DIGITAL SCIENTIFIC META 4TM SERIES 16 COMPUTER SYSTEM #### REFERENCE MANUAL Publication Number 7032MO (Revision B) (Supersedes Publication Number 7006MO) ## Digital Scientific Copyright © 1971, Digital Scientific Corporation. All rights reserved. This document may not be reproduced in part or in whole by any process, except as used within the company for internal discussion or for consideration or use of Digital Scientific Corporation equipment, without prior written permission of Digital Scientific Corporation. May 1971 DIGITAL SCIENTIFIC CORPORATION 11455 Sorrento Valley Road San Diego, California 92121 #### RECORD OF REVISIONS Title: Digital Scientific META 4 Series 16 Computer System, Reference Manual Publication Number: 7032MO (supersedes Publication Number 7006MO in its entirety) | DATE | IS | SUE | |-------------------|---|--| | 10/22/70 $1/4/71$ | Original Revision A: List of Changed Pages: | | | | Delete page 1-5 (1-6)* pages 1-9 through 1-11 (1-12) page 1-19 (blank) pages 2-3 and 2-4 page (2-5) 2-6 page (2-9) 2-10 page 2-13 (2-14) page (2-15) 2-16 page 2-19 (2-20) page 2-27 (2-28), page 2-29 (2-30) page (2-43) 2-44 page A-3 (blank) page B-1 (B-2) | Add page 1-5 (1-6) pages 1-9 through 1-11 (1-12) page 1-19 (blank) pages 2-3 and 2-4 page (2-5) 2-6 page (2-9) 2-10 page 2-13 (2-14) page (2-15) 2-16 page 2-19 (2-20) page (2-21) 2-22 page 2-27 (2-28), page 2-29 (2-30) page (2-43) 2-44 page A-3 (blank) page B-1 (B-2) | | chang | indicated parenthetically are unchanged, ed text. Note: Changes are indicated by led text. | | Address comments to: DIGITAL SCIENTIFIC CORPORATION 11455 Sorrento Valley Road San Diego, California 92121 Phone: (714) 543-6050 TWX: 910-322-1136 #### RECORD OF REVISIONS (Continued) | Title: Digital | cientific META 4 Series 16 Computer System, Reference I | Manual | |--------------------|---|--------| | | | | | Publication Number | : 7032MO | | | DATE | | ISSUE | |--------|-----------------------------|--| | 5/3/71 | Revision B: List of Changed | Pages: | | | Delete | Add | | | | pages iii and iiia | | | page vi | page vi | | | page 1-3 | page 1-3 | | | page 1-9 | page 1 - 9 | | | page 1–14 and 1–15 | page 1–14 and 1–15 | | | page 1-17 | page 1-17 | | | page 2-4 | page 2-4 | | | page 2-19 | page 2-19 | | | page 2-44 | page 2-44 | | | page A-2 | page A-2 | | | page (Title page E) | page (Title page E) | | | page F-2 | page F-2 | | | page G-1 | page G-1 | | | page H-2 | page H-2 | NOTE: Changes are indicate | ed by bars in the margin opposite the affected | | | text. | | Address comments to: DIGITAL SCIENTIFIC CORPORATION 11455 Sorrento Valley Road San Diego, California 92121 Phone: 714/453-6050 TWX: 910 322 1136 ### TABLE OF CONTENTS | SEC | CTION | PAGE | |-----|--|-------------------| | | FORWARD | vii | | 1. | DIGITAL SCIENTIFIC META 4 SERIES 16 COMPUTER SYSTEM | | | | INTRODUCTION | 1-1 | | | META 4 System Concepts | 1-1 | | | PROCESSOR ORGANIZATION | 1-4 | | | Data Registers | 1-4 | | | Data Processing Logic | 1-4 | | | Sequence Cont | 1-4 | | | Input/Output | 1-7 | | | Core Memory | 1-7 | | | scratch-Pad Memory | 1-7 | | | PROCESSOR HARDWARE DESCRIPTION | 1-7 | | | Registers and Scratch-Pad Memory | 1-9 | | | | 1-3 | | | Dedicated Registers | 1-10 | | | Boolean Function Unit | 1-11 | | | | 1-11 | | | Skew Function Unit | 1-11 $1-12$ | | | | 1-12 | | | | 1-12 | | | META 4 System I/O Registers | 1-14 | | | | | | | I/O Transfer | 1-15 | | | I/O Interlocking | 1-15 | | | Detailed Timing Considerations for I/O Interface Register | 1-17 | | | Core Memory Read/Write Transmission and Control | 1-18 | | | PERIPHERAL EQUIPMENT | 1-18 | | 2. | READ-ONLY MEMORY (ROM) INSTUCTIONS AND INSTRUCTION MODIFIERS | | | | CENEDAL DESCRIPTION | 2-1 | | | GENERAL DESCRIPTION | $\frac{2-1}{2-1}$ | | | Instructions | $\frac{2-1}{2-1}$ | | | Modifiers | 2-1 $2-17$ | | | | 2-17 | | | Microassembler Pseudo-Ops | 2-30 | | AP | PENDICES | | | A | META 4 COMPUTER SYSTEM PROGRAMMING TECHNIQUES | A 1 | | | AND EXAMPLES | A-1 | | В | META 4 SYSTEM SAMPLE PROGRAMS AND SAMPLE FLOWCHARTS | B - 1 | ### TABLE OF CONTENTS (Continued) | APPENDI | ICES | PAGE | |---------|--|------| | C | POWERS OF TWO | C-1 | | D | HEXADECIMAL-TO-DECIMAL CONVERSION TABLE | D-1 | | E | META 4 SYSTEM OBJECT CARD FORMAT | E-1 | | F | MICROASSEMBLER OPERATION | F-1 | | G | META 4 MICROASSEMBLER ERROR CODES | G-1 | | Н | CABLE CONNECTIONS | H-1 | | I | MICROPROGRAMMER'S PANEL | I-1 | | | LIST OF ILLUSTRATIONS | | | FIGURE | | | | 1-1 | META 4 COMPUTER SYSTEM, BLOCK DIAGRAM OF CENTRAL PROCESSOR UNIT | 1-5 | | 1-2 | MEMORY INTERFACE REGISTER | 1-6 | | 1-3 | I/O INTERFACE REGISTER | 1-6 | | 1-4 | DIGITAL SCIENTIFIC META 4 SERIES 16 PROCESSOR, HARDWARE ORGANIZATION | 1-8 | | 1-5 | DIGITAL SCIENTIFIC META 4 COMPUTER SYSTEM ROM BOARD, TYPICAL PATTERN | 1-13 | | 2-1 | META 4 SERIES 16 COMPUTER CONTROL INSTRUCTIONS | 2-2 | | | LIST OF TABLES | | | NUMBER | | | | 2-1 | META 4 PROCESSOR REGISTER VERSIONS | 1-9 | | | | | #### **FOREWORD** This manual is periodically updated to reflect the current state-of-the-art of the Digital Scientific META 4 Computer System. As an addendum to this Revision B, the following statement is offered: System timing cycles stated in this Reference Manual are valid on META 4 Systems employing one full central processor unit (CPU) logic rack, one full core memory logic rack, and one full input/output (I/O) logic rack. A full CPU logic rack consists of a full complement of registers (32), and a maximum of 4 read-only memories (ROM's). A full core memory logic rack consists of a maximum of 65K words of core. A full I/O logic rack consists of as many as 11 wire-wrap boards or 22 printed-circuit boards. This is the configuration under which META 4 Computer System timing is valid. Deviations in configuration from that above can result in timing differences from those specified in this manual. 1. DIGITAL SCIENTIFIC META 4 SERIES 16 COMPUTER SYSTEM $INTRODUCTION^{(1)}$ META 4 System Concepts •Organization of Digital Scientific's META 4 Computer provides "general-purpose applicability" not only in a main memory instruction set, but also in the underlying, microprogram instruction set and in its flexible hardware organization. Contrary to the traditional computer organization, which bars the system designer from using registers and data paths other than as defined by a core memory instruction set, each META 4 System designer can determine the number and functional assignment of general-purpose registers for data handling, external input/output, core memory input/output, accumulators or indexing, and the core memory instruction set to use. The object of META 4 microprogramming capability is to allow the system designer to exercise all of the possible hardware interconnections as directly as possible without intervening constraints. The system designer can be both a programmer and a logic designer and can manipulate not only algorithms, but architecture. The META 4 Microprogrammed Processor can be described as a "computer within a computer, "where inner computer sequences (the microprogram) emulate the machine language instructions for the outer computer and also can execute special sequences not necessarily related to ordinary outer-machine instructions. Conventional computer system organization limits the permissible interconnections among functional elements. Since machine language formats and logical organization of conventional computers are closely related, only one machine language instruction set can generally be executed efficiently and the full potential of possible interconnections among the functional elements cannot be realized. ⁽¹⁾ Digital Scientific Corporation is indebted to Dr. Robert Rosin for permission to include some of his concepts on emulation in this introduction. The META 4 microprogrammed computer organization offers the system designer an opportunity to optimize internal hardware facilities to a particular set of requirements. Organization of the META 4 system is independent of the machine language instruction set in main memory and permits flexibility in specifying interconnections for functional elements such as arithmetic and Boolean operational units, registers, memory, and input/output devices. For example, core memory instruction execution in every computer involves a sequence of steps such as: - •Place program location counter in memory address register. - Fetch instruction from main memory and place in memory data register. - •Increment program location counter to prepare for next instruction. - •Move current instruction to instruction register. - •Decode current instruction and addressing mode. - Calculate operand address. - •Place operand address in memory address register. - Fetch operand from main memory and place in memory register. - Perform operation. In a conventional computer, specially wired circuits control each sequence. The main memory instruction set is fixed and can be changed only by rewiring the computer. In the META 4 Computer, a high-speed read only control memory (ROM) replaces the specially wired circuitry. Control memory
instructions (the microprogram) specify interconnections of functional elements. The control memory contents can be altered easily by the system designer, thus permitting great flexibility in specifying interconnections and allowing almost any desired main memory instruction set. A META 4 microprogram emulator for another computer differs from a conventional computer program interpreter in several features, as described below. - •Microprograms are stored in a control memory which is distinct from the main memory of the emulated machine and is read-only memory (ROM) for the purpose of optimizing speed. - Facilities to improve implementation and operation of emulators can be implemented at speeds comparable to those available from hardware. Examples are floatingpoint arithmetic, character code conversion, and control panel operation. Digital Scientific Corporation's unique Read-Only Memory (ROM) controlled instruction cycle times average 90 nanoseconds, enabling 10 or more microinstructions to be executed during each 900-nanosecond core memory cycle. META 4 ROM microprograms (firmware) allow both emulation of ordinary core memory instructions and execution of special algorithms to be executed much more rapidly than in other "general-purpose" devices. These factors – the computer organization and the high-speed ROM firmware – mean that applications which would normally require special hardware are standard capabilities for a META 4 Computer. For example: - •Instruction Set Emulator for Other Computers (with improved performance): An IBM 1130/1800 can be emulated completely with higher performance and can also be improved upon substantially by adding floating-point instructions and register-to-register instructions. - Channel Interface or Peripheral Equipment Controller for Other Computers: A disc controller with code and format conversion capabilities can be microprogrammed to operate at high speeds to provide economical standard interfacing to a variety of other computers; an IBM 2314 disc controller can be emulated. - Communications Line Controller, Buffer, Editor, and Preprocessor: Serial-to-parallel conversion and data editing for multiple nonsynchronous or synchronous lines can be done at high speed to relieve a data processing system of a substantial overhead load; an IBM 2703 communications controller can be emulated with features not available in the original. - •<u>Digital Algorithm Processor</u>: Convolution, fast Fourier transformation, correlation, high-level language compilation, or queue optimization algorithms can be executed at high speed, among multiple registers, using core memory for data only, not for program execution. - •The processing unit (see Figure 1-1, 1-2, and 1-3) consists of data registers, data processing logic, sequence control and the read-only memory (ROM), input/output facilities, core memory, and integrated scratch-pad memory. - •<u>Data Registers</u> are 16-bit, integrated-circuit registers. Up to 31 directly addressable registers may be installed. During certain operations, data from the Read-Only Memory (ROM) may be used in place of register data. In Figure 1-1, registers for addresses 4 through 31 are optional. The requirement for and the choice of a particular type of register depend upon the user's system requirements for accumulator and scratch-pad registers, core memory registers, and input/output registers. - •Data Processing Logic consists primarily of an arithmetic/Boolean unit, which processes data received via the A-bus and the B-bus; followed by a Skew unit, which transmits data to a destination register via the D-bus. The arithmetic unit is a 16-bit, high-speed parallel adder. Carry-in controls, together with overflow and carry-out condition register bits, allow multiple precision operation. The Boolean functions comprise the logical connectives AND, OR, or Exclusive OR. The skew unit manipulates the result of either an arithmetic or a Boolean operation. - •Sequence Control for the processor is a program stored in high-speed, Read-Only Memory (ROM) and coded in a manner similar to Assembly language instructions for a conventional (hardware-sequenced) computer. Addresses in ROM instructions and in Register 2 (the Link register) are used by the branch-control unit to shift control between various sequences as the result of testing operations. #### PROCESSOR ORGANIZATION #### Data Registers ## Data Processing Logic #### Sequence Control 1-5 Rev. 12/22/70 OF CENTRAL PROCESSOR UNIT FIGURE 1-2. MEMORY INTERFACE REGISTER FIGURE 1-3. I/O INTERFACE REGISTER Any single bit of any addressable register may be tested for zero or nonzero, 8-bit or 16-bit fields may be tested for zero or nonzero, and a self-decrementing register (Register 1) may be tested for zero concurrently with operations of functional units. #### Input/Output - •Input/Output Facilities are implemented at three levels: - 1. Direct cable connections to special types of directly addressable registers. The sequence control program may communicate with the system peripheral equipment through these registers. - 2. Chassis accepting standard controller for various peripheral equipment on a plug-in basis. No field wiring changes are required to add or delete peripheral equipment. Peripheral equipment controllers operate on a party-line I/O bus or directly to memory, as applicable. - 3. Direct access to core independently of the adapter chassis. - Core Memory is operated by the control program through special registers and controls. Four standard memory ports allow multiple processors or special equipment to share multiple banks of memory. Each bank of core memory is an independently operable unit. The processor can use additional memory registers or interleaving to overlap accesses to several banks. - •<u>Integrated Circuit Scratch-Pad Memory</u> is operated by the control program internal control and data through special registers incorporated into the scratch-pad controls - •The complete processor, including control memory, mounts in a 19-inch-wide rack housing and requires a 14-inch height for the logic and control memory chassis, a 14-inch height for memory banks, and a 14-inch height for the input/output adaptor chassis. Power supplies are normally mounted on the rear rails of a cabinet behind the processor chassis. (See Figure 1-2.) Air movement is provided by for assemblies which require additional space on the rack. #### Core Memory Scratch-Pad Memory PROCESSOR HARDWARE DESCRIPTIONS FIGURE 1-4. DIGITAL SCIENTIFIC META 4 SERIES 16 PROCESSOR, HARDWARE ORGANIZATION П Processor logic uses high-speed, emitter-coupled, integrated circuits for reliable operation at high speed. Major operation cycle time averages 90 nanoseconds including Read-Only Memory (ROM) and data source register accesses, arithmetic and/or logical shift processing, and storage in a destination register. Input/output logic uses a mixture of DTL and TTL integrated circuits. Registers and Scratch-Pad Memory •Optional assemblies for directly addressed registers are available in several versions. Optional assemblies for integrated circuit scratch-pad memory are also available. Register types differ in internal bus connections, external I/O connections, and associated control functions. Register assemblies differ in the number and types of registers. TABLE 2-1. META 4 PROCESSOR REGISTER VERSIONS | BOARD TYPE | BOARD DESCRIPTION | DATA BUS
CONNECTIONS | |-------------------------|---|------------------------------| | Double-Bus Accumulators | Four 16-Bit Data Registers | A, B, and D | | Single-Bus Accumulators | Eight 16–Bit Data Regis–
ters | B and D | | 1/0 | Four 16-Bit Input Gates and
Four 16-Bit Output Latches | B and D | | Memory I/O | One Memory Address and
Control Register, One 16-
Bit Memory Input Gate and
One 16-Bit Memory Output
Latch; Two 16-Bit Input
Gates and Two 16 Bit Out-
put Latches | B and D | | Scratch-Pad Memory | Sixty-four 16-Bit Data
Registers | B and D
(both indirectly) | Registers may be data sources on the A-bus and B-bus and data destinations on the D-bus. Registers without physical connection to the A-bus will function as if the contents were zero for the A-bus only. Register addresses 0, 1, 2, and 3 are assigned to the basic machine structure (see Figure 1-1). All other addresses (4 through 31) are available for general use and are assigned in groups of four registers to seven connectors. Addresses 4, 5, 6, and 7 are normally assigned to core memory and general I/O functions. I/O, Memory-I/O, and Singlebus registers can be installed only in the positions indicated. The control logic of the META 4 has jumpers installed to control timing for any connector with a Memory-I/O register installed. #### Dedicated Registers - •The dedicated META 4 register address functions and connections are indicated below: - •Register 0 Zero register: contains zero for operand use and serves as a dummy destination. - •Register 1 Condition/Counter register: bits 8 through 15 contain a self-decrementing counter which may be initialized from the D-bus and decremented and tested by instruction control bits. Bits 0, 1, and 2 represent carry-out, overflow, and shifter conditions and are not controllable from the D-bus. Bits 3 through 7 are fixed at zero. All register bits can be gated to the B-bus for operand use or program testing with the limitation that if Register 1 is specified as both the Bbus source and the D-bus destination of a single instruction the counter contents are indeterminate. - •Register 2 Link register: serves as an address source for the ROM address selector during specific instructions. The Link register may be set from the D-bus and gated to the B-bus as required and may serve as a single bus accumulator if not
required for ROM addressing. - •Register 3 General-purpose, double-bus accumulator: has no special properties. - •The high-speed, 16-bit parallel adder operates in two's complement mode with carry input under program control. Carry-out and overflow automatically force the appropriate condition register bits and may be tested in the Condition/Counter register. Carry input during an instruction may be either inhibited, selected to be the previous carry output, or forced unconditionally. The ability to select a previous carry-out as a carry input simplifies multiple precision operation. The ability to force a carry input facilitates two's # Data Processing Logic complement subtraction operations using logical complementing of operands rather than arithmetic complementing. If one's complement arithmetic operation is required, the processor program may use two-step additions in which the second step provides the end-around-carry characteristics of one's complement operations. Two special addition operations expedite multiply and divide operations: - Multiply step is addition which is completed only if the shift condition was previously true. - •Divide step is a trial addition where a negative sum inhibits changing the destination register. - •The Boolean unit provides the logical connectives AND, OR, or Exclusive OR of the A-bus and B-bus sources. Since Register 0 (containing zero) may be used as one of the operands, the Boolean unit may be used to zero registers using the AND function and to copy data using the OR function. An Exclusive OR using a data field from the ROM with all 16 bits true is used to complement data. - •The Skew unit provides bit manipulations on the output of the Arithmetic/Boolean unit. Both carry-out to the shifter link and carry-in from the shifter link for shift operations may be selected independently. The shifter link status may be tested in the Condition/Counter register and represents the data spill from the most recent skew operation having shift out enabled. Skew operations comprise: - •One-place left or right shift - Eight-place left or right shift/rotate - •Sign extend (copy bit 8 into bits 0 through 7) - •Scale (one-place end-off right shift with arithmetic carry entering at left) - •No shift. Boolean Function Unit Skew Function Unit Sequence Controls and Read-Only Memory (ROM) ROM Organization - •The ROM comprises a word drive and bit sense structure which is loaded with firmware contents by sliding in storage boards that have removable adhesive-bonded metallic "bit-patch" patterns, representing bit positions in sequential instructions. A bit patch is binary "1" and the absence of a bit-patch indicates binary "0." See Figure 1-5. - •Contents of the ROM can be readily modified or replaced in the field by either Digital Scientific Corporation or user personnel at the bit or board level. Addresses of instruction words must be even. Logically indexed references to data words may use either even or odd addresses. Up to 4096 single words may be installed in multiples of 1024 words. Each reference to the ROM calls up a double word so that access time is identical for single words and double words. ROM instructions are executed in sequence unless a Branch causes transfer to another sequence. Branches occur in one of three ways: if the J modifier is specified during an RR format instruction, the next instruction is unconditionally taken from the address in the Link register (Register 2); if J and D modifiers are specified and the counter section of the Condition/Counter register (Register 1) does not decrement to zero during an RR format instruction when tested, the next instruction is taken from the address in the Link register; if a Branch instruction to test various data or machine conditions is successful, the next instruction is taken from the data field of the instruction and logical indexing by the Link register is selectable. A 4-bit field in the branch instruction "points" at any single bit of any addressable register. Branching may be selected for the true or false state of the specified bit, allowing tests for data sign, arithmetic carry/overflow, shift carry, or any other single bit condition. Branching on zero or nonzero half words or single words is selected by a modified branch instruction. The system is initialized by an externally applied signal which clears the I/O register controls and the ROM register. Execution of the instruction at ROM address 000₁₆ (normally a Branch) can lead to a firmware routine that initializes other parts of the system such as internal working registers. FIGURE 1-5. DIGITAL SCIENTIFIC META 4 COMPUTER SYSTEM ROM BOARD, TYPICAL PATTERN #### META 4 System I/O Registers 11 H ternal devices using I/O or Memory-I/O interface registers. The design of the CPU restricts use of Memory-I/O boards to those sockets for register groups 04 through 07, 0C through 0F, 14 through 17, and 1C through 1F. The corresponding CPU card sockets are labeled A, C, E, and G. Each I/O board provides four independent front con- •The Digital Scientific META 4 Central Processor Unit (CPU) transfers data between internal buses and ex- Each I/O board provides four independent front connectors for external I/O cables. Each Memory-I/O board provides two independent front connectors for external I/O cables, one connector for a memory cable, and one connector for memory status, if the Memory Address Permuter (MAP) option is implemented. The I/O board connectors (ports) are arranged from top to bottom in order of increasing register address. The Memory-I/O board connectors are arranged from top to bottom in order of increasing register address and are: memory status, memory address and data, and two I/O registers. •Understanding the logical and timing requirements for I/O registers requires a description of the manner in which the META 4 Processor's clock system operates: - •The META 4 clock rate is not constant, but each command operates in one clock cycle, except for Register Load instructions which require two clock cycles. After each cycle, the machine may be stopped with the next command already present in the ROM data register and partially executed in the sense that the internal address and data bus paths are enabled. In other words, the D-bus data is available but is not yet transferred; and the ROM address for obtaining the next command is selected, but the ROM data is not yet read. - •The clock restart cycle causes the D-bus data to be transferred to the destination register and the ROM to be pulsed in order to load the next command into the Command register. The META 4 clock may be triggered at intervals of less than 85 nanoseconds (depending on configuration and bus loading) if the ROM addresses occur in increasing sequence unless: •A command implies that the next ROM address might be out of sequence (e.g., Branch, Register Load, or Jump). ## Stopping the META 4 Clock •PZ modifier is true. 111 II •A memory register is addressed on the D-bus (CPU control jumpers define memory register positions). In such cases, the start of the next clock cycle is delayed for 30 nanoseconds (120-nanosecond total cycle) either to allow for ROM address selection settling or to allow time for the I/O port pause condition to be recognized. Once an I/O or Memory-I/O register pause condition is recognized, the start of the next clock cycle can be delayed indefinitely beyond the 30-nanosecond minimum delay. That is, a META 4 machine cycle can be externally controlled to be any time longer than the minimums specified here. •Each I/O register port provides 16 bits of data output from the CPU and 16 bits input to the CPU. The data outputs are buffered by a flip-flop register, which is addressed and loaded from the D-bus. The data inputs are gated directly (no flip-flops) onto the B-bus. Data outputs change state only when the clock cycle pertaining to the <u>next</u> command, which may have been delayed by an I/O port pause, is initiated and therefore finishes execution of the previous command. Input data pertaining to a command which has been delayed by an I/O pause is, however, gated to the B-bus. Therefore, the destination data during the paused condition continuously follows input data. When the clock system is restarted, the data is transferred to the designated D-bus register. The separation of data input and output paths implies that data loaded into an output register cannot be read by a B-bus input command unless an external connection is made to the register port. •The META 4's clock system pause logic uses I/O control flip-flops. Each input and each output register path has one such control flip-flop. The control flip-flop for an input register is known as the Acknowledge (ACK) flip-flop. The control flip-flop for an output register is known as the GO flip-flop. I/O Transfer I/O Interlocking A control flip-flop is set only when the next clock cycle (which finishes execution of a command) is initiated and the I/O bit of the command is true, that is, a control flip-flop can be set only at the same time that data is loaded into destination register. A control flip-flop can be reset by: - •The CLEAR switch on the microprogrammer's panel - •An automatic clear on initial power up - •By an external signal on the I/O port. These external signals are known as the Input-Ready signal for an ACK flip-flop and the Output-Resume signal for a GO flip-flop. The clock system will halt as long as a control flipflop is set or the reset pulse has not terminated if: - •The pause bit of the command is true, and - •The register B-bus or D-bus address in the command corresponds with the associated register. The B-address applies to an ACK flip-flop and the D-address applies to the GO flip-flop. When both PZ and IO modifiers are specified in a command: - •PZ controls whether or not the command will pause because of the current state of a flip-flop. - •IO controls the subsequent state of the control flip-flop.
That is, PZ applies to conditions prior to initiation of a META 4 clock cycle, and IO applies to conditions after a META 4 clock cycle. A signal, called Output-Enable, enables gates between the output data flip-flops and the output data lines. This feature allows wired-OR connections from more than one output register to a command cable. Detailed Timing Considerations for I/O Interface Register Ш •Restoring a Ready condition initiates a clock cycle if the clock pause resulted from that control flip-flop PZ test. The cycle completes (including control flip-flop setting) and the next instruction starts 75 nanoseconds later. Input data should settle before Input-Ready becomes active and the data should be maintained until Acknowledge becomes active. Output may occur as soon as 75 nanoseconds after Output-Ready is active. However, the next data output could be considerably later either because the firmware may be executed in single-step mode or because the program has not yet arrived at a ROM command which changes output data. Similar remarks apply to the time duration between Input-Ready and the Acknowledge signal. Refer to Appendix H for signal pin assignments and interface information. Core Memory Read/Write Transmission and Control •Core memory read/write transmission uses register reference instructions in a manner similar to ordinary input/output register reference instructions. The two control instruction bits are interpreted as Read and Write rather than Pause and I/O control. The program sequence Pause function is implied as active when addressing any memory register. The core memory is a coincident current system with a 900-nanosecond full cycle (read/write). Each completely independent bank has four independent access ports. Port priority may be assigned at the discretion of the user and may differ between banks. Memory is protected against power failure. One 16-bit output register is assigned as the core memory address register and a second 16-bit output register is assigned as the core memory data output register. One of the corresponding 16-bit input register addresses is assigned to the core memory data input gate and the second corresponding 16-bit input register address is assigned to the input path for memory parity, protect status condition, and memory control signals if the MAP option is implemented. Input/output pairs are not externally connected except for memory data. Only one standard cable is required to connect the core memory with the four register paths. The memory data lines are bidirectional and are shared for input and output. #### Standard memory feature: - •One 16-bit odd parity bit. - •One 16-bit odd parity and one protect bit with automatic abort of Write instructions when the memory cell is protected and the Write control does not indicate a protected write status. Error conditions must be transmitted to the I/O system and from there to the processor. PERIPHERAL • Peripheral equipment is operated either by dedicated registers or by a multiplexed signal bus using one pair of standard I/O registers. One output register is used for addressing and a second output register is used for control and data output. One of the corresponding input register. and data output. One of the corresponding input register addresses is used for data input and the second corresponding input register address is used for miscellaneous status and data bit inputs. Two standard cables are required to connect the two register paths with the chassis of the peripheral devices. Standard peripheral devices are listed below: - •Keyboard/Printer - •IBM 1130 Control Panel - •IBM 1130 SAC channel - •IBM 1800 Computer Data Channel - •IBM 1800 Control Panel - •300-character-per-second Paper Tape Reader - •50-character-per-second Paper Tape Punch - •300-card-per-minute Hollerith Card Reader - •200-card-per-minute Hollerith Card Punch and Reader combination - •Moveable Head Disc with Removeable Single Disc Pack - •300-line-per-minute Line Printer - •600-line-per-minute Line Printer - •Magnetic Tape Transports (1 x 2 controller, 7- or 9-track) - •Digital Input/Output Interfaces - •300-step-per-second Incremental Plotter - •Teletype Line Adapters - •High-Speed Communications Line Adapters - •Real-Time Clock - •Stall Alarm/Timer 2. READ-ONLY MEMORY(ROM) INSTRUCTIONS AND INSTRUCTION MODIFIERS GENERAL DESCRIPTION #### Instructions - •ROM instructions select specific operations of the Arithmetic/Boolean, Branch, and Register Load functions of the META 4 computer. Instructions are grouped into four categories, as shown in Figure 2-1. - •BR is the Branch format. - •RR is the Register-Register format. - •RI is the Register-Immediate format. - •RL is the Register Load format. ROM instructions are described in detail on the following pages. #### Modifiers •ROM instruction modifiers select operations of the computer in addition to those selected by the basic instructions. Multiple modifiers may be specified and will operate within the basic instruction cycle times. The modifiers are described in detail beginning on page 2-17. FIGURE 2-1. META 4 SERIES 16 COMPUTER CONTROL INSTRUCTIONS #### Format BR BRANCH IF NONZERO CONDITION Valid Modifiers: R L R, L W IX XQ PZ IO The condition specified by modifiers or a register bit position is tested. If the test result is nonzero, the next instruction is taken from the even ROM location specified in the operand field. If the test result is zero, the next sequential instruction is executed. Registers and machine conditions are not changed. The operand field must contain either a label or an absolute address. The least significant bit of an address is ignored and interpreted as zero. Logical indexing applies if IX modifier is specified. | LABEL | | OPERATION | B
REG | | D
REG | | REG | | OPERAND | M | |------------|---|--|----------|---|----------|----|---------|----|---------|---| | 1 121 31 4 | ٤ | 5 7 8 9 | 111 12 | | 14 [15 | 6. | 17 [18 | (q | | 77 | | TAG | | B _I N _I Z _I | 3, | | | | | | 000 | L_, , , , , , , , , , , , , , , , , , , | | | | | | П | | | | | | | In this example, the left byte (8 bits) of Register 3 are tested. If the byte is nonzero, a Branch to the address in the operand field occurs. If the byte is zero, the next sequential instruction is executed. | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | |---|---|--------|--------|---|----------------------------|------|---|---|---|----|----|----|----|----|----| | 0 | 0 | 0 | 0 | В | 2
2
2
2
3
3 | Vin. | t | В | В | В | В | 1 | # | | | | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | | P | P | L
P | R
P | Y | Y | Y | Y | Y | Υ | Y | Y | Y | Y | Y | Y | ROM INSTRUCTION, EVEN ADDRESS ROM INSTRUCTION, ODD ADDRESS B = B-Register P = Bit Pointer R = Test Right Byte L = Test Left Byte # = Byte or Bit Test Operation Select 1 = Byte 0 = Bit Y = ROM Address Valid Modifiers: R L R, L W IX XQ PZ IO The condition specified by modifiers or by a bit position is tested. If the test result is zero, the next instruction is taken from the ROM location specified in the operand field. If the result is nonzero, the next sequential instruction is executed. Registers and machine conditions are not changed. The operand field must contain either a label or an absolute address. The least significant bit of an address is ignored and interpreted as zero. Logical indexing applies if IX modifier is specified. | LABEL | OPERATION | Γ | REG | | | REG | OPER | RAND | | 1 | | | | | | | | | | | | | | | | _ | |---------|-------------|---|--------|---|---|----------------|-----------|-----------|---|-----|------|------|-------|-----|-----|--------|-----|-----|-------|----|-----|-----|------|---|-------|----| | 1121314 | +17[8]9 | | 14 1/2 | | | .7 []8 | 201211221 | Z11 241 - | | .,, | 1.81 | 29] | n jar | 102 | 101 | 14 [3 | 120 | 137 | (18.) | 19 | 401 | 0.1 | 42.1 | • | 64 14 | 45 | | TA,G, | $B_iR_iZ_i$ | | 3, | ı | | | BOG. | | | ١, | | | | | | | _ | _ | | | I | | | | 1 | | | 1 1 1 | 1 1 1 | | 1 | | | | 1 | | | | 1 1 | 1 | 1 | 1 | | | 1 | 1 | | | 1 | | , | | 1 | | | | | | | - | _ | - | 1 | | 1 | | | | | | | | | | | | | _ | | | | _ | In these examples, the left byte (8 bits) of Register 3 are tested. If the byte is zero, a Branch occurs to the address in the operand field. If the byte is nonzero, the next sequential instruction is executed. | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | |---|-----|---|--------|---|---|---|---|---|---|----|----|----|----|----|----| | 0 | , 0 | 0 | 0 | В | | | | В | В | В | В | 0 | # | | | | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | | P | P | H | R
P | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | ROM INSTRUCTION, EVEN ADDRESS ROM INSTRUCTION, ODD ADDRESS B = B-Register P = Bit Pointer R = Test Right Byte L = Test Left Byte # = Byte or Bit Test Operation Select 1 = Byte 0 = Bit Y = ROM Address The use of mnemonics BNZ and BRZ is shown in the following table: | | | Bits 0 - 7
zero
Bits 8 - 15
zero | Bits 0 - 7 zero Bits 8 - 15 nonzero | Bits 0 - 7
nonzero
Bits 8 - 15
zero | Bits 0 - 7
nonzero
Bits 8 - 15
nonzero | |-------|--------------------|---|-------------------------------------|--|---| | BRZ | w | • | | | | | BRZ | R | • | | • | | | BRZ | L | • | • | | | | BRZ | R, L | • | • | • | | | BNZ | R, L | | | | • | | BNZ | R | | • | | • | | BNZ | L | | | • | • | | BNZ | w | | • | • | • | | • inc | dicates conditions | for successful bran | ch | | | NOTE: Branch testing of an I/O register input must not be attempted unless the I/O system is stabilized at the time. Stabilization is
assured by input/output system data via timing interlocks. Stabilization is not assured for non-synchronized inputs such as those used for interrupts. The effect of testing a nonstabilized input may be a ROM program branch to an address which is neither the next sequential address nor the expected branch address. AND Format RR LOGICAL AND Valid Modifiers: R1 L1 SK SE R8 L8 EX SI SO J D PZ IO MR MW The contents of the A-register and the B-register are AND'ed bit by bit. The result is stored in the D-register. The four possible AND'ing results are: BIT VALUES | A-REGISTER | 1 | 1 | 0 | 0 | |-------------------|---|---|---|---| | B-REGISTER | 1 | 0 | 1 | 0 | | D-REGISTER RESULT | 1 | 0 | 0 | 0 | The contents of the A- and B-registers are left unchanged by this operation. | LABEL | | OPERAT | iON | REG | A | E G | REG | | I | | OPE | RAN | 0 | | | | | | | | | | | | | | | | | | | _ | |--------------|---|--------|----------------|-------|----------|-----|--------|------|---|---------|------|------|----|---|----|--------|-------|--------|------|-----|-----|-----|-----|------|------|-------|----|---|-----|-----|-----|---| | 1 12 3 4 | ٠ | 6 2 | 1, | 111:2 |
. 14 | 1:5 | 17 [1 | | | 70 21 | 1 22 | 1 70 | 24 | | 27 | 78 2 | • 1 : | 10 3 | 1 12 | 213 | 1 3 | 413 | 513 | 6 (3 | 7 1 | . 135 | 14 | 1 | 142 | 143 | 144 | | | T.AG | | ANE |) __ | 2 | 1 | 4 | 3, | | | | 1 | 1 | 1 | | | 1 | _ 1 | | _ | | | , | | , | 1 | , | 1 | 1 | , | | | _ | | | | 1_1 | _ | | | | | 1.11 | | 1 | ı. | | | | | 1 | , | , | , | , | | , | | 1 | , | , | | ! | | | | _ | | | | | | |
Г | | | | 1 | | | | | I | | | | | | | _ | | • | | | | | | | | | _ | In this example, the contents of Registers 2 and 3 are AND'ed and the result appears in Register 14. | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | |---|---|---|---|---|---|---|---|-----|---|----|----|----|----|----|----| | 0 | 0 | 0 | 1 | В | D | | | В | В | В | В | D | D | D | D | | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | . 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | | A | A | Α | A | | | | • | Α | | | | 1 | | | | ROM INSTRUCTION, EVEN ADDRESS ROM INSTRUCTION, ODD ADDRESS A = A-Register B = B-Register Format RR LOGICAL INCLUSIVE OR Valid Modifiers: R1 L1 SK SE R8 L8 EX SI SO J D PZ IO MR MW The contents of the A-register and the B-register are Inclusive OR'ed bit by bit. The result is stored in the D-register. The four possible OR'ing results are: BIT VALUES | A-REGISTER | 1 | 1 | 0 | 0 | |-------------------|---|---|---|---| | B-REGISTER | 1 | 0 | 1 | 0 | | D-REGISTER RESULT | 1 | 1 | 1 | 0 | The contents of the A- and B-registers are left unchanged by this operation. | LABEL | OPERA | TION | B
REG | REG | | REG | OPE | RANG | • | | | | | | | , | | | | | | | | | |--------------|-------|-------|----------|---------|-----|---------|----------|-----------|---------|----|--------|--------|------|------|--------|--------|-----|-------|---------|-----|-----|--------|-------|-----| | 1 [2 [3] 4 | 6 7 | 8] 9 | 11 12 | 14 15 | i i | 17 18 | 20 21 22 | . [23] . | 34 75 | 27 | 78 2 | 9 30 | 1 31 | 1321 | 33 (3 | 4 ()5 | 136 | 137 1 | 38 31 | 140 | 141 | 142 - | 13 [4 | 145 | | TAG | o,Ri | 1 | 2 | 1.4 | | 3 | 1 1 | | _ 1. | | _1 | | 1. | 1.1 | | 1 | 1 | | , | , | I | | , | , | | | 11. | 1 | 1 | | | | 1 1 | 1 1 | | | • 1 | | | 1 1 | | 1 | 1 | | , | 1 | 1 | | 1 | | | | | | | | | | | | | _ | | | | | | | • | | | | | | | | In this example, the contents of Registers 2 and 3 are Inclusive OR'ed and the result appears in Register 14. ROM INSTRUCTION, EVEN ADDRESS ROM INSTRUCTION, ODD ADDRESS A = A-Register B = B-Register XOR Format RR LOGICAL EXCLUSIVE OR Valid Modifiers: R1 L1 SK SE R8 L8 EX SI SO J D PZ IO MR MW The contents of the A-register and the B-register are Exclusive OR'ed bit by bit. The result is stored in the D-register. The four possible XOR'ing results are: BIT VALUES | A-REGISTER | 1 | 1 | 0 | 0 | |-------------------|---|---|---|---| | B-REGISTER | 1 | 0 | 1 | 0 | | D-REGISTER RESULT | 0 | 1 | 1 | 0 | The contents of the A- and B-registers are left unchanged by this operation. | | u | BEL | - | | OF | ·εF | LA. | rıc | N | | R | B
E G | | R | D
EG | | Ri | G | | | OP | ER. | AN | D | - 1 |-----|---|-------|---|---|-----|-----|-----|-----|---|---|---|----------|---|--------|---------|---|----|----|-----|----|-----|------|-----|-----|-----|----|----|----|-------|-------|------|-----|----|----|-----|-------|------|----|----|----|----|---|------|----|----|-----|------| | , , | , | 1 3 1 | 4 | | 6 1 | , | , | | , | Ī | / | 1 1 | , |
14 | 1 11 | | 17 | 18 | 7,0 | 12 | 1): | 12 ! | 231 | :41 | ., | 27 | 28 | 12 | 9 3 | o 1 : | n 1: | 321 | 33 | 34 | 139 | 5 2 | 36 1 | 37 | 38 | 39 | 14 | 1 | 43 [| 42 | 43 | 144 | 1 14 | | 7 | A | 6 | 1 | 1 | ×, | 0 | 1 | ٦ | | | 2 | | | 1 | 4 | 1 | 3 | | | 1 | | . 1 | 1 | 1 | | | | 1 | | _ | | 1 | | | | | 1 | | | 1 | | 1 | | | | 1 | 1 | | _ | | | | 1 | ł | | | | | | _ | | | | | | | | | | | ı | _ | | | | | In this example, the contents of Registers 2 and 3 are Exclusive OR'ed and the results appear in Registers 14. ROM INSTRUCTION, EVEN ADDRESS ROM INSTRUCTION, ODD ADDRESS A = A-Register B = B-Register Format RR ADD Valid Modifiers: R1 L1 SK SE R8 L8 EX SI SO J D PZ IO MR MW CI +1 The contents of the A-register and the B-register are added. The result is stored in the D-register. Addition is carried out in two's complement format. Carry input to the least significant bit is controlled by CI, which enables the previous carry condition as input; and by +1, which forces carry input. The carry condition is set to correspond to the carry from bit 0 and the overflow is set to correspond to the Exclusive OR of the carries from bits 1 and 0. The A- and B-registers are left unchanged by this operation, but the carry and overflow bits are changed. | LABEL | 0 | PE | RA | TIC | 'n | , | B | 3 | R | D
EG | | I | RE | G | | | OP | ER/ | ANE | > | _ | |--------------|---|-----|----|-----|----|-------|----|----|----------|---------|---|---|-----|----|----|-----|-------|-----|-----|------|--|----|------|------|-----|-----|-------|----|-----|------------|----|------|----|----|-----|-----|--------|-----|-------|------|-----|----| | 1 17 3 4 | | , , | 1 | 8] | 9 |
, | 11 | .; |
. 14 |] 15 | | | . 7 | 31 | 20 | 1 2 | 1 2 | 21: | 29] | 24 [| | 27 | 1 28 | 1 29 | 130 | 0]3 | 1 3 | 71 | 31: | 4 j | 35 | 36 } | 37 | 38 | 139 | 140 | 1 | [42 | - [4: | 9 14 | 4 1 | 45 | | TAG. | A | D | 1 | D, | | 1 | ξ, | | 1 | Н | | 1 | 3 | | | | 1 | 1 | . 1 | 1 | | | 1 | | 1 | | | | _ | | | | | | | 1 | ! | 1 | , | . 1 | | _ | | 1 1 1 | 1 | | | _ | | | | | | | | Ī | , | | | 1 | 1 | | 1 | 1 | | | 1 | 1 | 1. | _ | _1 | | | .1 | | _ | | | 1 | 1 | I
1 | | 1 | 1 | _ | _ | | | | - | | _ | | 1 | | | | _ | П | T | | | , | | | | | | | | | | _ | | | | | | | | | | | | | | | _ | | _ | In this example, the contents of Registers 2 and 3 are added and the sum appears in Register 14. | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | _8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | |---|---|---|---|---|---|-------|------|----|---|----------|----|----|----|----|----| | 0 | 1 | 0 | 0 | В | D | | Viii | В | В | В | В | D | D | D | D | | 0 | 1 | 2 | 3 | 4 | 5 | C | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | | Α | A | A | A | | | Valor | 1 | Α | | X | ı | Į. | ì | | Y | ROM INSTRUCTION, EVEN ADDRESS ROM INSTRUCTION, ODD ADDRESS A = A-Register B = B-Register Format RR MULTIPLY STEP Valid Modifiers: R1 L1 SK SE R8 L8 EX SI SO J D PZ IO MR MW CI +1 If the shift condition is 1 prior to the MULT instruction, the contents of the A- and B-registers are added. The result is stored in the D-register. Addition is carried out in two's complement format. Carry input to the least significant bit is controlled by CI, which enables the previous carry condition as input; and by +1, which forces carry input. The carry condition is set to correspond to the carry from bit 0 and the overflow is set to correspond to the Exclusive OR of the carries from bits 1 and 0. The A- and B-registers are left unchanged by this operation, but the carry and overflow bits are changed. If the shift condition is zero prior to the MULT instruction execution, the B-register data is inhibited so that the A-register data passes through the input adder unchanged. | LABEL | OPERATION | REG | | REG | | RÉG | | ٥ | PERA | ND |------------|-----------|--------|----|---------|---|---------|---|--------|---------|--------|---|------|--------|-----|--------------|-----|------|-----|-----|-------|-------|------|-----|-----|---------|------|-------|-------| | 1 [2] 3] 4 | 6171019 | 111.12 | | 14 15 | į | 17 18 | ٥ | ल्हा स | 22] 2: | 3[24] | , | 37.] | 78 [3 | 213 | ю <u>I</u> з | 113 | 21 3 | 113 | 413 | 5 [3 | 6 [3: | , j, |]39 | 140 | 1 | 42 [| 43 [- | 4 [47 | | TAG. | MuLT | 2 | | 14 | | 3 | | | | | | _1 | | | | | 1 | | | ı | ٠ | | | 1 | ا
سا | 1 | _1 | | | 11.1 | 4-4-4- | | | | | | | | | 1 | : | | | 1 | . 1 | | _ | | | | ı | , | 1 | | L | | | | | | |
 | I. | | | | | , | | | | | | | | | | | | | | | | | • . | | | | In this example, the contents of Register 2 are added to the contents of Register 3 and the sum is stored in Register 14. Multiplication routines are constructed with this instruction and its modifiers. | - | 1 | 2 | 3 | 4 | 5 | 6
7/////// | 7
 | 8 | 9 | 10 | 11 | $\frac{12}{}$ | 13 | 14 | $\frac{15}{}$ | |---|-----|---|---|----------|---|---------------|-------|---|---|----|----|---------------|--------|----|---------------| | 0 | , 1 | 0 | 1 | В | D | | | В | В | В | В | D | D | D | D | | | · | | | <u> </u> | | Maria | | | | 1 | L | | لــــا | | لــــا | | | | | | | | | | | | | | | | | | | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | ROM INSTRUCTION, EVEN ADDRESS ROM INSTRUCTION, ODD ADDRESS A = A-Register B = B-Register
Format RR DIVIDE STEP Valid Modifiers: R1 L1 SK SE R8 L8 EX SI SO J D PZ IO MR MW CI +1 The contents of the A- and B-registers are added. If the sum is positive, the result is stored in the D-register. If the sum is a negative number, the D-register is not changed. Addition is carried out in two's complement format. Carry input to the least significant bit is controlled by CI, which enables the previous carry condition as input; and +1, which forces carry input. The carry condition is set to correspond to the Exclusive OR of the carries of bits 1 and 0. The carry and overflow conditions, and the shift condition (if SO is specified) are changed by the DIV instruction whether the sum is positive or negative. | LABEL | | OPERATION | T | REG | | REG | RÉG | OPERAN | D | | | | | | | | | | | | | | | | _ | |--------------|---|-----------|------|--------|----|-----------|-----------|-------------------|---------|----|-----------|-------|--------|-------|----|------|-----|-----|------|------|-----|------|-------|------|----| | 1 12 3 4 | ļ | 4171019 | 1000 | 111.17 | | . 14 15 |
:7]18 | 20 21 22 23 | 24 25 | ,, | 1 29 1 29 | 30 | 31 [3; | 11 33 | 34 | 1.35 | 136 | [37 | [78] | 39] | 401 | 41]4 | 2 [4] | 1141 | •5 | | TIBIG. | | DIV | | 3 | | 1,4 | 2 | | | | <u> </u> | | | | | 1 | | | | | 1 | | | | _ | | | | | | | | | | | 1 | | L | 1 - 1 | _1_ | 1_ | ı | 1 | 1 | 1 | 11 | LI | 1 | | | لثد | | | | | 1 | 13 | 1 | I. | | | | | Г | | | | | | _ | | | | | ٠, | | | | _ | In this example, the contents of Register 3 are added to the contents of Register 2. The sum is stored in Register 14. | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | |-----------------------|---|---|---|---|---|---|---|---|---|----|----|----|----|----|------| | 0 | 1 | 1 | 0 | В | D | | | В | В | В | В | D | D | D | D | | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | | Γ _Λ | _ | _ | _ | | | | | | | | | | | CI | ١.,١ | ROM INSTRUCTION, EVEN ADDRESS ROM INSTRUCTION, ODD ADDRESS A = A-Register B = B-Register C = C-Register # Format RI LOGICAL AND IMMEDIATE Valid Modifiers: PZ IO MR MW The contents of the B-register and the operand field are AND'ed bit by bit. The result is stored in the D-register. The operand must be either a left-justified hexadecimal constant or a label. | IMMEDIATE OPERAND | 1 | 1 | 0 | 0 | |-------------------|---|---|---|---| | B-REGISTER | 1 | 0 | 1 | 0 | | D-REGISTER RESULT | 1 | 0 | 0 | 0 | The contents of the B-register are left unchanged by this instruction. | LABEL | | PERATIO | • | REG | | D
REG | | REG | OPERAND | | |--------------|-----|---------|---|------|---|----------|----|-------|-----------------------------|---------------------------------------| | 1 12 3 4 | 6.1 | 71 81 | , | 1111 | , | :4] 15 | ,, | 17]18 | 20 21 22 23 24 25 |
 | | T.A.6 | A | אים'א | : | 2 | | 1,4 | | 1 |
FFFF | i I | | | L | . 1 1 | | | | 1 | | | 1 1 1 1 1 | · · · · · · · · · · · · · · · · · · · | | | 1 | | | : | | | | | | | In this example, the contents of Register 2 are AND'ed with the hexadecimal value FFFF and the result appears in Register 14. | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | |---|-----|---|-----|---|---|-----|------|---|---|----|----|----|----|----|----| | 1 | 0 | 0 | 1 | В | D | | Vii. | В | В | В | В | D | D | D | D | | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | | н | ı H | Н | ı H | Н | Н | l H | Н | Н | н | Н | H | Н | Н | н | н | ROM INSTRUCTION, EVEN ADDRESS ROM INSTRUCTION, ODD ADDRESS B = B-Register D = D-Register # Format RI LOGICAL INCLUSIVE OR IMMEDIATE Valid Modifiers: PZ IO MR MW The contents of the B-register and the operand field are Inclusive OR'ed bit by bit. The result is stored in the D-register. The contents of the operand field must be either a left-justified hexadecimal constant or a label. | IMMEDIATE OPERAND | 1 | 1 | 0 | 0 | |-------------------|---|---|---|---| | B-REGISTER | 1 | 0 | 1 | 0 | | D-REGISTER RESULT | 1 | 1 | 1 | 0 | The contents of the B-register are left unchanged by this instruction. | LABEL | | ٥ | PEI | RAT | TIC | N | | Į, | B
EG | | D
REG | | | | | OF | ·ER | AND |--------------|---|---|-----|-----|-----|---|----|----|---------|---|----------|---|----|--|------|-------------|------|-------|-------|----|----|------|--------|--------|-------|-----|-----|--------|--------|-------------|----|---------|-----|------|------|------| | 1 2 3 4 | , | ٠ | 1, | L | e | 9 | 16 | , | 11.12 | | 4115 | | 17 | | 20 [| 21 <u>j</u> | 22.j | 231.2 | 41.55 | 27 | 28 | 29 [| 30 [3 | 11] 3 | E [3 | 313 | 413 | 5 [30 | 6] 37 | j 38 | 39 |
 40 | 41. | 42] | 43 [| 44 ; | | TAG. | | o | , P | נו | r, | | | 1 | ζ. | 1 | L/4 | | | | F | F. | 0 | 24 | 5. | L | | | | | | | | | 1 | 1 | 1 | ا | | 1 | | | | | | Γ | , | | | | | | | | 1 | | | | , | | . 1 | 1 | 1. | | 1 | _ 1 | | | | | _1_ | , | | 1 | 1 | 1 | | | | 1 | | | | Г | _ | _ | _ | | | Г | | Γ | | П | 1 | | | | | | | - | | | | | | | | | | | | | | | | | In this example, the contents of Register 2 are Inclusive OR'ed with the hexadecimal value FF00 and the result appears in Register 14. | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | |-----|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----| | 1 | 0 | 1 | 0 | В | D | | | В | В | В | В | D | D | D | D | | _0_ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | | | | | | | | | | | | | | | | | | ROM INSTRUCTION, EVEN ADDRESS ROM INSTRUCTION, ODD ADDRESS B = B-Register D = D-Register # Format RI LOGICAL EXCLUSIVE OR IMMEDIATE Valid Modifiers: PZ IO MR MW The contents of the B-register and the operand field are Exclusive OR'ed bit by bit. The result is stored in the D-register. The operand field must be either a left-justified hexadecimal constant or a label. | IMMEDIATE OPERAND | 1 | 1 | 0 | 0 | |-------------------|---|---|---|---| | B-REGISTER | 1 | 0 | 1 | 0 | | D-REGISTER | 0 | 1 | 1 | 0 | The contents of the B-register are left unchanged by this instruction. | LABEL | | OF | PERA | TIO | N | | REG | | REG | | RÉG | 7 | .54 | |--------------|---|----|------|------------------|---|---|---------|----|--------|---|---------|-------|----------| | 1 [2 [3] 4 | , | 6 | 7.1 | • 1 | , | G | 11 12 | | 14 1 | , | 17 18 | | | | TAG. | | X | ا ٥ | R _i : | I | | 2 | | 1.4 | 1 | | renut | <u> </u> | | | | | L_1 | 1 | | | 1 | | | | | | 1 | | | | Г | | | 7 | Ţ | | Γ. | | 1 | | | | In this example, the contents of Register 2 are Exclusive OR'ed with the hexadecimal value FE24 and the result appears in Register 14. | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | |---|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----| | 1 | 0 | 1 | 1 | В | D | | | В | В | В | В | D | D | D | D | | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | | Н | Н | Н | Н | Н | Н | Н | Н | Н | Н | Н | Н | Н | Н | Н | Н | ROM INSTRUCTION, EVEN ADDRESS ROM INSTRUCTION, ODD ADDRESS B = B-Register D = D-Register # Format RI LOGICAL ADD IMMEDIATE Valid Modifiers: PZ IO MR MW The contents of the B-register and the operand field are added. The sum is stored in the D-register. The operand must contain a left-justified hexadecimal constant, or a label. Addition is carried out in two's complement format. The carry condition is set to correspond to the carry from bit 0 and the overflow is set to correspond to the Exclusive OR of the carries from bits 1 and 0. The B-register is left unchanged by this instruction. | LABEL | | c | PEF | RAT | 101 | | | REG | | 1 | REG | | REG | | OPER | RANI | 0 | 1 | | | | | | | | | | | | | | | | | | |--------------|---|---|-----|-----|-----|---|---|--------|---|-----|-----|----|---------|---------|--------|------|--------|-------|------|------|-----|-----|------|-----|------|-----|-------|----------------|------|------|--------|---|-----|-----|-------| | 1 12 1 3 1 4 | , | , | ., | ١٠ | 11: | | | 11.] 1 | | | | 16 | 17 18 | 20 21 | 1 22 5 | 23] | 24] 25 | ,, | 1 20 | 1 29 | ļ w | 121 | ! 12 | 131 | 1 34 | 11. | s 134 | 6 <u>[</u> 18: | , !, | e to | .] 41 | 1 | 142 |]43 |]44] | | TAG. | | f | . D | Ţ | ١,3 | [| 1 | 2 | | ii. | 1,4 | | ı | FF | F | F. | \$ | | ı | | 1 | | , | | | 1 | 1 | _1_ | | | . 1 | 1 | 1_ | L | | | 1 1 1 | | | | 1 | 1 | | | 1 | | | | | , | | | | • | | 1. | | , | , | | 1 | | | | | | | 1 | 1 | 1 | ı | | | | | 1 | | | | Ŧ | ा | | Т | | | | 1 | | | | |
1 | | | | | | | | | | | | | | | | | | In this example, the contents of Register 2 are added to the hexadecimal value FFFF and the sum appears in Register 14. | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | |---|---|---|---|---|---|---|---|---|---|----|----|----|----|----|--------| | 1 | 1 | 0 | 0 | В | D | | | В | В | В | В | D | D | D | D | | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | | | | | - | | | | | | | | | | Н | | \neg | ROM INSTRUCTION, EVEN ADDRESS ROM INSTRUCTION, ODD ADDRESS B = B-Register D = D-Register # Format RL LOAD REGISTER Valid Modifiers: PZ IO MR MW Load is a two cycle instruction. During Cycle 1, the effective ROM address is obtained by Inclusive OR'ing the instruction's ROM address field with the contents of the Link register. During Cycle 2, the contents of the effective ROM address and the contents of the specified B-register are then Exclusive OR'ed bit by bit. The result is stored in the D-register. The contents of the B-register are unchanged by this instruction. | LABEL | | 1 | PŁ | RA | TIC | OΗ | R | ĒG | ١, | D
REG | ۶ | ĒG | | | 0P | ERA | ND |) |---------------|---|---|-----|-----------|-----|----|----|------|----|----------|---|------|---|------|-----|-------|------|---------|----|---|--------|----|-------|-------|---------|-----|-----|---|-----|-----|-----|-----|-----|---|------|------|------|-----
 | 1 2 3 4 | , | 1 | - | , , | • | , | ,, | 1 12 | | 41:5 | , | į :s | 0 | 1 21 | ! ? | 2 2 | 3) : | 24 [21 | | | 77 1 2 | 12 | 9 3 | 0 3 | 1 1 2 : | 213 | 15> | 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 136 | 137 | 178 | [39 | 140 | 1 | : 14 | 2.14 | 3 [4 | 4 1 | | TAG. | | ı | .,6 | ب
ار 2 | 4 | P | 3 | | ١ | ,4 | | | 2 | c | .,2 | لإبا | ŧ, | 1 | | 1 | 1 | | | | | 1 | | | | _ | _ | | | 1 | | | _ | 1 | | | | | | _ | | , | | | | | | 1 | | | | | ı | 1 | | | 1_ | | 1 | | 1 | | | | 1_ | 1 | | L | | 1 | _1_ | _1 | | _1 | | | | T | | | | | 1 | | Γ | | 1 | | Γ | | | | | | 1. | ī | | | | | | | | | | | | | | | | | | | In this example, hexadecimal constant 2C2 and the contents of the Link register are Inclusive OR'ed to form an address. The contents of the address are Exclusive OR'ed with Register 3 and the final result is stored in Register 14. | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | |---|---|---|---|---|---|-----|---|---|---|----|----|----|----|----|----| | 1 | 1 | 1 | 1 | В | D | | | В | В | В | В | D | D | D | D | | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | | Y | Y | Y | Y | Y | Y | , Y | Y | Y | Υ | Υ | Y | Y | Y | Y | Y | ROM INSTRUCTION, EVEN ADDRESS ROM INSTRUCTION, ODD ADDRESS B = B-Register D = D-Register Y = ROM Address ROM Instruction Modifiers - The ROM instruction modifiers are described in detail on the following pages. They are grouped as outlined below: - Skew Control Modifiers - Arithmetic Control Modifiers - Instruction Loop Repeat Control Modifiers - Branch Control Modifiers - Input/Output and Memory Control Modifiers (No Skew Control Modifier) # TRANSMIT DATA WITHOUT MODIFICATION ROM INSTRUCTION, EVEN ADDRESS ROM INSTRUCTION, ODD ADDRESS Output from the Arithmetic unit is transmitted without modification. # SHIFT RIGHT ONE PLACE 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ROM INSTRUCTION, EVEN ADDRESS ROM INSTRUCTION, ODD ADDRESS Output from the Arithmetic unit is displaced right one place. Spill from bit 15 may be saved in the Shift Condition register bit by the SO modifier. Entry to bit 0 from the previous shift condition is controlled by the SI modifier. R1 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | |---|------|---|--------|---|---|---|---|---|---|--------|------|---------------|-----|----|----| 2.70 | | diddi. | | | | | | | | illa | <i>M.</i> J | | | L | | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | | | | | | | | | | | ۸ | 1 | ۸ | | 1/4 | | | | | 11/1 | | | | 1 | | | | U | 1 | ٧ | ([].} | | | | ROM INSTRUCTION, EVEN ADDRESS ROM INSTRUCTION, ODD ADDRESS Output from the Arithmetic unit is displaced left one place. Spill from bit 0 may be saved in the Shift Condition register bit by the SO modifier. Entry into bit 15 from the previous shift condition is controlled by the SI modifier. SCALE SK ROM INSTRUCTION, EVEN ADDRESS ROM INSTRUCTION, ODD ADDRESS Output from the Arithmetic unit is displaced one place to the right. Spill from bit 15 may be saved by the SO modifier. Entry to bit 0 is made from the current arithmetic extended sign during an ADD operation or from the Carry Condition register bit during operations other than ADD. If the SI modifier is specified concurrently with SK, entry to bit 0 is the OR between the Shift Condition register bit and the proper carry condition. R8 # SIGN EXTEND ROM INSTRUCTION, EVEN ADDRESS ROM INSTRUCTION, ODD ADDRESS Output from the Arithmetic unit is transmitted with bits 0 through 7 replaced by copies of bit position 8. # SHIFT RIGHT EIGHT PLACES ROM INSTRUCTION, EVEN ADDRESS ROM INSTRUCTION, ODD ADDRESS Output from the Arithmetic unit is displaced right eight places. Spill from the right is lost; zeros enter at the left. L8 # SHIFT LEFT EIGHT PLACES Output from the Arithmetic unit is displaced left eight places. Spill from the left is lost; zeros enter at the right. ROM INSTRUCTION, EVEN ADDRESS ROM INSTRUCTION, ODD ADDRESS EX # EXCHANGE BYTES ROM INSTRUCTION, EVEN ADDRESS ROM INSTRUCTION, ODD ADDRESS Output from the Arithmetic unit is rotated eight places so that bits 0 through 7 and bits 8 through 15 are interchanged. # SHIFTER OUTPUT SPILL TO SHIFT CONDITION BIT # SHIFTER INPUT ENTRY FROM SHIFT CONDITION BIT ROM INSTRUCTION, EVEN ADDRESS ROM INSTRUCTION, ODD ADDRESS Shifter spill is always from either bit 0 or bit 15 of the operand being shifted. SO is effective for any shifter control modifier code. Spill is the original contents of bit 0 for no shift, L1, SE, and L8; and the original contents of bit 15 for R1, SK, R8, and EX. Refer to the DIV instruction description for use of the SO modifier with operations other than a shift. Shifter input is taken from the Shift Condition register bit when the SI modifier is specified. The SI modifier is enabled only for R1, L1, and SK modifiers and controls either bit 0 or bit 15 entry, as appropriate. If SK and SI modifiers are specified concurrently, the entry to bit 0 is the OR between the shift condition and the arithmetic carry. Circular shifts (end around) may be implemented by first executing a single shift operation (right or left, as appropriate) with register zero as the destination and SO specified. The shift condition bit will then be properly set so that subsequent shift operations with both SO and SI specified will be a circular shift. # ENABLE ARITHMETIC CARRY INPUT # FORCE ARITHMETIC CARRY INPUT Carry input to the adder is controlled by CI and +1 modifiers. If neither is specified, the add is without carry input. If CI is specified, the previous carry condition is used as carry input to the least significant stage of the adder. If +1 is specified, a carry input is forced unconditionally, regardless of whether CI is also specified. # J #### DECREMENT COUNTER #### JUMP ON COUNTER NONZERO ROM INSTRUCTION, EVEN ADDRESS ROM INSTRUCTION, ODD ADDRESS The low-order 8 bits of the Loop Counter are decremented and tested using the J and D modifiers. If J is specified without D, a branch to the address specified by the contents of the Link register occurs. If D is specified without J, the counter is decremented. If J is specified concurrently with D, a branch to the address specified by the contents of the Link register occurs unless the counter decrements to zero. The test is made after conclusion of the instruction. W \mathbf{R} \mathbf{L} # TEST WORD (RIGHT AND LEFT BYTES) ROM INSTRUCTION, EVEN ADDRESS ROM INSTRUCTION, ODD ADDRESS The contents of the register referenced by the B-bus address is tested for zero or nonzero condition. RIGHT BYTE TEST ROM INSTRUCTION, EVEN ADDRESS ROM INSTRUCTION, ODD ADDRESS The right byte (8 bits) of the contents of the register referenced by the B-bus address is tested for zero or nonzero condition. LEFT BYTE TEST ROM INSTRUCTION, EVEN ADDRESS ROM INSTRUCTION, ODD ADDRESS The left byte (8 bits) of the contents of the register referenced by the B-bus address is tested for zero or nonzero condition. 2-25 R, L # RIGHT OR LEFT BYTE TEST ROM INSTRUCTION, EVEN ADDRESS ROM INSTRUCTION, ODD ADDRESS The right byte (8 bits) and left byte (8 bits) of the contents of the register referenced by the B-bus address are checked independently for zero or nonzero, with the Inclusive OR of the results tested for the zero or nonzero condition. (No Byte Test Modifiers) #### TEST SPECIFIED BIT ROM INSTRUCTION, EVEN ADDRESS ROM INSTRUCTION, ODD ADDRESS One bit of the contents of the register referenced by the B-bus address and the P-field is tested for zero or nonzero. This modifier enables a test and branch capability on any bit of any register and encompasses tests for even/odd, positive/negative, arithmetic carry, arithmetic overflow, and shift carry. The 4-bit P-field (pointer) is decoded to define one of 16 bit positions within the tested word. Pseudo-operation mnemonics are defined for positive/negative, carry, overflow, and shift condition tests. #### LOGICAL INDEX #### EXECUTE ONE INSTRUCTION AFTER BRANCH | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | | |---|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|-------------------------------| | | | | | | | | | | ı | | | | | ΙX | хQ | ROM INSTRUCTION, EVEN ADDRESS | | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | | | | | | | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | ROM INSTRUCTION, ODD ADDRESS | Logical indexing, if selected, OR's the contents of the Link register with the Y-field to form the effective address. Execute mode inhibits changing the ROM address register if the Branch instruction test is successful. The effective address is used directly for the execution of one instruction and the control sequence then reverts back to that instruction which would have been executed had the Branch not been successful, unless that one instruction is itself a Branch instruction. Multilevel Branch and Execute instructions may be used with ultimate reversion of control back to that instruction which would have been done with only one level of Branch and Execute. If a Branch without Execute is in the multilevel Branch sequence, then reversion of control will not occur if the Branch without Execute is successful. Execute mode may be considered as a capability for calling a one-instruction subroutine. The address in ROM is taken directly from the Link register (and Y-field of the instruction, if IX is specified), but the ROM address register is inhibited from copying the out-of-sequence ROM address reference. PZ #### PROGRAM PAUSE FOR CONTROL SIGNAL INPUT ROM INSTRUCTION, EVEN ADDRESS ROM INSTRUCTION, ODD ADDRESS PZ and IO functions are enabled when any I/O register is specified by the B-bus or D-bus address fields of the instruction word. When the PZ modifier is specified, the program pauses until a control flip-flop is cleared by an external signal
and the clearing pulse has terminated. If more than one I/O register is specified by the bus register address fields of the instruction word, the pause condition occurs while any one of the associated control flip-flops is set and the control signal is output on all of the control lines. When the IO modifier is specified, the I/O register control line signals are output and control flip-flops are set. The control flip-flops are cleared by the external equipment or by the computer Master Clear. Pause occurs prior to any instruction execution; I/O control signals are output at the conclusion of the instruction execution. Concurrent PZ and IO selection operates to delay the instruction until the control flip-flop is reset (pause condition is released); the instruction then executes, and the IO control flip-flop is set again. Note the possible conflicts: MW and MR modifiers use the same control word bit positions as PZ and IO modifiers. Conflicts may occur if memory and I/O registers are specified concurrently. # INITIATE MEMORY WRITE #### INITIATE MEMORY READ When either the address or data register for core memory is specified by the D-bus register field, MW or MR modifiers individually may set control flip-flops on the Memory-I/O register board. While a control flip-flop is set, the microprogram pauses if 1) either the address or data register for core memory is subsequently referenced by a D-bus register field or 2) the Core Memory Data register is specified by a B-bus register field and the PZ modifier is specified. The microprogram resumes when the Done signal from core memory resets the control flip-flops. NOTE (1) The PZ modifier must be used with memory register addresses in the B-bus field unless: - 1. The data has been previously read using a PZ bit and cannot have changed since, NOTE (2) or - 2. A memory register is also specified in the D-bus field. NOTE (1) The program resumes at the leading edge of the Done signal for a B-bus pause, and resumes at the trailing edge of Done for a D-bus pause. This minimizes core memory data access time while still allowing proper ready-resume interlocking. NOTE ⁽²⁾ Memory Read data is valid for approximately eight ROM instruction cycles, following an MR operation, unless a buffered Memory Data register is used. Whenever MR and MW modifiers are specified concurrently, the core memory is read, the cycle is suspended prior to restoring the data, and the control flip-flops are reset. That core memory bank only waits (indefinitely) in the suspended state. The memory cycle may be completed when the core memory Data register is specified in the D-bus address field and 1) new data is written (using both MR and MW modifiers); or 2) bit 15 of the data is written into the protect bit position (using MW only); or 3) the original data is restored (using MR only). If the core memory address register is specified by a D-bus address field while the core memory operation is suspended, and a new core address is attempted, the core memory will not accept the new address, but will accept any accompanying MW and MR modifiers to enable completion of the cycle. Note the possible conflicts if memory registers and I/O registers are addressed concurrently. PZ and IO modifiers use the same bit positions as MW and MR. Microassembler pseudo-operations are provided in four distinct categories: - Special mnemonics duplicating functions, which may also be implemented using standard mnemonics, and which are assembled normally into the program. - Data statements, which provide constants for use by the Microassembler, and which are assembled into the program as constants. - Data statements, which equate labels and constants that are not assembled into the program as constants. - Microassembler mnemonics which enable control of the assembly process, and which are not assembled into the program as instructions. Microassembler Pseudo-Ops COPY Format RR COPY Valid Modifiers: R1 L1 SK SE R8 L8 EX SI SO J D PZ IO MR MW Data from the B-register is stored in the D-register. The B-register is left unchanged by this instruction. | LABEL | | OPERA | TION | | REG | | REG | REG | | OPI | ERA | ND | | | | | | | | | | | | | | | | | | |------------|---|-------|-------|---|--------|-----|-------|-------|------|------|--------|-------|-----|------|----|-------|-------|-------|--------|-------|------|-----|-----|------|------|-----|---------|-----|----------| | 1 121 31 4 | ٠ | 6! 71 | . ; • | | 111 12 | | 14]15 | 1711# | 29.1 | 2112 | 2] 23 | 1 241 | 7.5 | 27.1 | 29 | e : | ю з | 1 [3: | 2 [31 | 1].34 | 1 25 | 136 | 137 | [38] | [29] | 101 | 41 1 42 |]43 | 44 4 | | TAG. | | CO | Py | | 3. | | 14 | | | . L | | 11 | | | | | | | | | | 1 | | | | i | | 1_ | 1_1 | | 1 1 1 | | | | | 1 | | | | | 1 | 1 | | | .1 | | 1. | | 1 | 1 | | 1 | 1 | | | 1! | ŀ | | 1 | <u> </u> | | | | | | Ţ | | 100 | 1 | | _ | | | | | | | _ | | | | _ | | | | | | | | | | In this example, the data in Register 3 is copied into Register 14. | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | |---|-----|-----|-----|---|---|---|---|---|---|----|----|----|----|----|----| | 0 | 0 | 1 | 0 | В | D | | 1 | В | В | В | В | D | D | D | D | | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | | 0 | . 0 | . 0 | , 0 | | | | | 0 | | | | | | | | ROM INSTRUCTION, EVEN ADDRESS ROM INSTRUCTION, ODD ADDRESS B = B-Register D = D-Register Format BR UNCONDITIONAL JUMP Valid Modifiers: IX XQ PZ IO This is an unconditional Branch to the address specified in the operand field. The operand field must contain a label or an absolute address and logical indexing applies if IX modifier is specified. Registers and machine conditions are not changed. The least significant address bit is ignored and interpreted as zero. | LABEL | OPERATION | | REG | | REG | REG | OPERAND | | |--------------|-----------|----|-------|----|---------|-------------|-----------------------------|------| | 1 [2 [3] 4 | 6171819 | :: | 11 12 | 11 | 14 [15 |
17 [:0 | 20 21 22 23 24 25 |
 | | TAG | JMP | | | | | | 2A2\$ | 1 | | | 1 1 1 | | | | ı | | _i_1_!_1_1 | ₿ I | | | | | | | | | | M | In this example, an unconditional Branch to Address 2A2 occurs. ROM INSTRUCTION, EVEN ADDRESS ROM INSTRUCTION, ODD ADDRESS Y = ROM Address # Format RR NO OPERATION # No Valid Modifiers The codes set up by a NOP signify an immediate Exclusive OR of Register 0 with itself and the results left in Register 0. Nothing is changed. | | ı | ΛE | ε | L | - 1. | | c | PE | R | ΑT | 110 | N | I | 1 | R | B
E G | | F | D | | Þ | Å
EG | 1 | | | (| OPI | RA | NE | , | 100 | | | | | | | | | | | | | | _ | | | | | | | | | | • | |---|------|-----|---|---|------|---|---|-----|---|----|-----|---|---|---|----|----------|--|---|-----|---|--------|---------|---|----|----|----|-----|-------|-----|-------|-----|------|----|----|----|-------|-----|----|----|----|-----|------|----|----|----|-----|---|-----|----|-----|----|---|----|----|---| | | 1 1: | 2 | , | | ı | • | | . 1 | , | | , ; | , | | | 11 | 1: | | | 111 | , |
17 | 1 18 | | | 20 | 21 | 1 2 | 2 2 | 31: | * [2 | | 27] | 78 | 29 | 13 | 0 3 | : I | 32 | 33 | 13 | 413 | 35 1 | 36 | 37 | 34 | 131 | 9 | 101 | 41 | 142 | 14 | 3 | 44 | 4: | | | ŀ | 7 | 9 (| G | | | | , | ic | > | P | • | _ | | | _ | 1_ | | | 1 | I | | 1 | | | | | 1 | . 1 | 1 | . 1 | | | | 1. | | 1 | 1 | 1 | | | 1 | 1 | _ | | 1 | , | , | i | | | 1 | | _ | | • | | ſ | | , | | | ŀ | | | 1 | | | | | Ī | | | | | | | | Г | 1 | | и. | | | 1 | | | | | - | , | | | | | 1 | | | | , | | 1 | | , | | | | 1 | , | , | | | • | | ı | | _ | _ | _ | 1 | | Г | | _ | _ | _ | | T | া | | _ | | | | | | | | Ī | | | | | | | Т | | | | _ | _ | _ | _ | _ | _ | | _ | | _ | _ | _ | _ | | | _ | _ | _ | | _ | • | In this example, the CPU does nothing for one machine cycle. | | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | |---|---|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----| | | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | , | | | | | | | | | | | | | | | | | | | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | | | | | L | | | | L | | | | | | ROM INSTRUCTION, EVEN ADDRESS #### Format BR BRANCH IF REGISTER POSITIVE Valid Modifiers: IX XQ PZ IO The specified B-register is tested for positive or negative condition. If the test result is either positive or zero, the next instruction is taken from the ROM location specified in the operand field. If the test result is negative, the next sequential instruction is executed. The operand field may contain a label or an absolute address. Registers and machine conditions are not changed by a Branch instruction. Logical indexing applies if IX modifier is specified. The least significant bit of Y is ignored and interpreted as zero. | LABEL | | 06 | PER | ATI | оN | | R | B
EG | RE | c | REG | | Ī | OPE | RANI | D | | | | | | | | | | | | | | | | | _ | |--------------|---|----|-----|-----|-----|----|-----|---------|----|----|-------------|----|---|--------------|------|-------|-----|------|-----|--------|-----|------|-----|--------|----|------|----------|-------------|------|---------|-------|-------|-----| | 1 2 3 4 | , | | , | ! * | ! 9 | Γ. | ,,, | 11:7 | 14 | 15 |
17 18 | | Ī | 70 71 72 | 221 | 24] 2 | 27] | 78 ! | 29] | 22 [3 | 113 | 21.3 | 113 | 4 [35 | 36 | 1 32 | 38 | 39] | 4014 | 11] 43 | 7 [41 | 1 144 | 145 | | TAG | | В | R | P | | | 3 | ?, | | | | | h | B,0,6 | | 1_ | | | | | | 1 | | | | | | | I | . 1 . | | . 1 | 1 | | | | | ı | 1 | 1. | 1 | 1 | . | | 1 | 1 | 1 | 1 | | | | | Π | | _ | | | | - | | | | 10 | 1 | | | | П | | | | | | | | | | | | • | | | | | In this example, Register 3 is tested. If it is either positive or zero, a Branch to BOG occurs. If it is negative, the next sequential instruction is executed. ROM INSTRUCTION, EVEN
ADDRESS ROM INSTRUCTION, ODD ADDRESS B = B-Register Y = ROM Address Format BR BRANCH IF REGISTER NEGATIVE Valid Modifiers: IX XQ PZ IO The specified B-register is tested for either positive or negative condition. If the test result is negative, the next instruction is taken from the ROM location specified in the operand field. If the test result is positive or zero, the next sequential instruction is executed. The operand field may contain a label or an absolute address. Registers and machine conditions are not changed by a Branch instruction. Logical indexing applies if IX modifier is specified. The least significant bit of Y is ignored and interpreted as zero. | LABEL | | | OPE RA | TIOI | • | , | B
EG | | REG | OPER | AND | | | | | | | | | | | | | | | | | |--------------|----|---|--------|-------|---|----|---------|---|--------|--------------|-----------|---|--------------|------|------|-----|--------|-----|--------|------|-------|-----|-----|------|-----|-------|-------| | 1 12 3 4 | Ĭ, | , | 171 | . ! • | | Ī, | 1] 12 | | 17] 18 | 20 21 27 | 23 [24] | | 21 1 28 1 29 | 1301 | 31 f | 221 | 33 (3 | 412 | 5 24 | 5 13 | , 125 | 129 | 140 | 1 41 | 142 | 143 ! | u e | | TAG | | E | B. Ri | N: | | 3 | | , | | | 1 1 | | | 1 1 | , | | , | | 1 | , | , | , | , | ! | | | | | | | | , 1 | | | Γ | | | 1 | | | | | | | | | | _ | | | | | i | | | | | | | T | | | Ė | 1 | - | | | | | 1 | | · | | | | | | _ | | | | • | | | | In this example, Register 3 is tested. If it is negative, a Branch to BOG occurs. If it is either positive or zero, the next sequential instruction is executed. | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | |---|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----| | 0 | 0 | 0 | 0 | В | | | | В | В | В | В | 1 | 0 | 0 | 0 | | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | | 0 | 0 | 0 | 0 | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | ROM INSTRUCTION, EVEN ADDRESS ROM INSTRUCTION, ODD ADDRESS B = B-Register Y = ROM Address # Format BR BRANCH IF CARRY ON Valid Modifiers: IX XQ PZ IO The carry indicator is tested. If the test result is true, the next instruction is taken from the ROM location specified in the operand field. If the test result is false, the next sequential instruction is executed. The operand field may contain a label or an absolute address. Registers and machine conditions are not changed by Branch instructions. Logical indexing applies if IX modifier is specified. The least significant bit of Y is ignored and interpreted as zero. | LABEL | OPERATION | | B
REG | D
REG | | REG | | OPERAND | | |--------------|-----------|-----|----------|----------|----|---------|---|-------------------------|--| | 1 12 1 3 1 4 | 6171019 | | 11112 | 14 [15 | (6 | 17 18 | , | 201 211 72 1231 24 1 75 | 1
22 77 78 29 30 57 132 33 34 35 35 36 37 30 39 40 41 42 43 44 45 | | TAG. | B.C. | | | _ | | | | LAG. | | | | | | | | | 1 | | | | | | | Ι., | | | | | | | | In this example, the carry indicator is tested. If it is true, a Branch to LAG occurs. If it is false, the next sequential instruction is executed. | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | |----|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----| | 0 | 0 | 0 | 0 | 0 | | | l | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | | 0_ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | | 0 | 0 | 0 | 0 | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | ROM INSTRUCTION, EVEN ADDRESS Y = ROM Address Format BR BRANCH IF CARRY OFF Valid Modifiers: IX XQ PZ IO The carry indicator is tested. If the test result is false, the next instruction is taken from the ROM location specified in the operand field. If the test result is true, the next sequential instruction is executed. The operand field may contain a label or an absolute address. Registers and machine conditions are not changed by Branch instructions. Logical indexing applies if IX modifier is specified. The least significant bit of Y is ignored and interpreted as zero. | 100 | | OPERATION | REG | REG | REG | OPERAND | U18 | |------------------|----|------------|---------|--------|--------|-----------------------------|---| | 1 2 3 4 9 | | 6] 2] #] 0 | 11 12 | 14 [1 | 17] 18 | 20 21 22 23 24 25 | 1
- 27 [28 [29] 30] 31 [22] 33 [34] 35 [26 [37] 38 [39] 40 [41] 42 [43] 44 [4 | | TAG | | BINICI | | 1 | , | LAG. | 1 | | | :1 | 1 1 1 | | | , | | <u> </u> | In this example, the carry indicator is tested. If it is false, a Branch to LAG occurs. If it is true, the next sequential instruction is executed. | _ |) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | |---|---|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----| | | 0 | 0 | 0 | 0 | 0 | | | | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | | _ |) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | | | 0 | 0 | 0 | 0 | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | ROM INSTRUCTION, EVEN ADDRESS Y = ROM Address # Format BR BRANCH IF OVERFLOW ON Valid Modifiers: IX XQ PZ IO The overflow indicator is tested. If the test result is true, the next instruction is taken from the ROM location specified in the operand field. If the test result is false, the next sequential instruction is executed. The operand field may contain a label or an absolute address. Registers and machine conditions are not changed by Branch instructions. Logical indexing applies if IX modifier is specified. The least significant bit of Y is ignored and interpreted as zero. | LABEL | | 01 | ERA | TIC | n | Ri | B
E G | RE | G | | RÉG | OPER | RAND | | • • | | | | | | | | | | | | | | | | | | _ | |--------------|---|----|-----|-----|---|----|----------|----|-----|----|---------|--------------|-------|-----|-----|-----|-----|------|--------|-----|------|-------|-----|-------|--------------|-------|-------|-----|--------|-----|-----|------|-------| | 1 12 1 2 1 4 | , | 6 | - 1 | | , | 11 | 132 | 14 | 115 | (6 | 17 1 18 | 20 21 22 | 23 24 | . 5 | | 27] | 28] | 29] | 30 3 | 113 | 21.3 | 3] 3 | 413 | 5 [3 | 6 <u> </u> 3 | 7 [34 | 1 139 | 140 | 1 | 142 | 142 | . 14 | 4]45 | | T.A.G. | | В | 0 | | | | 1 | | | | | LAG | | | | | | _1 | | | | | . 1 | ì | | , | | | l
L | | , | | | | | | | | | | | | | | | | | | - 1 | | 1 | . 1 | _1 | | | 1 | | | 1 | | _1 | | 1 | l | 1 | | | | | | | i | | | | | | | | | | } | | - 1 | In this example, the overflow indicator is tested. If it is true, a Branch to LAG occurs. If it is false, the next sequential instruction is executed. | _ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | |---|---|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----| | | 0 | 0 | 0 | 0 | 0 | | | | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | | | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | | | 0 | 0 | 0 | 1 | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | ROM INSTRUCTION, EVEN ADDRESS Y = ROM Address Format BR BRANCH IF NO OVERFLOW Valid Modifiers: IX XQ PZ IO The overflow indicator is tested. If the test result is false, the next instruction is taken from the ROM location specified in the operand field. If the test result is true, the next sequential instruction is executed. The operand field may contain a label or an absolute address. Registers and machine conditions are not changed by Branch instructions. Logical indexing applies if IX modifier is specified. The least significant bit of Y is ignored and interpreted as zero. | LABEL | | OPERATION | REG | REG | REG | | OPERAND | | | | | | | | | | | | | | | |--------|---|------------------|-------|---------|-------------|----|-----------------------------|-------------|----------|--------|------|---------|------|----|-------|--------|---|--------|----|------|---| | 121314 | ļ | 6 7 0 9 | 11127 | 14 1 15 |
17 18 | Ĭ, | 20 21 22 23 24 25 | 27 28 2 | 1 20 1 2 | 1 1 32 | 33 [| 34 35 | 1 36 | 37 |)8 J |) 40 | 1 | 1 [4: | 14 | 3 14 | - | | TAG. | | 8' 11'0 ' | | | _1_ | | LAG. | | 1.1 | .1 | | | 1 | | _1 | | 1 | | | _ | | | 111 | | 1 1 1 | | | , | | | | | | | | | | 1 | | ı | | | , | | In this example, the overflow indicator is tested. If it is false, a Branch to LAG occurs. If it is true, the next sequential instruction is executed. | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | |---|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----| | 0 | 0 | 0 | 0 | 0 | | | | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | | 0 | 0 | 0 | 1 | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | ROM INSTRUCTION, EVEN ADDRESS Y = ROM Address Format BR BRANCH IF SHIFT ON Valid Modifiers: IX XQ PZ IO The shift indicator is tested. If the test result is true, the next instruction is taken from the ROM location specified in the operand field. If the test result is false, the next sequential instruction is executed. The operand field may contain a label or an absolute address. Registers and machine conditions are not changed. Logical indexing applies if IX modifier is specified. The least significant bit of Y is ignored and interpreted as zero. | LABEL | | 0 | PER | ATI | ON | | R | B
EG | RE | G | RÉG | | | c | PEF | RAN | ıD | ŀ | _ | |------------|---|---|------|-----|-----|----|----|---------|-----|---|---------|---|----|----|-----|-----|----|---|----|----|----|----|----|-----|----|-----|------|----|-----|-----|-----|-----|---|-----|-----|-----|---|----| | 1 2 2 4 | , | | 1.2. | | . , | اد | 11 | 1 12 | 24] | | 17 1 28 | · | 20 | 21 | 22 | 23 | 24 | | 27 | 28 | 29 | 30 | 31 | 132 | 33 | 134 | 1 35 | 36 | 137 | 138 | 139 | 140 | 1 | 142 | 143 | 3]4 | и | 43 | | TAG | | В | S | | | | | 1. | 1 | | | | L | Ą | G | | | | | ŧ | | | |
| | _ | | L | | 1 | 1 | | 1 | 1 | 1 | | _ | _ | | 1.1.1 | | | 1 | L | 1 | | | t | | į | 1 | | | | | | | | | ı | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1_ | 1. | 1 | 1 | 1 | 1 | | .1 | _ | | | | | 1 | | | | | Γ | | | 1 | | | Γ | | | | | 7 | - | | | | | | | | | | | _ | | | | | | | _ | _ | In this example, the shift indicator is tested. If it is true, a Branch to LAG occurs. If it is false, the next sequential instruction is executed. | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | |---|---|-----|---|---|---|--------|---|---|---|----|----|----|----|----|----| | 0 | 0 | 0 | 0 | 0 | | Viilio | | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | | 0 | 0 | , 1 | 0 | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | ROM INSTRUCTION, EVEN ADDRESS Y = ROM Address Format BR BRANCH IF NO SHIFT Valid Modifiers: IX XQ PZ IO The shift indicator is tested. If the test result is false, the next instruction is taken from the ROM location specified in the operand field. If the test result is true, the next sequential instruction is executed. The operand field must contain either label or an absolute address. Registers and machine conditions are not changed. Logical indexing applies if IX modifier is specified. The least significant bit of Y is ignored and interpreted as zero. | LABEL | OPERATION | | B
REG | ₩I G | #EG | | OPERAND | | |------------|------------|---|----------|------|------|---|--------------------------|--------------| | 1 (2) 2) 4 | •1 >1 •1 • | | 11112 | | V1.4 | ٠ | -01 <u>01 2 10</u> 1 24- |
 | | TAG. |
BNS | | | . i. | | | LAG. | <u> </u> | | | 1 1 1 | | | | 1 | | | | | | | П | | | | | 3 |
, | In this example, the shift indicator is tested. If it is false, a Branch to LAG occurs. If it is true, the next sequential instruction is executed. | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | |---|---|---|---|---|---|------|---|---|---|----|----|----|----|----|----| | 0 | 0 | 0 | 0 | 0 | | an a | | 0 | 0 | 0 | l | 0 | 0 | 0 | 0 | | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | | 0 | 0 | 1 | 0 | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | ROM INSTRUCTION, EVEN ADDRESS ROM INSTRUCTION, ODD ADDRESS Y = ROM Address LDI Format RI LOAD IMMEDIATE Valid Modifiers: PZ IO MR MW The left-justified hexadecimal constant or label in the operand field is stored in the D-register. | | | OPERATION | REG | | REG | REG | OPERAND | ∰ | |---------------|---|---------------|---------|----|---------|---------|---------------------------------|--| | 1 2 2 4 | , | 6 7 8 9 | 11 17 | ., | 14 15 | 17 [18 |
20 21 22 23 24 25 | 1
22 27 [28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 4 | | TAG: | | LDI. | | | 14 | | FFFFS | | | | | 1 1 1 | | | | , | , , , , , , | ici) . | In this example, the hexadecimal constant FFFF is loaded into Register 14. | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | |---|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----| | 1 | 0 | 1 | 0 | 0 | D | | | 0 | 0 | 0 | 0 | D | D | D | D | | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | | Н | Н | Н | Н | Н | Н | Н | Н | н | Н | Н | н | Н | Н | Н | H | ROM INSTRUCTION, EVEN ADDRESS ROM INSTRUCTION, ODD ADDRESS D = D-Register Format RI SUBTRACT IMMEDIATE Valid Modifiers: PZ IO MR MW The two's complement of the operand field is used as the operand of an ADDI instruction. The contents of the B-register are added to the two's complement of the hexadecimal constant in the operand field. The sum is stored in the D-register. The operand must contain either a left-justified, hexadecimal constant, or a label. Addition is carried out in two's complement format. The carry condition is set to correspond to the carry from bit 0 and the overflow is set to correspond to the Exclusive OR of the carries from bits 1 and 0. The B-register is left unchanged by this instruction. | LABEL | 1 | OPERATION | REG | | REG | REG | OPERAND | | |------------|---|-----------|--------|------|---------|---------|-----------------------------|--| | 1 121 11 4 | | 6171819 | 11] 12 | - (4 | 14 [15 | 17] 18 | 20 21 22 23 24 25 | 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 | | TAG | | SUBI | 2 | | 1.4 | | 2000 | | | , | | 1 1 1 | | | | | | | In this example, the contents of Register 2 are added to the two's complement of the hexadecimal constant 3F28 and the sum appears in Register 14. | | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | |---|-------|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----| | | 1 | 1 | 0 | 0 | В | D | | | В | В | В | В | D | D | D | D | | • |
0 | 1 | | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | | | Н | Н | Н | | Н | | | | | | | | | | | Н | ROM INSTRUCTION, EVEN ADDRESS ROM INSTRUCTION, ODD ADDRESS B = B-Register D = D-Register #### HEXADECIMAL CONSTANT # No Valid Modifiers 11 This instruction permits tables or constants to be stored. Data specified in the operand field is stored in the current address and the current address plus one. The data may overflow the operand field. Either labels or constants (not mixed) may be specified. Constants must be terminated by a \$. Both must be left-justified in the field. After a HEX pseudo-op, two 16-bit words may be specified (by labels only) using a comma (,) as a separator. A slash (/) separating two labels indicates that the low order 8 bits of each label are linked to form a 16-bit word. | LABEL | OPERATION | B
REG | REG | | RÉG | OPERAND | |--------------|----------------------|----------|--------|----|-------|--| | 1 12 1 3 1 4 | 5 7 9 9 | 11110 | 14] 15 | 65 | 17118 |
20 1.20 1.77 1.79 1.90 1.90 1.90 1.90 1.90 1.90 1.90 1.9 | | TAG: | HEX. | | | | | 2438A646\$ | | GAG. | HEX | | _ 1 | | |
2A 25 | | RAG | HEX. | | _ 1_ | | | 006,806 | | 2A2\$ | H.EX | ì | | | | DOG/BOG, HOG/FOG | | | | | - | | | | In the first example, the hexadecimal constant 2438AB46 is stored in double word TAG. In the second example, the hexadecimal constant 02A2 is stored in double word GAG + 1 and GAG is 0000. In the third example, the address of label DOG is stored in RAG and the address of label BOG is stored in RAG + 1. In the fourth example, the double word at address 2A2 and 2A3 is set up in the following order: - Bits 0-7 of 2A2 = the low order 8 bits of DOG. - Bits 8-15 of 2A2 = the low order 8 bits of BOG. - Bits 0-7 of 2A3 = the low order 8 bits of HOG. - Bits 8-15 of 2A3 = the low order 8 bits of FOG. # EQUATE LABEL # No Valid Modifiers This instruction equates a label with an absolute address or with another label. The label field must contain a label. The operand field may contain a predefined label or a hexadecimal address constant. If a hexadecimal constant is used, it must be even, left-justified, followed by a \$. | LABEL | | ٥ | PERATIO | M | | REG | PEG REG | REG | OPERANO | | | | | | | | | | | | | | | | | | | _ | |------------|---|---|---------|---|----|-------|-------------|-------------|-------------------|--------|-----|------------|------|-------|-----|----------|------|-----|-------|-------|------|---|--------|------|-------|------|------|------------------------| | 1 [2] 1] 4 | , | | 12101 | 9 | | 11[12 |
14 15 |
17 18 | 20 21 22 23 | 24] 25 | ,,, | 129.1 | e Le | o { 3 | 112 | 21.3 | 1 34 | 113 | 5 1 3 | 15 [: | » [: | 8 | 19 [4 | 1 21 | 11 [4 | 2 [4 | 9.70 | —
ц. _ј . | | TAG | | E | QU. | | -1 | | _1_ | | BOG | | | 1 1 | | | | _ | | _ | | . 1 | | _ | | ı | | | | _ | | TAG | | E | QU. | | 1 | | | | 2.F.85 | L | | <u>.</u> . | _1_ | 1 | | <u> </u> | 1 | | | _1 | _ 1 | | _1 | 1 | 1 | _L | _1 | _1 | | | | Г | | T | I | | | | | | | | | | | | | | | | _ | | | , | | | | | In the first example, the label TAG is equated with the label BOG. BOG must have been previously defined or an error will be indicated. The two labels may then be used interchangeably. In the second example, the label TAG is equated to 2F8. # EQUATE REGISTER LABEL # No Valid Modifiers This instruction will EQUATE a one- or two-character name with a register. The name is specified in the label field and the register is specified in the operand field. Before any register may be used in a program, it must be equated to a name. Legal characters for a name are any alphanumeric characters. EQUR statements are usually kept at the beginning of the program. | LABEL | | OPERATION | B
REG | AEG | REG | | 01 | PERAN | - | | | | | | | | | | | | | | | | | | |------------|---|---------------|----------|-------|-----|------|-----|---------|---------|----|-------|----|------|------|-----|-----|----|------|--------|-----|-------|------|---|--------|-----|-----| | 1 [2] 3] 4 | , | 6 7 8 7 | 11 12 | :1]:5 | | 20 3 | 211 | 22 23 | 24 25 | ,, | 1:81 | 29 | 30 [| 31 [| 321 | 331 | 34 | 35 [| 25 2 | 7 [| 38 [3 | 9 [4 | 1 | 11 (41 | 143 | 144 | | R | | EQUR | | | , | 1 | 4 | | | | 11 | | 1 | | 1 | | 1 | i | | | _1 | _1 | 1 | .1 | : | 1 | | 1.4. | | EQUÊ | | | | 1 | 4. | 1.1 | 1 | | 1 . 1 | | . 1 | | | 1 | | 1 | 1 | | - | , | 1 | | | , | | | | | | | | Г | | | | Γ | | | | | | | | | | | | | | | | | In the first example, Register 14 is named R. Any reference made to Register 14 must be made by the name R. In the second example, Register 14 is named 14. Any reference made to Register 14 must be made by the name 14. # ORIGINATE ASSEMBLY # No Valid Modifiers The Microassembler Instruction Counter address is set to the value specified either in the label field or in the operand field. The value specified in either of these fields must be a hexadecimal constant, left-justified, followed by a \$. This hexadecimal constant must be an even value. | LABEL | ٥ |
PERAT | NON | B
REG | | D
REG | REG | OI | PERAN | D | | | | | | | | | | | | | | | | | | |--------------|---|-------|-------|-------------|---|----------|---------|----------|---------|---------|---|--------|------|--------|---------|-----|--------|-----|-------|-------|-------|-----|-----|---|-----|-----|-----| | 1 2 3 4 | 5 | 1,11 | , [9 |
11 12 | | 14 15 | :7] 19 | 20 [21] | 22 23 | 24 25 | , | . 28 | 29] | 30 F : | 11] 1. | 213 | 3 34 | 113 | 5 1 3 | 5 2 | 7 138 | 139 | 140 | 1 | 142 | 143 | (| | 2045 | 0 | RE | · | L | | | _ 1 | | | | | 11 | | 1 | 1 | , | | _ | 1 | | 1 | | | ı | | | 1 1 | | | 0 | Re | 71 | ı | | | | 20 | 4 1 | 1 | | | | , | | 1 | , | | 1 | , | , | _ | 1 | 1 | | | 1 1 | | | i | | | | 1 | | | | | | Ī | | | | | | | | | | | | | | | | | In either of these examples, the address of the next instruction will be 2C4 and subsequent instructions will continue in sequence from there. # **END ASSEMBLY** # No Valid Modifiers This instruction terminates the program. An END causes the Microassembler to end pass one and begin pass two. This instruction is required to end a program. A label may not be used with this instruction. | LABEL | | 0 | PER | RAT | 101 | - | RE | G | RI | D
EG | R | A
EG | | o | PEF | RAN | •D |-------|---|---|-----|-----|-----|---|-----|-----|-----|---------|-----|---------|------|-----|------|-----|----|----|----|------|------|-----|-----|------|-----|-----|---|-------|-------|-----|------|----|-----|------|------|----|--| | 12131 | ٠ | 5 | 1 7 | | | , | ::1 | ::2 | : 4 | 1 :5 | Ţ., | : :3 | 20 ! | 211 | 22 1 | 23 | 74 | 24 | ,. | 1 28 | 1 29 | 130 | 131 | 1.33 | 1.1 | 11) | | 5 3 | 5 2 | , 1 | 18 [| 39 | 401 | 4: 1 | 42 ! | 43 | | | 1 1 1 | | E | N | 11 | 2: | Ī | | | | i_ | | | | | | | | | | 1 | 1 | | | ı | , | | | 1. | | 1 | | | | | | | | | | | | , | | | | , | | | | | , | | | | | 1 | | | 1 | | | | , | 1 | | 1 | | , | , | | | | | | | | | | | | | | | T | | | | | | | | | | | | | Г | | | | | | | | | | | | | | _ | _ | _ | | | # LISTING PRINTER CONTROL # No Valid Modifiers This instruction causes listing on the selected device to be either started or stopped. If the operand field contains ON, listing begins. If the operand field contains OFF, listing stops. If no LIST instruction is used, a List On Condition is assumed. The LIST instruction may be used to list small portions of long assemblies. | LABEL | | OPERATION | REG | D
REG | REG | | OPERAND | - 1 | | | | | | | | | | | | | | | | | |------------|---|---------------|---------|----------|---------|-----|---------------------|--------|--------|------|--------|---------|---|------|------|-----|------|-------|------|--------|---|---|---|---| | 1 [2] 3] 4 | ļ | 6 7 8 9 | 11.1.17 | 1 | 17 ! 13 | ,,, | 21 21 22 (23) 2 | 141.75 | 27.1 | 2812 | • i ić |
132 | | 1 14 | 1 75 | | . 12 | . 112 | : 10 | . 1 40 | 1 | | 1 | | | 1.1.1 | | LIST | | | ŀ | | C.N. | | | | , | 1 | | | | | | , | , | , | ! | | | | | | | LIST | 1 | | | | OFF | _ | , | | , | , | | | | , | , | | | • | 1 | , | • | , | | | | | | | | | | | \Box | | |
_ | _ | _ | - | ٠., | ٠ | | _ | | | _ | ٠ | - | In the first example, listing starts on the selected listing device. In the second example, listing stops. # PUNCH CONTROL # No Valid Modifiers This instruction causes punching of binary output on the selected device. If the operand field contains ON, punching begins. If the operand field contains OFF, punching stops. If no PNCH instruction is used, a Punch On Condition is assumed. The PNCH instruction may be used to punch small portions of a large assembly. | LABI | EL | | (| FE | RA | TIC | m | 1 | REG | | | REG | | REG | - 1 | | | c | PE | RA | ND | | | | | | | | | | | _ | | | | | | | | | |-----------|-----|---|---|-----|-----|-----|---|---|--------------------|--------|---|---------|----|---------|-----|---|----|----|------|-------|-------|------|-------|------|------|------|------|-----|------|------|-----|-------|------|-------|-------|----|---|--------|-----|-------| | 1 2 : | 31. | | | | 1 | 8 [| , | - | :1 ₁ :. | | | 25 15 | ě. | 17 [18 | | 1 | 26 | 21 | . 22 | 1 2 3 | 1] 24 | 1 25 |
1 | 1.28 | 1.39 | 1 10 | [31 | 132 | [33 | 1 34 | 1 2 | 5] 3 | 6 [3 | 7 [34 | 3 35 | 14 | 1 | 1 40 | 14: | 1 (4) | | .1.1 | 1 | | ſ | , N | ,(| 2. | Н | - | . 1 | 1 | | | | | | (| • | Ν | | 1 | 1 | | | 1 | 1 | 1. | 1 | 1 | 1 | | | | 1. | | | 1 | 1 | , | | | | | | | f | , | 1.0 | | Н | 1 | | Take 1 | Ī | | | | | Į | 2 | F | F | : | 1 | | | ! | ı | | : | | | | | 1 | | | 1 | ı | 1 | | | : | | | | 1 | 1 | | ٠- | _ | _ | T | | 1 | 1 | | 1 | i | | 1 | _ | _ | | - | | | 1 | _ | - | | _ | _ | | _ | _ | _ | _ | _ | | | - | _ | | | In the first example, punching starts. In the second example, punching stops. # EJCT # EJECT PAGE # No Valid Modifiers This instruction causes the selected listing device to terminate the present page and begin the next page. | LABEL | | OPERATION | B
REG | D
REG | REG | OPERAND | | |--------------|---|-----------------|----------|----------|--------|---------------------------------|-----| | 1 12 3 4 | , | 6 7 8 9 | 111.12 | 2] [5 | :*; (8 |
30 21 22 21 24 25 | | | 1.1.1 | | EJET | | | | | I I | | 1.1.1 | | - i -l-1 | | | | 4 1 1 1 1 | | | | | | | | | | | # APPENDIX A # META 4 COMPUTER SYSTEM PROGRAMMING TECHNIQUES AND EXAMPLES # APPENDIX A META 4 COMPUTER SYSTEM PROGRAMMING TECHNIQUES AND EXAMPLES ### **EMULATION** • Core memory instruction sets for other computers are readily implemented in the Digital Scientific META 4 Computer's Read-Only Memory (ROM). Firmware performs the operations which would be carried out by hardware in computers that lack control memories for sequencing. Emulating an IBM 1130 computer typifies the programming techniques for 16-bit systems. The sequences shown here have been prepared directly from instruction descriptions in the programming manual and from other sources such as timing charts. The basic functions of any emulation are diagrammed below: Formats for the instruction to be emulated are as follows: # Long Instruction Format (IBM 1130) | 0 | 4 5 | 6 7 | 8 | 15 | 5 0 | 15 | |----|-----|----------|----|---------------|---------|----| | OP | F | Т | IA | MODIFIER BITS | ADDRESS | | | | | <u> </u> | | | | | - OP (Operation) Code. These five bits specify the operation to be performed. - F (Format). The F bit controls the instruction format: 0 = short format; 1 = long format. - T (Tag). These two bits specify the register to be used in effective address generation: 00 indicates the I-register; 01 indicates XR1; 10 indicates XR2; and 11 indicates XR3. - IA (Indirect Address). A zero indicates a direct address (contained in the second word). A 1 bit designates an indirect address. - <u>Modifier Bits</u>. Bit positions 9 through 15 have various uses as modifiers. # 0 7 8 15 OP F T DISPLACEMENT - •The first eight bits of the short format are the same as those of the long format. The second eight bits contain the displacement, which is added to data in the register specified by the tag bits to form the effective address. Bit 8 is treated as a sign bit and is extended into bit positions 0 through 7 to obtain a 16-bit number. Negative numbers are expressed as two's complement. - •The instructions decode readily using a table look-up on eight bits of the instruction, which establishes not only the operation to be performed, but also the format and the method of operand-effective address generation. Since most operations require an operand, a table can be devised to direct the reading of the operand and the subsequent operation to be performed. Using the Subtract instruction as an example, assume that Subtract is located at 044 $_{16}$ of the ROM and that Operand Read routines are located as follows: | | SUBROUTINE NAME | ROM ADDRESS | |------|--|-------------| | ORSI | (Operand Read, Short Format, Relative to I-Register) | F00 | | ORS1 | (Operand Read, Short Format, Index Register 1) | F06 | | ORS2 | (Operand Read, Short Format, Index Register 2) | F0C | | ORS3 | (Operand Read, Short Format, Index Register 3) | F12 | | OPRL | (Operand Read, Long Format) | F40 | # Short Instruction Format (IBM 1130) # Instruction Decoding П The table is written in META 4 Computer Micro-assembler language using the HEX pseudo-op. The Microassembler generates the following table for Subtract instructions: | LOC. | INST. | LAB. | OP | BR | DR | AR | OPRAND MODIFIERS AN | ND COMMENTS | |------|------------------|------|-----|----|----|----|---------------------|-------------| | 0E90 | 44004406 | E90S | HEX | | | | S/ORSI ,S/ORS1 | SUBTRACT | | 0E92 | 440C 4412 | | HEX | | | | S/ORS2,S/ORS3 | | | 0E94 | 44404440 | | HEX | | | | S/OPRL,S/OPRL | | | 0E96 | 44404440 | | HEX | | | | S/OPRL, S/OPRL | | A META 4 Computer address from the table may not exceed eight bits; therefore, the most significant portion of the address is supplied by the program using the logical index facility. System Conditions - •Core storage location 500 contains 9210_{16} . This is a Subtract instruction. - \bullet The accumulator contains 300 $_{16}$. - The operand in location 520 contains 150₁₆. Index Register 2 contains 510₁₆. META 4 Computer Registers • The META 4 Computer registers with their mnemonics are: ERR LOC. INST. LAB. OP BR DR AR OPRAND MODIFIERS AND COMMENTS | | | PNCH | OF F | | |------|-----|-------------|---------------------|------------------------| | | #PR | OGRAM TO SI | MULATE THE IBM 1130 | 0 | | | #IN | STRUCTION S | ET | | | | # | | | | | 000 | 0 | EQUR | o · | ADDRESS ZERO | | 001 | c | EQUR | 1\$ | COUNTER REGISTER | | 002 | L | EQUR | 2\$ | LINK REGISTER | | 003 | S | EQUR | 3 | SCRATCH ACCUMULATOR | | .004 | М | EQUR | 4 | MEMORY ADDRESS REG | | 005 | D | EQUR | 5 | MEMORY DATA REGISTER | | 006 | Y | EQUR | 6 | IOCC OUT, INTERRUPT IN | | 007 | Z | EGUR | 7 | I/O DATA IN AND OUT | | 014 | A | EQUR | 14 |
ACCUMULATOR | | 015 | Q | EQUR | 15 | ACCUMULATOR EXTENSION | | 016 | U | EQUR | 16 | TEMP ACCUMULATOR | | 017 | 1 | EQUR | 17 | INSTRUCTION ADDR REG | | 018 | X | EQUR | 18 | STATUS REG | | 019 | 0 | EQUR | 19 | OPERAND REGISTER | | 01 A | 1 | EQUR | 1A | 1NDEX 1 | | 01B | 2 | EQUR | 18 | INDEX 2 | | CIC | 3 | EQUR | 10 | INDEX 3 | | 010 | K | EQUR | 10 | PRIORITY MASK REG | | 01E | н | EGUR | 1E S | CHARACTERISTIC REG | | 01F | P | EQUR | 1F | PRIORITY REG | # APPENDIX B # META 4 SYSTEM SAMPLE PROGRAMS AND SAMPLE FLOWCHARTS ### APPENDIX B # META 4 SYSTEM SAMPLE PROGRAMS AND SAMPLE FLOWCHARTS ### BR DR AR OPRAND MODIFIERS AND COMMENTS INST. | | | | | | | | | | 15. | |-----|----------|-----|------|---|---|---|-------|----------------|-----------------------------| | 1BC | 29740000 | RNI | COPY | I | М | | | MR • | MOVE I TO MEM ADDRESS | | | | # | | | | | | | AND READ NEXT INST. | | 18E | 28D30000 | | COPY | K | S | | | | MOVE MASK TO DOUBLE BUS REG | | 100 | 10633000 | | AND | Υ | S | S | | | AND MASK WITH RAW INT | | | 003C01D0 | | BNZ | | | | INT | W » | VALID INTERRUPT | | 104 | CC770001 | | ADDI | I | 1 | | 15 | | INCREMENT I | | 106 | 20520050 | | COPY | D | L | | | R8• | SHIFT OP CODE INTO L | | 108 | F0020E00 | | LOAD | 0 | L | | E00\$ | | LOAD THE LINK FROM | | | | # | | | | | THE | TABLE STARTING | AT . | | | | * | | | | | E00 | AND INDEXED BY | | | | | * | | | | | THE | CONTENTS OF L | | | 1CA | 00020F00 | | JMP | | | | F00\$ | IX | JUMP TO OPERAND READ AREA | | | | | | | | | | | | (D) (ROM)E00L JMP_{IX}, FOO--FFF PRE PROCES AREA (L) Copy the Instruction Address register, I (500), into the Memory Address register, M. Initiate a Read from location 500 in core storage. Copy K (Single-Bus Accumulator) to S (Double-Bus Accumulator). During the time required for memory to react, interrupts may be tested without time penalty. In this case, assume that the priority mask in the K-register when logically AND'ed with the raw interrupts in the Y-register produce a zero, which is stored in the S-register for subsequent testing. The S-register is tested for zero; if S is zero, any interrupts which may be in T are of a lower priority than the one being serviced and are, therefore, deferred. The I-register is also incremented without time penalty: When the Memory Data register, D, becomes available it contains the instruction. In this case, a short format is illustrated and is as follows: $D=9210_{16}. D is shifted right eight places and stored in L. L=92_{16} at end of instruction.$ A Load instruction with the address field set to $E00_{16}$ is used to read the contents of the table starting at E00. The Load instruction is indexed logically by the Link register giving an effective Read-Only Memory (ROM) address of E92 $_{16}$. In this example, the contents of ROM location E92 are placed in the Link register. The Link register, L, now contains 440C₁₆. Load is a two-cycle instruction. A Jump-to-F00 indexed by the Link causes program execution in the ROM to continue at location F0C $_{16}$. (440C $_{16}$ OR F00 $_{16}$ = 4F0C $_{16}$. The ROM Address register is 12 bits; therefore, the effective address is F0C $_{16}$.) # OPERAND READ, SHORT FORMAT ``` BR DR AR OPRAND MODIFIERS AND COMMENTS LOC. INST. FOOS ORG F00 *THE AREA BETWEEN FOO AND FFF CAN BE ADDRESSED BY THE LEAST SIGNIFICANT *8 BITS OF THE LINK REGISTER , INDEXED LOGICALLY BY FOOS. *THIS AREA IS DESIGNATED AS PI:AND IS USED FOR PRE-PROCESSING SUCH AS *COMPUTING OPERAND ADDRESSES ETC. ORSI COMPUTES THE OPERAND ADDRESS OF SHORT FORMAT INSTRUCTIONS (REL TO I) AND INITIATES THE READ OF THE OPERAND EXTEND SIGN OF DISP SE . F00 20530040 ORSI COPY D SHIFT OPERAND EXECUTION ADDRESS F02 20220050 COPY L INTO LOW 8 OF LINK COMPUTE OPERAMD ADDR. FETCH MR . J F04 41347880 ADD. S OPERAND AND JUMP TO ADDRESS CONTAINED IN LINK. *ORS1,ORS2 AND ORS3 ARE IDENTICAL TO ORSI *EXCEPT FOR INDEX REGISTER USED TO *COMPUTE THE EFFECTIVE ADDRESS (EA) OF *THE OPERAND F06 20530040 ORS1 COPY D COPY L R8 . F08 20220050 ADD М S MR . J 1 FOA 49A43800 FOC 20530040 ORS2 COPY D FOE 20220050 COPY L SE, S MR . J ADD 2 S F10 49B43800 F12 20530040 ORS3 COPY D S SE, F14 20220050 COPY L R8 . MR . J ADD F16 49C43800 ORS2 The instruction in the Memory Data register, D, is now copied into a Scratch (D) -- (S) register, S, with sign extension specified. 8E. D = 9210_{16} S = 0010_{16}. S now contains only the displacement. The exit to the operation subroutine is prepared. The Link register, L = 440C_{16}, R8 (L) (L) is shifted right eight places, and the new contents of L = 0044₁₆, are the address of the Subtract subroutine. Index Register 2 = 510_{16} is added to S = 10_{16} giving 520_{16} as the effective core address of the operand. This address is placed in the Memory Address reg- (2) + (S) -(M) MR ister and a Read of the operand is initiated. A Jump-to-LOC 000 indexed by the contents of the Link register results in an JMP_{IX} effective Jump-to-LOC 044 of ROM for execution of the Subtract when the oper- and becomes available in the Memory Data register, D. ``` OPERA-TION LOC. INST. LAB. OP BR DR AR OPRAND MODIFIERS AND COMMENTS | 044 | B456FFFF | S ` | XORI | ٥ | U | | FFFF\$ | | 1'S COMP DATA | |------|----------|-----|------|---|---|---|--------|----|-----------------------| | 046 | 4C644081 | | ADD | U | Α | Α | | +1 | ADD WITH PLUS 1 = SUB | | 048 | 0010104C | SOV | BRZ | C | | 1 | *+2 | | BR IF NO OVERFLOW | | 04 A | AC880001 | | ORI | Х | Х | | 15 | | SET OVEL INDICATOR | | 04C | 00100052 | | BRZ | C | | 0 | *+3 | | BR 1F CARRY = 0 | | 04E | 90880001 | | ANDI | Х | X | | 1\$ | | CLEAR CARRY INDICATOR | | 050 | 000001BC | | JMP | | | | RNI | | | | 052 | AC880002 | | ORI | X | Х | | 2\$ | | SET CARRY INDICATOR | | 054 | 000001BC | | JMP | | | | RNI | | | BIT 0 = 1 (X) AND 1 JMP YES - (X) The operand in D (150_{16}) is complemented by an Exclusive OR with all 1 bits. The result is placed in the U-register: The contents of the U-register (FEAF $_{16}$) are added to the contents of the accumulator (300 $_{16}$) and a 1 bit is forced into the carry-in position for the two's complement mode of operation: FEAF $_{16}$ + 150 $_{16}$ + 1 = 1B0 $_{16}$ with a carry of 1. Bit 1 of the Condition/Counter register, C, contains the overflow status. This condition is tested. For this example. If the overflow bit is set. a 1 bit is forced into the simulated 1130 status register. Bit 0 of the C-register contains carry status. If the META 4 carry is a zero, the carry bit of the simulated Status register is forced to a 1 and the overflow bit (bit 15) is unchanged. In this example, the META 4 carry is a 1 and control transfers to the path marked "yes." Note that emulation of the subtract with the complement and add in the META 4 results in the 1130 subtract carry condition being the inverse of that which occurs in the META 4. If the carry is one, the carry bit (bit 14) of X and all the unused bits are cleared with an AND. The overflow bit (bit 15) is unchanged. An Unconditional Jump to read the next instruction terminates the instruction. Multiply and divide instructions for the IBM 1130 emulation are not flowcharted, but are listed together with comments. The Instruction and Operand Fetch routines are identical to those for subtract. The actual multiply and divide arithmetic instructions are a relatively small portion of the code, even though execution of the loop 16 times under control of the counter represents a large portion of the execution time. The coding is primarily internal housekeeping, tests to emulate certain failure modes of the IBM 1130, conversion of the operands to positive numbers for arithmetic processing, and establishing the correct arithmetic processing, and establishing the answer. ### MULTIPLY LAB. OP BR DR AR OPRAND MODIFIERS AND COMMENTS | | 1.1076 | | . 0, | ٠ | ,,,, U | '\ ^ | N OFRANI | D MODIFIERS AND | COMMENTS | |-----|----------|------|------|-----|--------|------|----------|-----------------|-----------------------------------| | 080 | A0010010 | М | LDI | | c | | 10\$ | | LOAD 16 INTO COUNTER | | 082 | A0020110 | | LDI | | L | | MTOP | | | | 084 | 08480100 | | BNZ | Α | | 0 | MNEG | | BR IF MULTIPLIER NEG | | 086 | 2C450210 | | COPY | Α | Q | | | 50 • R1 | COPY MULTIPLIER INTO Q.RIGHT | | | | * | | | | | | | SHIFTED 1 PLACE TO CONDITION | | | | * | | | | | | | A SUBSEQUENT MULTIPLY STEP | | 880 | 00000104 | * | JMP | | | | MNEG+2 | | | | | | ¥ | | | | | | | | | | | *MNE | G IS | A C | ONT | INU | ATION OF | F THE MULTIPLY | | | | | | TINE | | | | | | | | 100 | BC45FFFF | MNEG | XORI | Α | Q | | FFFFS | 1 · • · · · • | COMP MULTIPLIER TO(Q) | | 102 | 4C550211 | | ADD | Q | Q | 0 | | +1 •R1 •S0 • | +1 FOR 2'S COMP | | | | * | | | | | | • | ALSO SHIFT MULTIPLIER | | | | # | | | | | | | TO CONDITION A SUBSEQUENT | | | | # | | | | | | | MULTIPLY STEP | | _ | 30534080 | | XOR | D | S | Α | | | SIGN BIT OF S IS SIGN OF PROD | | _ | A4040000 | | LDI | | Α | | 0\$ | | | | | 0058010C | | BNZ | D | | 0 | *+2 | | BR IF DATA NEG | | | 24560800 | | COPY | D | U | | | J | POS MULTIPLICAND | | | B456FFFF | | XORI | - | U | | FFFF\$ | | COMP MULTIPLIER | | | CC660001 | | ADDI | U | Ų | | 15 | | | | 110 | 50644290 | MTOP | MULT | U | Α | Α | | SO . R1 . | SHIFT AND ADD | | | | * | | | | | | | CONDITIONED BY PREVIOUS CONTENTS | | | | * | | | | | | | OF THE SHIFT FLIP-FLOP | | 112 | 2C550F10 | | COPY | G | Q | | | SO:R1:SI:D:J: | FORM LEAST | | | | * | | | | | | | SIGNIFICANT PORTION OF RESULT. | | | | * | | | | | | | ALSO SHIFT NEXT BIT OF MULTIPLIER | | | | # | | | | | | | TO SHIFT FLIP-FLOP THEN LOOP | | | | * | | | | | | | UNTIL COMPLETION | | | 003001BC | | BRZ | S | | 0 | RNI' | | EXIT IF POS | | - | BC55FFFF | | XORI | | Q | | FFFF\$ | • | COMP RESULT | | | BC44FFFF | | XORI | | Α | | FFFF\$ | | | | | CC550001 | | ADDI | _ | Q | | 1\$ | | | | | 40440002 | | ADD | Α | Α | 0 | | CI | | | 11E | 000001BC | | JMP | | | | RNI | | | INST. # DIVIDE LOC. INST. LAB. OP BR DR AR
OPRAND MODIFIERS AND COMMENTS | 0 B A | A0010010 | 0 | LDI | | c | | 10\$ | | LOAD 16 INTO COUNTER | |-------|-----------|-------------|------------|---|-----|---|--------------|------------|--------------------------------------| | - | A0020134 | | LDI | | Ĺ | | DTOP | | TOP OF LOOP TO LINK | | | 28430000 | | COPY | Δ | s | | D 1 01 | | SIGN OF DIVIDEND TO S | | | 08480120 | | BNZ | Â | • | 0 | DNEG | | BR IF DIVIDEND NEG | | | 005C012A | | BNZ | Ď | | • | DNEG+5 | 1st | BR IF DIVISOR NOT ZERO | | | | 01/51 | | X | v | | 15 | * | SET OVFL BIT | | | AC880001 | OVFL | | ^ | X | | | | SET OVEL BIT | | 096 | 000001BC | | JMP | | | | RNI | | COUTTNUTTION OF THE BUILDE | | | | | | | | | | | DNEG IS A CONTINUATION OF THE DIVIDE | | | | | | | | | | | ROUTINE IN P2 AREA | | 120 | 00540094 | DNEG | BRZ | D | | | OVFL | W | BR IF DIVISOR ZERO | | 122 | BC44FFFF | | XORI | Α | Α | | FFFF\$ | | COMP DIVIDEND | | 124 | BC55FFFF | | XORI | Q | Q | | FFFF\$ | | | | 126 | CC550001 | | ADDI | Q | Q | | 1\$ | | | | | 40440002 | | ADD | Α | Α | 0 | | CI | | | | 24560000 | | COPY | | Ü | | | | SAVE MEMORY DATA | | | 34396080 | | XOR | Š | ō | U | | | PRODUCT OF SIGNS TO O | | | 08680134 | | BNZ | ŭ | • | • | DTOP | 0\$ | BR IF DIVISOR NEGATIVE | | | BC66FFFF | DNZ | XORI | _ | U | | FFFFS | | COMPLEMENT DIVISOR TO | | | CC660001 | DNZ | ADDI | | Ü | | 1\$ | | PERFORM SUBTRACT | | | 6C644280 | 2700 | | | A | Α | 1.0 | 50, | TRIAL SUBTRACT OR | | 154 | 6044280 | * | DIV | U | ~ | ^ | | 301 | SUBTRACT | | | 26550020 | * | COPY | ^ | 0 | | | L1.50.SI | SHIFT DIVIDEND | | 130 | 20550320 | _ | COPT | u | Q | | | L1730731 | BIT IN AND SHIFT DIVIDEND BIT OUT | | 100 | 26// 2022 | | COPY | | | | | L1.SI.D.J. | SHIFT DIVIDEND | | 138 | 2C440D20 | | COPT | ^ | A | | | C173170737 | AND LOOP TO COMPLETION | | 124 | (6(11300 | Ħ | DIV | | Α | | | SO • | LAST CYCLE REM NOW OK | | | 60644280 | | COPY | U | ü | Α | | L1.50.SI | COMPLETE QUOT TO L | | _ | 20560320 | | | | . • | - | 072 | L1430431 | SHIFT FF =0 = OVFL | | | 00102094 | | BRZ | Ç | | 2 | OVFL | 0.5 | BR IF REM. POS. | | | 00300146 | | BRZ | S | | | *+3
FFFFS | 0\$ | DR IF REMO PUSO | | | BC44FFFF | | XORI | | A | | | | | | _ | CC440001 | | ADDI | | A | | 15 | | DEMAINDED TO O | | _ | 2C450000 | RPOS | | | Q | | | • | REMAINDER TO Q | | | 08680154 | | BNZ | U | | | UPOS | 0\$ | QUOT IS POS. | | 14A | 08900094 | | BRZ | 0 | | | OVFL | 0\$ | IF QUOT IS NEG AND SIGN OF | | | | * | - - | | | | | | QUOT. IS POS, IT IS AN OVERFLOW | | 140 | CC698001 | | SUBI | U | 0 | | 7FFF\$ | | IF THE FORMED QUOT | | | | # | | | | | | | IS NEGATIVE AND THE SIGN OF THE | | | | # | | | | | | | QUOTIENT IS NEGATIVE AN OVERFLOW | | | | * | | | | | | | IS INDICATED EXCEPT FOR | | | | * | | | | | | | -2 TO THE 15TH | | 14E | 08900094 | | BNZ | 0 | | | OVFL | W | NOT -2 TO 15TH | | 150 | CC640001 | | ADDI | U | Α | | 15 | | CONVERT 1'S COMP QUOT | | | | * | | | | | | | TO 2'S COMP QUOTIENT | | | 000001BC | | JMP | | | | RNI | | EXIT | | | 08980150 | UPOS | | 0 | | | ONEG | 0\$ | SIGN OF QUOT IS POSITIVE | | | BC64FFFF | | XORI | U | Α | | FFFF\$ | | QUOTIENT TO A | | 158 | 000001BC | | JMP | | | | RNI | | EXIT | # APPENDIX C POWERS OF TWO ### APPENDIX C ### POWERS OF TWO ``` 2⁻ⁿ o 1.0 0.5 0.25 8 3 0.125 16 0.062 5 32 0.031 25 0.015 625 64 128 0.007 812 5 256 8 0.003 906 25 512 9 0.001 953 125 1 024 10 0.000 976 562 5 2 048 11 0.000 488 281 25 4 096 12 0.000 244 140 625 8 192 0.000 122 070 312 5 1.3 16 384 14 0.000 061 035 156 25 32 768 0.000 030 517 578 125 65 536 16 0.000 015 258 789 062 5 0.000 007 629 394 531 25 131 072 17 262 144 18 0.000 003 814 697 265 625 0.000 001 907 348 632 812 5 524 288 19 1 048 576 20 0.000 000 953 674 316 406 25 2 097 152 0.000 000 476 837 158 203 125 21 4 194 304 22 0.000 000 238 418 579 101 562 5 8 388 608 23 0.000 000 119 209 289 550 781 25 16 777 216 24 0.000 000 059 604 644 775 390 625 33 554 432 25 0.000 000 029 802 322 387 695 312 5 67 108 864 0.000 000 014 901 161 193 847 656 25 26 134 217 728 27 0.000 000 007 450 580 596 923 828 125 268 435 456 28 0.000 000 003 725 290 298 461 914 062 5 536 870 912 0 000 000 001 862 645 149 230 957 031 25 29 1 073 741 824 0.000 000 000 931 322 574 615 478 515 625 30 2 147 483 648 0.000 000 000 465 661 287 307 739 257 812 5 31 4 294 967 296 32 0.000 000 000 232 830 643 653 869 628 906 25 8 589 934 592 0.000 000 000 116 415 321 826 934 814 453 125 17 179 869 184 34 0.000 000 000 058 207 660 913 467 407 226 562 5 34 359 738 368 35 0.000 000 000 029 103 830 456 733 703 613 281 25 68 719 476 736 0.000 000 000 014 551 915 228 366 851 806 640 625 36 137 438 953 472 37 0 000 000 000 007 275 957 614 183 425 903 320 312 5 274 877 906 944 0 000 000 000 003 637 978 807 091 712 951 660 156 25 549 755 813 888 39 0.000 000 000 001 818 989 403 545 856 475 830 078 125 1 099 511 627 776 40 0 000 000 000 000 909 494 701 772 928 237 915 039 062 5 2 199 023 255 552 0 000 000 000 000 454 747 350 886 464 118 957 519 531 25 41 4 398 046 511 104 0.000 000 000 000 227 373 675 443 232 059 478 759 765 625 42 8 796 093 022 208 0.000 000 000 000 113 686 837 721 616 029 739 379 882 812 5 17 592 186 044 416 44 0 000 000 000 000 056 843 418 860 808 014 869 689 941 406 25 35 184 372 088 832 45 0 000 000 000 000 028 421 709 430 404 007 434 844 970 703 125 70 368 744 177 664 0.000 000 000 000 014 210 854 715 202 003 717 422 485 351 562 5 46 140 737 488 355 328 47 0.000 000 000 000 007 105 427 357 601 001 858 711 242 675 781 25 281 474 976 710 656 0.000 000 000 000 003 552 713 678 800 500 929 355 621 337 890 625 562 949 953 421 312 49 0.000 000 000 000 001 776 356 839 400 250 464 677 810 668 945 312 5 1 125 899 906 842 624 0 000 000 000 000 000 888 178 419 700 125 232 338 905 334 472 656 25 50 2 251 799 813 685 248 0.000 000 000 000 000 444 089 209 850 062 616 169 452 667 236 328 125 51 4 503 599 627 370 496 0.000 000 000 000 000 222 044 604 925 031 308 084 726 333 618 164 062 5 52 9 007 199 254 740 992 0.000 000 000 000 000 111 022 302 462 515 654 042 363 166 809 082 031 25 18 014 398 509 481 984 0.000 000 000 000 000 055 511 151 231 257 827 021 181 583 404 541 015 625 36 028 797 018 963 968 0.000 000 000 000 000 027 755 575 615 628 913 510 590 791 702 270 507 812 5 72 057 594 037 927 936 0.000 000 000 000 000 013 877 787 807 814 456 755 295 395 851 135 253 906 25 56 144 115 188 075 855 872 0.000 000 000 000 000 006 938 893 903 907 228 377 647 697 925 567 626 953 125 288 230 376 151 711 744 0 000 000 000 000 000 003 469 446 951 953 614 188 823 848 962 783 813 476 562 5 576 460 752 303 423 488 59 0.000 000 000 000 000 001 734 723 475 976 807 094 411 924 481 391 906 738 281 25 1 152 921 504 606 846 976 60 0.000 000 000 000 000 000 867 361 737 988 403 547 205 962 240 695 953 369 140 625 2 305 843 009 213 693 952 61 0.000 000 000 000 000 000 433 680 868 994 201 773 602 981 120 347 976 684 570 312 5 4 611 686 018 427 387 904 0.000 000 000 000 000 000 216 840 434 497 100 886 801 490 560 173 988 342 285 156 25 ``` # APPENDIX D HEXADECIMAL-TO-DECIMAL CONVERSION TABLE # APPENDIX D HEXADECIMAL-TO-DECIMAL CONVERSION TABLE | | The table in this appendix provides for direct con-
of decimal and hexadecimal numbers in these range | | | | | | | Hexadecimal | | | | Decimal | | | | | | |------------|--|--------------|--------------|------------------------------|------------------------------|--------------|--------------|---------------------|------------------------------|--------------|--------------|----------------------|------------------------|----------------------|--------------|--------------|--| | O, | | | | ecimai | nomber | | | ges. | | 4000 | | | | 16384 | | | | | | Hex | adecin | nal | | | Deci | mal | | | 5000 | | | | 20484 | | | | | | 000 | to FF | = | | | 0000 to | 4095 | | | 6000 | | | | 24576 | | | | | | ••• | | | | | | | 7000 | | | | | 2867 2
32768 | | | | | | | For n | umbers | outside | e the ro | inge of | the tab | ole. od | d the | | | 8000 | | | | | | | | fc | | | | | figure | | , | | | | 9000 | | | 368 | | | | | | | 9 | | | · ··goio | , , | | | | | A000 | | | 409 | | | | | | | Hexad e | ecimal | | | Deci | mal | | | | B000 | | | 450 | | | | | | , | | | | | | | | | | C000 | | | 491. | | | | | | | 100 | | | | 40 | | | | | D000 | | | 532 | | | | | | | 200 | | | | 81 | | • | | | E000 | | | 573 | | | | | | | 300 | 0 | | | 122 | 88 | | | | F000 | | | 614 | 40 | | | | | | | | 0 | ŗ | | | 1 | ۲. | | E | | Γ | | 9 | | | | | | (| | 人 | | | | | ` | | ^ | | . ! | | | | | | | | (| OC | 00 | O | (| 0 C | 0 |) | E. | | | į | 8 | 00 | | | | | | | | | i | | | | | | | | į | | | | | | L | | | | | | | | | | | | | į | | | | | | | | | | | | | | | | Γ- | | | | | | | | | - | | | | | | · | | | | | | | | | | | | | 44 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 8 | A | В | С | D | E | F | | | 000 | 0000 | 0001 | 0002 | 0003 | 0004 | 0005 | 8000 | 0007 | 0008 | 0009 | 0010 | 0011 | 0012 | 0013 | 0014 | 0015 | | | 010
020 | 0016 | 0017
0033 | 0018
0034 | 0019
0035 | 0020
0036 | 0021
0037 | 0022
0038 | 0023
0039 | 0024
0040 | 0025
0041 | 0026
0042 | 0027
0043 | 0028
0044 | 0029
0045 | 0030
0046 | 0031
0047 | | | 030 | 0032 | 0033 | 0050 | 0051 | 0052 | 0053 | 0054 | 0055 | 0056 | 0057 | 0058 | 0059 | 0060 | 0061 | 0062 | 0063 | | | 040 | 0064 | 0065 | 0066 | 0067 | 0068 | 0069 | 0070 | 0071 | 0072 | 0073 | 0074 | 0075 | 0076 | 0077 | 0078 | 0079 | | | 050 | 0080 | 0081 | 0082 | 0083 | 0084 | 0085 | 0086 | 0087 | 0088 | 0089 | 0090 | 0091 | 0092 | 0 09 3 | 0094 | 0095 | | | 060 | 0096 | 0097 | 0098 | 0099 | 0100 | 0101 | 0102 | 0103 | 0104 | 0105 | 0106 | 0107 | 0108 | 0109 | 0110 | 0111 | | | 070 | 0112 | 0113 | 0114 | 0115 | 0116 | 0117 | 0118 | 0119 | 0120 | 0121 | 0122 | 0123 | 0124 | 0125 | 0126 | 0127 | | | 080
090 | 0128
0144 | 0129
0145 | 0130
0146 |
0131
0147 | 0132
0148 | 0133
0149 | 0134
0150 | 0135
0151 | 0136
0152 | 0137
0153 | 0138
0154 | 0139
015 5 | 0140
0156 | 0141
0157 | 0142
0158 | 0143
0159 | | | 040 | 0160 | 0161 | 0162 | 0163 | 0164 | 0145 | 0166 | 0167 | 0168 | 0169 | 0170 | 0171 | 0172 | 0173 | 0174 | 0175 | | | ово | 0176 | 0177 | 0178 | 0179 | 0180 | 0181 | 0182 | 0183 | 0184 | 0185 | 0186 | 0187 | 0188 | 0189 | 0190 | 0191 | | | oco | 0192 | 0193 | 0194 | 0195 | 0196 | 0197 | 0198 | 0199 | 0200 | 0201 | 0202 | 0203 | 0204 | 0205 | 0206 | 0207 | | | 0D0 | 0208 | 0209 | 0210 | 0211 | 0212 | 0213 | 0214 | 0215 | 0216 | 0217 | 0218 | 0219 | 0220 | 0221 | 0222 | 0223 | | | 0E0
0F0 | 0224
0240 | 0225
0241 | 0226
0242 | 022 7
024 3 | 0228
0244 | 0229
0245 | 0230
0246 | 0231
0247 | 0232
0248 | 0233
0249 | 0234
0250 | 0235
0251 | 0236
0252 | 0237
025 3 | 0238
0254 | 0239
0255 | | | 100 | 0256 | 0257 | 0258 | 0259 | | | 0262 | 0263 | | | | | | 0269 | 0270 | 0271 | | | 110 | 0230 | 0237 | 0236 | 0239 | 0260
0276 | 0261
0277 | 0202 | 0203 | 0264
0280 | 0265
0281 | 0266
0282 | 0267
0283 | 0268
0284 | 0285 | 0286 | 0287 | | | 120 | 0288 | 0289 | 0290 | 0291 | 0292 | 0293 | 0294 | 0295 | 0296 | 0297 | 0298 | 0299 | 0300 | 0301 | 0302 | 0303 | | | 130 | 0304 | 0305 | 0306 | 0307 | 0308 | 0309 | 0310 | 0311 | 0312 | 0313 | 0314 | 0315 | 0316 | 0317 | 0318 | 0319 | | | 140 | 0320 | 0321 | 0322 | 0323 | 0324 | 0325 | 0326 | 0327 | 0328 | 0329 | 0330 | 0331 | 0332 | 0333 | 0334 | 0335 | | | 150 | 0336 | 0337 | 0338 | 0339 | 0340 | 0341 | 0342 | 0343 | 0344 | 0345 | 0346 | 0347 | 0348 | 0349 | 0350 | 0351 | | | 160
170 | 0352
0368 | 0353
0369 | 0354
0370 | 035 5
0371 | 035 6
037 2 | 0357
0373 | 0358
0374 | 0359
0375 | 0360
0 37 6 | 0361
0377 | 0362
0378 | 0363
0379 | 0364
0380 | 036 5
0381 | 0366
0382 | 0367
0383 | | | 180 | 0384 | 0385 | 0386 | 0387 | 0388 | 0389 | 0390 | 0391 | 0392 | 0393 | 0394 | 0395 | 0396 | 0397 | 0398 | 0399 | | | 190 | 0400 | 0401 | 0402 | 0403 | 0404 | 0405 | 0408 | 0407 | 0408 | 0409 | 0410 | 0333 | 0330 | 0413 | 0414 | 0415 | | | 140 | 0416 | 0417 | 0418 | 0419 | 0420 | 0421 | 0422 | 0423 | 0424 | 0425 | 0426 | 0427 | 0428 | 0429 | 0430 | 0431 | | | 1B0 | 0432 | 0433 | 0434 | 0435 | 0436 | 0437 | 0438 | 0439 | 0440 | 0441 | 0442 | 0443 | 0444 | 0445 | 0446 | 0447 | | | 1C0 | 0448 | 0449 | 0450 | 0451 | 0452 | 0453 | 0454 | 0455 | 0458 | 0457 | 0458 | 0459 | 0460 | 0461 | 0462 | 0483 | | | 1D0 | 0464 | 0465 | 0466 | 0467 | 0468 | 0469 | 0470 | 0471 | 0472 | 0473 | 0474 | 0475 | 0476 | 0477 | 0478 | 0479 | | | IEO
IFO | 0480
0496 | 0481
0497 | 0482
0498 | 0463
0499 | 0484
0500 | 0485
0501 | 0486
0502 | 0487
0503 | 0488
0504 | 0505 | 0490
0506 | 0491
0507 | 0492
0508 | 0493
0509 | 0494
0510 | 0495
0511 | | | | L 200 | | V 100 | 0133 | | 0001 | 0002 | | 0004 | | 0000 | 0001 | | 0.003 | 0010 | 0011 | | | | 0 | 1 | 2 | 3 | 4 | 5 | в | 7 | 8 | 9 | Ä. | В | С | D | Е | F | |--------------------|--------------|--------------|----------------------|----------------------|----------------------|----------------------|--------------|----------------------|--------------|--------------|--------------|----------------|--------------|----------------------|--------------------------|--------------| | 200 | 0512 | 0513 | 0514 | 0515 | 0516 | 0517 | 0518 | 0519 | 0520 | 0521 | 0522 | 0523 | 0524 | 0525 | 0526 | 0527 | | 210 | 0528 | 0529 | 0530 | 0531 | 0532 | 0533 | 0534 | 0535 | 0536 | 0537 | 0538 | 0539 | 0540 | 0541 | 0542 | 0543 | | 220 | 0544 | 0545 | 0546 | 0547 | 0548 | 0549 | 0550 | 0551 | 0552 | 0553 | 0554 | 0555 | 0556 | 0557 | 0558 | 0559 | | 230 | 0560 | 0561 | 0562 | 0563 | 0564 | 0565 | 0566 | 0567 | 0568 | 0569 | 0570 | 0571 | 0572 | 0573 | 0574 | 0575 | | 240 | 0576 | 0577 | 0578 | 0579 | 0580 | 0581 | 0582 | 0583 | 0584 | 0585 | 0586 | 0587 | 0588 | 0589 | 0590 | 0591 | | 250 | 0592 | 0593 | 0594 | 0595 | 0596 | 0597 | 0598 | 0599 | 0600 | 0601 | 0602 | 0603 | 0604 | 0605 | 0606 | 0607 | | 260 | 0608 | 0609 | 0610 | 0611 | 0612 | 0613 | 0614 | 0615 | 0616 | 0617 | 0618 | 0619 | 0620 | 0621 | 0622 | 0623 | | 270 | 0624 | 0625 | 0626 | 0627 | 0628 | 0629 | 0630 | 0631 | 0632 | 0633 | 0634 | 0635 | 0636 | 0637 | 0638 | 0639 | | 280 | 0640 | 0641 | 0642 | 0643 | 0644 | 0645 | 0646 | 0647 | 0648 | 0649 | 0650 | 0651 | 0652 | 0653 | 0654 | 0655 | | 290 | 0656 | 0657 | 0658 | 0659 | 0660 | 0661 | 0662 | 0663 | 0664 | 0665 | 0666 | 0667 | 0668 | 0669 | 0670 | 0671 | | 240 | 0672 | 0673 | 0674 | 0675 | 0676 | 0677 | 0678 | 0679 | 0680 | 0681 | 0682 | 0683 | 0684 | 0685 | 0686 | 0687 | | 2B0 | 0688 | 0689 | 0690 | 0691 | 0692 | 0693 | 0694 | 0695 | 0696 | 0697 | 0698 | 0699 | 0700 | 0701 | 0702 | 0703 | | 2C0 | 0704 | 0705 | 0706 | 0707 | 0708 | 0709 | 0710 | 0711 | 0712 | 0713 | 0714 | 0715 | 0716 | 0717 | 0718 | 0719 | | 2D0 | 0720 | 0721 | 0722 | 0723 | 0724 | 0725 | 0726 | 0727 | 0728 | 0729 | 0730 | 0731 | 0732 | 0733 | 0734 | 0735 | | 2E0 | 0736 | 0737 | 0738 | 0739 | 0740 | 0741 | 0742 | 0743 | 0744 | 0745 | 0746 | 0747 | 0748 | 0749 | 0750 | 075 | | 2F0 | 0752 | 0753 | 0754 | 0755 | 0756 | 0757 | 0758 | 0759 | 0760 | 0761 | 0762 | 0763 | 0764 | 0765 | 0766 | 0767 | | 200 | 0700 | 07.00 | 0770 | 0771 | 0770 | 0770 | 0774 | | 0770 | 0777 | 0770 | 0000 | | | | | | 300
310 | 0768
0784 | 0769
0785 | 0770
0786 | 0771
0787 | 0772
0788 | 077 3
0789 | 0774
0790 | 0775
0791 | 0776
0792 | 0777
0793 | 0778
0794 | 0779 | 0780 | 0781 | 0782 | 0783 | | 320 | 0800 | 0801 | 0802 | 0803 | 0804 | 0805 | 0806 | 0807 | 0808 | 0809 | 0810 | 0795
0811 | 0796
0812 | 0797
0813 | 0798
0814 | 0799 | | 330 | 0816 | 0817 | 0818 | 0819 | 0820 | 0821 | 0822 | 0823 | 0824 | 0825 | 0826 | 0827 | 0828 | 0829 | | 0815 | | 1 | i | | | | | | | | | | | | | | 0830 | 0831 | | 340 | 0832
0848 | 0833 | 0834 | 0835 | 0836 | 0837 | 0838 | 0839 | 0840 | 0841 | 0842 | 0843 | 0844 | 0845 | 0846 | 0847 | | ნამ
36 0 | 0848 | 0849
0865 | 0850
0866 | 0851
0867 | 0852
0868 | 0853
0869 | 0854
0870 | 0855 | 0856
0872 | 0857 | 0858 | 0859 | 0860 | 0861 | 0862 | 0863 | | 370 | 0880 | 0881 | 0882 | 0883 | 0884 | 0885 | 0886 | 0871
088 7 | 0872
0888 | 0873
0889 | 0874
0890 | $0875 \\ 0891$ | 0876 | 0877
0893 | 0878 | 0879 | | 1 | | | | | | | | | | | | | 0892 | | 0894 | 0893 | | 380 | 0896 | 0897 | 0898 | 0899 | 0900 | 0901 | 0902 | 0903 | 0904 | 0905 | 0906 | 0907 | 0908 | 0909 | 0910 | 0911 | | 390 | 0912 | 0913 | 0914 | 0915 | 0916 | 0917 | 0918 | 0919 | 0920 | 0921 | 0922 | 0923 | 0924 | 0925 | 0926 | 0927 | | 3A0 | 0928 | 0929 | 0930 | 0931 | 0932 | 0933 | 0934 | 0935 | 0936 | 0937 | 0938 | 0939 | 0940 | 0941 | 0942 | 0943 | | 3B0 | 0944 | 0945 | 0946 | 0947 | 0948 | 0949 | 0950 | 0951 | 0952 | 0953 | 0954 | 0955 | 0956 | 0957 | 0958 | 0959 | | 3C0 | 0960 | 0961 | 0962 | 0963 | 0964 | 0965 | 0966 | 0967 | 0968 | 0969 | 0970 | 0971 | 0972 | 0973 | 0974 | 0975 | | 3D0 | 0976 | 0977 | 0978 | 0979 | 0980 | 0981 | 0982 | 0983 | 0984 | 0985 | 0986 | 0987 | 0988 | 0989 | 0990 | 0991 | | 3E0 | 0992 | 0993 | 0994 | 0995 | 0996 | 0997 | 0998 | 0999 | 1000 | 1001 | 1002 | 1003 | 1004 | 1005 | 1006 | 1007 | | 3F0 | 1008 | 1009 | 1010 | 1011 | 1012 | 1013 | 1014 | 1015 | 1016 | 1017 | 1018 | 1019 | 1020 | 1021 | 1022 | 1023 | | | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | A | В | С | D | E | F | | 400 | 1024 | 1025 | 1026 | 1027 | 1028 | 1029 | 1030 | 1031 | 1032 | 1033 | 1034 | 1035 | 1036 | 1037 | 1038 | 1039 | | 410 | 1040 | 1041 | 1042 | 1043 | 1044 | 1045 | 1046 | 1047 | 1048 | 1049 | 1050 | 1051 | 1052 | 1053 | 1054 | 1055 | | 420 | 1056 | 1057 | 1058 | 1059 | 1060 | 1061 | 1062 | 1063 | 1064 | 1065 | 1066 | 1067 | 1068 | 1069 | 1070 | 1071 | | 430 | 1072 | 1073 | 1074 | 1075 | 1076 | 1077 | 1078 | 1079 | 1080 | 1081 | 1082 | 1083 | 1084 | 1085 | 1086 | 1087 | | 440 | 1088 | 1089 | 1090 | 1091 | 1092 | 1093 | 1094 | 1095 | 1096 | 1097 | 1098 | 1099 | 1100 | 1101 | 1102 | 1103 | | 450 | 1104 | 1105 | 1106 | 1107 | 1108 | 1109 | 1110 | 1111 | 1112 | 1113 | 1114 | 1115 | 1116 | 1117 | 1118 | 1119 | | 460 | 1120 | 1121 | 1122 | 1123 | 1124 | 1125 | 1126 | 1127 | 1128 | 1129 | 1130 | 1131 | 1132 | 1133 | 1134 | 1135 | | 470 | 1136 | 1137 | 1138 | 1139 | 1140 | 1141 | 1142 | 1143 | 1144 | 1145 | 1146 | 1147 | 1148 | 1149 | 1150 | 1151 | | 480 | 1152 | 1153 | 1154 | 1155 | 1156 | 1157 | 1158 | 1159 | 1160 | 1161 | 1162 | 1163 | 1164 | 1165 | 1166 | 1167 | | 490 | 1168 | 1169 | 1170 | 1171 | 1172 | 1173 | 1174 | 1175 | 1176 | 1177 | 1178 | 1179 | 1180 | 1181 | 1182 | 1183 | | 4A0 | 1184 | 1185 | 1186 | 1187 | 1188 | 1189 | 1190 | 1191 | 1192 | 1193 | 1194 | 1195 | 1196 | 1197 | 1198 | 1199 | | 4B0 | 1200 | 1201 | 1202 | 1203 | 1204 | 1205 | 1206 | 1207 | 1208 | 1209 | 1210 | 1211 | 1212 | 1213 | 1214 | 1215 | | 4C0 | 1216 | 1217 | 1218 | 1219 | 1220 | 1221 | 1222 | 1223 | 1224 | 1225 | 1226 | 1227 | 1228 | 1229 | 1230 | 1231 | | 4D0 | 1232 | 1233 | 1234 | 1235 | 1236 | 1237 | 1238 | 1239 | 1240 | 1241 | 1242 | 1243 | 1244 | 1245 | 1246 | 1247 | | 4E0 | 1248 | 1249 | 1250 | 1251 | 1252 | 1253 | 1254 | 1255 | 1256 | 1257 | 1258 | 1259 | 1260 | 1261 | 1262 | 1263 | | 4F0 | 1264 | 1265 | 1266 | 1267 | 1268 | 1269 | 1270 | 1271 | 1272 | 1273 | 1274 | 1275 | 1276 | 1277 | 1278 | 1279 | | 500 | 1280 | 1281 | 1282 | 1283 | 1284 | 1285 | 1286 | 1287 | 1288 | 1289 | 1290 | 1291 | 1292 | 1293 | 1294 | 1295 | | 510 | 1296 | 1297 | 1298 | 1299 | 1300 | 1301 | 1302 | 1303 | 1304 | 1305 | 1306 | 1307 | 1308 | 1309 | 1310 | 1311 | | 520 | 1312 | 1313 | 1314 | 1315 | 1316 | 1317 | 1318 | 1319 | 1320 | 1321 | 1322 | 1323 | 1324 | 1325 | 1326 | 1327 | | 530 | 1328 | 1329 | 1330 | 1331 | 1332 | 1333 | 1334 | 1335 | 1336 | 1337
 1338 | 1339 | 1340 | 1341 | 1342 | 1343 | | 540 | 1344 | 1345 | 1346 | 1347 | 1348 | 1349 | 1350 | 1351 | 1352 | 1353 | 1354 | 1355 | 1356 | 1357 | 1358 | 1359 | | 550 | 1360 | 1361 | 1362 | 1363 | 1346 | 1349 | 1366 | 1367 | 1368 | 1369 | 1354 | 1335 | 1372 | 1373 | 1374 | 1375 | | 560 | 1376 | 1377 | 1378 | 1379 | 1380 | 1381 | 1382 | 1383 | 1384 | 1385 | 1386 | 1387 | 1372 | 1373 | 1390 | 1391 | | 570 | 1392 | 1393 | 1394 | 1395 | 1396 | 1397 | 1398 | 1399 | 1400 | 1401 | 1402 | 1403 | 1404 | 1405 | 1406 | 1407 | | 580 | 1408 | 1409 | 1410 | 1411 | 1412 | 1413 | 1414 | 1415 | 1416 | 1417 | 1418 | 1419 | | | | | | 590 | 1424 | 1409 | 1426 | 1411 | 1412 | 1413 | 1430 | 1415 | 1416 | 1417 | 1418 | 1419 | 1420
1436 | 1421
1437 | 1422
1438 | 1423
1439 | | 5A0 | 1440 | 1441 | 1442 | 1443 | 1444 | 1445 | 1446 | 1431 | 1432 | 1449 | 1450 | 1451 | 1450 | 1453 | 1454 | 1455 | | | 1456 | 1457 | 1458 | 1459 | 1460 | 1461 | 1462 | 1463 | 1464 | 1465 | 1466 | 1467 | 1468 | 1469 | 1470 | 1471 | | 5B0 | 1 | 1473 | 1474 | 1475 | 1476 | 1477 | 1478 | | | | | | | | | | | 5B0
5C0 | 1 1479 | 171/3 | | | | 1477 | 1478 | 1479
1495 | 1480
1496 | 1481
1497 | 1482
1498 | 1483
1499 | 1484
1500 | 148 5
1501 | 148 6
1502 | 1487
1503 | | 5C0 | 1472 | |]⊿o∩ | 1401 | LACI | | | 1433 | 1430 | 1497 | OCPL | 1433 | wor | LOUL | 10UZ | 1003 | | 5C0
5D0 | 1488 | 1489 | 1490
1506 | 1491
1507 | 1492
1508 | | | | | | | | | | | | | 5C0 | | | 1490
1506
1522 | 1491
1507
1523 | 1492
1508
1524 | 1509
1525 | 1510
1526 | 1511
1527 | 1512
1528 | 1513
1529 | 1514
1530 | 1515
1531 | 1516
1532 | 1517
1533 | 1518
1534 | 1519
1535 | | | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Λ | В | С | D | E | F | |---------------------|--------------|--------------|---------------------|---------------------|---------------------|--------------|--------------|------------------------------|--------------|--------------|--------------|----------------------|--------------|--------------|--------------|--------------| | 600 | 1536 | 1537 | 1538 | 1539 | 1540 | 1541 | 1542 | 1543 | 1544 | 1545 | 1546 | 1547 | 1548 | 1549 | 1550 | 1551 | | 610 | 1552
1568 | 1553
1569 | 1554
1570 | 1555
1571 | 1556
1572 | 1557
1573 | 1558
1574 | 1559
1575 | 1560
1576 | 1561
1577 | 1562
1578 | 1563
1579 | 1564
1580 | 1565
1581 | 1566
1582 | 1567 | | 630 | 1584 | 1585 | 1586 | 1587 | 1588 | 1589 | 1590 | 1591 | 1592 | 1593 | 1594 | 1595 | 1596 | 1597 | 1598 | 1583
1599 | | 640 | 1600 | 1601 | 1602 | 1603 | 1604 | 1605 | 1606 | 1607 | 1608 | 1609 | 1610 | 1611 | 1612 | 1613 | 1614 | . 1615 | | 650 | 1616 | 1617 | 1618 | 1619 | 1620 | 1621 | 1622 | 1623 | 1624 | 1625 | 1626 | 1627 | 1628 | 1629 | 1630 | 1631 | | 660 | 1632 | 1633 | 1634 | 1635 | 1636 | 1637 | 1638 | 1639 | 1640 | 1641 | 1642 | 1643 | 1644 | 1645 | 1646 | 1647 | | 670 | 1648 | 1649 | 1650 | 1651 | 1652 | 1653 | 1654 | 1655 | 1656 | 1657 | 1658 | 1659 | 1660 | 1661 | 1662 | 1663 | | 680
690 | 1664
1680 | 1665
1681 | 1666
1682 | 1667
1683 | 1668
1684 | 1669
1685 | 1670
1686 | 1671
1687 | 1672
1688 | 1673
1689 | 1674
1690 | 1675
1691 | 1676
1692 | 1677
1693 | 1678 | 1679 | | 6A0 | 1696 | 1697 | 1698 | 1699 | 1700 | 1701 | 1702 | 1703 | 1704 | 1705 | 1706 | 1707 | 1708 | 1709 | 1694
1710 | 1695
1711 | | 6B0 | 1712 | 1713 | 1714 | 1715 | 1716 | 1717 | 1718 | 1719 | 1720 | 1721 | 1722 | 1723 | 1724 | 1725 | 1726 | 1727 | | 6C0 | 1728 | 1729 | 1730 | 1731 | 1732 | 1733 | 1734 | 1735 | 1736 | 1737 | 1738 | 1739 | 1740 | 1741 | 1742 | 1743 | | 6D0 | 1744
1760 | 1745
1761 | 1746
1762 | 1747
1763 | 1748 | 1749 | 1750 | 1751 | 1752 | 1753 | 1754 | 1755 | 1756 | 1757 | 1758 | 1759 | | 6E0
6F0 | 1776 | 1777 | 1778 | 1763 | $\frac{1764}{1780}$ | 1765
1781 | 1766
1782 | 1767
1783 | 1768
1784 | 1769
1785 | 1770
1786 | 1771
1787 | 1772
1788 | 1773
1789 | 1774
1790 | 1775
1791 | | 700 | 1792 | 1793 | 1794 | 1795 | | | | | | | | | | | | - 1 | | 710 | 1808 | 1809 | 1810 | 1811 | $\frac{1796}{1812}$ | 1797
1813 | 1798
1814 | 1799
1815 | 1800
1816 | 1801
1817 | 1802
1818 | 1803
1819 | 1804
1820 | 1805
1821 | 1806
1822 | 1807
1823 | | 720 | 1824 | 1825 | 1826 | 1827 | 1828 | 1829 | 1830 | 1831 | 1832 | 1833 | 1834 | 1835 | 1836 | 1837 | 1838 | 1839 | | 730 | 1840 | 1841 | 1842 | 1843 | 1844 | 1845 | 1846 | 1847 | 1848 | 1849 | 1850 | 1851 | 1852 | 1853 | 1854 | 1855 | | 740 | 1856 | 1857 | 1858 | 1859 | 1860 | 1861 | 1862 | 1863 | 1864 | 1865 | 1866 | 1867 | 1868 | 1869 | 1870 | 1871 | | 750
760 | 1872 | 1873
1889 | $\frac{1874}{1890}$ | $1875 \\ 1891$ | $\frac{1876}{1892}$ | 1877
1893 | 1878
1894 | 1879
1895 | 1880
1896 | 1881
1897 | 1882
1898 | 1883
1899 | 1884 | 1885 | 1886 | 1887 | | 770 | 1904 | 1905 | 1906 | 1907 | 1908 | 1909 | 1910 | 1911 | 1912 | 1913 | 1914 | 1915 | 1900
1916 | 1901
1917 | 1902
1918 | 1903
1919 | | 780 | 1920 | 1921 | 1922 | 1923 | 1924 | 1925 | 1926 | 1927 | 1928 | 1929 | 1930 | 1931 | 1932 | 1933 | 1934 | 1935 | | 790 | 1936 | 1937 | 1938 | 1939 | 1940 | 1941 | 1942 | 1943 | 1944 | 1945 | 1946 | 1947 | 1948 | 1949 | 1950 | 1951 | | 7.40 | 1952 | 1953 | 1954 | 1955 | 1956 | 1957 | 1958 | 1959 | 1960 | 1961 | 1962 | 1963 | 1964 | 1965 | 1966 | 1967 | | 7B0 | 1968 | 1969 | 1970 | 1971 | 1972 | 1973 | 1974 | 1975 | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 | | 7C0
7D0 | 1984
2000 | 1985
2001 | 1986
2002 | 1987
2003 | 1988
2004 | 1989
2005 | 1990
2006 | 1991
2007 | 1992
2008 | 1993
2009 | 1994
2010 | 1995
2011 | 1996 | 1997 | 1998 | 1999 | | 7E0 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 | 2023 | 2008 | 2009 | 2026 | 2011 | 2012
2028 | 2013
2029 | 2014
2030 | 2015 | | 7F0 | 2032 | 2033 | 2034 | 2035 | 2036 | 2037 | 2038 | 2039 | 2040 | 2041 | 2042 | 2043 | 2044 | 2045 | 2046 | 2047 | | | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | A | В | С | D | E | F | | 800 | 2048 | 2049 | 2050 | 2051 | 2052 | 2053 | 2054 | 2055 | 2056 | 2057 | 2058 | 2059 | 2060 | 2061 | 2062 | 2083 | | 810 | 2064 | 2065 | 2066 | 2067 | 2068 | 2069 | 2070 | 2071 | 2072 | 2073 | 2074 | 2075 | 2076 | 2077 | 2078 | 2079 | | 820 | 2080
2096 | 2081
2097 | 2082 | 2083 | 2084 | 2085 | 2086 | 2087 | 2088 | 2089 | 2090 | 2091 | 2092 | 2093 | 2094 | 2095 | | 830 | 2112 | 2113 | 2098 | 2099 | 2100 | 2101 | 2102 | 2103 | 2104 | 2105 | 2106 | 2107 | 2108 | 2109 | 2110 | 2111 | | 840
850 | 2112 | 2113 | 2114
2130 | 2115
2131 | 2116
2132 | 2117
2133 | 2118
2134 | 2119
2135 | 2120
2136 | 2121
2137 | 2122
2138 | 2123
2139 | 2124
2140 | 2125
2141 | 2126
2142 | 2127 | | 860 | 2144 | 2145 | 2146 | 2147 | 2148 | 2149 | 2150 | 2151 | 2152 | 2153 | 2154 | 2155 | 2156 | 2157 | 2142 | 2143
2159 | | 870 | 2160 | 2161 | 2162 | 2163 | 2164 | 2165 | 2166 | 2167 | 2168 | 2169 | 2170 | 2171 | 2172 | 2173 | 2174 | 2175 | | 880 | 2176 | 2177 | 2178 | 2179 | 2180 | 2181 | 2182 | 2183 | 2184 | 2185 | 2186 | 2187 | 2188 | 2189 | 2190 | 2191 | | 890
8 A 0 | 2192
2208 | 2193
2209 | 2194
2210 | $\frac{2195}{2211}$ | 2196
2212 | 2197
2213 | 2198
2214 | 2199 | 2200 | 2201 | 2202 | 2203 | 2204 | 2205 | 2206 | 2207 | | 8B0 | 2224 | 2225 | 2226 | 2227 | 2212 | 2213 | 2214 | 2215
2231 | 2216
2232 | 2217
2233 | 2218
2234 | 2219
2235 | 2220
2236 | 2221
2237 | 2222
2238 | 2223
2239 | | 8C0 | 2240 | 2241 | 2242 | 2243 | 2244 | 2245 | 2246 | 2247 | 2248 | 2249 | 2250 | 2251 | 2252 | 2253 | 2254 | 2255 | | 0CI8 | 2256 | 2257 | 2258 | 2259 | 2260 | 2261 | 2262 | 2263 | 2264 | 2265 | 2266 | 2267 | 2268 | 2269 | 2270 | 2271 | | 8E0 | 2272 | 2273 | 2274 | 2275 | 2276 | 2277 | 2278 | 2279 | 2280 | 2281 | 2282 | 2283 | 2284 | 2285 | 2286 | 2287 | | 8F0 | 2288 | 2289 | 2290 | 2291 | 2292 | 2293 | 2294 | 2295 | 2296 | 2297 | 2298 | 2299 | 2300 | 2301 | 2302 | 2303 | | 900 | 2304 | 2305 | 2306 | 2307 | 2308 | 2309 | 2310 | 2311 | 2312 | 2313 | 2314 | 2315 | 2316 | 2317 | 2318 | 2319 | | 910
920 | 2320 | 2321
2337 | 2322
2338 | 2323
2339 | 2324
2340 | 2325
2341 | 2326
2342 | 232 7
234 3 | 2328
2344 | 2329
2345 | 2330 | 2331 | 2332 | 2333 | 2334 | 2335 | | 930 | 2352 | 2353 | 2354 | 2355 | 2356 | 2357 | 2358 | 2359 | 2344 | 2345 | 2346
2362 | 2347
2363 | 2348
2364 | 2349
2365 | 2350
2366 | 2351
2367 | | 940 | 2368 | 2369 | 2370 | 2371 | 2372 | 2373 | 2374 | 2375 | 2376 | 2377 | 2378 | 2379 | 2380 | 2381 | 2382 | 2383 | | 950 | 2384 | 2385 | 2386 | 2387 | 2 388 | 2389 | 2390 | 2391 | 2392 | 2393 | 2394 | 2395 | 2396 | 2397 | 2398 | 2399 | | 960
970 | 2400 | 2401 | 2402 | 2403 | 2404 | 2405 | 2406 | 2407 | 2408 | 2409 | 2410 | 2411 | 2412 | 2413 | 2414 | 2415 | | 980 | 2416 | 2417
2433 | 2418
2434 | 2419 | 2420 | 2421 | 2422 | 2423 | 2424 | 2425 | 2426 | 2427 | 2428 | 2429 | 2430 | 2431 | | 990 | 2432 | 2433 | 2434 | 2435
2451 | 2436
2452 | 2437
2453 | 2438
2454 | 2439
2455 | 2440
2456 | 2441
2457 | 2442
2458 | 2443
2459 | 2444
2460 | 2445 | 2446 | 2447 | | 9A0 | 2464 | 2465 | 2466 | 2467 | 2468 | 2469 | 2470 | 2471 | 2472 | 2473 | 2474 | 2475 | 2460
2476 | 2461
2477 | 2462
2478 | 2463
2479 | | 9B0 | 2480 | 2481 | 2482 | 2483 | 2484 | 2485 | 2486 | 2487 | 2488 | 2489 | 2490 | 2491 | 2492 | 2493 | 2494 | 2495 | | 9C0 | 2496 | 2497 | 2498 | 2499 | 2500 | 2501 | 2502 | 2503 | 2504 | 2505 | 2506 | 2507 | 2508 | 2509 | 2510 | 2511 | | 9D0
9E0 | 2512
2528 | 2513
2529 | 2514
2530 | 2515
2531 | 2516
2532 | 2517
2533 | 2518
2534 | 2519
2535 | 2520 | 2521 | 2522 | 2523 | 2524 | 2525 | 2526 | 2527 | | 9F0 | 1 4140 | 4343 | 4. 3. 30 | 2.331 | 2.3.12 | 2.3.5.5 | 2.5.14 | 2.5.45 | 2536 |
2537 | 1757Q | ロビスの | 0540 | 0541 | 05.0 | | | טיזכן | 2544 | 2545 | 2546 | 2547 | 2548 | 2549 | 2550 | 2551 | 2552 | 2553 | 2538
2554 | 2539
255 5 | 2540
2556 | 2541
2557 | 2542
2558 | 2543
2559 | | | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | A | В | С | D | E | F | |--|---|--|--|---|---|---|---|---|---|--|--|--|--|--|--|--| | A00 | 2560 | 2561 | 2562 | 2563 | 2564 | 2565 | 2566 | 2567 | 2568 | 2569 | 2570 | 2571 | 2572 | 2573 | 2574 | 2575 | | A10
A20 | 2576
2592 | 2577
2593 | 2578
2594 | 2579
2595 | 2580
2596 | 2581
2597 | 2582
2598 | 2583
2599 | 2584
2600 | 2585
2601 | 2586
2602 | 2587
2603 | 2588
2604 | 2589
2605 | 2590
2606 | 2591
2607 | | A30 | 2608 | 2609 | 2610 | 2611 | 2612 | 2613 | 2614 | 2615 | 2616 | 2617 | 2618 | 2619 | 2620 | 2621 | 2622 | 2623 | | A40 | 2624 | 2625 | 2626 | 2627 | 2628 | 2629 | 2630 | 2631 | 2632 | 2633 | 2634 | 2635 | 2636 | 2637 | 2638 | 2639
2655 | | A50
A60 | 2640
2656 | 2641
2657 | 2642
2658 | 2643
2659 | 2644
2660 | 2645
2661 | 2646
2662 | 2647
2663 | 2648
2664 | 2649
2665 | 2650
2666 | 2651
2667 | 2652
2668 | 2653
2669 | 2654
2670 | 2671 | | A70 | 2672 | 2673 | 2674 | 2675 | 2676 | 2677 | 2678 | 2679 | 2680 | 2681 | 2682 | 2683 | 2684 | 2685 | 2686 | 2687 | | A80 | 2688 | 2689 | 2690 | 2691 | 2692 | 2693 | 2694 | 2695 | 2696 | 2697 | 2698 | 2699 | 2700 | 2701 | 2702 | 2703 | | A90
AA0 | 2704
2720 | $2705 \\ 2721$ | 2706
2722 | 2707
2723 | 2708
2724 | 2709
2725 | 2710
2726 | 2711
2727 | $\frac{2712}{2728}$ | 2713
2729 | 2714
2730 | 2715
2731 | 2716
2732 | 2717
2733 | 2718
2734 | 2719
2735 | | AB0 | 2736 | 2737 | 2738 | 2739 | 2740 | 2741 | 2742 | 2743 | 2744 | 2745 | 2746 | 2747 | 2748 | 2749 | 2750 | 2751 | | AC0 | 2752 | 2753 | 2754 | 2755 | 2756 | 2757 | 2758 | 2759 | 2760 | 2761 | 2762 | 2763 | 2764 | 2765 | 2766 | 2767 | | AD0
AE0 | 2768
2784 | 2769
2785 | 2770
2786 | 2771
2787 | 2772
2788 | 2773
2789 | 2774
2790 | 2775
2791 | 2776
2792 | 2777
2793 | 2778
2794 | 2779
2795 | 2780
2796 | 2781
2797 | 2782
2798 | 2783
2799 | | AF0 | 2800 | 2801 | 2802 | 2803 | 2804 | 2805 | 2806 | 2807 | 2808 | 2809 | 2810 | 2811 | 2812 | 2813 | 2814 | 2815 | | В00 | 2816 | 2817 | 2818 | 2819 | 2820 | 2821 | 2822 | 2823 | 2824 | 2825 | 2826 | 2827 | 2828 | 2829 | 2830 | 2831 | | B10 | 2832 | 2833 | 2834 | 2835 | 2836 | 2837 | 2838 | 2839 | 2840 | 2841
2857 | $\frac{2842}{2858}$ | 2843
2859 | 2844
2860 | 2845
2861 | 2846
2862 | 2847
2863 | | B20
B30 | 2848
2864 | 2849
2865 | 2850
2866 | 2851
2867 | 2852
2868 | 2853
2869 | 2854
2870 | 2855
2871 | 2856
2872 | 2873 | 2874 | 2875 | 2876 | 2877 | 2878 | 2879 | | B40 | 2880 | 2881 | 2882 | 2883 | 2884 | 2885 | 2886 | 2887 | 2888 | 2889 | 2890 | 2891 | 2892 | 2893 | 2894 | 2895 | | B50 | 2896 | 2897 | 2898 | 2899 | 2900 | 2901 | 2902 | 2903
2919 | 2904 | 2905
2921 | 2906
2922 | 2907
2923 | 2908
2924 | 2909
2925 | 2910
2926 | 2911
2927 | | B60
B70 | 2912
2928 | 2913
2929 | 2914
2930 | 2915
2931 | 2916
2932 | 2917
2933 | 2918
2934 | 2919
2935 | 2920
2936 | 2937 | 2938 | 2939 | 2940 | 2941 | 2942 | 2943 | | B80 | 2914 | 2945 | 2946 | 2947 | 2948 | 2949 | 2950 | 2951 | 2952 | 2953 | 2954 | 2955 | 2956 | 2957 | 2958 | 2959 | | B90 | 2960 | 2961 | 2962 | 2963 | 2964 | 2965 | 2966 | 2967 | 2968 | 2969
2985 | 2970
2986 | 2971
2987 | 2972
2988 | 2973
2989 | 2974
2990 | 2975
2991 | | BA0
BB0 | 2976
2992 | 297 7
2993 | 2978
2994 | 2979
2995 | 2980
2996 | 2981
2997 | 2982
2998 | 2983
2999 | 2984
3000 | 3001 | 3002 | 3003 | 3004 | 3005 | 3006 | 3007 | |
BC0 | 3008 | 3009 | 3010 | 3011 | 3012 | 3013 | 3014 | 3015 | 3016 | 3017 | 3018 | 3019 | 3020 | 3021 | 3022 | 3023 | | BD0 | 3024 | 3025
3041 | 3026
3042 | 3027
3043 | 3028
3044 | 3029
3045 | 3030
3046 | 3031
3047 | 3032
3048 | 3033
3049 | 3034
3050 | 3035
3051 | 3036
3052 | 3037
3053 | 3038
3054 | 3039
3055 | | BE0
BF0 | 3040
3056 | 3057 | 3058 | 3059 | 3060 | 3061 | 3062 | 3063 | 3064 | 3065 | 3066 | 3067 | 3068 | 3069 | 3070 | 3071 | - | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Α | В | С | D | E | F | | C00 | 0 3072 | 1
3073 | | | ····· | | | | | 9 3081 | A
3082 | B
3083 | C
3084 | 3085 | 3086 | 3087 | | C10 | 3072
3088 | 3073
3089 | 2
3074
3090 | 3
3075
3091 | 4
3076
3092 | 5
3077
3093 | 6
3078
3094 | 7
3079
3095 | 8
3080
3096 | 3081
3097 | 3082
3098 | 3083
3099 | 3084
3100 | 3085
3101 | 3086
3102 | 3087
3103 | | C10
C20 | 3072
3088
3104 | 3073 | 2 3074 | 3
3075 | 4
3076 | 5
3077 | 6 3078 | 7
3079 | 8 3080 | 3081 | 3082 | 3083 | 3084 | 3085 | 3086 | 3087 | | C10 | 3072
3088 | 3073
3089
3105 | 2
3074
3090
3106 | 3
3075
3091
3107 | 4
3076
3092
3108 | 5
3077
3093
3109
3125
3141 | 6
3078
3094
3110
3126
3142 | 7
3079
3095
3111
3127
3143 | 8
3080
3096
3112
3128
3144 | 3081
3097
3113
3129
3145 | 3082
3098
3114
3130
3146 | 3083
3099
3115
3131
3147 | 3084
3100
3116
3132
3148 | 3085
3101
3117
3133
3149 | 3086
3102
3118
3134
3150 | 3087
3103
3119
3135
3151 | | C10
C20
C30
C40
C50 | 3072
3088
3104
3120
3136
3152 | 3073
3089
3105
3121
3137
3153 | 2
3074
3090
3106
3122
3138
3154 | 3
3075
3091
3107
3123
3139
3155 | 4
3076
3092
3108
3124
3140
3156 | 5
3077
3093
3109
3125
3141
3157 | 6
3078
3094
3110
3126
3142
3158 | 7
3079
3095
3111
3127
3143
3159 | 8
3080
3096
3112
3128
3144
3160 | 3081
3097
3113
3129
3145
3161 | 3082
3098
3114
3130
3146
3162 | 3083
3099
3115
3131
3147
3163 | 3084
3100
3116
3132
3148
3164 | 3085
3101
3117
3133
3149
3165 | 3086
3102
3118
3134
3150
3166 | 3087
3103
3119
3135
3151
3167 | | C10
C20
C30
C40 | 3072
3088
3104
3120
3136 | 3073
3089
3105
3121
3137 | 2
3074
3090
3106
3122
3138 | 3
3075
3091
3107
3123
3139 | 4
3076
3092
3108
3124
3140 | 5
3077
3093
3109
3125
3141 | 6
3078
3094
3110
3126
3142 | 7
3079
3095
3111
3127
3143 | 8
3080
3096
3112
3128
3144 | 3081
3097
3113
3129
3145 | 3082
3098
3114
3130
3146 | 3083
3099
3115
3131
3147 | 3084
3100
3116
3132
3148 | 3085
3101
3117
3133
3149 | 3086
3102
3118
3134
3150 | 3087
3103
3119
3135
3151 | | C10
C20
C30
C40
C50
C60
C70 | 3072
3088
3104
3120
3136
3152
3168
3184
3200 | 3073
3089
3105
3121
3137
3153
3169
3185
3201 | 2
3074
3090
3106
3122
3138
3154
3170
3186
3202 | 3
3075
3091
3107
3123
3139
3155
3171
3187
3203 | 3076
3092
3108
3124
3140
3156
3172
3188
3204 | 5
3077
3093
3109
3125
3141
3157
3173
3189
3205 | 6
3078
3094
3110
3126
3142
3158
3174
3190
3206 | 7
3079
3095
3111
3127
3143
3159
3175
3191
3207 | 8
3080
3096
3112
3128
3144
3160
3176
3192
3208 | 3081
3097
3113
3129
3145
3161
3177
3193
3209 | 3082
3098
3114
3130
3146
3162
3178
3194
3210 | 3083
3099
3115
3131
3147
3163
3179
3195
3211 | 3084
3100
3116
3132
3148
3164
3180
3196
3212 | 3085
3101
3117
3133
3149
3165
3181
3197
3213 | 3086
3102
3118
3134
3150
3166
3182
3198
3214 | 3087
3103
3119
3135
3151
3167
3183
3199
3215 | | C10
C20
C30
C40
C50
C60
C70
C80
C90 | 3072
3088
3104
3120
3136
3152
3168
3184
3200
3216 | 3073
3089
3105
3121
3137
3153
3169
3185
3201
3217 | 2
3074
3090
3106
3122
3138
3154
3170
3186
3202
3218 | 3
3075
3091
3107
3123
3139
3155
3171
3187
3203
3219 | 4
3076
3092
3108
3124
3140
3156
3172
3188
3204
3220 | 5
3077
3093
3109
3125
3141
3157
3173
3189
3205
3221 | 6
3078
3094
3110
3126
3142
3158
3174
3190
3206
3222 | 7
3079
3095
3111
3127
3143
3159
3175
3191
3207
3223 | 8
3080
3096
3112
3128
3144
3160
3176
3192
3208
3224 | 3081
3097
3113
3129
3145
3161
3177
3193
3209
3225 | 3082
3098
3114
3130
3146
3162
3178
3194
3210
3226 | 3083
3099
3115
3131
3147
3163
3179
3195
3211
3227 | 3084
3100
3116
3132
3148
3164
3180
3196
3212
3228 | 3085
3101
3117
3133
3149
3165
3181
3197
3213
3229 | 3086
3102
3118
3134
3150
3166
3182
3198
3214
3230 | 3087
3103
3119
3135
3151
3167
3183
3199
3215
3231 | | C10
C20
C30
C40
C50
C60
C70 | 3072
3088
3104
3120
3136
3152
3168
3184
3200 | 3073
3089
3105
3121
3137
3153
3169
3185
3201 | 2
3074
3090
3106
3122
3138
3154
3170
3186
3202 | 3
3075
3091
3107
3123
3139
3155
3171
3187
3203 | 3076
3092
3108
3124
3140
3156
3172
3188
3204 | 5
3077
3093
3109
3125
3141
3157
3173
3189
3205 | 6
3078
3094
3110
3126
3142
3158
3174
3190
3206 | 7
3079
3095
3111
3127
3143
3159
3175
3191
3207 | 8
3080
3096
3112
3128
3144
3160
3176
3192
3208 | 3081
3097
3113
3129
3145
3161
3177
3193
3209 | 3082
3098
3114
3130
3146
3162
3178
3194
3210 | 3083
3099
3115
3131
3147
3163
3179
3195
3211 | 3084
3100
3116
3132
3148
3164
3180
3196
3212 | 3085
3101
3117
3133
3149
3165
3181
3197
3213 | 3086
3102
3118
3134
3150
3166
3182
3198
3214 | 3087
3103
3119
3135
3151
3167
3183
3199
3215
3231
3247
3263 | | C10
C20
C30
C40
C50
C60
C70
C80
C90
CA0
CB0 | 3072
3088
3104
3120
3136
3152
3168
3184
3200
3216
3232
3248
3264 | 3073
3089
3105
3121
3137
3153
3169
3185
3201
3217
3233
3249
3265 | 2
3074
3090
3106
3122
3138
3154
3170
3186
3202
3218
3234
3250
3266 | 3
3075
3091
3107
3123
3139
3155
3171
3187
3203
3219
3235
3251
3267 | 4
3076
3092
3108
3124
3140
3156
3172
3188
3204
3220
3236
3252
3268 | 5
3077
3093
3109
3125
3141
3157
3173
3189
3205
3221
3237
3253
3269 | 6
3078
3094
3110
3126
3142
3158
3174
3190
3206
3222
3238
3254
3270 | 7 3079 3095 3111 3127 3143 3159 3175 3191 3207 3223 3239 3255 3271 | 8
3080
3096
3112
3128
3144
3160
3176
3192
3208
3224
3240
3256
3272 | 3081
3097
3113
3129
3145
3161
3177
3193
3209
3225
3241
3257
3273 | 3082
3098
3114
3130
3146
3162
3178
3194
3210
3226
3242
3258
3274 | 3083
3099
3115
3131
3147
3163
3179
3195
3211
3227
3243
3259
3275 | 3084
3100
3116
3132
3148
3164
3180
3196
3212
3228
3244
3260
3276 | 3085
3101
3117
3133
3149
3165
3181
3197
3213
3229
3245
3261
3277 | 3086
3102
3118
3134
3150
3166
3182
3198
3214
3230
3246
3262
3278 | 3087
3103
3119
3135
3151
3167
3183
3199
3215
3231
3247
3263
3279 | | C10
C20
C30
C40
C50
C60
C70
C80
C90
CA0
CB0
CC0 | 3072
3088
3104
3120
3136
3152
3168
3184
3200
3216
3232
3248
3264
3280 | 3073
3089
3105
3121
3137
3153
3169
3185
3201
3217
3233
3249
3265
3281 | 2
3074
3090
3106
3122
3138
3154
3170
3186
3202
3218
3234
3250
3266
3282 | 3
3075
3091
3107
3123
3139
3155
3171
3187
3203
3219
3235
3251
3267
3283 | 4
3076
3092
3108
3124
3140
3156
3172
3188
3204
3220
3236
3252
3268
3284 | 5
3077
3093
3109
3125
3141
3157
3173
3189
3205
3221
3237
3253
3269
3285 | 6
3078
3094
3110
3126
3142
3158
3174
3190
3206
3222
3238
3254
3270
3286 | 7 3079 3095 3111 3127 3143 3159 3175 3191 3207 3223 3239 3255 3271 3287 | 8
3080
3096
3112
3128
3144
3160
3176
3192
3208
3224
3240
3256
3272
3288 | 3081
3097
3113
3129
3145
3161
3177
3193
3209
3225
3241
3257
3273
3289 |
3082
3098
3114
3130
3146
3162
3178
3194
3210
3226
3242
3258
3274
3290 | 3083
3099
3115
3131
3147
3163
3179
3195
3211
3227
3243
3259
3275
3291 | 3084
3100
3116
3132
3148
3164
3180
3196
3212
3228
3244
3260
3276
3292 | 3085
3101
3117
3133
3149
3165
3181
3197
3213
3229
3245
3261
3277
3293 | 3086
3102
3118
3134
3150
3166
3182
3198
3214
3230
3246
3262 | 3087
3103
3119
3135
3151
3167
3183
3199
3215
3231
3247
3263 | | C10
C20
C30
C40
C50
C60
C70
C80
C90
CA0
CB0 | 3072
3088
3104
3120
3136
3152
3168
3184
3200
3216
3232
3248
3264 | 3073
3089
3105
3121
3137
3153
3169
3185
3201
3217
3233
3249
3265 | 2
3074
3090
3106
3122
3138
3154
3170
3186
3202
3218
3234
3250
3266 | 3
3075
3091
3107
3123
3139
3155
3171
3187
3203
3219
3235
3251
3267 | 4
3076
3092
3108
3124
3140
3156
3172
3188
3204
3220
3236
3252
3268 | 5
3077
3093
3109
3125
3141
3157
3173
3189
3205
3221
3237
3253
3269 | 6
3078
3094
3110
3126
3142
3158
3174
3190
3206
3222
3238
3254
3270 | 7 3079 3095 3111 3127 3143 3159 3175 3191 3207 3223 3239 3255 3271 | 8
3080
3096
3112
3128
3144
3160
3176
3192
3208
3224
3240
3256
3272 | 3081
3097
3113
3129
3145
3161
3177
3193
3209
3225
3241
3257
3273 | 3082
3098
3114
3130
3146
3162
3178
3194
3210
3226
3242
3258
3274 | 3083
3099
3115
3131
3147
3163
3179
3195
3211
3227
3243
3259
3275 | 3084
3100
3116
3132
3148
3164
3180
3196
3212
3228
3244
3260
3276 | 3085
3101
3117
3133
3149
3165
3181
3197
3213
3229
3245
3261
3277 | 3086
3102
3118
3134
3150
3166
3182
3198
3214
3230
3246
3262
3278
3294 | 3087
3103
3119
3135
3151
3167
3183
3199
3215
3231
3247
3263
3279
3295 | | C10
C20
C30
C40
C50
C60
C70
C80
C90
CA0
CB0
CC0
CD0 | 3072
3088
3104
3120
3136
3152
3168
3184
3200
3216
3232
3248
3264
3280
3296 | 3073
3089
3105
3121
3137
3153
3169
3185
3201
3217
3233
3249
3265
3281
3297 | 2
3074
3090
3106
3122
3138
3154
3170
3186
3202
3218
3234
3250
3266
3282
3298 | 3
3075
3091
3107
3123
3139
3155
3171
3187
3203
3219
3235
3251
3267
3283
3299 | 4
3076
3092
3108
3124
3140
3156
3172
3188
3204
3220
3236
3252
3268
3284
3300 | 5
3077
3093
3109
3125
3141
3157
3173
3189
3205
3221
3237
3253
3269
3285
3301
3317
3333 | 6
3078
3094
3110
3126
3142
3158
3174
3190
3206
3222
3238
3254
3270
3286
3302
3318
3334 | 7 3079 3095 3111 3127 3143 3159 3175 3191 3207 3223 3239 3255 3271 3287 3303 3319 3335 | 8
3080
3096
3112
3128
3144
3160
3176
3192
3208
3224
3240
3256
3272
3288
3304
3320
3336 | 3081
3097
3113
3129
3145
3161
3177
3193
3209
3225
3241
3257
3273
3289
3305
3321
3337 | 3082
3098
3114
3130
3146
3162
3178
3194
3210
3226
3242
3258
3274
3290
3306
3322
3338 | 3083
3099
3115
3131
3147
3163
3179
3195
3211
3227
3243
3259
3275
3291
3307
3323
3339 | 3084
3100
3116
3132
3148
3164
3180
3196
3212
3228
3244
3260
3276
3292
3308
3324
3340 | 3085
3101
3117
3133
3149
3165
3181
3197
3213
3229
3245
3261
3277
3293
3309
3325
3341 | 3086
3102
3118
3134
3150
3166
3182
3198
3214
3230
3246
3262
3278
3294
3310
3326 | 3087
3103
3119
3135
3151
3167
3183
3199
3215
3231
3247
3263
3279
3295
3311
3327
3343 | | C10
C20
C30
C40
C50
C60
C70
C80
C90
CA0
CB0
CC0
CD0
CE0
CF0 | 3072
3088
3104
3120
3136
3152
3168
3184
3200
3216
3232
3248
3264
3280
3296
3312 | 3073
3089
3105
3121
3137
3153
3169
3185
3201
3217
3233
3249
3265
3281
3297
3313
3329
3345 | 2
3074
3090
3106
3122
3138
3154
3170
3186
3202
3218
3234
3250
3266
3282
3298
3314
3330
3346 | 3
3075
3091
3107
3123
3139
3155
3171
3187
3203
3219
3235
3251
3267
3283
3299
3315
3331
3347 | 4
3076
3092
3108
3124
3140
3156
3172
3188
3204
3220
3236
3252
3268
3284
3300
3316
3332
3348 | 5
3077
3093
3109
3125
3141
3157
3173
3189
3205
3221
3237
3253
3269
3285
3301
3317
3333
3349 | 6
3078
3094
3110
3126
3142
3158
3174
3190
3206
3222
3238
3254
3270
3286
3302
3318
3334
3350 | 7 3079 3095 3111 3127 3143 3159 3175 3191 3207 3223 3239 3255 3271 3287 3303 3319 3335 3351 | 8
3080
3096
3112
3128
3144
3160
3176
3192
3208
3224
3240
3256
3272
3288
3304
3320
3336
3352 | 3081
3097
3113
3129
3145
3161
3177
3193
3209
3225
3241
3257
3273
3289
3305
3321
3337
3353 | 3082
3098
3114
3130
3146
3162
3178
3194
3210
3226
3242
3258
3274
3290
3306
3322
3338
3354 | 3083
3099
3115
3131
3147
3163
3179
3195
3211
3227
3243
3259
3275
3291
3307
3323
3339
3355 | 3084
3100
3116
3132
3148
3164
3180
3196
3212
3228
3244
3260
3276
3292
3308
3324
3340
3356 | 3085
3101
3117
3133
3149
3165
3181
3197
3213
3229
3245
3261
3277
3293
3309
3325
3341
3357 | 3086
3102
3118
3134
3150
3166
3182
3198
3214
3230
3246
3262
3278
3294
3310
3326
3342
3358 | 3087
3103
3119
3135
3151
3167
3183
3199
3215
3231
3247
3263
3279
3295
3311
3327
3343
3359 | | C10
C20
C30
C40
C50
C60
C70
C80
C90
CA0
CB0
CD0
CE0
CF0 | 3072
3088
3104
3120
3136
3152
3168
3184
3200
3216
3232
3248
3264
3280
3296
3312 | 3073
3089
3105
3121
3137
3153
3169
3185
3201
3217
3233
3249
3265
3281
3297
3313 | 2
3074
3090
3106
3122
3138
3154
3170
3186
3202
3218
3234
3250
3266
3282
3298
3314
3330 | 3
3075
3091
3107
3123
3139
3155
3171
3187
3203
3219
3235
3251
3267
3283
3299
3315
3331 | 4
3076
3092
3108
3124
3140
3156
3172
3188
3204
3220
3236
3252
3268
3284
3300
3316 | 5
3077
3093
3109
3125
3141
3157
3173
3189
3205
3221
3237
3253
3269
3285
3301
3317
3333 | 6
3078
3094
3110
3126
3142
3158
3174
3190
3206
3222
3238
3254
3270
3286
3302
3318
3334 | 7 3079 3095 3111 3127 3143 3159 3175 3191 3207 3223 3239 3255 3271 3287 3303 3319 3335 | 8
3080
3096
3112
3128
3144
3160
3176
3192
3208
3224
3240
3256
3272
3288
3304
3320
3336 | 3081
3097
3113
3129
3145
3161
3177
3193
3209
3225
3241
3257
3273
3289
3305
3321
3337 | 3082
3098
3114
3130
3146
3162
3178
3194
3210
3226
3242
3258
3274
3290
3306
3322
3338 | 3083
3099
3115
3131
3147
3163
3179
3195
3211
3227
3243
3259
3275
3291
3307
3323
3339 | 3084
3100
3116
3132
3148
3164
3180
3196
3212
3228
3244
3260
3276
3292
3308
3324
3340 | 3085
3101
3117
3133
3149
3165
3181
3197
3213
3229
3245
3261
3277
3293
3309
3325
3341 | 3086
3102
3118
3134
3150
3166
3182
3198
3214
3230
3246
3262
3278
3294
3310
3326 | 3087
3103
3119
3135
3151
3167
3183
3199
3215
3231
3247
3263
3279
3295
3311
3327
3359
3375
3391 | | C10
C20
C30
C40
C50
C60
C70
C80
C90
CA0
CB0
CC0
CD0
CE0
CF0
D10
D20
D30 | 3072
3088
3104
3120
3136
3152
3168
3184
3200
3216
3232
3248
3264
3296
3312
3328
3344
3360
3376
3392 | 3073
3089
3105
3121
3137
3153
3169
3185
3201
3217
3233
3249
3265
3281
3297
3313
3329
3345
3361
3377
3393 | 2
3074
3090
3106
3122
3138
3154
3170
3186
3202
3218
3234
3250
3266
3282
3298
3314
3330
3346
3362
3378
3394 | 3
3075
3091
3107
3123
3139
3155
3171
3187
3203
3219
3235
3251
3267
3283
3299
3315
3347
3363
3379
3395 |
4
3076
3092
3108
3124
3140
3156
3172
3188
3204
3220
3236
3252
3268
3284
3300
3316
3332
3348
3364
3380
3396 | 5
3077
3093
3109
3125
3141
3157
3173
3205
3221
3237
3253
3269
3285
3301
3317
3333
3349
3365
3381
3397 | 6
3078
3094
3110
3126
3142
3158
3174
3190
3206
3222
3238
3254
3270
3286
3302
3318
3334
3350
3366
3382
3398 | 7 3079 3095 3111 3127 3143 3159 3175 3191 3207 3223 3239 3255 3271 3287 3303 3319 3335 3351 3367 3383 3399 | 8
3080
3096
3112
3128
3144
3160
3176
3192
3208
3224
3240
3256
3272
3288
3304
3320
3352
3368
3384
3400 | 3081
3097
3113
3129
3145
3161
3177
3193
3209
3225
3241
3257
3273
3289
3305
3321
3337
3353
3369
3385
3401 | 3082
3098
3114
3130
3146
3162
3178
3194
3210
3226
3242
3258
3274
3290
3306
3322
3338
3354
3370
3386
3402 | 3083
3099
3115
3131
3147
3163
3179
3195
3211
3227
3243
3259
3275
3291
3307
3323
3339
3355
3371
3387
3403 | 3084
3100
3116
3132
3148
3164
3180
3196
3212
3228
3244
3260
3276
3292
3308
3324
3356
3372
3388
3404 | 3085
3101
3117
3133
3149
3165
3181
3197
3213
3229
3245
3261
3277
3293
3309
3325
3341
3357
3373
3389
3405 | 3086
3102
3118
3134
3150
3166
3182
3198
3214
3230
3246
3262
3278
3294
3310
3326
3326
3374
3390
3406 | 3087
3103
3119
3135
3151
3167
3183
3199
3215
3231
3247
3263
3279
3295
3311
3327
3359
3375
3391
3407 | | C10
C20
C30
C40
C50
C60
C70
C80
C90
CA0
CB0
CC0
CD0
CE0
CF0
D10
D20
D30
D40
D50 | 3072
3088
3104
3120
3136
3152
3168
3184
3200
3216
3232
3248
3264
3280
3296
3312
3344
3360
3376
3392
3408 | 3073
3089
3105
3121
3137
3153
3169
3185
3201
3217
3233
3249
3265
3281
3297
3313
3329
3345
3361
3377
3393
3409 | 2
3074
3090
3106
3122
3138
3154
3170
3186
3202
3218
3234
3250
3266
3282
3298
3314
3330
3346
3362
3378
3394
3410 | 3
3075
3091
3107
3123
3139
3155
3171
3187
3203
3219
3235
3251
3267
3283
3299
3315
3347
3363
3379
3395
3411 | 4
3076
3092
3108
3124
3140
3156
3172
3188
3204
3236
3252
3268
3284
3300
3316
3332
3348
3364
3380
3396
3412 | 5
3077
3093
3109
3125
3141
3157
3173
3189
3205
3221
3237
3253
3269
3285
3301
3317
3333
3349
3365
3381
3397
3413 | 6
3078
3094
3110
3126
3142
3158
3174
3190
3206
3222
3238
3254
3270
3286
3302
3318
334
3350
3366
3382
3398
3414 | 7 3079 3095 3111 3127 3143 3159 3175 3191 3207 3223 3239 3255 3271 3287 3303 3319 3335 3367 3383 3399 3415 | 8
3080
3096
3112
3128
3144
3160
3176
3192
3208
3224
3240
3256
3272
3288
3304
3320
3352
3368
3384
3400
3416 | 3081
3097
3113
3129
3145
3161
3177
3193
3209
3225
3241
3257
3273
3289
3305
3321
3353
3369
3385
3401
3417 | 3082
3098
3114
3130
3146
3162
3178
3194
3210
3226
3242
3258
3274
3290
3306
3322
3338
3354
3370
3386
3402
3418 | 3083
3099
3115
3131
3147
3163
3179
3195
3211
3227
3243
3259
3275
3291
3307
3323
3339
3355
3371
3387
3403
3419 | 3084
3100
3116
3132
3148
3164
3180
3196
3212
3228
3244
3260
3276
3292
3308
3324
3356
3372
3388
3404
3404 | 3085
3101
3117
3133
3149
3165
3181
3197
3213
3229
3245
3261
3277
3293
3309
3325
3341
3357
3373
3389
3405
3421 | 3086
3102
3118
3134
3150
3166
3182
3198
3214
3230
3246
3262
3278
3294
3310
3326
3358
3374
3390
3406
3422 | 3087
3103
3119
3135
3151
3167
3183
3199
3215
3231
3247
3263
3279
3295
3311
3327
3359
3375
3391 | | C10
C20
C30
C40
C50
C60
C70
C80
C90
CA0
CB0
CC0
CD0
CE0
CF0
D10
D20
D30 | 3072
3088
3104
3120
3136
3152
3168
3184
3200
3216
3232
3248
3264
3296
3312
3328
3344
3360
3376
3392 | 3073
3089
3105
3121
3137
3153
3169
3185
3201
3217
3233
3249
3265
3281
3297
3313
3329
3345
3361
3377
3393 | 2
3074
3090
3106
3122
3138
3154
3170
3186
3202
3218
3234
3250
3266
3282
3298
3314
3330
3346
3362
3378
3394 | 3
3075
3091
3107
3123
3139
3155
3171
3187
3203
3219
3235
3251
3267
3283
3299
3315
3347
3363
3379
3395 | 4
3076
3092
3108
3124
3140
3156
3172
3188
3204
3220
3236
3252
3268
3284
3300
3316
3332
3348
3364
3380
3396 | 5
3077
3093
3109
3125
3141
3157
3173
3205
3221
3237
3253
3269
3285
3301
3317
3333
3349
3365
3381
3397 | 6
3078
3094
3110
3126
3142
3158
3174
3190
3206
3222
3238
3254
3270
3286
3302
3318
3334
3350
3366
3382
3398 | 7 3079 3095 3111 3127 3143 3159 3175 3191 3207 3223 3239 3255 3271 3287 3303 3319 3335 3351 3367 3383 3399 | 8
3080
3096
3112
3128
3144
3160
3176
3192
3208
3224
3240
3256
3272
3288
3304
3320
3352
3368
3384
3400 | 3081
3097
3113
3129
3145
3161
3177
3193
3209
3225
3241
3257
3273
3289
3305
3321
3337
3353
3369
3385
3401 | 3082
3098
3114
3130
3146
3162
3178
3194
3210
3226
3242
3258
3274
3290
3306
3322
3338
3354
3370
3386
3402 | 3083
3099
3115
3131
3147
3163
3179
3195
3211
3227
3243
3259
3275
3291
3307
3323
3339
3355
3371
3387
3403 | 3084
3100
3116
3132
3148
3164
3180
3196
3212
3228
3244
3260
3276
3292
3308
3324
3340
3356
3372
3388
3404 | 3085
3101
3117
3133
3149
3165
3181
3197
3213
3229
3245
3261
3277
3293
3309
3325
3341
3357
3373
3389
3405
3421
3437
3453 | 3086
3102
3118
3134
3150
3166
3182
3198
3214
3230
3246
3262
3278
3294
3310
3326
3358
3374
3390
3406
3422
3438
3454 | 3087
3103
3119
3135
3151
3167
3183
3199
3215
3231
3247
3263
3279
3295
3311
3327
3359
3375
3391
3407
3423
3439
3455 | | C10 C20 C30 C40 C50 C60 C70 C80 C90 CA0 CB0 CC0 CD0 CF0 D10 D20 D30 D40 D50 D60 D70 D80 | 3072
3088
3104
3120
3136
3152
3168
3184
3200
3216
3232
3248
3264
3290
3296
3312
3328
3314
3360
3376
3376
3392
3408
3424
3440
3456 | 3073
3089
3105
3121
3137
3153
3169
3185
3201
3217
3233
3249
3265
3281
3297
3313
3329
3345
3361
3377
3393
3409
3425
3441
3457 | 2
3074
3090
3106
3122
3138
3154
3170
3186
3202
3218
3234
3250
3266
3282
3298
3314
3330
3346
3362
3378
3394
3410
3426
3442
3458 | 3
3075
3091
3107
3123
3139
3155
3171
3187
3203
3219
3235
3251
3267
3283
3299
3315
331
3347
3363
3379
3395
3411
3427
3443
3459 | 4
3076
3092
3108
3124
3140
3156
3172
3188
3204
3220
3236
3252
3268
3284
3300
3316
3328
3348
3364
3380
3396
3412
3428
3444
3460 | 5
3077
3093
3109
3125
3141
3157
3173
3189
3205
3221
3237
3253
3269
3285
3301
3317
3333
3349
3365
3381
3397
3413
3429
3445
3461 | 6
3078
3094
3110
3126
3158
3174
3190
3206
3222
3238
3254
3270
3286
3302
3318
3334
3350
3363
3382
3398
3414
3430
3446
3462 | 7 3079 3095 3111 3127 3143 3159 3175 3191 3207 3223 3239 3255 3271 3287 3383 3319 3335 3351 3367 3383 3399 3415 3447 3463 | 8
3080
3096
3112
3128
3144
3160
3176
3192
3208
3224
3240
3256
3272
3288
3304
3302
3368
3352
3368
3400
3416
3432
3448
3464 | 3081
3097
3113
3129
3145
3161
3177
3193
3209
3225
3241
3257
3273
3289
3305
3321
3337
3359
3369
3385
3401
3417
3433
3449 | 3082
3098
3114
3130
3146
3162
3178
3194
3210
3226
3242
3258
3274
3290
3306
3322
3338
3354
3370
3386
3402
3418
3434
3450
3466 | 3083
3099
3115
3131
3147
3163
3179
3195
3211
3227
3243
3259
3275
3291
3307
3323
3339
3355
3371
3387
3419
3435
3451
3467 |
3084
3100
3116
3132
3148
3164
3180
3196
3212
3228
3244
3260
3276
3292
3308
3324
3340
3356
3372
3388
3404
3452
3468 | 3085
3101
3117
3133
3149
3165
3181
3197
3213
3229
3245
3261
3277
3293
33025
3341
3357
3373
3389
3405
3421
3437
3453
3469 | 3086
3102
3118
3134
3150
3166
3182
3198
3214
3230
3246
3262
3278
3294
3310
3326
3342
3358
3374
3390
3406
3422
3438
3454
3470 | 3087
3103
3119
3135
3151
3167
3183
3199
3215
3231
3247
3263
3279
3295
3311
3327
3343
3359
3375
3391
3407
3423
3439
3455
3471 | | C10 C20 C30 C40 C50 C60 C70 C80 C90 CA0 CB0 CC0 CD0 CF0 D10 D20 D30 D40 D50 D60 D70 D80 D90 | 3072
3088
3104
3120
3136
3152
3168
3184
3200
3216
3232
3248
3264
3296
3312
328
3314
3360
3376
3376
3392
3408
3424
3440
3456
3472 | 3073
3089
3105
3121
3137
3153
3169
3185
3201
3217
3233
3249
3265
3281
3297
3313
3329
3345
3361
3377
3393
3409
3425
3441
3457
3473 | 2
3074
3090
3106
3122
3138
3154
3170
3186
3202
3218
3234
3250
3266
3282
3298
3314
3330
3346
3362
3378
3394
3412
3426
3426
3426
3426
3426
3426
3426
3426
3426
3427
3428
3437
3442
3458
3474 | 3
3075
3091
3107
3123
3139
3155
3171
3187
3203
3219
3235
3251
3267
3283
3299
3315
3347
3363
3379
3395
3411
3427
3443
3459
3475 | 4
3076
3092
3108
3124
3140
3156
3172
3188
3204
3220
3236
3252
3268
3284
3300
3316
3316
3348
3364
3396
3412
3428
3444
3460
3476 | 5
3077
3093
3109
3125
3141
3157
3173
3189
3205
3221
3237
3253
3269
3285
3301
3317
3333
3349
3365
3381
3397
3413
3429
3445
3461
3477 | 6
3078
3094
3110
3126
3142
3158
3174
3190
3206
3222
3238
3254
3270
3286
3302
3318
3334
3350
3368
3382
3398
3414
3430
3446
3462
3478 | 7 3079 3095 3111 3127 3143 3159 3175 3191 3207 3223 3239 3255 3271 3287 3303 3319 3335 3351 3367 3383 3399 3415 3447 3463 3479 | 8
3080
3096
3112
3128
3144
3160
3176
3192
3208
3224
3240
3256
3272
3288
3304
3320
3356
3352
3368
3448
3400
3416
3432
3448
3464
3480 | 3081
3097
3113
3129
3145
3161
3177
3193
3209
3225
3241
3257
3273
3289
3305
3321
3337
3353
3369
3385
3401
3417
3433
3449
3465
3481 | 3082
3098
3114
3130
3146
3162
3178
3194
3210
3226
3242
3258
3274
3290
3306
3322
3338
3354
3370
3386
3402
3418
3434
3450
3466
3482 | 3083
3099
3115
3131
3147
3163
3179
3195
3211
3227
3243
3259
3275
3291
3307
3323
3339
3355
3371
3387
3403
3419
3435
3451 | 3084
3100
3116
3132
3148
3164
3180
3196
3212
3228
3244
3260
3276
3292
3308
3324
3356
3372
3388
3404
3452
3408
3452 | 3085
3101
3117
3133
3149
3165
3181
3197
3213
3229
3245
3261
3277
3293
3309
3325
3341
3357
3379
3405
3421
3437
3453
3469
3485 | 3086
3102
3118
3134
3150
3166
3182
3198
3214
3230
3246
3262
3278
3294
3310
3326
3358
3374
3390
3406
3422
3438
3454 | 3087
3103
3119
3135
3151
3167
3183
3199
3215
3231
3247
3263
3279
3295
3311
3327
3359
3375
3391
3407
3423
3439
3455 | | C10 C20 C30 C40 C50 C60 C70 C80 C90 CA0 CB0 CC0 CD0 CF0 D10 D20 D30 D40 D50 D60 D70 D80 | 3072
3088
3104
3120
3136
3152
3168
3184
3200
3216
3232
3248
3264
3290
3296
3312
3328
3314
3360
3376
3376
3392
3408
3424
3440
3456 | 3073
3089
3105
3121
3137
3153
3169
3185
3201
3217
3233
3249
3265
3281
3297
3313
3329
3345
3361
3377
3393
3409
3425
3441
3457 | 2
3074
3090
3106
3122
3138
3154
3170
3186
3202
3218
3234
3250
3266
3282
3298
3314
3330
3346
3362
3378
3394
3410
3426
3442
3458 | 3
3075
3091
3107
3123
3139
3155
3171
3187
3203
3219
3235
3251
3267
3283
3299
3315
331
3347
3363
3379
3395
3411
3427
3443
3459 | 4
3076
3092
3108
3124
3140
3156
3172
3188
3204
3220
3236
3252
3268
3284
3300
3316
3328
3348
3364
3380
3396
3412
3428
3444
3460 | 5
3077
3093
3109
3125
3141
3157
3173
3189
3205
3221
3237
3253
3269
3285
3301
3317
3333
3349
3365
3381
3397
3413
3429
3445
3461 | 6
3078
3094
3110
3126
3158
3174
3190
3206
3222
3238
3254
3270
3286
3302
3318
3334
3350
3363
3382
3398
3414
3430
3446
3462 | 7 3079 3095 3111 3127 3143 3159 3175 3191 3207 3223 3239 3255 3271 3287 3383 3319 3335 3351 3367 3383 3399 3415 3447 3463 | 8
3080
3096
3112
3128
3144
3160
3176
3192
3208
3224
3240
3256
3272
3288
3304
3302
3368
3352
3368
3400
3416
3432
3448
3464 | 3081
3097
3113
3129
3145
3161
3177
3193
3209
3225
3241
3257
3273
3289
3305
3321
3337
3359
3369
3385
3401
3417
3433
3449 | 3082
3098
3114
3130
3146
3162
3178
3194
3210
3226
3242
3258
3274
3290
3306
3322
3338
3354
3370
3386
3402
3418
3434
3450
3466 | 3083
3099
3115
3131
3147
3163
3179
3195
3211
3227
3243
3259
3275
3291
3307
3323
3339
3355
3371
3387
3403
3419
3435
3451
3467
3483 | 3084
3100
3116
3132
3148
3164
3180
3196
3212
3228
3244
3260
3276
3292
3308
3324
3340
3356
3372
3388
3404
3452
3468 | 3085
3101
3117
3133
3149
3165
3181
3197
3213
3229
3245
3261
3277
3293
3309
3325
3341
3357
3373
3389
3405
3421
3437
3453
3469
3485
3501
3517 | 3086
3102
3118
3134
3150
3166
3182
3198
3214
3230
3246
3262
3278
3294
3310
3326
3358
3374
3390
3406
3422
3438
3454
3470
3486
3502
3518 | 3087
3103
3119
3135
3151
3167
3183
3199
3215
3231
3247
3263
3279
3295
3311
3327
3343
3359
3375
3391
3407
3423
3439
3455
3471
3487
3503
3519 | | C10 C20 C30 C40 C50 C60 C70 C80 C90 CA0 CB0 CC0 CD0 CF0 D10 D20 D30 D40 D50 D60 D70 D80 D90 DA0 DB0 DC0 | 3072
3088
3104
3120
3136
3152
3168
3184
3200
3216
3232
3248
3264
3280
3296
3312
3328
3344
3360
3376
3392
3498
3424
340
3456
3472
3488
3504
3520 | 3073
3089
3105
3121
3137
3153
3169
3185
3201
3217
3233
3249
3265
3281
3297
3313
3329
3345
3361
3377
3393
3409
3425
3441
3457
3473
3489
3505
3521 |
2
3074
3090
3106
3122
3138
3154
3170
3186
3202
3218
3234
3250
3266
3282
3298
3314
3300
3346
3362
3378
3394
3410
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
342 | 3
3075
3091
3107
3123
3139
3155
3171
3187
3203
3219
3235
3251
3267
3283
3299
3315
3347
3363
3379
3395
3411
3427
3443
3475
3491
3507
3523 | 4
3076
3092
3108
3124
3156
3172
3188
3204
3220
3236
3252
3268
3284
3300
3316
3332
3348
3364
3380
3396
3412
3428
3444
3460
3476
3492
3508
3524 | 5
3077
3093
3109
3125
3141
3157
3173
3189
3205
3221
3237
3253
3269
3285
3301
3317
3333
3349
3365
3381
3397
3413
3429
3445
3461
3477
3493
3509
3525 | 6
3078
3094
3110
3126
3142
3158
3174
3190
3206
3222
3238
3254
3270
3286
3302
3318
3334
3350
3366
3382
3398
3414
3430
3462
3478
3494
3510
3526 | 7 3079 3095 3111 3127 3143 3159 3175 3191 3207 3223 3239 3255 3271 3287 3303 3319 3335 3351 3367 3383 3399 3415 3447 3463 3479 3495 3511 3527 | 8
3080
3096
3112
3128
3144
3160
3176
3192
3208
3224
3240
3256
3272
3288
3304
3320
3336
3352
3368
3384
3400
3416
3432
3448
3464
3480
3496
3512
3528 | 3081
3097
3113
3129
3145
3161
3177
3193
3209
3225
3241
3257
3273
3289
3305
3321
3337
3353
3369
3385
3401
3417
3433
3449
3465
3481
3497
3513 | 3082
3098
3114
3130
3146
3162
3178
3194
3210
3226
3242
3258
3274
3290
3306
3322
338
3354
3370
3386
3402
3418
3434
3450
3466
3482
3498
3514 | 3083
3099
3115
3131
3147
3163
3179
3195
3211
3227
3243
3259
3275
3291
3307
3323
3339
3355
3371
3387
3403
3419
3435
3451
3467
3483
3499
3515
3531 | 3084
3100
3116
3132
3148
3164
3180
3196
3212
3228
3244
3260
3276
3292
3308
3324
3340
3356
3372
3388
3404
3452
3468
3452
3468
3484
3500
3516 | 3085
3101
3117
3133
3149
3165
3181
3197
3213
3229
3245
3261
3277
3293
3309
3325
3341
3357
3373
3389
3405
3421
3437
3453
3469
3485
3501
3517
3533 | 3086
3102
3118
3134
3150
3166
3182
3198
3214
3230
3246
3262
3278
3294
3310
3326
3342
3358
3374
3390
3406
3423
3438
3454
3470
3486
3502
3518 | 3087
3103
3119
3135
3151
3167
3183
3199
3215
3231
3247
3263
3279
3295
3311
3327
3343
3359
3375
3391
3407
3423
3439
3455
3471
3487
3503
3519
3535 | | C10 C20 C30 C40 C50 C60 C70 C80 C90 CA0 CB0 CC0 CD0 CF0 D10 D20 D30 D40 D50 D60 D70 D80 D90 DA0 DB0 | 3072
3088
3104
3120
3136
3152
3168
3184
3200
3216
3232
3248
3264
3280
3296
3312
3328
3344
3360
3376
3392
3408
3424
340
3456
3472
3488
3504 | 3073
3089
3105
3121
3137
3153
3169
3185
3201
3217
3233
3249
3265
3281
3297
3313
3329
3345
3361
3377
3393
3409
3425
3441
3457
3473
3489
3505 | 2
3074
3090
3106
3122
3138
3154
3170
3186
3202
3218
3234
3250
3266
3282
3298
3314
3300
3346
3362
3378
3394
3410
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
3426
342 | 3
3075
3091
3107
3123
3139
3155
3171
3187
3203
3219
3235
3251
3267
3283
3299
3315
3347
3367
3491
3493
3475
3491
3507 | 4
3076
3092
3108
3124
3156
3172
3188
3204
3220
3236
3252
3268
3284
3300
3316
3332
3348
3348
3344
3460
3476
3492
3508 | 5
3077
3093
3109
3125
3141
3157
3173
3189
3205
3221
3237
3253
3269
3285
3301
3317
3333
3349
3365
3381
3397
3413
3429
3445
3493
3509 | 6
3078
3094
3110
3126
3142
3158
3174
3190
3206
3222
3238
3254
3270
3286
3302
3318
3334
3350
3366
3382
3398
3414
3430
3446
3462
3478
3494
3510 | 7 3079 3095 3111 3127 3143 3159 3175 3191 3207 3223 3239 3255 3271 3287 3303 3319 3335 3351 3367 3383 3399 3415 3447 3463 3479 3495 3511 |
8
3080
3096
3112
3128
3144
3160
3176
3192
3208
3224
3240
3256
3272
3288
3304
3320
3352
3368
3352
3468
3496
3496
3512 | 3081
3097
3113
3129
3145
3161
3177
3193
3209
3225
3241
3257
3273
3289
3305
3321
3337
3353
3369
3385
3401
3417
3433
3449
3465
3481
3497
3513 | 3082
3098
3114
3130
3146
3162
3178
3194
3210
3226
3242
3258
3274
3290
3306
3322
3338
3354
3370
3386
3402
3418
3434
3450
3466
3482
3498
3514 | 3083
3099
3115
3131
3147
3163
3179
3195
3211
3227
3243
3259
3275
3291
3307
3323
3339
3355
3371
3387
3403
3419
3435
3451
3467
3483
3499
3515 | 3084
3100
3116
3132
3148
3164
3180
3196
3212
3228
3244
3260
3276
3292
3308
3324
3356
3372
3388
3404
3452
3468
3452
3468
3484
3500
3516 | 3085
3101
3117
3133
3149
3165
3181
3197
3213
3229
3245
3261
3277
3293
3309
3325
3341
3357
3373
3389
3405
3421
3437
3453
3469
3485
3501
3517 | 3086
3102
3118
3134
3150
3166
3182
3198
3214
3230
3246
3262
3278
3294
3310
3326
3358
3374
3390
3406
3422
3438
3454
3470
3486
3502
3518 | 3087
3103
3119
3135
3151
3167
3183
3199
3215
3231
3247
3263
3279
3295
3311
3327
3343
3359
3375
3391
3407
3423
3439
3455
3471
3487
3503
3519 | | | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | A | В | С | D | E | F, | |------------|--------------|--------------|--------------|----------------------|--------------|--------------|--------------|--------------|----------------------|--------------|----------------------|----------------------|--------------|--------------|----------------------|--------------| | E00 | 3584 | 3585 | 3586 | 3587 | 3583 | 3589 | 3590 | 3591 | 359 2 | 3593 | 3594 | 3595 | 3596 | 3597 | 3598 | 359 9 | | E10 | 3600 | 3601 | 3602 | 3603 | 3604 | 3605 | 3606 | 3607 | 3608 | 3609 | 3610 | 3611 | 3612 | 3613 | 3614 | 3615 | | E20 | 3616
3632 | 3617
3633 | 3618
3634 | 3619
363 5 | 3620
3636 | 3621
3637 | 3622
3638 | 3623
3639 | 3624
3640 | 3625
3641 | 362 6
3642 | 362 7
3643 | 3628
3644 | 3629
3645 | 3630
3 646 | 3631
3647 | | E30 | 1 | | | | | | | | | | | | | | | ì | | E40 | 3648
3664 | 3649
3665 | 3650
3666 | 3651
3667 | 3652
3668 | 3653
3669 | 3654
3670 | 3655
3671 | 365 6
3672 | 3657
3673 | 3658
3674 | 3659
3675 | 3660
3676 | 3661
3677 | 3662
3678 | 3663
3679 | | E50
E60 | 3680 | 3681 | 3682 | 3683 | 3684 | 3685 | 3686 | 3687 | 3688 | 3689 | 3690 | 3691 | 3692 | 3693 | 3694 | 3695 | | E70 | 3696 | 3697 | 3698 | 3699 | 3700 | 3701 | 3702 | 3703 | 3704 | 3705 | 3706 | 3707 | 3708 | 3709 | 3710 | 3711 | | E80 | 3712 | 3713 | 3714 | 3715 | 3716 | 3717 | 3718 | 3719 | 3720 | 3721 | 3722 | 3723 | 3724 | 3725 | 3726 | 3727 | | E90 | 3728 | 3729 | 3730 | 3731 | 3732 | 3733 | 3734 | 3735 | 3736 | 3737 | 37 38 | 3739 | 3740 | 3741 | 3742 | 3743 | | EA0 | 3744 | 3745 | 3746 | 3747 | 3748 | 3749 | 3750 | 3751 | 3752 | 3753 | 3754 | 3755 | 3756 | 3757 | 3758 | 3759 | | EB0 | 3760 | 3761 | 3762 | 3763 | 3764 | 3765 | 3766 | 3767 | 3768 | 3769 | 3770 | 3771 | 3772 | 3773 | 3774 | 3775 | | EC0 | 3776 | 3777 | 3778 | 3779 | 3780 | 3781 | 3782 | 3783 | 3784 | 3785 | 3786 | 3787 | 3788 | 3789 | 3790 | 3791 | | ED0 | 3792 | 3793 | 3794 | 3795 | 3796 | 3797 | 3798 | 3799 | 3800 | 3801 | 3802 | 3803 | 3804 | 3805 | 3806 | 3807 | | EE0
EF0 | 3808
3824 | 3809
3825 | 3810
3826 | 3811
3827 | 3812
3828 | 3813
3829 | 3814
3830 | 3815
3831 | 3816
3832 | 3817
3833 | 3818
3834 | 3819
3835 | 3820
3836 | 3821
3837 | 3822
3838 | 3823
3839 | | Erv | | | | | | | | | | | | | | | | | | F00 | 3840 | 3841 | 3842 | 3843 | 3844 | 3845 | 3846 | 3847 | 3848 | 3849 | 3850 | 3851 | 3852 | 3853 | 3854 | 3855 | | F10 | 3856 | 3857 | 3858 | 3859 | 3860 | 3861 | 3862 | 3863 | 3864 | 3865 | 3866 | 3867 | 3868 | 3869 | 3870 | 3871 | | F20
F30 | 3872
3888 | 3873
3889 | 3874
3890 | 38 75
3891 | 3876
3892 | 3877
3893 | 3878
3894 | 3879
3895 | 3880
3896 | 3881
3897 | 3882
3898 | 3883
3899 | 3884
3900 | 3885
3901 | 3886
3902 | 3887 | | 1 | | | | | | | | | | | | | | | | 3903 | | F40
F50 | 3904
3920 | 3905
3921 | 3906
3922 | 3907
3923 | 3908
3924 | 3909
3925 | 3910
3926 | 3911
3927 | 3912
3928 | 3913
3929 | 3914
3930 | 3915
3931 | 3916
3932 | 3917
3933 | 3918
3934 | 3919 | | F60 | 3936 | 3937 | 3938 | 3939 | 3940 | 3941 | 3942 | 3943 | 3944 | 3945 | 3946 | 3947 | 3948 | 3949 | 3950 | 3935
3951 | | F70 | 3952 | 3953 | 3954 | 3955 | 3956 | 3957 | 3958 | 3959 | 3960 | 3961 | 3962 | 3963 | 3964 | 3965 | 3966 | 3967 | | F80 | 3968 | 3969 | 3970 | 3971 | 3972 | 3973 | 3974 | 3975 | 3976 | 3977 | 3978 | 3979 | 3980 | 3981 | 3982 | 3983 | | F90 | 3984 | 3985 | 3986 | 3987 | 3988 | 3989 | 3990 | 3991 | 3992 | 3993 | 3994 | 3995 | 3996 | 3997 | 3998 | 3999 | | FA0 | 4000 | 4001 | 4002 | 4003 | 4004 | 4005 | 4006 | 4007 | 4008 | 4009 | 4010 | 4011 | 4012 | 4013 | 4014 | 4015 | | FB0 | 4016 | 4017 | 4018 | 4019 | 4020 | 4021 | 4022 | 4023 | 4024 | 4025 | 4026 | 4027 | 4028 | 4029 | 4030 | 4031 | | FC0 | 4032 | 4033 | 4034 | 4035 | 4036 | 4037 | 4038 | 4039 | 4040 | 4041 | 4042 | 4043 | 4044 | 4045 | 4046 | 4047 | | FD0 | 4048 | 4049 | 4050 | 4051 | 4052 | 4053 | 4054 | 4055 | 4056 | 4057 | 4058 | 4059 | 4060 | 4061 | 4062 | 4063 | | FE0 | 4064 | 4065 | 4066 | 4067 | 4068 | 4069 | 4070 | 4071 | 4072 | 4073 | 4074 | 4075 | 4076 | 4077 | 4078 | 4079 | | FF0 | 4080 | 4081 | 4082 | 4083 | 4084 | 4085 | 4086 | 4087 | 4088 | 4089 | 4090 | 4091 | 4092 | 4093 | 4094 | 4095 | # APPENDIX E II META 4 SYSTEM OBJECT CARD FORMAT # APPENDIX F MICROASSEMBLER OPERATION # APPENDIX F # MICROASSEMBLER OPERATION •The Microassembler is stored on the META 4 System disc under the name of M4ASM. The following cards are needed to load and execute M4ASM: //bJOB ## //bXEQ M4ASM These cards are followed by the source deck to be assembled. MICROASSEMBLER THEORY •The META 4 System Microassembler operates in a twopass mode. On the first pass, a label table and a register table are stored in core. Any errors encountered during pass one are flagged and printed on the selected listing device. On pass two, instructions are read back from the disc and actual assembly takes place. Listing occurs during this pass and any errors found are flagged and listed. Object output is generated during this pass and is punched on the selected output device. When the Microassembler is loaded, the following message is printed on the console printer: Select mode with console entry switches | •SW-0 | Paper Tape Source | |--------|-------------------------| | •SW-1 | Paper Tape Object | | •SW-2 | List on Console Printer | | •SW-13 | List Type-2 Comments | | •SW-14 | List Type-3 Comments | Press start. In the normal operation, with no switches set, source input is from cards, object output is on cards, and listing is on the line printer. Deviations from this configuration may be made by selecting the proper console entry switches. Once selections are made and the START switch is pressed, switches may be reset. At the end of pass two when assembly, output, and listing are completed, the program exits back to the Monitor. MICROASSEMBLER ERROR CODES •Any errors found during pass one are flagged and printed before the program listing starts. Any errors found during pass two are flagged on the listing under the column labeled ERR. Some of the errors found in pass one will be encountered again in pass two; therefore, they will be flagged twice, once before the listing and again on the listing. The Microassembler converts mnemonics, labels, and constants into bit patterns for the META 4 ROM. Microassembler Error codes are listed in Appendix G. - •Coding may be done on the Digital Scientific Firmware Assembler Coding Form. This form provides the proper column and field identification for the META 4 System language. A sample of the coding form is shown on the following page. The fields are described below. - •Columns 1-4 contain an absolute location, a label, a comment indicator, or spaces. Absolute locations are represented in even hexadecimal notation, left-justified within the field and followed by a \$. Labels are left-justified within the field and are terminated by a space. Labels may contain any combination of four alphanumeric characters. - Columns 6-9 contain an operation mnemonic or pseudoop, left-justified within the field. (Operation mnemonics and pseudo-ops are described in Section 2.0 of this manual.) - •Columns 11-18 contain the source and destination registers to be used in the instruction: • Columns 11-12 B Source • Columns 14-15 D Destination • Columns 17-18 A Source or Branch Pointer - Columns 20-25 are used as a data field for BR and RI format instructions and must contain a label or a hexadecimal constant. Labels and constants are left-justified within the field and are terminated by a space or a \$. A hexadecimal constant must be followed by a \$. - Columns 27-72 are used for modifiers and comments. Modifiers are added to instructions in order to provide variations to the basic instruction set. Modifiers must start in column 27 and may be listed in any order, separated by commas (,). The first space encountered after column 26 indicates that the rest of the field is dedicated to comments. - Columns 73-80 are used for statement identifier
or sequence numbers. This field is listed just as it appears on the source cards. The Microassembler takes no action on this field. FIRMWARE CODING MICROCODING Label Fields Operand Field Source and Destination Field 11 Operand Field Modifiers and Comments Field Identifier Field # Digital Scientific Meta 4 1.4" COMPUTER FIRMWARE ASSEMBLER CODING FORM | PROGRAM | RAM | | | | | DATE | | |-----------|-------------------|----------------------------|----------|-------------|--------------------------------|---|---------------------------------------| | PROG | PROGRAMMED BY | ВҮ | | | | SHEETO | _ OF | | | | | | | | | | | LABEL | OPERATION | P.E.G | REG | ¥EG
₩ | OPERAND | MODIFIERS AND COMMENTS | IDENT | | 1 2 3 | 6 - 7 - 8 - 9 - 9 | 12 | 14 | -
-
- | (q 20 21 22 23 24 25 | हिंग सिंह है। सिंह है जिस कि | 73 74 75 76 77 78 79 80 | | | | - | - | | - | | - | | - | | | - | - | | | -
-
-
- | | - | -
- | - | - | _ | -
-
-
- | | - | | - | -
-
- | - | - | - | -
-
-
- | | | | - | - | - | _ | | - | | | | - | - | - | - | - | -
-
- | | - | | | | - | | - | | | | | - | - | - | - | - | - | | | | | | - | - | - | - | - | -
-
-
- | | - | -
- | - | - | _ | -
-
-
- | | -
-
-
-
- | | - | -
- | - | _ | - | -
-
-
- |
- | | | - | -
-
- | - | - | - | -
-
-
- | | | | - | - | - | - | - | -
-
- | - | - | | | - | - | - | - | | | - | | - | - | - | - | - | -
-
-
- | | - | | - | - | - | - | - | | | | | _ | -
-
- | - | - | - | -
-
-
- | | | | _ | - | - | - | - |

 | | | | - | - | - | _ | - | | | | | | -
-
- | | | - | | | | | - | - | - | - | - | 1 1 1 | | | | 1 12 13 1 | 4 5 6 7 8 8 9 | 21
11
21
21
21 | 14 15 36 | 81 / 21 | 19 20 21 22 23 24 25 | জানি সংগ্ৰহণ ।
সংগ্ৰহণ সংগ্ৰহণ বিশ্ব কি জি কি কি কি কি কি কি কি জি কি জি কি জি কি জি কি কি কি কি কি কি কি জি কি কি কি কি কি কি | 09 67 87 75 87 87 80 | | DSC8A | | 1 | | | | | 12/69 | F-3 MICROASSEMBLER CODING FORM # REGISTER DESIGNATION # COMMENTS - •Before any register can be used in a program, it must be named. This is done with an EQUR statement. - •Three types of comment statements are available: | • Type 1 | has an asterisk (*) in column 1 | |----------|---------------------------------| | •Type 2 | has a comma (,) in column 1 | | •Type 3 | has a period (.) in column 1 | All three types have columns 2-80 available for comments. Any printable character may be used in comment statements. Only type 1 comments appear on a normal program listing. Types 2 and 3 are suppressed unless specifically selected at the beginning of the assembly. Selection of a type 2 or 3 comment may be made during manual mode selection. If switch 13 on the programmer's control panel is set, type 2 comments are printed. If panel entry switch 14 is set, type 3 comments are printed. Comments may also be written in columns 28-72. These comments will always be printed and may contain any combination of alphanumeric or special characters. # APPENDIX G # META 4 MICROASSEMBLER ERROR CODES # APPENDIX G # META 4 MICROASSEMBLER ERROR CODES •Microassembler errors are flagged according to the following table: - A- ILLEGAL A-REGISTER - B- ILLEGAL B-REGISTER - D- DUPLICATE SYMBOL - F- FORMAT ERROR - H- HEX CONVERSION ERROR - I- ILLEGAL D-REGISTER - M- ILLEGAL MODIFIER - O- INVALID OPERATION - R- UNDEFINED REGISTER - S- SYMBOL TABLE OVERFLOW - U- UNDEFINED SYMBOL # APPENDIX H # CABLE CONNECTIONS # APPENDIX H # CABLE CONNECTIONS •A list of signals on each 44-pin connector of an I/O port is shown on the following page. The mating connector is a Viking 2VH22/1JN5. Output signals (4 control flip-flop outputs and 16 data outputs) are supplied from Motorola type 1039 MECL-to-TTL integrated circuit level shifters. Input signals (2 Ready signals, Output-Enable, and 16 data inputs) are each connected to a level shifter network shown schematically below. In the following list, the logic terms are TTL with 3.5 volts high and ± 0.4 volts low. The active state (logical one) listed for each signal is low. | PIN | SIGNAL | PIN | SIGNAL | |-------------|---|---|--| | A1 | GND | B1 | Not Used | | A2 | Input Ready | B2 | Reserved | | A 3 | Output Resume | B3 | Acknowledge | | A 4 | Output Enable | B4 | Reserved | | A 5 | Reserved | B5 | Go | | A 6 | Input Bit 13 | B6 | Output Bit 13 | | A7 | Input Bit 14 | B7 | Output Bit 14 | | A 8 | Input Bit 12 | B 8 | Output Bit 12 | | A 9 | Input Bit 0 | В9 | Output Bit 0 | | A10 | Input Bit 1 | B10 | Output Bit 1 | | A11 | Input Bit 2 | B11 | Output Bit 2 | | A12 | Input Bit 15 | B12 | Output Bit 15 | | A13 | Input Bit 3 | B13 | Output Bit 3 | | A14 | Input Bit 11 | B14 | Output Bit 11 | | A15 | Input Bit 7 | B15 | Output Bit 7 | | A16 | Input Bit 10 | B16 | Output Bit 10 | | A17 | Input Bit 6 | B17 | Output Bit 6 | | A1 8 | Input Bit 9 | B18 | Output Bit 9 | | A19 | Input Bit 5 | B19 | Output Bit 5 | | A20 | Input Bit 4 | B20 | Output Bit 4 | | A21 | Input Bit 8 | B21 | Output Bit 8 | | A22 | Not Used | B22 | GND | | | A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 A17 A18 A19 A20 A21 | A1 GND A2 Input Ready A3 Output Resume A4 Output Enable A5 Reserved A6 Input Bit 13 A7 Input Bit 14 A8 Input Bit 12 A9 Input Bit 10 A10 Input Bit 1 A11 Input Bit 2 A12 Input Bit 15 A13 Input Bit 3 A14 Input Bit 11 A15 Input Bit 7 A16 Input Bit 7 A16 Input Bit 6 A18 Input Bit 9 A19 Input Bit 4 A21 Input Bit 4 | A1 GND B1 A2 Input Ready B2 A3 Output Resume B3 A4 Output Enable B4 A5 Reserved B5 A6 Input Bit 13 B6 A7 Input Bit 14 B7 A8 Input Bit 12 B8 A9 Input Bit 0 B9 A10 Input Bit 1 B10 A11 Input Bit 2 B11 A12 Input Bit 15 B12 A13 Input Bit 15 B12 A14 Input Bit 11 B14 A15 Input Bit 7 B15 A16 Input Bit 7 B15 A16 Input Bit 6 B17 A18 Input Bit 9 B18 A19 Input Bit 5 B19 A20 Input Bit 4 B20 Input Bit 4 B20 Input Bit 8 B21 | # APPENDIX I MICROPROGRAMMER'S PANEL # APPENDIX I MICROPRO-GRAMMER'S PANEL •The Digital Scientific Microprogrammer's Panel is used only to operate the META 4 Processor's microprogram in a step-by-step fashion for firmware or hardware debugging. It is <u>not</u> required for normal operation of the system. The panel data lamps display binary data from internal logic signals and the panel switches select operating modes and provide entry data. Any machine instruction can be executed from the panel's data switches. This capability allows loading or viewing any of the 32 machine registers, viewing any of the 4096 read-only memory (ROM) data words, and executing data transfers with any input or output device or with core memory. Control Switches located at the bottom of the Microprogrammer's Panel are: | •START | Forces execution of one instruction cycle. | |-----------|---| | •RUN/STEP | Disables timing clocks after each instruction cycle when STEP is selected; allows continuous operation when RUN is selected. | | •CLEAR | Forces the ROM address register to zero and resets the control flip-flop on memory and I/O register boards. | | •LOAD | Loads the ROM data register from
the 32 data switches and inhibits ROM
data. The Up position is latching;
the Down position is momentary; and
the Center position is OFF. | | •ON/OFF | Enables/disables the other control | The D/ADDR/ROM switch at the top of the panel selects the function of the 32 data indicators. The D-bus together with the ROM address register is displayed in the lower position. switches. And the second of o The ROM address displayed when D/ADDR is selected is the <u>next</u> instruction to be executed and <u>not</u> the current instruction. The Control Indicators at the bottom of the panel are: | •INPUT | Indicates that an input instruction with the PZ bit is waiting for an external signal. | |------------------|---| | •OUTPUT | Indicates that an output instruction with the PZ bit is waiting for an external signal. | | •PANEL | Indicates that the instruction is waiting for the START switch to be depressed. | | •LOAD | Indicates the second cycle of a register load will control ROM address selection. | | •JUMP | Indicates that a Branch in the program sequence will occur. | | •INSTR | Indicates that a successful Branch test will use part of the current instruction word to form the Branch address. | | •LINK | Indicates that a successful Branch test will use the link contents to form part of the Branch address. | | •SHIFT | Displays bit 2 of Register 1. | | •CARRY | Displays bit 0 of Register 1. | | •OVERFLOW | Displays bit 1 of Register 1. | | Data may be ente | red into a register in STEP mode | REGISTER DATA ENTRY •Data may be entered into a register in STEP mode by setting an ORI instruction into the data switches with the PZ/MW and IO/MR
switches set to zero, the B-bus address set to zero, the D-bus address set to register to be loaded, and the data to be entered in the ODD word of the instruction. After the data switches are set, depress LOAD to enter the instruction into the ROM data register and then depress START to execute the instructions which enter data into the register. REGISTER DATA DISPLAY ROM INSTRUCTION OR DATA DISPLAY AND PROGRAM START •Register data may be displayed in the STEP mode by setting an ORI instruction into the data switches with the PZ/MW and IO/MR switches set to zero, the B-bus address set to the register to be displayed, and the ODD word of the instruction set to zero. After the data switches are set, depress LOAD to enter the instruction into the ROM data register and read the data with the D/ADDR/ROM switch set to D/ADDR. •A ROM double-word may be displayed by entering a BRZ instruction into the data switches with all bits zero except for the address of the ROM double-word in the ODD word of the instruction. After the data switches are set, depress LOAD to enter the instruction into the ROM data register and then depress START to display the contents of the double word with the D/ADDR/ROM switch set to ROM. Each additional depression of the START switch will execute one instruction beginning with the instruction first displayed. For high-speed execution, place the RUN/STEP switch in the RUN mode. # Cut Along Lir # COMMENT SHEET # DIGITAL SCIENTIFIC META $4^{\text{I.M.}}$ SERIES 16 COMPUTER SYSTEM # REFERENCE MANUAL Publication No. 7032MO | FROM: | Nam | e: | · | | | | | |---------|------|-------------------------------------|---|--------------|------------|------------|-------------| | | Busi | ness Address: | | | | • | | | COMMENT | TS: | (Describe errors, include page numb | | additions or | deletions, | etc.; plea | ıse | Staple Staple Fold Fold First Class Permit No. 6225 San Diego, Calif. BUSINESS REPLY MAIL No Postage Stamp Necessary If Mailed in the United States — POSTAGE WILL BE PAID BY — DIGITAL SCIENTIFIC CORPORATION 11455 Sorrento Valley Road San Diego, California 92121 Attention: Marketing Department, Publications Group Fold Fold **S**taple Staple Cut Along Line