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1 Melissa: mean-field variational inference derivations

In mean-field variational inference the intractable posterior distribution of the latent variables
p(θ |X) is approximated by a factorized distribution q(θ) =

∏
i qi(θi), where θ denotes the latent

variables and X the observed variables. Then we search over the space of approximating distribu-
tions to find the distribution with the minimum Kullback-Leibler (KL) divergence with the actual
posterior

KL(q(θ) || p(θ |X)) = −
∫
q(θ) ln

p(θ |X)

q(θ)
dθ. (1)

The KL divergence can then be minimised by performing a free form minimisation over the
qi(θi) leading to the following update equation

qi(θi) =
exp 〈ln p(X,θ)〉qj 6=i∫

exp 〈ln p(X,θ)〉qj 6=i
dθi

, (2)

where 〈·〉qj 6=i
denotes an expectation with respect to the distributions qj(θj) for all j 6= i. The joint

distribution over the observed and latent variables for the Melissa model is

p(Y,Z,C,W,π, τ |X) =p(Y|Z) p(Z|C,W,X) p(C|π)p(π) p(W|τ ) p(τ ), (3)

where the factorisation corresponds to the probabilistic graphical model shown in Figure 7 in the
main text. We assume that the variational approximation to our posterior distribution factorises
over the latent variables (mean-field variational inference)

q(Z,C,W,π, τ ) = q(Z) q(C) q(W) q(π) q(τ ). (4)

1.1 Deriving optimised factors

Below we derive the optimised factors of the variational posterior using Equation (2).
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Factor q(C)

ln q(C) = 〈ln p(Y,Z,C,πππ,W, τττ |X)〉q(Z,πππ,W,τττ) + const

=

〈
ln
{
p(Y|Z)︸ ︷︷ ︸
const

p(Z|C,W,X) p(C|πππ) p(πππ) p(W|τττ) p(τττ)︸ ︷︷ ︸
const

}〉
q(Z,πππ,W,τττ)

+ const

=

N∑
n=1

K∑
k=1

cnk

M∑
m=1

〈lnN (znm|Xnmwmk, Inm)〉q(znm,wmk)
+

N∑
n=1

K∑
k=1

cnk 〈lnπk〉q(πk) + const

=
N∑
n=1

K∑
k=1

cnk ln ρnk + const,

(5)
where

ln ρnk =

M∑
m=1

〈
−1

2

(
znm −Xnmwmk

)T(
znm −Xnmwmk

)〉
q(znm,wmk)

+ 〈lnπk〉q(πk) .

Taking the exponential on both sides and requiring that this distribution be normalised we obtain

q(C) =

N∏
n=1

K∏
k=1

rcnk
nk where rnk =

ρnk∑K
j=1 ρnj

.

Factor q(τττ)

ln q(τττ) =

〈
ln
{
p(Y|Z) p(Z|C,W,X) p(C|πππ) p(πππ)︸ ︷︷ ︸

const

p(W|τττ) p(τττ)
}〉

q(Z,C,πππ,W)

+ const

= 〈ln p(W|τττ)〉q(W) + ln p(τττ) + const

=
K∑
k=1

M∑
m=1

〈ln p(wmk|τk)〉q(wmk)
+

K∑
k=1

ln p(τk) + const.

(6)

Here we observe that the right hand side comprises a sum over k, i.e. each τk is independent of
each other, hence

ln q(τk) =

M∑
m=1

〈ln p(wmk|τk)〉q(wmk)
+ ln p(τk) + const

=
MD

2
ln τk −

τk
2

M∑
m=1

〈
wT
mkwmk

〉
q(wmk)︸ ︷︷ ︸

Gaussian PDF

+ (α0 − 1) ln τk − β0τk︸ ︷︷ ︸
Gamma PDF

= (α0 +
MD

2
− 1)︸ ︷︷ ︸

αk parameter

ln τk −
(
β0 +

1

2

M∑
m=1

〈
wT
mkwmk

〉
q(wmk)︸ ︷︷ ︸

βk parameter

)
τk,

(7)

which is the logarithm of the (un-normalised) Gamma distribution, leading to

q(τk) = Gamma(τk|αk, βk)

αk = α0 +
MD

2

βk = β0 +
1

2

M∑
m=1

〈
wT
mkwmk

〉
q(wmk)

.

(8)
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Note that the update for the α hyperparameter depends only on the total number of genomic
regions and the number of basis functions used to estimate the underlying methylation profiles.
On the other hand the β hyperparameter is updated at each CAVI iteration, since it depends on
the expected value of the regression coefficients. The expected value of the Gamma distribution
is E = α/β, and the inverse of this quantity is the variance parameter for the prior Gaussian
distribution of the coefficients w. Large values of E result in small variance Gaussian priors, hence
the model is substantially penalised when weights are moving away from prior mean µ0 = 0; as a
consequence the model will tend to prune away clusters, that is, set all weights wmk = 0. This may
strongly affect the model in the initial iterations of CAVI, which will affect the β parameter but
not the α parameter of the Gamma distribution, potentially leading to convergence to a suboptimal
local maximum. Hence, one should be cautious when setting the initial values for these parameters;
in the current implementation of Melissa we set α0 = 0.5 and β0 =

√
ak.

Factor q(πππ)

ln q(πππ) =

〈
ln
{
p(Y|Z) p(Z|C,W,X)︸ ︷︷ ︸

const

p(C|πππ) p(πππ) p(W|τττ) p(τττ)︸ ︷︷ ︸
const

}〉
q(Z,W,C,τττ)

+ const

= ln p(πππ) + 〈ln p(C|πππ)〉q(C) + const

= lnC(δδδ0)︸ ︷︷ ︸
const

+

K∑
k=1

lnπ
δ0k−1
k +

K∑
k=1

N∑
n=1

〈cnk〉q(cnk)︸ ︷︷ ︸
rnk

lnπk + const

=
K∑
k=1

lnπ
δ0k−1
k +

K∑
k=1

N∑
n=1

rnk lnπk + const.

(9)

Taking the exponential on both sides we observe that q(πππ) is a Dirichlet distribution

q(πππ) =

K∏
k=1

π
(δ0k+

∑N
n=1 rnk−1)

k

= Dir(πππ|δδδ).

(10)

where δδδ has components δk given by δk = δ0k +
∑N

n=1 rnk.

Factor q(W)

ln q(wmk) =

〈
ln
{
p(Y|Z)︸ ︷︷ ︸
const

p(Z|C,W,X) (C|πππ) p(πππ)︸ ︷︷ ︸
const

p(W|τττ) p(τττ)︸︷︷︸
const

}〉
q(Z,C,πππ,τττ)

+ const

=

N∑
n=1

〈cnk〉q(cnk)
〈lnN (znm|Xnmwmk, Inm)〉q(znm) + 〈ln p(wmk|τk)〉q(τk) + const

=

N∑
n=1

rnk

〈
−1

2

(
znm −Xnmwmk

)T(
znm −Xnmwmk

)〉
q(znm)

− 1

2
〈τk〉q(τk) w

T
mkwmk + const

=

N∑
n=1

rnk

{
wT
mkX

T
nm 〈znm〉q(znm) −

1

2
wT
mkX

T
nmXnmwmk

}
− 1

2
〈τk〉q(τk) w

T
mkwmk + const

= wT
mk

N∑
n=1

rnkX
T
nm 〈znm〉q(znm) −

1

2
wT
mk

{
〈τk〉q(τk) I +

N∑
n=1

rnkX
T
nmXnm

}
wmk + const.

(11)
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Because this is a quadratic form, the distribution q(wmk) is a Gaussian distribution and we can
complete the square to identify the mean and the covariance matrix

q(wmk) = N (wmk|λλλmk,Smk)

λλλmk = Smk

N∑
n=1

rnkX
T
nm 〈znm〉q(znm)

Smk =

(
〈τk〉q(τk) I +

N∑
n=1

rnkX
T
nmXnm

)−1
.

(12)

Factor q(Z) The log of the optimised factor assuming that the corresponding ynmi = 1 is

ln q(znmi) =

〈
ln
{
p(Y|Z) p(Z|C,W,X) p(C|πππ) p(πππ) p(W|τττ) p(τττ)︸ ︷︷ ︸

const

}〉
q(C,πππ,W,τττ)

+ const

= ln p(ynmi|znmi) +

〈
ln

K∏
k=1

N (znmi|wT
mkxnmi, 1)cnk

〉
q(cn,wm)

+ const

= ynmi ln1(znmi > 0) + (1− ynmi) ln1(znmi ≤ 0)︸ ︷︷ ︸
0, since ynmi=1

+

K∑
k=1

rnk
〈
lnN (znmi|wT

mkxnmi, 1)
〉
q(wmk)

+ const

= ln1(znmi > 0)− 1

2
z2nmi

K∑
k=1

rnk︸ ︷︷ ︸
1

+znmi

K∑
k=1

rnk
〈
wT
mk

〉
q(wmk)

xnmi + const.

(13)

Exponentiating this quantity and setting µnmi =
∑K

k=1 rnk
〈
wT
mk

〉
q(wmk)

xnmi we obtain

q(znmi) ∝ 1(znmi > 0) exp

(
−1

2
z2nmi + znmiµnmi

)
. (14)

We observe that the optimized factor q(znmi) is an un-normalised Truncated Normal distribution

q(znmi) =

{
T N+ (znmi|µnmi, 1) if ynmi = 1

T N− (znmi|µnmi, 1) if ynmi = 0.
(15)

1.2 Variational lower bound

The variational lower bound L(q) (i.e. evidence lower bound (ELBO)) is given by

L(q) =
∑
C

∫ ∫ ∫ ∫
q(Z,C,πππ,W, τττ) ln

{
p(Y,Z,C,πππ,W, τττ |X)

q(Z,C,πππ,W, τττ)

}
dZ dπππ dW dτττ

= 〈ln p(Y,Z,C,πππ,W, τττ |X)〉q(Z,C,πππ,W,τττ) − 〈ln q(Z,C,πππ,W, τττ)〉q(Z,C,πππ,W,τττ)

= 〈ln p(Y|Z)〉q(Z) + 〈ln p(Z|C,W,X)〉q(Z,C,W) + 〈ln p(C|πππ)〉q(C,πππ) + 〈ln p(πππ)〉q(πππ)
+ 〈ln p(W|τττ)〉q(W,τττ) + 〈ln p(τττ)〉q(τττ) − 〈ln q(Z)〉q(Z) − 〈ln q(C)〉q(C)

− 〈ln q(πππ)〉q(πππ) − 〈ln q(W)〉q(W) − 〈ln q(τττ)〉q(τττ) .

(16)

We can derive the expectations in a similar fashion to Section 1.1. The ELBO L(q) is used to assess
convergence of the coordinate ascent variational inference (CAVI) algorithm (Blei et al., 2017).
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1.3 Predictive density

The predictive density of a new observation y∗ which will be associated with a latent variable c∗,
latent observation z∗ and covariates X∗ is given by

p(y∗|X∗,Y,X) =
∑
c

∫
p(y∗, c∗, z∗,πππ,W, τττ |X∗,Y,X) dπππ dτττ dW dz∗

=
∑
c

∫
p(y∗|z∗)p(z∗|c∗,W,X∗)p(c∗|πππ)p(πππ,W, τττ |Y,X) dπππ dτττ dW dz∗

'
K∑
k=1

∫
p(y∗|z∗)p(z∗|Wk,X∗)πk q(πππ)q(Wk)q(τk) dπππ dτk dWk dz∗

=

K∑
k=1

δk

δ̂

∫
p(y∗|z∗)N (z∗|X∗Wk, In)N (Wk|λλλk,Sk) dWk dz∗

=

K∑
k=1

δk

δ̂

∫
p(y∗|z∗)N

(
z∗|X∗λλλk, In + diag

(
X∗SkX

T
∗
))

dz∗

=
K∑
k=1

δk

δ̂

{∫∞
0 N

(
z∗|X∗λλλk, In + diag

(
X∗SkX

T
∗
))

dz where y∗ = 1∫ 0
−∞N

(
z∗|X∗λλλk, In + diag

(
X∗SkX

T
∗
))

dz where y∗ = 0

=

K∑
k=1

δk

δ̂
Φ (ρ)y∗ (1− Φ (ρ))(1−y∗)

=
K∑
k=1

δk

δ̂
Bern

(
y∗

∣∣∣Φ (ρ)
)
.

(17)

where δ̂ =
∑

k δk, Φ(·) denotes the cumulative distribution function (cdf) of the standard normal
distribution and

ρ =
X∗λλλk(

In + diag
(
X∗SkXT

∗
))1/2 . (18)
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2 Additional figures
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Figure S1: Melissa robustly imputes CpG methylation states. (a) Imputation performance in terms of
F-measure as we vary the proportion of covered CpGs used for training. Higher values correspond to better
imputation performance. For each CpG coverage setting a total of 10 random splits of the data to training
and test sets was performed. Each coloured circle corresponds to a different simulation. The plot shows also
the LOESS curve for each method as we increase CpG coverage. (b) Imputation performance measured by
F-measure for varying number of cells assayed. In (a) N = 200 cells were simulated and cluster dissimilarity
was set to 0.5, and in (b) CpG coverage was set to 0.4 and cluster dissimilarity to 0.5.
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Figure S2: Melissa robustly imputes CpG methylation states for different levels of dissimilarity across
clusters; values closer to zero correspond to highly similar cell sub-populations, whereas values closer to one
correspond to well separated cell sub-populations. Imputation performance is measured in terms of (a) AUC
and (b) F-measure. Higher values correspond to better imputation performance. For each CpG coverage
setting a total of 10 random splits of the data to training and test sets was performed. Each coloured circle
corresponds to a different simulation. The plot shows also the LOESS curve for each method as we increase
the cluster dissimilarity across cell sub-populations. The CpG coverage was set to 0.4 and a total of N =
200 cells were simulated per experiment.

6



0

5

10

15

20

50 100 200 500 1000 2000

Cells

H
ou

rs

Model
VB
Gibbs

Model Cost

Figure S3: Melissa efficiently imputes and clusters cell sub-populations. Running times for varying number
of cells for the variational Bayes (VB) and Gibbs sampling implementations for the Melissa model, where
each cell consists of M = 200 genomic regions.
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Figure S4: Melissa robustly imputes CpG methylation states on the subsampled ENCODE RRBS methy-
lation data. Imputation performance in terms of (a) AUC and (b) F-measure for varying levels of CpG
coverage for pre-defined ±2.5 kb regions around TSS. For each CpG coverage setting a total of 10 random
splits of the data to training and test sets was performed. Each dot corresponds to a different simulation.
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Figure S5: Melissa robustly imputes CpG methylation states on the subsampled ENCODE WGBS methy-
lation data. Imputation performance in terms of (a) AUC and (b) F-measure for varying levels of CpG
coverage for pre-defined ±2.5 kb regions around TSS. For each CpG coverage setting a total of 10 random
splits of the data to training and test sets was performed. Each dot corresponds to a different simulation.
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Figure S6: (a) Precision recall curves and (b) receiver operating characteristic curves on varying CpG
coverage levels for imputing CpG methylation states for the subsampled ENCODE RRBS methylation data
for pre-defined ±2.5 kb regions around TSS.
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Figure S7: (a) Precision recall curves and (b) receiver operating characteristic curves on varying CpG
coverage levels for imputing CpG methylation states for the subsampled ENCODE WGBS methylation
data for pre-defined ±2.5 kb regions around TSS.
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Figure S8: Melissa robustly imputes CpG methylation states on the subsampled ENCODE RRBS methy-
lation data. Imputation performance in terms of (a) AUC and (b) F-measure for varying levels of CpG
coverage for pre-defined ±5 kb regions around TSS. For each CpG coverage setting a total of 10 random
splits of the data to training and test sets was performed. Each dot corresponds to a different simulation.

9



0.65

0.70

0.75

0.80

0.85

0.90

0.95

20% 50% 80%

CpG coverage

A
U

C

a

0.6

0.7

0.8

0.9

20% 50% 80%

CpG Coverage
F

−
m

ea
su

re

Model
Melissa
DeepCpG
BPRMeth
RF
Melissa Rate
Indep Rate

b

Figure S9: Melissa robustly imputes CpG methylation states on the subsampled ENCODE WGBS methy-
lation data. Imputation performance in terms of (a) AUC and (b) F-measure for varying levels of CpG
coverage for pre-defined ±5 kb regions around TSS. For each CpG coverage setting a total of 10 random
splits of the data to training and test sets was performed. Each dot corresponds to a different simulation.
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Figure S10: Prediction performance using the F-measure metric for imputing CpG methylation states of
the Angermueller et al. (2016) dataset. Higher values correspond to better imputation performance. Each
coloured boxplot indicates the performance using 10 random splits of the data in training and test sets;
due to high computational costs, DeepCpG was trained only once and the boxplots denote the variability
across ten random subsamplings of the test set. Shown is the prediction performance for alternative genomic
contexts: promoters (±1.5 kb, ±2.5 kb and ±5 kb regions), active enhancers, super enhancers and Nanog
regulatory regions.
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Figure S11: Receiver operating characteristic curves for imputing CpG methylation states of the Anger-
mueller et al. (2016) dataset.
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Figure S12: Precision recall curves for imputing CpG methylation states of the Angermueller et al. (2016)
dataset.
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Figure S13: Example profiles for different promoter regions of developmental genes with window length
±5kb for the Angermueller et al. (2016) dataset. Melissa identified three cell sub-populations.
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Figure S14: Prediction performance using the F-measure metric for imputing CpG methylation states of
the Smallwood et al. (2014) dataset. Higher values correspond to better imputation performance. Each
coloured boxplot indicates the performance using 10 random splits of the data in training and test sets;
due to high computational costs, DeepCpG was trained only once and the boxplots denote the variability
across ten random subsamplings of the test set. Shown is the prediction performance for alternative genomic
contexts: promoters (±1.5 kb, ±2.5 kb and ±5 kb regions), active enhancers, super enhancers and Nanog
regulatory regions.
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Figure S15: Receiver operating characteristic curves for imputing CpG methylation states of the Smallwood
et al. (2014) dataset.
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Figure S16: Precision recall curves for imputing CpG methylation states of the Smallwood et al. (2014)
dataset.
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Figure S17: Example profiles for different promoter regions with window length ±5 kb for the Smallwood
et al. (2014) dataset. Melissa identified three cell sub-populations.
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Figure S18: Example profiles for different enhancer regions for the Smallwood et al. (2014) dataset. Melissa
identified three cell sub-populations.
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Figure S19: Digital output of single cell DNA methylation. Histogram of the distribution of CpG methy-
lation values for 10 randomly sampled single cells from the Angermueller et al. (2016) study. As expected,
the proportion of binary CpGs is very high (around 98.8%) and only around 0.5% of CpG sites are hemi-
methylated.
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Figure S20: Boxplots of CpG coverage distribution across different genomic contexts for the Angermueller
et al. (2016) dataset after the filtering process. The x-axis shows CpG coverage bins and the y-axis shows
the distribution of the number of genomic regions with N CpGs covered across cells, that is, each dot in the
boxplot represents a different cell.
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Figure S21: Boxplots of CpG coverage distribution across different genomic contexts for the Smallwood
et al. (2014) dataset after the filtering process. The x-axis shows CpG coverage bins and the y-axis shows
the distribution of the number of genomic regions with N CpGs covered across cells, that is, each dot in the
boxplot represents a different cell.
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3 Additional tables

Genomic context CpGs (in millions) Time (in hours)

Promoter 10kb 6 5.6
Promoter 5kb 2.1 2.9
Promoter 3kb 0.62 1.31

Nanog 0.18 0.61
Super enhancers 0.5 1
Active enhancers 0.7 1.76

Table S1: Melissa training time for the Angermueller et al. (2016) mouse ESC dataset. Across different
genomic contexts are shown the total number of CpGs used for training set and the time required (in
hours) for running Melissa to impute and cluster single cells. Note that the numbers in millions refer to the
total number of CpGs not the genomic regions which are generally up to thousands. As a comparison, the
DeepCpG model took about three to four days to train on around four million CpGs.

Genomic context CpGs (in millions) Time (in hours)

Promoter 10kb 4.13 4
Promoter 5kb 1.54 2.21
Promoter 3kb 0.98 1.83

Nanog 0.26 0.9
Super enhancers 0.29 0.9
Active enhancers 0.85 2

Table S2: Melissa training time for the Smallwood et al. (2014) mouse ESC dataset. Across different
genomic contexts are shown the total number of CpGs used for training set and the time required (in
hours) for running Melissa to impute and cluster single cells. Note that the numbers in millions refer to the
total number of CpGs not the genomic regions which are generally up to thousands. As a comparison, the
DeepCpG model took about three to four days to train on around four million CpGs.

Genomic context Smallwood study Angermueller study

Promoter 10kb 21% 17%
Promoter 5kb 23% 20%
Promoter 3kb 24% 24%

Nanog 19% 17%
Super enhancers 19% 12%
Active enhancers 25% 17%

Table S3: Sparsity level of the two scBS-seq data after filtering across different genomic regions.
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