster (Giot et al., 2003) and C. elegans (Li et al., 2004). 

Now, the focus has moved towards a systematic mapping of human PPI maps 

(Aranda et al., ; Bader et al., 2003; Lehner and Fraser, 2004; Salwinski et al., 2004; 

Brown and Jurisica, 2005; O'Brien et al., 2005; Pagel et al., 2005; Persico et al., 

2005; Ramani et al., 2005; Rual et al., 2005; Stelzl et al., 2005; Ewing et al., 2007; 

Breitkreutz et al., 2008; Matthews et al., 2009; Prasad et al., 2009). The constructed 

human PPI maps have been derived from both experimental and computational 

approaches (Fields and Song, 1989; Figeys et al., 2001; Matthews et al., 2001; Puig 

et al., 2001), and offer not only a wealth of information but are also expected to be of 

great assist for the biomedical research community (Goehler et al., 2004; Goh et al., 

2007; Braun et al., 2008; Ideker and Sharan, 2008). However, utilization of these 

interaction maps is impeded and the current limitations are manifold. 

1.5 Current Challenges 

In the postgenomic era, one of the daunting tasks of proteomics is to chart complete 

protein-protein interaction networks that occur within cells. Although, the availability of 

many large genome sequences and advances in high-throughput methods provided 

us a platform to construct PPI maps, interactomes of many organisms are far from 

complete. A major problem of currently available approaches is therefore that they 

are unable to capture interactions in a comprehensive manner (Hart et al., 2006). 

Even, in a recent study, in which the authors claimed to developed an improved 

version of currently available high-throughput methods to identify the yeast PPI 

network, termed as generation-2 methods, the coverage of all possible interactions in 

S. cerevisae was estimated to reach only ~20% (Yu et al., 2008).  
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Figure  1.1: Overview of the human interactome. Graphical representation of the current human 
protein-protein interactome as stored in the UniHI database (http://www.unihi.org). Altogether, 
it comprises over a quarter of a million of interactions derived from experimental resources 
and by computational prediction. The figure also illustrates the grade of simplification achieved 
by the graph-theoretical approach.  The highlighted nodes representing to protein structures 
(left: mitogen activated protein kinase; right: haemoglobin complex consisting of alpha and 
beta chains) are depicted for illustration only; they do not represent the actual location of these 
proteins in the interactome. Displayed structures were taken from the Protein Data Bank 
(Berman et al., 2007). 

Similar problems also exist in human PPI. Recent studies have shown that the 

current human PPI maps are incomplete and highly unsaturated. For example, given 

a total size of human interactome of ~650000 interactions as a recent study 

estimated (Stumpf et al., 2008), even HPRD, a manually-curated literature database 

for human protein interaction maps (Prasad et al., 2009), as one of the largest 

sources, covers not more than 5% of the total interactome (Stumpf et al., 2008). 

The quality of PPI data also remains a critical issue. It has been observed in many 

studies, that the data, produced by high-throughput experimental methods, contains 

high rate of false positive or negative interactions. Additionally, these methods may 
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also have experimental biases toward certain protein types and cellular localizations, 

which demands for the improvement in high throughput methods. For example, Y2H-

based mapping approaches offer rapid screens between thousands of proteins, but 

might be compromised by large false positive rates. The extent, however, how much 

the resulting interaction maps are influenced by the choice of mapping strategy, is 

less clear. Thus, it is important to critically assess and compare quality and reliability 

of produced maps. Comparative analysis of interaction maps in lower eukaryotes 

showed a surprising divergence between different interaction maps (Mrowka et al., 

2001; Bader and Hogue, 2002; von Mering et al., 2002). Human PPI maps are likely 

to be no exceptions, but a comparison was still lacking for human protein despite 

their expected importance for biomedical research. Thus, critical evaluation of the 

available human interaction maps has been necessary regarding the method chosen 

for network generation.  

1.6 Aims and overview of the current research work 

This thesis primarily focuses on the analysis, integration and applications of the large-

scale human protein interaction networks. In particular, my work aims to contribute to 

the usability of protein interactions in biomedical research as well as to apply protein 

interaction networks for the study of physiological and pathological processes. The 

objectives of my doctoral research can be summarized as follows: 

1.6.1 Comparative analysis of human PPI networks  

Current PPI networks are often error-prone and unsaturated and (Mrowka et al., 

2001; Bader and Hogue, 2002; von Mering et al., 2002). Moreover, these networks 

might contain biases, i.e. over- or under-representation of proteins from some certain 

categories, due to the sensitiveness of experimental methods towards specific type of 

proteins. For example, membrane proteins have been found under-represented in 

interaction networks generated by Y2H-methods (Mrowka et al., 2001; von Mering et 

al., 2002). Whether, the same problem also exists in human PPI network remained to 

be answered. To address these issues, a first systematic analysis of eight human PPI 

networks, generated by either yeast-two-hybrid methods, or manual curation, or 

computational prediction approaches, was conducted. These PPI networks were 

analyzed regarding their overlaps, functional constitution and topological 

organization. Results of these analyses are discussed in more detail in chapter 3.  
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1.6.2 Implementation of an integrated platform for PPI networks 

Comparative evaluation of PPI maps, described in chapter 3, provided me with 

important findings. Especially, the overlaps of interactions between the networks 

were found to be rather small, suggesting the highly complementary nature of the 

current human PPI networks. Therefore, an integration of these networks could be a 

milestone towards achieving a comprehensive human interactome. But, integrating 

the data from diverse sources is not an easy task and poses many challenges. In 

chapter 4, I addressed these problems and described a strategy to overcome them 

for a successful integration of PPI networks.  

1.6.3 Identification of modules in PPI networks 

PPI networks are scale-free and organized in a hierarchical manner (Barabasi and 

Oltvai, 2004). Several studies have been performed to study the modular structure of 

PPI networks in lower eukaryotes (Rives and Galitski, 2003; Spirin and Mirny, 2003). 

However, such analysis was still missing for human interactome. In chapter 5, I 

examined the modular structure of human interactome, and described the important 

findings 

1.6.4 Characterization of brain-specific dys-regulated processes and 
modifiers for Huntington’s disease 

Huntington´s disease is an autosomal dominant late-onset neurodegenerative 

disorder, caused by an expansion of polyglutamine tract. The pathogenic outcome of 

HD leads to disturbance in muscle coordination and some cognitive functions. 

Network-based approaches are powerful predictive tools, and have been successfully 

applied in several studies to characterize modifiers in complex diseases such as 

cancer, ataxia, multiple sclerosis (Goehler et al., 2004; Lim et al., 2006; Chuang et 

al., 2007; Pujana et al., 2007; Baranzini et al., 2009). In this study, I developed a 

network-based method by systematically integrating huntingtin-specific human 

protein interaction network with the gene activity data from Huntington disease 

patients in multiple steps to identify the genes which are altered during HD 

pathogenesis and may provide a basis for new treatments. More details on the 

bioinformatic analysis, their findings and the statistical validations are provided in 
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chapter 6.  

1.7 Outline of the thesis 

Chapter 1 (this chapter) introduces the fundamentals of systems biology. It further 

provides the basics of PPI networks, their current problems, and aims of this research 

work. Chapter 2 gives brief details about biological background required for reading 

this work. Next, it summarizes the methods for generating large-scale PPI network, 

limitations of current approaches, databases and the tools for the storing and 

analyzing the human PPI networks. Especially, it reviews published research works 

where PPI networks have been applied to characterize disease genes and the 

associated biological processes. Chapter 3, 4, 5, and 6 present the results from 

different research articles, which are either published or submitted. All these articles 

have a similar structure, and contain four sections:  section one provides introduction 

to related work, section two describes the material and methods applied, section 

three discusses the results, followed by last the section discussion and conclusions. 

In particular, Chapter 3 presents the results from three different published research 

articles, discusses the findings of the systematic comparative evaluation of current 

human PPI networks. Chapter 4 discusses the several challenges and necessary 

steps for the integration of human PPI networks. Chapter 5 summarizes the findings 

from modularity analysis performed using human PPI network integrated within UniHI 

database. Chapter 6 presents newly implemented network-based method, to 

characterize the brain-specific modifiers for Huntington´s disease. Chapter 7 

summarizes the contributions of the research described in this thesis and discusses 

its impact on future investigations. 
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2 REVIEW OF LITERATURE 

A brief introduction to the aim of this research work has been provided in Chapter 1. 

In this chapter, I will review few topics related to the current work. Section one 

introduces the basic concepts of molecular biology. Additionally, this section also 

elaborates basic mechanism of protein misfolding and the related diseases. Section 

two described several aspects of PPI networks. First, different methods for 

generating large-scale protein interaction networks and their limitations are 

discussed. Further it reviews few studies, in which these approaches have been 

employed to generate large-scale PPI networks. Additionally, it also provides details 

on fundamentals of network theory. Finally, in section three, several databases for 

housing data on human protein interaction, tools for networks analysis, and their 

applications in biomedical sciences are discussed.  
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2.1 Cells as building blocks of life 

A cell is one of the most basic units of life. All living creatures are made of cells. They 

can be classified into two major categories: prokaryotes and eukaryotes. Most 

prokaryotes are single cells organism. In contrast, eukaryotes are highly evolved 

multi-cellular organisms. Examples of eukaryotes are all plants and higher animals. 

Prokaryotic cells do not contain nucleus and their DNA lies in the same compartment 

as the cytoplasm, while eukaryotic cells contain membrane-bound compartments in 

which specific metabolic activities take place. Most important among these 

compartments is the nucleus, which houses the eukaryotic cell’s DNA 

2.1.1 Central dogma of molecular biology 

One of the fundamental mechanisms of molecular biology is the flow of information 

from DNA to RNA and subsequently from RNA to proteins (figure 2.1). This process 

is also known as central dogma of molecular biology. Deoxyribonucleic acid (DNA) is 

considered to be a cellular library that contains the genetic instructions (i.e. genes) 

used in the development and functioning of all known living organisms. The transfer 

of information from DNA to RNA is known as transcription, creating the copies of 

messenger RNAs (mRNA).  After transcription, mRNAs are converted into proteins by 

a process called translation. For this, mRNAs contain required information encoded in 

nucleotide triplets called codons, which are translated into proteins by some rules 

known as genetic code.  

2.1.2 Genes 

Genes are the basic units of heredity in DNA, and are associated with regulatory, 

transcribed and other functional sequence regions.  Basically, they contain coding 

sequences that are required for its expression. The molecules resulting from gene 

expression, whether proteins or RNA, are known as gene products, and are 

responsible for the development and functioning of all living things. The process by 

which production of a gene product is controlled is called gene regulation, which is 

usually carried out through interactions among DNA, RNA and proteins. It increases 

the versatility and adaptability of an organism by allowing the cell to express a protein 

for specific function when it is needed. Abnormal changes in the expression level of a 

gene may damage a healthy cell and lead to a dangerous disease. On the other 
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hand, expression changes can also counter the effects of a malignant cell, and 

thereby help to protect the internal cellular environment. A classical example is TP53 

gene. Mutation or deletion of TP53 can lead to cancer disease, whereas, increased 

amount of TP53, prevents tumour cells from spreading, but can also cause premature 

aging (Tyner et al., 2002).  

 

   

Figure 2.1: From DNA to mRNA to protein. Image taken from  (Futschik, 2003). 

2.1.3 Gene expression profiling  

DNA Microarrays are an essential platform that enables scientist to monitor the 

expression levels of thousands of genes simultaneously on a global, genome-wide 

level. A typical cDNA microarray consists of a glass slide containing complementary 

sequences of many genes arranged in a regular pattern. These arrays can be applied 

to study the effects of certain treatments, diseases, and developmental stages on 

gene expression. In particular, they can be applied to study the behaviour of a cell by 

comparing the expression levels of a set of genes under in diseased and normal 

conditions. There are several databases and repositories which manages the 

massive amounts of data produced by microarray experiments. Popular examples 

are the Gene Expression Omnibus (Barrett et al., 2009) and the Array Express 

(Brazma et al., 2003). 
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2.1.4 Proteins as workhorse 

Proteins are the most active elements of cells. They control and mediate in many of 

the biological activities that make the cell work. The chief characteristic of proteins 

that enable them to be multi-functional player is their ability to bind with other 

molecules specifically and tightly. The range of the protein functions includes 

formation of structural complexes, intracellular signaling, synthesis, repair and 

replication of DNA, membrane transport, and many others. In order to perform these 

tasks, they exhibit outstanding richness in their structure, which can be described 

using four hierarchical orders. The primary structure of a protein is its linear sequence 

of amino acids. Secondary structure is a regularly repeating local structures stabilized 

by hydrogen bonds. The most common examples are the alpha helix, beta sheet and 

turns. Tertiary structure refers to the three-dimensional structure of the entire 

polypeptide chain, which is responsible for the functions of a protein. Quaternary 

structure is structure formed by several protein molecules, also termed as single 

protein complex. Proteins complexes are the foundation of many cellular processes 

and together they constitute different types of molecular machinery that execute 

plenty of biological functions.  

Several databases have been developed for storing and managing the information on 

protein. These databases can be classified into two main categories based on their 

content: structural databases (SDs) and functional databases (FDs). Structural 

databases provide information on secondary and tertiary structures of proteins, 

protein families, domains and functional sites, and protein fingerprints (motifs). 

Examples of such databases are PDB (Berman et al., 2007), PFAM (Bateman et al., 

2004), SCOP (Murzin et al., 1995), CATH (Pearl et al., 2005), and INTERPRO 

(Mulder et al., 2005). In contrast to the structural databases, functional databases 

store information on the functions of proteins on a hierarchical level. Popular 

examples for housing functional classification on proteins are Enzyme Commission 

(EC) hierarchical classification (Bairoch, 2000) the Gene Ontology (GO) (Ashburner 

et al., 2000). Especially, GO provides structured, precisely defined, common, 

controlled vocabulary for describing the roles of genes and gene products in many 

organism.  
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2.1.5 Protein misfolding and diseases 

Protein folding is an essential mechanism by which polypeptide chain of a protein 

folds into a functional three-dimensional structure (Berg et al., 2002). Under normal 

condition, folding of a protein depends on many environmental factors, involving 

solvent (water or lipid bilayer) (van den Berg et al., 2000), concentration of salts, 

temperature, and more importantly the presence of molecular chaperones. However, 

changes in these factors result in a denatured protein, leading to the misfolding and 

aggregation of the protein. Defects in protein folding usually produce inactive proteins 

with different properties including toxic prions. Various diseases have been reported 

to protein misfolding which may result in the formation of insoluble protein plaques in 

the brain or other organs. These diseases include prion diseases such as bovine 

spongiform encephalopathy (BSE), Creutzfeld-Jakob disease (CJD), amyloid -related 

illnesses such as Alzheimer's disease and familial amyloid cardiomyopathy or 

polyneuropathy, as well as intracytoplasmic aggregation diseases such as 

Huntington's and Parkinson's disease (Glenner, 1980; Selkoe, 2003; Ross and 

Poirier, 2004; Chiti and Dobson, 2006). 

2.2 Protein-protein interaction networks 

Protein-protein interactions underlie most of the molecular mechanisms essential for 

any living organisms. Intensive research in last decades has revealed many details of 

the fascinating multifaceted capacity of proteins to gain divers functionality by 

interaction. Although these efforts have supplied us with a tremendous amount of 

information for single proteins, they also indicated that most proteins function in a 

highly cooperative manner. A comprehensive protein interaction network is, therefore, 

an important framework to study the complex cellular processes and a prerequisite 

for accurate models in systems biology. In the following sections, I will provide details 

on the methods for network generation, topological properties, and their use in 

biomedical sciences. 

2.2.1 Methods for generating large-scale protein-protein interaction 
networks 

In last decade, various high-throughput experimental approaches have been 

developed to construct large-scale protein-protein interaction maps. These 

approaches comprise yeast-two-hybrid (Y2H) (Fields and Song, 1989; Koegl and 
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Uetz, 2007), affinity purifications or immunoprecipitation (Puig et al., 2001) followed 

by mass-spectrometry (Figeys et al., 2001), the coordinated efforts in systematic 

charting of interactions by human experts (Prasad et al., 2009) as well as the 

progress in computational text-mining (Ramani et al., 2005) and prediction methods 

(Matthews et al., 2001). As all these methods can lead to considerably divergent 

protein interaction maps (Bader and Hogue, 2002; von Mering et al., 2002), it is 

important to have a basic understanding of the applied methodologies. In the 

following sections, I therefore introduce several current methods and discuss their 

pros and cons. 

Yeast-two hybrid system 

The Yeast-two hybrid (Y2H) method is based on a screening approach using a set of 

modified proteins (Fields and Song, 1989). The physical basis of Y2H is the 

reconstitution of multi-domain transcription factor (such as GAL4 or ADE2). In 

particular, a protein-encoding cDNA of interest is cloned into a bait vector, and fused 

with the DNA binding domain of the multi-domain transcription factor. A second cDNA 

encoding a potentially interacting protein is cloned into a prey vector and fused to the 

transcription factor’s activation domain. Subsequently, the two yeast strains carrying 

the bait and prey hybrid proteins in plasmids are mated. If the bait and prey proteins 

interact, a functional transcription factor is reconstituted leading to the transcription of 

a reporter gene such as lacZ encoding for β-galactosidase.  In a high-throughput 

mode, whole libraries of bait and prey vectors can be screened for interactions. Thus, 

a main advantage of this approach is that it provides a platform for the generation of 

large-scale protein-protein interaction networks that need not to be biased toward 

known interactions. Another attractive feature of Y2H is that weak transient 

interactions can be detected. A disadvantage, however, is that interacting proteins 

have to be located to the nucleus for detection which can cause difficulties for the 

examination of membrane proteins. Another crucial problem in Y2H systems is that 

interactions are measured outside the native surrounding (except for yeast proteins) 

and thus potential protein modification specific to e.g. humans may not take place. 

Moreover, the false positive rate for Y2H screens might be considerable and 

frequently exceed the estimated true positive rates (Hart et al., 2006).  

Nevertheless, the Y2H system has been an important method in the field of 

interactomics and been extensively used in the generating the protein interaction 
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maps for various model organism (Schwikowski et al., 2000; Uetz et al., 2000; Ito et 

al., 2001; Giot et al., 2003; Li et al., 2004). Recently, the Y2H system was applied in 

two large-scale studies to screen for protein interaction in human (Rual et al., 2005; 

Stelzl et al., 2005). Stelzl and co-workers used a combination of  fetal brain cDNA 

library and a set of full length open reading frames (ORFs) to create over 11 000 Y2H 

clones. Applying a pooling approach, more than 25 million protein pairs were tested 

resulting in an identification of over 3000 interactions. Independently, Rual and 

collaborators performed an Y2H screen based on more than 8000 ORFs and 

detected ~2800 interactions. Together, both projects identified over ~5,500 new 

protein interactions, of which a selected sub-set was experimentally validated.  

Affinity purification and mass spectroscopy approaches 

Affinity purification using tagged bait proteins in combination with mass spectrometry 

have been performed to generate large-scale protein interaction maps in different 

organisms (Gavin et al., 2002; Ho et al., 2002). For this approach, proteins of interest 

are fused with a specific tag and expressed in cells where they form native 

complexes with other proteins. Using the tags, these bait proteins are precipitated 

after cell lyses and the composition of the obtained complexes subsequently 

determined by mass spectrometry. Note that identified interaction partners do not 

necessarily directly interact with the bait protein, but might be linked to the bait by 

indirect interactions. This has important consequences in cases when we like to 

represent the obtained complex by a set of binary interactions in order to facilitate the 

analysis of the global network. Since the internal structure of the complex is generally 

not known, two generic models are frequently used for this task: 1) the matrix model 

assumes that all proteins in a complex interact with each other. Especially for large 

complexes, this assumption leads to a large number of direct interactions and thus 

potentially implies also a large number of false positives. 2) The spike model entails 

that the only direct interactions are those between the bait and the co-precipitated 

proteins neglecting any other internal structures.   

Using this methodology, Gavin & colleagues created first protein interaction maps for 

yeast (Gavin et al., 2002; Ho et al., 2002). A general conclusion of these studies was 

that a considerable part of the proteome can be organized in protein complexes. For 

instance, Gavin and colleagues could identify over 200 mostly novel complexes for 

an initial set of over 1700 tagged yeast proteins.  Detailed analysis of the obtained 
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dataset showed resulted most protein complexes are linked constituting a higher 

order network beyond the level of binary interactions 

More recently, Ewing and co-workers utilized a similar approach to capture the 

interactions between human proteins involved in important biological processes or 

associated with diseases (Ewing et al., 2007). For the study, they selected an initial 

set of 338 bait proteins, which were functionally enriched in biological processes such 

as protein modification, cell cycle, transcription and signal transduction, or were 

associated with diseases such as breast cancer, colon cancer, diabetes or obesity. 

To identify interaction partners for this set of proteins, a large-scale 

immunoprecipitation experiment with subsequent mass spectrometry was performed. 

Despite starting with a rather small set of bait proteins, they detected ~24500 protein 

interactions using a human cell line (HEK293) for expression. To exclude redundant 

or potential false positive interactions, the detected interactions were computationally 

processed using statistical analysis and confidence measures. The final set was 

comprised of approximately 6500 novel interactions between over 2200 proteins 

including many novel and pathway-related associations.  

Literature curation and text-mining  

Besides high-throughput experimental approaches, the numerous small-scale 

experiments described in the literature can be exploited to create large-scale protein 

interaction maps. Tapping into the wealth of published experiments, information on 

protein interactions is systematically extracted from the literature either by human 

experts or text-mining algorithms. The advantages of such procedure are that it is not 

biased towards a particular experimental technique and that the chartered 

interactions are determined under a broad range of conditions and protocols.  

Characteristic disadvantages are the inherent difficulty to estimate the false positive 

rate and the biases towards highly studied proteins. 

For human, several research groups have followed this strategy to create large-scale 

protein interaction maps (Aranda et al., ; Bader et al., 2003; Salwinski et al., 2004; 

Breitkreutz et al., 2008; Prasad et al., 2009) (table 2.1). As a prime example, the 

Human Protein Reference Database (HPRD) has been established for manual 

curation of interactions described in the published literature. Currently, it includes 

almost 38000 interactions constituting the largest set of literature-curated human 
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protein interactions. Obviously, the selection of the literature for curation influences 

directly the resulting interaction map. In the context of HPRD, for instance, the 

curation efforts are focused on proteins which are disease-associated. Recently, 

several other major databases have joined forces to capture all interactions described 

in the literature. The established International Molecular Exchange (IMEx) consortium 

is expected to contribute to coordination and thus minimizing the efforts of single 

databases (Orchard et al., 2007). However, it should also be noted that such 

procedure might eventually reduce independent curation which is often an asset in 

judging the quality of interactions.  

Since the manual curation of scientific literature is highly labour-intensive, 

computational text-mining approaches have become a cost-effective alternative. One 

of the simplest text-mining strategies is to count how often a pair of protein names 

occurs in the same scientific text. If this count is higher than the one expected by 

chance, we might infer that both proteins are functionally associated and potentially 

interacting. Although this approach has recently applied to construct from Medline 

abstracts a network including ~3,700 human proteins, one should keep in mind that 

the deduced interactions need not be physical (Ramani et al., 2005) (table 2.1). More 

elaborated computational search algorithms capturing the semantics and syntax 

might give us more precise interaction networks (Hoffmann and Valencia, 2004).   

Computational prediction  

Alternative to the large-scale experimental and manually-curated approaches, in 

silico prediction method have been used to build large-scale protein-protein 

interaction maps (Lehner and Fraser, 2004; Brown and Jurisica, 2005; Persico et al., 

2005). This strategy is based on the assumption that protein interactions are likely to 

be evolutionarily conserved between orthologous proteins from different species, and 

therefore interaction between proteins in lower organisms can be extrapolated to their 

human orthologs (O'Brien et al., 2005). A main advantage of this method is that it is 

entirely computational and thus enables rapid and cost-effective construction of 

protein-protein interaction maps. Disadvantages are that it is purely predictive in 

nature and false positive can arise through erroneous mapping to human orthologs or 

that the interactions are simply lost during evolution.  
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Two different groups applied InParanoid algorithm (Berglund et al., 2008) to find 

human orthologs from various model organism (Lehner and Fraser, 2004; Persico et 

al., 2005). Lehner & colleagues used seven experimental and four computationally 

predicted protein-interaction maps from three model organisms Saccharomyces 

cerevisiae, Drosophila melanogaster and Caenorhabditis elegans. An interaction was 

predicted if both interaction partners from a model organism have one or more 

human orthologs. Using this strategy, authors were readily able to generate a human 

interaction network comprising ~71,000 interactions between ~6,000 human proteins. 

The generated map was further scored using co-expression measures and Gene 

Ontology annotation to identify a core network of 9641 interactions between 3503 

unique proteins.  

A similar study was undertaken by Perisco and co-workers. Besides using 

interactions from lower organisms, they analysed the domain composition of human 

proteins to refine the predictions of interactions. In contrast, Brown and Jurisica 

(Brown and Jurisica, 2005) applied a BLASP and reciprocal best-hit approach to 

extrapolate interactions between organisms. They created first an integrated 

interaction dataset from various model organisms and mapped it to human orthologs 

by BLASTing proteins from each model organism against SWISS-Prot database 

filtered for human proteins. As a next step, each top BLAST hit (with an E-value <10-

5) was BLASTed back against the set of all model organism protein sequences. A 

protein (with an E-value < 10-5) was then considered as a potential ortholog, if it 

matched the original query protein in reverse direction. Following this method, they 

generated a human PPI map containing ~25000 interactions between ~4000 proteins 

(table 2.1). 

2.2.2 Topological properties of PPI network  

Cellular functions are attributed to interactions among many molecules. In a cell, 

these molecules are organized in a complex manner and together they form a 

network, whose complexity reflects to a large degree those in other types of 

networks, such as the social networks, internet, or organizational networks. This 

astonishing semblance indicates that most complex networks in nature might 

generally be controlled by the similar universal laws, and therefore the learning from 

these well-studied non-biological systems may be extrapolated to cellular networks to 

study the complex association that regulate the molecular functions (Barabasi and 
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Oltvai, 2004). The graph-based theoretical approaches offer possibilities to study 

these relationships. For example, modelling molecular networks with graph can thus 

help us to visualize how molecules in a biological system work together in concerted 

manners. Graph-theoretical measurement such as connectivity or centrality of a node 

within network might indicate their functional importance as a hub protein (He and 

Zhang, 2006). To this end, molecular network has to be first converted into a 

mathematical graph. For protein interaction networks, for instance, proteins are 

commonly represented as nodes and their physical interactions as undirected edges. 

The resulting graphs can be analyzed using various graph-theoretical measures 

described in the following sub-sections.  

Scale-free networks and hubs 

A fundamental characteristic of a node in a mathematical graph is its degree i.e. the 

number of connections or edges that a node has to other nodes. The degree 

distribution P(k) of a network is then defined  as fraction of proteins in the network 

with k interactions. It is an important feature to distinguish different network classes. 

Of special importance here is the power-law distribution (P(k) ~ k-γ)  which is 

characteristic for the class of scale-free networks. It has been shown that such 

network architecture is more robust against random failure of single components 

(Barabasi and Albert, 1999; Albert et al., 2000; Han et al., 2005). A consequence of 

the scale-free topology is the emergence of so-called network hubs i.e. highly 

connected nodes. Hubs are of particular importance for the network integrity and 

were associated with essential proteins (Jeong et al., 2001; Wuchty, 2004; He and 

Zhang, 2006). However, recent studies have demonstrated that the essentiality of 

protein hubs is better explained by the number of shortest paths going through them 

(Yu et al., 2007).  

Small-world effect 

A common feature of many networks is that most of the nodes within network can be 

reached from every other by a small number of edges (Watts and Strogatz, 1998). 

The path length between two proteins is called as shortest path length. This feature 

was first observed in social networks, but other networks such as World Wide Web 

and the metabolic network also demonstrate this property 
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Cluster coefficient 

Cluster Coefficient is a fundamental measurement that assesses the degree to which 

nodes tend to cluster together (Watts and Strogatz, 1998). It is defined as C=2n/m(m-

1) where n is the number of links between m neighbors. A large clustering coefficient 

indicates that neighbors of a node are likely to interact to each other. The clustering 

coefficient of a network, C, is the average of Ci over all vertices. A function C(k) 

defines the average clustering coefficient over the vertices with degree k. When a 

network is modular and hierarchical, the clustering function follows a power law C(k) ~ 

k – 1 (Barabasi and Oltvai, 2004). 

Centrality and betweenness 

Centrality seeks to describe the relative importance of a protein within the graph, by 

evaluating the location within a network. Frequently, centrality of a node is defined by 

the number of shortest paths passing through this node. An alternative centrality 

measure is betweenness., nodes that occur on many shortest paths between other 

nodes tend to have higher betweenness than those that do not (Jeong et al., 2001). 

Community 

A community structure describes a group of nodes that have a high number of edges 

within them, but low number of edges to nodes of other groups. This is also a 

common feature which exists in many real world networks including biological 

networks.  

2.2.3 Databases for human protein interactions  

Several human protein interaction databases have been established to help 

researchers to find and analyze interaction partners of their interest of protein (table 

2.1). These databases can generally be divided into two different categories: The first 

one is based on the manual curation of published literature or datasets and includes 

e.g. the Human Protein Reference Database (HPRD) (Prasad et al., 2009), Biological 

General Repository for Interaction Datasets (BioGRID) (Breitkreutz et al., 2008), 

IntAct molecular interaction database (Aranda et al.), Database of Interacting 

Proteins (DIP) (Salwinski et al., 2004), Biomolecular Interaction Network Database 

(BIND) (Bader et al., 2003), Molecular INTeraction database (MINT) (Chatr-
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aryamontri et al., 2007) and MIPS Mammalian Protein-Protein Interaction Database 

(MPPI) (Pagel et al., 2005). The other category of databases is based primarily on 

computationally predicted interactions; examples of such databases are the Online 

Predicted Human Interaction Database (OPHID) (Brown and Jurisica, 2005) and 

HomoMINT (Persico et al., 2005).  Currently, HPRD is one of the major sources for 

human interaction data and - as the name implies - dedicated to store data a variety 

of information for human proteins. Besides interactions, it also provides information 

on domain architecture, post- translational modifications, and disease association 

and biological pathways. Other databases e.g. BioGRID, IntAct, DIP, BIND, and 

MINT are the repositories for a more diverse set of organisms and provide access to 

interaction data for other model organisms such as yeast, worm and fly.  

2.2.4 Tools for analysis and visualization of interaction networks 

Besides the generation of interaction data, one major focus of interactomics is the 

development of tools for the analysis of complex networks. As outlined before, the 

representation of biological networks as mathematical graphs facilitates the 

computational analysis tremendously. At present, several types of tools supporting 

the computational examination of interaction networks are available. They can be 

broadly classified based on their implementation in standalone software and web-

based analysis tools.  

Popular examples of standalone solutions are the statistical programming 

environment R-Bioconductor (Gentleman et al., 2004)  and the Cytoscape 

bioinformatic platform (Shannon et al., 2003). Whereas the first is generally widely 

applied in analysis of high-throughput data, the latter is dedicated to the visualization 

and interrogation of network structures. Both software tools provide many open 

source add-on packages for graph-theoretical analyses making them highly versatile 

in their application. However, users might be required to pre-compile data collection 

for investigation. An alternative standalone software is the Osprey package which 

provides links to the BioGRID database (Breitkreutz et al., 2008). 
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Table 2.1: Overview of the currently available human protein-protein interaction maps 

Resource Proteins  Interactions  Method   References 

MDC-Y2H  1703 3186 Y2H SCREEN  (Stelzl et al., 2005) 

CCSB-Y2H  1549 2754 Y2H SCREEN  (Rual et al., 2005) 

HPRD-BIN  8788 38800 LITERATURE  (Prasad et al., 2009) 

DIP  1085 1397 LITERATURE  (Salwinski et al., 2004) 

BIOGRID 7953 24624 LITERATURE (Breitkreutz et al., 2008) 

INTACT 7273 19404 LITERATURE (Aranda et al.) 

BIND  5286 7394 LITERATURE  (Bader et al., 2003) 

COCIT  3737 6580 TEXT MINING  (Ramani et al., 2005) 

REACTOME  1554  37332 LITERATURE  (Matthews et al., 2009) 

ORTHO 6225 71466 ORTHOLOGY  (Lehner and Fraser, 2004) 

HOMOMINT  4127 10174 ORTHOLOGY  (Chatr-aryamontri et al., 2007) 

OPHID  4785 24991 ORTHOLOGY  (Brown and Jurisica, 2005) 

 

To offer more convenient interfaces for the network analysis, especially for 

researchers less acquainted with bioinformatorical analyses, various web servers 

have been implemented, some of which I exemplarily introduce in the following. A 

fairly generic collection of algorithms for graph analysis is provided by the Network 

analysis tools (NeAT) server (Brohee et al., 2008). Users can perform basic 

operations on graphs as well as detect cluster structures. More focused is the hub 

objects analyser (Hubba), which comprises several algorithms to identify highly 

connected proteins in interaction networks (Lin et al., 2008). Notably, the interaction 

data has to be supplied by the user for both tools. To relieve users from the burden of 

collecting and pre-processing interactions, several web-servers additionally provide 

precompiled data sets. Popular examples of this kind of integrative platforms are 

VisANT (Hu et al., 2009) and BiologicalNetworks (Baitaluk et al., 2006).  
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2.2.5 Application of interactomics 

Large-scale protein interaction network appears to be attractive resources in many 

research fields. Traditionally, they have been applied for the functional 

characterization of an unknown protein, based on the assumption that the two 

interacting partners are likely to be involved in a same biological process, where they 

perform similar functions. Several algorithms, which use this principle, have been 

developed, and are classified as direct methods (Sharan et al., 2007). Examples of 

such direct methods are neighbourhood counting, graph-based methods that are 

based on topological properties of a network, integrative systems biology that 

integrates the information from multiple sources in the combination with machine-

learning algorithms which use features of a known protein to characterize the 

functions of its partner (Sharan et al., 2007). In contrast to direct methods, module-

assisted approaches uses the topological properties of the network to identify the 

group of proteins or modules whose interactions can be attributed to certain biological 

function (Hartwell et al., 1999). The assumption is here that the identified module 

might contain both known and unknown proteins, and therefore help us in the 

prediction of the function of unknown proteins by using the function of its known 

partners. Popular examples of module-detection methods include hierarchical 

clustering  (Rives and Galitski, 2003), graph-based clustering (Spirin and Mirny, 

2003; Przulj et al., 2004), network topology (Bader and Hogue, 2003), or data 

integration in the combination with machine learning algorithms (Tanay et al., 2004; 

Kelley and Ideker, 2005). Modularity aspect will be elaborated in more detail in 

chapter 5.  

Other areas of interactomics are the identification of domain-domain interactions 

(Guimaraes et al., 2006), network motifs (Milo et al., 2004), comparison between 

model organism and human (Gandhi et al., 2006), and the several applications in 

disease research detailed in the following section.  

2.2.6 Role of the PPI networks in disease research 

PPI networks have been recently extensively applied in disease research, due to fact 

that several diseases, such as cancer, neurodegenerative etc., do not result from one 

protein, instead, caused by misregulation of interactions between many proteins. 

Therefore, characterization of those proteins that modulate these interactions may 
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provide new insights in the pathogenesis of the disease. Moreover, functional and 

structural analysis of these modulators may give us possible solution and basis for 

the new treatments. Several studies have been performed using PPI networks to 

identify the genetic modifiers in disease such as Chorea Huntinton (Goehler et al., 

2004), Ataxis (Lim et al., 2006), inflammation (Calvano et al., 2005) and various types 

of cancers (Wachi et al., 2005; Jonsson and Bates, 2006; Chuang et al., 2007; 

Pujana et al., 2007). In the next following sections, I will describe the role of PPI 

networks in disease research using several aspects. 

Topological analysis of disease genes  

One of the first questions addressed by network-based approaches in disease 

research is also one of the most intriguing: What makes a gene to a disease gene? 

Although such naïve question may be somewhat puzzling at first, it makes naturally 

sense in network biology to ask whether disease-associated genes have 

characteristic properties within interaction networks. To address this question, graph-

based methods can be applied to study network properties of disease genes. Several 

research groups have applied such concepts to reveal the graph-theoretical 

properties and the role of cancer genes in human protein interaction networks (Wachi 

et al., 2005; Jonsson and Bates, 2006; Hernandez et al., 2007; Platzer et al., 2007). 

For the analysis, the set of disease-associated genes has first to be determined, for 

which commonly databases or microarray studies are used. As a second step, a 

disease network is created by integrating the disease genes products (i.e. proteins 

encoded by disease-associated genes) with available large-scale protein interaction 

networks. Finally, the topological properties (e.g. degree distribution, centrality) of 

disease genes within this network are computed and compared to those of genes that 

have not been associated with disease.  

Wachi and co-worker applied the above outlined strategy to study the centrality of 

genes that are differentially expressed in cancer (Wachi et al., 2005). Their analysis 

showed that upregulated genes tend to be highly connected and more centrally 

located in the network compared to randomly selected genes. Downregulated genes 

tended to be also more highly connected but not significantly. Furthermore, they did 

not show an increased centrality.  Based on their findings, the authors suggested that 

a core set of central genes has to be activated during the course of carcinogenesis.  
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Similar results were reported in a separate topological analysis performed by 

Jonsson and Bates (Jonsson and Bates, 2006). Results indicated that the cancer 

proteins show higher degrees than non-cancer proteins. Cancer proteins also tend to 

function as central hubs, reflecting their role as a key player in protein-protein 

interaction network. Clustering analysis additionally showed that cancer proteins, on 

average, are more frequently located in the interfaces between clusters indicating an 

enhanced role in the coordination of different cellular processes.  

A similar approach was undertaken by Goni & colleges for the analysis of the 

topological properties of genes associated with neurodegenerative disorders, such as 

Multiple Sclerosis (MS) brain and blood and Alzheimer Disease (AD) brain and blood 

(Goni et al., 2008). The aim of this study was the comparative assessment of the 

centrality related features such as degree and betweenness between disease genes 

products (seed proteins) and its neighbours. Comparative topological analysis of 

seed proteins in all four networks displayed a lower average degree with respect to 

the degree of their PPI neighbors in both diseases and in both tissues. Remarkably, 

seed proteins showed a higher betweenness in AD-brain and MS-blood networks, 

and a low correspondence between their degree and betweenness in all four 

networks. These findings suggested that critical proteins in disease pathogenesis are 

not highly connected, but tend to be located in bottleneck regions, and therefore less 

extensively connected proteins might be more appropriate therapeutic targets than 

hyper-connected ones, at least in neurodegenerative diseases.  

Network-based prediction of new disease genes 

A second area in which protein interaction networks have been utilized in disease 

research is the identification of new disease-associated genes. The rationale behind 

these investigations is that interacting proteins are likely linked to the same or similar 

phenotype. A leading example is Fanconi anemia, a genetic disease, for which seven 

of the nine associated proteins form a physical complex involved in DNA repair. 

Although interaction data can provide a suitable first basis for de novo identification of 

disease-causing genes, additional information has commonly been utilized to improve 

specificity.   

For many years, genetic linkage studies were the most potent approach to find new 

disease-causing genes. A major difficulty, however, is to pick the right gene within 
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rather extended chromosomal regions that have been linked to a disease. Oti et al. 

showed that this task can be considerably facilitated using protein interaction data 

(Oti et al., 2006). For genetically homogenous diseases, they predicted new disease 

associations when genes fell within an identified susceptibility locus and have protein 

interactions with a gene known to cause this disease. This simple method of data 

integration led to a 10-fold increased specificity compared to randomly selected 

candidate genes at the same locus. Notably, Oti et al. also deduced that protein 

interactions added as much information as localization to the prediction accuracy. In 

a similar study, Franke et al. extended the protein interaction network by including 

microarray and gene annotation to generate a functional interaction network (Franke 

et al., 2006). Also, new candidate genes were identified in the larger network 

neighbourhood of known disease genes, avoiding the restriction to direct interactors 

only.  

One requirement of these studies is that we have to know already a set of genes 

associated with a certain disease. This set can be then used to ‘anchor’ a disease in 

the human interactome. If however no such genes are known, this approach cannot 

be used. To overcome this limitation, Lage et al. catalogued human phenotypes in a 

computational tractable manner (Lage et al., 2007). Their motivation was that similar 

diseases might share the same molecular basis. Having defined a score for the 

similarity of phenotypes, information for a specific disease can then be deduced from 

similar diseases. Thus, candidate genes can be predicted even if no other gene 

associated with the specific disease is known yet. For prediction, Lage et al. 

integrated human protein interaction with linkage data in a similar manner as Oti et al. 

and Franke et al. Using an in silico pull-down approach and the similarity of 

phenotypes, they extracted  known and new complexes and predicted several novel 

candidate disease genes involved in disorders such as cancer, Alzheimer’s, diabetes 

and coronary heart diseases. Detailed analysis for epithelial ovarian cancer lead to 

the identification of a new candidate gene, Fanconi anemia group D2 protein 

(FANCD2) placed in a complex with breast cancer type 1 susceptibility protein 

(BRCA1) and breast cancer type 2 susceptibility protein (BRCA2). This protein has 

been associated with different types of cancer, but not with epithelial ovarian cancer 

so far.  
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A conceptually similar network-based modelling approach was applied by Pujana et 

al. to predict new candidate genes involved in breast cancer (Pujana et al., 2007). 

They assumed that genes, which are functionally related or showed conserved co-

expression across species, might cause a similar phenotype. To test their hypothesis, 

they created a cancer-specific network with four known breast cancer-associated 

genes: BRCA1, BRCA2, ATM, and CHEK2. Neighbours of each reference gene set 

were further ranked using scoring system based on coexpression, phenotypic 

similarity, and genetic or physical interactions among orthologs of the proteins in 

other species. They identified a new gene (HMMR) that was found to be associated 

with an increased risk of breast cancer.  

Network-based prediction of cellular processes 

In addition to prediction of novel disease-associated genes, interaction networks were 

also employed to unravel disease-related molecular processes. As one example, 

Chuang et al. applied a network-based classifier to identify sub-networks as markers 

for breast cancer prognosis (Chuang et al., 2007). To find the sub-networks, they 

mapped the gene-expression profiles of metastatic and non-metastatic patients on a 

human protein–protein interaction network. Subsequently, they computed activity 

scores of all associated members to rank the sub-network as a whole. Their finding 

showed that high scoring sub-networks were enriched in many cancer-related 

biological processes such as apoptosis, proliferation, tissue remodelling, signalling 

and survival. Their analysis also indicated that identified modules were more 

reproducible than individual genes selected without network information, and that 

they achieve a higher accuracy in the classification of metastatic versus non-

metastatic tumours. Another advantage of this approach is that it also captures those 

genes which may have not been detected based on gene expression data alone. 

Such non-differentially expressed genes could be integral part of a complex and be 

required for connecting high scoring proteins in a sub-network. In fact, Chuang et al. 

found that a large number of the identified network structures contained at least one 

protein that was not significantly expressed in metastasis while most of them served 

as a bridge between high scoring proteins in a sub-network. This integration provides 

the opportunity to analyze the relationships between members of the complexes, and 

also increases the accuracy of the overall prediction. 
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In another study, Baranzini and colleges applied the similar approach for indentifying 

sub-networks involved in multiple sclerosis (MS), a neurodegenerative disorder, 

(Baranzini et al., 2009). For the identification of sub-networks, disease genes were 

collected from two genome-wide SNP markers association studies in MS with 

nominal evidence of association (P < 0.05), and further superimposed on a human 

protein interaction network. Their findings suggested that several identified sub-

networks were found to be over-represented in immunological pathways including cell 

adhesion, communication and signalling, neural pathways, and synaptic potentiation. 

Especially, authors claimed to report for the first time the potential involvement of 

neural pathways in MS susceptibility. Such findings are crucial, since mechanisms of 

MS is still very much under investigation, and network-based approaches may help 

identify different, and even unrelated, biological processes as responsible for disease 

pathogenesis (Baranzini et al., 2009).  

Common genes to many disorders 

PPI networks have also been applied for identification of common genes to many 

disorders (Goh et al., 2007). Notably, for this application, Barabasi and colleges 

integrated human PPI network with disease phenotype data, obtained from OMIM, to 

create first ever human diseasome. Using a bipartite graph-approach, they created a 

human disease network showing many-to-many relationship between genes and 

disorders. Such genome-wide network-based approaches are essential for 

biomedical research and may help to enhance our understanding of the genetic links 

between disorders and disease genes.  

In summary, the described network studies give us a first overview about the role of 

PPI networks in biomedical research. Nevertheless, care has to be taken in 

interpretation as current interaction networks often show divergence in structure due 

to different methods used for their assembly. 
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3 COMPARISON OF LARGE-SCALE MAPS OF THE 
HUMAN PROTEIN INTERACTOME  

 

This chapter is an extended version of following three papers and some 
unpublished data: 

References: 
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3.1 Introduction 

Protein-protein interactions are essential for the vast majority of cellular processes. 

This pivotal role has led to intensive studies of large-scale mappings of protein-

protein interaction networks. In last decade, several strategies to catalog the human 

interactome have been proposed and pursued (Lehner and Fraser, 2004; Brown and 

Jurisica, 2005; Persico et al., 2005; Rual et al., 2005; Stelzl et al., 2005; Ewing et al., 

2007; Prasad et al., 2009). To date, most of these approaches can be assigned to 

one of the following type: i) literature-based, ii) orthology-based and iii) high-

throughput yeast-two-hybrid-based (Y2H) or mass spectrometry-based interaction 

maps. Each of these approaches has its own known strengths and weaknesses. 

However, how the resulting interaction maps are affected is less clear.  

At the same time, first attempts in biological and medical research to systematically 

utilize interaction data sets have been undertaken (Goh et al., 2007; Yildirim et al., 

2007; Ideker and Sharan, 2008). Although the results have been promising, it may 

not be denied that the number of successful efforts to exploit protein interaction maps 

is still limited. An important reason for this situation might the missing integration of 

separated maps. Clearly, it has been tempting to immediately start the unification of 

hitherto disconnected interaction maps. However, it has been also evident that quality 

and reliability of diverse interaction maps has to be stringently assessed first, 

especially if their methods of generation are distinct. A comparison was therefore 

timely because efforts towards reciprocal adjustment and updating of currently 

separated interaction databases can be expected or are already in process. While 

such integration facilitates the data access for researchers, it may cloud possible 

biases of the distinct mapping approaches in single databases.  

Comparative assessments of interaction maps have already been performed for S. 

cerevisiae regarding the overlap, coverage and reliability (Bader and Hogue, 2002; 

von Mering et al., 2002). von Mering et al. performed a comparative analysis to 

measure accuracy and as well as to identify biases, strengths and weaknesses of 

each method used for generating yeast interaction data. Their analysis indicated that 

currently available interaction data are highly divergent, mainly due to the presence of 

high false-positive rate, and some methods may have selection and detection biases, 

resulting in complementarities between the methods. Bader & colleagues  (Bader and 

Hogue, 2002) pointed out that the low overlap could arise from either a high false-
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discovery rate or high false-negative rate. Their analysis showed that 25% to 45% of 

the reported interactions in yeast, worm and fly are likely false positives, in which 

membrane proteins have higher false-discovery rates on average, and signal 

transduction proteins have lower rates.  

Whereas most of the previous studies were focused on the comparative evaluation of 

yeast PPI network, such extensive comparisons were still lacking for human protein 

interaction maps. A simple extrapolation of the results from yeast to human maps 

might be misleading regarding the different underlying biology and mapping 

approaches. Therefore, a systematic evaluation of currently available human protein-

protein interaction maps is warranted to gain a better understanding and insight into 

their functional composition and topological structure. To this end, a comparative 

analysis of currently available eight human interaction maps was performed in this 

work. For the analysis, first, overall number of common proteins and interactions 

were examined in the analyzed maps. To investigate the composition of interaction 

maps with regard to protein function, biological processes and cellular location, Gene 

Ontology (GO) annotation database was utilized. Next, two different approaches were 

introduced to subsequently assess the functional coherency of interaction maps. 

Finally, the topological properties of each interaction map and properties of hubs 

proteins in different networks were analyzed and compared.  

This chapter is organized as follows: section 3.2 gives brief details about materials 

and methods. Section 3.3 presents several results. Finally, in section 3.4, I conclude 

this chapter by discussing the importance of this study. . 

3.2 Materials and Methods  

3.2.1 Assembly of protein-protein interaction maps 

For comparison, eight interaction maps were chosen that were considered as 

representative for different approaches listed above: three literature-based, three 

orthology-based and two Y2H-based maps (table 3.1). This study was aimed to 

restrict the analysis of binary interactions to facilitate a direct comparison between 

Y2H-based and alternative approaches. As sources for the assembly of the first two 

literature-based interaction maps, the Human Protein Reference Database (HPRD) 

(Prasad et al., 2009) and Biomolecular Interaction Network Database (BIND) (Bader 
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et al., 2003) were chosen. The third literature-based interaction map comprises 

protein interactions found by Ramani and co-workers using a text-mining approach 

(Ramani et al., 2005). It is derived by computational identification of co-cited proteins 

in Medline abstracts. Thus, this map is distinguished from HPRD and BIND as it is 

computationally generated, but it is similarly based on literature search. This map 

was referred to as the COCIT map. Notably, it does not distinguish between physical 

and functional interactions and lacks self-interactions due to the computational 

approach taken.  

A first orthology-based map was assembled from interactions predicted for human 

proteins by Lehner and Fraser. These so-called interlogs are based on interactions in 

yeast, worm and fly. Here only the set of core interactions were used, since they were 

shown to be more reliable (Lehner and Fraser, 2004). The map constructed is 

referred to as the ORTHO map in this study. Two further orthology-based maps were 

constructed based on predicted interactions in Online Predicted Human Interaction 

Database (OPHID) (Brown and Jurisica, 2005) and HOMOMINT database (Persico et 

al., 2005).  

Finally, the two large-scale Y2H screens for human protein interactions by Stelzl et al. 

and Rual et al. (Rual et al., 2005; Stelzl et al., 2005) were included in the 

comparisons. They are referred to as MDC-Y2H and CCSB-H1, respectively. For 

comparative analysis, all proteins were mapped to their corresponding EntrezGene 

ID either using the original ID provided with the data or utilizing Ensmart (Kasprzyk et 

al., 2004) and HGNC (Eyre et al., 2006). 

3.2.2 Overlap of interaction maps  

As protein interaction maps are constituted by proteins and interactions, comparisons 

can either be performed with regard to proteins or to interactions. For pair-wise 

comparison of interaction maps (A, B) in regard to proteins included, common 

proteins between the two maps were identified. This defines the intersection PAB = PA 

∩ PB where PA,B are the sets of proteins in map A or B respectively. Subsequently, 

the intersection was normalized with respect to the number of proteins in A and B 

(PA
AB = PAB /PA ; PB

AB = PAB /PB). The average of PA
AB and PB

AB was referred to as 

(relative) protein overlap between A and B.  
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Table 3.1: Overview of protein-protein interactions maps compared. Numbers were based on 
the proteins which could be mapped to their corresponding EntrezGene ID. The number of 
proteins and interactions before mapping and further information regarding the interaction 
maps can be found in the supplementary material (Appendix table A.1). 
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MDC-Y2H 1703 3186 36 1.1 1.9 Y2H-ASSAY (Stelzl et al., 2005) 

CCSB-H1 1549 2754 143 5.1 1.8 Y2H-ASSAY (Rual et al., 2005) 

HPRD 5908 15658 679 4.2 2.7 LITERATURE (Prasad et al., 2009) 

BIND 2677 4233 614 13.5 1.7 LITERATURE (Bader et al., 2003) 

COCIT 3737 6580 0 0 1.8 LITERATURE (Ramani et al., 2005) 

OPHID 2284 8962 0 0 3.9 ORTHOLOGY (Brown and Jurisica, 
2005) 

ORTHO 3503 9641 199 2.0 2.8 ORTHOLOGY (Lehner and Fraser, 
2004) 

HOMOMINT 2556 5582 471 8.1 2.3 ORTHOLOGY (Persico et al., 2005) 

 

Comparison of common interactions was also done in similar manner. For 

normalization of the intersections, however, only the number of interactions between 

common proteins was used. This procedure avoids confounding the interaction 

overlap with the protein overlap, as otherwise a small protein overlap would always 

lead to a small interaction overlap. Thus, the interaction overlap is defined as the 

average percentage of shared interactions between common proteins.  

Although intuitive, the described measures of interaction overlap have the drawback, 

that they only assess concurrence of the observed interactions, but not of missing 

interactions. Therefore, I additionally used a log-likelihood ratio (LLR) score 

introduced previously to compare of interaction sets (I1,I2) (Lee et al., 2004). In 

contrast to simple overlap measures, the LLR evaluate both concurrences in 

observed as well as in missing interactions. It is defined as: 
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Where P(I1|I2) is the probability of observing an interaction in I1 conditioned on 

observing the same interaction in I2. Respectively, P(I1|~I2) is the probability of 

observing an interaction in I1 conditioned on not observing the same interaction in I2. 

A large LLR indicates high similarity of the set of interactions whereas the LLR is 

expected to be zero for comparison of sets of random interactions.  

To assess the statistical significance of interaction overlaps observed between maps, 

two types of permutation tests were used (Balasubramanian et al., 2004). The first 

test is based on repeated random re-labelling of nodes (proteins) before intersection 

(node label permutation), while the second test is based on the permutation of edges 

before intersection (edge permutation). The probability of obtaining at least the same 

number of interactions as in the observed intersection provides the significance. 

Although differing in their algorithm, the two permutation tests usually give similar 

results.  

3.2.3 Gene Ontology analysis 

To investigate the functional composition and coherency of interaction maps, I utilized 

the Gene Ontology (GO) annotation database as it presently provides the most 

comprehensive functional annotation for human genes (Ashburner et al., 2000). GO 

includes gene annotations regarding molecular function (MF), biological process (BP) 

and cellular component (CC) using a defined hierarchical ontology. 

Functional composition of interaction maps   

To determine the statistical significance that proteins of specific GO category are 

overrepresented in a map, Fisher’s exact test was used. It is based on the 

hypergeometric distribution and was employed in our study as follows: The 

significance of observing k proteins of a chosen category can be derived from the 

probability P to observe k or more proteins of the category if l proteins would be 

randomly drawn:                   
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Where M is the total number of proteins attributed to the category, N is the total 

number of proteins annotated and l is the number of proteins in the corresponding 

map. Likewise, the significance can be calculated assessing the underrepresentation 

of GO categories in maps. Since multiple testing was performed, p-values were 

converted to false discovery rate (FDR) using the Benjamini-Hochberg procedure 

(Benjamini and Hochberg, 1995). 

Functional coherency of interaction networks 

For the analysis of functional coherency of protein interactions, a similar approach 

was applied as proposed by von Mering and co-workers (von Mering et al., 2002). 

First, the frequencies kmn were calculated i.e. a protein assigned to GO category m 

interacts with a protein assigned to GO category n. If only proteins of the same 

category interact, a diagonal matrix should emerge. Hence, the functional coherency 

of a network can be assessed by inspection of the interaction matrix. However, this 

procedure underlies the assumption that proteins are assigned to exactly one 

category. Notably, this does not hold for GO annotations where proteins are 

frequently assigned to multiple categories. To overcome this short-coming, the 

current approach was modified, and frequencies kmn were compared between the 

observed interaction matrix and the interaction matrix expected for corresponding 

random scale-free networks. Log odds were used to measure the deviation of the 

observed frequency distribution k for an expected base line distribution f 0: 

                                                     
02log)0,(
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Alternatively, association between the GO annotation and interaction maps can be 

examined based on the similarity of GO terms assigned to interacting proteins 

(Jansen et al., 2003). Here, the similarity of GO terms was quantified by calculating 

their shared path lengths (from the root term) within the GO tree. Similar GO terms 

are expected to have large shared paths. To test the significance, random graphs of 

conserved degree distribution were generated. The distribution obtained for the 

original network was subsequently compared to those obtained for the randomized 
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networks and log odds computed. The analysis was performed in the R language 

using the Bioconductor environment including the packages graph, GO, GOStats and 

GraphAT (Balasubramanian et al., 2004; Gentleman et al., 2004; Carey et al., 2005). 

3.2.4 Graph analysis 

Protein interaction maps can be converted to graphs with proteins as nodes and 

interactions as links or edges. Graphs can be characterized using a variety of graph-

theoretical measures. To scrutinize the network properties of each map, several 

topological measurements such as connectivity, small-world property, degree- 

distribution, cluster coefficient and hubs proteins, were computed and compared. 

More detailed definition of these measurements can be found in Chapter 2 section 

2.2.2. 

To avoid artefacts, self-interactions were excluded in the graph-theoretical analysis 

and all calculations were performed based on the largest connected graph for each 

map. The significance of the results was assessed by comparison to two background 

network models: i) Random graphs with the same number of nodes and interactions, 

but without conservation of the degree distribution. ii) Random graphs with 

conservation of number of nodes and interactions as well as of the degree 

distribution. Such graphs were constructed using the original networks and repeated 

random exchange of interactions: Edge between node A and B (A-B) and between C 

and D (C-D) will be changed to A-D and B-D, if such edges are not present yet 

(Maslov and Sneppen, 2002).  

3.3 Results 

In total, 57095 interactions could be mapped between 10769 proteins uniquely 

identified by their EntrezGene ID. For most interaction maps, the majority of proteins 

could be assigned to their corresponding EntrezGene IDs (Appendix table A.1). The 

interaction maps differ considerably in size by a factor up to five (table 3.1). The 

largest map with over 15000 binary interactions was derived from HPRD. The 

ORTHO and OPHID maps were similarly sized (both including around 9000 

interactions) followed by COCIT, HOMOMINT and BIND each incorporating around 

5000 interactions. The smallest interactions maps resulted from the Y2H assays 

(MDC-Y2H: 3186, CCSB-H1: 2754). The average number of interactions per protein 
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are similar for different networks ranging between 1.7 (BIND) and 3.9 (OPHID). Given 

previous estimates for the average number of interactions of 3-10 (von Mering et al., 

2002; Bork et al., 2004), all the interaction maps compared are likely to be highly 

unsaturated. A more distinguishing feature between the maps is the percentage of 

self-interactions included differing more than ten-fold and ranging from 1.1% (MDC) 

to 13.5% (BIND). Notably, no homodimers were recorded in COCIT and OPHID.  

3.3.1 Common proteins and interactions 

For direct pair-wise comparison of maps, I first calculated the number of common 

proteins and interactions between the interaction maps produced (figure 3.1A). This 

showed that an ample number of proteins can be found in multiple maps. Whereas 

the majority of proteins are assigned to at least two maps (60%), only a very limited 

number is included in more than half of the maps (less than 6%). The number of 

proteins found in all maps is vanishingly small: Only a total of 10 proteins (0.1%) 

fulfilled this criterion. All in all, however, a substantial part of their protein space is 

shared between single maps.  

 A smaller overlap is observed if interactions of different maps are compared (figure 

3.1B). The vast majority of interactions (over 90%) can be found in only one map 

while missing in the others. None common interaction exists in more than six 

networks and only a minute number of eight interactions are shared by five maps. 

Interestingly, three of these eight interactions are homodimers. This observation may 

be related to the finding that homodimers generally tend to be overrepresented in 

protein-protein interaction networks (Ispolatov et al., 2005). The small number of 

common interactions is somewhat surprising considering the large number of shared 

proteins, but resembles similar observations in previous comparisons for yeast 

(Bader and Hogue, 2002; von Mering et al., 2002). Possible explanations could be 

that saturation has not been reached; that maps include a large number of false 

positives and that certain approaches can only detect subsets of all possible 

interactions due to technical reasons (Mrowka et al., 2001; von Mering et al., 2002). 

Figure 3.2 shows the combined protein interaction network. Notably, single maps are 

tightly connected to each other by the large number of common proteins. The 

combined network does not split into separate networks despite the small interaction 

overlap. However, the figure also shows that the sets of interactions in different maps 

are quite distinct. 



 38  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 Frequency of common proteins and interactions. The plots display the number of 
proteins (A) and interactions (B) with respect to the number of maps in which they are 
included. 

3.3.2 Overlap and intersection  

After the general assessment, I examined in more detail the overlap between single 

maps (Appendix table A.2). The protein overlap varies from 16% (between CCSB-H1 

and COCIT) to 58% (between OPHID and HOMOMINT) with a mean value of 31%. 

To detect tendencies in the sets of proteins covered by different maps, I clustered 

maps based on the protein overlaps. Any strong clustering structure would indicate 

selection bias. Indeed, distinct clusters were observed for literature-based as well as 

orthology-based maps. Thus, both approaches tend to sample interactions from 

divergent sets of proteins (figure 3.3A). For literature-based maps, such selection 

bias can be explained by a preference in small-scale studies to examine ‘popular’ 

proteins. Similarly, the orthology-based maps might be expected to be restricted to 

well-conserved proteins. In contrast, both Y2H-based maps appear to be more 
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separated from the other maps. Thus, Y2H-based maps tend to sample interactions 

between sets of proteins which are not covered by other mapping approaches.   

 

 

 

 

 

 

 

 

Figure 3.2: Graphical representation of the combined network of interaction maps. Nodes and 
edges symbolize proteins and interactions, respectively. For clarity, only the connected 
network was visualized. The color encoding is following: MDC-Y2H - dark blue, CCSB-H1 - light 
blue, HRRD - dark red, BIND - light red; COCIT - orange; OPHID - dark green; ORTHO - green; 
HOMOMINT - light green. Gray color indicates that proteins or interactions are found in multiple 
maps. Although the number of shared interactions between maps is small, the combined 
network does not disintegrate into separate networks as a large number of proteins are 
common to multiple networks. For visualization, the software package Pajek was used 
(Batagelj and Mrvar, 2003). 

Next, the degree of shared interactions between in different maps was analyzed. The 

overlap ranges from 1.5% (MDC-Y2H - COCIT) to 38% (HOMOMINT – ORTHO) with 

an average of 15% (Appendix table A.3). To identify potential detection bias of 

mapping approaches, I subsequently clustered the maps based on the interaction 

overlap. As before, characteristic clusters were obtained (figure 3.3B).  Literature-, 

orthology- and Y2H-based maps form three distinct clusters structure pointing to a 

pronounced detection bias in the maps compared. The clustering results demonstrate 

are more convergent if they are derived by similar approach. 

The applied measure of interaction overlap is purely based on the occurrence of 

observed interactions. To assess the concurrence of missing interactions as well, I 

subsequently utilized the log likelihood ratio LLR (as defined in Materials and 
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Methods) between all pairs of maps. The LLR ranges from 1.5 (OPHID-MDC) to 7.1 

(BIND-HPRD) with an average 4.6 (Appendix table A.4). Notably, no pair-wise 

comparison resulted in a LLR close to zero which would be the expected value for 

comparison of random sets of interactions. Thus, the observed interaction overlap 

has not simply resulted by chance despite of being rather small. This conclusion is 

also supported by the outcome of the permutation tests assessing the significance of 

shared interactions (Materials and Methods sec 3.2.2). For all but two comparisons, 

the detected concurrency of interactions was highly significant with p <0.001. 
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Figure 3.3: Hierarchical clustering of maps based on protein (A) or interaction (B) overlap. The 
matrices display the overlap between all possible pairs of maps. Large overlap signifies a large 
number of common proteins and interactions, respectively. On top and right side of each 
matrix, the resulting clustering trees are shown. Clustering was based on average linkage with 
the distance Δij between map i and j defined as Δij = 1- Oij (Oij: average protein/interaction 
overlap between map i and j). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4: Hierarchical clustering of interaction maps based on the log likelihood ratio LLR.. 
The LLR was set to zero in case a map was compared with itself. The calculated LLRs between 
maps were shown as color-encoded matrix. For clustering, average linkage was used and the 
distance was defined as 1/LLR. The exact values of LLRij  can be found in Appendix table A.4. 
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3.3.3 Functional assessment 

Besides small overlap, previous assessments of yeast protein interaction maps have 

revealed that most methods for generating interaction maps have their own 

characteristic biases. Especially, their composition regarding functional classes is 

influenced by the mapping procedure chosen. On the other hand, the tendency of 

interacting proteins to have common functions has previously been utilized for 

assessing the quality of interaction maps as well as for prediction of function 

(Schwikowski et al., 2000; von Mering et al., 2002). In order to detect potential 

sampling and selection biases in the human PPI maps, I also carried out an analysis 

similar to mentioned for yeast studies (Mrowka et al., 2001; Bader and Hogue, 2002; 

von Mering et al., 2002). To determine the functional composition and coherency of 

maps compared, proteins were classified based on their annotation in Gene Ontology 

(GO) database (Harris et al., 2004).  

Functional composition 

I started by examining whether the interaction maps cover a wide range of different 

functions or are rather restricted to proteins of certain functionality. I found that all 

interactions maps showed generally a similar composition on the first (i.e. most 

general) level of the GO hierarchy (Appendix figure A.1-A.3). Since this composition 

is also similar to the overall composition for human genes currently annotated in GO, 

the interaction maps are in first approximation representative samples of the human 

genome. At first glance, the observed distribution of all three categories looks similar 

for all eight maps. Detailed analysis of molecular function class showed that the 

largest category is ‘binding’ for all maps, representing ~50% of proteins included. 

This is to be expected in an analysis of interaction maps. The second largest 

functional category in all maps (~29% - 35%) is ‘catalytic activity’ including kinases 

known to be major regulators of cellular pathways. Literature-based maps show an 

over-representation of signaling proteins (~20% - 24%) as compared to homology-

based and Y2H-based maps. Nearly ~5% proteins were assigned to the category 

‘molecular function unknown’ (MFU) from Y2H-based and homology-based (ORTHO, 

HOMMINT) maps. Thus, these maps might be especially useful for de novo 

functional annotation of hitherto uncharacterized proteins. 

Functional coherency  
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To assess the tendency that proteins of the same function interact, the number of 

interactions between GO categories was counted and the resulting interaction matrix 

was visualized for each map. Focusing here on the third level of the GO hierarchy, I 

observed that maps show enrichment of interactions between proteins of the same 

GO category to a varying extent (Appendix figure A.4-A.6). Literature-based maps 

display generally the strongest enrichment of interactions between proteins sharing 

function or location, and the largest depletion of interaction between proteins of 

different function or location. To a lesser extent, orthology- or Y2H-based networks 

maps follow this pattern. Such observation can be expected as GO annotations are 

frequently derived from literature. Interestingly, proteins of some classes show strong 

tendency to interact with proteins of the same class independently of the map. For 

example, proteins of the cytoskeleton are highly likely to bind to each other in all 

interaction maps.  

Alternatively, functional coherency of maps can be assessed by examining the 

similarity of GO annotations of interacting proteins. As similarity measure of two GO 

terms, the length of their shared paths from the root term was calculated. The larger 

the shared path length is, the more related the GO terms are expected to be. Thus, 

one would observe a larger shared path compared to a random network if interacting 

proteins correlate in function. Indeed, such patterns were detected for all networks 

(Appendix figure A.7). Generally, this tendency is most apparent for categories on a 

high level within the GO hierarchy with the root term at the bottom. This implies that 

interactions are more beneficial for prediction of specific functions of proteins, but 

less informative for prediction of more general functions. While the overall tendencies 

for coherency are similar for different interaction maps with respect to process and 

location, differences exist regarding molecular function. MDC-Y2H and OPHID 

showed the least coherent structure, whereas COCIT displays the largest coherency. 

This observation suggests that a differentiation between interactions maps might be 

favorable for future prediction of protein function. The attachment of larger weights to 

interactions from maps of large coherency might improve the prediction accuracy.  

3.3.4 Graph-theoretical comparison 

Using graph theoretical measures, fundamental topological properties of protein 

interaction maps can be compared and characterized. After converting all interaction 

maps to graphs, I analyzed their internal connectivity (table 3.2). For all graphs, the 
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vast majority of proteins were connected in a main network, which appears to be a 

general feature of protein-protein interaction networks being also observed in other 

species (Uetz et al., 2000; Giot et al., 2003; Li et al., 2004). The remaining proteins 

formed predominantly smaller networks of less than 10 proteins. Only for BIND, 

COCIT, OPHID and ORTHO, medium sized networks (including 10-100 proteins) 

emerged. If such separated network islands are artifacts reflecting the fragmentary 

state of proteins maps or functionally separated units remain subject for further 

research.  

 

 

Table 3.2: Graph-theoretical analysis of the interaction maps. The second column includes the 
numbers of disconnected networks according to their size. The measures listed in all following 
columns are based on the largest connected network. Mean path length refers to the average 
shortest path length between all possible pairs of protein in the network. The diameter is 
defined by the maximal shortest path length found. The degree exponent γ of the power-law 
distribution (P(k) ~ k–γ)  was calculated using linear regression of the corresponding 
dependencies (Appendix figure A.12). 
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MDC-Y2H 1/0/38/4 4.9 13 1.63 0.01 

CCSB-H1 1/0/90/27 4.4 12 1.46 0.05 

HPRD 1/0/135/140 5 15 2.44 0.13 

BIND 1/3/169/256 5.9 16 1.90 0.17 

COCIT 1/7/545/0 5.9 20 2.18 0.43 

OPHID 1/3/95/0 4.8 15 1.36 0.23 

ORTHO 1/2/183/9 6.5 17 2.14 0.19 

HOMOMINT 1/0/85/45 5.1 12 2.76 0.07 

 



 45  

Small-world property 

A main conclusion of previous studies was that protein interaction networks display 

‘small world’ properties having a small mean path length. This is also the case for the 

networks compared here. Their mean path length is similar and ranges from 4.4 

(CCSB-H1) to 6.5 (ORTHO) (table 3.2). For most networks, it is smaller than 

expected for corresponding random graph (Appendix figure A.8). For all networks, 

however, the mean path length is larger than expected for corresponding random 

scale-free networks pointing to internal structures.  

Degree-distribution  

An important determinant of a network’s structure is the degree distribution P(k). I 

found that all networks display power law distribution (Appendix figure A.9). However, 

some deviations can be observed. Networks derived from the BIND, OPHID or Y2H-

assasys followed most closely the power law distribution in contrast to remaining 

ones that show a relative depletion of interaction-poor proteins. Notably networks 

obeying closely the power law distribution also tend to have smaller mean path 

lengths.  

Modularity  

Cellular networks have been proposed to exhibit modular structure (Ravasz et al., 

2002; Rives and Galitski, 2003). A commonly used measure for modularity is the 

clustering coefficient reflecting the cohesiveness of the neighborhood of network 

nodes (Watts and Strogatz, 1998). In my analysis the average clustering coefficient 

ranges considerably by a factor of almost 50 from 0.01 to 0.45 (table 3.2) (Appendix 

figure A.10). The smallest coefficients were found for Y2H-based networks. These 

values were similar to the expected values for random scale-free networks leading to 

the conclusion that the Y2H-based maps do not display particularly strong 

neighborhood cohesiveness. A possible reason could be a large number of 

undetected interactions (false negatives). In contrast, clustering coefficients for 

literature- and orthology-based networks were considerably larger than for 

corresponding random networks implying that these networks are highly modular. 

Hierarchical structure  
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Besides for assessment of modularity, the clustering coefficient has been employed 

to study hierarchical structures of networks. Ravasz and co-workers associated a 

decrease of clustering coefficient for highly connected nodes to a hierarchical 

organization of metabolic network (Ravasz et al., 2002). Such decrease can also be 

observed for most networks compared (Appendix figure A.11). For orthology-based 

networks, however, this pattern is absent suggesting the lack of a hierarchical 

structure in these networks. For yeast, it was found that interaction-rich proteins have 

a propensity to avoid direct interaction with each other (Maslov and Sneppen, 2002). 

Maslow and Sneppen conjectured that such structural feature would be beneficial to 

decouple cellular modules in networks and would lead to an increased robustness 

against perturbation. The disassortativity of network hubs is exhibited by a tendency 

of hubs being linked to interaction-poor proteins. However, I observed such pattern 

only for Y2H-based maps and to a lesser extent for BIND (Appendix figure A.12). In 

contrast, the majority of networks showed an increase of links between highly 

connected proteins. Thus, the disassortatitivty of network hubs cannot be generally 

confirmed for human protein interaction maps and further investigation is needed. 

Connectivity 

After comparison of global network topologies, I turned towards examination of local 

topological properties. Here, the question was addressed whether the connectivity of 

proteins is conserved across interaction maps. To measure the conservation of 

connectivity between pairs of networks, I correlated the number of interactions in the 

two networks using Spearman correlation for the set of common proteins. An overall 

weakly positive correlation (0.20) ranging from -0.07 to 0.57 was recorded (Appendix 

table A.5). Only 6 out of 28 pair-wise comparisons resulted in correlation coefficients 

larger than 0.3. Notably, all of these 6 moderately positive correlations were found 

between maps were generated by the similar approaches. Connectivity is less 

conserved between maps derived by different methods. This is also reflected in a 

subsequent cluster analysis based on the Spearman correlation. The interaction 

maps group according to their method of generation (figure 3.5). 

3.3.5 Analysis of network hubs 

Earlier graph-theoretical analysis showed that nodes of high degree, so-called hubs, 

are generally of crucial importance for scale-free network structure (Albert et al., 
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2000). In protein interaction networks, such hubs are given by highly connected 

proteins. This led to the conjecture that these interaction-rich proteins should be 

essential for correct functioning of cellular networks. To investigate the potential role 

of hubs in human protein-protein networks, I examined first whether hubs tend to be 

assigned to specific functions, processes or locations using GO annotations. Proteins 

were defined as hubs, if their number of interactions is within the top 10% in the 

corresponding network. The significance of enrichment by hubs relative to the overall 

composition of the network was assessed using Fisher exact test. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5: Hierarchical clustering of interaction maps assessing similarity of connectivity of 
proteins. The connectivity was measured by Spearman rank correlation coefficient rij between 
the degrees of shared proteins of maps i and j. The correlation matrix is shown color-encoded. 
For clustering, average linkage was used and the distance Δ was defined as Δ=1-r. The 
calculated values of rij can be found in Appendix table A.6. 

Although the explicit sets of hubs were distinct in different maps, common trends 

were observed for literature- and orthology-derived networks whereas no significant 

enrichment was recorded for hubs of Y2H-based networks (Appendix table A.6-A.8). 
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Regarding molecular function, hubs in literature-based maps tend to be associated 

with protein binding, whereas hubs in orthology-derived maps tend to be assigned to 

RNA binding. For both literature- and orthology-based networks, the set of hubs was 

enriched by proteins assigned to metabolism. Interestingly, only literature-based 

network hubs were found enriched by proteins linked to regulation. 

A similar picture emerged when I explicitly compared the list of proteins that 

constitute hubs in different networks. To facilitate this comparison, the previous 

definition of hubs was modified. Proteins were defined as network hubs if they belong 

to the 100 proteins having the most interactions in the corresponding network. 

Remarkably, no protein was selected as hub in more than 4 networks. If I consider 

only hubs selected in at least three networks, three different classes of hubs become 

apparent (table 3.3). The first class consisted of proteins selected as hubs in 

networks generated by different approaches. Example of these protein hubs are 

members of the canonical MAP-kinase pathway (MAPK1, MAPK3) and TP53. This 

class also includes the only hub (VIM) shared between Y2H-based networks. The 

second class comprises protein hubs selected only in orthology-based networks. 

These hubs apparently tend to belong to complexes of cellular core machineries such 

as the proteasome (e.g PSMB2, PSMD14) or polymerases (e.g. POLR2C). The third 

class contains proteins representing hubs only in literature-based networks. This last 

class tends to be enriched by signaling transducers and regulators transcription 

factors. A possible explanation for this observation could be that these types of 

proteins are popular research targets, while their interactions are difficult to measure 

by high-throughput methods or orthology-based approaches. However, an intriguing 

alternative explanation is that the selected signal-processing proteins have become 

only late in evolution hubs to meet the increased demand for coordination of 

molecular functions in higher organisms. Therefore, they do not represent hubs in 

orthology-based networks as these networks are based on evolutionary conserved 

interactions.  

3.4 Discussion and Conclusions 

I presented here a first comparative assessment of eight currently available large-

scale human protein-protein interaction maps. The maps were derived from the three 

main approaches: Y2H-assays, literature search or orthology-based predictions of 
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interactions. The aim of this study was to examine critically the coherency within 

maps as well as the concurrency between maps. The comparison showed that 

current maps have only a small, but statistically significant overlap. Whereas the 

majority of proteins can be found in multiple maps, this is only the case for less than 

10% of the interactions making the maps largely complementary. This study showed 

that maps were generally more concurrent if they were based on the same method. 

This demonstrates the method of generation has considerable impact on the resulting 

interaction map. 

Table 3:3: Comparison of network hubs. Proteins were listed if they belong to the 100 proteins 
having the largest number of interactions in at least three maps. The number of interactions is 
listed and was underlied by color if the corresponding protein belongs to to the hubs in the 

network. Missing values indicate that no interactions were found for the corresponding protein in the 
interaction map. Hubs can be divided into three classes: hubs found in interactions maps of different 
origin (red color); hubs which were found in orthology-based networks only (green color) and hubs in 
literature-based networks only (yellow color). Counts refer to the number of networks in which the protein 
is a hub. 
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Several selection and detection biases could be identified, indicating the role of the 

methods of generating the maps. For example, RNA binding proteins are 

overrepresented in orthology-based maps, whereas signal transducers are over-

proportionally sampled in literature-based maps. A significant depletion of membrane 

proteins was observed in all networks compared and not only in Y2H-based maps as 

expected. The existence of such sampling and detection biases is a main reason for 

the small number of common interactions in different maps. Notably, this small 
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overlap limits the capacity for pooling approaches assigning higher confidence to 

interactions observed in multiple experiments (von Mering et al., 2002). On the other 

hand, as interaction maps are highly complementary, thus, integration of maps 

promises to be greatly beneficial. 

Using GO for assessment, literature-based maps displayed generally larger 

coherency than orthology- or Y2H-based maps. However, the coherency of literature-

based maps might be overestimated, as GO annotations are frequently based on 

literature reviews and, thus, do not represent a truly independent benchmark set. In 

this case, the apparent lack of coherency in some maps might indicate that these 

maps may provide more novel information about observed interactions. Nevertheless, 

the detected differences in coherency should be taken into consideration for future 

prediction of protein functions based on the interaction networks. As some networks 

include highly coherent data for certain protein classes, differentiation between 

networks could improve the prediction accuracy. For example, it may be favourable to 

put more weight on interactions derived networks of high functional coherency for a 

chosen protein class.  

All interaction networks showed small world properties and correspond to scale-free 

networks. As both features have commonly been observed in earlier studies of 

interaction maps, they are likely to be general valid for protein interaction networks. 

However, I also observed that several previous conclusions for network structures in 

lower eukaryotes cannot be generally reproduced for human interaction networks. 

For example, protein hubs are only separated in some of the compared maps. Thus, 

some previous results of network analyses might not refer to the underlying biological 

network structure, but rather reflect features specific to the approach taken for the 

generation of the network. It also suggests that the present view of modularity in 

protein interaction networks may have to be modified. The structure of interactomes 

of higher eukaryotes might differ substantially from those for lower organisms and, 

thus, general re-evaluation of concepts regarding network structure and evolution 

may be warranted.  

A more dynamic view of network evolution is also proposed by a comparison of hubs 

in different maps. It shows that hubs can be divided into different evolutionary 

categories. Ancient hubs are constituted by proteins of core machineries as 

proteasome and polymerases whereas evolutionary novel hubs can be associated 
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with signal transducers and regulators. This classification suggests that the current 

theory of simple preferential attachment may be not sufficient, but that network hubs 

have arisen to meet the particular requirements of an organism (Barabasi and Oltvai, 

2004). The existence of distinct classes of network hubs was also previously reported 

for the yeast interactome (Spirin and Mirny, 2003; Han et al., 2004). However, these 

divisions were based on the expression dynamics or network structures, but did not 

involve an evolutionary component. Here, I conjecture that design principles for 

network follow the requirements of robustness, adaptability and effectiveness. 

Differences in these requirements for different organisms are likely to be reflected in 

the network architecture. For example, previous studies showed that the number of 

signal transducer is considerable larger for humans than for fly and worm (Lander et 

al., 2001; Pires-daSilva and Sommer, 2003). These results suggest further that the 

increased demand of regulation in human organism is also reflected by a strongly 

increased number of interactions of signaling molecules.  

In summary, this comparison presents the status quo of the mapping of the human 

interactome. It shows that protein interaction maps are in their current status 

incomplete and considerably biased. Hence, they constitute only a limited 

representation of the human interactome. Results of network analyses are strongly 

influenced by chosen approach to create the networks. At this point of time, thus, 

caution should be taken for over-interpretation of such results especially if general 

conclusions are derived based on single maps. Any result should be critically 

assessed regarding potential bias in the underlying interaction map and possibly 

verified for other maps.  

 

 

4 UniHI: Integration of Human Interactome 

  

This chapter is an extended version of following three papers: 

References: 

Chaurasia, Gautam; Malhotra, Soniya; Russ, Jenny; Schnögl, Sigrid; Hänig, Christian; Wanker, Erich; 
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and Futschik, Matthias (2009), UniHI 4: New tools for query, analysis and visualization of the human 

protein-protein interactome, Nucleic Acids Res. 37; Database issue: D657–D660, 2009 

Chaurasia, Gautam,; Iqbal Yasir; Hänig, Christian; Hanspeter Herzel; Wanker, Erich; and Futschik, 

Matthias. UniHI: an entry gate to the human protein interactome, Nucleic Acids Res. 35; Database 

issue:D590-4, 2007.  

Chaurasia, Gautam,; Iqbal Yasir; Hänig, Christian; Hanspeter Herzel; Wanker, Erich; and Futschik, 

Matthias; Flexible web-based integration of distributed large-scale human protein interaction maps. 

Journal of Integrative Bioinformatics, 4(1):51, 2007.  

 

 

 

 

 

 

 

 

 

 

 

 

In chapter 3, I focused my analysis on the comparative evaluation of analysis of 

currently available large protein-proteins interaction networks generated by different 

approaches. My analysis showed that the current human PPI maps are unsaturated, 

highly divergent and showed a very small overlap between them. Therefore, 

integration of these maps could be very beneficial. In this chapter, I will elaborate 

those existing limitations of currently available human PPI maps in more detail, and 

outline the steps required for the successful integration of these maps. This chapter is 
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organized is as follows: Section 4.1 addresses the current problems in human PPI 

data. Section 4.2 provides details on the database architecture. In section 4.3, I will 

describe the steps required for the successful integration of protein interaction data 

from different sources, and its further integration with other biological omics data. 

Furthermore this section also introduces the features of web-interface, visualization 

tool and updates and extensions of UniHI database. Finally, I will conclude this 

chapter in section 4.4 by presenting the discussion and conclusions.  

4.1 Introduction 

PPI data are of great potential for the biomedical research. Recent advances in high-

throughput methods have resulted in a rapid accumulation of human protein 

interaction networks on a global, genome-wide level. But before these PPI networks 

can become a cornerstone in disease research, considerable challenges are still to 

overcome.  The restrictions involved are manifold: 

4.1.1 Highly divergent and distributed PPI networks  

Previous studies have also shown that PPI maps are highly divergent (Bader and 

Hogue, 2002; von Mering et al., 2002). My analysis, discussed in Chapter 3, also 

showed the similar picture for the human PPI networks. Further, I observed only less 

than 19% of all interactions occur in multiple maps, indicating a low degree of 

saturation (figure 3.1B). The small number of shared interactions is remarkable 

considering the large number of proteins common to different datasets. More than 

50% of all proteins are included in two or more maps (figure 3.1A), suggesting the 

highly divergent nature of the current human PPI networks and their unification can 

be therefore a useful step towards completeness of human interactome. 

 

A subsequent problem of human PPI networks is that they are distributed across 

multiple locations (table 2.1). To find comprehensive information on human proteins 

of interest, scientists may have to perform repeated searches in many databases. 

Such efforts are evidently very time-consuming as various query formats and 

identifiers have to be used in different databases. Another major limitation in currently 

available interaction databases is that frequently only interactions for single protein 

can be queried. However, modern system biology requires complex network-oriented 
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search for interaction of multiple proteins.  

4.1.2 Quality of human PPI networks 

High quality PPI networks are essential for the biomedical research (de Silva et al., 

2006; Stelzl and Wanker, 2006). But, the current large-scale human PPI networks are 

quite noisy and many interactions are conjectured to be false positives (Chaurasia et 

al., 2006; Futschik et al., 2007a). To address this problem, various confidence 

scoring schemes using omics data have been developed (Kiemer et al., 2007; Li et 

al., 2008). Additionally, few of current PPI networks provide their own confidence 

scoring schemes (Rual et al., 2005; Stelzl et al., 2005). Integration of PPI maps with 

such confidence score can help experimentalists to assess quality of interactions 

found in the databases.  

4.1.3 Regular updates 

Further challenges are regular updates and extensibility of PPI databases. As human 

interactome is still very far from the completion, interaction data will grow 

continuously. Therefore, it is necessary to implement flexible architecture that can 

keep the existing interaction data updated, and also enable easy inclusion of newly 

discovered interactions in future.   

4.1.4 Functional interpretation of PPI networks 

Final, but a very important issue is the biologically meaningful interpretation of PPI 

maps. Although advances in recent genome-wide interactome projects have 

generated a wealth of PPI data, this also poses new challenges for researchers 

mainly due to the complexity of interaction networks. In order to understand this 

complexity, it is necessary to gain meaningful information in the context of 

physiological systems, which requires identification of not only the function of 

individual proteins but also the physical interactions and biological process in which 

they participate. To this end, PPI networks have to be integrated with other functional 

data to derive the substantial information from them. Previous studies have also 

shown that integrating PPI networks with expression or pathway data can lead us to 

characterize biological processes or potential disease modifiers (Oti et al., 2006; 

Chuang et al., 2007; Ergun et al., 2007; Baranzini et al., 2009).  
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The main challenges discussed here demand i) comprehensive integration of the 

currently available human interaction maps; ii) performing network-oriented complex 

queries; iii) quality assessment of the data; iv) regular updates and the extensibility of 

the integrated database; and v) integration of PPI networks with other functional and 

genomic data. To address these challanges, I have constructed a flexible web-based 

database, termed UniHI, which integrates human protein interaction data from 

diverse sources, including several quality schemes. In the following sections, I will 

provide the details on the data sources currently included in the UniHI database, its 

architecture and the list of currently implemented features of the UniHI web-interface. 

4.2 Materials and Methods 

4.2.1 PPI data sources 

Currently, protein interactions in UniHI are derived from twelve large-scale human 

protein-protein interaction maps (table 2.1, see in Chapter 2). These maps were 

generated using yeast-two-hybrid (Y2H) assays, literature review or orthology-based 

approaches. Currently, UniHI includes five literature-based interaction maps (BIND 

(Bader et al., 2003), HPRD (Prasad et al., 2009), COCIT (Ramani et al., 2005), DIP 

(Salwinski et al., 2004), BioGrid (Breitkreutz et al., 2008), IntAct (Aranda et al., 2010) 

and REACTOME (Matthews et al., 2009)), two Y2H-based interaction maps (MDC-

Y2H (Stelzl et al., 2005), and CCSB-H1 (Rual et al., 2005)) and three orthology-

based maps (HOMOMINT (Persico et al., 2005), OPHID (Brown and Jurisica, 2005) 

and ORTHO (Lehner and Fraser, 2004)). Further details on these maps are given in 

the Chapter 2, section 2.2.1 and table 2.1.  

4.2.2 Gene and protein identifiers 

Since PPI data were collected from different sources, one of the major problems was 

to find common identifiers for their aggregation. For this purpose, lists of different 

protein identifiers were downloaded from the websites of NCBI (Maglott et al., 2007), 

HUGO Gene Nomenclature Committee (HGNC) (Eyre et al., 2006), and Ensembl 

EnsMart (Kasprzyk et al., 2004).  

4.2.3 Gene annotation  

Additional information on proteins (e.g. functional annotations and description of 
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proteins, chromosomal location and potential disease association of corresponding 

genes) were imported from National Center for Biotechnology Information (NCBI) 

(Maglott et al., 2007), Online Mendelian Inheritance in Man (OMIM) (McKusick, 1998 

) and Gene Ontology (GO) (Ashburner et al., 2000) databases.  

4.2.4 Gene expression data  

Gene expression data were collected from Gene Atlas database (Su et al., 2004). 

The data set comprises of expression profiles for 79 human tissues measured in 

replicates using Affymetrix HG-U133A and custom-designed GNF1H arrays. 

Expression summaries for the 44,775 transcripts (corresponding to ~15000 genes 

uniquely identified by their EntrezGene ID) were derived utilizing the MAS5 algorithm 

(Pepper et al., 2007). 

4.2.5 Pathway information  

Association of genes with pathways and the information about the relations between 

them such as regulatory or physical interactions (e.g. phosphorylation, 

dephosphorylation, activation, inhibition, and binding association) were collected from 

the KEGG pathways database (Kanehisa and Goto, 2000). KEGG database 

constitutes a collection of manually drawn pathway maps representing accumulated 

knowledge on molecular interaction and reaction networks for metabolism, cellular 

processes, and human diseases as well as for genetic and environmental information 

processing. 

 

 

4.3 Results 

UniHI was developed to provide an integrated platform for finding comprehensive 

information on human proteins and their potential interaction partners. In its latest 

version, UniHI integrates interaction data from twelve major sources, establishing it 

as the largest catalog for human PPIs worldwide (table 2.1, and figure 4.1). Currently, 

UniHI houses over 250,000 distinct interactions between 22,300 unique proteins 

(table 2.1). For addressing the final problem “functional interpretation of PPI 
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networks”, I recently performed a major update of UniHI database (Chaurasia et al., 

2009), in which, PPI data was integrated with biological pathway data from KEGG 

(Kanehisa and Goto, 2000) and gene expression data from Human Gene Atlas (Su et 

al., 2004). Moreover, several new tools have been included in UniHI to offer more 

convenient web interface for the network analysis, especially for researchers less 

acquainted with bioinformatorical analyses. Besides a basic search for interactions, it 

offers advanced tools that allow user to construct the tissue-specific interaction 

networks or annotate edges with the specific type of interaction. UniHI provides 

scientists with a user friendly web-interface available at http://www.unihi.org.  

4.3.1 Architecture of the UniHI 

The architecture of the UniHI database has been designed to integrate interaction 

data obtained from different sources, and also to incorporate future human interaction 

maps, if they become available. The advantage of the UniHI architecture is its 

modularity and portability by introducing a multi-tier architecture with four separated 

layers: i) integration; ii) database; iii) persistence; and iv) application. The integration 

layer is responsible for downloading, parsing, and pre-processing of the data 

(Appendix B). The database layer is a relational database which stores and manages 

the information on proteins and their interaction partners from different sources into 

one common schema (Appendix figure B.1). The persistent layer is used for inserting 

and retrieving data from the database. The application layer provides a web-interface 

and a visualization tool with many interactive features for accessing and viewing the 

interaction data. Figure 4.2 shows the architecture of the UniHI database. 
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Figure 4.1: Coverage of the functionally annotated human genome by PPI resources. For 
annotation, Gene Ontology was utilized. Coverage rates were derived after mapping of proteins 
to corresponding Entrez Gene IDs. Notably, the coverage of UniHI is considerably larger than 
of the individual PPI resources. 

 

 

 

 

 

 

 

 

 

Figure 4.2: Architecture of the UniHI, consists of four main architectural layers: i) integration, 
responsible for the data downloading, parsing, preprocessing and updating; ii) database, 
consists of a relational database which stores and manages the information on proteins and 
their interaction partners from different sources using one common schema; iii)  persistence, 
used for inserting and retrieving the data from the database via Hibernate persistent 
mechanism; iv) application, providing a web-interface and a visualization tool for accessing 
and viewing the interaction data. 



 60  

 

4.3.2 Mapping of proteins 

As UniHI integrates a large number of different PPI resources, aggregation of 

heterogeneous interaction maps and building a unique identifier indexing system is a 

foremost task. For unification of primary data, I first computed complete lists of 

proteins for each interaction map separately. Subsequently, these lists were 

compared employing information from NCBI (Maglott et al., 2007), HGNC (Bruford et 

al., 2008) and EnsMart (Kasprzyk et al., 2004) to map their corresponding identifiers 

in other interaction datasets. After mapping, identical protein identifiers were merged 

together in a horizontal manner where each protein is a unique entry in a table. A 

unique identifier was assigned to each protein entry of this table. These unique 

identifiers were further used for grouping of the redundant interactions from all 

interaction datasets. 

4.3.3 Data quality assessment 

For data quality, I have computed two different measurements i.e. co-expression and 

co-annotation. Co-expression provides the indication whether two proteins are 

correlating with each other on transcript level, and thus are likely to have interaction 

between them after translation occur. For computing the co-expression, Gene 

Expression Atlas dataset was used (Su et al., 2004). To measure co-expression for 

interacting proteins, Spearman rank correlation of expression levels was calculated. 

Additionally, corresponding quantiles for correlation coefficient was also derived.  For 

example, a quantile of 0.05 means that the corresponding correlation coefficient is 

within the top 5% of the total distribution of observed coefficients. Similarly, co-

annotation supports the hypothesis that two proteins are likely to interact if they share 

same functions or involved in same biological process. For computing the co-

annotation, I assessed the similarity of GO categories assigned to interacting 

proteins. The similarity of GO categories was approximated by calculating the length 

of the shared path from the root category. Large shared path lengths indicate that the 

GO categories are in proximity to each other within the GO graph and, thus, can be 

considered similar (Jansen et al., 2003). In case of multiple GO assignments for 

proteins, the largest shared path length is counted. 
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4.3.4 Data query, analysis and visualization 

For data query and visualization, I developed a web-based query interface and a 

visualization tool, offering several features described in the next sections. 

Web-based query interface 

My primary aim was to provide an easy and intuitive, but nevertheless efficient and 

comprehensive access to the integrated data. Thus, the UniHI web-interface provides 

the user with options to perform multiple proteins search, in a network-oriented 

manner, where they can supply a list of proteins to find the network between them. 

Interactions can be queried using following protein identifiers: EntrezGene ID, Uniprot 

ID, Ensembl ID, Unigene ID, NCBI Geneinfo ID, OMIM ID, Gene Symbol, Biogrid and 

HPRD IDs. Retrieved interactions can be displayed either in textual (figure 4.3) or 

graphical form (figure 4.4a and 4.4b).  

Visualization tool 

Visualization of the retrieved interaction networks remains to be crucial for the 

evaluation of query results. The complexity of retrieved networks, however, requires 

highly flexible graphical tools. Thus, I have implemented a visualization tool for 

interaction data which offer many attractive features for rapid analysis and adjustment 

of the extracted information. For example, nodes (i.e. proteins) can be anchored or 

hidden allowing filtering of the network and manual adjustment of the layout. Also, 

information about proteins and interactions can be accessed directly in the network 

graphics, thereby avoiding cumbersome comparisons with the textual output. 

To permit users a highly targeted search, UniHI offers several tools to specify the 

displayed interactions. The display can be restricted to direct interactions between 

query proteins or extended to include bridging proteins. Such procedure can narrow 

down the context of a chosen set of proteins and can help to identify putative 

modifiers of physiological processes.  
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Figure 4.3: Textual representation of a query result for protein interactions in UniHI. Multiple 
links indicate identification of the interaction by different methods. For easy discrimination 
between maps, specific colors have been assigned. Shades of blue have been used for 
datasets derived by literature search, shades of green for orthology-based maps, shades of red 
for maps derived from Y2H screens. 

 
 
 
 

Figure 4.4: Graphical representation and analysis of PPI networks using UniHI Search 
visualization tools. Display  of the interaction partners (yellow or grey) of the query proteins 
(red) HD, CRMP1, PRPF40A and SH3GL3. (A) Using the number of Pubmed as a criteria, only 
those interaction partners are shown, which have been reported in more than two publications. 
(B) Only common or direct interactions between query proteins are displayed.  
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For quality control, users can specify the PPI resource interactions should be 

retrieved. This feature allows user to view only those interactions which have been 

identified by different approaches that may be used to gain confidence in interactions 

retrieved. On the other hand, user can exclude those interactions which have been 

detected by less validated mapping approaches such as computational prediction. As 

additional criteria, interactions can be filtered based on a minimum number of 

PubMed references in which they have been reported (figure 4.4a and 4.4b). 

4.3.5 Integration of PPI data with Gene Expression and Pathway Data 

Protein interactions are known to be highly dynamic and to greatly depend on 

conditions. Current protein interaction maps, however, only represent a static view of 

the human interactome. Experimentally validated protein interactions are generally 

identified under a variety of conditions in numerous cell and tissue types. Thus, the 

output of current interaction maps may represent a compilation of all possible protein 

interactions throughout the human body. In practice, however, biomedical research is 

focused on the specific tissues which are involved in pathogenesis.  

Beside the study the dynamics of interactome, functional interpretation of interaction 

network is another important field of interactomics. Integration of PPI data with 

biological pathway information can provide highly useful cues about the functions and 

dynamics of interactions. Especially for the elucidation of local network structures, 

knowledge about interrelated pathways can be of crucial importance. 

Addressing the need of a more dynamical interactome and functional interpretation, I 

developed UniHI Express and UniHI Pathway Scanner as two new tools in UniHI 

database (figure 4.5). UniHI Express allows the filtering of PPI based on the 

expression in a selected tissue and thus enables the construction of tissue-specific 

networks. First preliminary studies show that the usage of UniHI express can be 

highly efficient to prioritize interactions. On the other hand, UniHI pathway Scanner 

provides the possibility to examine the intersection of canonical pathways from KEGG 

with the extracted networks (Spirin and Mirny, 2003). Thus, it enables researchers to 

detect possible modifiers of pathways as well as proteins involved in the cross-talk 

between different pathways.  
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UniHI Express: generation of tissue specific networks   

Biomedical researchers frequently study processes that are occur in specific tissue or 

cell types e.g. degeneration of neuronal tissue. In contrast, current collections of 

protein interactions are derived from experiments using various cell and tissue types. 

Thus, PPI networks retrieved from these resources represent rather a gross summary 

of possible interactions, thereby neglecting the actual conditions in specific tissues. 

Particularly, since only a small percentage of proteins correspond to ubiquitously- 

expressed house-keeping genes, the probability may be high, that many proteins 

included in retrieved networks, are not expressed in a chosen tissues. Hence, 

researchers are required to examine carefully the presence of proteins in their model 

system of interest. This is a considerable task considering the high number of 

interaction partners that even a small number of query proteins can produce. 

I therefore integrated gene expression data with PPI data to allow researchers the 

construction of tissue-specific networks.  As tissue expression data set, the Human 

Gene Expression Atlas was utilized (Su et al., 2004).  To enable the integration with 

PPI data, microarray probes were mapped to their corresponding Entrez Gene IDs 

using the annotation by the curators of the Gene Expression atlas. Expression values 

were averaged over probes which correspond to the same Entrez Gene IDs. To 

facilitate the use of UniHI Express, the samples were assigned to 19 main tissue 

classes (i.e. adrenal gland, brain, heart, kidney, liver, lung, prostate, pancreas, 

placenta, muscle, salivary gland, thymus, thyroid, tonsil, lymph node, testis, trachea, 

uterus, and uterine corpus). To obtain a unique tissue expression profile, I averaged 

expression values of tissues samples belonging to the same class.  

Using UniHI Express, users can filter the interacting proteins by requiring a minimum 

expression in the selected tissue class (figure 4.5A and 4.5B). Note that the cut-off 

value is not applied to the query protein. By adjusting the expression threshold, the 

PPI network retrieved from UniHI can be reduced to include only highly expressed or 

extended by include also lowly expressed proteins. Additionally, the PPI resource to 

be queried can be specified.  

Clearly the use of gene expression as proxy for protein abundance has its limitation. 

However, it can give researchers valuable first indications regarding the prioritization 

of interactions for follow-up studies. For future releases, I expect that the inclusion of 
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quantitative measurement of protein abundance in tissues – once such data becomes 

available on a proteome-wide scale – will lead to considerably more accurate tissue-

specific PPI networks. Nevertheless, I consider the current release of UniHI as a first 

important step towards a dynamic representation of the human interactome. 

UniHI Scanner: pathway-focused interaction networks  

For the functional interpretation of PPI networks, I have implemented a new web-

based tool termed UniHI Pathway Scanner which integrates the UniHI protein 

interaction data with pathway data from Kyoto Encyclopaedia of Genes and 

Genomes (KEGG) (Kanehisa and Goto, 2000). To find the functional relation 

between query proteins and also between their interaction partners, user can provide 

a list of query proteins, and a list of pathways to be scanned against identified 

network. Additionally, user can also select the source of interactions. UniHI Scanner 

performs three step functions. In the first step, interaction partners of search proteins 

are identified and a PPI network is created. Subsequently, a pathway network is 

created from the KEGG pathway IDs provided by user. Edges of this pathway 

network contain the explicit information about the mode of interactions (such 

phosphorylation, activation or inhibition). Finally, the two networks (PPI and pathway) 

are intersected. Nodes and edges in the PPI network are annotated if they are found 

in the pathway network. For viewing both types of networks, identified and annotated 

PPI, I have developed a visualization tool (figure 4.5C and 4.5D) which facilitates 

their interactive and dynamic visualization. At present this tool offers two alternative 

viewing options. Users can choose between the display of the full PPI network (using 

the option “Show All”), or the annotated intersection (using the option “Only mapped 

pathway”). Directed edges in an annotated network represent the molecular relations 

found in pathways between pathway proteins. I expect that UniHI Pathway scanner 

will be highly valuable tool to find pathways modifiers of pathways or to detect 

proteins involved in cross-talk between pathways or for the large community of 

researchers working in cell signaling. 
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Figure 4.5. Graphical representation of PPIs using UniHI Express and UniHI Scanner 
visualization tools. Figure 4.5A and 4.5B show the interaction partners (yellow) of HD, CRMP1, 
SH3GL3 and PRPF40A query proteins (red) in brain tissue using 100 and 1000 as cutoff values. 
User can addtionally filter the interaction partners based on the source of interaction. 
Visualized network can be further analyzed using options like hideNode, expandNode and 
collapseNode. Further information of each node and edge can be extracted by selecting the the 
features “functional information” and “link to reference”. Figure 4.5C and 4.5D represent the 
interaction partners (yellow and grey) of query proteins (red) GADD45, CDK1, CDK2 and CDK7. 
Grey nodes are annoataed proteins found in “cell cycle” KEGG pathway. Feature “Only 
mapped pathway” allow user to view only annotated proteins and their signals. Direccted 
edges are the flow of the signals like phosphorelation or dephosphorelation, activation or 
inhibition. Displayed networks can be zoomed in or out using “+” and “-” signs. Whole network 
or individuals nodes can be moved using the features “transforming” or “picked” respectively. 
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4.4 Discussion and Conclusions 

Increasing numbers of human PPI datasets provide enormous amounts of valuable, 

but frequently unconnected information whose application in biology and medicine is 

still limited (Goh et al., 2007; Yildirim et al., 2007; Braun et al., 2008; Ideker and 

Sharan, 2008). Lack of integration and overlap need to be addressed more strongly 

with experimental and bioinformatical strategies. There is clear necessity to have 

integrated tools, which provide direct access to distributed interaction data at one 

common platform. Therefore, I developed a flexible web-based database that 

integrates the human interaction data from twelve major sources. UniHI is aimed to 

constitute an integrated platform allowing users to perform simultaneous querying of 

the major human protein-protein interaction maps. 

The architecture and implementation of UniHI aims to overcome the major 

challenges, i.e. rapid growth, fragmentation and complexity of data.  It is intended to 

assist researchers seeking to utilize human protein-protein interaction data from 

various sources. Several features included in UniHI enable researchers to perform 

network-oriented and global analysis of the human interactome. To examine the 

constitution of UniHI, several statistical analyses were performed regarding network 

structure and functional annotations of maps integrated (see Chapter 3, Section 

3.3.3). Since the scope of UniHI can be expected to be continuously expanding, 

these analyses will be regularly repeated and presented on the UniHI webpage.  

To assess the quality of interaction data, information about co-expression and co-

annotation is presented for each interaction pair. I also list for every integrated PPI 

dataset how protein interactions were validated. The new tools included in UniHI 

allow researchers a more rapid inspection and prioritization of extracted interactions. 

Tissue-specific networks can help to focus on biologically relevant interactions, 

whereas use of pathway information can give important hints about functional 

modules of interacting proteins. 

UniHI does not replace already available interaction maps, but facilitates single portal 

access to the larger part of the human interactome analyzed so far. Its importance to 

the scientific community is that it facilitates the assembly of comprehensive lists of 

protein interactions and that it enables flexible network-orientated querying of 

interaction maps. Simultaneous querying of multiple interaction maps also promise to 



 68  

allow identification of network structures which would not be detectable if single maps 

are analyzed separately. Thus, UniHI provides a highly desirable basis for the 

systematical utilization of the human interactome in biomedical research.  I hope that 

this unified database and its integration with omics data can provide a convenient 

platform to support scientists undertaking large-scale systems biology.  
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5 Functional and Transcriptional Coherency of Modules 
in the Human Protein Interaction Network 

 

This chapter is an extended version of the following paper: 

Matthias E. Futschik, Gautam Chaurasia, Jenny Russ and Hanspeter Herzel, 

(2007), Functional and Transcriptional Coherency of Modules in the Human Protein 

Interaction Network, Journal of Integrative Bioinformatics, 4(3):76. 

In chapter 3 and 4, I presented the analysis and integration of current human PPI 

networks. After integration, this consolidated dataset can be utilized for different 

aspects of network analysis (as discussed in chapter 2 in Section Applications of 

Interactomics). In this chapter, my aim was to study the modular structures of the 

human interactome. This chapter is organized as follows. Section one 5.1 introduces 

the fundamentals of modularity and discusses few related studies and the motivation 

for this work. Section 5.2, describes the material and methods employed. Section 5.3 

presents the various results of identified modules and their integrated analysis with 

functional annotation and gene expression data. Finally, section 5.4 summarizes this 

chapter with discussions and conclusions.  

5.1 Introduction 

In a cell, a protein complex or module can be defined as a set of genes or proteins 

which are related by one or more genetic or cellular interactions, e.g. involved in 

same biological process, or localized in same cellular compartment. In other words, 

modules can be described as a group of cellular components whose interactions can 

be attributed to a specific biological function (Hartwell et al., 1999). Several other 

studies of PPI networks showed that modularity reflects both the tight interaction 

between proteins to perform a specific functions as well as the need for separation of 

interfering processes (Bader and Hogue, 2003; Spirin and Mirny, 2003). It is therefore 

important to identify those modules or complexes of interacting proteins to enhance 

our current understanding of organization of human PPI networks. Especially, it may 

help us in characterizing the functions of an unknown protein, by the functions of its 

related known proteins. To date, a number of studies have been performed to 
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observe the modular organization in several biological networks, ranging from 

metabolic (Ravasz et al., 2002), transcriptional (Ihmels et al., 2002; Segal et al., 

2003) to PPI (Rives and Galitski, 2003; Spirin and Mirny, 2003; Pereira-Leal et al., 

2004) networks.    

Whereas majority of previous studies have been performed for the yeast interaction 

network, for which data have become abundant, the systematic examination of the 

human protein interaction network, however, was still in an early phase. Therefore, in 

this chapter, I aimed to gain an overview of the modular structures in the human 

protein interaction network. For this purpose, first I created an integrated set of 

interaction network by merging several large literature-based interaction networks. 

Next, I applied Cfinder algorithm, based on Clique perlocation method developed by 

Palla et al (Palla et al., 2005), to the integrated set of interaction network for 

identifying tightly connected clusters of interacting proteins. Whereas previous 

studies (Rives and Galitski, 2003; Spirin and Mirny, 2003) concentrated on specific 

subsets of modules, my aim was the systematic assessment of coherency of 

function, localization and expression of the proteins in the identified modules. For 

this, identified modules were integrated with functional and localization information 

from Gene Ontology databases, and gene expression data from Human Gene Atlas 

database. Details on the datasets and the analysis are provided in following sections. 

5.2 Materials and Methods 

5.2.1 Human protein-protein interaction data 

Data on the human protein interaction network were collected from the Unified 

Human Interactome database (UniHI) (Chaurasia et al., 2007; Chaurasia et al., 

2009). For my analysis, I extracted interactions included in the Human Protein 

Reference Database (HPRD), Biomolecular Interaction Network Database (BIND) 

and Database of Interacting Proteins (DIP) (Bader et al., 2003; Salwinski et al., 2004; 

Prasad et al., 2009). These interactions were derived from the review of published 

literature. To ensure non-redundancy, I considered only interactions between proteins 

which could be mapped to their respective EntrezGene identifiers in the UniHI 

database. Altogether, over 35,000 interactions were extracted. Self- and redundant 

interactions were excluded from the obtained data leaving a total of over 31,000 

interactions between more than 8,400 unique proteins for further analysis.  
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Note that I only considered binary interactions, i.e. direct interactions between 

proteins to ensure the reliability of the detected complexes. Complex interactions 

were excluded as they could otherwise interfere with the computational approach 

taken here for detection of modules.  

5.2.2 Identification of modules in the protein interaction network 

The identification of modules was based on the detection of k-cliques, i.e. fully 

connected subgraph of k vertices. Such k-cliques can form densely connected 

structures termed as k-clique communities. These communities are the union of all k-

cliques that can be reached from each other through a series of adjacent k-cliques, 

where cliques sharing k-1 nodes are defined as adjacent. Pella and co-authors 

previously developed a powerful tool Cfinder based on clique percolation method 

(CPM) for detecting overlapping k-cliques communities in networks (Adamcsek et al., 

2006). CPM first locates all k-cliques in a network and then identifies communities by 

carrying out standard component analysis of the clique-clique overlap. This method 

has been successfully applied to uncover the complex structure of overlapping 

communities in several types of networks (Palla et al., 2005). For my analysis, I 

applied Cfinder to identify highly connected modules in the human protein interaction 

network.  

5.2.3 Generation of random graphs  

To assess the significance of the identified cliques, I generated 100 random networks 

containing the same number of nodes and edges as in original network but with 

repeated random exchange of interactions. For instance, in such a procedure, two 

pairs of interacting proteins are randomly picked. The link between the nodes A and 

B (A-B) and between the nodes C and D (C-D) were changed to A-C and B-D, if such 

edges are not present in the original network. Note that since this is an undirected 

network, swapping of edges could happen between any pair of non-interacting nodes 

in the original network. Though there are several procedures to generate random 

networks, the current procedure, which I adopted, allows me to generate random 

networks with the same degree distribution as the original network. These random 

networks were used to obtain the expected number of cliques and were compared to 

the number of cliques obtained in the original interaction network.  
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5.2.4 Protein annotation  

For the annotation of proteins, I utilized the Gene Ontology (GO) database supplying 

information about the assigned molecular function, biological process and cellular 

location (Ashburner et al., 2000). I assessed the significance whether the detected 

modules are enriched for proteins of certain functions, processes or locations by 

application of Fisher’s exact test. Since multiple testing was applied, the significance 

was adjusted by the Benjamini-Hochberg procedure delivering false discovery rates 

(Benjamini and Hochberg, 1995).  

The coherency of modules with respect to cellular location was examined by an 

assessment of average pair-wise similarity of annotation of the participating proteins. 

To capture the similarity between two proteins, the induced GO graphs were 

compared. Subsequently, the size of their intersection divided by the size of their 

union was taken as a similarity measure (simCC). The values can range between 0 

and 1 with larger values indicating larger similarity.  

To facilitate the examination of localization of modules, I reduced the set of possible 

GO terms to so called informative categories. This previously introduced scheme 

selects GO categories which contain more than 100 genes while each of their 

children contains less than 100 genes (Zhou et al., 2002) . The GO analysis was 

carried out using the R/Bioconductor package GO and GOstats (Balasubramanian et 

al., 2004). 

5.2.5 Expression data  

To assess co-expression of proteins, I utilized a large human tissue expression 

dataset derived by 158 microarray measurements of 79 different tissue samples (Su 

et al., 2004). Altogether, the expression level of over ~15,000 genes was measured 

using Affymetrix HG-U133A and GNF1H arrays. Corresponding transcript levels were 

derived using Microarray Analysis Suite (MAS5) (Pepper et al., 2007). To improve the 

data consistency, I additionally applied quantile normalization. Using EntrezGene IDs, 

I could assign expression levels to approximately 8,000 proteins in our network. Co-

expression was measured by the Spearman’s rank correlation.  
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5.3 Results 

5.3.1 Identification of modular structures in the human interaction 
network  

For the identification of modules, the Cfinder algorithm was applied to the assembled 

human interaction network. Altogether, 671 distinct k-clique communities were 

detected with k ranging from 3 to 11 (figure 5.1). Most of the communities were based 

on 3- and 4-cliques (k = 3: 355; k = 4: 200). To assess the statistical significance, I 

constructed 100 random graphs with the same number of nodes and degree 

distribution and scrutinized them for the existence of cliques. Figure 5.1 shows the 

distribution of individual protein communities for different k in the original and random 

interaction networks.  

For k = 3, 4 and 5, similar numbers of cliques were found in random networks. 

However, for k = 6, only an average of 0.1 cliques were detected in the random 

networks, which is in sharp contrast to the 23 cliques found in the original network. 

Remarkably, no cliques of size larger than six were found in the random networks 

indicating the presence of a highly statistically significant modular structure in the 

human protein interaction network. This also confirms the findings in a previous study 

of the yeast interaction network that highly interconnected enriched communities did 

not emerge by chance (Spirin and Mirny, 2003).    

5.3.2 Community size distribution 

Next, I analyzed the size of the individual communities for all k-cliques. As shown in 

figure 5.2, I found 267 communities which have less than 5 proteins, most of them 

belonged to k = 3 and 4 cliques. The largest interconnected community containing 

nearly ~3200 proteins were found at k = 3. As shown in the previous studies that best 

communities’ structure are obtained when k-value is between 5 and 6. I also detected 

several interesting clusters containing proteins ranging from 5 to 15 for k size 

between 5 and 6. Some of these clusters include transcription initiation, transcription 

factor TFIID complex, signalosome complex,   intracellular signaling cascade. Only 

few clusters were detected containing proteins between 15 and 100. These were 

signalling transduction and regulation of transcription.  
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Figure 
5.1: 

Identification of k-clique communities. The number of identified k-clique communities is shown 
for the original and random networks.  

5.3.3 Distribution of proteins 

I further analyzed the distribution of each protein in found clusters and detected 

several important proteins involved in many complexes. The number of communities 

in which a protein participates is highly variable (figure 5.3). Nearly ~2000 protein 

were found to be associated only in single community. Transcription factor TP53 was 

found to be involved in maximum number of communities (21 communities), also one 

of most important protein in molecular biology studied so far, and involved in several 

complex biological processes. Other proteins such as HDAC1, TBP, EGFR, 

CREBBP, TAF1, CTNNB1, BRCA1, GRB2, and PCNA were found to be involved in 

more than 10 communities. Most of these proteins are known as transcription factors, 

and involved in the many signalling and regulatory processes (Table 5.1).  

5.3.4 Functional annotation of the detected modular structures 

I detected a large number of protein clusters based on k-cliques. But do these cluster 

structures reflect functional modules in the protein interaction network? To address 

this question, I used annotation information supplied by the Gene Ontology. Each 

detected modules was subsequently tested for enrichment of proteins assigned to 

specific GO categories. Examples of detected modules with annotation information 

are shown in table 5.1.   
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Figure 5.2: Communities distribution original and random interaction networks 

 

 

 

 

 

 

 

Figure 5.3: Proteins distribution in all communities for all k-cliques.  

To facilitate the interpretation, only GO categories are shown that were both 

significant and representative. Many detected modules could be linked to known 

physical protein complexes. The largest identified module contained the TATA-

binding protein (TBP) and multiple evolutionarily conserved TBP-associated factors 

(TAFs). The eleven included proteins are all known members of the transcription 

factor TFIID. Notably, this was also the largest fully connected clique discovered by 

Spirin and Mirny in the yeast interaction network (Spirin and Mirny, 2003).  
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Table 1: Table 5.1: Examples of detected protein modules: k - size of cliques, N - number of 
proteins included in the module, cor - average correlation of expression.  The false discovery 
rates are shown for representative biological processes and cellular components. 

 

 

Similarily, I can confidently link detected modules to the rRNA processing exosome 

complex and the COP9 signalsome, a highly conserved protein complex whose 

functions however are poorly understood. In contrast, modules were difficult to relate 

to known complexes if no prominent association with a specific cellular location 

existed.  
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5.3.5 Localization of modules 

Previous analyses for yeast indicated that modules in interaction networks can be 

subdivided into protein complexes and dynamic functional modules (Spirin and Mirny, 

2003). Protein complexes consist of tightly interconnected proteins which bind each 

other at the same time and location. In contrast, proteins in dynamic modules can 

interact at different times and locations despite being highly connected. To analyse 

the co-location of proteins in the detected modules, I utilized information about their 

assigned cellular component in the GO. I reduced the set of possible GO terms to 20 

informative categories to facilitate interpretation. Four categories comprised more 

than 1,000 proteins: ‘nucleus’ (3,895 proteins), ‘intracellular’ (1,931), ‘cytoplasm’ 

(1169) and ‘integral to plasma membrane’ (1,017).  

Subsequent analysis showed a remarkably high degree of co-localization of proteins 

in modules. Of the 316 modules based on k-cliques (with k > 3), more than half (170) 

contained proteins allocated exclusively to a single cellular location. For over 75% of 

the modules, a majority of the included proteins were assigned to a single location.  

Figure 5.4 displays the distribution of coherent locations of the modules. Most of the 

coherent modules were assigned to the nucleus (65%). Since proteins in steady 

complexes are necessarily co-localized, this observation may indicate an enrichment 

of protein complexes located in the nucleus. 

5.3.6 Co-expression of modules 

Besides the coherency of location, stable protein complexes might be distinguished 

from dynamic modules based on expression. I would expect that proteins in 

complexes underlie the same regulatory mechanism and thus would show co-

expression. Of specific interest here is the question whether such co-expression 

correlates with the other distinct feature of complexes namely the co-localization of 

included proteins.  
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Figure 5.4: Sub-cellular localization of the detected modules. The number of modules is shown 
for which the majority (black bars) or a fraction of the included proteins (gray bars) was 
assigned to the corresponding cellular compartment. The distribution is based on the analysis 
of 316 modules which have a clique size k > 3. The following abbreviations are used: CY-
cytoplasm, MI-mitochondrion, CS-cytoskeleton, IF-intermediate filament, PM-plasma 
membrane, IP-integral to plasma membrane, MT-microtubule, CT-cytosol, RB-ribosome, EX-
extracellular region, EM-extracellular matrix, CH-chromosome, IN-intracellular, MF-membrane 
fraction, ES-extracellular space, NU-nucleus, MI-microsome, GA-Golgi apparatus, LY-lysosome 
and ER-endoplasmic reticulum.  

Figure 5.5: Coherency of co-expression and location within modules. The similarity of cellular 
localization (simCC) is plotted against the Spearman correlation. The size of the detected 
modules is colour-coded. The number n in the figure legend denotes the number of proteins 
included in the modules. Dashed lines indicate thresholds for different modules sizes where 
99% of the correlation values in random samples are smaller for n = 5, n = 8 and n > 8. 
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To examine this issue, I calculated the correlation of expression within detected 

modules. The significance was assessed based on the expected correlation between 

randomly sampled proteins. Additionally, the similarity of cellular location based on 

GO annotation was derived (see section 5.3.5). Figure 5.5 displays both co-

expression and similarity of location within modules. Comparison of the co-

expression with co-localization of proteins within modules yields only a modest 

correlation of 0.27. This may indicate that a substantial percentage of the detected 

clusters in the interaction network are dynamic modules. 

Inspection of this plot reveals that a majority of the modules containing 10 or more 

proteins is significantly co-expressed. In fact, 34 out of 51 modules (i.e. 66%) show a 

correlation coefficient larger than 0.20 for which 99% of equally sized random 

samples have smaller coefficients. Modules of smaller size are generally less 

significantly co-expressed due to a higher threshold for significance.  

5.3.7 Overlap between modules and identification of linking proteins  

Protein interaction networks are organized in multiple levels. Their lowest level is 

constituted by binding proteins to each other. These binding patterns can lead to the 

emergence of modular structures as I observed. Furthermore, the modules 

themselves can be interconnected by functional relationships. One major advantage 

of the applied algorithm for the detection of modules is that it allows modules to 

overlap. Thus, identified modules may constitute a higher level network. I exploited 

this possibility by creating a network of modules to analyse their functional 

relationship.  Selecting modules based on 6-cliques, a highly connected network of 

16 modules was detected (figure 5.6).  

The largest module within this network contained over 80 proteins of which many are 

involved in signal transduction. Examples of the included proteins are members of the 

epidermal growth factor (EGF) receptor family (EGFR, ERBB2), janus kinases (JAK1, 

JAK2) and signal modifiers such as SOCS1. The second largest module of 51 

proteins was enriched by various transcription factors such as the CREB-binding 

protein, forkhead box O1 (FOXO1), MYC, RB1 and TP53.  
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The association of the signal transduction module to the plasma membrane and the 

transcription module to the nucleus was highly significant (FDR = 6.00 ∙ 10-5 and 6.57 

- 10-21, respectively). Notably, these large modules are linked by four proteins 

(STAT1, STAT3, MAPK1, ESR1) which are known to shuttle between cytoplasm and 

nucleus.   

In contrast, several modules were linked to the transcription module by single 

proteins. Examples of such sparse interconnections are the linkage of the 

transcription module to the COP9 signalosome complex by TP53 and to the TFIID 

complex by TBP.   

5.4 Discussion and Conclusions 

System-wide interaction network analysis offers the possibility to study cellular 

mechanisms in a comprehensive manner. However, there are numerous challenges 

to overcome. Interaction data are still sparse and might be compromised by a large 

number of false positives and by various experimental biases. In fact, I have recently 

demonstrated that the approach used for assembling protein interactions networks 

has severe effects on the resulting networks. For example, signalling proteins tend to 

be overrepresented in networks based on review of literature (see Chapter 3, section 

3.3.3). Thus, it is not surprising that the largest module was associated with cell 

signalling since our network was constructed using only literature-based interactions 

maps.  I utilized here only such interaction maps to facilitate the interpretation of the 

results. However, this restriction is likely to limit the number and type of possible 

modules that can be identified. Nevertheless, this study demonstrates clearly that the 

constructed human interaction network comprises a large number of functional 

modules.  

My analysis shows that many modules can be assigned to cellular processes. It also 

indicates that protein complexes and dynamic functional modules can be 

distinguished based on co-localization and co-expression, although there exists no 

rigorous threshold to distinguish them.  
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Figure 5.6: Network of modules.  Nodes signify detected modules based on 6-cliques. The size 
of the nodes represents the number of proteins included in the corresponding modules. Edges 
between nodes indicate the existence of overlap. The width of the edges correlates with the 
number of linking proteins.   

Note that the applied method for detection of modular structures is restrictive, since it 

requires fully connected cliques. Alternative methods may therefore be favourable to 

detect less densely connected modules. It should be noted that such restrictive 

definition of modules leads to an increased robustness of the detected modules 

regarding false positive interactions. Even if a substantial percentage of interactions 

are removed, the identified modules will still form highly connected clusters (Spirin 

and Mirny, 2003). A further major advantage of the applied method is that an overlap 

between modules is allowed. This enabled to identify potential key proteins linking 
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different cellular processes. The constructed ‘meta-network’ of modules gives a first 

intriguing image of the complex interplay between different components of the cellular 

machinery.   
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6 Network-based characterization of brain specific 
Huntington's disease modifiers 

 

This chapter is an extended version of the following paper: 

 

Martin Stroedicke, Yacine Bounab, Gautam Chaurasia, Shuang Li, Stephanie 

Plaßmann, Jenny Russ, Cecilia Nicoletti, Jan Bieschke, Sigrid Schnoegl, Rona 

Graham, Josef Priller, Michael Hayden, Stephan Sigrist, Maciej Lalowski, Matthias 

Futschik and Erich E. Wanker (2010), Brain-specific interaction partners control 

polyglutamine-mediated huntingtin misfolding and neurotoxicity, (in review) 
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In chapter 2, I discussed the role of PPI networks in biomedical research. In 

particular, I reviewed several studies applying network-based approaches for 

predicting disease genes modifiers and the dysregulated biological processes. In this 

chapter, I focus my analysis to study the disease modifiers involved in a specific 

disease Chorea Huntington. Furthermore, I introduce a multi-step filtering approach 

for integrating PPI network with gene expression data and other available HD-

relevant pathological data, to predict the tissue-specific dysregulated protein 

interaction network in Huntington disease. This predicted network is further 

scrutinized with regard to its function enrichment and validated using several 

statistical methods. This chapter is organized as follows. Section 6.1 introduces the 

fundamentals of Huntington disease and reviews few published network-based 

approaches to predict disease genes. Section 6.2, provides details on the used 

material and methods. In section 6.3, I will present the various results of this study 

and in silico validation of the predicted network. Finally, section 6.4 discusses the 

findings of bioinformatic analysis, followed by conclusions.  

6.1 Introduction 

Chorea Huntington is an autosomal late-onset, monogenic neurodegenerative 

disorder, characterized by progressive movement disturbances, cognitive dysfunction 

and psychiatric abnormalities. It is caused by the presence of a dominant mutation in 

the polyglutamine tract at the N terminus of huntingtin (Htt) protein, resulting in 

formation of a mutant copy of huntingtin protein (mHtt). This mutation causes the 

protein to misfold and aggregate, and finally leading to the disturbances in movement 

and behavior control. Although the exact functions of Htt and mHtt are unknown, it 

appears that Htt is essential for neuronal development, while mHtt causes the toxic 

effects on certain types of cells, particularly in the striatum, composed of caudate 

nucleus and putamen of brain region (Walker, 2007). But as the disease progresses, 

other areas of the brain such as globus pallidus, thalamus, subthalamic region, pons, 

medulla, amygdale, hippocampus, spinal cord, superior olive, claustrum and 

cerebellum (Vonsattel and DiFiglia, 1998) are also significantly affected, causing the 

symptoms associated with the functions of these damaged cells.  

Htt is a ubiquitously expressed multidomain protein, with glutamine/proline-rich 

domain at the N terminus (HDCTG, 1993), also known as expanded polyglutamine 
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tract (PolyQ region) or CAG repeats. In healthy patients, length of the PolyQ region 

ranges from 11 to 34 glutamine residues. However, an expansion of this region 

above 36, a pathologic threshold, results in the formation of a mutant huntigtin 

(mHTT). Individuals with 36 to 40 CAG repeats are rarely associated with Huntington 

disease, but due to the meiotic instability during paternal transmission, the 

successive generation may inherit an expanded disease gene causing increased 

severity of neuropathological changes (Myers 2004). HD symptoms are visible when 

length of PolyQ region crosses over 40. The expanded proteins undergo a 

conformational change and form protein aggregates. The accumulation of 

aggregation has been found to be closely associated with disease progression and 

psychomotor disturbances (Davies et al., 1997; Sanchez et al., 2003). 

In HD patients, strong correlations have been reported between the age of the onset 

and the length of the CAG repeats (HDCTG, 1993). It has been observed that longer 

PolyQ region may result in an earlier age of onset and more severe symptoms 

(HDCG, 1993). For example, in most cases, disease symptoms have been found at 

the age of 35-50 years, with 40-55 CAG repeats (Vonsattel and DiFiglia, 1998), or 

even in extreme cases, disease symptoms have been reported at the early age of 

onset between 20-30 years, with number of CAG repeats reaching over 70 (Vonsattel 

and DiFiglia, 1998). However, contrasting results have also been reported, 

demonstrating that two individuals with identical CAG repeat lengths are unlikely to 

have neuropathological changes at exactly the same age (Gusella and Macdonald, 

2009). In a recent study, it has been shown that the number of CAG repeats accounts 

for about 60% of the variation in age of onset, whereas reminder is attributed to the 

environmental factors or the presence of genetic modifiers (Walker, 2007).  

To understand the underlying mechanism behind disease and the role of these, so 

called gene modifiers, it is crucial to identify them. More importantly, identifying 

network between the products of these genes modifiers may provide us the list of 

proteins and biological processes which are altered during disease pathogenesis. 

The rationale behind this assumption is that interacting proteins are likely linked to 

the same or similar phenotype. In other words, proteins triggering the same or similar 

disease phenotypes may interrelate with or be part of the same pathway. Therefore, 

identification of such disease specific pathways may help us to find novel drug target 

for   complex diseases and to provide a basis for the new treatments (Oti et al., 2006; 
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Goh et al., 2007; Kann, 2007; Ideker and Sharan, 2008).  

The first such disease-specific PPI networks have already been created for the 

Huntington disease (Goehler et al., 2004; Kaltenbach et al., 2007), identifying many 

proteins interacting directly or indirectly with Htt (Harjes and Wanker, 2003; Goehler 

et al., 2004; Li and Li, 2004; Kaltenbach et al., 2007). A subset of these proteins was 

also found to colocalize to insoluble htt inclusions in the brain and enhance or 

suppress the mutant htt phenotype (Goehler et al., 2004; Kaltenbach et al., 2007). 

However, the effect of the modifiers on mutant huntingtin in vivo, in the brain-specific 

context, and at which stage in the pathogenic process they act is largely unknown. 

Proteins influencing this process by enhancing, e.g. GIT1 (Goehler et al., 2004) or 

suppressing (e.g. chaperones Hsp40/70, TRiC, CHIP (Jana et al., 2000; Miller et al., 

2005; Behrends et al., 2006; Tam et al., 2006) the mutant Htt aggregation process 

represent potential Huntington’s disease cellular modulators. These studies also 

clearly demonstrate the importance of PPI networks in disease research. However, a 

major limitation is that these studies are conducted at small-scale level and may miss 

important proteins in network.  

Recent advances in high-throughput approaches enabling the comprehensive studies 

of PPI networks resulted in large, highly connected networks. However, these 

networks are only static picture of the complex networks occurring within the cell, and 

do not provide direct opportunity to study the complexities and dynamics of disease 

pathways (Barabasi and Oltvai, 2004). One of the possible ways to pinpoint 

biologically relevant local networks, and decipher e.g. vital functional modules is to 

integrate PPI network with other types of information e.g. expression, localization or 

genetic data (de Lichtenberg et al., 2005; Ergun et al., 2007; Baranzini et al., 2009). 

Calvano & colleagues integrated transcription profiling data with a protein interaction 

networks to portray time-dependent endotoxin responses in human blood leukocytes 

(Calvano et al., 2005). More recently a similar strategy was used by Pujana et al. 

(Pujana et al., 2007), where gene expression profiling was combined with functional 

genomic and proteomic data from various species to generate breast cancer related 

network in humans. Using a similar approach, Baranzini & colleges integrated PPI 

maps with genome-wide SNP markers data for indentifying sub-networks involved in 

multiple sclerosis, a neurodegenerative disorder (Baranzini et al., 2009).   
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Here, I have designed a network-based multi-level filtering-out strategy to uncover 

brain-specific genetic modifiers of Htt-function, by combining the focused Htt-based 

PPI network with available microarray expression data from HD patient. In 

subsequent steps I ranked the proteins significantly dysregulated in HD and predicted 

a caudate-nucleus specific HD network. In the following sections, this approach and 

subsequent analyses are presented in details.  

6.2 Materials and Methods 

6.2.1 PPI data source  

Information on protein interaction was collected from different sources. Besides 

protein interactions identified in previous HTT modifier Y2H screens (Goehler et al., 

2004) I extracted additional interactions from the UniHI database, which at present 

represents one of the most comprehensive sources for the human protein-protein 

interactions (Chaurasia et al., 2009). To obtain experimentally well characterized 

interactions, only literature-curated (Aranda et al., ; Bader et al., 2003; Salwinski et 

al., 2004; Breitkreutz et al., 2008; Prasad et al., 2009) interactions from UniHI were 

added, which are mainly derived from small-scale studies. To ensure non-

redundancy, I considered only interactions between proteins that could be confidently 

mapped to EntrezGene identifiers in the UniHI database.  

6.2.2 Microarray data analysis 

Microarray data were extracted from two different sources: Gene Atlas by Su et al. 

(Su et al., 2004), which includes expression data for ~15.000 human genes in 79 

different tissues, and Huntington’s disease versus control expression data by Hodges 

et al. (Hodges et al., 2006) that consists of ~18.000 genes in four different tissues 

(Caudate, FCBA4, FCBA9 and Cerebellum). Gene expression analysis were carried 

out with open source R software packages, available as part of the BioConductor 

project (Gentleman et al., 2004). 

Gene Atlas data were processed using MAS5 algorithm (Pepper et al., 2007); and 

adjusted p-values (i.e. false discovery rates) were calculated based on local pooled 

error approach to identify the significantly expressed genes in the normal brain. 

Genes that show significant differential expression (adj. p-value < 10-5), were 

considered for the further analysis. 
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For detecting the genes that were significantly differentially expressed in caudate 

nucleus region of normal and HD patient, I utilized microarray dataset generated by 

Hodges et al. (Hodges et al., 2006) that compares gene expression levels in 44 

human HD brains with those from 36 unaffected controls in 4 different brain regions 

(caudate nucleus, motor cortex, prefrontal cortex and cerebellum. For the comparison 

of expression data in both cases (caudate normal vs versus motor cortex, prefrontal 

cortex and cerebellum) and HD versus normal aged matched controls, I computed 

empirical Bayes moderated t-statistics with the Limma package, correcting gene 

expression for the collection site (Boston or New Zealand), gender and age (45, 45–

60, 60–70 and 70+ years) using a modified version of the analysis script provided by 

the Hodges & colleagues (Hodges et al., 2006).  

6.2.3 Functional enrichment analysis using Gene Ontology database 

Functional analyses of the networks were performed using Gene Ontology database 

(Ashburner et al., 2000). I utilized GO and GOStats package available at 

Bioconductor platform, and applied Fisher’s exact test to find functionally enriched 

genes (Gentleman et al., 2004; Falcon and Gentleman, 2007). All genes were tested 

simultaneously for multiple GO categories, and obtained p-values were converted to 

false discovery rates applying the Benjamini-Hochberg procedure (Benjamini and 

Hochberg, 1995).  

6.2.4 Functional analysis by manual curation 

Biological functions were assigned to proteins using the PubMed literature database 

(http://www.ncbi.nlm.nih.gov/pubmed/). Literature searches were achieved by 

screening titles, abstracts and keywords of publications with the official name and 

aliases (full name and symbol) of the respective gene/protein. Further, I applied 

OMIM (Ref) and annotated HD therapy targets (HDTTs) databases to find the 

enrichment of known disease genes in predicted HD network. HDTTs were obtained 

from the Crossroad database (http://www.hdresearchcrossroads.org).  

6.3 Results 

The aim of this study was to systematically identify HD modifiers within the cellular 

context of the disease causing protein Htt. A first model of such context can be 

assembled from the set of proteins that directly or indirectly interact with Htt. I 
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assembled therefore an Htt-focused protein interaction (in short Htt-network) that I 

subsequently scrutinized for disease modifiers. This approach has been previously 

applied for the successful identification of GIT1 as potent modulator of htt 

aggregation (Goehler et al., 2004).  As Htt, however, represents one of the network 

hubs, the generated htt network is of considerable size. Thus, systematic general 

screens for potential HD modifiers within this Htt-network - as applied previously - are 

demanding in resources and time. For more efficient and rapid identification of 

modifiers, I therefore designed a novel prioritization scheme based on multi-level 

filtering and network analysis (figure 6.1). 

This scheme can be divided into two phases: In the first phase, multi-level filtering 

using genome-wide expression data was employed to obtain a highly concise tissue- 

and disease-specific Htt-network. Each filtering step increased the specificity of the 

Htt-network and lead to a reduction of the number of included proteins. The filtering 

steps are driven by the knowledge about the pathogenesis of HD. In specific, they are 

based on the observations that i) HD is a neurodegenerative disease affecting 

primarily the central nervous system, ii) medium spiny projection neurons in the 

caudate nucleus are especially vulnerable to the affects of mutated Htt and iii) 

considerable expression changes occur in the caudate nucleus during HD (Cowan 

and Raymond, 2006; Walker, 2007). The first two observations address the issue of 

selective neuronal vulnerability i.e. why neurons in the brain and especially in the 

caudate nucleus are damaged by mutant Htt despite its ubiquitous expression. As 

previously proposed, one reason could be the tissue-specific presence or absence of 

Htt interaction partner in vulnerable cells (Harjes and Wanker, 2003). This motivated 

me to inspect the Htt network for tissue specific expression.  As a first step, I filtered 

the network for proteins that are differentially regulated in the brain compared to the 

rest of the human body (Brain-specific Htt network). This was followed by a second 

filtering step for differentially expressed proteins in the caudate nucleus (Caudate 

nucleus Htt network). To obtain insights in the HD pathogenesis, subsequent filtering 

was applied to reduce the Htt network further only to proteins dysregulated during 

HD. The final network termed as caudate-nucleus (CN)-specific HD network includes 

therefore, only proteins that are tissue specific differentially expressed and 

dysregulated during HD pathogenesis (figure 6.1b). This scheme is described in 

detail in next section.  
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In a subsequent second prioritization phase, the proteins in the resulting CN-specific 

HD network were analysed in detail with respect to their molecular functions, 

transcriptional regulation and involvement in other neuronal diseases to identify 

interesting candidates for experimental validation.  

6.3.1 In silico construction and analysis of a Huntingtin focused protein 
interaction network. 

The Htt network was assembled using data from UniHI and or detected in a previous 

modifier Y2H screen (Goehler et al., 2004). A large number of direct interactions 

(N=62) were found reflecting the role of Htt as a hub in the human protein interaction 

network and its potential function as a scaffold protein. The set of direct interactors 

constituted the core neighbourhood of Htt. To establish a more comprehensive image 

of the cellular context of Htt, I expanded the initial core neighbourhood by proteins 

that have at least two interactions with the direct Htt-interacting partners. The 

inclusion of such bridging proteins provided me with an extended neighbourhood and 

a dense Htt-focused network comprising in total of 509 proteins linked by 1319 

interactions. Besides Htt, several other proteins display large number of interactions 

within the network. Notably, the GRB2, TP3, EGFR, CREB binding protein and 

CASP3 form highly connected hubs in the Htt network.  This indicates that the 

extended network not only captures the molecular context of Htt itself, but also those 

of important direct interacting partners. Functional analysis using Gene Ontology 

criteria demonstrated that the constructed Htt-network agrees well the current 

knowledge about the molecular role of Htt.  I found a highly significant 

overrepresentation of network proteins participating in transcription, metabolism and 

signal transduction. This supports that Htt serves as a multi-functional scaffold protein 

acting in various cellular processes (Harjes and Wanker, 2003; Li and Li, 2004). 

Notably, I could identify a clear enrichment in proteins involved to cell death 

cascades, which might correspond to previous observations that Htt is involved in 

anti-apoptotic activities. Earlier studies also showed that Htt is present in different 

cellular compartments. I found that proteins in the Htt network are indeed distributed 

across various cellular locations with approximately half of them assigned to the 

nucleus and 30% to the cytoplasm. After the construction of the Htt network, I 

proceeded with the application of several filter steps for detection of potential 

modifiers. 
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6.3.2 Prioritization by multi-level filtering using gene expression data  

The first filtering step reflects that primarily neurons of the central nervous systems 

are damaged during HD progression. Thus, I reasoned that potential modifiers could 

be specifically up- or down-regulated in the brain. To determine differentially 

expressed genes in the brain, I utilized the gene expression data from Gene Atlas 

database (Su et al., 2004). After selection of tissues derived from different brain 

regions, differential gene expression between the human brain and the remaining 

body was determined. The results of the statistical analysis were subsequently used 

to construct a first filter for the Htt network. Excluding proteins that did not show 

significant differential expression (adjusted p-value < 10-5), a ‘brain-specific’ Htt 

network was derived, connects 56 proteins via 67 interactions. 

The second filtering step is based on the observation that the caudate nucleus is the 

most severely affected brain region in HD patient brains (Cowan and Raymond, 

2006; Walker, 2007), suggesting that alterations in gene expression levels in this 

brain region are crucial for development of HD pathology (Vonsattel et al., 1985). A 

recent study by Hodges et al. (Hodges et al., 2006) comparing gene expression 

levels in 44 human HD brains with those from 36 unaffected controls confirmed this 

finding. Besides, in the caudate nucleus, gene expression was measured in the motor 

cortex, prefrontal cortex and cerebellum. The authors indeed observed the greatest 

magnitude of differential expression in the caudate nucleus. The availability of 

expression measures for different brain regions from HD and normal cases allowed 

me in the following to construct two complimentary filters. First, I filtered the brain-

specific Htt network for genes that were differentially expressed in the caudate 

nucleus compared to the cerebellum and the two cortical regions. Utilizing the same 

threshold for significant differential expression (adjusted p-value < 10-3) as did 

Hodges et al., resulting in a ‘caudate-specific’ Htt network, containing 38 proteins and 

44 interactions.  

Finally, I filtered the caudate nucleus-specific PPI network, created in previous step, 

using a threshold (adjusted p-value < 10-3) for genes that were differentially 

expressed in the caudate nucleus of HD patient brains compared to healthy 

individuals. This resulted in a caudate nucleus-specific (CN-specific HD) network of 

proteins potentially dysregulated in HD pathogenesis (figure 6.1b). It contains 14 

proteins that are directly or indirectly linked to htt. 
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Figure 6.1. Network-based prediction of brain-specific, dysregulated HTT associated proteins. 
a, Data integration strategy for interaction network filtering by differentially expressed genes. 
By systematic integration of protein interaction and gene expression data (three filtering steps) 
a caudate nucleus-specific HD network with potentially dysregulated HTT associated proteins 
was predicted. b, c, Schematic representation of HTT associated proteins. b, The predicted 
dysregulated, caudate nucleus-specific HTT network links 14 proteins directly or indirectly to 
the disease protein HTT. The proteins marked with a black dot were found previously to be 
dysregulated in brains of HD patients. The orange ring indicates known annotated targets for 
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HD therapy development (HDTTs, http://www.hdresearchcrossroads.org). c, Many predicted 
proteins have synapic functions critical for processes such as endo/exocytosis, neurite 
outgrowh and synaptic transmission. In addition, proteins involved in apoptosis and DNA 
repair processes were identified. 

Further analysis predicts that 7 of the direct and indirect htt interaction partners are 

abnormally up-regulated under disease conditions, while 7 proteins are down-

regulated (figure 1b). This predicted CN-specific HD network was analysed and 

characterized in detail in the second phase of prioritization scheme.  

6.3.3 Functional analysis of dysregulated HD network 

Functional analyses of CN-specific HD network were performed using Gene Ontology 

(GO) database, OMIM database and by manual curation of published literature. GO 

analysis showed over-representation of highly enriched biological processes such as 

apoptosis, cell growth, and endocytosis (adj. p-value= 0.037). These findings were 

further supported by literature analysis. Four apoptotic proteins, namely CFLAR, 

PRKC, PRPF40A and CASP6 were predicted by this approach supporting previous 

observations that cell death pathways are selectively activated in HD brains (Owen et 

al., 2005; Graham et al., 2006; Caldecott, 2008). Six of the HD network proteins are 

expressed predominantly in neurons (neuronal polarity regulator CRMP1, actin 

cytoskeleton component PFN2, synaptic proteins SYN1 and SYNJ1, endocytosis 

regulators PACSIN1 and DNM1) and play a role in neuronal development. This 

suggests that processes like synaptic transmission or neurotransmitter release 

pathways are altered in HD pathogenesis (figure 1c). DNA topoisomerase 1 (TOP1), 

an enzyme that controls and alters the topologic states of DNA during transcription 

was also identified (figure 1c), demonstrating the involvement of DNA damage repair 

during HD pathogenesis (Hodgson et al., 1999). OMIM analysis of CN-specific HD 

network proteins further supported this approach. Notably, the majority of the network 

proteins (80%) are implicated in diverse neurodegenerative disorders, e.g. 

Alzheimer’s disease (CASP6, CRMP1, DNM1, DPYSL2, PFN2, ROCK1, and SYN1), 

Parkinson’s disease (CRMP1, DPYSL2), Rett syndrome (PRPF40A, SYN1), mood 

disorders and schizophrenia (DPYSL2, SYN1, and SYNJ1).  
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6.3.4 Enrichment analysis using annotated targets for HD therapy 
development 

In order to evaluate the results, I computed the enrichment of proteins from HD 

therapy development targets (HDTT) database 

(http://www.hdresearchcrossroads.org) in the predicted CN-specific HD network 

proteins. HDTT is a literature-based manually-curated database, housing 692 

genes/proteins, which are considered “important targets” for HD therapy development 

on rational grounds. I found that the annotated HDTT were significantly enriched (p = 

10-4 using the Fisher’s exact test) compared to a control human interactome data set 

obtained from UniHI database (Chaurasia et al., 2009). 7 (PFN2, ROCK1, CASP6, 

DNM1, SYNJ1, SYN1 and PRKCZ) out of 14 proteins from caudate-specific HD 

network are found to be annotated as HD therapy targets in HDTD database. 

6.3.5 Precision of predicted HD network  

Next, I investigated whether the precision of predicted HDTTs in CN-specific HD 

network is better as compare to the precision obtained using other HD pathology-

related datasets (for detail of the dataset, see Appendix C.1). The precision of HDTTs 

prediction in the different data sets (A-F) was determined using the formula: TP/(TP + 

FP). Where TP is the number of true positives (number of HDTTs found in the 

analyzed data set), and FP is the number of false positives (number of 

genes/proteins in the analyzed data set which are not annotated as HDTTs).  

The results of this analysis are shown in Figure 6.2. Analysis showed that HDTTs are 

predicted with a very low precision in data sets of differentially expressed genes (A-

C), while they are predicted with higher precision in a HTT centered PPI data set (D, 

HTT master network). Analysis of a PPI data set (E) obtained after a 1-step filtration 

with differentially expressed genes did not significantly increase the precision of 

HDTT prediction.  

However, prediction of HDTTs was about 2-fold higher compared to the HTT PPI 

data (D) when the PPI data predicted by this approach (F) were analyzed.  Thus, the 

chance to identify HDTTs increases considerably when PPI data are filtered multiple 

times with gene expression data (3-step data integration strategy). In comparison PPI 

data that were not filtered or data that were only filtered once with gene expression 

data (1-step strategy) are less suitable for prediction of annotated HDTTs. 



 95  

 

 

Figure 6.2. Estimating the precision of HDTT prediction (A:0.06, B:0.04, C:0.05, D:0.21, E:0.25, 
F:0.50) using different HD relevant gene expression and PPI data sets.  

6.3.6 Specificity of predicted HD network  

I also examined whether the sequential integration of different tissue specific gene 

expression data sets influences the outcome of the prediction strategy. I 

systematically compared the caudate nucleus (CN)-, cerebellum (CE)-, motor cortex 

(MC)- and prefrontal cortex (PFC)-specific integration of PPI and gene expression 

data in order to elucidate whether similar or dissimilar dysregulated PPI networks are 

obtained when data sets of different brain regions are combined with this method 

(figure 6.3).  I found that the CN-specific integration of PPI and gene expression data 

reveals a dysregulated HD PPI network with 14 direct and indirect HTT associated 

proteins [PPI4(CN-HD)]. While such a network was not obtained when CE-, MC- and 

PFC-specific gene expression data were step-wise integrated with PPI data, 

suggesting that the predicted, dysregulated HD PPI network (figure 6.1b) is CN-

specific and cannot be generated with gene expression data of other brain regions 

(figure 6.4). These findings suggest that the results are relevant for HD pathogenesis, 

which exhibits a selective neuropathology in the caudate nucleus. 
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Figure 6.3: Prediction of potentially dysregulated caudate nucleus (CN)-, cerebellum (CE)-, 
motor cortex (MC)- and prefrontal cortex (PFC)-specific HTT PPI networks. PPI1, HTT master 

network; ∆EG1, differentially expressed genes obtained by comparing brain versus non-brain 

tissues; PPI2, brain-specific HTT PPI network; ∆EG2(CN), caudate nucleus-specific differentially 

expressed genes defined by comparing gene expression profiles of the caudate nucleus (CN) 
with gene expression profiles of the cerebellum (CE), motor cortex (MC) and prefrontal cortex 

(PFC); ∆EG2(CE), cerebellum-specific differentially expressed genes (CE versus CN+MC+PFC); 

∆EG2(MC), motor cortex-specific differentially expressed genes (MC versus CE+CN+PFC); 

∆EG2(PFC) prefrontal cortex-specific differentially expressed genes (PFC versus CE+CN+MC); 

Brain tissue-specific PPI networks: PPI3(CN), PPI3(CE), PPI3(MC), PPI3(PFC); Differentially 
expressed genes obtained from caudate nucleus, cerebellum, motor cortex or prefrontal cortex 

of HD patients and healthy individuals: ∆EG3(CN-HD), ∆EG3(CE-HD), ∆EG3(MC-HD), ∆EG3(PFC-

HD); Brain-tissue-specific dysregulated HTT PPI networks: PPI4(CN-HD), PPI4(CE-HD), PPI4(MC-
HD) and PPI4(PFC-HD).  

6.3.7 Grade-associated analysis of predicted HD modifiers  

This multi-level filtering approach identified dysregulated proteins in the immediate 

molecular neighbourhood of Htt. The dysregulation of those might directly contribute 

to the dysfunction of mutant Htt enhancing pathogenic mechanisms or interfere with 

the normal (e.g. neuroprotective) Htt function. Such possible mechanisms would be 

supported if a significant correlation between the dysregulation and the disease 

progression could be observed (Vonsattel et al., 1985). 
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Figure 6.4: Integration of PPIs with brain region specific gene expression data reveals different 
dysregulated HTT PPI networks. A dysregulated HD network with 14 HTT associated proteins 
was only obtained when caudate nucleus-specific gene expression data were step-wise 
integrated with PPI data using this method. After each filtering step proteins that could not be 
directly or indirectly linked to HTT were excluded from further analysis. 

As gene expression data for the caudate nucleus of HD brains with different 

neuropathological changes (grades 0-4) are available (Hodges et al., 2006), I 

assessed whether the observed dysregulation of predicted CN-specific HD genes is 

correlated with the disease grade. I grouped caudate nucleus-specific gene 

expression profiles of HD brains with mild (grades 0-1, 16 profiles) and more severe 

neuropathological changes (grades 2-4, 22 profiles) and compared the data with 

gene expression profiles of healthy controls (36 profiles).  

I observed that expression of predicted genes is not only altered in brain tissues with 

severe neuropathological changes but also in tissues with mild pathological 

alterations (figure 6.5). Specially, for CRMP1, DNM1, PACSIN1, PRKCZ, SYN1 and 

SYNJ1, repression for more severe disease grade was apparent (figure 6.5). In 
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contrast, CASP6, CFLAR, DPSYL2, PRPF40A, ROCK1, TOP1 and VIM showed 

increased expression for higher grades (figure 6.5). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.5: Genes predicted by this approach are dysregulated in the caudate nucleus of HD 
brains with mild neuropathological changes. Expression profiles of HD brains with mild 
(grades 0-1, 16 profiles) and severe neuropathological changes (grades 2-4, 22 profiles) were 
compared with expression profiles of healthy individuals (36 profiles). Two stars indicate 
significant dysregulation (p** ≤ 0.001).  

6.4 Discussion and Conclusions 

Interaction networks linking human disease proteins to cellular pathways and 

functional modules are valuable resources that allow the identification and 
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characterization of potential disease modifiers. However, such networks often do not 

provide immediate clues about the pathogenesis and potential disease mechanism. 

Besides the molecular relationships of a disease protein, additional information about 

dysregulated proteins is required to construct networks that reflect altered disease 

processes and permit the prediction of key initiators of a disease cascade. Here, I 

have developed a generic bioinformatic strategy to create tissue-specific interaction 

networks that link disease proteins to potentially dysregulated interaction partners in 

Huntington disease (Figure 6.1). By step-wise integrating microarray gene expression 

data from clinical case-control studies and specific brain tissues with protein-protein 

interaction data, a caudate nucleus-specific interaction network of proteins 

dysregulated in HD was generated. Strikingly, this unbiased, bioinformatic approach 

allowed the elucidation of known as well as novel modulators of HD pathogenesis.  

Functional analysis of predicted CN-specific HD network using GO and published 

literature indicated a significant enrichment of brain-specific biological process such 

as apoptosis synaptic transmission, neurotransmitter related pathway, or neuronal 

development. Furthermore, I found a large fraction of the identified Htt interaction 

partners (7 proteins) are indeed dysregulated in brains of HD patients and transgenic 

animals, supporting the value of this unbiased bioinformatic network modeling 

approach. Analysis of the available literature information confirmed the dysreglation 

of 4 HTT associated proteins (DMN1, PACSIN1, PFN2 and CASP6) in brains of HD 

patients (DiProspero et al., 2004; Hermel et al., 2004; Burnett et al., 2008) (Fig. 1b). 

Further, I also observed a significant enrichment of HD therapy targets (HDTT) in 

predicted HD network. Seven proteins (PFN2, ROCK1, CASP6, DNM1, SYNJ1, 

SYN1 and PRKCZ) out of fourteen were found to be annotated as HD therapy targets 

in HDTT database, demonstrating the power of this predictive approach.  

Observation from precision and specificity analysis further supported my approach. 

Using HDTT database, I observed a 2-fold higher precision value for a network 

predicted by multi-step filtering approach such as compare with one, computed by 

only one-step filtering approach (figure 6.4). Results from specificity analysis showed 

that predicted HD network is CN-specific and cannot be generated when applying in 

other brain compartments such as cerebellum, prefrontal and motor cortex. Caudate 

nucleus has been reported as mostly affected brain region in HD patients, almost with 

95% loss of neurons, my findings shows that the predicted genes are specific to HD 
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pathogenesis.  

Grade-associated analysis showed that predicted genes were found to be strongly 

correlated with both type of pathological changes in HD patients i.e. with mild and 

increased severity changes. Specially, in HD patients with grade 2-4, significant 

down-regulation (p-value<0.1) for following proteins CRMP1, DNM1, HD, PACSIN1, 

PRKCZ, SYN1 and SYNJ1 was observed, as compare to the up-regulation for 

proteins CASP6, CFLAR, DPSYL2, PRPF40A, ROCK1, TOP1 and VIM (figure 6.5). 

Strikingly, grade-associated changes in expression levels of CRMP1 achieved the 

highest significance (p=0.00007) hinting a significant role of CRMP1 during HD. 

Based on this initial reasoning, this finding supports the hypothesis that CRMP1 could 

play a crucial role in the known specific tissue vulnerability (i.e. of the caudate 

nucleus) during HD. To further check the role of CRMP1 during HD-pathogenesis, 

several experiments were performed using different model systems in a separate 

study. Few of the findings from that study are discussed below. 

CRMP1 belongs to the collapsin response family of proteins, formed by five members 

of high sequence similarity in humans (Charrier et al., 2003). While, the other 

members of the family are more widely expressed, CRMP1 expression is narrowed to 

the distinct neuronal populations of the central nervous system (Charrier et al., 2003; 

Bretin et al., 2005). Beyond its signalling function in axon outgrowth and guidance at 

early developmental stages, CRMP1 is also present in mature neurons both in axons 

and in dendrites where the function of it largely unknown (Bretin et al., 2005). CRMP1 

has been described as a part of Semaphorin3A (Deo et al., 2004; Schmidt and 

Strittmatter, 2007) and Wnt signaling pathway (Stelzl et al., 2005), important for 

development of dendritic spines in the brain (Yamashita et al., 2007). Aberrations in 

the dendritic spines represent early neuropathological changes in HD brain (Guidetti 

et al., 2001). Recently it was suggested that both CRMP1 and its closely structurally 

related CRMP2 protein might function as biomarkers in Parkinson’s disease (Stauber 

et al., 2008). Interestingly, hyperphoshorylation of CRMP2 delineates early events in 

Alzheimer’s disease (Cole et al., 2006; Cole et al., 2007). 

To investigate the role of CRMP1 during HD pathogenesis, Bounab & colleagues 

performed functional characterization of CRMP1 utilizing in vitro and in vivo model 

systems (Bounab, 2010). Initial analysis showed that the expression level of CRMP1 

was significantly decreased in striatal tissues of transgenic mice compared to 
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controls, also confirming one of my results from this approach. They also observed 

that overexpression of CRMP1 in a Drosophila model of HD, suppressed polyQ-

mediated Htt aggregation and improved the photoreceptor degeneration and motor 

impairment phenotypes as well as survival, indicating potential role of increased level 

of CRMP1 during HD pathogenesis. Further analysis using in vitro model system with 

purified recombinant human protein (HttQ51) demonstrated addition of the fusion 

protein GST-CRMP1 to reactions diminished polyQ-mediated Htt aggregation 

dramatically, while an equal concentration of the control protein GST did not, 

suggesting that CRMP1-mediated suppression of Htt misfolding and aggregation is 

highly concentration-dependent. Results from this experimental validation study 

indicate a potential role of CRMP1 during HD pathogenesis, and thereby clearly 

demonstrating the usefulness of this integrated bioinformatic approach. 

In summary, I have shown that network-based integrated approaches are a powerful 

strategy, predicting many known and novel modifiers for neurodegenerative diseases. 

Experimental validations using different model systems have demonstrated that 

predicted genes are relevant to HD pathogenesis. I hope that this integrative network 

strategy should be overall useful for the discovery of dysregulated proteins in disease 

processes, and can be applied to predict modifiers in other diseases as well, given 

that suitable PPI and gene expression data are available for network modeling. 
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7 SUMMARY AND OUTLOOK 

 

In this thesis, I presented a unique framework for analysing and integrating the 

currently available human PPI networks. This framework was further applied in two 

different studies, resulting in the predictions of protein complexes and genetic 

modifiers for Huntington disease. In this chapter, I will review the findings of each of 

the performed studies, and conclude it by discussing the biological importance and 

the future prospects of the current work.  

7.1 Review of findings 

Large-scale maps of protein interactions aim to constitute a scaffold for 

comprehensive models of molecular processes. Similarly to fully sequenced 

genomes serving nowadays as fundament for genetics, complete maps of protein-

protein interactions could serve as a solid basis for a systematic modeling approach 

of cellular processes. In contrast to the highly successful mapping genome projects, 

however, the progress in revealing interactomes has been much slower, especially 

for the human interactome. Only recently, there have been a growing number of both 

experimental and computational efforts to gain systematical maps of human protein 

interactome. Although, these maps are likely to provide a better understanding of 

human biology, careful evaluation of these maps is needed, since each of network 

generation approaches has its own strengths and weaknesses, which could lead to 

experimental biases and high rate of false positives interactions in individual maps 

(Mrowka et al., 2001; Bader and Hogue, 2002; von Mering et al., 2002). Here, I 

provide a review of my findings from comparative assessment, integration and 

applications of these maps and discuss their impact on biological research. 

7.1.1 Analysis and integration of human Protein-Protein interaction 
networks 

In chapter 3, I addressed the problem of reliability of human PPI networks. To this 

end, I conducted a comparative assessment of eight different large scale human 

protein-protein interaction networks (Aranda et al., ; Bader et al., 2003; Hoffmann and 

Valencia, 2004; Lehner and Fraser, 2004; Salwinski et al., 2004; Brown and Jurisica, 

2005; O'Brien et al., 2005; Pagel et al., 2005; Persico et al., 2005; Ramani et al., 
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2005; Rual et al., 2005; Stelzl et al., 2005; Chatr-aryamontri et al., 2007; Ewing et al., 

2007; Berglund et al., 2008; Breitkreutz et al., 2008; Matthews et al., 2009; Prasad et 

al., 2009). These maps were derived either from Y2H-assays, literature reviews or 

extrapolated on the basis of homologous interactions in other organisms.  The 

analysis showed that the current maps have only a small, but a significant overlap. 

Whereas the majority of proteins can be found in multiple maps, this is only the case 

for less than 10% of the interactions making the maps largely complementary. I 

detected strong sampling and detection biases linked to the method of generating the 

maps. For example, RNA binding proteins were overrepresented in orthology-based 

maps, whereas signal transducers were over-proportionally sampled in literature-

based maps. A significant depletion of membrane proteins was observed in all 

networks and not only in Y2H-based maps as expected. Moreover, maps were 

generally more concurrent if they were based on the same method. These findings 

will be necessary to consider in future application of these maps. I also observed that 

some previous conclusions for network structures in lower eukaryotes cannot be 

reproduced for humans. For example, protein hubs may not be separated as 

previously reported indicating that present view of modularity in networks may have 

to be modified (Maslov and Sneppen, 2002). The results of my analysis suggest that 

the structure of interactomes of higher eukaryotes might differ substantially from 

those for lower organisms and, thus, general re-evaluation of concepts regarding 

network structure and evolution may be warranted.  A more dynamic view of network 

evolution is also indicated by a comparison which I performed for hubs in different 

maps. It proposes that hubs can be divided into different evolutionary categories. 

Ancient hubs include proteins of core machineries as the proteasome and the 

polymerase whereas evolutionary novel hubs are mainly involved in signal 

transduction and regulation.  This classification suggests that the current theory of 

simple preferential attachment may be not sufficient, but that network hubs have 

arisen to meet the particular requirements of an organism (Barabasi and Oltvai, 

2004). 

Learning’s from chapter 3 suggested that current human PPI networks share 

complementary information, and integration of them, therefore, could be very 

beneficial. However, integration of data from heterogeneous sources is not an easy 

task, as data was basically generated using various experimental conditions, applying 

different identifiers, and moreover is stored frequently in different formats. It required, 
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therefore, a careful analysis of current challenges existing in human PPI data and 

steps needed for the successful integration. To meet these challenges, I designed 

and implemented a database for integrating human PPI networks from different 

sources. This integrated framework was termed as UniHI. In its latest version UniHI 

houses over 250,000 interactions between more than 22,000 unique proteins 

collected from twelve major PPI sources. For the quality assessment of the each 

interacting pairs, UniHI provides several measurements such as co-expression, co-

annotation. It, additionally, provides information how the interactions were validated. 

UniHI offers several tools to perform biologically meaningful and focused analysis. 

For example, it allows users to construct tissue-specific networks or to map pathway 

information on extracted network.   

7.1.2 Analysis of modular structure of human PPI networks 

In chapter 5, I presented the study of modular structure of human interactome. For 

my analysis, I extracted the interaction data from UniHI database, creating a 

literature-based large protein network consisting of over 30,000 interactions. 

Subsequent analysis identified more than 670 modules based on the detection of 

cliques using a module finder tool “Cfinder”. Inspection showed that these modules 

included numerous known protein complexes. The extracted modules were 

scrutinized for their coherency with respect to function, localization and expression, 

thereby allowing me to differentiate between stable and dynamic modules. Finally, 

the examination of the overlap between modules identified key proteins linking 

distinct molecular processes. 

7.1.3 Prediction of Huntington disease modifier 

Finally, in chapter 6, I developed a network-based prediction method for identifying 

the genetic modifiers for Huntington disease, an autosomal neurodegenerative 

disease. This method was based on the integration of huntingtin-specific PPI network 

and gene expression data from HD patients in a multiple steps. Using this approach, 

a brain-specific Htt protein-protein interaction (PPI) network was created, linking 14 

potentially dysregulated proteins directly or indirectly to the disease protein. 

Comprehensive literature analysis suggested the role of many predicted modifiers in 

apoptotic and cell growth pathways and in neurodegenerative diseases. Follow-up 

analysis of identified network indicated the potential role of CRMP1 during HD 
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pathogenesis. CRMP1 is a neuronal specific collapsin response mediator protein 1 

(CRMP1), important for axonal growth, cell survival and adult brain plasticity. 

Experimental validation study (Bounab, 2010) has shown that CRMP1 down 

regulates the formation of insoluble aggregates and reduces mutant Htt toxicity in HD 

models. My approach demonstrated that perturbed, disease-relevant human PPIs are 

predictable by network modelling strategies.      

7.2 Future Directions 

Human interaction maps are rapidly increasing in size and have proven to be highly 

valuable for the study of human health and disease. The wealth of interaction data, 

however, poses also new challenges in the follow-up analysis for researchers. I have 

also learnt from my experiences that implementing such analysis could be very time-

consuming and requires expertise from several domains. A possible solution will be 

to develop workflows which can be applied for certain type of analysis, for example, 

performing large-scale network analysis to study the topological properties of disease 

genes, or even to predict disease modifiers or dysregulated biological processes. 

However, implementation of such framework from scratch would not be an easy task, 

and would require lot of work. With latest version of UniHI, I have already 

implemented first important tools in this direction to provide biologists a user-friendly 

platform to perform integrated systems biology analysis. In following section, I will 

discuss the possible future research directions based on my work.  

7.2.1 Scope and extension of UniHI 

The primary goal of UniHI was to provide the comprehensive information on human 

interactome at one integrated platform. To date, it has been very successful in 

fulfilling its intention. Latest citations of UniHI are very encouraging and show that 

UniHI data has been applied in many studies (Futschik et al., 2007a; Goodman et al., 

2007; Yue et al., 2008; Ammann and Goodman, 2009; Kamburov et al., 2009; 

Keshava Prasad et al., 2009; Navratil et al., 2009). Therefore, UniHI will continue to 

extend its scope by the incorporation of newly available PPI resources and to 

consolidate the frequently divergent data.  

However, there are few areas, which can be improved to make UniHI even more 

convenient System Biology platform. For example, graph-based and functional 
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analyses of PPI networks have been applied to study the structure of PPI networks, 

and to check quality the PPI data. Additionally, topological properties can be used to 

study the role of disease proteins in PPI networks (Jonsson and Bates, 2006; Platzer 

et al., 2007; Goni et al., 2008). UniHI interface provides information on topological 

and functional analyses done for the PPI data included in UniHI. But, these results 

are static, whenever a newly PPI data is added to UniHI, it is a plenty of manual work 

to update these results. However, it would be sensible to automate this process; 

therefore, a possible extension of UniHI could be to implement workflows to perform 

the network analysis and update the results on its web page. Furthermore, it would 

be useful to extend those workflows in a way where a biologist can also easily 

analyze the topological properties of his interest of proteins in a searched PPI 

network.  

Another issue of UniHI DB is the multiple search interfaces. Currently, UniHI offers 

three different search tools to analyze and visualize PPI networks. All these tools 

provide integrated information on PPI either with expression or pathways. However, 

systems biology analysis demands integration of all kind of relevant information in 

one platform. Therefore, it would be useful to integrate three different UniHI 

applications into a single platform.  

7.2.2 Quality of PPI maps 

Although the size of human PPI network is growing rapidly, but the quality of the data 

still remains a challenge (Bader and Hogue, 2002; von Mering et al., 2002; Chaurasia 

et al., 2006; Futschik et al., 2007a). My analyses have shown that current PPI maps 

are scanty and likely to include a considerable number of false positives (Chaurasia 

et al., 2006; Futschik et al., 2007a; Futschik et al., 2007b). An unbiased estimate of 

the quality of interaction data sets would require the availability of ‘gold standard’ for 

true positive and true negative interactions (Jansen and Gerstein, 2004). In contrast 

to yeast, such sets do not exist for human protein interactions. In fact, it is doubtful if 

such sets will ever exist: Many interactions depend on accurate post-translational 

modification of proteins and occur in a tissue-specific manner. Thus, different sets of 

true positive interactions might have to be defined for different tissues. Even more 

challenging is the construction of a set of pairs of proteins that do not interact 

independently of a chosen physiological condition. Thus, to date, one popular 

approach to estimate the quality of human interactions is to examine whether the 
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proteins are co-localized, co-expressed or associated with the same function. In 

UniHI database, I have currently implemented several schemes using genome-wide 

study of human gene expression under normal condition and Gene Ontology data to 

validate the protein interaction, or to create tissue-specific networks (Chaurasia et al., 

2009). But, the limitation of this scoring scheme is that it is currently based on 

expression data only from one study, and if expression information of particular gene 

is missing in the dataset, then confidence score for this gene with its interacting 

partners cannot be computed. Therefore, this needs to be further consolidated by 

integrating expression data from other studies also. Additionally, this PPI data may be 

also integrated with protein sequence and domain information, due to the fact that 

interaction proteins are likely to have similar domain. I hope that integrating PPI data 

with all possible functional information will surely help us to reduce the number of 

false positive and subsequently to get good quality of PPI data. 

7.2.3 Implementation of the network-based strategy for the prediction of 
disease genes in UniHI  

In last decade, network-based approaches have been very popular for predicting 

disease modifiers and the dysregulated biologic processes (Calvano et al., 2005; Oti 

et al., 2006; Ergun et al., 2007; Pujana et al., 2007; Baranzini et al., 2009). In this 

thesis, I have also developed a network-based approach to predict the dysregulated 

genes in Huntington disease. As explained in the previous chapter (Chaper 6, section 

3.1), my approach was based on the multi-step interaction network filtering steps, in 

which PPI data was integrated with expression data from healthy and diseased HD 

patients using several steps. This approach successfully predicted many known and 

novel gene disease modifiers. This method is very scalable, and can also be 

extended to study other the human diseases, provided required data is available. 

However, this integration demands manual collection of data and lots of programming 

efforts for performing such type of analysis. Therefore the future aim of UniHI would 

be to provide such a facility within UNIHI framework, to automate the process of 

finding disease modifiers and analyzing them in combination with disease-relevant 

biological data. Especially, user can upload his/her own expression data to filter the 

searched network for a particular condition or disease, and this filtered network can 

then be integrated further with other biological pathway or functional data  to identify 

the dysregulated biological processes and functions.  



 108  

7.3 Conclusions 

To conclude this thesis, early applications have indicated the large potential of 

network biology in many research areas. Progress in experimental techniques and 

computational methods will continue to improve the coverage and sensitivity of 

interaction networks. A focus of interactomics - especially in its application to disease 

research – will be on the combination of different types of networks, such as protein-

protein, transcriptional regulatory and metabolic networks, to enable the creation of 

detailed molecular models of critical diseases such as neurodegenerative disorders 

and oncogenesis. Furthermore, the integration of interactions networks with the rich 

datasets generated by on-going disease-related sequencing, microarray or imaging 

projects is likely to provide us with molecular maps of unprecedented detail for the 

human organism in health and disease. Thus, network biology promises to 

substantially contribute to a better understanding of the complexity of disease and 

eventually to its cure. 
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Appendix A 

 

Table A.1: Enlarged overview of interaction maps compared. ‘Proteins’ refer to the number of 
proteins included in the corresponding interaction map before mapping to EntrezGene ID. 
‘Protein mapped’ refer to the number of proteins that could be mapped tto EntrezGene ID and, 
thus, were included in the comparative analysis. Substantial loss occurred for OPHID and 
HOMOMINT, where proteins were primarily referenced by their UniProt IDs. 
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CCSB-H1 1549 1549 2754 2754 5.1 1.8 1/0/90/27 Y2H-ASSAY 

HPRD 6206 5908 20940 
1565

8 4.2 2.7 
1/0/135/14

0 LITERATURE 

BIND 4275 2677 5872 4233 13.5 1.7 
1/3/169/25

6 LITERATURE 

COCIT 3737 3737 6580 6580 0 1.8 1/7/545/0 LITERATURE 

OPHID 4787 2284 24993 8962 0 3.9 1/3/95/0 ORTHOLOGY 

ORTHO 3870 3503 11651 9641 2.0 2.8 1/2/183/9 ORTHOLOGY 

HOMOMINT 4129 2556 10182 5582 8.1 2.3 1/0/85/45 ORTHOLOGY 
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Table A.2: Number of proteins shared between interaction maps. 

 

 

MDC-
Y2H 

CCSB-H1 HPRD BIND COCIT OPHID ORTHO HOMOMINT 

MDC-Y2H 1613 

CCSB-H1 221 1307 

HPRD 741 553 5446 

BIND 363 239 1513 1941 

COCIT 267 156 1591 639 2187 

OPHID 335 219 1133 626 507 1978 

ORTHO 429 350 1219 567 421 857 2838 

HOMOMINT 430 268 1264 574 454 1213 1092 2293 
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Table A.3: Normalized interaction overlap. The derivation is defined in the Methods section. 
The percentage corresponds to the shared proportion of interactions within the set of shared 
proteins.  The columns indicate the reference data sets. Thus, the table is can be read as 
follows: 16.4% of the interactions of CCSB-H1 are also included in MDC-Y2H after restriction to 
the proteins common to both maps.  Likewise, 18.0% of the interactions in MDC-Y2H are also 
included in CCSB-H1. The differences are caused by the different number of interactions in the 
two maps within their protein overlap.   

 MDC-Y2H 
CCSB-

H1 
HPRD BIND COCIT OPHID ORTHO 

HOMO
MINT 

MDC-Y2H 100.0 18.0 2.4 3.9 1.7 2.7 2.9 4.0 

CCSB-H1 16.4 100.0 9.4 15.7 13.5 6.1 12.1 18.2 

HPRD 3.4 15.8 100.0 26.6 17.0 17.9 14.8 15.0 

BIND 6.4 17.6 45.5 100.0 19.2 36.7 18.0 20.9 

COCIT 1.5 19.3 17.7 13.6 100.0 15.8 16.0 10.4 

OPHID 1.1 6.0 14.7 33.5 18.2 100.0 21.9 23.9 

ORTHO 2.4 12.5 11.3 16.4 21.7 61.6 100.0 41.4 

HOMOMINT 3.4 14.2 13.1 19.1 12.3 63.9 37.7 100.0 
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Table A.4: Log likelihood ratio for concurrence of interactions within the protein overlap 
between maps.  The columns refer to the reference data sets for the pair-wise comparisons. 
The values for self-comparison were set to zero.  

 

 MDC-
Y2H 

CCSB-
H1 

HPRD BIND COCIT OPHID ORTHO HOMOMINT 

MDC-Y2H 0 4 3.3 3.3 2.7 2.1 3 3.2 

CCSB-H1 4.6 0 5 5.6 5 3.8 4.7 5.1 

HPRD 3 4.7 0 5.7 5.3 4.3 4.6 4.6 

BIND 3.8 5.3 7.1 0 5.7 5.4 5.1 5.2 

COCIT 2.4 4.6 5.5 4.7 0 4 5.1 4.4 

OPHID 1.5 3.5 5.3 5.6 5.3 0 5.1 5.2 

ORTHO 3 4.4 5 5.1 5.4 6.2 0 6 

HOMOMINT 3.2 4.7 5.3 5.3 5.1 6.8 6.1 0 
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Figure A.1: Composition of interaction maps regarding the molecular function of proteins. The 
pie plots display the portions of proteins assigned to molecular functions of the first level in 
the Gene Ontology database.  Categories populated with less than 2% of the annotated 
proteins in a map were merged in the category “others”.   
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Figure A.2: Composition of interaction maps regarding the biological process to which proteins 
are linked. The pie plots show the portions of proteins assigned to biological process of the 
first level of the Gene Ontology.  Categories populated with less than 2% of the annotated 
proteins in a map were merged in the category “others”.   
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Figure A.3: Composition of interaction maps regarding the cellular component to which 
proteins were allocate in Gene Ontology. Pie plots show the composition on the first level of 
the Cellular Component ontology in Gene Ontology.  Categories populated with less than 2% of 
the annotated proteins in a map were merged in the category “others”.   
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Figure A.4: Molecular function of interacting proteins. Pairs of interacting proteins were 
mapped to pairs of molecular function terms to which the proteins were assigned in Gene 
Ontology.  The figures display the log odds ratios of the observed distribution compared to 
distribution obtained from randomized networks with conserved degree distribution. 
Categories of the third level of the Molecular Function ontology were chosen and the labels are 
displayed in the figures.  For clarity, only GO terms are shown including more than 2% percent 
of total number of proteins are displayed.  The following abbreviations were used: Db- DNA 
binding, Pb - Purine nucleotide binding,, Rb- Receptor binding, Mb – Metal ion binding, Cb – 
Cation binding and Ct – Cation transporter activity. 
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Figure A.5:  Biological processes assigned to interacting proteins in Gene Ontology. Similarly 
to figure S6, the observed concurrence of annotations of interacting proteins was compared to 
the concurrence expected for corresponding random networks.  The following abbreviations 
were used: St – Signal transduction, Nr – Negative regulation of cellular process, Rc – 
Regulation of cellular physiological process, Tr – Transport, Cm – Cellular metabolism, Rm – 
Regulation of metabolism  and Pm – Primary metabolism. 
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Figure A.6:  Cellular component to which interacting proteins were allocated in Gene Ontology. 
Similarly to figure S6, the observed concurrence of annotations of interacting proteins was 
compared to the concurrence expected for corresponding random networks.  The following 
abbreviations were used: Nu – Nucleus, Rc – Ribonucleoprotein complex, Ck – Cytoskeleton, 
Cp – Cytoplasm, Im – Intrinsic to membrane, Em – Endomembrane system, Om – Organelle 
membrane  and Pm – Plasma membrane 
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Figure A.7: Concurrent annotation of interacting proteins.  The figures display the observed log 
odds for frequency of shared length within Gene Ontology categories for molecular function 
(MF), biological process (BP) and cellular component (CC)  compared to expected path lengths 
for randomized networks.  
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Figure A.8: Mean path lengths of interaction networks: Red bars correspond to original graphs, 
blue bars correspond to random graph with the same number of proteins and interactions and 
yellow bars correspond to random networks with conserved degree distribution.  All 
calculations were based on the largest connected graph within the network to avoid artifacts.  
Errors bars show the standard deviations derived for three independent randomizations.  
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Figure A.9: Degree frequencies. The number of proteins was plotted as a function of the 
number of neighbors that proteins in the interaction maps have.  For all maps, the degree 
frequencies follow a power-law P(k) ~ k–γ with some derivations for HPRD, COCIT, ORTHO and 
HOMOMINT.  The exponent γ was derived by linear regression.  
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Figure A.10: Mean clustering coefficient of interaction networks. Red bars correspond to 
original graphs, blue bars correspond to random graph with the same number of proteins and 
interactions and yellow bars correspond to random networks with conserved degree 
distribution.  Calculations were based on the largest connected graph within the network to 
avoid artifacts. Errors bars display the standard deviations derived for three independent 
randomizations.  
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Figure A.11: Clustering coefficient. Plots show the dependence of the clustering coefficient on 
the degree of proteins. The clustering coefficients shown were derived by averaging over all 
proteins having the same degree. The solid line shows the linear fit.  
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Figure A.12: Average degree of neighbors in the interaction networks. The average degree of a 
protein’s neighbor is plotted as a function of the degree of the proteins. The conjecture that 
proteins hubs tend to avoid direct interaction should result in a decrease of the average degree 
of neighbors for interaction-rich proteins. This can be only observed for Y2H-based networks 
and for BIND.   
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Table A.5: Spearman correlation coefficients for degree of proteins.  

 MDC-Y2H CCSB-H1 HPRD BIND COCIT OPHID ORTHO HOMOMINT 

MDC-Y2H 1.00 0.04 0.03 0.18 0.07 -0.07 0.05 0.04 

CCSB-H1 0.04 1.00 0.15 0.17 0.25 0.04 0.16 0.07 

HPRD 0.03 0.15 1.00 0.47 0.37 0.18 0.22 0.17 

BIND 0.18 0.17 0.47 1.00 0.34 0.28 0.18 0.23 

COCIT 0.07 0.25 0.37 0.34 1.00 0.28 0.17 0.20 

OPHID -0.07 0.04 0.18 0.28 0.28 1.00 0.42 0.57 

ORTHO 0.05 0.16 0.22 0.18 0.17 0.42 1.00 0.40 

HOMOMINT 0.04 0.07 0.17 0.23 0.20 0.57 0.40 1.00 
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Table A.6: Significance of overrepresentation of protein hubs in molecular functions GO 
categories. Proteins hubs were defined here as the set of proteins within the top 10% of 
proteins having the largest number of interaction in an interaction map.   The same procedure 
and threshold was applied as for table S7 except that the baseline distribution is the set of all 
proteins in the corresponding map. Categories are displayed if significant overrepresentation 
occurred in more than two maps. 

 

MDC-
Y2H 

CCSB-
H1 HPRD BIND COCIT OPHID ORTHO HOMOMINT N GO Term 

  2.09E-13 9.64E-05 0.00043   0.000618 4 binding 

   0.009782  8.41E-05 3.41E-05 0.000581 4 RNA binding 

   7.59E-05  0.000375  7.90E-10 3 

nucleic acid 

binding 

  6.60E-47 1.81E-13 1.37E-17    3 protein binding 

     0.0009 0.001633 7.00E-06 3 

translation 

initiation factor 

activity 

  3.02E-07 0.002466  0.000674   3 

purine 

nucleotide 

binding 

  9.88E-14 0.000798 0.00103    3 kinase activity 

  4.65E-05 0.00234  0.000228   3 ATP binding 

  7.02E-05 0.002356  0.000109   3 

adenyl 

nucleotide 

binding 

  7.97E-16 0.000798 4.67E-05    3 

protein kinase 

activity 

  3.57E-12 7.97E-05 0.001734    3 

transferase 

activity, 

transferring 

phosphorus-cont 

  3.96E-14 0.000634 0.00026    3 

phosphotransfer

ase activity, 

alcohol group as 

acce 

    3.46E-06 8.41E-05 1.34E-07  3 

threonine 

endopeptidase 

activity 

  3.08E-17 0.00018 0.000408    3 

receptor 

signaling protein 

activity 

   0.00998  0.002208 0.000639  3 

DNA-directed 

RNA polymerase 

activity 
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Table A.7: Significance of overrepresentation of protein hubs in interaction maps for biological 
processes.  The same procedure and threshold was applied as for table S6.  

MDC-
Y2H 

CCS
B-H1 HPRD BIND COCIT OPHID ORTHO 

HOMO-
MINT N GO-Term 

  3.69E-05 0.000478  2.78E-08 2.07E-06  4 cellular metabolism 

  1.07E-17 0.000747 9.38E-07    3 

enzyme linked receptor 

protein signaling pathway 

  1.35E-11 1.53E-07 8.35E-09    3 

regulation of progression 

through cell cycle 

  8.80E-10 1.53E-07 2.21E-07    3 cell cycle 

  2.18E-14 4.44E-07 2.98E-08    3 

regulation of cellular 

physiological process 

  1.56E-05 1.84E-06 1.34E-05    3 

negative regulation of 

cellular process 

  4.82E-09 0.005581 2.88E-12    3 

positive regulation of 

cellular process 

  2.59E-06   0.000185 0.006314  3 

macromolecule 

metabolism 

  8.91E-14 0.008232 0.006616    3 protein modification 

  7.31E-25 0.000548 3.54E-15    3 signal transduction 

  1.30E-15 0.002081 9.36E-11    3 apoptosis 

  4.21E-16 0.007241 2.42E-05    3 

protein amino acid 

phosphorylation 

  1.43E-15 0.002081 9.36E-11    3 programmed cell death 

  1.30E-15 6.37E-05 5.91E-08    3 

intracellular signaling 

cascade 

  1.25E-14 0.009887 0.000404    3 phosphate metabolism 

    0.004379  0.00013 0.000871 3 

ubiquitin-dependent 

protein catabolism 

    0.004379  0.00013 0.000871 3 

modification-dependent 

protein catabolism 
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Table A.8: Significance of overrepresentation of protein hubs in interaction maps for cellular 
component. The same procedure and threshold was applied as for table S6. 

MDC
-Y2H 

CCSB
-H1 HPRD BIND COCIT OPHID ORTHO 

HOMO-
MINT N GO Term 

  0.004942 4.78E-07  0.000242 0.000206 3.01E-16 5 nucleus 

  0.004805 0.000108  1.19E-12 1.06E-08 2.70E-06 5 intracellular 

    8.09E-05 7.44E-13 2.00E-14 5.89E-09 4 

proteasome 

complex (sensu 

Eukaryota) 

   0.001491  0.000756 0.000403 1.13E-06 4 

membrane-bound 

organelle 

   0.001491  0.000756 0.000403 1.13E-06 4 

intracellular 

membrane-bound 

organelle 

   5.36E-06  0.001355 0.000188 0.000581 4 nucleolus 

     8.26E-10 3.09E-09 4.48E-12 3 protein complex 

     0.000811 1.74E-07 1.13E-06 3 organelle 

     0.000811 1.74E-07 1.13E-06 3 

intracellular 

organelle 

     3.00E-09 3.34E-10 5.07E-05 3 cytosol 

     0.00045 0.00431 0.0079 3 

endoplasmic 

reticulum 

     0.002881 1.13E-09 0.002938 3 

ribonucleoprotein 

complex 

    8.42E-06 8.99E-06 3.98E-08  3 

proteasome core 

complex (sensu 

Eukaryota) 

     0.003284 0.002238 0.0079 3 

RNA polymerase 

complex 
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Appendix B 

B.1   Design and Implementation  

As the amount of data on protein interactions is growing rapidly, there is ongoing 

demand for integrated platforms with a high degree of flexibility. Such platforms 

should not be only easily accessible but also be consistently updated. Data should be 

accurately integrated from different sources and queries should be processed in 

minimal time. The structure of the platform should be extensible to new data without 

changing its data structure. Thus, a careful design and implementation of the system 

and the selection of computational approaches to assemble heterogeneous data 

sources are crucial. Traditional computational approaches like object-oriented 

software and relational databases can be cumbersome and time-consuming. 

Typically, persisting data objects from SQL tables with a JDBC (Java Database 

Connectivity API) connection and prepared SQL statements may be easy for simple 

objects, but is very complicated for objects with many properties such as proteins and 

their interaction partners, since they have to be mapped to different domains of 

similar and complementary information. Thus, I decided to implement UniHI with an 

object/relational mapping (ORM) methodology (http://www.hibernate.org/5.html). ORM 

tools provide an easy-to-use framework for mapping an object-oriented domain 

model to a traditional relational database. This technique helps me to reduce the 

implementation costs of complex SQL queries. ORM takes plain Java objects used in 

the application and process them using a persistent mechanism which automatically 

generates all the SQL command needed to store and retrieve the object. Applications 

built with an ORM tool are cheaper to design, better performing, highly portable and 

resilient in the face of changes to internal objects or underlying relational models.  

B.2   Data Integration 

Data integration from different data sources imposes major tasks. They include 

careful assembly of similar and complementary information from heterogeneous data 

sources and deletion of duplicated data. To handle this problem, I implemented an 

integration layer which provides different parsers for importing interaction data 

coming in different formats, and mechanism for several steps of data preprocessing. 

Details on the different data sources and their integration mechanism are given in the 

following sections (Bader and Hogue, 2002; Balasubramanian et al., 2004).  
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Data Downloading and Parsing 

Interaction data are downloaded from different distributed sources (see Chapter 2, 

Table 2.1) via file transfer protocol (ftp) or hypertext transfer protocol (http). The data 

are generally available in two different formats either as flat-files or XML-files 

(eXtensible Markup Language). Most of the interaction databases now release their 

datasets following the XML-based PSI-MI (Proteomics Standards Initiative - 

Molecular Interaction) convention (Kerrien S, 2007). Separate parsers using Java 

application programming interfaces (APIs) have been implemented for extracting 

information from the XML- and flat-files. SAX (Megginson, 2005) and DOM (Hors, 

2004) parser were used for processing the XML files. The extracted information is 

imported into a temporary database. 

Data Preprocessing 

As the interaction maps use different identifiers, one of the main challenges in 

integrating the data is the construction of a unique identifier indexing system. For 

unification, first, complete lists of proteins for each interaction map were compiled 

separately. Subsequently, these lists were compared employing information from 

NCBI (Maglott et al., 2007), HGNC (Bruford et al., 2008) and EnsMart (Kasprzyk et 

al., 2004) to map their corresponding identifiers in other interaction datasets. After 

mapping, identical protein identifiers were merged together in a horizontal manner 

where each protein is a unique entry in the Protein table (see details DB schema). A 

unique identifier was assigned to each protein entry of this table. These unique 

identifiers were further used for grouping of the redundant interactions from all 

interaction datasets. Information on the source of proteins or interactions were 

merged vertically and inserted into two different tables ProteinSource and 

InteractionProperties. (Appendix figure B.1).  

After integration, some modifications on interaction datasets were also performed. 

First, I wanted to distinguish between interactions of binary and complex type. For the 

binary interaction type proteins interact directly, whereas for complex interaction type 

proteins belong to the same protein complex but do not necessarily interact directly 

with others. Most interaction networks include either binary or complex type enabling 

easy distinction. An exception is HPRD, which provides both binary and complex type 

of the interaction data. To facilitate differentiation between these two categories, I 
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have split interaction data from HPRD into two sets (HPRD-BIN, HPRD-COMP).  

Secondly, large-scale interaction networks are generally derived by literature-reviews, 

Y2H-assays or are based on observed interactions between orthologous proteins in 

other organisms. To indicate users the approach taken those interaction datasets 

were modified where interaction data were assembled by multiple approaches. For 

example, OPHID contains orthology-based interactions as well as interactions 

imported from other databases. I extracted only orthology-based derived interactions 

from OPHID as UniHI already includes the remaining interactions. Similarly, HPRD 

contains data from large-scale experiments that are separately incorporated in UniHI. 

Hence, these data were filtered from HPRD interaction map.  

Finally, networks based on multiple approaches were divided according to the 

method used. CCSB-H1 data were split into Y2H- and literature-based interaction 

maps (CCSB-Y2H, CCSB-LIT). The processed and non-redundant data are inserted 

into a common relational database using the persistent layer, described below. 

Database Scheme 

Data stored in UniHI are administered by a relational database using an open source 

MySQL relational database management system (RDBMS) 

(http://mysql.org/doc/#manual). It consists of nine key tables. The Protein table 

contains a complete list of proteins from all interaction maps. Each protein in this 

table is stored with its different identifiers (EntrezGene ID, Uniprot ID, Ensembl ID, 

UniGene ID, OMIM ID) as well as its gene symbol, description, cross-reference 

database identifiers from HPRD, BIND and DIP, if known. Each protein in this table is 

a unique entry. The ProteinAliases table lists the information of different symbols 

assigned to the corresponding proteins. The ProteinSource table houses information 

about the occurrence of each protein in different maps. The GOAnnotation table 

stores the information about GO-environment of each protein. The Interaction table 

contains information on interactions. Each interaction in this table is a unique entry. 

The InteractionProperties table gives additional information about interactions such 

as source of interaction and quality score. For example, interactions of the MDC-Y2H 

map were categorized as low, medium and high confidence by the authors (Stelzl et 

al., 2005). The InteractionScore table includes information about co-expression and 

co-annotation of interacting proteins. The ExperimentDetail and DetectionMethod 
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tables store the information about the Pubmed IDs and the methods used to detect 

the interactions. The schema for relational database is presented in Appendix figure 

B.1. 

Persistence  

The persistence layer is the core of the whole system and works as middleware for 

inserting and querying data. All objects implemented within this layer are mapped to 

tables in the SQL-based relational database. The role of all objects and their event 

classes are described in Hibernate mapping properties files. These mapping files are 

used for the communication with 

Application 

The application layer is implemented using web-services of the J2EE architecture. 

The main purpose of this layer includes communication with clients via a JBOSS 

web-server and retrieval of the data from the database using hibernate persistent 

mechanism. Data retrieval is carried out using the Structured Query Language (SQL) 

which is implemented in a set of Java APIs. Further, this layer consists of a web 

interface and a visualization tool. Functions included in this interface enable users to 

perform not only simple searches for interactions of single protein but also complex 

network-oriented queries for multiple proteins. It provides additionally several features 

for refined search and selective use of interaction maps. Validation schemes provided 

with each interaction map are also included to assess the quality of each interaction. 
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Figure B.2: An entity-relationship diagram of UniHI, showing key tables (rectangles) and 
relations (lines).  PK (red) and PFK (blue) denote primary and foreign keys. 
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Appendix C  

C.1   Details of the datasets used for the Precision analysis   

For comparison, I computed the precision values of predicted HDTTs  in following HD 

related datasets:  

A: 2,326 differentially expressed genes; data was obtained by comparing gene 

expression profiles of human brain with non-brain tissues with a threshold of p < 10-5  

(Su et al., 2004) . 

B: 13,921 differentially expressed genes; Data was obtained by comparing gene 

expression profiles of the caudate nucleus with gene expression profiles of the motor 

cortex (MC), prefrontal cortex (PFC) and the cerebellum (CE). A threshold of p < 10-3 

was used for the analysis (Hodges et al., 2006). 

C: 5,674 differentially expressed genes; Data was obtained by comparing gene 

expression profiles of the caudate nucleus of HD patients and healthy controls using 

a threshold of p < 10-3 (Hodges et al., 2006). 

D: 509 proteins of the HTT master network. Data was generated in small- and large-

scale interaction studies and is available in the interaction database UniHI 

(www.unihi.org).  

E: 222 proteins obtained after filtering 509 proteins (HTT master network) using 

information from expression dataset, defined by comparing gene expression profiles 

of the caudate nucleus of HD and healthy brains using a threshold of p < 10 -3 

(Hodges et al., 2006). 

F: 15 proteins obtained after a 3-step filtration of HTT PPIs (HD master network) with 

gene expression data from (Hodges et al., 2006). 
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