
International Journal of Engineering and Advanced Technology (IJEAT)

ISSN: 2249 – 8958, Volume-9 Issue-2, December, 2019

3912

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: A1083109119/2019©BEIESP

DOI: 10.35940/ijeat.A1083.129219

Abstract: In today’s software community the most interesting

topic is software reusability because of its immense benefits that

comprise of decreased product schedule, cost and increase in

product quality. Most of the time, software is not built from

scratch since it is costly and time-consuming process. Therefore,

existing software documents (source code, documents, design,

etc.) are used to develop the new application according to user

requirements. But still the software reusability is not being

followed as a standard approach in the process of software

development. Till now initiating the software reuse process there

is a need to analyze and properly understand the user

requirements in spite of considerable upfront investments for

software reusability. We have studied various aspects of software

reusability along with software metrics and are being presented in

this article. Efficient software designs can be enabled by assessing

the software reusability extent. The aging resilient software design

could be of paramount significance to enable faultiness software

system. The estimation of software reusability plays an important

part in software’s cost reduction and quality improvement, in an

object-oriented programming. In this paper the idea about the

designing the CK metrics suite along with metrics’ evaluation is

presented that can help for object-oriented based systems in

reflecting the accurate results.

Keywords: Software reusability, web of services, Software

development, CK metrics

I. INTRODUCTION

Software reusability is defined as the process involved in

software development when a software system is updated or

implemented using already existing software component. By

using a suitable software reuse process the product reliability,

quality, and productivity are increased whereas

implementation time and cost is decreased. As to initiate a

software reuse process there is a requirement of an initial

investment which in a few reuses pay for itself. A knowledge

base is produced by the development of repository and reuse

process which helps for future works in improving the quality,

reducing the development work and finally, the repository

knowledge-based projects risks are also reduced. During the

software development implementation, the significant

characteristics are used for satisfying the assured attributes of

software quality, for supporting the necessary quality

standards. The understandability and maintainability are

considered as the main components of software metrics.

Re-coding of the work is avoided by a significant technique

that is known as software reusability which can be used for

improving the software development system’s quality [1].

Revised Manuscript Received on December 15, 2019.

* Correspondence Author

Ridhi Jindal*, Department of Computer Science & Engineering, Rayat

Bahra University, Mohali, Punjab, India. Email: ridhijindal136@gmail.com

Dr. S. K. Mittal, Department of Computer Science & Engineering, Rayat

Bahra University, Mohali, Punjab, India. Email: skmskm1@rediffmail.com

The principles of object-oriented give the idea about the

estimation tools that could be applied and recognized for

software development. The quality as well as performance

along with the system maintenance of SDLC (Software

Development Life Cycle) is increased by the software

component reusability [2-4]. The amount of effort is reduced

which is required in case to develop a software from the

scratch, therefore, the testing time required is to be less for

new software. With the help of reuse strategy industrial

observer suggest that the development cost could be reduced

up to 20% of actual development costs [5]. Software

reusability is a process of designing the new software from the

existing modules [6]. It has various advantages in [7] manners

like are to reduce Cost of development, Highly Reliable,

Quality of service, Time consumption in design, and

Maintenance cost.

II. SOFTWARE REUSABILITY

A. Software reuse approaches

There are a number of approaches in reusing software

reported by the researchers in the literature. We can broadly

divide these reuse approaches into three broad categories:

(i) Component-based software reuse,

(ii) Domain engineering and software product lines and

(iii) Architecture based software reuse.

Component-based software reuse: In component-based

reuse, a repository of small independent software components

is built and a searching mechanism to match the requirement

with stored components is also developed. Finding the best

match is the first and most important step in reuse as

suggested by Manhas et al. [3]. For example, in mechanical

engineering, some parts of an existing machine can be used to

fabricate a new machine. Like it, some components of one

software systems may be used to build another software

system. A software component is defined as the prewritten

software element having a well-defined interface as well as

proper functionality which classifies its interaction and

behavioral mechanism. It was identified by the McClure [5]

that most of the software component properties should be

reusable. One of the greatest issues of such approach is

repository management of the reusable components and

developing an efficient retrieval mechanism.

Domain engineering and software product lines: In a

software system set the variability and commonalities are

captured by the domain engineering so that they can be used

for building the reusable assets. Mainly the various

organizations are functionally active in specific domains. For

a specific domain area, a few systems are connected as a

family according to the customer requirements.

Speculation of Software Reusability Estimation

using CK (Chidamber and Kemerer) Metrics
Ridhi Jindal, S. K. Mittal

mailto:ridhijindal136@gmail.com
mailto:skmskm1@rediffmail.com

Speculation of Software Reusability Estimation using CK (Chidamber and Kemerer) Metrics

3913

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: A1083109119/2019©BEIESP

DOI: 10.35940/ijeat.A1083.129219

Domain engineering mainly identifies the most basic

characteristics of the already existing systems and according

to these characteristics a new system is developed in that

particular domain [2]. This results in greater productivity and

efficiency. This particular approach of domain engineering

basically works in two stages: domain analysis and domain

implementation. In the first stage, the particular system is

examined to discover the variability and commonalities in a

particular domain, and process is known as domain analysis.

In the second stage, the particular information of variability

and commonalities gained from domain analysis is

implemented for developing the reusable assets and further

these reusable assets are utilized for developing the new

systems in that domain. Various domain engineering

approaches are DAREm, FAST, FORM, KobrA, PLUS, etc.

Architecture based software reuse: Effective reuse

depends not only on finding and reusing components but also

on the ways those components are combined [16]. The

architecture of a software system is composed of its software

components, their external properties, and their relationships

with one another. Shaw [51] classified software architecture

into common architectural styles where every style has four

major elements: components, connectors, a control structure,

and a system model. Connectors mediate interactions among

components. Software architecture may be based on services.

This leads to a new approach known as Service-Oriented

Architecture (SOA). SOA brought new chances to improve

the development of reusable components

B. Software reuse levels

In the software industry, the reusability of software is still an

emerging field. There are many forms of reusability that

comprise white box reuse to black box reuse, as well as ad hoc

reuse to systematic reuse.

Enterprise-level reuse: In this particular model, reusable

resources are considered as corporate resources. Architecture

coordination is provided by the reuse support organization

and also libraries asset and its staff are managed and to make

sure that the libraries consistently satisfy projects'

requirements [11].

Inter-Project reuse: In this particular model, central

support is provided that encourages the reuse among projects.

There's additionally a matching role that tries to deliver tasks

in concert to simplify reuse process. This demands

nonetheless more energy and discipline, though the

advantages aren't restricted to individual jobs.

Intra-Project reuse: Such a model performs the reuse

within tasks. For the business, reuse is more dynamically

urged, and thus there might be main staffs helping to educate,

motivate, as well as also help tasks attempting to reuse. This

usually takes somewhat much more energy, but with that hard

work, several tasks can become destinations of reuse results.

Ad-hoc reuse: Such totally decentralized, ad-hoc design,

promotes reuse as an extract objective, but there's absolutely

no strategy, without control, so absolutely no assistance from

the business as a whole. This's really convenient to attain,

though it seldom would make a noticeable impact.

C. Types of Reuse

Vertical reuse: Vertical reuse, drastically unexploited by

the program group by huge, but likely extremely helpful, has

much-reaching ramifications for future and current

application development efforts. The primary concept is the

reusing functional areas of the system, or maybe domains

which may be utilized by a family unit of devices with

comparable efficiency. The application, as well as research of

this idea, has spawned additional engineering goals, such as

domain name and application engineering which are totally

opposite to each other. Domain engineering concentrates on

the formation as well as upkeep of reuse repositories of

purposeful places, while software engineering uses those

repositories to carry out items that are new [13].

Horizontal reuse: Horizontal reuse describes software

program pieces employed across a number of uses. In terms of

code property, that contains the usually planned library

components, like a string manipulation regime, related show

type, or maybe GUI (Graphical User Interface) events. It may

also relate to the usage of COTS (Commercial Off-The-Shelf)

or maybe a third-party program within a bigger structure, like

an e-mail bundle or maybe a word processing program. A

number of repositories and program libraries that contains the

code type, as well as proof, are available these days at

numerous web locations [12].

D. Layers of Reusability

 Implementation layer: The reusability, programs and APIs

are used in the new model. At this level code and generators

are to be used.

 Design Layer: Object design is to be reused in the new

system by containing layer transformation in the old to

produce the latest designs. Design layer supports the

component-based software development model.

 Architect Layer: In this layer, we reuse the software

architect, classes and interface.

 Whole system: In this layer various application is to be

used to support the reusability these are: Enterprise resource

planning, Software product line, Commercial off the shelf.

E. Factors affecting Software reusability

Software quality attribute cannot be measured directly.

They depend on the following factors:

(a) Modularity: This is a term in which the components are

divided into smaller parts. These parts are able to do work

independently. The modularity range lies between 0 and 1.

When the value of modularity is high then the reusability

is better.

(b) Maintainability: It should be high for the better quality

of service of the software.

(c) Flexibility: It is the degree when the changes can be made

in the software.

(d) Adaptability: The ability of the software component to

adopt the new one. For better reusability, it should be high

(e) Interface complexity: By using interface the interaction

between the software and the application is possible.

There is a difficulty for reuse when the complexity

interface is high.

III. LITERATURE REVIEW

Nor et al, 2004, [12] presented the reusability approaches

for load-flow analysis in a computer program. In reusability

algorithms and codes were obtained by matrix partitioning

method.

International Journal of Engineering and Advanced Technology (IJEAT)

ISSN: 2249 – 8958, Volume-9 Issue-2, December, 2019

3914

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: A1083109119/2019©BEIESP

DOI: 10.35940/ijeat.A1083.129219

The software was developed by using a component-based

approach an object-oriented approach. This approach makes

possible and easy to add, change and update the algorithm

without affecting the other code. Rotaru, et al., 200, [13]

Cluster Computing Conference on Computer Systems and

Applications presented the reusability metrics for the software

components. The main goal of this work is to study the

compose-ability and adaptability of the software component

in a qualitative and quantitative manner. In this study, a

mathematical model and a metrics for a software component

are presented. The study helps to define the metrics on a

functionality basis. Gill, Nasib, et al, 2006, [14] presented a

survey on the component-based software development

process and discussed the issues and their solution. Testing of

the third-party software component is a very complex task.

The software reusability and characterization provide an

effective architecture, retrieval, usage, and better cataloging.

This article helps the developer in software reuse process

which is most important in component-based software

development. Qureshi et al. 2008, [15] presented a

component-based software development process model. It

defines the importance and role of the repository in

component-based development. The result of the study

concluded that CBD is more cost-effective, time-saving and

provides smooth development in the software. Saglietti, et

al., 2009, [16]: worked on the integration and reliability

testing on the CBS system. This sharpness enhancement

process is also proposed in this reliability system. It reduces

the effort of verification and validation techniques.

Complexity is slightly reduced but not affecting more to

maximize the saving. Mohamed et al., 2010, [17]: presented

an approach of fault tolerant for reliability assessment. It

effectively shows the impact of failure on reliability. Hsu, et

al., 2011, [18]: In this paper, for a modular software system an

adaptive framework of incorporating path into reliability

prediction is given by the author. To compute the reliability of

the path authors introduces three estimated methods which are

based on common program structure, namely, sequence,

branch, and loop structure. These computed paths are

implemented on predicted software reliability. There are

several experiments are executed on the basis of two real

systems. Accuracy and correlation are determined by using

simulation and sensitivity analysis. Zhang et al., 2012, [19]:

presented a method for software reliability estimation by

using a Markov model using importance sampling. The

importance of sampling is a method to measure the change of

measure and speeding up the simulation process. It avoids the

state space explosion and gives pre-information on failure

probabilities. Singh, et al., 2013, [20]: presented a model for

reliability estimation on the component-based system. The

reliability is estimated by using path probability and impact

factor of the component. It estimates the reliability after the

integration of the components and checks the contribution of

each component when they are activated. CBS (Component

Based Software) reliability is increased by using impact factor

analysis. On reusability. Tyagi, et al., 2014, [21]: There are

numbers of approaches introduced to predict CBSE

(Component Based Software Engineering) reliability. In this

paper, the author introduces a model known as the adaptive

neuro-fuzzy inference system (ANFIS) to predict the CBSS

(Component Based Software System) reliability on the basis

of neural networks and fuzzy logic. There is a comparison of

the performance with that of a plan FIS (Fuzzy Inference

System) for different datasets. Brosig, et al., 2015, [22]: In

this paper, there is an in-depth comparison and quantitative

evaluation of representative mode transformations. Here there

is imparting of the semantic gaps between typical source

model abstraction and the various analysis techniques. In this

paper, to evaluate the accuracy and efficiency of every

individual transformation by using four case studies

representing systems of various size and complexity. The

result and idea from evaluation help to choose proper

transformation for a given context especially for software

architects and performances engineers. Also, results in the

effective improvement in the usability of model

transformation to estimate the performance. Tyagi, Kirti, et

al, 2016, [23]: proposed a reliability estimation model which

is based on the fuzzy TOPSIS (Technique for Order

Performance by Similarity to Ideal Solution). The fuzzy

approach is used to order the preferences of the components

that are a similar and ideal solution. The linguistic variables

are used for weight criteria and ratings of the alternatives in

terms of triangular fuzzy numbers. The proposed approach

effectively ranks the components on the basis of their

reliability. Singh, Neha, et al., 2017, [24]: presented a

similarity-based approach for reliability estimation of SOA

(Service-Oriented Architecture) system by using a fuzzy

approach. The proposed approach is based on the ranking of

each service and selects the best for the estimation. The factor

that affects reliability is also presented. Zapata et al, proposed

a software requirement catalog for mobile application related

to health. These applications were used to develop the new

enhanced application. This work based on the SIREN (SImple

REuse of software requiremeNts) methodology to create the

reusable catalog. The audit method is used to check the

verification of the catalogs.

IV. RESEARCH METHODOLOGY

This particular section primarily discusses the

object-oriented software metrics and their significance

towards the software reusability assessment. The used matric

are the primary aspects for the research carried out.

A. Object-oriented software metrics

Software metrics are one of the most important tools used

in software engineering to assess and optimize the quality of

the software. Software metrics are applied throughout SDLC

to assist, to estimate, quality control, productivity assessment

and for the project control. In this paper different

object-oriented CK metrics suite has been taken into

consideration to predict software component reusability

defined as a function of URL (Uniform Resource Locator)

extracted features. Mathematically reusability is defined as

Reusability = f (URL based extracted features)

B. Metrics set

Considering specific OOP (Object Oriented Programming)

based software metrics and their significance to characterize

the software quality and software component reusability. In

this paper, six CK metrics have been extracted from the

classes. The object-oriented metrics have been used and are

presented in table I.

Speculation of Software Reusability Estimation using CK (Chidamber and Kemerer) Metrics

3915

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: A1083109119/2019©BEIESP

DOI: 10.35940/ijeat.A1083.129219

C. Effectiveness of metrics for reusability assessment

Determining the reusability data, we intend to formulate the

relationship between object-oriented CK metrics and the

software reusability. The software reusability is considered as

a dependent variable, while the individual metrics are

considered as an independent variable. Mathematically

object-oriented six CK metrics can be defined as:

Reusability = f (WMC, DIT, NOC, CBO, RFC, LCOM)

Table- I: Object-oriented CK metrics for reusability estimation

S. no. Object-oriented CK metrics Definition

1
WMC (Weighted Methods for

Class)
In a software project, it denotes the sum of each and every class method’s complexity.

2 DIT (Depth of Inheritance Tree) It denotes the greatest length to the node from the root through a tree.

3
NOC (Number of Children) In the associated class hierarchy, it denotes the complete amount of adjacent subclass

that are branches of a class.

4 CBO (Coupling Between Objects) It indicates how suitably the classes are interconnected with one another.

5
RFC (Response For Class) It indicates a method that is implemented in a response to a particular message that is

attained by that class’s object.

6
LCOM (Lack of Cohesion of

Methods)

It indicates the dissimilarity or divergence among the class methods via instanced

variables.

V. SOFTWARE REUSE METRICS

Particular object’s attributes are quantitatively indicated

with the help of metrics whereas the relation between these

metrics is specified by a model [23]. According to Frakes

[23], reuse metrics as well as models are classified as: (1)

Reuse library metrics, (2) Reusability, (3) Failure modes, (4)

Amount of reuse, (5) Maturity assessment, and (6) Reuse cost

benefits models.

Various object-oriented metrics are to be built, such as,

MOOD metrics [28], Li and Henry [27] metrics, CK metrics

[26], Abreu proposed metrics [25]. The most popular metrics

from all of them is the CK metrics. The CK metrics suit is

among the most popular object-oriented design for the system

used for complexity measurement that evolves in the software

package.

A. Overview of CK metrics

A brief description of the CK metrics suite for the

object-oriented design [29, 30] indicates the deepest research

in the object-oriented metrics investigation. Object-oriented

CK metrics for reusability estimation are explained below in

detail. Lack of Cohesion in Methods, coupling between

object, WMC, NOC and DIT are used for developing a

software component reusability estimation model.

B. Weighted Method per Class (WMC)

In a software project, it denotes the sum of each and every

class method’s complexity. The method as well as complexity

amount implicates a predicator that tells the amount of effort

as well as time required to maintain the weight method per

class.

When the larger the number of students is in the class, the

children experiences the greater potential impact. As all the

defined methods of the class are inherited by the children so

when the classes are to have a huge method then the classes

are more application specific, which then limits the reuse

possibility.

C. Depth of Inheritance Tree (DIT)

It denotes the greatest length to the node from the root through a

tree. The tree behaviour cannot be determined easily if in a

hierarchy, class is presented at a deeper level with greater

method number.

As their present large amount of methods and classes in a

deeper tree thus it results in a more complex design. Whereas

in a hierarchy a deeper class has high potential for inherited

methods reusability.

D. Number of Children (NOC)

The instantaneous subclasses number indicates the NOC.

One of the main reusable form is inheritance. In case of large

number of children, there are possibilities that parent class is

abstracted improperly.

The number of children presents the idea about the class’s

potential influence on the design. Additional testing method

of the class is to be required if the class contain a number of

children.

E. Coupling between Object Classes (CBO)

It states that how well the classes are connected together.

Unnecessary coupling among the classes is detrimental to the

modular design which prevents the reuse. If the class is

independent then it is easy to reuse it into another application.

So, for promoting inter-object, encapsulation and improving

the modularity coupling must be least. The greater the

sensitivity if the number of couples is to be large and then the

maintenance becomes difficult.

F. Response for a Class (RFC)

It indicates a method that is implemented in a response to a

particular message that is attained by that class’s object. During the

testing time the suitable allocation is assisted by the possible

worst-case value.

G. Lack of Cohesion in Methods (LCOM)

In the lack of Cohesion, the number of the different

methods in the class that a reference is given to the instance

variable. Good class subdivision indicates the high cohesion.

The cohesiveness of methods in the class desirable because it

promotes the encapsulation. Classes should be split into two

or more subclasses. Low cohesion increases the complexity.

For identifying the objects relation, operations and attributes,

and classes and objects on the initial phases of project life

cycle a substantial effort is required by the object-oriented

methodologies.

International Journal of Engineering and Advanced Technology (IJEAT)

ISSN: 2249 – 8958, Volume-9 Issue-2, December, 2019

3916

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: A1083109119/2019©BEIESP

DOI: 10.35940/ijeat.A1083.129219

CK suites covers are utilized for several reasons: CK suite

covers all aspects of object-oriented software’s these are

Reusability, Encapsulation, and Polymorphism. CK suite was

chosen by the Software Assurance Technology Centre at

NASA (National Aeronautics and Space Administration)

Goddard Space Flight Centre [31, 32] and still used widely.

Much effort was devoted to the empirically validating

[33-35] that the original CK metrics and then linking them to

object-oriented design quality parameters. Most of the other

metrics are formed by the original CK metrics suite. It is very

easy to lift the CK metrics from the coded level to the

modeling level [36]. CK suite could be linked to the three

economic variables. These are Productivity, Rework Effort,

and Design.

Table- II: Guidelines “for CK Metrics

METRIC GOAL LEVEL COMPLEXITY

(To develop, to test and to

maintain)

RE-USABIL

ITY

ENCAPSULATION,

MODULARITY

WMC Low ▼ ▼ ▲

DIT Trade-

off

▼ ▼ ▼

▲ ▲ ▲

NOC Trade-

off

▼ ▼ ▼

▲ ▲ ▲

CBO Low ▼ ▼ ▲

RFC Low ▼ ▼

LCOM Low ▼ ▼ ▲”

VI. COMPARATIVE ANALYSIS OF THE

EXISTING MODELS

Depending on the reuse metrics and various factors few

reusability estimation model are compared in this section. The

results of the comparisons are presented in, Table III.

VII. SUMMARIZED RESULTS

Based on the literature survey some important observations

about the software reusability are as:

 In the object-oriented design’s software reusability

estimation, one of the significant steps is of design phase,

therefore, the various software reusability metrics should be

selected.

 Software characteristics must be identifiable.

 For the object-oriented design, minimal set of the software

reusability is identified so that efforts used in measuring the

object-oriented design’s software reusability can also be

reduced, which directly impacts the software reusability

measurement.

 The software quality is improved with use of software

development life cycle as well as if software reusability is

estimated at an early stage then time, and cost can be

reduced as per the requirements of the customer.

The Evaluation of Chidamber and Kemerer Metrics against

weyukar’s nine axiom is shown in table IV where the

compatibility is represented by Y and N, which states Yes or

No.[52] Table V represents the average values for

Chidamber & Kemerer metrics [53] based on the analysis of

3 systems and quality is classified. This Quality analysis is

based on the 3 languages as specified by NASA which states

that higher the CBO and WMC, the lower the quality of the

system.

VIII. CONCLUSION

In the software engineering research, evaluation of

software techniques as well as software performance, the

software metrics plays a significant role. The main aim of this

paper is to briefly explain some significant researcher’s work

that had influential contribution in the field of software

concerning the software reusability using software metrics.

The software reusability is considered at the formative stage.

Significant research opportunities exist in all of the areas of

software reusability world. A systematic literature review of

software reusability estimation model is carried as well as

their result are examined as critical observations in this paper.

Related work and the classification schemes serve as the

framework for future research to differentiate between the

different software reusability estimation to test more models

and metrics in practice. The comparative analysis of the

existing models and proposed the models discussed in this

paper which clearly indicates that the performance analysis in

software reusability estimation using CK metrics is better.

Speculation of Software Reusability Estimation using CK (Chidamber and Kemerer) Metrics

3917

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: A1083109119/2019©BEIESP

DOI: 10.35940/ijeat.A1083.129219

Table- III: Comparative analysis of existing models

Year Authors Models Method

2005 Richard W. & Selby [37] Evaluation Software Reuse Empirically

by Mining Software Repositories

Goal Question Metric

(GQM)

2006 Parvinder S. & Sandhu [38] Reusability Evaluation Model Neuro-Fuzzy Inference

System

2007 Parvinder S. & Sandhu [39] Quantitative Investigation Model Taguchi Approach

2008 Gui Gui & Paul D. Scott [40] Evaluation of software component

reusability model

Linear Regression and

Rank Correlation

2009 Parvinder S. & Sandhu, Harpreet

Kaur [41]

Reusability Evaluation System Neural Network

Approaches

2010 Sonia Manhas & Rajeev Vashisht

[42]

Reusability Evaluation Model Neural Network

Algorithms

2011 Nasib S. Gill & Sunil Sikka [43] Inheritance hierarchy Based model Metrics based approach

2012 Fazal-e-Amin & Ahmad Kamil

Mahmood [44]

Reusability Attribute Model Goal Question Metric

(GQM)

2013 Ajay Kumar [45] Reusability classification Model SVM classifier

2014 Neha Goyal & Deepali Gupta [46] Reusability Calculation CK Metric

2015 M. Huda et al. [5] Reusability Quantification Model ANOVA

2016 Amjad Hudaib [50] Self-Organizing Map (SOM) CK Metric

2017 Neelamadhab Padhy et al. [49] Aging Resilient Software Reusability

Prediction Model

Web of Service (WoS)

2018 Neelamadhab Padhy et al. [48] EC-AI-Based Regression Analysis for

Reusability Estimation

CK Metric

2019 Neelamadhab Padhy et al. [49] Model for classification of reuse‑

proneness or non reuse‑ proneness

classes

ANN, MARS, and EC”

Table- IV: The Evaluation of Chidamber and Kemerer Metrics against weyukar’s nine axiom

CK

Metrices

WEYUKAR’S NINE AXIOMS

1 2 3 4 5 6 7 8 9

WMC Y Y Y Y Y Y N Y N

DIT Y Y Y Y N Y N Y N

NOC Y Y Y Y Y Y N Y N

RFC Y Y Y Y Y N N Y N

LCOM Y Y Y Y Y Y N Y N

CBO Y Y Y Y Y Y N Y N

Table V: Quality analysis for 3 system (NASA)

System Analysed JAVA JAVA C++

Classes 46 1000 1617

Lines 50000 30000 50000

Quality Low High Medium

CBO 2.48 1.25 2.09

LCOM1 447.65 78.34 113.94

RFC 80.39 43.84 28.60

NOC 0.07 0.35 0.39

DIT 0.37 0.97 1.02

WMC 45.7 11.10 23.97

International Journal of Engineering and Advanced Technology (IJEAT)

ISSN: 2249 – 8958, Volume-9 Issue-2, December, 2019

3918

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: A1083109119/2019©BEIESP

DOI: 10.35940/ijeat.A1083.129219

REFERENCES

1. Abdullah, 1Dr. 1Reena 1Srivastava, 1and 1M. 1H. 1Khan 1Testability

1measurement 1framework: 1design 1phase 1Perspective. 1International

1journal 1of 1advanced 1Research 1in 1computer 1and 1communication

1Engineering 1Vol.3, 1Issue 111 12014.

2. Abdulla'h, Dr. Reena Srivastava, and M. H. Khan Modifiability: A key

Factor to testability, International Journal of Advanced Research in

information and technology, vol. 26, June 2014.

3. Sonia 1Manhas, 1Rajeev 1Vashist, 1Parvinder 1S. 1Sandhu 1and 1Nirvair

1Meeru, 1reusability 1Evaluation 1Model 1for 1Procedure 1Based 1Software

1Systems, 1International 1Journal 1of 1Computer 1Electrical 1Engineering,

1Vol. 12, 1No. 16 1Dec2010.

4. Abdullah, 1Dr. 1M. 1H. 1Khan, 1Testability 1Measurement 1Model 1for 1Object

1Oriented 1design, 1International 1Journal 1of 1Computer 1Science 1and

1information 1technology 1vol. 17, 1No. 11 1February 12015.

5. Huda, 1M., 1Arya, 1Quantifying 1Reusability 1of 1object 1Oriented 1design: 1A

1Testability 1Perspective. 1Journal 1for 1software 1Engineering 1and

1applications.

6. Sommerville, 1Software 1Engineering 19th
 1Addison–Wesley, 1New 1York

1(2011).

7. Goel B.M, Bhatia, and P.K: Analysis of reusability of object-oriented

systems using object-oriented metrics. (2013).

8. P.K. 1Bhatia, 1Research 1on 1software 1reuse 1methods 1based 1on 1the

1object-oriented 1components, 1Computer 1Science 1and 1Network

1Technology 1vol. 15, 12012.

9. Peter 1Freeman, 11983. 1Reusable 1software 1Engineering 1concept 1and

1research 1directions. 1

10. Dromey 1RG. 1Concerning 1the 1Chimera 1(Software 1quality) 1IEEE

1software 1

11. Boehm 1BW, 1Brow 1JR, 1Lipow 1M, 1Mcleod 1G, 1Merritt, 1Characteristics

1of 1software 1reusability 11978.

12. Nor, 1Khalid 1M., 1Hazlie 1Mokhlis, 1and 1Taufiq 1Abdul 1Gani. 1Reusability

1techniques 1in 1load-flow 1analysis 1computer 1program. 1IEEE

1Transactions 1on 1Power 1Systems 119.4 1(2004): 11754-1762.

13. Rotaru, O.P., Dobre, M.: Reusability metrics for software components. In:

Proceedings of the 3rd ACS/IEEE International 123 Cluster Computing

Conference on Computer Systems and Applications, pp. 24–29 (2005).
14. Gill, 1Nasib 1S. 1Importance 1of 1software 1component 1characterization 1for

1better 1software 1reusability. 1ACM 1SIGSOFT 1Software 1Engineering

1Notes 131.1 1(2006): 11-3.

15. Qureshi, 1M. 1Rizwan 1Jameel, 1and 1S. 1A. 1Hussain. 1A 1reusable 1software

1component-based 1development 1process 1model. 1Advances 1in

1engineering 1software 139.2 1(2008): 188-94.

16. Saglietti, 1Francesca, 1Florin 1Pinte, 1and 1Sven 1Söhnlein. 1Integration 1and

1reliability 1testing 1for 1component-based 1software 1systems. 135th

1Euromicro 1Conference 1on 1Software 1Engineering 1and 1Advanced

1Applications, 12009. 1SEAA'09. 1IEEE, 12009.

17. Mohamed, Atef, and Mohammad Zulkernine. Failure type-aware

reliability assessment with component failure dependency. 2010 Fourth

International Conference on Secure Software Integration and Reliability

Improvement (SSIRI). IEEE, 2010.

18. Hsu, 1Chao-Jung, 1and 1Chin-Yu 1Huang. 1An 1adaptive 1reliability 1analysis

1using 1path 1testing 1for 1complex 1component-based 1software 1systems.

1IEEE 1Transactions 1on 1Reliability 160.1 1(2011): 1158-170. 1

19. Zhang, 1Deping, 1Shuai 1Wang, 1and 1Wujie 1Zhou. 1Software 1reliability

1estimation 1method 1based 1on 1markov 1usage 1models 1using 1importance

1sampling. 12012 1IEEE 1Fifth 1International 1Conference 1on 1Advanced

1Computational 1Intelligence 1(ICACI). 1IEEE, 12012.

20. Singh, 1Aditya 1Pratap, 1and 1Pradeep 1Tomar. 1A 1new 1model 1for 1reliability

1estimation 1of 1component-based 1software, 12013 1IEEE 13rd 1International

1on 1Advance 1Computing 1Conference 1(IACC), 1IEEE, 12013.

21. Tyagi, 1K., 1& 1Sharma, 1A. 1(2014). 1An 1adaptive 1neuro-fuzzy 1model 1for

1estimating 1the 1reliability 1of 1component-based 1software 1systems.

1Applied 1Computing 1and 1informatics, 110(1), 138-51.

22. Brosig, F., Meier, P., Becker, S., Koziolek, A., Koziolek, H., & Kounev, S.

(2015). Quantitative evaluation of model-driven performance analysis

and simulation of component-based architectures. IEEE Transactions on

Software Engineering, 41(2), 157-175.

23. Tyagi, 1Kirti, 1and 1Arun 1Sharma. 1Ranking 1of 1components 1for 1reliability

1estimation 1of 1CBSS 1using 1fuzzy 1TOPSIS. 1International 1Journal 1of

1System 1Assurance 1Engineering 1and 1Management 17.1 1(2016): 141-49. 1

24. Singh, 1Neha, 1and 1Kirti 1Tyagi. 1Ranking 1of 1services 1for 1reliability

1estimation 1of 1SOA 1system 1using 1fuzzy 1multicriteria 1analysis 1with 1the

1similarity-based 1approach. 1International 1Journal 1of 1System 1Assurance

1Engineering 1and 1Management 18.1 1(2017): 1317-326.

25. Abreu, 1Fernando 1B., 1Carapuca, 1Rogerio, 1Candidate 1metrics

1object-oriented 1software 1within 1taxonomy 1Framework. 1Journal 1of

1systems 1software 11994.

26. Chidamber, 1Shyam, 1A 1metrics 1suite 1for 1object-oriented 1design. 11993.

27. Li. 1Wei., 1Hemery 1Maintenance 1Metrics 1for 1the 1object-oriented

1paradigm 1First 1international 1software 1metrics 1Symposium. 1IEEE

1computer 1science 1press 11993.

28. Abreu, 1Fermando 1B. 1The 1Mood 1Set, 1Proc. 1ECOOP 195 1workshop 1on

1metrics 11995

29. Shatnawi 1R, 1A 1quantitative 1investigation 1of 1the 1acceptable 1risk 1levels

1of 1object-oriented 1metrics 1in 1open 1–source 1system 1IEEE 1Transactions

12010.

30. 1Amargo 1Cruz 1Ana 1Erika, 1Chidamber 1& 1Kemrer 1suite 1of 1metrics 1Japan

1Advanced 1Institute 1of 1science 1and 1Technology 1School 1of 1information,

1May 12008.

31. Rosenberg, 1L. 1H. 1and 1Hyatt, 1L., 1Applying 1and 1interpreting

1object-oriented 1metrics, 1in 1Proceedings 1of 1Software 1Technology

1Conference, 1Utah, 1April 11998. 1

32. Rosenberg, 1L. 1H. 1and 1Lawrence, 1E. 1H., 1Software 1Quality 1Metrics 1for

1Object-Oriented 1Environments, 1Unisys 1Technology 1Conference,

1Virginia, 11996. 1

33. Chidamber, S. R. and Kemerer, C. F., A Metrics Suite for Object Oriented

Design. IEEE Transactions on Software Engineering, vol. 20, pp.

476-493, 1994. 1

34. Succi, 1G, 1Pedrycz, 1W., 1Stefanvic, 1M., 1and 1Miller, 1J., 1Practical

1assessment 1of 1the 1models 1for 1identification 1of 1defect-prone 1classes 1in

1object-oriented 1commercial 1systems 1using 1design 1metrics, 1The 1Journal

1of 1Systems 1and 1Software, 1vol. 165, 1pp. 11–12, 12003. 1

35. Basili, 1V. 1L., 1Brianc, 1L., 1and 1Melo., 1W. 1L., 1A 1Validation 1of

1Object-Oriented 1Metrics 1as 1Quality 1Indicators, 1IEEE 1Transactions

1Software 1Engineering, 1vol. 122,pp. 1751-761, 11996.

36. McQuillan, 1J. 1A. 1and 1Power, 1J. 1F., 1On 1the 1application 1of 1software

1metrics 1to 1UML 1models, 1Springer 1Lecture 1Notes 1in 1Computer

1Science, 1vol. 14364, 1pp. 1217-226. 12007.

37. Richard W. Selby, Enabling Reuse-Based Software Development of

Large-Scale Systems, IEEE Transaction of Software Engineering, Vol. 31,

No. 6, PP. 495-510, Jun 2005.

38. Parvinder 1Singh 1Sandhu 1and 1Hardeep 1Singh, 1Automatic 1Reusability

1Appraisal 1of 1Software 1Components 1using 1Neuro-Fuzzy 1Approach,

1International 1Journal 1Of 1Information 1Technology, 1vol. 13, 1no. 13, 12006,

1pp. 1209-214. 1

39. Parvinder S. Sandhu Pavel Blecharz and Hardeep Singh, A Taguchi

Approach to Investigate Impact of Factors for Reusability of Software

Components, World Academy of Science, Engineering and Technology,

pp.135-140, Sep 2007.

40. Gui 1Gui 1and 1Paul 1D. 1Scott, 1New 1coupling 1and 1cohesion 1Metrics 1for

1Evaluation 1of 1Software 1Component 1Reusability, 1in 1Proc. 1ICYCS,

12008, 1pp.1181- 11186.

41. Parvinder 1S. 1Sandhu, 1Harpreet 1Kaur 1and 1Amanpreet 1Singh, 1Modeling

1of 1Reusability 1of 1Object-Oriented 1Software 1System, 1World 1Academy

1of 1Science, 1Engineering 1and 1Technology 1Issue. 130, 1pp. 1162-165, 1Aug

12009. 1

42. Sonia 1Manhas, 1Rajeev 1Vashisht, 1Parvinder 1S. 1Sandhu 1and 1Nirvair

1Neeru, 1Reusability 1Evaluation 1Model 1for 1Procedure 1Based 1Software

1Systems, 1International 1Journal 1of 1Computer 1and 1Electrical

1Engineering, 1Vol.2, 1No.6, 1pp. 11107-1110, 1Dec 12010. 1

43. Nasib S. Gill and Sunil Sikka, Inheritance Hierarchy Based Reuse &

Reusability Metrics in OOSD, International Journal on Computer Science

and Engineering (IJCSE), Vol. 3 No. 6, pp. 2300-2309, June 2011.

44. Fazal-e-Amin, 1Ahmad 1Kamil 1Mahmood 1and 1Alan 1Oxley, 1Reusability

1Assessment 1of 1Open 1Source 1Components 1for 1Software 1Product 1Lines,

1International 1Journal 1on 1New 1Computer 1Architectures 1and 1Their

1Applications 1(IJNCAA), 11(3), 1pp. 1519-533, 12011. 1

45. Ajay 1Kumar, 1Measuring 1Software 1Reusability 1using 1SVM 1based

1Classifier 1Approach, 1International 1Journal 1of 1Information 1Technology

1and 1Knowledge 1Management., 1Vol. 15, 1No. 11, 1pp.205-209, 1Jan 12012.

46. Neha 1Goyal, 1Er. 1Deepali 1Gupta, 1Reusability 1Calculation 1of

1Object-Oriented 1Software 1Model 1by 1Analyzing 1CK 1Metric,

1International 1Journal 1of 1Advanced 1Research 1in 1Computer 1Engineering

1& 1Technology, 1Volume 13 1Issue 17, 1July 12014

47. Padhy, 1N., 1Singh, 1R. 1P., 1& 1Satapathy, 1S. 1C. 1(2018). 1Software

1reusability 1metrics 1estimation: 1Algorithms, 1models 1and 1optimization

1techniques. 1Computers 1& 1Electrical 1Engineering, 169, 1653–668.

1doi:10.1016/j.compeleceng.2017.

11.022

Speculation of Software Reusability Estimation using CK (Chidamber and Kemerer) Metrics

3919

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: A1083109119/2019©BEIESP

DOI: 10.35940/ijeat.A1083.129219

48. Padhy, Neelamadhab, Rasmita Panigrahi, and K. Neeraja. Threshold

estimation from software metrics by using evolutionary techniques and its

proposed algorithms, models. Evolutionary Intelligence (2019): 1-15.

49. Padhy, 1N., 1Singh, 1R. 1P., 1& 1Satapathy, 1S. 1C. 1(2017). 1Enhanced

1evolutionary 1computing 1based 1artificial 1intelligence 1model 1for

1web-solutions 1software 1reusability 1estimation. 1Cluster

1Computing.doi:10.1007/s10586-017-1558-0 1

50. Hudaib, 1Amjad, 1Ammar 1Huneiti, 1and 1Islam 1Othman. 1Software

1Reusability 1classification 1and 1predication 1using 1self-organizing 1map

1(SOM). 1Communications 1and 1Network 18.03 1(2016): 1179.

51. M. Shaw, R. DeLine, D.V. Klein, T. L. Ross, D.M. Young, G. Zelesnik,

Abstractions for Software Architecture and Tools to Support Then,

IEEE Transactions on Software Engineering, April 1995.

52. . Sandhu, P., & Singh, H. (2005). A Critical Suggestive Evaluation of

CK metric. PACIS 2005 Proceedings, 16.

53. Coleman, C. Principal Components of Orthogonal Object-Oriented

Metrics. White Paper Analyzing Results of NASA Object-Oriented

Data (323-08-14), October 2001. Postal addresses István Siket.

In Department of Software Engineering University of Szeged H-6720

Szeged, Árpád tér 2, Hungary Rudolf Ferenc Department of Software

Engineering University of Szeged.

