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Abstract 

The Brazilian savanna, commonly known as the Cerrado, covers around 2 Mkm², or 
approximately 24 % of Brazil's national area. It is characterized by a unique biodiversity, a 
high level of endemism and strong gradients in vegetation structure. Due to a weak 
conservation status and a growing demand for agricultural products, large-scale land 
conversions have altered almost half of the ecosystem's structure and function. Mapping and 
monitoring ecological processes in the Cerrado, by means of remote sensing, is a prerequisite 
to deepen our understanding of its ecosystem dynamics and to adapt policies and 
conservation strategies based on spatially explicit information. Novel remote sensing sensor 
systems, open data policies and technological developments regarding data storage and 
processing performance, facilitate the analysis of unprecedented amounts of remote sensing 
data. In combination with time series analysis techniques, these developments enabled 
capturing the seasonal dynamics of vegetation over large extents at high spatial detail. This 
thesis aimed to analyze the benefits of land surface phenological (LSP) metrics derived from 
dense Landsat time series, for the spatially explicit characterization of Cerrado vegetation, 
regarding its structural and phenological diversity, and to assess its relation to above ground 
carbon. The results revealed that LSP metrics capture the seasonal dynamics of 
photosynthetically active vegetation, which is amongst others influenced by structural 
vegetation properties and species composition. LSP metrics were shown to be beneficial for 
the mapping of vegetation physiognomies, but also revealed limitations of hard classification 
approaches for mapping vegetation gradients in complex ecosystems. Based on similarities 
in LSP metrics, which were derived for the whole extent of the Cerrado, LSP archetypes 
were proposed, which enabled to reveal the spatial patterns of LSP diversity at a 30 m spatial 
resolution for the first time. The LSP archetype map can enhance current mapping concepts 
in the Cerrado and offer potential for conservation and biodiversity assessments. Finally, 
LSP metrics were shown to be relevant input variables for carbon quantification approaches, 
as strong relationships between above ground carbon (AGC) and LSP metrics could be 
revealed. LSP metrics enabled the spatially explicit quantification of AGC in three study 
areas in the central Cerrado and should thus be considered for future carbon estimations. 
Overall, the insights highlight that LSP metrics derived from dense Landsat time series are 
beneficial for ecosystem monitoring approaches, which are crucial for sustainable land 
management strategies that maintain key ecosystem functions and services. 
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Zusammenfassung 

Die Brasilianische Savanne, auch bekannt als der Cerrado, erstreckt sich über eine Fläche 
von 2 Mkm², oder einem Viertel der Gesamtfläche Brasiliens. Dieses Ökosystem ist von 
einer einzigartigen Biodiversität mit einem hohen Anteil endemischer Arten und starken 
Gradienten in der Vegetationsstruktur gekennzeichnet. Auf Grund des lückenhaften 
Naturschutzes und einer rasant steigenden Nachfrage nach landwirtschaftlichen Produkten 
wurde beinahe die Hälfte der natürlichen Vegetation des Cerrado in bewirtschaftetes Land 
umgewandelt. Diese weiträumigen Landnutzungsveränderungen beeinträchtigen unter 
anderem die Ökosystemfunktion und –struktur des Cerrado. Die fernerkundliche Kartierung 
und Überwachung ökologischer Prozesse bildet eine Voraussetzung für die Vertiefung 
unseres Verständnisses der zugrunde liegenden Ökosystemdynamiken und wirkt 
unterstützend bei der Entwicklung von Maßnahmen und Strategien im Naturschutz des 
Cerrado. Neuartige Entwicklungen in Sensorsystemen, freier Datenverfügbarkeit sowie 
Fortschritte im Bereich der Datenspeicherung und – prozessierung ermöglichen heutzutage 
die Analyse von großen Mengen an Fernerkundungsdaten. In Kombination mit Methoden 
der Zeitreihenanalyse ermöglichen diese Entwicklungen nun erstmalig die Erfassung von 
räumlich detaillierten saisonalen Vegetationsdynamiken über große Flächen. In dieser 
Dissertation wird der Mehrwert von Landsat-basierten Metriken der 
Landoberflächenphänologie (engl. land surface phenology; LSP) zur räumlich expliziten 
Charakterisierung der Cerrado Vegetation, in Bezug auf deren strukturelle und 
phänologische Diversität, sowie zur Schätzung des oberirdischem Kohlenstoffgehaltes, 
analysiert. LSP Metriken erfassen die saisonalen Dynamiken der photosynthetisch aktiven 
Vegetation, welche unter anderem durch die strukturelle Beschaffenheit der Vegetation, 
sowie ihrer Artenzusammensetzung bestimmt sind. Weiterhin sind LSP Metriken nützlich 
für die Kartierung von Vegetationsphysiognomien, zeigten jedoch auch die Grenzen der 
Einteilung von Vegetationsgradienten in diskrete Klassen. Die Gruppierung von ähnlichen 
Ausprägungen in LSP Metriken in sogenannte LSP Archetypen ermöglichte darüber hinaus 
erstmalig die Erfassung und Darstellung der phänologischen Diversität im gesamten 
Ökosystem des Cerrado. Die resultierende Kartierung von LSP Archetypen, mit einer 
räumlichen Auflösung von 30 m, bietet zahlreiche Anwendungsmöglichkeiten, wie zum 
Beispiel im Bereich der Naturschutzplanung und der Biodiversitätserfassung. Weiterhin 
wurden LSP Metriken genutzt, um eine räumlich explizite Kohlenstoffschätzung in drei 
Testgebieten des zentralen Cerrado durchzuführen. Der starke Zusammenhang von LSP 
Metriken und oberirdischem Kohlenstoffgehalt birgt große Potentiale für zukünftige 
Kohlenstoffschätzungen. Die Erkenntnisse dieser Dissertation unterstreichen die Vorteile 
und Nutzungsmöglichkeiten von LSP Metriken im Bereich der Ökosystemüberwachung und 
haben demnach direkte Implikationen für die Entwicklung und Bewertung nachhaltiger 
Landnutzungsstrategien.  
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1 Scientific background 

1.1 Global environmental change 
Carbon is an essential element of life. Through its ability to form a tremendous number of 

complex compounds with other elements, it forms the basis of all living organisms (EB 

2018). During the process of photosynthesis, inorganic carbon is taken from the atmosphere 

and bound into organic carbon stocks as vegetation biomass, rendering the largest fluxes in 

the global carbon cycle and highlighting the direct link between the atmosphere and the 

biosphere (Schlesinger and Bernhardt 2013; Scholes and Smart 2013). During the 

vegetation’s life cycle, carbon is released into the atmosphere and lithosphere through 

respiration or decomposition. Under the right conditions, vegetation biomass might 

eventually end up in fossil fuels such as coal, oil or natural gas (EB 2018), which have played 

a pivotal role in the development of modern societies since the beginning of the industrial 

revolution around 200 –250 years ago (Steffen et al. 2007). This marked the onset of the 

Anthropocene, an epoch in which human beings have tremendously altered the global 

environment and influenced natural cycles of material and energy flows that interlink the 

main spheres of the Earth system (Crutzen 2002; Steffen et al. 2007).  

These alterations are comprehended under the term “global change”, which encompasses all 

planetary scale Earth system changes that affect for example the climate, ocean, and 

atmospheric circulations, or the water, nitrogen, and carbon cycles (Steffen et al. 2005). A 

major driver of these global change processes is a growing world population, which is 

expected to reach around 10 billion people in 2050 (UN 2017), accompanied by an 

increasing demand for food and natural resources, thereby exerting high pressure on the 

Earth’s ecosystems (Vitousek 1994; Vitousek et al. 1997).  

In particular, anthropogenic land conversions, usually from areas dominated by natural 

vegetation such forests, grasslands or savannas to agricultural land use, have major impacts 

on the function of ecosystems (MEA 2005) and are one of the main drivers of biodiversity 

loss (Foley et al. 2005). For example, they cause changes in the surface albedo, the carbon 

storage capacity, and the provision of habitats. Land use change is, next to fossil fuel 

combustion, considered as one of the major drivers of climate change (IPCC 2013) and has 

a strong influence on biodiversity patterns (Haines-Young 2009). Anthropogenic alterations 

of the land surface began with the Neolithic revolution around 10.000 years ago when 

humans settled and started to use arable land for their subsistence (Ramankutty et al. 2006). 
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To date, estimates suggest that humans in one way or another have altered around 50% of 

the terrestrial surface (Steffen et al. 2005). Land change science has thus become an essential 

part in global environmental change research (Turner et al. 2007).  

Land use change processes have influences on a global scale, but they are not equally 

distributed around the globe. Especially tropical regions have undergone tremendous land 

conversions in recent decades with the deforestation of tropical rainforests for agricultural 

land use, being one of the most prominent examples (Fearnside 2002; Melillo et al. 1996; 

Morton et al. 2006; Nobre et al. 2002). Research focus on anthropogenic impacts on tropical 

forests have led to public awareness concerning the destruction of these pristine ecosystems, 

and ultimately to a range of national and international policies aiming to counteract these 

developments. Deforestation and land use changes, in general, are a part of broader 

international policies and treaties such as the Kyoto protocol (UNFCCC 1997), developed 

under the United Nations Framework Convention on Climate  Change  (UNFCCC), or the 

Sustainable Development Goals (SDG; Biermann et al. 2017; Griggs et al. 2013). Both were 

agreed upon to set a framework in which the challenges that our societies face can be treated 

along trackable milestones. Concepts like Reducing Emissions from Deforestation and 

Forest Degradation (REDD+; Romijn et al. 2012; Tokola 2015) or the Aichi biodiversity 

targets (CBD 2010) were developed to set financial incentives to promote the conservation 

of forests and their carbon storage capabilities or to raise awareness and counteract the loss 

of biodiversity and species extinction. These international frameworks are intended as 

guidelines for national policies and incentives, for which one prominent example is the 

strategy of Brazil to halt deforestation in the Amazon.  

The Amazon has become a hotspot of deforestation since the 1970s, which was facilitated 

through the construction of the Trans-Amazon Highway that opened up the Amazon forest 

to clear land for agricultural production (Fearnside 2005). During peak times deforestation 

rates were reported to approach 30,000 km² per year (Arima et al. 2014) and Brazil’s tropical 

rainforest was rapidly diminishing. This was when current national policies, such as the 

Forest Code, were adapted to counter the recent deforestation trends and defined that 80 % 

of property land had to be left unchanged as forest reserves. Concrete policies like the Plan 

to Prevent and Control Deforestation in the Amazon (PPCDAm-I in 2004 (Abdala 2008) and 

PPCDAM-II in 2008 (Maia et al. 2011)) were set in place, along with deforestation 

monitoring systems like DETER (INPE 2018a) and PRODES (INPE 2018b) and an 

extensive protected area system, to influence deforestation processes in the Amazon (Arima 

et al. 2014).  
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On the initiative of non-governmental organizations, agreements such as the soy and beef 

moratorium in 2006 (Gibbs et al. 2015) and 2009 (Tollefson 2015), were made to directly 

influence the supply chain of agricultural products, with the intention to reduce the carbon 

footprint of agricultural products. Even though the influence of global agricultural markets 

on deforestation trends cannot be neglected, there is consent that the implementations of 

these policies have had a positive impact on the 70 % decrease in deforestation in the 

Amazon from 2005 to 2013 (Arima et al. 2014; Assunção et al. 2015; Nepstad et al. 2014). 

However, even if some of these policies apply to the national scale, they have a strong focus 

on the Amazon biome and are less relevant for other Brazilian biomes. On the contrary, these 

policies are even thought to cause leakage effects (Arima et al. 2014) and neglect a growing 

pressure on other important ecosystems such as the Brazilian savanna, also known as the 

Cerrado (Marris 2005). 

1.2 The Cerrado 
The Cerrado is the second largest biome of Brazil; it stretches from the equator to 23° south. 

With an extent of approximately 2 million km², it accounts for roughly 23 % of Brazil’s land 

surface (Figure I-1). It is considered the most biodiverse savanna ecosystem globally (Silva 

and Bates 2002), with more than 10,000 plant species (Mendonça et al. 2008), of which 

about half are endemic and make up around 1.5 % of all global plant species (Myers et al. 

2000). The Cerrado is mainly located on the Central Brazilian Plateau and within its extent 

lie four of Brazil’s main watersheds (Lima and Silva 2008) as well as the headwaters of 

several major South American rivers such as the Araguaia, the Tocantins, and the Xingu. 

Well-drained dystrophic soils with high contents of iron and aluminum dominate the Cerrado 

(Motta et al. 2002; Reatto et al. 2008). Average annual precipitation and temperature vary 

across the Cerrado, from 800 mm to 2000 mm and 18 °C to 28 °C, but the climate is in 

general characterized by a strong seasonality with a wet season from October to April and a 

dry season from May to September (Oliveira-Filho and Ratter 2002). Alternating dry and 

wet seasons are the main influence on the phenology of the Cerrado vegetation and this also 

favors the occurrence of fires (Miranda et al. 2009) that are a common feature in savanna 

ecosystems (Furley 2010; Miranda et al. 2002). 
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Figure I-1: Brazil’s national extent and the individual Brazilian biomes. The colors do not reflect similarities 
between the biomes, but were selected to enhance differentiation. 

 

The described environmental factors influence the distribution of vegetation in the Cerrado, 

resulting in a characteristic landscape of vegetation physiognomies (Oliveira-Filho and 

Ratter 2002) that range from open grasslands, over shrub or tree dominated savanna 

formations with a grass understory, up to dense forests. Based on structural parameters, such 

as height and density, the Cerrado vegetation is commonly distinguished in physiognomy 

classes, with the most prominent ones being campo limpo (grasslands), campo sujo 

(grasslands with shrubs), cerrado sensu stricto (tree dominated savanna), cerrado denso 

(savanna with dense tree formations) and cerradão (dense and high trees) (Ribeiro and 

Walter 2008). These physiognomies describe the vegetation gradient in the Cerrado and thus 
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differ in their amounts of biomass and sequestered carbon (Vourlitis and da Rocha 2010), 

which renders them a useful proxy for carbon reporting in the context of REDD+ (MMA 

2017). The Cerrado provides a range of ecosystem services (Lima et al. 2017), which are 

defined as “benefits people obtain from ecosystems” (MEA 2005). Due to the large extent 

of the Cerrado, ecosystem services and functions, such as climate regulation, carbon 

sequestration, or the provision of habitats, are of national and even international importance. 

Despite its ecological and societal value, the Cerrado has a very weak conservation status 

with only 2.2 % of the biome’s extent being considered in Brazils protected area network. 

Caused by its underrepresentation in national policies and conservation strategies, especially 

in comparison to the Amazon biome (Klink and Machado 2005). In contrast, as a response 

to a growing demand for agricultural products, governmental programs have aimed at the 

economic development of rural areas of Brazil. The ‘creation’ of Brazil’s new capital Brasília 

in the central Cerrado in 1960, was accompanied by the development of transportation 

systems and infrastructure, opening the Cerrado for settlement and other types of 

anthropogenic land use (Klink and Moreira 2002). Incentives for new farming activities were 

set by low-interest loans and advances in agricultural mechanization, while fertilizers 

enabled cultivation on the nutrient-poor soils of the Cerrado (Klink and Moreira 2002). The 

combination of these factors led to large-scale land conversion, with land clearing rates that 

exceeded those of the Amazon (Klink and Machado 2005) resulting in approximately 60 % 

of remaining natural vegetation (Sano et al. 2010). A growing international demand for 

agricultural products is considered a direct driver of land use change in Brazil (Lapola et al. 

2013), and will have a direct effect on land use, which needs to be steered by appropriate 

policies to circumvent unsustainable developments (Strassburg et al. 2017). 

Developing adequate conservation strategies require assessments of the ecological state of 

the Cerrado, for example in terms of carbon storage and biodiversity. For this purpose, and 

to gain a better understanding of large-scale ecological processes in general, it is necessary 

to map and monitor land surface properties of the Cerrado. Therefore, spatially explicit 

monitoring approaches that enable to frequently gather data over large extents are a 

prerequisite. Such monitoring efforts, especially in the heterogeneous landscape of the 

Cerrado are reliant on data at a sufficient spatial resolution, a temporal resolution that allows 

for capturing intra-annual dynamics, and a data archive that covers long time frames, making 

it possible to understand long-term processes. 
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1.3 Optical remote sensing for terrestrial ecosystem monitoring 
The analysis of remote sensing data has become an indispensable tool in a wide range of 

ecosystem monitoring applications (DeFries et al. 2005). Their capability to frequently 

provide data over large and even inaccessible extents, enable to gather information about the 

observed land surface that might reveal changes which are not captured in analysis on a local 

scale (Smith et al. 2014).  

Products derived from remote sensing data can be divided into two groups; namely 

categorical maps representing the observed surface in discrete thematic classes, for example 

in land use or land cover classifications, or continuous representations, such as quantities of 

biophysical or biochemical surface properties, for instance, vegetation carbon stocks. The 

outcome of remote sensing data analysis is reliant on the sensor characteristics that define 

the resolution of the data, the platform the sensor operates from (i.e. terrestrial, airborne or 

spaceborne) and on the availability of reference data. While terrestrial and airborne sensors 

restrict the analysis to smaller extents, they are usually able to capture land surface properties 

with high spatial and spectral detail. For example airborne hyperspectral sensors, such as the 

Hyperspectral Mapper (HyMap; Cocks et al. 1998) or the Advanced Visible Near-Infrared 

Imaging Spectrometer (AVIRIS; Green et al. 1998), cover the visible (VIS), near-infrared 

(NIR) and shortwave-infrared (SWIR) regions of the electromagnetic spectrum in hundreds 

of contiguous bands. Hyperspectral data thus enable to derive valuable information, for 

example for invasive species mapping approaches (He et al. 2011) or biodiversity 

assessments (Ghiyamat and Shafri 2010). However, until the advent of forthcoming 

spaceborne hyperspectral missions, such as EnMAP (Guanter et al. 2015) or HyspIRI (Lee 

et al. 2015) these approaches are restricted to rather local and regional analyses.  

Spaceborne sensors cover large extents of the Earth at the same time but are restricted by the 

bottleneck of data downstream from space (Iwasaki and Tadono 2014). This leads to trade-

offs between the sensor’s spatial resolution (in terms of pixel size), the spectral resolution 

(number of bands) and the temporal resolution (revisit time), which restricts their individual 

use to specific applications. 

Sensors with a high temporal resolution such as AVHRR (Advanced Very High Resolution 

Radiometer) or MODIS (Moderate-resolution Imaging Spectroradiometer), are for example 

used to capture the seasonal dynamics of ecosystems (Ehrlich et al. 1994; Zhang et al. 2003). 

The first sensor of the AVHRR family was launched in 1978 and is thus one of the pioneer 

Earth observation sensors. The nearly continuous data archive covers the last 40 years, which 

enables to look back in time and to analyze long-term trends. The two complementary 
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MODIS sensors on board of the Terra and Aqua satellites started to acquire data from the 

early 2000’s, thus MODIS data are available for the last two decades. Even though AVHRR 

and MODIS spectral characteristics are not primarily designed to capture vegetation 

properties, both cover relevant regions of the electromagnetic spectrum. While AVHRR is 

sensitive in two bands of the visible red and NIR regions, MODIS covers the VIS, NIR, and 

SWIR in seven spectral bands. However, the outstanding characteristics of both sensors are 

their frequent revisit times. AVHRR acquires data of the same region twice a day, while the 

combined use of the two MODIS sensors enables to cover the whole globe every 1 - 2 days, 

thereby increasing the chances to obtain clear observations even in cloud prone areas. This 

high rate of data acquisition over large extents (AVHRR and MODIS acquire data with a 

swath of approximately 2400 km) comes at the cost of spatial detail. MODIS spatial 

resolution ranges between 250 m and 1000 m across different spectral bands, while AVHRR 

data have a spatial resolution of around 1.1 km. These rather coarse scale resolutions enable 

to frequently capture a synoptic view but are insufficient for the analysis of complex and 

heterogeneous landscapes such as savanna regions.  

Multispectral data with a very high spatial resolution as for example acquired by WorldView 

1 - 4 sensors (~ 0.3 - 4 m spatial resolution; SIC 2018) are able to overcome this limitation. 

However, these data are in contrast to AVHRR and MODIS not freely accessible, as they are 

distributed by commercial data providers. As they are usually acquired upon request, they 

are a valuable source for small-scale studies and validation efforts for which the spatial detail 

is essential but do not allow to assess seasonal dynamics over large extents or long time 

periods. 

Data with a medium spatial resolution provide great opportunities to reconcile the trade-offs 

associated with coarse resolution, but also very high resolution data. Such data are acquired 

by sensors of Landsat family, which started to collect data with the Multispectral Scanner 

(MSS) on board of Landsat 1 in 1972. Sometimes referred to as the pioneering sensor of 

satellite-based optical Earth observation, Landsat 1 enabled for the first time to frequently 

acquire data of the Earth’s surface over large extents (scene size of 170 x 185 km), with a 

spatial resolution of 80 m on ground (Cohen and Goward 2004). Landsat MSS was the first 

Earth observation mission that had a global image acquisition strategy and was, until today, 

followed by 7 successors, which were in the course of time further developed along the 

current technological state of the art (Markham and Helder 2012). From the beginning, the 

Landsat sensors covered spectral regions of the electromagnetic spectrum that are important 

for environmental mapping purposes. While the MSS sensors on board of Landsat 1 and 2 
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covered the VIS (0.5 – 0.7 µm) and NIR (0.7 – 1.1 µm) spectral region in four bands (with 

a bandwidth of approximately 0.1 µm), Landsat 3 was additionally equipped with a thermal 

band being sensitive in the wavelength 10.4 to 12.6 µm. Landsat 4 was launched in 1982 

and was the first mission of the Landsat family that had the so-called “Thematic Mapper” 

(TM) sensor on board. It covered the VIS and NIR spectral regions with five bands and had, 

next to the thermal band, an additional band in the SWIR (2.08 - 2.35 µm) spectral region. 

An additional novelty of TM was the improved spatial resolution of 30 m by 30 m in the 

VIS, NIR, and SWIR, while the spatial resolution of the thermal band was reduced to 120 

m. Landsat 5 had similar sensor characteristics as Landsat 4 and had an extraordinary live 

time of more than 27 years in which it continuously acquired data. Retrospectively, Landsat 

5’s endurance was a lucky circumstance as its successor Landsat 6 (launched in 1993) never 

reached its orbit (Cohen and Goward 2004). It was not until 1999 when Landsat 7 was 

launched with the “Enhanced Thematic Mapper” sensor on board, which additionally gathers 

data in a panchromatic band with 15 m spatial resolution (Markham and Helder 2012). 

Besides this novelty, it is equipped with a solar calibration module, which enables an on-

board calibration of the sensor. Landsat 7 acquires data until today. Due to major advances 

in technology, Landsat 8 (launched in 2013) is equipped with a new sensor system the so-

called “Operational Land Imager” (OLI). For the reason of continuity, OLI covers the VIS, 

NIR, SWIR1 (1.57 - 1.65 µm) and SWIR2 (2.11 - 2.29 µm) with seven spectral bands and a 

spatial resolution of 30 m and has, similar to Landsat 7, a panchromatic band with 15 m 

spatial resolution. For atmospheric correction, cloud identification and the assessment of 

water quality, additional bands, such as the aerosol (0.43 - 0.45 µm) and the cirrus band (1.36 

- 1.38 µm) were added. Landsat 8 has an independent “Thermal Infrared Sensor” (TIRS) 

with two bands at 100 m spatial resolution (Roy et al. 2014).  

The continuous data acquisition since the launch of Landsat 1 and similar spectral and spatial 

characteristics of the Landsat sensors have led to a still growing archive of optical Earth 

observation data that spans today more than 45 years. Even though Landsat data have been 

widely used for a range of ecological applications and greatly improved our understanding 

of the state and dynamics of Earth’s vegetation (Cohen and Goward 2004), they were 

through the cost of data acquisition and technical limitations restricted to the analysis of 

individual images by a specialized research community. However, major changes in data 

policies in 2008 made all data ever acquired by the Landsat sensors freely accessible 

(Woodcock et al. 2008). These policies enabled along with advances in pre-processing chains 

(Schmidt et al. 2013) and cloud detection algorithms (Zhu et al. 2015a; Zhu and Woodcock 
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2012), the consolidation of data archives (Wulder et al. 2015b) and latest data harmonization 

approaches (USGS 2018), new opportunities for Landsat data analysis (Wulder et al. 2012). 

Despite all the unique position features of the Landsat family, one drawback is its temporal 

resolution with a revisit time of approximately 16 days. Depending on the geographical 

region of interest and the related cloudiness, frequent image acquisition can be substantially 

hampered.  

The availability of unprecedented amounts of data facilitated to develop approaches that 

make use of all available Landsat observations, to overcome this limitation. For instance,  

best pixel composites that provide seamless, cloud free, radiometrically and seasonally 

consistent images that enable, for example, the analysis of land use change processes over 

large extents with a high spatial detail (Griffiths et al. 2013; Roy et al. 2010). These 

approaches require calibration concerning the target day of year, which can be challenging 

for the analysis of heterogeneous ecosystem over large extents, where seasonal dynamics 

substantially vary. Recent advances take these spatial variations in seasonal dynamics into 

account, through enabling to pixel wise calibration of the composites based on phenological 

information (Frantz et al. 2017), which is, however, not commonly available at a sufficient 

spatial resolution over large extents. These approaches have to date not extensively been 

used to derive seasonal information that captures intra-annual dynamics. Spectral temporal 

metrics that take advantage of the temporal depth of clear Landsat observations throughout 

a season enable to detect more subtle land surface changes, like agricultural intensification 

processes (Rufin et al. 2015) or forest regrowth patterns (Müller et al. 2016). These 

approaches do not directly derive phenological information but rather reflect the annual 

variations of Landsat spectra in statistical measures and have found to be highly dependent 

on data availability and distribution (Müller et al. 2015; Rufin et al. 2015). Novel approaches 

like data pooling, in which vegetation indices of several years are combined, have been 

shown to be sufficient to asses (long- and short-term) land surface phenological variations 

on a Landsat spatial resolution for temperate and boreal forest (Melaas et al. 2013; Melaas 

et al. 2016). Approaches that aim to fill data gaps in Landsat time series, which are due to 

cloud contamination or sensor errors, allow to derive land surface phenological information 

that capture intra-annual dynamics and are currently an active field of research (Vuolo et al. 

2017; Zhu et al. 2015b). Hence, dense time series of equidistant Landsat data are thought to 

fulfill the demands that are critical for the spatially explicit characterization of vegetation in 

heterogeneous ecosystems, such as the Cerrado. 
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2 Conceptual framework 

2.1 Motivation 
Pressure on natural ecosystems through human-induced global change processes put a range 

of provisioning and regulating ecosystem services at risk (MEA 2005). An ecologically 

relevant example of anthropogenic alterations, which has received comparatively little 

attention so far, is the Cerrado. A growing demand for land resources and a weak 

conservation status have led to tremendous land conversions in the Cerrado (Lapola et al. 

2013). It is estimated that only around 60 % of its original natural vegetation still exists 

(Sano et al. 2010). These land use change processes alter, for example, the ecosystem’s 

capability of carbon storage and to release sequestered carbon, directly influencing the global 

carbon cycle. Further, large-scale land conversions and land use intensification processes 

have led to a fragmentation of the Cerrado landscape with impacts on its biodiversity. These 

developments call for adjusted conservation strategies for which large-scale ecosystem 

assessments are critical.  

Robust and frequent mapping approaches by means of remote sensing are thus of utmost 

importance for a better understanding of ongoing processes and to provide a synoptic basis 

to inform decision making in conservation policies. With respect to the ecosystem’s seasonal 

dynamics and its heterogeneous landscape characteristic, it is crucial to use data sets with 

sufficient spatial and temporal resolutions. Facilitated by the emergence of new operational 

satellite sensor systems along with open data policies (Woodcock et al. 2008) and optimized 

data homogenization (USGS 2017b), unprecedented amounts of data are now accessible that 

are of immense value for accurate mapping approaches. This development followed a rapid 

increase in computational performance and the availability of advanced machine learning 

algorithms that enabled new ways to analyze the available large remote sensing datasets 

(Lary et al. 2018). Thus, this thesis aims to further exploit the potential of optical remote 

sensing data for the mapping and quantification of heterogeneous ecosystem properties in 

terms of vegetation structure, phenological diversity, and the distribution of above ground 

carbon.  

2.2 Research questions 
The overarching goal of this thesis is to analyze the benefits of Landsat based land surface 

phenological metrics for mapping and quantification applications in heterogeneous 

ecosystems. In particular, the aims are to provide insights into the spatial patterns of the 

remaining natural vegetation in the Cerrado and its seasonal behavior. Further, the 
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relationship between land surface phenological metrics and the distribution of above ground 

carbon was analyzed in order to improve carbon quantification approaches. The 

methodological analyses were based on dense 8-day Landsat time series of combined ETM+ 

and OLI products, in which data gaps were filled using an ensemble of radial basis 

convolution filters. The following three research questions define the framework of this 

thesis: 

Research Question I: Can land surface phenological metrics be used to differentiate the main 

vegetation physiognomies in the Cerrado? 

The main vegetation physiognomies of the Cerrado describe a gradient in vegetation 

structure and density. They range from open grasslands to shrublands and scattered tree 

formations, up to dense forests. Various environmental factors influence their spatial 

distribution and the species composition. This leads to the hypothesis that these differences 

can also be observed in the vegetation physiognomies’ seasonal response as captured in the 

spectral signal of remotely sensed vegetation. This research question is the core of chapter II, 

in which the methodological framework for deriving LSP metrics from the Landsat time 

series is introduced.  

Based on reference data for a study area around Brasília, DF the main objectives are: 

i.  to analyze which differences in LSP can be revealed between the main Cerrado 

physiognomies;  

ii. and to test if these differences are sufficient to map the spatial distribution of the 

major Cerrado physiognomies. 

 

Research Question II: What are the spatial patterns of LSP metrics in the natural vegetation 

across the Cerrado? 

Knowledge about the phenology of the natural Cerrado vegetation is still fragmented and 

there is, to date, no sufficient coverage of phenological information for the whole extent of 

the Cerrado — this study aims to fill this gap. Chapter III focuses on the Landsat collection 1 

enhanced vegetation index LSP metrics that were derived for the Cerrado’s entire extent of 

more than 2 million km² for the year 2014.  
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The objectives are: 

i. to classify the remaining natural vegetation of the Cerrado into groups of similar 

LSP traits;  

ii. to analyze their distribution in the context of defined Cerrado ecoregions.  

Research Question III: What is the relationship between Landsat based land surface 

phenology metrics and above ground carbon? 

The remaining natural vegetation in the Cerrado has large amounts of carbon stored in its 

above- and belowground compartments. Due to the huge extent of the Cerrado, these stocks 

play a pivotal role in the regional and global carbon cycle and it is, therefore, essential to 

improve carbon quantification approaches. In chapter IV a random forest regression 

approach is used, in combination with field data collected in three study areas distributed 

across the central Cerrado, to analyze the importance of the individual LSP metrics for 

carbon quantification.  

The objectives are: 

i. to investigate the potential to model aboveground carbon in a heterogeneous 

ecosystem based on Landsat derived LSP metrics; 

ii. to assess the relationship between these LSP metrics and aboveground carbon; 

iii. to use these metrics to map the carbon distribution across different Cerrado 

landscapes. 

2.3 Thesis structure 
To frame the findings presented in this thesis within a broader context, an introductory 

chapter (I) gives an overview of the scientific background and motivation. The research gaps 

this thesis aims to fill are indicated and guiding research questions are clearly stated. The 

main body of this thesis is structured in three core chapters (II-IV), which address the defined 

research questions. Chapter II has been published in a peer-reviewed scientific journal and 

chapter IV was submitted for publication and is currently under review. Chapter III is 

currently being prepared for submission. In order to fulfill the journal’s requirements 

concerning the style of publications, redundant information (e.g. in the introductions and 

methods sections of the individual chapters) could not be avoided. Finally, in chapter V the 

main findings of this thesis are summarized, the scientific value of the three core chapters as 

a whole is synthesized, and the implications, as well as limitations, are pointed out. An 
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additional chapter that describes in detail the spatial allocation of field data to the pixel level, 

which was a necessity for the analysis of chapter IV, is attached in Appendix A. The 

following section gives a brief overview of the three core chapters. 

 

Chapter II: Marcel Schwieder, Pedro J. Leitão, Mercedes M. C. Bustamante, Laerte 

Guimarães Ferreira, Andreas Rabe and Patrick Hostert (2016). Mapping 

Brazilian savanna vegetation gradients with Landsat time series. 

International Journal of Applied Earth Observation and Geoinformation, 

Volume 52, Pages 361–370. 

Chapter III: Marcel Schwieder. Land surface phenological archetypes of the Cerrado.  

Chapter IV: Marcel Schwieder, Pedro J. Leitão, José Roberto R. Pinto Pinto, Ana 

Magalhaes C. Teixeira, Fernando Pedroni, Maryland Sanchez, Mercedes 

M. C. Bustamante and Patrick Hostert (in review)*. Carbon Balance and 

Management. 

Appendix A: Pedro J. Leitão, Marcel Schwieder, Florian Pötzschner, José Roberto R 

Pinto, Ana Magalhaes C. Teixeira, Fernando Pedroni, Maryland Sanchez, 

Christian Rogaß, Sebastian van der Linden. Mercedes M. C. Bustamante  

and Patrick Hostert (in review)**. From sample to pixel: using multi-scale 

remote sensing data for the upscaling of field collected aboveground 

carbon data in heterogeneous landscapes. Ecosphere. 

                                                

 

 

* A revised version of the manuscript was meanwhile published in: Schwieder, M., Leitão, P.J., 
Pinto, J.R.R., Teixeira, A.M.C., Pedroni, F., Sanchez, M., Bustamante, M.M., & Hostert, P. (2018). 
Landsat phenological metrics and their relation to aboveground carbon in the Brazilian Savanna. 
Carbon Balance and Management, 13, 7. 
 
** A revised version of the manuscript was meanwhile accepted for publication in: Leitão, P.J., 
Schwieder, M., Pötzschner, F., Pinto, J.R.R., Teixeira, A., Pedroni, F., Rogass, C., Sanchez, M., van 
der Linden, S., da Cunha Bustamante, M.M., & Hostert, P. (in press). From sample to pixel: multi-
scale remote sensing data for upscaling aboveground carbon data in heterogeneous landscapes. 
Ecosphere. 
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Abstract 

Global change has tremendous impacts on savanna systems around the world. Processes 

related to climate change or agricultural expansion threaten the ecosystem’s state, function 

and the services it provides. A prominent example is the Brazilian Cerrado that has an extent 

of around 2 million km² and features high biodiversity with many endemic species. It is 

characterized by landscape patterns from open grasslands to dense forests, defining a 

heterogeneous gradient in vegetation structure throughout the biome. While it is undisputed 

that the Cerrado provides a multitude of valuable ecosystem services, it is exposed to 

changes, e.g. through large scale land conversions or climatic changes. Monitoring of the 

Cerrado is thus urgently needed to assess the state of the system as well as to analyze and 

further understand ecosystem responses and adaptations to ongoing changes. Therefore we 

explored the potential of dense Landsat time series to derive phenological information for 

mapping vegetation gradients in the Cerrado. Frequent data gaps, e.g. due to cloud 

contamination, impose a serious challenge for such time series analyses. We synthetically 

filled data gaps based on Radial Basis Function convolution filters to derive continuous 

pixel-wise temporal profiles capable of representing Land Surface Phenology (LSP). 

Derived phenological parameters revealed differences in the seasonal cycle between the 

main Cerrado physiognomies and could thus be used to calibrate a Support Vector 

Classification model to map their spatial distribution. Our results show that it is possible to 

map the main spatial patterns of the observed physiognomies based on their phenological 

differences, whereat inaccuracies occurred especially between similar classes and data-

scarce areas. The outcome emphasizes the need for remote sensing based time series analyses 

at fine scales. Mapping heterogeneous ecosystems such as savannas requires spatial detail, 

as well as the ability to derive important phenological parameters for monitoring habitats or 

ecosystem responses to climate change. The open Landsat and Sentinel-2 archives provide 

the satellite data needed for improved analyses of savanna ecosystems globally. 
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1 Introduction 

Savanna ecosystems cover an estimated 20% of the global terrestrial surface (Lehmann et 

al. 2011), providing essential ecosystem goods and services such as food, pollinators and 

carbon storage (Marchant 2010). They occur in tropical and sub-tropical climate zones 

across all continents, but are particularly prevalent in Australia, Africa and the Americas 

(Solbrig 1996). Global land use change processes related to a growing demand for natural 

resources led to a conversion of approximately 50% of the global savannas with a direct 

impact on biodiversity and carbon storage (Foley et al. 2011). Climate change, invasive 

species and fertilizer pollution rapidly impact savanna biodiversity (MEA 2005), while 

global change is likely to alter the global distribution of savannas and might even lead to a 

change of biome states (Staver et al. 2011). 

The Brazilian savanna, better known as Cerrado, is a prominent example of global change 

impacts on savanna ecosystems. It is the second largest eco-region in Brazil with an extent 

of about 2 million km² (Ratter et al. 1997). Landscape formations that range from open grass 

and shrub dominated lands to dense forests are characteristic (Oliveira-Filho and Ratter 

2002) and form a gradient of vegetation structure and biomass, which is often differentiated 

into discrete structural physiognomy classes (Ribeiro and Walter 2008). The climate of the 

Cerrado is characterized by a wet and a dry season, which influence the vegetation’s spatial 

and temporal dynamics. It`s harsh environmental conditions led to a high floristic diversity 

and a variety of phenological adaptation strategies (Ferreira and Huete 2004). The Cerrado 

is thus considered as the biodiversity-richest savanna globally (Silva and Bates 2002) with 

approximately 160,000 species of fungi, flora and fauna (Furley 1999). However, a weak 

land conservation status has led to large-scale conversions from natural to agricultural land 

that already affected more than 40% of the Cerrado, which is likely to aggravate in the future 

(Ferreira et al. 2012; Sano et al. 2010). This conversion of primary vegetation threatens the 

stability of the ecosystem and related services provided, such as carbon sequestration and 

climate regulation. It further impacts its biodiversity, rendering the Cerrado as an under-

researched global biodiversity hotspot in need of in-depth monitoring as basis for profound 

conservation planning (Myers et al. 2000).Thus, accurate mapping and monitoring of the 

temporal and spatial dynamics of Cerrado vegetation is essential to understand ecosystem 

properties and responses to ongoing change processes to support decision makers (Rocha et 

al. 2011; Sano et al. 2010).  

Field based mapping and ecological assessments that rely on established classification 

schemes are indispensable for a detailed analysis of local processes, but at the same time 
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costly and thus restricted to relatively small areas. Remote sensing data, on the other hand, 

have successfully been used to map the Cerrado across large areas and in inaccessible terrain. 

Sano et al. (2010) created a land cover map of the entire Cerrado based on a mosaic of 170 

Landsat scenes from 2002. They differentiated anthropogenic and natural (grass-, shrub- and 

forestlands) land cover classes by image segmentation and visual interpretation with an 

overall accuracy of 71%. Spatially less extended studies investigated the usability of 

combined radar and optical data (Sano et al. 2005) or spectral unmixing of Landsat data 

(Ferreira et al. 2007) to discriminate Cerrado vegetation physiognomies (structural classes). 

Other studies have shown that analyzing multi-temporal imagery is advantageous over 

single-date images for the distinction of spectrally similar vegetation types (e.g. Mesquita 

Junior 2000; Müller et al. 2015).  

Using high temporal resolution satellite data  time series not only allows to discriminate 

vegetation types but also to describe different phenological vegetation phases throughout a 

season (Zhang et al. 2003). Ferreira and Huete (2004) assessed the seasonal dynamics of the 

Cerrado vegetation using time series of AVHRR vegetation indices. In spite of the drawbacks 

inherent to the data (e.g. coarse spatial resolution, sensor uncertainties and broad 

bandwidths) they were able to derive phenological patterns capable of depicting the seasonal 

cycle and which allowed to distinguish between savanna formations, pastures, croplands and 

forests. Ratana et al. (2005) explored the potential of MODIS 16-day composite time series 

to analyze phenological patterns of different Cerrado physiognomies, revealing their distinct 

responses to seasonal contrasts with a 250 m spatial resolution. Even though both studies 

provided valuable insights on phenological differences between Cerrado vegetation 

formations, they did not aim at mapping their spatial distribution. As the analysis of 

phenology derived from remote sensing data is based on measures of temporal changes in 

surface reflectance at the pixel scale (Hanes et al. 2014), it usually relates to a signal mixture 

of different canopy or understory layers and depicts rather a vegetation community instead 

of a single species’ phenology. The sensor's spatial resolution is therefore critical for the 

potential detail of the derived information, which is particularly important for analyzing and 

mapping the complex vegetation gradients in the Brazilian Cerrado. The analysis of Landsat 

data with a spatial resolution of 30 m is promising, but has mostly been restricted to multi-

temporal imagery with low temporal resolution, which is not sufficient to derive continuous 

phenological information. However, the opening of the extensive data holdings of the 

Landsat archive (Wulder et al. 2012) allows to combine data from the Landsat Thematic 

Mapper (TM) with Enhanced Thematic Mapper (ETM+) and Operational Land Imager 
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(OLI) sensors. This improves the temporal resolution to potentially eight days, rendering 

Landsat a system with capabilities for detailed phenological information retrieval and offers 

a great opportunity to observe vegetation gradients over long time periods with sufficient 

spatial resolution.  

In order to deepen the knowledge on Cerrado vegetation, we aim to derive spatially explicit 

phenological information, using state of the art remote sensing techniques. We focus on the 

applicability and limitations of the combined use of Landsat time series and an established 

physiognomy classification scheme (Ribeiro and Walter 2008), which enables the expansion 

of field based ecological assessments to broader scale studies. Therefore we evaluate how i) 

phenological parameters can be derived at a 30 m spatial resolution, ii) which phenological 

differences between the main Cerrado vegetation physiognomies can be revealed based on 

these parameters and iii) if the derived parameters are beneficial for mapping these 

physiognomies’ spatial distribution. 

2 Data and methods 

2.1 Study sites 
The Brazilian Cerrado has a unique appearance, characterized by a mixture of xeromorphic 

vegetation formations. Variations in abiotic environmental factors such as soil traits and 

fertility, long term climate fluctuations, and fire events have shaped the landscapes of the 

Cerrado. The vegetation is influenced by strong climatic seasonality with a dry season 

between May and September in which most of the Cerrado plant species flower, renew their 

leaves and spread their seeds, before they germinate at the beginning of the wet season (de 

Faria et al. 2012), which lasts from October to April.  However, many of the woody plant 

species in the Cerrado are evergreen with less seasonal variations that develop new leaves at 

the end of the dry season and reach their peak in the wet season (Ratana et al. 2005). These 

environmental conditions result in landscape patterns composed of open grass, shrub 

dominated lands and dense forests, which define a gradient of vegetation density, growth 

form, vertical structure and biomass (Oliveira-Filho and Ratter 2002; Ribeiro and Walter 

2008). Several authors have attempted to define a range of classification schemes that enable 

to describe the vegetation gradient in distinct physiognomy classes (Oliveira-Filho and 

Ratter 2002). In this study we follow the classification scheme proposed by Ribeiro and 

Walter (2008), which distinguishes the physiognomies based on the vegetation height and 

density (Figure II-1). 
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Figure II-1: Cerrado physiognomies describing gradients of vegetation height and density (adapted from 
Mesquita Junior (2000)). Hereafter only the Portuguese physiognomy names will be used. The above ground 
biomass values of woody vegetation were comprehended from several studies by de Miranda et al. (2014). 

 

Our analysis focused on the classification of the main Cerrado physiognomies, i.e. campo 

limpo (open grassland), campo sujo (grassland with small shrub patches), campo cerrado 

(shrublands with some trees), cerrado sensu stricto (wooded savanna with shrubs and trees), 

cerrado denso (woodland with dense shrubs and trees), cerradão (dense woodland with high 

trees) and mata de galeria (gallery forests with dense vegetation and high trees along rivers 

and waterbodies). 

Three study sites within one Landsat footprint were analyzed that are located in the central 

Cerrado around Brasília, Federal District (Figure II-2). All sites lie within protected areas, 

thus we could ensure that the anthropogenic interference on the land cover is negligible. The 

first site covers the whole extent (approx. 29,000 ha) of the Brasília National Park (PNB), 

which encompasses the major savanna formations encountered in the Cerrado, including the 

transitions from the dominant herbaceous stratum (campo cerrado) to the more complex, 

woody dominated stratum (cerrado sensu stricto). The second study site is the Gama 

Cabeça-de-Veado Environmental Protection Area (APAGCV), which covers around 20,000 

ha of the Cerrado south of Brasília. Even though parts of APAGCV’s natural vegetation have 

already been converted, it contains undisturbed areas in the Brazilian Institute of Geography 

and Statistics (IBGE) Ecological Reserve, Brasília’s Botanical Garden and an experimental 

farm that belongs to the University of Brasília. These areas are characterized by the main 

Cerrado grassland, shrubland and woodland physiognomies including patches of cerrado 

denso and cerradão. The third study site is the Águas Emendadas Ecological Station 

(ESECAE), a protected area northeast of Brasília with an extent of approximately 8,000 ha. 

Next to open Cerrado types (mostly shrubland) and denser forest formations, large areas of 

cerrado sensu stricto characterize the study site, which is the most prevalent and complex 

Cerrado physiognomy, with tree cover ranging from 20% to 70% (Ribeiro and Walter 2008). 
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Figure II-2: Study sites surrounding Brasília, Federal District. Brasília National Park (PNB), Águas Emendadas 
Ecological Station (ESECAE) and Gama Cabeça de Veado Environmental Protection Area (APAGCV) 
depicted in dark blue. The overview map shows the national territory of Brazil (green) located in South America 
(grey) as well as the extent of the Brazilian Cerrado (light green). The square in the overview map depicts the 
location of the three study sites. 

 

2.2 Time series and phenological patterns 
In order to create a dense Landsat time series, we combined all available Level 1 Terrain 

(L1T) geometric corrected TM, ETM+ and OLI data over the study area (path: 221, row: 

071) acquired between 2000 and 2014 with a cloud cover of up to 90%, resulting in 431 

potential observations in an 8-day interval. However, the climatic seasonality in the Cerrado 

leads to cloud contamination especially in the wet season and thus to a low clear data 

availability (Sano et al. 2007). Another limiting factor for a dense time series is enforced by 

sensor errors, such as the scan line corrector failure in the case of the Landsat 7 ETM+. To 

overcome these drawbacks, we used a weighted ensemble of Radial Basis Function (RBF) 

convolution filters to detect outliers and approximate missing data in a Landsat time series. 

Landsat data were converted to top-of-atmosphere reflectance values and clouds and cloud 

shadows were masked using the FMASK algorithm (Zhu and Woodcock 2012). The 
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converted data were transformed to tasseled cap (TC) greenness (TCgreen), brightness 

(TCbright) and wetness (TCwet) components using the TC coefficients for top-of-atmosphere 

reflectance, recommended for applications where atmospheric correction approaches are not 

feasible (Huang et al. 2002b). The transformation into TC components has been shown to be 

useful for phenology-based classification approaches (e.g. Dymond et al. 2002). 

 

Figure II-3: Schematic workflow of the mapping approach.Landsat pre-processing and TC transformation, 
followed by RBF convolution filter for outlier detection and a RBF convolution filters ensemble to fill data 
gaps. Phenological parameters were derived for the 2009/10 season and used as input for a SVM 
classification. 

 

To approximate the given clear TC observations into a dense 8-days-sampled time series 

without data gaps, we used a pixel based Gaussian convolution filter approach (Figure II-3). 

This approach is comparable to a moving window average filter (in time), whereas the 

weights are given by a Gaussian function: 

 ( )
21

21
2

− −  
 =

x μ 
σf x e

σ π
  (Eq. II-1) 

with σ defining the shape of the kernel function. After an expert driven visual inspection we 

used a smooth Gaussian kernel with σ = 5 to detect outliers in our observations, which are 

mostly related to clouds or cloud shadows. The kernel includes all coefficients of the +/- 3 x 

σ interval, i.e. an overall size of 31 observations (15 to the left and 15 to the right), resulting 

in a kernel size of 31 x 8 days = 248 days. All observations that were more distant than one 
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standard deviation from the fitted function were defined as outliers and eliminated. To derive 

the final phenological profiles, we used an ensemble of three Gaussian kernel based 

convolution approximations (σ = 3 x 8, 5 x 8, 7 x 8 days). The final approximation is the 

weighted average of the three temporal convolution filters, whereas weights are dependent 

on clear observations within the given kernels. To describe the course of the smoothed 

continuous TC profiles on a per-pixel basis, we truncated the approximations and derived 

phenological parameters for the season 2009-2010. For each of the three TC time series 9 

seasonal parameters were calculated using the TIMESAT 3.1 software (Jönsson and Eklundh 

2004). Parameters included day-of-the-year (DOY) or start, mid, end, and length of season 

and phenological proxies like peak and base value, seasonal amplitude or rate of increase 

and decrease. Detailed information on the calculation of TIMESAT parameters are found in 

Jönsson and Eklundh (2004). 

2.3 Mapping vegetation gradients 

To map the spatial patterns of Cerrado physiognomies, we applied a support vector machine 

classification (SVM) algorithm (Vapnik 1998). The SVM is a non-parametric machine 

learning algorithm, whose underlying principle is to define an optimal hyperplane that 

separates sample points based on the given training points (Huang et al. 2002a), in our case 

a set of phenological parameters, and is then applied to the area of interest. The SVM 

transforms the input data into a high-dimensional feature space by applying a kernel-function 

to solve a non-linear classification problem. The SVM model was optimized by defining the 

Gaussian kernel width (γ) and the regularization parameter C via a cross-validated grid 

search. We used the imageSVM implementation based on LIBSVM (Chang and Lin 2011), 

as available in the EnMAP-Box Version 2.03 (van der Linden et al. 2015). The SVM model 

was trained with a set of stratified random sampled pixel, accounting for feature variability 

in all classes (Figure II-3). A physiognomy map for the PNB site (Ferreira et al. 2007), lastly 

updated in 2012 by visual interpretation of high resolution imagery from 2009, and a map of 

the IBGE Ecological Reserve, were used as reference data. For the remaining areas of 

APAGCV and ESECAE, we used a stratified green peak TCgreen vegetation map from January 

2010 as a proxy for vegetation density (Leitão et al. 2015). All sampled pixels were manually 

labelled to a physiognomy class by visual interpretation of high resolution Google Earth 

imagery. Pixel that were partly covered by “non-natural” features such as roads or which 

could not be adequately labelled e.g. due to missing imagery from that time period were 

excluded from the training set, which resulted in a total of 1897 trainings pixels (campo 

limpo: 230; campo sujo: 451; campo cerrado: 425; cerrado sensu stricto: 401; cerrado 
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denso: 181; cerradão: 64; mata de galeria: 145). The classification accuracy was assessed 

through a 10-fold cross-validation. 

3 Results and Discussion 

3.1 Phenological profiles 
We derived pixel-wise TCgreen, TCbright and TCwet phenological profiles from the filtered 

Landsat time series for the period 2009-2010. Figure II-4 shows averaged profiles for each 

Cerrado physiognomy based on the training pixels and reveal a general seasonal trend, 

resembling the dry season from May to September and the rainy season from October to 

April, which was especially prominent in the TCgreen profiles. In general the TCgreen, TCbright 

and TCwet profiles differed in shape and amplitude, but they all showed the same order from 

high to low values between different physiognomies, with TCbright showing the opposite 

direction of TCgreen and TCwet. Physiognomies with sparse vegetation densities i.e. campo 

limpo and campo sujo (lighter colors) produced the lowest values (highest in TCbright) and 

were followed by denser physiognomies, with cerradão showing the highest values (lowest 

in TCbright). 

 

Figure II-4: Averaged TC phenological profiles for each physiognomy in the season 2009-10. 

 

All profiles had a shift of the phenological peaks between different physiognomies. This is 

particularly evident in the TCgreen profile, where phenological peaks shifted around 3 months 

between different physiognomies. Denser physiognomies reached their peak earlier than 

sparse ones and created flatter profiles, as there was less phenological variation due to e.g. 

larger degrees of evergreen vegetation. These observations revealed the expected patterns 

while being in line with findings of other studies using data with coarser spatial resolution 

(Ferreira and Huete 2004; Ratana et al. 2005). Our fitted temporal profiles allow the 
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reconstruction of Land Surface Phenology (LSP) in savanna ecosystems at the Landsat 

spatial resolution, which has to our knowledge not been shown before. 

3.2 Phenological metrics 
We used the derived profiles to calculate pixel-wise phenological parameters using 

TIMESAT for the season 2009/2010 to describe the course of the phenological profiles. The 

distribution of these parameters in each physiognomy stressed their phenological 

differences. Figure II-5 shows an example of the distribution of selected TCgreen phenological 

parameters for the main Cerrado physiognomies based on the set of trainings pixels. In most 

cases, the physiognomies can be clearly distinguished. The base value, which was defined 

as the average of the two seasonal minima (Jönsson and Eklundh 2004), revealed a clear 

trend of generally higher minima with denser vegetation physiognomies. This pattern in the 

observed LSP signal can be related to less above ground biomass in the open landscape 

formations such as campo limpo and campo sujo, which naturally increases with denser 

vegetation physiognomies (de Miranda et al. 2014). Highest values can be observed for 

cerradão that can consist of up to 15m tall trees with crown covers of around 90% (Ribeiro 

and Walter 2008). Similar trends were observable for the rates of increase and decrease 

calculated as the ratio of the difference between 20% and 80% at the beginning (greening-

up) and end (browning) of the phenological curve and the related difference in time (Jönsson 

and Eklundh 2004). The differences between each physiognomy were particularly 

pronounced in the rates of decrease, which can be related to less amplitude in dense 

physiognomies stressing the buffer effect of woody vegetation to seasonality (Ratana et al. 

2005).  
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Figure II-5: Boxplots showing the mean, 25 and 75 percentile of selected TCgreen parameters (base value, end-
of-season, rate of increase and decrease) for five different physiognomies based on the training pixels. Whiskers 
have the length of 1.5 times the inter-quartile range, beyond which all other data are considered outliers. 

 

The TCgreen start-of-season parameter, defined as the point in time when the phenological 

curve has reached 10% of its range since the minimum (Jönsson and Eklundh 2004), did not 

follow this clear trend and showed less differences between the physiognomies (Figure II-5). 

The woodland physiognomy cerradão has the earliest start of the season at around DOY 263 

(20th of September 2009), whereas the open landscape campo limpo season starts later 

around DOY 279 (6th of October 2009). The seasonal start of the other physiognomies falls 

somewhere in between these dates and differs mainly in the interquartile range. The median 

lies around DOY 271 (28th of September 2009) for all physiognomies. Even though the start-

of-season is an important phenological parameter, integrated LSP derived from an 8-daily 

remote sensing time series are not necessarily in line with in-situ phenological observations 

(Hanes et al. 2014). 

3.3 Vegetation mapping 
Based on the set of phenological parameters we trained a SVM classification model to map 

the spatial distribution of the main Cerrado physiognomies. The broad-scale spatial patterns 

of all observed physiognomies were well depicted and in line with available reference maps 

(Figure II-6). Large areas with sparse vegetation physiognomies (from campo limpo to 

campo cerrado) were prevalent in PNB with gallery forests following the river flows. Areas 

with dense physiognomy classes like cerrado denso and cerradão were almost not present. 
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The physiognomies in APAGCV showed similar patterns with gallery forests along the water 

bodies, sparsely vegetated areas in the center and denser physiognomies at the border of the 

study area. Also small patches of cerrado denso and cerradão occurred. In contrast to the 

other two study sites ESECAE was characterized by denser vegetation. Most of the area was 

classified as cerrado sensu stricto and cerrado denso, respectively. Areas of sparsely 

vegetated campo limpo and campo sujo were located in the center as well as in the western 

parts of ESECAE. Small patches of cerradão were classified within the cerrado denso 

regions.  

 

Figure II-6: Classification results based on seasonal phenological parameters for A) PNB, B) IBGE parts of 
APAGVC for which a reference map was available and C) ESCEA. D) and E) show the physiognomy patterns 
in the reference maps. 

Linear artefacts occurred in all three study sites but were most prominent in ESECAE, 

predominantly in regions of SLC-off errors. The results suggest that not only the total amount 

of available cloud and error free data is relevant for our mapping approach, but also its 

seasonal distribution. This is in line with findings of other studies that also distinguished 

Cerrado land cover classes based on Landsat time series (e.g. Müller et al. 2015; Rufin et al. 

2015). It seems to be rather important that the peak of the season is covered by data, as it 

directly influences the derivation of phenological parameters, which in turn determine the 
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classification outcome. However, this effect is likely to be class-dependent, as it did not lead 

to misclassification throughout all physiognomies. 

A detailed look at the classification results revealed that not many regions in all three study 

sites are classified as pure physiognomies and occasionally include pixels from the adjacent 

class. This “salt and pepper” effect (Figure II-6; Figure II-7) reflects the heterogeneity within 

the complex ecosystem and is likely related to mixed pixel between adjacent physiognomy 

classes, which from a remote sensing perspective are different shares of understory and 

canopy cover on a pixel level. This effect is particularly prominent when looking at gradients 

of vegetation density in heterogeneous landscapes at 30 m spatial resolution. Figure II-7 

shows examples of spatially-explicit phenological differences and gradual transitions 

between physiognomies and how those translate into classes according to a standard 

classification scheme for Cerrado landscapes used in Brazil (Ribeiro and Walter 2008).  

 

Figure II-7: Close-ups of the PNB classification map and three TCgreen parameters in RGB that depict gradual 
transitions between physiognomies. 
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The final map was validated with a 10-fold cross-validation resulting in an overall accuracy 

of 63% (Table II-1). This relatively weak accuracy measure does not agree with the visual 

comparison of the reference map and the classification outcome. It is a challenging task to 

map and validate a classification stemming from a field-based classification scheme with a 

classification at Landsat resolution. We therefore applied a softer validation scheme to 

accommodate for spectral-temporal class similarities between neighboring classes along the 

vegetation gradient (e.g. between campo sujo and campo limpo). The overall accuracy then 

reached surprisingly high 96% (Table II-1; numbers in parentheses). This pattern was also 

reflected in the SVM class probabilities, which revealed that approximately 90% of all pixel 

had the second highest probability in the thematically adjacent class. Emphasizing the 

difficulties in discrete classifications for mapping vegetation gradients with a high spatial 

resolution. 

Table II-1: Confusion matrix resulting from the 10-fold cross validation, including users (UA), producers (PA) 
and overall accuracies (OA). The numbers in parentheses show the soft validation results, allowing 
misclassifications in adjacent classes. 

 Reference Class    

Map class 
Campo 

limpo 

Campo 

sujo 

Campo 

cerrado 

Cerrado 

sensu 

stricto 

Cerrado 

denso 
Cerradão 

Mata de 

galeria 
Sum UA 

Area 

(ha) 

Campo 

limpo 
101 (222) 49 (0) 2 1 0 0 1 

154 

(226) 

0.66  

(0.98) 
5907 

Campo 

sujo 
121 (0) 290 (433) 80 (0) 16 0 1 0 

508 

(450) 

0.57  

(0.96) 
16189 

Campo 

cerrado 
5 94  (0) 269 (421) 81 (0) 2 0 2 

453 

(430) 

0.59  

(0.98) 
12611 

Cerrado 

sensu 

stricto 

2 18 72  (0) 264 (377) 61 (0) 2 7 
426 

(406) 

0.62  

(0.93) 
12906 

Cerrado 

denso 
0 0 2 32 (0) 109 (174) 26 (0) 2 

171 

(178) 

0.64  

(0.98) 
3748 

Cerradão 0 0 0 3 4 (0) 29 (61) 8 (0) 
44 

(64) 

0.66  

(0.95) 
450 

Mata de 

galeria 
1 0 0 4 5 6 (0) 125 (133) 

141 

(143) 

0.89  

(0.93) 
3823 

Sum 230 451 425 401 181 64 145 1897    

PA 
0.44  

(0.97) 

0.64  

(0.96) 

0.63  

(0.99) 

0.66  

(0.94) 

0.6  

(0.96) 

0.45  

(0.95) 

0.86  

(0.92) 
OA 

0.63  

(0.96) 
55634 

3.4 Outlook 
Our results showed that the proposed approach allows mapping heterogeneous savanna 

ecosystems. Cloud and error free data are a mandatory prerequisite to generate the dense 

time series needed to derive phenological information. Recently launched sensors such as 

OLI on Landsat 8 and the Multispectral Instrument (MSI) onboard Sentinel-2a already 
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provide high quality data for time series analysis. Their combined use, especially when 

including future Sentinel-2b data, will potentially allow to generate dense times series with 

an approximate 5-day temporal resolution, making synthetic data gap filling obsolete. Issues 

like linear artifacts, as currently present in the classification results, will then be overcome. 

However, the combination of different data types is still challenging, e.g. due to different 

spatial and spectral resolutions (Hostert et al. 2015; Wulder et al. 2015a). Especially, the red-

edge bands of Sentinel-2 (ca. 705, 740 and 783 nm) with a spatial resolution of 20 m hold 

potential for vegetation  analyses (Verrelst et al. 2012) and further research is required to 

better comprehend this potential. The assets of narrow spectral bands for the analysis of 

heterogeneous ecosystems have also been demonstrated in several studies that used for 

example simulated satellite data based on airborne hyperspectral imagery (e.g. Roberts et al. 

2015; Schwieder et al. 2014) or hyperspectral data from experimental satellites such as 

Hyperion (e.g. Leitão et al. 2015). These data enable the derivation of biophysical  vegetation 

parameters (e.g. Souza et al. 2010) or the spectral unmixing of sub-pixel fractions of 

photosynthetic and non-photosynthetic active vegetation (e.g. Miura et al. 2003). On the one 

hand, this additional information can improve classification outputs, e.g. in combination with 

phenological data. On the other hand, continuous biophysical parameters can be quantified 

through regression approaches, if appropriate reference data are available. Such strategies 

allow overcoming the limitations of hard classifications in heterogeneous ecosystems. With 

the advent of future spaceborne hyperspectral sensors such as EnMAP (Guanter et al. 2015) 

or HyspIRI (Lee et al. 2015), the potential of regression-based approaches will unfold. 

4 Conclusion 

Dense Landsat time series were used to analyse phenological differences between the main 

physiognomies of the Brazilian Cerrado. Data gaps within the time series were synthetically 

filled using a weighted ensemble of radial basis convolution filters. The available amount of 

data was sufficient to derive comprehensible phenological profiles and parameters, which 

enabled depicting differences between the main Cerrado vegetation physiognomies in terms 

of their response to climatic-dependent phenology. Based on these differences, it was 

possible to map the main spatial patterns of the Cerrado physiognomies using a SVM 

classification approach. Linear artefacts within the classification result could be related to 

sparse data availability (i.e. systematic errors within the data) and its seasonal distribution. 

This drawback will be overcome in the near future when e.g. Landsat 8 OLI and recently 

available Sentinel-2 MSI data will be combined. Inaccuracies in the final estimation were 
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especially prominent between thematically adjacent classes along the vegetation gradient. 

Incorporating (multi-temporal) spaceborne hyperspectral data, or derived products, in the 

analysis will further be beneficial to overcome this limitation. This will become even more 

feasible once upcoming sensors such as EnMAP or HyspIRI are in orbit and routinely and 

repeatedly provide spectral high-resolution data. Our results emphasize the usefulness of 

utilizing long-term Landsat time series for the analysis of heterogeneous ecosystems, where 

spatial detail is as much needed as the ability to derive important phenological parameters. 

Such time series analyses offer new opportunities e.g. for monitoring trends in habitat 

changes and related biodiversity or ecosystem responses to climate change. Further research 

may accordingly focus on the combined use of open data archives and upcoming spaceborne 

sensor technologies, which enable deepening our understanding of ongoing processes in the 

Cerrado and comparable heterogeneous ecosystems. Nevertheless, our results also suggest 

that the use of “hard” classification approaches is not always adequate for mapping 

vegetation gradients in heterogeneous ecosystems, due to a high structural and spectral class 

similarity. This was shown to be particularly challenging when distinguishing adjacent (i.e. 

most similar) classes on the structural gradient along the different Cerrado physiognomies. 

Depending on the purpose of the derived results and data availability, quantitative 

approaches avoiding classes, e.g. regression approaches, would offer a solution to overcome 

shortcomings of classification approaches. Even though these approaches often require a 

more costly training, continuous results will improve e.g. biomass or carbon retention 

estimations. 
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Abstract 

Insights into the phenology of ecosystems are crucial to deepen our understanding of 

ecosystem dynamics and their responses to environmental change. Land surface phenology 

metrics, derived from remote sensing data, capture the vegetation’s seasonal behavior on a 

pixel level and enable to frequently gather phenological information over large extents in a 

synoptic manner. Especially in dynamic and heterogeneous ecosystems, such as savannas, 

the temporal and spatial resolutions of the remote sensing data are critical. The Brazilian 

savanna, commonly known as the Cerrado, is characterized by a gradient of natural 

vegetation structure and density, along with varying species compositions for which 

phenological information over large scales remain fragmented. As a weak conservation 

status along with a growing demand on land resources for agricultural production have 

already led to large land conversions of the Cerrado’s natural vegetation, it is critical to 

provide land managers and decision makers with spatially explicit information on hotspots 

of conservation need. To this aim, a gap-filled 8-day Landsat Collection 1 EVI time series 

(covering 2013 – 2017) was used for the derivation of land surface phenology (LSP) metrics 

for the 2 Mkm² extent of the Cerrado biome. Eight LSP archetypes of the Cerrado were 

defined based on the similarities between LSP metrics using a k-means cluster algorithm. 

The LSP archetypes enabled the phenological patterns throughout the whole Cerrado to be 

described on an ecoregions level and show the complementary benefits of both concepts e.g. 

for a spatially explicit design of conservation strategies. The presented results highlight the 

advantages of LSP metrics derived from dense Landsat time series for the analysis of 

heterogeneous ecosystems over large extents. This proposed concept of LSP archetypes is 

beneficial for a range of applications such as carbon quantification, the assessment of 

biodiversity or climate models. 

1 Introduction 

Phenology is the study of reoccurring events during a year or season (Lieth 1974). It can be 

linked to the behavior of animals, such as phases of mating, breeding, or movement and to 

events such as green-up, bud burst, flowering, or senescence when referring to vegetation, 

as a response to changing environmental factors throughout a season. To have insights in the 

vegetation’s phenology is a key parameter, for example, to understand vegetation 

community dynamics in ecosystems (Williams et al. 1999). Further, is the analysis of 
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phenological patterns in time and space of utmost importance for global and climate change 

research (Menzel 2002). Indeed, changes in phenological patterns are an indicator of climate 

change (Menzel et al. 2006; Richardson et al. 2013; Walther et al. 2002) and as such critical 

input variables, for example, in global circulation models (White et al. 2003). Traditionally, 

phenological information is derived from repetitive observations of vegetation and 

protocolling the dates of the vegetation’s transition into a different phenophase. Depending 

on the density of field observations, this approach may be very accurate but at the same time 

very labor intensive and usually restricted to individual species at local scales (Hanes et al. 

2014).  

To derive phenological information over large extents, remote sensing based approaches 

have been widely applied in recent decades (Henebry and de Beurs 2013). These methods 

are usually based on the seasonal changes of spectral indices (Reed et al. 2009) through the 

vegetation’s reflectance characteristics linked to the state of its biochemical and physical 

properties (Xiao et al. 2009). Because such approaches are based on pixel level, they do not 

reflect species-specific phenological observations but rather a mixture of vegetation canopy 

and background seasonal responses, known as land surface phenology (LSP; Hanes et al. 

2014). LSP is recognized as an important spectral trait for the quantification of biodiversity 

(Lausch et al. 2016) and was proposed as a candidate essential biodiversity variable (EBV) 

relating to ecosystem function, to monitor progress towards the Aichi Biodiversity Targets 

(CBD 2010; O'Connor et al. 2015; Skidmore et al. 2015). The detail of the captured LSP is 

dependent on the spatial and temporal resolution of the sensor used. Commonly, sensors such 

as AVHRR, MODIS, Spot Vegetation, or PROBA-V have been widely used to obtain LSP 

(Li and Qu 2013). They have a sufficient temporal resolution of up to one day but a relatively 

coarse spatial resolution from 250 m to 1 km (Reed et al. 2009), which is problematic, for 

example, in the analysis of ecosystems with heterogeneous landscapes.  

However, this limitation might be overcome by the launch of new operational satellite 

missions, such as Landsat 8 (Loveland and Irons 2016) and Sentinel-2 (Drusch et al. 2012), 

along with open data policies (Woodcock et al. 2008; Wulder et al. 2012) and a steadily 

increasing processing performance. Together these developments enable the analysis of 

unprecedented amounts of remote sensing data with a sufficient temporal and spatial 

resolution (Wulder et al. 2015a). Already several studies have made use of the freely 

accessible Landsat data archive (Wulder et al. 2012), with promising approaches that enable 

the analysis of time series e.g. for land use classification and intensity mapping (Müller et 

al. 2015; Rufin et al. 2015) or to derive land surface phenological information on a 30 m 
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spatial resolution (Melaas et al. 2016; Schwieder et al. 2016). In this study, a time series of 

Landsat Collection 1 data was analyzed to reveal its potential for deriving LSP metrics in 

heterogeneous ecosystems and to characterize LSP archetypes.  

The regional focus of this study is on the Brazilian savanna, commonly known as the 

Cerrado, which is the second largest Brazilian biome after the Amazon. The Cerrado is a 

biodiversity-rich ecosystem with many endemic species (Klink and Machado 2005) and 

provides a range of crucial ecosystem services (Lima et al. 2017), with implications from 

local to global scales. However, processes of agricultural expansion and urbanization along 

with weak conservation strategies have already led to large-scale land conversions resulting 

in a remaining share of approximately 60 % of natural Cerrado vegetation (Sano et al. 2010). 

As the expansion of agriculture is not expected to halt (Lapola et al. 2013), there is a need 

to follow strategies that aim to maintain ecosystem functions and promote a sustainable land 

use (Strassburg et al. 2017). Mapping of the Cerrado’s vegetation properties is hence of 

crucial importance, to deepen our understanding of ecological processes over large scales 

and to spatially explicit define conservation priority regions.  

The objectives of this study are: i) to derive spatially explicit LSP metrics for the whole 

extent of the Cerrado, and ii) to propose phenological archetypes for the region, based on 

LSP similarities. The derived archetypes are further described in the context of Cerrado 

ecoregions, which were defined to aid biodiversity conservation planning (Arruda 2003; 

Dinerstein et al. 1995). 

2 Data and Methods 

2.1 Study area and ancillary data 
The Cerrado stretches over more than 20° latitude and covers an extent of approx. 2 million 

km². Most parts of the Cerrado lie on the Central Brazilian Plateau and make up large parts 

of the three main watersheds of Brazil (Ferreira et al. 2013). The climate of the Cerrado has 

a strong seasonality with a wet season from October to April and a dry season from May to 

September (Oliveira-Filho and Ratter 2002). Soils are mainly acidic oxisols with high 

aluminum and iron contents (Motta et al. 2002). Shaped by environmental factors, the 

Cerrado has a characteristic landscape of vegetation physiognomies that exhibit a density 

gradient from open grasslands, over shrublands and scattered tree formations to dense forests 

(Oliveira-Filho and Ratter 2002). These physiognomies differ in their structural appearance 

but also in their species composition (Ribeiro and Walter 2008; Ribeiro and Tabarelli 2002) 
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and different seasonal responses in phenology (Ratana and Huete 2004; Schwieder 2015). 

The Cerrado has large amounts of carbon stored in its above- and belowground biomass (de 

Miranda et al. 2014) and thus has a pivotal role in the global carbon balance (Ribeiro et al. 

2011). It further provides habitats for a wealth of species (Francoso et al. 2016) and due to 

its weak conservation status, it is considered as a biodiversity hotspot (Mittermeier et al. 

2011; Myers et al. 2000). However, large-scale land conversions for agricultural production 

lead to a loss of natural vegetation and are thus threatening ecosystem services and functions 

(Silva et al. 2006).  

To focus the analysis on the remaining natural areas of the Cerrado, the TerraClass Cerrado 

classification was used to mask out non-natural areas (MMA 2015). TerraClass Cerrado is a 

mapping project under the coordination of the Brazilian Ministry of the Environment aiming 

to map the different land uses of the Cerrado on a 30 m spatial resolution. The underlying 

data for the classification product are Landsat 8 OLI images from 2013 covering the whole 

extent of the Cerrado. With a minimal mapping unit of 6.25 ha are the different land use 

types of the Cerrado classified into natural (forests, savanna and grasslands, non vegetated 

areas and water bodies) and anthropogenic (agriculture, pastures, forestry, mining, urban, 

land use mosaic, bare soil and others) classes with an overall accuracy of 80,2 % (MMA 

2015). Even though the natural vegetation class (forest, savanna, and grasslands combined) 

has an accuracy of approximately 60 % it is still the most accurate product available that 

covers the whole extent of the Cerrado and was thus used to mask out areas that were not 

within the scope of this analysis. 

For a better interpretation of the final results, we looked at the ecoregions defined for the 

Cerrado. Ecoregions are biogeographic units, defined as areas with similar environmental 

conditions and characteristic species communities (Dinerstein et al. 1995). They represent 

geographically explicit regions based on natural boundaries (Arruda 2003) and have been 

developed to assist land management in order to develop appropriate conservation strategies. 

While large-scale ecoregions have been defined for Latin America based on abiotic factors 

(Dinerstein et al. 1995), Arruda (2003) refined the proposed ecoregions through the addition 

of biotic factors, which resulted in 22 specific ecoregions for the Cerrado (Figure III-1; 

Arruda et al. 2008). As the ecoregions are defined by natural boundaries, their extents do not 

exactly match the Cerrado extent as defined by the Brazilian Ministry for Environment 

(MMA) and the Brazilian Institute for Geography and Statistics (IBGE; IBGE 2018; MMA 

2018). Thus, the ecoregions borders were clipped to the MMA/IGBE Cerrado extent, leading 
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to underrepresented ecoregions (such as Chiquitânia) and areas of the Cerrado that are not 

covered by ecoregions (in the far northeast). 

 

Figure III-1: Map of the 22 ecoregions of the Cerrado (Arruda 2003; Arruda et al. 2008) clipped to the IBGE 
Cerrado extent (IBGE 2018; MMA 2018). 

2.2 Time series and land surface phenological metrics 
The extent of the Cerrado is covered by 121 WRS-2 (Worldwide Reference System) Landsat 

footprints, for which all available Landsat ETM+ and OLI Collection 1 data for the period 

March 2013 to June 2017 were searched. From this selection the Enhanced Vegetation Index 

(EVI) (Huete et al. 2002) product was downloaded from the ESPA data archive, using images 

with a cloud cover of up to 80 %, which totaled approximately 23,000 images. The quality 

layer provided by ESPA was used to mask out clouds from the individual images. 

To generate a wall-to-wall gapless 8-day time series on a per pixel level, we followed the 

gap-filling approach presented by Schwieder et al. (2016). Three radial basis convolution 
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filters (RBF) with kernel widths of σ = 8, σ = 16 and σ = 32 were calculated and combined 

to an ensemble using the original data availability within the respective kernel as a weighting 

layer. Outliers were excluded beforehand from the time series by deleting observations that 

were further than two standard deviations away from an RBF with a kernel width of σ = 15, 

as they were considered as anomalies such as undetected clouds or sensor errors.  

Using TIMESAT Version 3.3 (Eklundh and Jönsson 2017) eleven phenological metrics 

(Table III-1) were derived from the generated gapless time series that describe the seasonal 

behavior of the observed vegetation (Jönsson and Eklundh 2004). TIMESAT uses a threshold 

to define the start and end of season which was given as the day in the year when 10 % of 

the season’s amplitude is reached from the seasons left and right minimum values. As a 

search window, in which a seasonal peak is expected, the timeframe from the beginning of 

August 2013 to the beginning of September 2014 was defined. Although TIMESAT is 

capable of deriving phenological metrics for multiple peaks within one season (e.g. double 

cropping cultivation systems), here only metrics for one season were used as no secondary 

vegetative peak is expected in natural vegetation.  

 

Table III-1: Description of the derived land surface phenological metrics using TIMESAT, based on (Eklundh 
and Jönsson 2017). 

LSP metric Description 

Amplitude [Amp] Amplitude between EVI Maximum fitted Value and Base Value 

Base Value [BV] 
Mean EVI value between the minima on the left and right side of the seasonal 

peak 

End of Season Value [EoSVal] EVI value at the defined end of season (here 10 % of the seasons amplitude) 

End of Season [EoS] 8-day temporal index for the timing of the defined end of season 

Rate of Increase [RoI] 
Difference of the EVI values at 20 % and 80 % of the seasonal amplitude on 

the left side of the peak divided by the corresponding period of time 

Length of Season [LoS] Number of days between the defined start and end of season 

Maximum fitted Value [Mfit] EVI peak value of the curve 

Middle of Season [MoS] 

Average of the 8-day temporal indices for which 80 % on the left and on the 

right side of the seasonal amplitude has been reached 
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Rate of decrease [Rod] 

Absolute values of the difference of the EVI values at 20 % and 80 % of the 

seasonal amplitude on the right side of the peak divided by the corresponding 

period of time 

Start of Season Value [SoSVal] 
EVI value at the defined start of season (here 10 % of the season’s amplitude) 

Start of Season [SoS] 8-day temporal index for the timing of the defined start of season 

2.3 Cluster analysis 
In order to identify clusters of vegetation with similar LSP metrics, 500,000 random samples 

were drawn from the pixels that were classified as natural areas. For these spatially explicit 

samples, the LSP metrics were derived and outlier (values smaller or equal to 0), as well as 

no data values, removed. This resulted in a total of 484,164 samples that were scaled prior 

to the cluster analysis. Based on Lloyd’s algorithm (Lloyd 1982) a k-means clustering was 

performed with a maximum of 300 iterations and 30 initial cluster centers, which were 

initialized based on the k-means++ procedure (Arthur and Vassilvitskii 2007). In order to 

determine the number of clusters to be defined, the gap statistic algorithm (Tibshirani et al. 

2001) was used. In this approach, the dispersion within each cluster is compared to the 

expected dispersion under a null distribution. The maximum gap between the derived cluster 

dispersions indicates a sufficient number of classes for the given data complexity. Due to the 

random initial cluster selection, this approach does not necessarily lead to constant results, 

thus the gap statistic calculation was iterated 100 times. The final decision on a useful 

number of clusters was ultimately taken context-related and not solely based on the 

underlying data structure. Once the cluster centers were calculated for the random samples, 

they were applied to the whole extent of the Cerrado to generate a map of phenological 

archetypes. 

3 Results 

3.1 Land surface phenological metrics  
Eleven LSP metrics were derived from gap-filled Landsat EVI time series for the whole 

extent of the Cerrado.  Descriptive statistics of the LSP metrics for all natural areas of the 

whole Cerrado extent are shown in Table III-2. On average the season starts around the end 

of September (day of year 266) and ends around the mid of July (day of year 198) with 

standard deviations of around 38 and 50 days, respectively. Resulting in a mean season’s 
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length of 293 days (LoS) with a standard deviation of 45 days. Figure III-2 shows the 

spatially explicit distribution of three selected phenological metrics (Amp, BV, SoS) for the 

whole extent of the Cerrado in a red, green and blue (RGB) composite. The map reveals 

regions of similar LSP metrics and distinct patterns with, for example, high base values in 

the far west, late start of season at the mid-western border, and wide areas of high amplitude 

and an early start of season distributed in the eastern parts of the Cerrado. However, this 

visualization only reflects the patterns of three out of eleven LSP metrics and even though 

some of them are highly correlated (see supplementary material S III-1 for correlation 

matrix) they can provide valuable insights into the overall LSP patterns.  

Table III-2. Mean, standard deviation, 25, 50 and 75 % percentiles of the LSP metrics of all natural areas for 
the whole Cerrado extent. Values relating to the timing of the season (EoS, SoS, and MoS) are time series index 
values of the 8-day time series starting from the day of year 114 in 2013 (25th of April). 

 Mean Stddev Q25 Median Q75 

Amp 0.21 0.09 0.14 0.19 0.26 

BV 0.28 0.09 0.20 0.26 0.34 

EoSVal 0.30 0.10 0.22 0.28 0.37 

EoS 56.90 6.30 55 57 60 

RoI 0.02 0.01 0.01 0.02 0.03 

LoS 293.00 45.00 272 296 320 

Mfit 0.49 0.12 0.40 0.50 0.57 

MoS 35.50 5.50 32 35 39 

RoD 0.01 0.01 0.01 0.01 0.02 

SoSVal 0.30 0.09 0.23 0.29 0.36 

SoS 20.30 4.70 18 20 22 

3.2 Land surface phenological archetypes 
The gap statistics algorithm resulted after 100 iterations in an asymptotic curve approaching 

the gap value of approximately -1.6 with 39 clusters (S III-2) without revealing a clear 

maximum gap value. Therefore, the amount of cluster was decided on with respect to the 

phenological complexity of the Cerrado, for which Figure III-2 was used as an indicator, 

while still allowing interpretability of the results. Hence, eight k-means cluster centers were 

calculated and assigned to each pixel for all natural areas of the whole Cerrado extent. This 

resulted in different shares of cluster (Table III-3) with cluster 4 and 5 being the most 

represented, with 21 % and 23 % of all natural vegetation pixels assigned to them. Clusters 
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1 to 3 each account for around 13–15 %, while cluster 6 and 8 represent 6 % and 7 % of all 

pixels analyzed. The smallest cluster, with less than 2 % of all pixels, is cluster 7. 

 

Table III-3: Cluster shares based on all pixels that have been labeled as natural vegetation in the TerraClass 
classification for the whole extent of the Cerrado 

Cluster Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Cluster 7 Cluster 8 

Share [%] 14.66 14.92 12.70 22.91 20.59 6.96 1.67 5.58 

 

 

Figure III-2: RGB mosaic of three selected LSP metrics (Amplitude, Base Value, Start of Season) for all natural 
areas of the whole Cerrado extent. 
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The graphs in Figure III-3 show the mean values of the distinct LSP metrics in each of the 

eight clusters, where the size of the segments is scaled to enable the comparison between the 

individual cluster. Cluster 1 has relatively high mean values in LoS and Mfit and despite 

small SoS, MoS, and RoD it is characterized by average LSP values. In cluster 2 only LoS 

and EoS are somewhat more prominent, whereas SoSVal, EoSVal, and BV are low. Cluster 

3 is mainly defined by high mean values of EoSVal, BV, SoSVal, Mfit, and LoS, whereas in 

cluster 4 the temporal metrics LoS and EoS have relatively high mean values and are more 

prominent than the other metrics. Cluster 5 has high values in LoS and EoS, and despite low 

RoD it has rather average values. Cluster 6 is characterized by high values of Amp, RoI, 

RoD, and Mfit, which are more prominent than the temporal metrics. Cluster 7 is defined by 

high temporal metrics SoS, MoS, EoS and above average values of SoSVal, EoSVal, BV, 

and Mfit. Cluster 8 is defined with relatively small values in all metrics with only RoD being 

somewhat more prominent. As the derived clusters are solely based on LSP metrics, they 

represent the main groups of vegetation with similar seasonal response in term of their LSP. 

Thus, these clusters are proposed as land surface phenological archetypes. 
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Figure III-3. Relative distribution of the mean values of each LSP metric per cluster based on the initial random 

sample. Each color represents a specific LSP metric and the size of each segment relates to the scaled mean 

value of the metric enabling to compare the individual cluster. Below the graphs are the number of samples 

within each cluster. Explicit values are listed in the table in supplementary material S III-3. 

3.3 Spatial patterns of LSP archetypes  
The spatial distribution of the LSP archetypes reveals clear patterns of phenological 

similarities in the natural vegetation of the Cerrado. Most of the unconverted areas can be 

found in the more western regions of the Cerrado, which is dominated by cluster 3 as well 

as in the central to northern regions where cluster 4 and 5 are prominent (Figure III-4).  
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Figure III-4. Spatial distribution of the LSP cluster for the whole Cerrado extent along with the 22 ecoregions. 

The different colors depict the distinct LSPs. The ring diagrams show the share of clusters in each ecoregion.  

The ring diagrams in Figure III-4 show the share of each cluster within the individual 

ecoregions in relation to the remaining natural vegetation. Based on the TerraClass 

classification were the shares of remaining natural vegetation per ecoregion derived. The 

ecoregions Complexo Bodoquena (46.74 %), Planalto Central Goiano (46.38 %), São 

Francisco-Velhas (44.66 %), Serra da Canastra (39.95 %), Paraná Guimarães  (34.77 %), 
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Paranaíba (34.24 %), and Paranapanema Grande (19.42 %) being the ones in which more 

than half of the natural areas were converted (S III-4). 

Within the different ecoregions vary the shares of LSP archetypes. Most ecoregions have at 

least a small share of each LSP archetype, and most of the 22 regions are dominated by 1-3 

archetypes. The ecoregion, Complexo Bodoquena, in the southwest of the Cerrado, shares a 

border with the Pantanal and is with more than 50 % of all pixels dominated by Cluster 1, 

which is characterized by high Mfit and LoS values. Cluster 2 with high EoS and LoS values 

is most prominent in the ecoregions Planalto Central Goiano, Alto Parnaíba, Depressão do 

Paranguá, Vão do Paranã and Paracatu, which are located in the central to northeastern 

parts of the Cerrado. Parecis and Chiquitania are dominated by Cluster 3, which is defined 

by relatively high values of BV, Mfit, SoSVal, and EoSVal. Cluster 4 and 5 are dispersed 

throughout the whole extent of the Cerrado but with some larger contiguous regions in the 

ecoregions Araguaia-Tocantins, Planalto Central Goiano, Alto Parnaíba, Chapadão do São 

Francisco in the northeastern Cerrado. Cluster 6 with high values of RoI and RoD, is 

dominant in the ecoregions Depressão do Paranguá and Vão do Paranã. Cluster 7 and 8 are 

the two smallest clusters and are mainly located in Parecis, Chiquitania, and the Bananal. 

The Bananal is the only ecoregion that has a considerable share (>25 %) of Cluster 8 with 

clear spatial patterns along the river formations. Cluster 8 has in general relatively small LSP 

metric values, with the exception of high RoD values indicating a rapid decrease of EVI 

values at the end of the season.  

4 Discussion 

Dense time series of Landsat collection 1 EVI products enabled the derivation of LSP metrics 

for the whole extent of the Cerrado. Because the EVI is known to decouple the vegetation 

canopy from the background signal (Huete et al. 2002) it enabled the analysis of LSP in a 

heterogeneous ecosystem, especially with a 30 m spatial resolution. The gap filled 8-day 

time series of combined Landsat ETM+/OLI data captured the seasonal dynamics of the 

Cerrado vegetation and allowed to derive LSP metrics. Based on the similarities of these 

metrics, eight LSP archetypes were proposed for the Cerrado, which allow describing the 

phenological diversity of the Cerrado. However, the proposed concept of LSP archetypes is 

not restricted to the selected amount of clusters, which might be adjusted depending on the 

intended application. 
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As there was a relationship expected between the LSP archetypes and Cerrado vegetation 

physiognomies (Ratana et al. 2005; Schwieder et al. 2016), their patterns were visually 

compared to high resolution Google Earth imagery. In combination with the distribution of 

LSP metrics within the clusters (Figure III-3), it can be concluded that for example Cluster 

1 and 3 broadly relate to high biomass vegetation, indicated through relatively high LSP 

values of Mfit and BV. These archetypes might thus be related to vegetation physiognomies 

such as gallery forests and cerradão. In contrast Cluster 2, 4 and 5 are characterized by long 

seasons and a late end of season, with low values in BV, Mfit, SoSVal, and EoSVal, 

describing a seasonal dynamic that is rather related to grassland physiognomies such as 

campo limpo and campo sujo (Schwieder et al. 2016). However, LSP archetypes reflect the 

seasonal dynamic of the observed vegetation as captured in dense Landsat EVI time series. 

They are thus related to variations in photosynthetic activity over time, which are on the one 

hand determined by vegetation structure, but on the other hand, also influenced by species 

composition and environmental factors that influence water and nutrient availability. Even 

though there is a relationship between these two concepts a direct assignment of LSP 

archetypes to vegetation physiognomies is not straight forward, as classes in the latter 

approach are defined by structural vegetation parameters (Ribeiro and Walter 2008). The 

additional information in LSP archetypes is critical especially for large-scale analyses of 

ecosystems with large extents and therefore strong variations in environmental factors, as in 

the Cerrado. These variations might also explain the spatial patterns of LSP archetypes, with 

some of them being more prominent in specific regions of the Cerrado.   

To interpret the general patterns of LSP archetypes they were compared with the Cerrado 

ecoregions. It could be observed that the patterns match in some cases the shapes of the 

ecoregions such as Parecis, Vão do Paranã and Bananal. The Bananal is a very prominent 

example in which the LSP archetypes render the extent of the ecoregion. It is the only 

ecoregion that is dominated by cluster 4 and 8, which might be caused by the influence of 

the high frequency of inundation. The ecoregion is characterized by plain surfaces, 

interfluvials, and river connecting channels (Arruda 2003) and within its extent is the largest 

river island of the world which is seasonally flooded (Borma et al. 2009). Silva et al. (2006) 

revealed even similarities between the Bananal and the Pantanal, which is world’s largest 

wetland area and commonly considered as an independent biome of Brazil. However, in 

other regions of the Cerrado contiguous areas of the same LSP archetype cross the extent of 

the defined ecoregions (e.g. Depressão do Paranguá and Chapadão do São Francisco). The 

additional spatial detail of the LSP archetypes can be seen as complementary information, 
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as spatially explicit phenological information was not considered for the definition of 

Cerrado ecoregions (Arruda et al. 2008). Both concepts are thus not mutually exclusive and 

might in combination be useful for spatially adapted conservation strategies. Especially, as 

recent studies have revealed significant relationships between phenological and floristic 

similarity of vegetation (Viña et al. 2016; Viña et al. 2012) the presented results may have 

the potential to improve biodiversity assessments.  

5 Conclusion 

Phenological archetypes of natural vegetation were proposed for the whole extent of the 

Cerrado. They were defined by similarities in land surface phenological metrics of the 

natural Cerrado vegetation, as derived from dense Landsat time series. For the first time land 

surface phenological patterns were revealed for the whole extent of the Cerrado with a spatial 

resolution of 30 m x 30 m. The presented results highlight the benefits of the free 

accessibility to the archive of homogenized Landsat data for the analysis of land surface 

phenology patterns in heterogeneous ecosystems. The LSP archetypes could, to some extent, 

be related to the main vegetation physiognomies of the Cerrado, but in contrast were not 

restricted to structural properties of the observed vegetation. As LSP archetypes are derived 

from dense time series they reflect the seasonal dynamic of the observed vegetation. They 

are thus not only related to the vegetation structure but also to species composition and other 

influencing environmental factors. However, at this stage it remains unclear to what extent 

the LSP archetypes are determined for example by structural parameters or species 

composition. This should be assessed in follow-up studies in combination with field 

reference data, for which Landsat’s spatial resolution is sufficient. This finding is supported 

by the somewhat matching patterns of LSP archetypes and Cerrado ecoregions extents, 

which were defined by a combination of environmental variables that not only relate to 

structural vegetation properties. The two concepts are not mutually exclusive but can rather 

be seen as complementary approaches to develop spatially explicit conservation strategies. 

Future research should further focus on potential applications of the proposed approach, for 

example, in biodiversity assessments, or spatially explicit carbon quantifications.  

Acknowledgements 

I would like to thank my colleague Andreas Rabe for his programming support that enabled 

the large scale analysis of this chapter, as well as Pedro Leitão and Philippe Rufin for 



Land surface phenological archetypes of the Cerrado 

49 

valuable meetings, comments and suggestions during the development and finalization of 

this chapter.  

Supplementary Information 

 Amp BV EoSVal EoS RoI LoS Mfit MoS RoD SoSVal SoS 

Amp 1.00 -0.05 0.03 0.33 0.71 0.22 0.68 0.27 0.60 0.06 0.31 

BV - 1.00 0.97 0.22 0.01 0.29 0.70 0.11 -0.04 0.97 0.00 

EoSVal - - 1.00 0.22 0.10 0.27 0.74 0.14 -0.01 0.90 0.04 

EoS - - - 1.00 0.21 0.86 0.39 0.82 0.07 0.26 0.69 

RoI - - - - 1.00 0.08 0.52 0.06 0.37 0.05 0.29 

LoS - - - - - 1.00 0.38 0.55 -0.05 0.34 0.23 

Mfit - - - - - - 1.00 0.28 0.40 0.75 0.22 

MoS - - - - - - - - 0.27 0.13 0.79 

RoD - - - - - - - - 1.00 0.05 0.20 

SoSVal - - - - - - - - - 1.00 0.02 

SoS - - - - - - - -  - - 1.00 

S III-1: Correlation matrix showing Pearsons correlation coefficient for all pairs of the phenological metrics 
based on the initial random sample. Coefficients above the threshold of 0.70 are highlighted in red. 

 

 

 

S III-2: Mean gap statistic plot after 100 iterations. The number of cluster on the x-axis and the derived gap 
values on the y-axis. 
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Cluster Amp BV EoSVal EoS RoI LoS Mfit MoS RoD SoSVal SoS Samples 

1 0.26 0.34 0.37 57 321 0.03 0.60 33 118 0.36 20 71056 

2 0.27 0.22 0.24 58 253 0.03 0.49 37 160 0.25 21 75938 

3 0.16 0.43 0.44 51 141 0.03 0.58 30 103 0.44 14 60012 

4 0.14 0.19 0.20 60 122 0.03 0.34 38 82 0.21 21 102861 

5 0.17 0.29 0.31 58 162 0.03 0.46 35 83 0.31 19 95379 

6 0.40 0.21 0.24 57 436 0.03 0.60 37 265 0.25 23 43437 

7 0.18 0.37 0.39 66 171 0.03 0.54 48 122 0.37 32 18900 

8 0.12 0.28 0.29 39 158 0.02 0.40 29 178 0.29 19 16581 

S III-3: Mean values of LSP metrics per cluster. Derived from a random sample of natural vegetation pixel 
according to the TerraClass Cerrado classification. 
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Ecoregion Natural [km²] Non-natural [km²] Sum [km²] Natural areas [%] 

1 Parecis 61896 18049 79945 77 

2 Chiquitania 27289 113205 140493 19 

3 Depressão Cuiabana 5480 1056 6536 84 

4 Província Serrana 5250 7893 13144 40 

5 Paraná Guimarães 20101 10831 30932 65 

6 Complexo Bodoquena 118880 37447 156327 76 

7 Bananal 12751 10159 22910 56 

8 Araguaia-Tocantins 51585 47501 99085 52 

9 Planalto Central Goiano 23384 14836 38220 61 

10 Paranapanema Grande 74790 86469 161259 46 

11 Bico do Papagaio 77766 47845 125611 62 

12 Alto Parnaíba 90506 39717 130222 70 

13 Depressão do Paranguá 18207 20743 38950 47 

14 Chapadão do São Francisco 2432 452 2883 84 

15 Vão do Paranã 50284 6773 57057 88 

16 Paracatu 138118 91088 229206 60 

17 Paranaíba 34534 42791 77324 45 

 18 Serra da Canastra 32058 11394 43452 74 

19 São Francisco-Velhas 4772 2745 7517 63 

20 Grão-Mogol 4170 2372 6542 64 

21 Jequitinhonha 5196 9978 15174 34 

22 Serra do Cipó 129372 242743 372115 35 

 (sum) 988821 (sum) 866087 (sum) 1854908 53 

S III-4: Pixel count per Cerrado ecoregion and the share of natural/non-natural areas based on the TerraClass 
Cerrado classification. 
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Abstract 

The quantification and spatially explicit mapping of carbon stocks in terrestrial ecosystems 

is important to better understand the global carbon cycle and to monitor and report change 

processes, especially in the context of international policy mechanisms such as REDD+ or 

the implementation of Nationally Determined Contributions (NDCs) and the UN Sustainable 

Development Goals (SDGs). Especially in heterogeneous ecosystems, such as savannas, 

accurate carbon quantifications are still lacking, where highly variable vegetation densities 

occur and a strong seasonality hinders consistent data acquisition. In order to account for 

these challenges we analyzed the potential of land surface phenological metrics derived from 

gap-filled 8-day Landsat time series for carbon mapping. We selected three areas located in 

different subregions in the central Brazil region, which is a prominent example of a savanna 

with significant carbon stocks that has been undergoing extensive land cover conversions. 

Here phenological metrics from the season 2014/2015 were combined with aboveground 

carbon field samples of cerrado sensu stricto vegetation using Random Forest regression 

models to map the regional carbon distribution and to analyze the relation between 

phenological metrics and aboveground carbon. 

The gap filling approach enabled to accurately approximate the original Landsat ETM+ and 

OLI EVI values and the subsequent derivation of annual phenological metrics. Random 

Forest model performances varied between the three study areas with RMSE values of 1.64 

t/ha (mean relative RMSE 30%), 2.35 t/ha (46%) and 2.18 t/ha (45%). Comparable 

relationships between remote sensing based land surface phenological metrics and 

aboveground carbon were observed in all study areas. Aboveground carbon distributions 

could be mapped and revealed comprehensible spatial patterns. 

Phenological metrics were derived from 8-day Landsat time series with a spatial resolution 

that is sufficient to capture gradual changes in carbon stocks of heterogeneous savanna 

ecosystems. These metrics revealed the relationship between aboveground carbon and the 

phenology of the observed vegetation. Our results suggest that metrics relating to the 

seasonal minimum and maximum values were the most influential variables and bear 

potential to improve spatially explicit mapping approaches in heterogeneous ecosystems, 

where both spatial and temporal resolutions are critical. 
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1 Introduction 

Terrestrial ecosystems play a pivotal role in providing regulating ecosystem services related 

to global and climate change (Scholes and Smart 2013). Photosynthesis and respiration 

processes of vegetation are the direct link between biosphere and atmosphere, stressing 

terrestrial ecosystems’ importance in the global carbon cycle (Sabine et al. 2004). As natural 

or anthropogenic disturbances such as fires and land cover conversions alter ecosystem 

functions and eventually can turn carbon sinks into sources, it is crucial to monitor change 

processes and map related carbon stocks and the changes thereof. A better understanding of 

the carbon cycle is especially important due to the uncertainties of how vegetation will 

respond to a changing climate (Bonan 2008; Mitchard et al. 2013). In addition, accurate 

quantification of carbon stocks and related changes is essential for measuring and reporting 

schemes within the context of international climate policies such as the Reducing Emissions 

from Deforestation and Forest Degradation (REDD+) mechanism of the United Nations 

Framework Convention on Climate Change (UNFCCD) (Mitchard et al. 2013; Rodríguez-

Veiga et al. 2017). National and regional stakeholders also need up-to-date information to 

support the NDCs and the UN SDGs as a mechanism to finance climate change adaptation 

related policies (Biermann et al. 2017). In order to map carbon stocks over large extents 

remote sensing data have been shown to be mandatory (Goetz et al. 2009; Houghton and 

Goetz 2008). During the last decades several approaches using active (Asner et al. 2012; 

Mitchard et al. 2009; Saatchi et al. 2007), passive (Avitabile et al. 2012) or both (Clark et al. 

2011) remote sensing data types have proven sufficient accuracies for carbon quantification. 

This development has been catalyzed by the broad availability of improved remote sensing 

datasets and the evolution of cutting-edge data mining techniques for remote sensing data 

analysis (Goetz et al. 2009; Grace et al. 2014). The majority of these studies has focused on 

dense forest ecosystems, however, a large share of the terrestrial surface is rather 

characterized by ecosystems with gradual transitions in vegetation density, such as savannas. 

Globally, savannas cover approximately 20% of the land area (Lehmann et al. 2011) and 

even though they usually contain less carbon than dense forest ecosystems they are important 

carbon sinks (de Miranda et al. 2014) and cannot be neglected in global carbon cycle 

analyses (González-Roglich and Swenson 2016; Grace et al. 2014). This is specifically true 

considering recent trends of land conversions in savanna regions (e.g. Stephanie et al. 2014). 

A prominent example of these ecosystems is the Brazilian savanna, known as the Cerrado, 

which covers approximately 2 million km² or ca. 23% of Brazil’s surface area (Ratter et al. 

1997). It is characterized by diverse vegetation structure and density, strong seasonality and 
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fire events (Beerling and Osborne 2006; Oliveira-Filho and Ratter 2002). The Cerrado is has 

a high biodiversity with many endemic species (Francoso et al. 2016) and is, due to a weak 

conservation status and subsequently a loss of habitat, considered as one of the global 

biodiversity hotspots (Mittermeier et al. 2011; Myers et al. 2000). Large areas of the natural 

vegetation have already undergone tremendous land cover changes, leading to a share of 

approximately 60% of remaining natural vegetation, which is expected to further decline in 

the future (Ferreira et al. 2012). The combination of these factors directly impacts the link 

between the land surface and the atmosphere (Arantes et al. 2016), which is e.g. through 

processes such as photosynthesis and respiration reflected in the vegetation’s phenology 

(Richardson et al. 2013). It emphasizes the role of the Cerrado in the carbon cycle, the need 

for accurate carbon quantifications (Ribeiro et al. 2011; Sano et al. 2010) and for a better 

understanding of phenology - carbon relations. 

Similar to other savanna regions, the main challenges for remote sensing based carbon 

quantification in the Cerrado are related to the strong seasonality of rainfall, as cloud cover 

in the wet season hinders the frequent acquisition of optical imagery (Sano et al. 2007). 

During the last decades, several studies have shown the potential of multi-temporal remote 

sensing approaches and time series analysis to capture land surface phenology, based on high 

temporal resolution data from sensors such as e.g. AVHRR (Ferreira and Huete 2004; Franca 

and Setzer 1998) or MODIS (Arantes et al. 2016; Ratana et al. 2005) and also discussed its 

benefits for biomass estimation (Zhang and Ni-meister 2014). However, approaches based 

on high temporal resolution data usually lack the spatial resolution that is necessary to 

monitor heterogeneous and fragmented ecosystems, where reflectance measures are 

composed of spectral properties from several land cover types (Baccini et al. 2007; Melaas 

et al. 2013) and aboveground carbon might change at finer spatial scales than captured in 

spatial coarse resolution data (Avitabile et al. 2012). Recently, it has been shown that using 

Landsat data with its spatial resolution of 30 m can help to overcome this shortcoming. 

Avitabile et al. (2012) demonstrated Landsat’s potential for aboveground biomass estimation 

in Uganda and their results suggest that adding phenological information from multi-

temporal imagery could improve model performance by better discriminating vegetation 

types. In aboveground biomass models of Sudano-Sahelian woodlands, Karlson et al. (2015) 

identified the median of a dry season Landsat NDVI time series as one of the three most 

important variables. However, Landsat’s relatively low temporal resolution with a revisit 

time of 16 days challenges deriving annual land surface phenology (LSP) that captures the 

whole growing season, especially in cloud prone areas (Zhang et al. 2017). At the same time, 
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the huge amount of freely accessible, archived data holds unexplored potential for ecosystem 

mapping and monitoring (Pasquarella et al. 2016). 

First promising approaches to analyze dense Landsat time series exist, which are e.g. based 

on data pooling (Fisher et al. 2006; Melaas et al. 2013; Melaas et al. 2016) or gap filling 

approaches (Schwieder et al. 2016; Zhu et al. 2015b). We here aim to further exploit the 

approach proposed by Schwieder et al. (2016), based on the hypothesis that  a link between 

annual dynamics of vegetation as captured in LSP metrics, the productivity of plants and the 

aboveground carbon stored in vegetation can be established. Our objectives thus are to i) 

investigate the potential to model aboveground carbon in a heterogeneous ecosystem based 

on Landsat-derived LSP metrics ii) assess the relation between these phenology metrics and 

aboveground carbon and iii) use these metrics to map the carbon distribution across different 

Cerrado landscapes. 

2 Methods 

2.1 Study areas and field data 
The Cerrado stretches from around 2° to 25° South. Its elevation ranges from sea level to 

1,800 m above sea level (Ratter et al. 1997), with most of the Cerrado being part of the 

Brazilian Central Plateau. Average annual precipitation ranges from 1,300 to 1,600 mm, with 

distinct dry (May to September) and wet seasons (October to April). With a mean 

temperature of 20.1°C, the Cerrado is classified as Aw climate after Köppen-Geiger, which 

is typical for savanna regions (Alvares et al. 2013; Hill et al. 2010). The well drained soils 

of the Cerrado are mainly dystrophic with rather high aluminum and iron contents (Ratter et 

al. 1997). These environmental factors can vary widely over the vast extent of the Cerrado, 

adding to the heterogeneity of the biome. Fire occurrence and long term climatic fluctuations 

further increase vegetation variability creating strong gradients in vegetation structure and 

density over space and time (Oliveira-Filho and Ratter 2002). The resulting mosaic of 

landscape formations ranges from open grasslands over shrub-dominated areas and scattered 

tree formations with grassland understory to dense forest patches. This mosaic is therefore 

classified in distinct physiognomy classes based on their respective vegetation height and 

tree cover (Ribeiro and Walter 2008). Different physiognomies are accordingly characterized 

by different biomass and thus also differ in their shares of stored above- and belowground 

carbon (de Miranda et al. 2014; Ottmar et al. 2001).  
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This study focuses on three areas in the Brazilian Savanna that are characterized as cerrado 

sensu stricto, which is the most abundant physiognomy in the remaining natural Cerrado 

vegetation (Sano et al. 2010). The cerrado sensu stricto may feature 20 to 50 % of tree cover 

and individual tree heights range from 3 to 6 m (Ribeiro and Walter 2008). All three sites lie 

within protected areas, i.e. anthropogenic land cover changes can be neglected for this 

analysis. Their spatial extents were defined by available field data. The most western of our 

three study areas is located near the border of the Brazilian federal states of Goiás and Mato 

Grosso close to the city of Barra do Garças (Figure IV-1 a). It lies within the borders of the 

Parque Estadual da Serra Azul (PESA). According to data from the Shuttle Radar 

Topography Mission (SRTM) the elevation in our study area ranges between 413 m and 771 

m asl. The lower elevations are covered by dense semi-deciduous forests, whereas the 

surrounding higher areas are cerrado sensu stricto. The second study area covers parts of the 

Parque Estadual de Terra Ronca (PETR) (Figure IV-1 b). It is located near the city of São 

Domingos at the border of the states Goiás and Bahia (Teixeira et al. 2016). Here elevations 

vary between 617 m to 1013 m asl. The third study area is located in the North of Goiás 

state, close to the city of Alto Paraíso de Goiás within the Parque Nacional da Chapada dos 

Veadeiros (PNCV; Figure IV-1c). Elevations vary from 1,068 m to 1,267 m asl, with rocky 

outcrops at higher altitudes. Cerrado sensu stricto areas dominate in PNCV with a few 

gallery forest patches along water bodies (Pinto et al. 2009).  

In all three study areas, field plots were established following sampling protocols based on 

the procedures for the permanent plots of the PPBio program (Magnusson et al. 2005) with 

adaptations to the Cerrado biome. Two parallel 5 km tracks (1 km apart) were defined, with 

five equally spaced 250 m x 40 m (10,000 m²) plots being staked out along each route. The 

longer dimension of the plots followed the contour of the terrain in order to avoid the possible 

effects of variations in altitude on its characteristics. Within these plots all trees with a 

minimum diameter at a height of 30 cm above the ground level of 5 cm were sampled 

between 2012 and 2014 (taxa, height, diameter). However, we excluded trees with a diameter 

smaller than 10 cm from the carbon analysis to make sure that we focus on vegetation with 

relative stable carbon stocks. Field plots that covered vegetation physiognomies other than 

cerrado sensu stricto were excluded from the analysis, resulting in 8 field plots each for 

PESA and PETR and 6 for PNCV (Figure IV-1 a-c). Aboveground carbon values for each 

sampled tree were calculated with a specific allometric equations (Rezende et al. 2006), 

which is considered representative for the cerrado sensu stricto physiognomy as it is based 

on a broad variety of 174 individuals sampled in Brasília, DF. The resulting carbon values 
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were spatially allocated to the 30 m spatial resolution of the Landsat grid following the 

approach proposed by Leitão et al. (submitted). In the first step the polygons that were 

sampled in the field are intersected with the Landsat grid. Polygons that fully lie within a 

Landsat pixel were randomly separated and used to estimate linear regression coefficients 

based on their individual carbon values measured in the field and a high resolution (5 m x 5 

m) RapidEye vegetation index layer (REVI; Peng and Gitelson 2012). The best performing 

model coefficients were selected based on cross validation. Finally, the REVI layer and the 

estimated regression coefficients were used to spatially allocate and extrapolate, the carbon 

values measured in the field, to the unsampled areas of the intersecting Landsat pixel (Leitão 

et al. submitted). 

 

Figure IV-1: Locations of the three study areas, which are located within a) Parque Estadual da Serra Azul 
(PESA), b) Parque Estadual de Terra Ronca (PETR) and c) Parque Nacional da Chapada dos Veadeiros 
(PNCV) in the Brazilian Cerrado. The red polygons show the location of the field transects within the study 
areas with underlying true color Rapid Eye imagery. 

2.2 Phenological metrics 
Land surface phenology and related phenological metrics were derived from a combined 

Landsat ETM+ and OLI 8-day time series. Therefore, all available L1T corrected Landsat 

ETM+ and OLI surface reflectance data (path/row: PESA 224/071; PNCV 221/070; PETR 
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220/069) that were acquired between the beginning of 2014 and the end of 2015 (cloud cover 

< 90%) were downloaded along with their respective cfmask product (USGS 2017a). The 

enhanced vegetation index (EVI) was calculated based on equation (Eq. IV-1), as it is known 

to decouple the canopy background signal and to reduce atmospheric influences, while still 

being sensitive to high biomass / carbon values (Huete et al. 2002): 

NIR REDEVI 2.5*
NIR 6* RED 7.5* BLUE 1

−
=

+ − +
ρ ρ

ρ ρ ρ
                     (Eq. IV-1) 

where ρ relates to the surface reflectance values in the respective Landsat bands covering 

the near infrared (NIR), red (RED) and blue (BLUE) wavelengths of the electromagnetic 

spectrum. Following Schwieder et al. (2016), a weighted ensemble of three radial basis 

convolution filters (RBF) with varying kernel widths (σ) was used to fill temporal data gaps 

in a vegetation index time series at pixel level. The RBF ensemble was applied, using 

temporal bins of eight days, to the period from the first of January 2014 to the 31 of 

December 2015, resulting in a total of 92 potential original Landsat observations within two 

years, to which available original data were assigned based on their respective acquisition 

dates. Outliers were excluded from the time series if they were more distant than one 

standard deviation to a convolution filter function with a kernel width of σ = 20 (Schwieder 

et al. 2016). Three convolution filters with kernel widths of σ = 8, σ = 16 and σ = 32 were 

subsequently used to fill the data gaps. The final time series profile is the combination of the 

three, whereas each filter is weighted based on the original data availability (Figure IV-2). 

To assess the deviation of the fitted RBF values from the original Landsat ETM+ and OLI 

EVI values, the RMSE was calculated for each sample pixel. Finally, the gap-filled time 

series were further processed in TIMESAT (Jönsson and Eklundh 2004) to derive LSP 

metrics. As it was not expected to detect more than one phenological season in the natural 

vegetation of the Cerrado, the seasonality parameter was set to 1 and the start/end of season 

were defined as the day of year when 20% of the seasons amplitude was reached. Additional 

to the Start of season (SoS) and End of season (EoS), the Mid of season (MoS) and Length 

of Season (LoS) were derived as day(s) of year from the time series. Further, the 

phenological metrics Base value (BV), Maximum fitted value (MfV), Amplitude (Amp) and 

Rate of increase (RoI) / decrease (RoD) were derived as EVI values. Details on the derived 

metrics are explained in Jönsson and Eklundh (2004). 
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Figure IV-2: Phenological pixel profile after outlier detection and RBF fitting. The black points represent the 
original Landsat EVI values and the blue line the fitted RBF ensemble values within 8-day temporal bins. 

2.3 Carbon models 
To map carbon distributions as well as to analyze the relation between phenological 

parameters and aboveground carbon values, we used a Random Forest regression (RFR). 

RFR has been shown to adequately estimate carbon from remote sensing data that is usually 

not linearly related to metrics from satellite imagery (Lu et al. 2016). RFR is an ensemble 

approach, which is based on the Classification and Regression Tree algorithm (Breiman et 

al. 1984). Best splits of the training data are derived at each node using a subset of the input 

features. As single trees are assumed to be prone to errors, RFR builds many regression trees 

(i.e. a forest) from random subsets of the input data and validates the results on the withheld 

data. The final result of the regression is the averaged outcome of all regression trees 

(Breiman 2001). 

The carbon model for each study area was iterated 1,000 times with randomly drawn subsets 

of 70% training and 30% validation data to derive performance measures and to obtain 

statistically robust results. Model performance was assessed using the Root Mean Square 

Error (RMSE), the relative root mean square error (relRMSE), defined as the ratio between 

RMSE and the mean trainings pixel carbon values, as well as the coefficient of determination 

(R²). To derive the optimum number of sample pixels, considering the area of the pixel that 

was actually measured in the field a sensitivity analysis was performed for each study area 

(Leitão et al. submitted). Therefore, we executed our carbon models with subsets of the 

original sample data set based on the percentage of pixel area sampled in the field in 10 % 
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steps. The individual sample sets for each study area were subsequently filtered for further 

analysis, using the derived optimal thresholds. The final maps are based on the mean carbon 

predictions after 1,000 iterations. To further assess the relation between the phenological 

metrics and aboveground carbon, we evaluated the influence of the individual variables 

based on the RFR variable importance. It is derived by calculating the difference between 

the cross-validated model performance (out-of-bag mean square error; MSE) using all 

variables as model input and the performance of a model with permutated values within the 

respective variable, which enables a ranking of the most important variables by increase in 

MSE. The measures are scaled based on their respective standard errors (Liaw and Wiener 

2002). Partial dependency plots (PDP) of the phenological metrics were created using the R-

package pdp (Greenwell 2017). These plots allow analyzing the influence of each input 

variable on the response, by individually evaluating the Random Forest model based on the 

variations within one selected variable, while all other variables are fixed to their respective 

mean. However, as PDP’s are useful to analyze the relation between carbon distribution and 

LSP metrics, but do not reveal the relations among the input variables, a principle component 

analysis (PCA) was performed based on the correlation matrix of the phenological metrics. 

Then the carbon values were plotted within the new feature space. Both analyses were 

derived for three RFR models based on all available samples of each study area, considering 

the respective sensitivity analysis threshold. The carbon models were built in the R 

environment (R Core Team 2017) using the tuneRF function of the randomForest R-package 

(Liaw and Wiener 2002) for automated model parameter optimization. 

3 Results 

During the season of interest (2014/15) a total of 46 Landsat ETM+ and OLI observations 

were acquired at 8-day intervals. Cloud coverage and sensor errors led to a reduced effective 

observation density in our study areas, which greatly differed between the dry and the wet 

season. On average, 23 (PESA), 21 (PNCV) and 26 (PETR) observations of our sample 

pixels were available for the whole season. During the dry season, an average of 13 (PESA), 

16 (PNCV) and 17 (PETR) from 20 potential observations were available, in contrast to 10 

(PESA), 5 (PNCV) and 9 (PETR) from 26 during the wet season (Table IV-1). The deviations 

between the fitted and the original EVI values resulted in an average RMSE of 0.018 in the 

PESA sample pixels, where fitted EVI values ranged around a mean of 0.344. Based on the 

PNCV samples the average RMSE was 0.010 and the fitted RBF EVI values had a mean of 

0.238. In PETR the RMSE was 0.013 with a fitted EVI mean of 0.271. The mean allocated 
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aboveground carbon values were 5.47 t/ha in PESA, 3.66 t/ha in PNCV and 4.73 t/ha in 

PETR (Table IV-1). From these dense 8-days Landsat time series pixel-wise seasonal 

phenological metrics were derived for each study area, whenever TIMESAT recognized a 

full season. These metrics, which describe the course of the phenological profiles, enabled a 

standardized interpretability of the results and reduced the amount of model input variables 

from 46 EVI values to 9 phenological metrics per pixel. 

Table IV-1: Average data availability from Landsat ETM+ and OLI observations within the sample pixels for 
the dry (May-September 2014) and wet (October 2014 – April 2015) season, relative to the amount of 
potentially available original observations. The mean RMSE values are based on the deviations between the 
fitted and the original EVI values for each study area. 

 No. of 
samples 

Data 
availability dry 

season [%] 

Data 
availability 

wet season [%] 

Mean RMSE 
(min; max) 

Mean RBF 
EVI 

(min; max) 

Mean allocated 
Carbon [t/ha] 

(min; max) 

PESA 198 63 39 
0.018  

(0.012; 0.024) 
0.344  

(0.204; 0.447) 
5.47 

(0; 15.21) 

PETR 207 85 36 
0.013 

(0.007; 0.018) 
0.271 

(0.176; 0.350) 
4.73 

(0; 20.56) 

PNCV 165 81 18 
0.010  

(0.005; 0.016) 
0.238  

(0.183; 0.299) 
3.66 

(0; 14.63) 

 

The spatial allocation approach, which was used to match field polygons and the 

phenological metrics pixel grid, led to a total of 198 sample pixels in PESA and 207 in PETR 

to be used as input for the carbon models. As some of the data in the 165 PNCV pixel were 

too noisy to derive phenological parameters, 15 pixels were excluded from the carbon 

models. The regression coefficients used for spatial allocation were 2.810 (PESA), 3.973 

(PNCV) and 2.695 (PETR). 

The sensitivity analysis revealed that carbon model performance generally decreased and 

was less stable during 1000 iterations, when fewer samples were included in the model. In 

terms of relative RMSE the models performed best with thresholds of around 0.1. Thus all 

pixels in which less than 10 % was sampled in the field were excluded from further analysis. 

 

Figure IV-3: Results of the regression model sensitivity analysis for each study area. Relative RMSE after 1000 
model runs are shown for each threshold, while the grey ribbons relate to +/- one standard deviation. 
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Carbon model performances differed between the three study areas with averaged R² values 

of 0.69 for PESA, 0.43 for PETR and 0.36 for PNCV and a similar trend in RMSE values of 

1.65 t/ha (relative RMSE 0.30) in PESA, 2.18 t/ha (relative RMSE 0.45) in PETR and 2.35 

t/ha (relative RMSE 0.46) in PNCV (Table IV-2). 

Table IV-2: Averaged model performance measures (R² and RMSE) and related standard deviations after 1,000 
iterations, along with the average descritptive statistics of the carbon measures (t/ha). 

 Threshold Number 
of  

samples 

Mean 
R2 

R2std Mean 
RMSE 

RMSE 
std 

Mean 
relRMSE 

Carbon 
min 

Carbon 
mean 

Carbon 
max 

PESA 0.1 145 0.70 0.06 1.64 0.20 0.29 0.44 5.59 14.92 
PETR 0.1 163 0.44 0.14 2.18 0.44 0.45 1.07 4.88 19.71 
PNCV 0.1 90 0.36 0.11 2.34 0.34 0.46 0.42 5.16 14.22 

 

Despite the differences in model performance, the variable importance ranking was largely 

stable across models, with BV and MfV being ranked as first or second most influential 

variables across all study areas (Figure IV-4). Ranks of further variables varied between the 

study areas, with higher standard deviations in PNCV and PETR. Especially in PETR the 

individual variable importance was small with comparably high standard deviations (Figure 

IV-4). 

The partial dependency plots of important phenological metrics (Figure IV-5) highlight the 

relation between the phenological metrics and carbon distributions. BV and MfV are 

positively correlated to carbon values throughout all study areas. While BV steadily 

increases with increasing carbon values even in data sparse regions, saturations occur in MfV 

when carbon values approximate around 5.7 to 6.7 t/ha. Even though carbon value 

distributions vary among the study areas, the relation between BV and carbon is similar. The 

relation between MoS and carbon is comparable in PESA and PNCV with lower carbon 

values being associated to a later peak of season. Even though the trend is not as clear in 

PETR, it remains comparable to the other regions until mid of season around DOY 54. 

 

Figure IV-4: Mean variable importance measures for the three study areas after 1,000 model iterations. The 
values are scaled using their respective standard errors. Horizontal bars indicate standard deviations. 
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Figure IV-5: Selected smoothed partial dependency plots (PDP) for each study area. Plots are derived by 
validating a RFR model using all available samples of each study area. The additional ticks on the x-axis mark 
the min/max and decile values of the input variable. BV and MfV are shown in EVI * 10000, MoS are shown 
as 8-day temporal bins starting from 01/01/2014. PDP’s of all variables are shown in the supplementary 
material (S IV-1-3). 

Additional to the analysis of the relations between carbon and individual phenological 

metrics, the principal component analysis (PCA) reveals the distribution of carbon values 

within an uncorrelated variable space (Figure IV-6). In PESA the first two axes explain 66% 

of the variance within the phenological metrics. The first axis is defined by EVI-related 

values such as BV and MfV, as opposed to metrics related to the timing of the season such 

as MoS and SoS. The latter are related to smaller carbon values, whereas BV and MfV are 

associated with larger values. The second axis is defined by the negative correlation between 

temporal metrics (EoS and LoS) and EVI related values (RoD and Amp). In PNCV the first 
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two axes of the PCA explain 67% of the metrics’ variation. Here the negative correlation 

between EVI metrics (Amp, BV, MfV) and seasonal timing (SoS) is revealed, where at a 

cluster of rather large carbon values is oriented towards MfV, BV and Amp. The second axis 

is defined by the negative correlation between LoS, EoS and RoD, where average carbon 

values cluster. In the case of PETR, the first two axes of the PCA explain 69 % of the 

variance. The first axis is defined by the temporal metrics MoS and SoS and their negative 

correlation with RoI and MfV, with the latter being associated to rather larger carbon values. 

The second axis is defined by RoD on one side and BV on the other side, with rather equally 

distributed carbon values at both ends.   

 

 

Figure IV-6: Plot of the first two axes of the PCA of the phenological metrics for each study area (numbers in 
brackets report the explained variance within the respective principal component). The angle between the 
arrows depict approximately the correlation between the phenological metrics. The points mark the carbon 
values within the new variable ordination space, while their size refers to the original carbon values. 

 

The carbon distribution was mapped based on the mean of 1,000 model predictions 

throughout the selected study areas (Figure IV-7). The final RF models explained 68 % 

(PESA), 37 % (PETR) and 49 % (PNCV) of the withheld variance on average. The predicted 

carbon values range between 1.8 and 11.8 t/ha in PESA, between 2.4 and 13.1 t/ha in PETR 

and between 1.3 and 9.6 t/ha in PNCV. Standard deviations of up to 1.7 (PESA), 2.7 (PETR) 

and 2.2 (PNCV) mainly relate to predictions for areas with high carbon values. 
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Figure IV-7: Left: Carbon maps for the study areas PESA, PNCV and PETR based on the mean predictions of 
1,000 individual Random Forest regression models for each study area along with the sampling transects in 
red. Right: Corresponding standard deviation maps. 

4 Discussion 

Spatially explicit quantification of aboveground carbon distributions is essential to monitor 

and understand ongoing changes in carbon stocks. In heterogeneous landscapes, such as 

typical for the Cerrado, the spatial and temporal resolution at which we monitor the 

ecosystem play a pivotal role for our ability to map carbon. We therefore analyzed the 

potential of annual LSP metrics, derived from dense 8-day Landsat time series with a spatial 

resolution of 30 m x 30 m, for the spatially explicit quantification of aboveground carbon. 

Using all available satellite observation from Landsat enabled us to assign field based carbon 

values to LSP metrics from Landsat time series that describe the seasonal changes of the 

monitored vegetation as captured in the EVI. 

Our results indicate that the RBF filter ensemble was able to capture the seasonal profile of 

the original observations, with minor deviations from the original EVI values. Using all 

available cloud-free data from Landsat provides a maximum number of observations as the 

basis for fitting the RBF and accordingly data gap fill values represent the best possible 

temporal interpolation. However, the regression model performances reveal a clear relation 
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between the LSP metrics derived from RBF-fitted values and the carbon distributions, with 

similar behavior for the three study areas. It could be observed that along with a decrease in 

the number of samples led to weak and less robust model performances, i.e. an increase in 

relRMSE and the related standard deviations. Our results show that the spatially allocated 

carbon values differ between the three study areas with highest values in PESA, followed by 

PETR and PNCV. This trend is also reflected in the distribution of EVI values and the 

respective phenological metrics and follows the gradient from overall lower (PESA) to 

higher (PNCV) elevations above sea level between the observed areas. 

Although the model performances vary between the study areas they are still within a range 

that is comparable to results from studies dealing with the mapping of carbon in similar 

ecosystems. For example, González-Roglich and Swenson (2016) used, among other 

variables, products derived from Landsat data to map carbon distributions in Argentinian 

savanna regions. Their spatially explicit predictions, based on field samples ranging around 

a mean of 27 t/ha, had a mean prediction error of 9.6 t/ha (relRMSE 35%) at 60 m spatial 

resolution. Karlson et al. (2015) reported model performances with an R² of 0.57 and RMSE 

of 17.6 t/ha (relRMSE 66%) when mapping aboveground biomass in Sudano-Sahelian 

woodlands using multi-temporal (7 observations) Landsat OLI products. Along with the 

abovementioned findings our results stress the complexity and challenges of carbon mapping 

approaches in heterogeneous savanna systems. Here, a critical issue is the influence of 

understory vegetation (grasses and shrubs) on the spectral signal throughout a season. On 

the one hand, we accounted for these variations by interpreting LSP metrics that describe a 

full annual season, as EVI values are known to be sensitive to structural variations in 

vegetation canopies as the canopy background is decoupled from the signal (Huete et al. 

2002). But even though the RBF ensemble approach accounts for data availability through 

adjusted weights, the variations in available observations between the dry and wet season 

still have an influence on the phenological profiles and ultimately the derived metrics. This 

is a limitation that in the future is likely to be overcome by the integration of additional data 

from other sensors, such as Sentinel-2 (Drusch et al. 2012). On the other hand, our samples 

only considered woody vegetation with a diameter of at least 10 cm. Thus, the carbon values 

lack shares of smaller trees and the non-woody vegetation layer, which would require a more 

frequent field sampling design to capture their dynamics. Reported carbon values are 

therefore conservative, in the sense that we will rather under- than overestimate carbon 

stocks. 
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Even though the employed allometric model for deriving carbon values from the field 

measurements is representative for the most abundant plant families within our study areas 

(Vochysiaceae and Fabaceaea), we found differences between the three study areas in 

species composition and abundance. Especially, species that were prominently abundant in 

PNCV and PETR (e.g. vellozia squamanta, virtella ciliata) were not considered for deriving 

the allometric model presented in Rezende et al. (2006). This might influence model 

performances and stresses the importance for refined allometric equations in further 

research. Despite these restrictions in our models, we showed to our best knowledge for the 

first time the benefits of using LSP metrics with a 30 m x 30 m spatial resolution for carbon 

modelling, which in contrast to e.g. raw time series of vegetation indices simplifies further 

analysis of the relation between aboveground carbon and LSP. 

Especially metrics that are directly related to the amount of vegetation, such as base value 

and maximum fitted value, have the potential to explain carbon variations, as they were 

ranked as first or second most important in our regression models. This pattern is also 

revealed by the PCAs that on the one hand show correlations among the LSP metrics but 

also reveal relationships between them and carbon values. In all three study areas, but 

especially prominent in PESA, are clusters of lower carbon values associated to high values 

of variables related to seasonality, such as SoS or MoS. This suggests that vegetation with 

higher carbon densities might be related to an earlier start of season, which is here defined 

as the point in time when 20% of the ascending part of the phenological profile is reached, 

as well as an earlier peak of season. A possible explanation might be the leaf producing 

strategy of some of the (semi-) deciduous species, for which a high activity of leaf production 

could be observed at the end of the dry season (Lenza and Klink 2006; Pirani et al. 2009), 

causing an earlier green-up in the phenological profile. Similar phenological patterns have 

been observed in the western part of the Sudanian Savanna, where a later start of season was 

observed in LSP for areas with higher shares of herbaceous than woody vegetation (Gessner 

et al. 2015).  

The final carbon maps show comprehensive spatial patterns with e.g. high carbon values 

along the riparian vegetation (gallery forests) and the dense forest patches in the lower 

elevations in PESA. Vegetation patterns in very high resolution imagery from RapidEye 

suggest that the region’s heterogeneity is very well reflected in the spatial variations of the 

mapped carbon patterns. The spatially explicit quantification captures the landscape 

composition and highlights the benefits of Landsat’s spatial resolution for estimating carbon 

across different study areas in the Cerrado.  
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The range of mapped carbon values is in line with values found in the literature. Carbon 

values for cerrado sensu stricto are for example summarized in Ribeiro et al. (2011), as well 

as in Vourlitis and da Rocha (2010) and range between 3.3 and 32.5 t/ha (mean 8.5 t/ha) or 

5.0 to 15.9 t/ha (mean 9.7 t/ha), respectively, depending on the regional focus and the 

methods used. However, due to a lack of additional reference data, the maps could not be 

independently validated and especially estimates for physiognomies that were not included 

in the training samples (such as grasslands and dense forests areas) need to be regarded with 

caution. Especially, the carbon-dense areas, e.g. gallery forests and forest patches (e.g. 

seasonal forest and Cerradão) are associated with the highest standard deviations, as they are 

model extrapolations and our models will most likely underestimate carbon stocks in these 

areas. However, as the carbon maps reveal comprehensible patterns, it is highlighted that 

phenological metrics derived from freely available remote sensing data, are a valuable 

contribution to carbon mapping approaches, providing spatially explicit knowledge for 

environmental managers and policy makers in support of sustainable development policies 

related to REDD+ or the UN SDG’s. 

5 Conclusions 

Based on gap-filled 8-day Landsat EVI time series, we derived annual land surface 

phenology (LSP) metrics for cerrado sensu stricto vegetation. The derived metrics enabled 

us to reduce the amount of input data for a following Random Forest regression analysis, 

while preserving the information needed to approximate LSP. They further facilitated 

determining a relationship to the aboveground carbon distribution, with an adequate spatial 

resolution for mapping gradual vegetation transitions in heterogeneous savanna ecosystems, 

such as the Cerrado. Our results are comparable to those of similar studies and we 

successfully identified the relation between the seasonal behavior of cerrado sensu stricto 

vegetation and its carbon distribution. Metrics that are instantly linked to amounts of 

vegetation such as Base value and Maximum fitted value have been shown to be important 

for such a mapping approach. Metrics relating to the timing of phenological events, such as 

start or mid of season showed a weaker relation and were not consistently relevant for carbon 

mapping. We were able to map carbon distributions within the selected study areas, whereat 

higher uncertainties were identified in physiognomies and related carbon values that were 

not well represented by the field sampling. We verified that Landsat based annual LSP 

metrics are beneficial variables to analyze carbon – phenology relations and for the spatially 

explicit quantification of aboveground carbon in heterogeneous ecosystems such as the 



Landsat phenological metrics and their relation to aboveground carbon in the Brazilian Savanna 

71 

Cerrado. In order to improve large-scale carbon mapping efforts, our findings stress the need 

for representative sampling strategies, along with subsequent improvement of allometric 

equations, which together reflect the variability within the observed savanna vegetation 

gradient. Further research should investigate the potential of mapping approaches that 

synergistically combine phenological metrics with variables related to the vertical structure 

of vegetation (such as lidar or radar) and analyze the influence of additional data (e.g. 

Sentinel-2) on the accuracy of the derived phenological metrics. 
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Supplementary Information 

 

 

S IV-1: All partial dependency plots for PESA (Serra Azul State Park, Brazil) for RFR models based on all 
available samples using the threshold 0.1. Metrics that relate to index values are shown in EVI * 10000. Metrics 
related to time are shown as 8-day temporal bins starting from 01/01/2014. 



Landsat phenological metrics and their relation to aboveground carbon in the Brazilian Savanna 

73 

 

S IV-2: All partial dependency plots for PETR (Terra Ronca State Park, Brazil) for RFR models based on all 
available samples using the threshold 0.1. Metrics that relate to index values are shown in EVI * 10000. Metrics 
related to time are shown as 8-day temporal bins starting from 01/01/2014. 
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S IV-3: All partial dependency plots for PNCV (Chapada dos Veadeiros National Park, Brazil) for RFR models 
based on all available samples using the threshold 0.1. Metrics that relate to index values are shown in EVI * 
10000. Metrics related to time are shown as 8-day temporal bins starting from 01/01/2014. 
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1 Summary 

The beginning of the Anthropocene marks the start of an era in which the impacts of humans 

on environmental systems reached a planetary scale (Crutzen 2002; Steffen et al. 2007). 

Approximately half of the Earth’s terrestrial surface has been altered by humans, with severe 

impacts on Earth system processes, such as the global carbon, water, or nitrogen cycles 

(Steffen et al. 2005). Some of the planetary boundaries, which were proposed to set a safe 

operating space for human societies, have already been crossed or are in a zone of 

uncertainty, one of which is Land-system change (Rockström et al. 2009; Steffen et al. 2015). 

A hotspot of land use change processes is the Cerrado, one of Brazil’s largest biomes 

expanding over more than 2 Mkm² and accounting for approximately 24 % of Brazil’s 

terrestrial surface. It provides a wide range of ecosystem services (Lima et al. 2017) and 

functions, such as carbon sequestration and the provision of habitats, which are of national 

and even international importance due to the Cerrado’s very rich biodiversity (Mendonça et 

al. 2008) and it’s huge extent. A growing demand for land resources, technological advances, 

a weak conservation status, and political incentives for the development of the Cerrado 

(Klink and Machado 2005; Klink and Moreira 2002), have led to large scale land conversions 

resulting in a remaining share of around 60% of the Cerrado’s natural vegetation (Sano et 

al. 2010). Expected growing demands on agricultural products, which is considered as a 

direct driver of land use change in Brazil (Lapola et al. 2013), stress the need to design 

policies and conservation strategies that allow a sustainable land use, fulfilling the demands 

for agricultural products, while at the same time maintaining key ecosystem services 

(Strassburg et al. 2017). Spatially explicit information of the Cerrado’s vegetation and its 

seasonal behavior is therefore necessary to deepen our understanding of the ecosystems 

dynamics and their response to global change processes. Remote sensing based approaches 

enable to frequently map ecosystems over large extents and even inaccessible terrain and are 

thus an essential tool for ecosystem monitoring (DeFries et al. 2005). The advent of new 

operational spaceborne sensors, along with open data policies and technical developments 

in terms of data processing and storage capacities, facilitate the analysis of unprecedented 

amounts of remote sensing data (Wulder et al. 2015b). In combination with state-of-the-art 

time series techniques these data have the potential to be beneficial for the analysis of 

heterogeneous ecosystems, where spatial, spectral and temporal resolution matter.  
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The main goal of this thesis was to analyze the benefits of dense Landsat time series to 

capture the annual seasonal response patterns of natural vegetation. Aiming to reveal benefits 

and limitations of the approach for mapping natural vegetation and its phenological patterns 

across large scales, as well as for carbon quantification approaches, in heterogeneous 

ecosystems. The main methodological approach underlying all analyses is a radial basis 

convolution filter (RBF), which enables to fill data gaps in time series of combined Landsat 

ETM+ and OLI vegetation indices. This resulted in gap free 8-day Landsat time series, which 

were further used to derive land surface phenological (LSP) metrics that describe the 

seasonal response of the observed vegetation.  

The following section summarizes the main findings of the thesis’s core chapters (II – IV) 

alongside the three main research questions, which are introduced in more detail in chapter I. 

Research Question I: Can land surface phenological metrics be used to differentiate the main 

vegetation physiognomies in the Cerrado? 

The focus of chapter II was to introduce and test a gap filling approach for its applicability 

in differentiating the main vegetation physiognomies of the Cerrado. These differ in their 

structural composition, their vegetation density and hence in their amount of stored carbon, 

rendering them an appropriate proxy for carbon estimations. To compare their seasonal 

response patterns concerning LSP metrics, Landsat top-of-atmosphere images that cover 

three study areas around Brasília, DF, were downloaded and transformed to tasseled cap 

greenness, brightness and wetness values. After removing clouds and outliers from the time 

series, the resulting data gaps have been filled based on radial basis convolution filters. This 

approach is comparable to a moving average filter, whereas the resulting filtered value is 

weighted based on a Gaussian distribution with a specific kernel width, rather than a simple 

average. An ensemble of three kernel widths (integrating 19, 31 or 43 potential observations 

of the time series) was used, to derive values that are representative for dense as well as for 

sparse data situations. The final values are the average of the three kernels, weighted by the 

data density of clear observations within each kernel. Based on reference maps and high 

resolution Google Earth imagery, a set of training samples was derived for each of the main 

Cerrado vegetation physiognomies. Direct comparisons of the phenological profiles derived 

from the time series already revealed trends in the seasonal response of the distinct 

physiognomies. The main result of this chapter was that, on average, dense physiognomies 

with high trees and more closed canopies, like cerradão or cerrado denso, tend to have an 

earlier start of season and less variation throughout the season in comparison to 
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physiognomies such as cerrado sensu stricto or campo sujo. Similar seasonal response 

patterns could be observed in all three tasseled cap components greenness, brightness and 

wetness. From the tasseled cap time series land surface phenology (LSP) metrics were 

derived, which enabled a more direct interpretation and comparison of the seasonal response. 

Again clear trends between the physiognomies seasonal response, in terms of the distribution 

of LSP metrics, were recognizable. Especially metrics such as Base value and Rate of 

decrease showed clear differences between the physiognomies for example with lower Base 

values for sparse and higher for dense physiognomies. The derived LSP metrics were further 

used to train and apply a Support Vector Classification. The resulting map showed 

comprehensible spatial patterns of the main physiognomies in comparison to available 

reference maps. However, a quantitative accuracy assessment showed that the main 

confusion was between adjacent classes, due to mixed pixel problems and non-independent 

physiognomy classes. Leading to the conclusion, that hard classification approaches are 

problematic in heterogeneous ecosystems, where the vegetation describes a rather 

continuous gradient in density and structure.   

After this initial test concerning the applicability of Landsat derived LSP metrics and their 

use to reveal differences in the vegetation’s seasonal response, chapter III investigated the 

spatial distribution of LSP metrics across the entire extent of the Cerrado.   

Research Question II: What are the spatial patterns of LSP metrics in the natural vegetation 

across the entire Cerrado? 

To gain insights into the spatial distribution of vegetation with a similar seasonal response, 

LSP metrics were analyzed for the whole extent of the Cerrado. These metrics were derived 

from a dense gap filled 8-day Landsat ETM+/OLI time series of EVI Collection 1 products 

for the season 2014 - 2015. A total of approximately 23,000 EVI products in 121 WRS-2 

tiles were acquired and processed. This was for the first time that spatially explicit LSP 

metrics were derived for the whole extent of the Cerrado with a 30 m spatial resolution. In 

order to focus the analysis on areas of the remaining natural vegetation, all other land use 

classes were masked from the LSP map based on the TerraClass Cerrado classification 

(MMA 2015). A map of selected LSP metrics (Amplitude, Base Value, Start of Season) 

revealed regions of vegetation with similar seasonal response across the Cerrado. However, 

for the interpretation of all LSP metrics they were clustered based on an unsupervised k-

means algorithm. This resulted in a total of eight clusters of LSP similarities, which were 

proposed as LSP archetypes of Cerrado vegetation. Based on previous findings from chapter 
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II, relations between the LSP archetypes and Cerrado vegetation physiognomies were 

assumed. Even though a visual comparison of the LSP archetypes with high resolution 

Google Earth imagery revealed somewhat matching patterns, directly assigning vegetation 

physiognomies to LSP archetypes is not straightforward. While the physiognomy classes are 

defined by vegetation structural parameters (Ribeiro and Walter 2008), LSP metrics reflect 

the seasonal dynamics of the observed vegetation as captured in EVI variations. Thus, they 

do not solely relate to the vegetation’s structure but also to the species composition and other 

environmental factors that determine the vegetation’s seasonal response.  

A first assessment of the archetype patterns was performed by comparing the revealed 

patterns with Cerrado ecoregions. These were defined in order to set conservation priorities 

and their extents are defined by natural boundaries, determined by various biotic and abiotic 

factors. Some of the ecoregions showed a good match with regions of similar LSP 

archetypes, while in other regions areas of contiguous archetypes crossed the boarders of 

several ecoregions. One outstanding example was the Bananal ecoregion, which is 

characterized by flat plains, rivers and interfluvials, in which the spatial distribution of LSP 

archetypes revealed more than relations to structural parameters. As ecoregions were defined 

without spatial explicit information on the vegetation’s phenology, the two concepts might 

complement each other for the spatial explicit adaptation of conservation and land 

management strategies.   

However, at this stage it cannot be assessed to which extent LSP archetypes are determined 

by vegetation structure, species composition or other influencing factors. This should be 

investigated in follow-up studies with adequate (field) reference data, for which the spatial 

resolution of 30 m is sufficient. As a first step in this direction the relationship between LSP 

metrics and above ground carbon (AGC) was assessed in chapter IV. 

Research Question III: What is the relationship between Landsat based land surface 

phenological metrics and above ground carbon? 

In the fourth chapter of this thesis, LSP metrics were derived from gap-filled L1T corrected 

Landsat ETM+/OLI EVI time series for three study areas distributed in the central Cerrado. 

Based on the hypothesis that EVI time series reflect the seasonal dynamics of photosynthetic 

biomass, the relationship between LSP metrics and AGC was assessed. To overcome the 

limitations of hard classifications, a regression approach was used in order to improve the 

accuracy of spatially explicit carbon quantifications. Extensive fieldwork was carried out in 

the three selected study areas that are characterized by the cerrado sensu stricto 
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physiognomy. Parameters that enable the estimation of AGC stored in vegetation were 

measured, along defined field plot transects. Using allometric equations, AGC values were 

calculated on an individual tree level and aggregated to each field plot with a size of 

approximately 10 m x 20 m. To spatially allocate the field plot measures to the pixel level 

they were overlaid with a 30 m x 30 m grid and an additional high resolution (RapidEye) 

vegetation index layer. Based on derived regression coefficients, AGC values for unsampled 

pixel regions were extrapolated (see Appendix A). Random Forest regression models were 

used to analyze the relation between LSP metrics and AGC, for each study region 

individually. Overall model performances varied between the three study areas, but were still 

comparable to accuracies reported in other studies, stressing the complexity of AGC 

estimations. The results revealed that metrics that are directly linked to vegetation density 

such as Maximum fitted value and Base value were the most important variables to describe 

AGC throughout all study areas, whereas the importance of metrics related to the timing of 

the seasons, differed between the areas. The regression models allowed mapping the spatial 

distribution of AGC in the three study areas, which revealed comprehensible patterns when 

compared to high resolution imagery. Higher uncertainties could be observed in areas that 

were not represented in the field samples. Overall, the analysis led to the conclusion that 

LSP metrics derived from dense Landsat time series are valuable variables for the spatially 

explicit quantification of AGC.  

2 Main conclusions 

This thesis aimed at assessing the benefits of land surface phenological metrics, derived from 

dense Landsat time series, for the characterization of vegetation in a heterogeneous savanna 

ecosystem, in terms of its phenological diversity and patterns of above ground carbon. The 

results presented in this thesis allow to draw the following main conclusions. 

Combining acquisitions from the Landsat ETM+ and OLI sensors with state of the art gap 

filling techniques enable large scale analyses of seasonal vegetation dynamics in the 

Cerrado. 

The overall Landsat data availability was sufficient to generate equidistant time series for 

the Cerrado, even though the data acquisition during the wet season is frequently hampered 

due to clouds (chapter IV). Data gaps, which were due to cloud contamination and sensor 

errors could be filled by applying an ensemble of radial basis convolution filters. This gap-

filling approach allowed to generate equidistant time series at 8 - day intervals and 30 m 
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spatial resolution covering the entire extent of the Cerrado. This was facilitated by the 

Landsat archive consolidation (Wulder et al. 2015b) and especially the between sensor data 

harmonization (USGS 2018). The latter includes precise geometric correction and across 

sensor calibration in Collection 1 data (USGS 2017b), enabling the combined usage of data 

from different Landsat sensors for time series analysis (USGS 2018). The results presented 

in the three core chapters did not provide evidence for lacking inter-sensor calibration or 

major differences between the vegetation indices derived from both sensors. Further, the 

results indicated that not only the bare amount of clear observations is important to 

appropriately capture the vegetation dynamics but that observations distributed around the 

seasonal peak are vital for characterizing Cerrado vegetation.  

Deriving land surface phenology (LSP) metrics from dense time series enables the 

interpretation of intra-annual vegetation dynamics.  

Dense Landsat time series reflect the seasonal dynamics of the observed vegetation in 

individual vegetation index values in 8 - day intervals, complicating their direct 

interpretation, especially over large extents. Even though the fitted time series values may 

be used as input for classification or regression approaches, they do not allow to reveal and 

interpret relationships between the dependent and independent variables. Deriving LSP 

metrics, however, facilitates the comparison and interpretation of resulting spatial patterns, 

as they describe the seasonal response of the observed vegetation. Hence, LSP metrics enable 

further contextualized analyses in an ecologically meaningful way.  

Discrete classification approaches of vegetation physiognomies pose challenges in complex 

ecosystems such as the Cerrado. 

The results of chapter II show that LSP metrics as derived from Landsat time series are 

beneficial for the mapping of physiognomies on a 30 m spatial resolution. However, the 

class-wise accuracy assessment indicates problems arising from non-independent “hard” 

classes in a vegetation gradient, defined by rather arbitrary boundaries (Oliveira-Filho and 

Ratter 2002). In an ecosystem, which is characterized by environmental gradients, this leads 

to mixed pixel problems, distorting the classification results with the main confusion being 

between adjacent classes. Landsat LSP metrics are thus, to a certain level of thematic detail, 

beneficial for the mapping of natural vegetation patterns with a 30 m spatial resolution, but 

map accuracies are strongly dependent on the defined class boundaries.  
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The LSP archetypes offer potential to enhance existing vegetation mapping concepts  

Based on the results from chapter II and the resulting spatial patterns of the LSP archetypes 

presented in chapter III, the assumption can be made that LSP metrics derived from Landsat 

capture the environmental gradient with higher thematic and spatial detail than is considered 

in current physiognomy maps. While physiognomy classes mostly relate to the structural 

diversity of the vegetation, LSP archetypes capture the general phenological diversity of the 

observed vegetation communities. Even though they relate to the vegetation’s structure, LSP 

metrics describe the phenological response of the vegetation, which is also influenced by 

species composition as well as other environmental factors, such as soil conditions or terrain.   

LSP metrics are beneficial for spatially explicit carbon quantifications 

Seasonal dynamics of photosynthetic active vegetation are captured in LSP metrics. The 

results of chapter IV revealed the relationship between LSP metrics and AGC, which enabled 

the spatially explicit estimation of AGC. In particular metrics that relate to vegetation index 

values at the start, peak, and end of season had the most influence in the regression models. 

LSP metrics should thus be considered as valuable input variables for direct carbon 

quantification approaches, which are not restricted by pre-defined physiognomy classes that 

do not allow to account for intra-class variability. 

3 Implications 

The proposed analysis of dense Landsat time series revealed a large potential for enhancing 

ecosystem monitoring approaches in the Cerrado. Currently, maps of Cerrado vegetation 

physiognomies are widely used, for example, to assess conservation status (Pinto et al. 2009) 

as well as to gain knowledge of vegetation dynamics and related impacts on biogeochemical 

cycles (Sano et al. 2010). Even though these maps are very accurate, they are largely based 

on image segmentation and visual interpretation. In comparison to Landsat based 

classification approaches, they lack the spatial detail that accounts for the heterogeneity of 

the Cerrado landscape, even within the individual vegetation physiognomies (MMA 2017). 

Combining Landsat ETM+ and OLI data with a gap-filling approach and TIMESAT enabled 

the spatially explicit analysis of LSP patterns and facilitated to analyze their potential to 

benefit vegetation monitoring and carbon quantifications on test sites in the Cerrado. The 

software package TIMESAT was originally developed for the analysis of coarse scale 

AVHRR data (Jönsson and Eklundh 2002) and later adapted for the use of other remote 
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sensing data sets with high and equidistant observation frequency, such as MODIS. 

However, TIMESAT is still not widely used for the analysis of data with a medium spatial 

resolution such as Landsat, due to its relatively low temporal resolution. The gap-filling 

approach used, enabled to overcome this limitation and revealed for the first time the 

potential of Landsat data to capture phenological diversity, as expressed by LSP metrics, 

with a 30 m spatial resolution. This has substantial implications for the future use of time 

series of medium spatial resolution satellite imagery, as it allows for the analysis of seasonal 

vegetation dynamics over large extents. Due to the temporal depth of the Landsat data 

archive these dynamics can even be derived for the past decades, enabling the analysis of 

long-term LSP trends. However, the availability and distribution of clear observations is a 

limiting factor of the approach, which needs to be kept in mind when analyzing long-term 

trends. 

The proposed method to create spatially explicit phenological information from Landsat data 

is potentially beneficial for a range of applications, such as biodiversity assessments, for 

which the use of phenological information is widely discussed. Even though phenological 

field observations, that directly relate to events such as bud burst, flowering, seeding, etc., 

differ substantially from LSP measures, the latter are considered as an important spectral 

trait for the quantification of biodiversity (Lausch et al. 2016). LSP has also been proposed 

as a candidate essential biodiversity variable relating to ecosystem functioning, in order to 

track progress towards Aichi Biodiversity Targets (O'Connor et al. 2015; Skidmore et al. 

2015). Recent results presented by Viña et al. (2016) revealed for example significant 

relationships between LSP and floristic similarities and underpinned the use of Landsat 

spatial resolution over coarse scale approaches using MODIS for biodiversity monitoring. 

Their findings also highlight that the vegetation index used should be appropriate for the 

intended application. The radial basis convolution filter approach is a generic algorithm that 

can be used to fill data gaps independent of spectral bands or indices of interest and is thus 

broadly applicable and offers a strong transferability potential.  

Since this thesis focused, among others, on improving carbon mapping approaches, the EVI 

was used as it is robust towards saturation in high biomass vegetation. EVI based LSP 

metrics reflect the seasonal dynamics of photosynthetic activity, resembling a direct link 

between the biosphere and the atmosphere, and were hence considered as an appropriate 

variable for improving carbon estimation approaches. Usually, official carbon or biomass 

estimations that are used for Brazil´s national reports in the framework of REDD+ or 

National GHG Inventories of the UNFCCC, are based on vegetation physiognomy maps to 
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which rather static carbon values are assigned (MCT 2016; MMA 2017). These estimates 

are thus generalizations that do not account for detailed spatial heterogeneity, which is 

particularly relevant in the Cerrado. The results of chapter IV revealed the relation between 

LSP metrics and AGC as well as the benefits for its spatially explicit quantification. Even 

though model performances varied between the study areas, LSP metrics enabled to quantify 

AGC without being reliant on physiognomy classes and associated restrictions. They are 

thus appropriate variables to refine spatially explicit carbon estimations, an important 

prerequisite for future mapping approaches. 

4 Outlook 

LSP metrics derived from dense Landsat time series have been shown to be valuable for 

characterizing vegetation properties in heterogeneous ecosystems. The robustness of the 

derived LSP metrics was assessed through the validation of the individual mapping and 

regression approaches, but was not compared to actual in-situ phenological patterns. The 

discrepancy between LSP and on-ground phenology is a well-known problem and an active 

field of research (Coops et al. 2012; Rodriguez-Galiano et al. 2015). It has thus to be kept in 

mind that the patterns and dynamics captured in LSP do not reflect the actual phenological 

behavior of individual plants, but rather the seasonal dynamics of vegetation communities. 

Follow-up studies should further investigate, which of the environmental factors that 

influence the vegetation’s phenology, are actually reflected in the individual LSP metrics.  

Despite this drawback, the approach has the potential to be transferred to other savanna 

regions, which cover 10-30% of the global terrestrial surface (Viergever et al. 2008) and act 

as major carbon sources and sinks (Pellegrini et al. 2016). However, capturing the intra-

annual dynamics of vegetation requires sufficient data density as well as an appropriate 

seasonal distribution of clear observations, which might be hampered in some regions of the 

world and is thus a limitation of the approach. Integrating data from additional optical 

sensors to the time series can help to overcome such limitations, for instance low observation 

density in the wet season due to cloud contamination. For example, the combined use of 

Landsat and Sentinel - 2 a/b (Drusch et al. 2012) data leads to an improved temporal 

resolution of 2 – 4 days (Claverie et al. 2016). Harmonization that allows for combining data 

from the Landsat and Sentinel - 2 sensors is currently an active field of research (e.g. Flood 

2017), as the data need for example to be corrected for spatial misregistrations (Storey et al. 

2016), BRDF effects and band pass differences (Claverie et al. 2016; NASA 2018).  



Synthesis 

85 

Future research should further analyze the effects of the combined use of LSP metrics with 

complementary remote sensing data beyond the optical domain, to fully exploit the potential 

of the entire suite of operational spaceborne sensors (Wulder et al. 2015a). For example, data 

or derived products from Radar or Lidar sensors have the ability to capture the vertical 

structure of vegetation, which is beneficial for carbon estimation approaches (eg. Asner et 

al. 2012; Bouvet et al. 2018; Mitchard et al. 2009). Freely accessible Radar data from 

Sentinel - 1 (Torres et al. 2012) and the forthcoming missions BIOMASS (Le Toan et al. 

2011), or the spaceborne Lidar ICESAT - 2 (Abdalati et al. 2010), will facilitate the 

combined use with LSP metrics.  

Georeferenced field data that account for the variability in vegetation and environmental 

conditions are necessary, to enable spatially explicit carbon estimations over large extents. 

The provided LSP archetypes map of the Cerrado could be used as a valuable tool for an 

appropriate field sampling design. There is further a need to refine allometric equations, 

which are used for deriving vegetation carbon contents on an individual tree level, and hence 

are critical for the accuracy of carbon estimations (Chave et al. 2004). These challenges for 

improving mapping and monitoring of ecosystems over large extents, stress the need for 

research collaborations between ecologists and remote sensing scientists. Therefore, the 

exchange among the research domains and open access to field data as well as remote 

sensing data must be enabled (Bustamante et al. 2016). Recent trends in data policies and 

the advent of peer reviewed journals that strive to enhance the communication among 

research communities indicate a positive trend in this direction (Pettorelli et al. 2014).  

Joint efforts will increase the robustness of carbon quantification approaches, as well as 

biodiversity assessments (Bustamante et al. 2016). Both are critical to deepen our 

understanding of ecosystem dynamics and responses to global change processes. This thesis 

contributed to these efforts by highlighting the benefits and limitations of LSP metrics for 

the spatially explicit characterization of Cerrado vegetation. Facilitated through 

technological advances and the availability of unprecedented amounts of high quality remote 

sensing data, the approach can be transferred to other regions of the world. It may thus be 

used to support the design of sustainable land use policies and conservation strategies that 

fulfill the demands of a growing world population, while at the same time maintaining key 

ecosystem services and functions to stay within safe planetary boundaries. 
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Abstract 

In times of rapid global change, ecosystem monitoring is of utmost importance. Combined 

field and remote sensing data enable large-scale ecosystem assessments, while maintaining 

local relevance and accuracy. In heterogeneous landscapes, however, the integration of field-

collected data with remote sensing image pixels is not a trivial matter. Indeed, much of the 

uncertainty in models that rely on remote sensing to map larger areas depends on field data 

integration. In this study we propose to use fine spatial resolution remote sensing data as 

auxiliary information for upscaling field-sampled aboveground carbon data to target (meso-

scale) image pixels. We also aim at assessing the effects of field data disaggregation, 

extrapolation and their joint effects, on its upscaling, with and without auxiliary data. We 

test this on three study sites in heterogeneous landscapes of the Brazilian Savanna. We thus 

compare two methods that use auxiliary data - surface method, which uses a weighting layer; 

and regression method, which applies a regression model - with one method without 

auxiliary data - cartographic method. To evaluate our results, we compared observed vs. 

estimated aboveground carbon values (for known samples) at the pixel level. Additionally, 

we fitted a random forest regression model with the assigned carbon estimates and the target 

satellite imagery, and assessed the influence of the fraction of extrapolated vs. sampled 

carbon values on model performance. We observed that, in heterogeneous landscapes, the 

use of fine spatial resolution remote sensing data improves the upscaling of field-based 

aboveground carbon data to coarser image pixels. Our results also show that a surface 

method is more suitable for spatial disaggregation, while a regression approach is preferable 

for extrapolating non-sampled pixel fractions. In our study, larger datasets, which included 

a higher proportion of estimated values, generally delivered better models of aboveground 

carbon than smaller datasets that are assumed to more reliably reflect reality. Our approach 

enables to link field and remote sensing data, which in turn enables the detailed mapping of 

aboveground carbon in heterogeneous landscapes over large areas through the optimized 

integration of field-data and multi-scale remote sensing data. 

1 Introduction 

In times of rapid global change, with implications on ecosystem functioning and the services 

provided (Cardinale et al. 2012; Foley et al. 2005), the monitoring of ecosystems is of utmost 

importance. Indeed, only through monitoring it is possible to assess the degree and patterns 

of change to further develop adequate mitigation and adaptation strategies (Turner et al. 
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2007). International programs towards mitigating the effects of climate change and halting 

biodiversity loss, such as the United Nations Reducing Emissions from Deforestation and 

Forest Degradation (REDD+) program or the Aichi Biodiversity Targets set by the 

Convention on Biological Diversity require frequent monitoring of carbon stocks and 

biodiversity at a global scale (Running et al. 1999; Schmeller et al. 2015), including the 

definition of Essential Climate Variables (ECV; GCOS 2018) and Essential Biodiversity 

Variables (EBV) (Pereira et al. 2012). 

Field-based monitoring schemes form the basis of our knowledge on e.g. stored carbon of 

ecosystems. Implementation costs render field-based assessments being best suited for local 

studies, while broad-scale monitoring, e.g. for nation-wide or even larger assessments, is 

usually unfeasible (Bustamante et al. 2016). The use of remote sensing data, on the other 

hand, allows cost-effective ecosystem monitoring for large areas (Hansen et al. 2013; Petrou 

et al. 2015), although with limited applicability at local scale (Burivalova et al. 2015). 

Continuous large-scale ecosystem monitoring therefore requires permanent monitoring plots 

distributed over large-areas, such as the Long Term Ecological Research Network 

(Magnusson et al. 2005; Magurran et al. 2010) or National Forest Inventories (Blackard et 

al. 2008). Data from these monitoring schemes, providing that the location of the plots is 

precisely recorded, can then be integrated with remote sensing data for broad-scale 

assessments of e.g. carbon stock or biodiversity (Bustamante et al. 2016; McRoberts and 

Tomppo 2007). Combined remote sensing and field survey data can thus address our needs 

for large-scale ecosystem assessments, while maintaining local relevance and accuracy 

(Boisvenue et al. 2016; Zheng et al. 2007).  

The upscaling of field data (e.g. forest inventory data) to remote sensing pixels in managed 

and homogeneous environments is usually done by recurring to e.g. (tree) density measures 

at the plot level which can then be assigned to the image pixels (Tuominen et al. 2010; 

Wulder et al. 2008). In natural, heterogeneous landscapes, it is however unfeasible to 

accurately assign density values to heterogeneous plots (Thessler et al. 2005), and the 

combination of field and remote sensing data becomes a difficult task which usually involves 

integrating point or polygon-based datasets with image pixels (He et al. 1998). On the one 

hand, assigning field data to a target image pixel may require the disaggregation and 

interpolation between field-based samples (He et al. 1998; Zheng et al. 2007), an area of 

active research - most particularly in demographic and climatological studies (Chen et al. 

2015; Langford 2006). On the other hand, when the sample units are smaller than the image 

pixels, the proportions of pixels not fully covered by the field data need to be extrapolated. 
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The sample-to-pixel data integration allows subsequent analysis at the pixel level and hence 

at the full area covered by the image. Such analyses include, e.g., modeling the aboveground 

carbon of a particular region by fitting the pixel-allocated sample data to the respective 

remote sensing data. 

In this study, we propose the use of fine spatial resolution remote sensing data as auxiliary 

information for upscaling field-sampled aboveground carbon data to target, meso-scale, 

image pixels in heterogeneous landscapes. We also aim at assessing the effects of data 

disaggregation, extrapolation and their joint effects, on the respective data integration, with 

and without auxiliary data. We illustrate our approach with a case-study where we upscale 

aboveground carbon data derived from field-based vegetation inventory data, collected in 

small sample plots of up to 10 x 10m2, to the pixel grid of spaceborne hyperspectral data. 

These data, by systematically describing the Earth’s surface in a very detailed manner, has 

great potential for ecosystem monitoring and aboveground carbon mapping (Leitão et al. 

2015). Indeed, pioneer studies have made use of spectral indices derived from hyperspectral 

Hyperion data for modeling aboveground biomass in both grassland and woody vegetation 

(Psomas et al. 2011; Zandler et al. 2015), or estimating forest structure and diversity 

parameters (Kalacska et al. 2007). While spaceborne hyperspectral programs are underway 

(Guanter et al. 2015; Lee et al. 2015), their planned meso-scale pixel (30 x 30 m2) pose 

problems for sample to pixel allocation, particularly in heterogeneous environments. In this 

study, we use data from the EO-1 Hyperion sensor (Pearlman et al. 2001) as a precursor of 

future hyperspectral missions (currently discontinued).  

Here we focus in three study sites in the Brazilian Neotropical savannah (Cerrado), a highly 

heterogeneous system, which consists on a mosaic of different vegetation physiognomies 

(Schwieder et al. 2016). Our hypothesis is that the use of auxiliary data from a high spatial 

resolution sensor (such as RapidEye) improves the upscaling of field-sampled aboveground 

carbon data to the image pixels, particularly in such heterogeneous landscapes, ultimately 

enabling its use for carbon mapping across larger regions. Indeed, a recent study by 

González-Roglich and Swenson (2016) also used high spatial resolution satellite data for 

estimating tree cover in a savannah in Argentina, which was later related to carbon values. 

High spatial resolution satellite data, although not available to an extent that allows for large 

area mapping, could be used for the upscaling field samples. We thus tested several methods 

of incorporating auxiliary information for integrating these data. Finally, we investigate the 

importance of data quality for the resulting model performance by using random forest 
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regression models to fit different sets of pixel-based aboveground carbon data to 

hyperspectral data. 

2 Data and Methods 

2.1 Remote sensing data 
To improve the upscaling of field-based aboveground carbon values to the target pixel level, 

we used auxiliary data derived from high spatial resolution RapidEye data (Figure A-1). The 

RapidEye program is a constellation of five identical spaceborne optical sensors. It covers 

the visible (VIS) and near infrared (NIR) portion of the electromagnetic spectrum in 5 bands 

with bandwidths ranging from 40 to 90 nm. A particularly interesting feature in RapidEye 

data is the so called “red edge band” that covers the spectral region between 690 and 730 nm 

and makes the data especially valuable for characterizing vegetation condition and 

structure(Gitelson et al. 1996; Gomes and Maillard 2015). RapidEye data are processed and 

delivered as individual tiles (25 x 25 km2) with a ground sampling distance (spatial 

resolution) of 5 m. In this study the Level 3a ortho-rectified product was used, which was 

already corrected for radiometric, geometric and sensor specific effects. For all three study 

sites we used nearly cloud free data, which were acquired close to the dates of the field 

surveys (Table A-1).  

These data were radiometrically corrected by applying a dark object subtraction (Chavez Jr. 

1996), for subsequent analysis. Finally, we derived the Red Edge Normalized Difference 

Vegetation Index (RENDVI; Peng and Gitelson 2012), following the formula: 

NIR RERENDVI
NIR RE

−
=

+
ρ ρ
ρ ρ

  (Eq. A-1) 

where NIR are the reflectance values on the Near Infrared spectral band (band 5: 760 - 850 

nm) and RE are the reflectance values on the Red Edge band (band 4: 690 - 730 nm). This 

spectral index retrieves information relevant for describing vegetation productivity (Peng 

and Gitelson 2012), being thus suitable for use as auxiliary data for the spatial allocation of 

vegetation and above ground carbon, respectively. 
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Figure A-1: Spatial allocation of the field-based data to the target (Hyperion) pixels in one of the sample 
transects. The sample polygons along one transect are represented by the grey polygons, the dashed polygons 
are those where tree allometric data were collected and the hollow polygons are those where no data were 
collected. The target (Hyperion) pixels are represented in black. The weighting layer (in this case the Red Edge 
Normalized Difference Vegetation Index calculated from RapidEye data) is represented in the background in 
grayscale. 

 
 

Table A-1: Overview of the remote sensing and field data used in this study along with their acquisition dates. 

Study Site Field data RapidEye Hyperion 
PESA 02/2012 - 05/2014 21/07/2014 27/06/2014 
PNCV 08/2014 - 05/2015 07/09/2014 15/04/2015 
PETR 05/2014 27/06/2014 29/06/2014 

 

We used spaceborne hyperspectral data from the Hyperion sensor on board of the Earth 

Observing-1 (EO-1) platform as target remote sensing data (Figure A-1), to which the 

aboveground carbon data should be registered for subsequent modeling (Table A-1). The 

EO-1 satellite was launched as a scientific demonstrator in 2001, and while it was originally 

planned for a lifetime of one year it has recorded multispectral and hyperspectral data until 

March 2017 (Pearlman et al. 2001). This doesn’t come without problems and the near “end-

of-life” Hyperion data came with many different issues, such as data striping, pixel shift, and 

a low Signal-to-Noise ratio, etc. (Scheffler and Karrasch 2014). The Hyperion data was 

radiometrically corrected, including correction for pixel shifts, striping, keystone and smile, 
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as well as atmospheric effects. The visible and near infrared (VNIR, 400 – 1,000 nm) and 

the shortwave infrared (SWIR, 1000 - 2500 nm) detectors, which separately record 

electromagnetic radiation in their respective wavelength ranges, were co-registered (Datt et 

al. 2003; Rogass et al. 2014a; Rogass et al. 2014b). Data were spatially subsetted to the 

respective study regions (Figure A-2) and co-registered using precision terrain-corrected 

(L1T) Landsat OLI scenes for spatial consistency across all study areas. Erroneous or noisy 

spectral bands were interactively screened and excluded. Data were spectrally smoothed 

with a Savitzky-Golay filter (Miglani et al. 2011; Savitzky and Golay 1964). This resulted 

in a total of 83 spectral bands per Hyperion image (from the original 242), covering the 

visible, near and shortwave infrared portions of the electromagnetic spectrum. 

 

Figure A-2: This study is located in three sites in the Brazilian Cerrado: Parque Estadual da Serra Azul (PESA), 
Parque Nacional da Chapada dos Veadeiros (PNCV) and Parque Estadual de Terra Ronca (PETR). Above, the 
Cerrado is depicted in dark grey (right), and the study sites located with a triangle. Below are represented the 
three study sites, with the respective parallel trails that define the sampling scheme, overlaid on the near 
Infrared spectral band (b5) of the respective RapidEye image. 
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2.2 Study sites and field data 
Our study is located in three sites in the Brazilian neotropical savannah (Cerrado; Figure 2): 

Parque Estadual de Terra Ronca (PETR), Parque Nacional da Chapada dos Veadeiros 

(PNCV) and Parque Estadual da Serra Azul (PESA). These sites can be considered 

characteristic of the typical savannahs of the central Cerrado, while representing well its 

variability, ranging from a low altitude sandy savannah (PETR) to upland savannahs on rock 

(PNCV) or deep soil substrates (PESA). The Cerrado covers ca. 20% of Brazil's land surface 

and it holds the richest biodiversity of all of the world's savannahs (Francoso et al. 2016). 

This system is, however, mostly unprotected and highly threatened thus constituting a global 

biodiversity hotspot (Klink and Machado 2005; Myers et al. 2000) which requires 

monitoring. For all sites, vegetation inventory data were collected, following a common 

scheme within the Program for Biodiversity Research (PPBio)(Pezzini et al. 2012), using 

the RAPELD principle designed for sampling the Cerrado (Magnusson et al. 2005; Teixeira 

2015). This methodology implements an integrated sampling of vegetation biomass and 

multi-taxa biodiversity data in a standardized manner, thus allowing research on the linkages 

between carbon and biodiversity (Bustamante et al. 2016; Teixeira 2015). 

The data were collected on a system of trails and plots, following a systematic scheme, as 

follows. It consists of two 5 km long parallel trails with a distance of 1 km between them, 

placed in a manner that fit fully within natural vegetation areas. Along each trail five plots 

were located 1 km apart from each other (at marks 500 m to 4500 m, counting from the 

beginning of the trail). Each sampling plot consists of a 250 m center line that follows the 

elevation contour, with a varying width, according to the taxon sampled (Pezzini et al. 2012; 

Teixeira 2015). Each plot was further segmented in subplots of ca. 10 m length, in a total of 

25 per plot. According to the sampling design, trees with a diameter at breast height of 10 

cm or more were sampled in two 10 m wide adjacent sections (sample polygons) on each 

side of the central line, for each subplot (Figure A-1; Figure A-2). In the cases where the plot 

crossed an obstacle (such as a road or river stream), or when adjacent subplots had too much 

overlap (depending on topography) some subplots were excluded and compensated at the 

end of the plot line, thus guaranteeing the sampling of 25 subplots per plot (Teixeira 2015). 

In this study we considered only data collected in plots covering savannah vegetation, 

although with varying density (Table A-1). Also, data with missing spatial reference was 

excluded. In total we considered 8 sampling plots in PESA, 6 in PNCV and 8 in PETR. The 

floristic inventory data were converted into aboveground carbon, following general 

allometric equations for the region (Rezende et al. 2006). 
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2.3 Disaggregation and extrapolation of aboveground carbon data 
With the aim of testing the use of auxiliary data, from fine resolution remote sensing data, 

for upscaling field-collected aboveground carbon data into the meso-scale pixel grid cells, 

these data had to be initially disaggregated and then extrapolated into this grid. Spatial data 

disaggregation (interpolation) and extrapolation methods can be divided into three main 

types (Fisher and Langford 1995): cartographic, surface and regression methods. A simple 

cartographic method is the areal weighting method. Spatial interpolation or extrapolation is 

achieved by overlaying the target zones (e.g. pixels) on the source zones (e.g. field sample 

units or sample polygons) and determining the areas of intersection. Last, the values of the 

target zones are derived from the sum of the component portion of the source zone values. 

Another cartographic method is the dasymetric method, which assigns known weights (e.g. 

tree density) to different zones of the area of analysis that are considered to be homogeneous 

(Eicher and Brewer 2001) (Su et al. 2010). Surface methods. In comparison, are based on 

the mathematical assumption that the target values follow a continuously varying probability 

distribution. These methods thus require the input of auxiliary data in the form of a surface 

grid, to be used as weighting layer for the spatial disaggregation or extrapolation of the 

source values. Surface methods can be considered an extension of dasymetric mapping to a 

continuous weighting grid, rather than discrete classes with specific weights. Finally, 

regression methods make use of proxies to determine the spatial allocation of the target 

values. The model can take a linear or nonlinear form, as well as it can be a global or a local 

model (Chen et al. 2015; Verkerk et al. 2015). Both the surface and regression methods can 

benefit from using the spectral variation in high spatial resolution remote sensing imagery 

to spatially disaggregate a field sample or to infer the non-sampled portion of a target pixel. 

To test our hypothesis that using auxiliary data from high spatial resolution satellite data 

improves the spatial allocation of the field collected floristic inventory data to the target 

image pixel, and to investigate which method for data integration should be used, we 

performed three tests: one on spatial data disaggregation (interpolation); one on spatial 

extrapolation; and one on the joint effects of both. For these tests we selected all the sample 

polygons that laid fully within each of the target pixels, for which we have known (sampled) 

aboveground carbon values (Figure A-3). In each test (and for each study site), we applied 

the referred methods of data integration - cartographic, surface and regression. The 

cartographic method refers to the area-weighting approach. As it does not require any 

auxiliary information, it assumes homogeneity on the spatial distribution of the target values, 

and served as control for testing our hypothesis. Both the surface and the regression methods 
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used the auxiliary data as respectively a weighting or a predictor layer for the spatial data 

integration. The regression method used was defined as a linear model. 

 

Figure A-3: Representation of the tests on the carbon data spatial disaggregation (a), extrapolation (b) and their 
joint effects (c), for the Hyperion pixels shown in Figure A-2. The sample polygons selected for these tests are 
those which are fully within a target (Hyperion) pixel. All tests used three different methods for data 
aggregation and extrapolation: Cartographic (which does not make use of high resolution auxiliary data from 
RapidEye); surface (uses RapidEye auxiliary data as a weighting layer); and regression (builds a regression 
model on the auxiliary data). In the test on spatial disaggregation (a), two polygons within each pixel are 
randomly merged, to be then estimated using the three methods described. In the test on spatial extrapolation 
(b), within each pixel one random polygon is deleted, to then be estimated based on the information from the 
remaining polygons within the same pixel. The test on the joint effects (c) starts with the results of the test on 
spatial disaggregation (i.e. with both measured and estimated polygons) to then be tested for spatial 
extrapolation. 
 

The first test on the effects of using auxiliary data on the spatial disaggregation of field data 

related to one sample polygon falling in two or more pixels, i.e. whose carbon values had to 

be disaggregated to the respective pixels. In this case, the sample polygons were merged 

(aggregated) in random pairs and the respective aboveground carbon values summed. These 

merged polygons were subsequently disaggregated following the described methods. Here 

the regression method assumed the carbon values (Ct) as a function of the respective area 

multiplied (At) by the weighting / auxiliary layer (Wt):  

 ~ *Ct At Wt   (Eq. A-2) 
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Model intercept was kept fixed at zero, to ensure that only are and weighting layer influence 

the response value. The resulting regression model was used to disaggregate the merged 

polygons back to the original ones. 

The second test, on data extrapolation relates to situations where the target pixels were not 

fully sampled, and the respective carbon values need to be extrapolated to represent the full 

image pixel. In this test, one random polygon was excluded per target pixel to be 

subsequently estimated following the different methods. Here the regression model assumed 

the total carbon value for the pixel (Ct) to be the sum of the known (sampled) carbon value 

(Cs) and a function of the unknown (non-sampled) area (Au) multiplied by the weighting / 

auxiliary layer (Wu): 

 Cs ~ Cs Au *Wu+   (Eq. A-3) 

Again, model intercept was fixed at zero, while in this case the coefficient for the first 

predictor variable (Cs) was fixed at one. This way we constrained the regression so that the 

response value is a function of the known (sampled) carbon value added to the area and 

weight layer values. The resulting regression model was used to estimate the carbon value 

for all pixels. 

The third test investigated the joint effects of data interpolation and extrapolation. This test 

most commonly approximates the reality, where the field samples (polygons) may fall within 

more than one image pixel and where the samples do not cover full pixels. In this case, two 

random polygons within each pixel were merged and the respective carbon value summed. 

They were disaggregated again to the original polygons and the respective carbon values 

estimated. Subsequently one random polygon was excluded for each pixel, and the 

respective carbon value estimated according to each method. In this test, and following our 

results from the test on spatial data disaggregation, the regression method was not applied 

for the disaggregation (spatial interpolation) of the merged polygons, but only for the 

extrapolation. This means that when testing the joint effects of data disaggregation and 

extrapolation using auxiliary data with a regression approach, we used the interpolated 

polygons resulting from the surface method, and not those from the regression method. 

Finally, the aboveground carbon values were estimated for all pixels at least partially covered 

by the field sample polygons, following the best performing approach. For this, we 

calculated the pixel-based aboveground carbon by applying the surface method for 

disaggregating polygons which fell between different pixels, and by applying the regression 
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model resulting from the polygon-based test on the joint effects, always using the RENDVI 

calculated from the RapidEye imagery as auxiliary layer. 

2.4 Validation and evaluation 
We validated the spatial disaggregation and extrapolation tests at the pixel level, which 

means that the sum of the resulting carbon estimates per pixel were compared to the actually 

sampled values, by the root mean square error (RMSE), relative RMSE (RMSErel equals 

the RMSE divided by the mean input carbon value) and the squared Pearson correlation 

coefficient (R²) between predicted and observed validation samples.  

The number of pixels available for use in a regression model of aboveground Carbon 

depends on the assigned threshold of minimum pixel coverage by field samples. We 

performed a sensitivity analysis on the resulting regression models to evaluate the trade-off 

between having a high number of pixels (which may cover a larger portion of the variability 

within the study region) and a low share of estimated samples. We defined equidistant 10% 

thresholds ranging from 0% (all pixels partially sampled in the field) to 90% (pixels which 

were at least 90% sampled in the field) leading to a decreasing number of input samples with 

an assumed increasing reliability (Figure A-4), based on the fraction of pixels actually 

sampled in the field. For each threshold, we iterated the data splitting into 70% training and 

30% validation data 1000 times and fitted the aboveground carbon values to the 

hyperspectral Hyperion data using a Random Forest (RF) regression model (Breiman 2001). 

RF is a machine learning approach based on the Classification and Regression Tree (CART) 

algorithm (Breiman et al. 1984). The algorithm trains a decision tree with a randomly drawn 

subset of the given input data and internally evaluates its performance with the leftover data. 

An ensemble of many decision trees (a forest) is trained reflecting that every single tree can 

be erroneous. Results are then averaged into the final model. Model performance was 

evaluated based on mean RMSE, RMSErel and R² between predicted and observed 

validation samples, from the withheld 30% validation data, on all iterations. All processing 

was performed in (R Core Team 2017) using the randomForest-package (Liaw and Wiener 

2002). 
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Figure A-4: Number of samples used for the analysis with varying thresholds depicted as black dots and the 
solid grey line. The black squares and the dashed grey line relate to the averaged share of area sampled within 
all pixel with the respective threshold (second y-axis). 

3 Results 

3.1 Disaggregation and extrapolation of aboveground carbon data  
Our results were consistent across all study sites and performance measures (Table A-2). The 

tests on disaggregation of aboveground carbon data showed consistently better performances 

when using auxiliary data in a surface interpolation method (RMSErel values ranging 

between 0.479 and 0.655 and R² values ranging between 0.750 and 0.826). Using the 

auxiliary data in a regression approach, however, performed worse than using no auxiliary 

data, through the cartographic method, and this approach was abandoned (also on the test 

for joint effects). 
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Table A-2: Results of the tests on the integration of field data to the pixel level, using a cartographic (area-weighted), surface and linear regression method: test on spatial 
disaggregation; spatial extrapolation; and their joint effects. Both the surface and regression methods recur to auxiliary data derived from high spatial resolution RapidEye data. 

  RMSE RMSErel r2   

  cartographic surface regression cartographic surface regression cartographic surface regression Coefficient n 

PETR 

Disaggregation 1.066 0.930 1.593 0.751 0.655 1.097 0.661 0.750 0.260 2.693 ± 0.001 

106 Extrapolation 1.049 0.979 0.723 0.739 0.689 0.509 0.750 0.769 0.843 2.711 ± 0.012 

Joint effects 1.106 1.040 0.778 0.944 0.887 0.663 0.668 0.687 0.771 2.696 ± 0.012 

PNCV 

Disaggregation 1.003 0.819 1.516 0.733 0.599 1.091 0.717 0.821 0.335 4.082 ± 0.003 

70 Extrapolation 0.567 0.571 0.539 0.414 0.418 0.394 0.907 0.907 0.914 3.915 ± 0.019 

Joint effects 0.672 0.679 0.634 0.632 0.639 0.596 0.808 0.806 0.815 3.973 ± 0.018 

PESA 

Disaggregation 0.922 0.752 1.308 0.588 0.479 0.794 0.724 0.826 0.473 2.728 ± 0.001 

87 Extrapolation 0.648 0.639 0.587 0.409 0.403 0.370 0.870 0.873 0.896 2.805 ± 0.007 

Joint effects 0.689 0.682 0.614 0.548 0.542 0.488 0.777 0.780 0.818 2.810 ± 0.007 
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When extrapolating the aboveground carbon data, the use of auxiliary information was 

always beneficial. Their use in a regression approach achieved the best results (RMSErel 

ranging between 0.370 and 0.509, and R² between 0.843 and 0.914), while the surface 

method was not so well performing. The extrapolation of aboveground carbon data without 

the use of auxiliary data performed least well. 

The results of the test on the joint effects of data disaggregation and extrapolation were 

consistent with those of the test on data extrapolation, with the best results being achieved 

with the use of auxiliary information. Indeed, the best performing approach used the 

auxiliary data with a surface method for the carbon data disaggregation, followed by its use 

in a regression for the respective extrapolation (RMSErel between 0.488 and 0.663 and R² 

between 0.771 and 0.818). Using the auxiliary data with surface method also for the 

extrapolation of the aboveground carbon data performed less well than the previously 

described approach. The lack of use of auxiliary information for both the disaggregation and 

extrapolation of the aboveground carbon data consistently resulted in the worst performing 

results. 

The coefficients obtained in the regression models (for the carbon data extrapolation) were 

specific to each study site, though consistent across all tests (between 2.728 and 2.810 for 

PESA; 3.915 and 4.082 for PNCV; and 2.693 and 2.711 for PETR), and with little variation 

between iterations. 

3.2 Test on data quality 
The carbon model performances differed between the three study sites, although it was 

possible to identify general trends related to the data thresholds used. Best model 

performances were derived in the PESA study site with averaged relative RMSE values 

ranging from 0.34 to 0.68. In PNCV the RMSErel values ranged from 0.42 to 0.72 and in 

PETR from 0.52 to 1.09 (Figure A-5). 
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Figure A-5: Averaged carbon model results in terms of RMSE, relative RMSE and R² after 1000 iteration for 
all three study sites. The grey shaded area along the curves show +/- one standard deviation around the mean 
performance measures. 

Generally, the decreasing number of training pixels led to less robust results with a higher 

standard deviation in the performance measures along with an overall performance loss 

(increase in RMSE and RMSErel). In terms of R², the trend of performance loss with 

decreasing sample size was not always observed, although smaller samples always resulted 

in higher variation between models (higher standard deviation). 

4 Discussion 

Our hypothesis was that, in heterogeneous landscapes, the use of auxiliary information from 

high spatial resolution remote sensing data improves the upscaling of field-sampled 

aboveground carbon data to meso-scale remote sensing image pixels, thus enabling their use 

for carbon mapping, potentially over large areas. 

Indeed, we observed that the use of auxiliary data did improve the data integration, although 

the choice of the method used can be influential. On the one hand, the lack of auxiliary 

information (with a cartographic method) never delivered the best results in upscaling the 

field-collected data. Its assumption of homogeneity in the distribution of aboveground 

carbon is not adequate in such heterogeneous systems. On the other hand, when 

disaggregating the field samples into different target pixels, the use of auxiliary data in a 

regression approach for data disaggregation resulted in the poorest results for data 
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disaggregation. This also agrees with what has been previously found by e.g. Fisher and 

Langford (1995). As regression models are fitted globally, estimates from locally fitted 

methods should adapt better to heterogeneous environments. When extrapolating the field 

samples into the full (partially non-sampled) pixels, however, the regression method was the 

best performing approach.  

We found that the best approach for upscaling field-collected aboveground carbon data 

makes use of auxiliary data in a (local) surface method for data disaggregation, and in a 

regression for data extrapolation.   

Our conclusions on the use of high spatial resolution as auxiliary data agrees with findings 

in a similar system, the Argentinean savannahs (González-Roglich and Swenson 2016), 

which suggests the generality of our approach for savannahs and other heterogeneous 

systems. In the referred study, the authors used fine resolution satellite imagery for scaling 

up field data, to assess tree cover at the meso (Landsat) scale, which was later related to 

carbon. In homogeneous environments, however, such an approach is not necessary and the 

co-registration of field samples and image pixels is commonly done through the estimation 

of plot-level tree density values in a dasymetric approach (McRoberts and Tomppo 2007; 

Tuominen et al. 2010). 

The use of multi-scale remote sensing imagery for vegetation monitoring has been widely 

used for e.g. generating maps of forest biomass or productivity over large areas (Lefsky et 

al. 2005; Muukkonen and Heiskanen 2007; Tomppo et al. 2002). The choice of the higher-

resolution data to be used as auxiliary information in this approach is critical for successfully 

upscaling field data, as it needs to relate to the field measured variable - in our case, the 

vegetation’s aboveground carbon. Here, we used a spectral index based on the Red Edge 

spectral of RapidEye imagery, known to relate to vegetation structure and therefore biomass 

in the Cerrado (Gomes and Maillard 2015). Further research is still required to learn about 

the best possible data to be used as a weighting layer. This, however, falls outside the scope 

of this study and would raise issues related to data availability constraints. Ultimately, the 

data used as auxiliary layer will determine the estimated regression coefficient used in this 

approach. Also, the approach presented here could potentially be used to integrate field data 

with multi-scale systems, such as that of Sentinel-2, which collects large amounts of data 

across the globe on a high frequency (Drusch et al. 2012). In this case, e.g. the 10m data 

could be used for the upscaling of field data to the 20m pixels. 
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Our analyses also showed that, while a more restrictive (high) threshold on the share of 

sampled (versus estimated) data should ensure better data reliability, it also results in fewer 

training pixels which in turn generate less good models. Indeed, smaller sample sizes usually 

mean that a smaller proportion of the system’s variability is captured, thus resulting in less 

generalizable estimations (Wisz et al. 2008). 

Upscaling field samples to target pixels enables the use of remote sensing imagery for carbon 

mapping and ecosystem monitoring in heterogeneous environments. Through this approach 

it is possible to e.g. do wall-to-wall mapping of carbon over large areas with time-series of 

widely available multi-spectral imagery (Wulder et al. 2015a), or characterize particular 

areas with high detail with spaceborne hyperspectral imagery (Leitão et al. 2015) (Guanter 

et al. 2015). Ultimately, this will have deep implications for global carbon mitigation 

programs such as REDD+, by allowing the detailed calculation of above-ground carbon in a 

spatially explicit manner. 

5 Conclusion 

Using high spatial resolution remote sensing imagery as auxiliary data is beneficial for the 

spatial allocation of field sampled data to a larger target pixel. This is particularly relevant 

in heterogeneous environments, where it is not possible to define homogeneous plots of 

known vegetation density. The method for integrating the auxiliary data in the analysis is 

however not trivial and can have a great influence in its overall performance. While local, 

surface approaches are preferable for the spatial disaggregation (interpolation) of field 

samples to the target pixel grid, the extrapolation of the data into the full pixel extent is better 

done with a global, regression model. This approach enables the spatial allocation of field 

data to larger image pixels, thus allowing the use of remote sensing imagery for ecosystem 

monitoring and carbon mapping on heterogeneous areas. 
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